WO2021223529A1 - 热泵系统 - Google Patents

热泵系统 Download PDF

Info

Publication number
WO2021223529A1
WO2021223529A1 PCT/CN2021/082102 CN2021082102W WO2021223529A1 WO 2021223529 A1 WO2021223529 A1 WO 2021223529A1 CN 2021082102 W CN2021082102 W CN 2021082102W WO 2021223529 A1 WO2021223529 A1 WO 2021223529A1
Authority
WO
WIPO (PCT)
Prior art keywords
way valve
pump system
heat pump
heat exchanger
communication
Prior art date
Application number
PCT/CN2021/082102
Other languages
English (en)
French (fr)
Inventor
任滔
柴婷
宋强
李银银
王冰
孙辉
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021223529A1 publication Critical patent/WO2021223529A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide

Definitions

  • the invention belongs to the field of heat pump application technology, and specifically relates to a heat pump system.
  • carbon dioxide refrigerant (chemical molecular formula CO 2 , R744) has the advantages of environmental protection, non-toxicity, and can work normally in severe cold environments, it has been well applied in the field of heat pumps.
  • Chinese patent application document (CN110044093A) discloses a two-stage compression intermediate supplemental gas CO2 three-stage regenerative cooling heat pump/refrigeration system, which consists of an evaporator, a low-pressure compressor, an intercooler, a high-pressure compressor, a gas cooler, The first regenerator, the first expansion valve, the second regenerator, the third regenerator, the second expansion valve, the splitter, the three-way valve, the first gas-liquid separator, the second gas-liquid separator, the second It is composed of an oil separator and a second oil separator, and the system is divided into two parallel branches, the main circuit and the supplementary air circuit, through the flow divider.
  • the system can be applied to heat pumps and refrigeration.
  • carbon dioxide refrigerant is generally in a supercritical state, its high working pressure causes the four-way reversing valve to be unable to perform the reversing operation, so that it cannot realize the conversion between the cooling mode and the heating mode through the four-way reversing valve.
  • the heat pump systems using carbon dioxide refrigerant have the same functions as the above-mentioned heat pump refrigeration systems, and can only be used to realize a single refrigeration system or heating system.
  • the present invention provides a heat pump system that includes a two-stage compressor, a first heat exchanger for heat exchange with outdoor air, and a second heat exchanger for heat exchange with indoor air , Electronic expansion valve, first three-way valve, second three-way valve, first one-way valve, second one-way valve, third one-way valve and fourth one-way valve;
  • the two-stage compressor has a low-pressure chamber And a high-pressure cavity, and the two-stage compressor is provided with a low-pressure inlet and a low-pressure outlet communicating with the low-pressure cavity, and a high-pressure inlet and a high-pressure outlet communicating with the high-pressure cavity;
  • a refrigeration cycle pipeline is formed in the heat pump system And a heating cycle pipeline;
  • the first end of the first three-way valve is in communication with the high-pressure outlet of the two-stage compressor, and the first end of the second three-way valve is in communication with the low-pressure inlet of the two-stage compressor
  • the second end of the first three-way valve is in communication with
  • the inlet end of a one-way valve is in communication, the outlet end of the first one-way valve is in communication with the inlet end of the electronic expansion valve, and the outlet end of the electronic expansion valve is in communication with the inlet end of the second one-way valve ,
  • the outlet end of the second one-way valve is in communication with the first end of the second heat exchanger, and the second end of the second heat exchanger is in communication with the second end of the second three-way valve;
  • the third end of the first three-way valve is in communication with the second end of the second heat exchanger, and the first end of the second heat exchanger is connected to the third end of the second heat exchanger.
  • the inlet end of the one-way valve is in communication
  • the outlet end of the third one-way valve is in communication with the inlet end of the electronic expansion valve
  • the outlet end of the electronic expansion valve is in communication with the inlet end of the fourth one-way valve
  • the outlet end of the fourth one-way valve is in communication with the second end of the first heat exchanger
  • the first end of the second heat exchanger is in communication with the third end of the second three-way valve.
  • the heat pump system further includes a water heater; the inlet end of the water heater is connected to the outlet end of the first check valve and the third check valve respectively.
  • the outlet end of the water heater communicates with the inlet end of the electronic expansion valve.
  • the heat pump system further includes an intercooler; the inlet end of the intercooler is in communication with the low pressure outlet of the two-stage compressor, and the intercooler The outlet end of the compressor is in communication with the high-pressure inlet of the two-stage compressor.
  • the heat pump system further includes a third three-way valve; the first end of the third three-way valve is in communication with the low pressure outlet of the two-stage compressor The second end of the third three-way valve communicates with the outlet end of the intercooler and the high-pressure inlet of the two-stage compressor; the third end of the third three-way valve communicates with the intercooler The inlet end of the connection is connected.
  • the intercooler is configured to share a heat dissipation fan with the first heat exchanger
  • the heat pump system further includes a heat regenerator having an evaporating cavity and a condensing cavity that exchange heat with each other;
  • the first end of the second three-way valve communicates with the low-pressure inlet of the two-stage compressor; the condensing cavity communicates the outlet end of the water heater with the inlet end of the electronic expansion valve.
  • the heat pump system further includes a fourth three-way valve; the first end of the fourth three-way valve is in communication with the outlet end of the water heater, and the The second end of the fourth three-way valve is in communication with the inlet end of the condensing cavity; the third end of the fourth three-way valve is in communication with the outlet end of the condensing cavity and the inlet end of the electronic expansion valve.
  • the heat pump system further includes a gas-liquid separator; the gas-liquid separator connects the first end of the second three-way valve with the evaporation chamber The inlet end of the connection is connected.
  • the heat pump system further includes a first filter drier, a second filter drier, a third filter drier, a fourth filter drier, and a fifth filter drier
  • the first filter drier connects the second end of the first heat exchanger with the inlet end of the first one-way valve; the second filter drier expands the electrons
  • the outlet end of the valve communicates with the inlet end of the second one-way valve;
  • the third filter drier connects the first end of the second heat exchanger with the inlet end of the third one-way valve; so
  • the fourth filter drier connects the outlet end of the electronic expansion valve with the inlet end of the fourth one-way valve;
  • the fifth filter drier connects the outlet end of the first one-way valve with the The inlet end of the electronic expansion valve is connected.
  • the heat pump system further includes an on-off valve, the on-off valve is arranged at the high-pressure outlet of the two-stage compressor and the first three-way valve
  • the heat pump system further includes a cold water pipeline, the cold water pipeline includes a first pipeline section for heat exchange with the second heat exchanger and a heat exchange with indoor air The second pipeline section.
  • the first end of the first three-way valve is in communication with the high-pressure outlet of the two-stage compressor, and the first end of the second three-way valve is in communication with the low-pressure inlet of the two-stage compressor, and
  • the first one-way valve and the second one-way are arranged in the refrigeration cycle pipeline, and the third one-way valve and the fourth one-way valve are arranged in the heating cycle pipeline.
  • the refrigerant flowing out of the high-pressure outlet of the two-stage compressor first enters the first heat exchanger and then enters the second heat exchanger, or enters the second heat exchanger first.
  • the heat exchanger then enters the first heat exchanger, thereby realizing the conversion between the cooling mode and the heating mode of the heat pump system using carbon dioxide refrigerant.
  • the inlet end of the water heater is respectively communicated with the outlet end of the first one-way valve and the outlet end of the third one-way valve, and the outlet end of the water heater is communicated with the inlet end of the electronic expansion valve. .
  • the temperature of the refrigerant at the inlet end of the electronic expansion valve that is, the second end of the first heat exchanger during cooling and the first end of the second heat exchanger during heating
  • the cooling and heating efficiency of the heat pump system can be improved
  • the hot water in the water heater can be heated and used to provide domestic water.
  • Figure 1 is a schematic diagram of the refrigerant circulation pipeline of the heat pump system of this embodiment in the refrigeration state
  • Figure 2 is a schematic diagram of the refrigerant circulation pipeline of the heat pump system of this embodiment in the heating state.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense. For example, they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • this embodiment provides a heat pump system.
  • the heat pump system includes a two-stage compressor 1, a first heat exchanger 3 for exchanging heat with outdoor air, and The second heat exchanger 7, the electronic expansion valve 6, the first three-way valve 91, the second three-way valve 92, the first one-way valve 101, the second one-way valve 102, and the third one-way valve where the air exchanges heat 103 and the fourth one-way valve 104;
  • the two-stage compressor 1 has a low-pressure cavity and a high-pressure cavity, and the two-stage compressor 1 is provided with a low-pressure inlet communicating with the low-pressure cavity (the two-stage compressor 1 in Figures 1 and 2 The lower end) and the low-pressure outlet (the lower left end of the two-stage compressor 1 in Figures 1 and 2), and the high-pressure inlet (the upper left end of the two-stage compressor 1 in Figures 1 and 2) and the high-pressure outlet (the upper left end of the two-stage compressor 1 in Figures 1 and 2) communicating with the high-pressure chamber
  • the two-stage compressor 1 is a compressor that completes compression by using two stages, and each stage has one or several cylinders. Compared with the single-stage compressor, the performance of the two-stage compressor 1 in terms of specific compression ratio and pressure difference has been greatly improved.
  • the refrigerant enters the low-pressure cavity from the low-pressure inlet and is discharged from the low-pressure outlet to complete the first compression, and then enters the high-pressure cavity from the high-pressure inlet and is discharged from the high-pressure outlet to complete the second compression.
  • the circulation route of the refrigerant in the heat pump system is: Two-stage compressor 1 ⁇ first three-way valve 91 ⁇ first heat exchanger 3 (used as a condenser) ⁇ first check valve 101 ⁇ electronic expansion valve 6 ⁇ second check valve 102 ⁇ second heat exchanger 7(Used as an evaporator) ⁇ The second three-way valve 92 ⁇ Two-stage compressor 1.
  • the circulation route of the refrigerant in the heat pump system is :Two-stage compressor 1 ⁇ first three-way valve 91 ⁇ second heat exchanger 7 (used as a condenser) ⁇ third check valve 103 ⁇ electronic expansion valve 6 ⁇ fourth check valve 104 ⁇ first heat exchange Device 3 (used as an evaporator) ⁇ second three-way valve 92 ⁇ two-stage compressor 1.
  • the outlet end of the electronic expansion valve 6 is respectively connected with the inlet end of the second one-way valve 102 and the inlet end of the fourth one-way valve 104, in the heat pump system, due to the pressure difference of the refrigerant,
  • the refrigerant always flows back from the high-pressure outlet end of the two-stage compressor 1 to the low-pressure inlet end (that is, flows from the high pressure to the low pressure), and the outlet end of the fourth one-way valve 104 and the second heat exchanger 3 of the first heat exchanger 3
  • the refrigerant pressure between the two ends is balanced, and the refrigerant flowing out of the outlet end of the electronic expansion valve 6 can only pass through the second one-way valve 102 but not the fourth one-way valve 104; in the same way, the second one-way valve 102 is used for heating.
  • the refrigerant pressure between the outlet end and the first end of the second heat exchanger 7 is balanced, and the refrigerant flowing out of the outlet end of the electronic expansion valve 6 can only pass through the fourth one-way valve 104 but not the second one-way valve 102.
  • the first end of the first three-way valve 91 is in communication with the high-pressure outlet of the two-stage compressor 1, and the first end of the second three-way valve 92 is connected to the high-pressure outlet of the two-stage compressor 1.
  • the low pressure inlet is in communication, and the first one-way valve 101 and the second one-way valve are arranged in the refrigeration cycle pipeline, and the third one-way valve 103 and the fourth one-way valve 104 are arranged in the heating cycle pipeline.
  • the refrigerant flowing out of the high-pressure outlet of the two-stage compressor 1 first enters the first heat exchanger 3 and then enters the second heat exchanger 7 ( (Refrigeration mode), first enter the second heat exchanger 7 and then enter the first heat exchanger 3 (heating mode), thereby realizing the conversion between the cooling mode and the heating mode of the heat pump system using carbon dioxide refrigerant.
  • the heat pump system further includes a water heater 4; Connected, the outlet end of the water heater 4 communicates with the inlet end of the electronic expansion valve 6.
  • the water heater 4 is a heat pump water heater 4.
  • the water heater 4 is provided with a refrigerant circulation pipeline and a water flow pipeline, and the hot water is achieved by heat exchange between the refrigerant and the water. Purpose. In this way, the temperature of the refrigerant between the inlet end of the electronic expansion valve 6 and the second end of the first heat exchanger 3 during cooling can be further reduced, and the inlet end of the electronic expansion valve 6 and the second heat exchanger 7 during heating can be reduced.
  • the temperature of the refrigerant between the first end of the heat pump system can improve the cooling and heating efficiency of the heat pump system.
  • the hot water in the water heater 4 can be heated and used to provide domestic water.
  • the heat pump system further includes an intercooler 2; the inlet end of the intercooler 2 is in communication with the low pressure outlet of the two-stage compressor 1, and the outlet of the intercooler 2 The end is communicated with the high-pressure inlet of the two-stage compressor 1.
  • the intercooler 2 is also referred to as a compressor intercooler, an interstage cooler, etc.
  • the intercooler 2 is mostly water-cooled and a few are air-cooled.
  • the intercooler 2 cools the refrigerant between the high compression stage and the low compression stage of the two-stage compressor 1 to further reduce the temperature of the refrigerant entering the high compression stage and reduce the discharge of the high-pressure outlet of the two-stage compressor 1 Temperature, thereby increasing the refrigeration capacity of the heat pump system, and reducing the power consumption and energy efficiency ratio of the two-stage compressor 1.
  • the heat pump system further includes a third three-way valve 93; the first end of the third three-way valve 93 is in communication with the low pressure outlet of the two-stage compressor 1; The second end of the three-way valve 93 communicates with the outlet end of the intercooler 2 and the high-pressure inlet of the two-stage compressor 1; the third end of the third three-way valve 93 communicates with the inlet end of the intercooler 2.
  • the use of the intercooler 2 in the two-stage compressor 1 during heating in winter can reduce the power consumption and energy efficiency ratio of the compressor, but at the same time it will reduce the heating capacity of the heat pump system.
  • the third three-way valve 93 can be adjusted to allow the refrigerant to pass through the intercooler 2; while during heating, the refrigerant can be selectively passed through the intercooler 2.
  • the refrigerant passes through the intercooler 2; when the outdoor temperature is higher than -30°C, the low-pressure outlet of the two-stage compressor 1 is directly connected to the high-pressure inlet without passing through the intercooler 2. Therefore, an optimal choice can be achieved between reducing the power consumption of the two-stage compressor 1 and improving the heating and cooling effects of the heat pump system.
  • the first heat exchanger 3 is installed outdoors, and the outdoor unit is provided with a heat exchanger for improving the heat exchange between the first heat exchanger 3 and outdoor air.
  • the intercooler 2 can be set to share the heat dissipation fan with the first heat exchanger 3.
  • the heat pump system further includes a heat regenerator 5, which has an evaporation cavity and a condensing cavity that exchange heat with each other; the evaporation cavity connects the second three-way valve The first end of 92 communicates with the low-pressure inlet of the two-stage compressor 1; the condensing cavity connects the outlet end of the water heater 4 with the inlet end of the electronic expansion valve 6.
  • the refrigerant in the condensing cavity exchanges heat with the refrigerant in the evaporating cavity.
  • the condensing cavity causes the refrigerant entering the second heat exchanger 7 (used as an evaporator) to release heat and supercool, thereby reducing throttling loss.
  • the evaporating cavity makes the refrigerant entering the two-stage compressor 1 absorb heat into superheated steam, preventing the two-stage compressor 1 from generating liquid hammer and reducing harmful overheating.
  • the heat pump system further includes a fourth three-way valve 94; the first end of the fourth three-way valve 94 communicates with the outlet end of the water heater 4, and the fourth three-way valve 94 The second end of the valve 94 communicates with the inlet end of the condensing cavity; the third end of the fourth three-way valve 94 communicates with the outlet end of the condensing cavity and the inlet end of the electronic expansion valve 6.
  • the regenerator 5 is not required to function.
  • the fourth on-off valve 10 can also be set to control the refrigerant to enter the two-stage compressor 1 through the evaporation cavity of the regenerator 5, or not to pass through the evaporation cavity of the regenerator 5. Go directly to the two-stage compressor 1.
  • the heat pump system further includes a gas-liquid separator 8; the gas-liquid separator 8 connects the first end of the second three-way valve 92 with the inlet end of the evaporation chamber .
  • the gas-liquid separator 8 connects the first end of the second three-way valve 92 with the inlet end of the evaporation chamber .
  • the heat pump system further includes a first filter drier 111, a second filter drier 112, a third filter drier 113, a fourth filter drier 114, and a At least one of the five filter driers 115;
  • the first filter drier 111 connects the second end of the first heat exchanger 3 with the inlet end of the first one-way valve 101;
  • the second filter drier 112 connects the electronic expansion valve 6
  • the outlet end of the second heat exchanger is connected with the inlet end of the second one-way valve 102;
  • the third filter drier 113 connects the first end of the second heat exchanger 7 with the inlet end of the third one-way valve 103;
  • the fourth filter drier 114 The outlet end of the electronic expansion valve 6 is communicated with the inlet end of the fourth one-way valve 104;
  • the fifth filter drier 115 communicates the outlet end of the first one-way valve 101 with the inlet end of the electronic expansion valve 6.
  • filter driers are provided at the inlet ends of the first one-way valve 101, the second one-way valve 102, the third one-way valve 103, the fourth one-way valve 104, and the electronic expansion valve 6, so as to prevent the refrigerant in the refrigerant.
  • the impurities are filtered to prevent the heat pump system from clogging.
  • the heat pump system further includes an on-off valve 10, which is arranged at the first of the high-pressure outlet of the two-stage compressor 1 and the first three-way valve 91.
  • the heat pump system also includes a cold water pipeline, the cold water pipeline includes a first pipeline section that exchanges heat with the second heat exchanger 7 and a second pipeline section that exchanges heat with indoor air.
  • the on-off valve 10 is used to conduct the refrigerant passage when the heat pump system is in use, and cut off the refrigerant passage when the heat pump system is shut down.
  • a water pump is used to provide power for the water circulation in the cold water pipeline, and the indoor heating or cooling is performed through the cold water pipeline, which can reduce the amount of refrigerant used and make the cooling and heating effect of the heat pump system more stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

本发明属于热泵应用技术领域,具体涉及一种热泵系统。在本发明提供的一种热泵系统中,第一三通阀的第一端与双级压缩机的高压出口连通,第二三通阀的第一端与双级压缩机的低压进口连通,且将第一单向阀和第二单向设置于制冷循环管线中,将第三单向阀和第四单向阀设置于制热循环管线中。如此,通过调节第一三通阀和第二三通阀,即可实现由双级压缩机的高压出口流出的冷媒先进入第一换热器再进入第二换热器,还是先进入第二换热器再进入第一换热器,从而实现了使用二氧化碳制冷剂的热泵系统的制冷模式和制热模式的转换。

Description

热泵系统 技术领域
本发明属于热泵应用技术领域,具体涉及一种热泵系统。
背景技术
由于二氧化碳制冷剂(化学分子式CO 2,R744)存在环保、无毒、可在酷寒环境下正常工作等优点,在热泵领域得到较好的应用。
中国专利申请文件(CN110044093A)公开了一种双级压缩中间补气CO2三级回热冷却热泵/制冷系统,该系统由蒸发器、低压压缩机、中间冷却器、高压压缩机、气体冷却器、第一回热器、第一膨胀阀、第二回热器、第三回热器、第二膨胀阀、分流器、三通阀、第一气液分离器、第二气液分离器、第一油分离器、第二油分离器组成,通过分流器将系统分为主回路和补气回路两个并联支路。该系统能够应用于热泵和制冷。
但是,由于二氧化碳制冷剂一般处于超临界状态,其工作压力较高导致四通换向阀无法进行换向操作,从而其无法通过四通换向阀实现制冷模式和制热模式的转换,使得目前应用二氧化碳制冷剂的热泵系统均如上述的热泵制冷系统的功能一样,只能用于实现单一的制冷系统或制热系统。
相应地,本领域需要一种新的热泵系统来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有的使用二氧化碳制冷剂的热泵系统存在的由于二氧化碳制冷剂的工作压力较高导致的只能用于实现单一的制冷系统或制热系统的问题,本发明提供了一种热泵系统,所述热泵系统包括双级压缩机、用于与室外空气进行换热的第一换热器、用于与室内空气进行换热的第二换热器、电子膨胀阀、第一三通阀、第二三通阀、第一单向阀、第二单向阀、第三单向阀和第四单向阀;所述双级压缩机具有低压腔和高压腔,且所述双级压缩机上 设置有与所述低压腔连通的低压进口和低压出口,以及与所述高压腔连通的高压进口和高压出口;所述热泵系统中形成有制冷循环管线和制热循环管线;所述第一三通阀的第一端与所述双级压缩机的高压出口连通,所述第二三通阀的第一端与所述双级压缩机的低压进口连通;在所述制冷循环管线中,所述第一三通阀的第二端与所述第一换热器的第一端连通,所述第一换热器的第二端与所述第一单向阀的进口端连通,所述第一单向阀的出口端与所述电子膨胀阀的进口端连通,所述电子膨胀阀的出口端与所述第二单向阀的进口端连通,所述第二单向阀的出口端与所述第二换热器的第一端连通,所述第二换热器的第二端与所述第二三通阀的第二端连通;在所述制热循环管线中,所述第一三通阀的第三端与所述第二换热器的第二端连通,所述第二换热器的第一端与所述第三单向阀的进口端连通,所述第三单向阀的出口端与所述电子膨胀阀的进口端连通,所述电子膨胀阀的出口端与所述第四单向阀的进口端连通,所述第四单向阀的出口端与所述第一换热器的第二端连通,所述第二换热器的第一端与所述第二三通阀的第三端连通。
作为本发明提供的上述热泵系统的一种优选的技术方案,所述热泵系统还包括热水器;所述热水器的进口端分别与所述第一单向阀的出口端、所述第三单向阀的出口端连通,所述热水器的出口端与所述电子膨胀阀的进口端连通。
作为本发明提供的上述热泵系统的一种优选的技术方案,所述热泵系统还包括中间冷却器;所述中间冷却器的进口端与所述双级压缩机的低压出口连通,所述中间冷却器的出口端与所述双级压缩机的高压进口连通。
作为本发明提供的上述热泵系统的一种优选的技术方案,所述热泵系统还包括第三三通阀;所述第三三通阀的第一端与所述双级压缩机的低压出口连通;所述第三三通阀的第二端与所述中间冷却器的出口端、所述双级压缩机的高压进口连通;所述第三三通阀的第三端与所述中间冷却器的进口端连通。
作为本发明提供的上述热泵系统的一种优选的技术方案,所述中间冷却器设置为与所述第一换热器共用散热风机
作为本发明提供的上述热泵系统的一种优选的技术方案,所 述热泵系统还包括回热器,所述回热器具有互相进行换热的蒸发腔和冷凝腔;所述蒸发腔将所述第二三通阀的第一端与所述双级压缩机的低压进口连通;所述冷凝腔将所述热水器的出口端与所述电子膨胀阀的进口端连通。
作为本发明提供的上述热泵系统的一种优选的技术方案,所述热泵系统还包括第四三通阀;所述第四三通阀的第一端与所述热水器的出口端连通,所述第四三通阀的第二端与所述冷凝腔的进口端连通;所述第四三通阀的第三端与所述冷凝腔的出口端、所述电子膨胀阀的进口端连通。
作为本发明提供的上述热泵系统的一种优选的技术方案,所述热泵系统还包括气液分离器;所述气液分离器将所述第二三通阀的第一端与所述蒸发腔的进口端连通。
作为本发明提供的上述热泵系统的一种优选的技术方案,所述热泵系统还包括第一干燥过滤器、第二干燥过滤器、第三干燥过滤器、第四干燥过滤器、第五干燥过滤器中的至少一个;所述第一干燥过滤器将所述第一换热器的第二端与所述第一单向阀的进口端连通;所述第二干燥过滤器将所述电子膨胀阀的出口端与所述第二单向阀的进口端连通;所述第三干燥过滤器将所述第二换热器的第一端与所述第三单向阀的进口端连通;所述第四干燥过滤器将所述电子膨胀阀的出口端与所述第四单向阀的进口端连通;所述第五干燥过滤器将所述第一单向阀的出口路端与所述电子膨胀阀的进口端连通。
作为本发明提供的上述热泵系统的一种优选的技术方案,所述热泵系统还包括通断阀,所述通断阀设置于所述双级压缩机的高压出口与所述第一三通阀的第一端之间;并且/或者所述热泵系统还包括冷水管路,所述冷水管路包括与所述第二换热器进行换热的第一管路段以及与室内空气进行换热的第二管路段。
在本发明提供的一种热泵系统中,第一三通阀的第一端与双级压缩机的高压出口连通,第二三通阀的第一端与双级压缩机的低压进口连通,且将第一单向阀和第二单向设置于制冷循环管线中,将第三单向阀和第四单向阀设置于制热循环管线中。如此,通过调节第一三通阀和第二三通阀,即可实现由双级压缩机的高压出口流出的冷媒先进入第 一换热器再进入第二换热器,还是先进入第二换热器再进入第一换热器,从而实现了使用二氧化碳制冷剂的热泵系统的制冷模式和制热模式的转换。
此外,在本发明提供的一种热泵系统中,热水器的进口端分别与第一单向阀的出口端、第三单向阀的出口端连通,热水器的出口端与电子膨胀阀的进口端连通。如此,可以进一步降低电子膨胀阀的进口端(即制冷时第一换热器的第二端和制热时第二换热器的第一端)的冷媒温度,提高热泵系统的制冷和制热效率,同时还可以将热水器中的热水加热后用于提供生活用水。
附图说明
下面参照附图来描述本发明的热泵系统。附图中:
图1为本实施例的热泵系统在制冷状态下的冷媒循环管线示意图;
图2为本实施例的热泵系统在制热状态下的冷媒循环管线示意图。
附图标记列表
1-双级压缩机;2-中间冷却器;3-第一换热器;4-热水器;5-回热器;6-电子膨胀阀;7-第二换热器;8-气液分离器;91-第一三通阀;92-第二三通阀;93-第三三通阀;94-第四三通阀;10-通断阀;101-第一单向阀;102-第二单向阀;103-第三单向阀;104-第四单向阀;111-第一干燥过滤器;112-第二干燥过滤器;113-第三干燥过滤器;114-第四干燥过滤器;115-第五干燥过滤器。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然本实施例主要是针对将将二氧化碳制冷剂作为冷媒使用的热泵系统,但是在不偏离本发明原理的条件下,该热泵系统也可以根据具体场合使用其他类型的冷媒,本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
为了解决现有技术中的上述问题,即为了解决现有的使用二氧化碳制冷剂的热泵系统存在的由于二氧化碳制冷剂的工作压力较高导致的只能用于实现单一的制冷系统或制热系统的问题,本实施例提供了一种热泵系统,如图1和图2所示,热泵系统包括双级压缩机1、用于与室外空气进行换热的第一换热器3、用于与室内空气进行换热的第二换热器7、电子膨胀阀6、第一三通阀91、第二三通阀92、第一单向阀101、第二单向阀102、第三单向阀103和第四单向阀104;双级压缩机1具有低压腔和高压腔,且双级压缩机1上设置有与低压腔连通的低压进口(图1和图2中双级压缩机1的下端)和低压出口(图1和图2中双级压缩机1的左下端),以及与高压腔连通的高压进口(图1和图2中双级压缩机1的左上端)和高压出口(图1和图2中双级压缩机1的上端);热泵系统中形成有制冷循环管线(参照图1)和制热循环管线(参照图2);第一三通阀91的第一端(图1和图2中第一三通阀91的下端)与双级压缩机1的高压出口连通,第二三通阀92的第一端(图1和图2中的第二三通阀92的左端)与双级压缩机1的低压进口连通;在制冷循环管线中,第一三通阀91的第二端(图1和图2中第一三通阀91的左端)与第一换热器3的第一端(图1和图2中第一换热器3的右端)连通,第一换热器3的第二端(图1和图2中第一换热器3的左端)与第一单向阀101的进口端连通,第一单向阀101的出口端与电子膨胀阀6的进口端连通,电子膨胀阀6的出口端与第二单向阀102的进 口端连通,第二单向阀102的出口端与第二换热器7的第一端(图1和图2中第二换热器7的左端)连通,第二换热器7的第二端(图1和图2中第二换热器7的右端)与第二三通阀92的第二端(图1和图2中第二三通阀92的下端)连通;在制热循环管线中,第一三通阀91的第三端(图1和图2中第一三通阀91的右端)与第二换热器7的第二端连通,第二换热器7的第一端与第三单向阀103的进口端连通,第三单向阀103的出口端与电子膨胀阀6的进口端连通,电子膨胀阀6的出口端与第四单向阀104的进口端连通,第四单向阀104的出口端与第一换热器3的第二端连通,第二换热器7的第一端与第二三通阀92(图1和图2中的第二三通阀92的右端)的第三端连通。
示例性地,双级压缩机1是通过利用两级完成压缩的压缩机,每级有一个或数个气缸。与单级压缩机相比,双级压缩机1比压缩比、压力差等方面的性能都得到了极大的提升。在双级压缩机1使用过程中,冷媒由低压进口进入低压腔并由低压出口排出完成第一次压缩,再由高压进口进入高压腔并由高压出口排出完成第二次压缩。
在制冷模式下,第一三通阀91的第一端与第二端导通,且第二三通阀92的第一端与第二端导通,热泵系统中冷媒的循环流通路线为:双级压缩机1→第一三通阀91→第一换热器3(作冷凝器使用)→第一单向阀101→电子膨胀阀6→第二单向阀102→第二换热器7(作蒸发器使用)→第二三通阀92→双级压缩机1。
在制热模式下,第一三通阀91的第一端与第三端导通,且第二三通阀92的第一端与第三端导通,热泵系统中冷媒的循环流通路线为:双级压缩机1→第一三通阀91→第二换热器7(作冷凝器使用)→第三单向阀103→电子膨胀阀6→第四单向阀104→第一换热器3(作蒸发器使用)→第二三通阀92→双级压缩机1。
可以理解的是,虽然电子膨胀阀6的出口端分别与第二单向阀102的进口端、第四单向阀104的进口端连通,但是,在热泵系统中,由于冷媒压力差的原因,冷媒总是从双级压缩机1的高压出口端流回至低压进口端(即高压处流向低压),而在制冷时第四单向阀104的出口端与第一换热器3的第二端之间的冷媒压力平衡,电子膨胀阀6出口端流出的冷媒只能通过第二单向阀102而不能通过第四单向阀104;同理,在制热 时第二单向阀102的出口端与第二换热器7的第一端之间的冷媒压力平衡,电子膨胀阀6出口端流出的冷媒只能通过第四单向阀104而不能通过第二单向阀102。
在本实施例提供的一种热泵系统中,第一三通阀91的第一端与双级压缩机1的高压出口连通,第二三通阀92的第一端与双级压缩机1的低压进口连通,且将第一单向阀101和第二单向设置于制冷循环管线中,将第三单向阀103和第四单向阀104设置于制热循环管线中。如此,通过调节第一三通阀91和第二三通阀92,即可实现由双级压缩机1的高压出口流出的冷媒先进入第一换热器3再进入第二换热器7(制冷模式),还是先进入第二换热器7再进入第一换热器3(制热模式),从而实现了使用二氧化碳制冷剂的热泵系统的制冷模式和制热模式的转换。
作为本实施例提供的上述热泵系统的一种优选的实施方式,热泵系统还包括热水器4;热水器4的进口端分别与第一单向阀101的出口端、第三单向阀103的出口端连通,热水器4的出口端与电子膨胀阀6的进口端连通。
示例性地,本领域技术人员可以理解的是该热水器4为热泵式热水器4,该热水器4中设置有冷媒流通管路和水流管路,通过冷媒和水之间的热交换来达到热水的目的。如此,可以进一步降低制冷时电子膨胀阀6的进口端与第一换热器3的第二端之间的冷媒温度,以及降低制热时电子膨胀阀6的进口端与第二换热器7的第一端之间的冷媒温度,以提高热泵系统的制冷和制热效率,同时还可以将热水器4中的热水加热后用于提供生活用水。
作为本实施例提供的上述热泵系统的一种优选的实施方式,热泵系统还包括中间冷却器2;中间冷却器2的进口端与双级压缩机1的低压出口连通,中间冷却器2的出口端与双级压缩机1的高压进口连通。
示例性地,中间冷却器2也称为压缩机中间冷却器、级间冷却器等,中间冷却器2多数采用水冷却而少数采用风冷却。通过中间冷却器2对双级压缩机1的高压缩级和低压缩级之间的冷媒进行冷却,进一步降低进入高压缩级的冷媒的温度,并降低双级压缩机1的高压出口的排气温度,从而提高热泵系统的制冷能力,并降低双级压缩机1的功耗和能效比。
作为本实施例提供的上述热泵系统的一种优选的实施方式,热泵系统还包括第三三通阀93;第三三通阀93的第一端与双级压缩机1的低压出口连通;第三三通阀93的第二端与中间冷却器2的出口端、双级压缩机1的高压进口连通;第三三通阀93的第三端与中间冷却器2的进口端连通。
示例性地,冬季制热时在双级压缩机1中使用中间冷却器2,虽然能够降低压缩机的功耗和能效比,但同时会降低热泵系统的制热量。在制冷时可以通过调节第三三通阀93使得冷媒通过中间冷却器2;而在制热时,可以选择性地使冷媒通过中间冷却器2。例如,室外温度低于-30℃时,使冷媒通过中间冷却器2;室外温度高于-30℃时,双级压缩机1的低压出口与高压进口直接连通而不经过中间冷却器2。从而,能在降低双级压缩机1的功耗与提高热泵系统的制热和制冷效果之间实现优化选择。
作为本实施例提供的上述热泵系统的一种优选的实施方式,一般地,第一换热器3设置于室外,且在室外机中设置有用于提高第一换热器3与室外空气换热效率的散热风机,为了物尽其用及节约成本,可以将中间冷却器2设置为与第一换热器3共用散热风机。
作为本实施例提供的上述热泵系统的一种优选的实施方式,热泵系统还包括回热器5,回热器5具有互相进行换热的蒸发腔和冷凝腔;蒸发腔将第二三通阀92的第一端与双级压缩机1的低压进口连通;冷凝腔将热水器4的出口端与电子膨胀阀6的进口端连通。
示例性地,冷凝腔中的冷媒与蒸发腔中的冷媒进行热交换,在制冷时冷凝腔使得进入第二换热器7(作为蒸发器使用)的冷媒放热过冷,减少节流损失,并提高第二换热器7及热泵系统的制冷效果;同时蒸发腔使得进入双级压缩机1的冷媒吸热成为过热蒸汽,防止双级压缩机1产生液击和减少有害过热。
作为本实施例提供的上述热泵系统的一种优选的实施方式,热泵系统还包括第四三通阀94;第四三通阀94的第一端与热水器4的出口端连通,第四三通阀94的第二端与冷凝腔的进口端连通;第四三通阀94的第三端与冷凝腔的出口端、电子膨胀阀6的进口端连通。如此,在冷热状态下通过调节第四三通阀94使得将冷媒通过冷凝腔提高热泵的制冷效果,在制热状态下通过调节第四三通阀94使得将冷媒不通过冷凝腔,即 此时不需要回热器5发挥作用。或者,本领域技术人员可以理解的是,还可以将第四通断阀10设置成控制冷媒经过回热器5的蒸发腔进入双级压缩机1,或者或不经过回热器5的蒸发腔直接进入双级压缩机1。
作为本实施例提供的上述热泵系统的一种优选的实施方式,热泵系统还包括气液分离器8;气液分离器8将第二三通阀92的第一端与蒸发腔的进口端连通。如此,可以保证压缩机的吸气端的冷媒均为气态,防止压缩机吸液发生液击而损坏。
作为本实施例提供的上述热泵系统的一种优选的实施方式,热泵系统还包括第一干燥过滤器111、第二干燥过滤器112、第三干燥过滤器113、第四干燥过滤器114、第五干燥过滤器115中的至少一个;第一干燥过滤器111将第一换热器3的第二端与第一单向阀101的进口端连通;第二干燥过滤器112将电子膨胀阀6的出口端与第二单向阀102的进口端连通;第三干燥过滤器113将第二换热器7的第一端与第三单向阀103的进口端连通;第四干燥过滤器114将电子膨胀阀6的出口端与第四单向阀104的进口端连通;第五干燥过滤器115将第一单向阀101的出口路端与电子膨胀阀6的进口端连通。
示例性地,通过在第一单向阀101、第二单向阀102、第三单向阀103、第四单向阀104和电子膨胀阀6的进口端设置干燥过滤器,以对冷媒中的杂质进行过滤,防止热泵系统堵塞。
作为本实施例提供的上述热泵系统的一种优选的实施方式,热泵系统还包括通断阀10,通断阀10设置于双级压缩机1的高压出口与第一三通阀91的第一端之间;并且/或者热泵系统还包括冷水管路,冷水管路包括与第二换热器7进行换热的第一管路段以及与室内空气进行换热的第二管路段。
示例性地,该通断阀10用于在热泵系统使用时导通冷媒通路,热泵系统停机时切断冷媒通路。一般通过水泵为冷水管路中的水循环提供动力,通过冷水管路对室内进行制热或制冷,可以减小冷媒的使用量并使得热泵系统的制冷和制热效果更稳定。
当然,上述可以替换的实施方式之间、以及可以替换的实施方式和优选的实施方式之间还可以交叉配合使用,从而组合出新的实施方式以适用于更加具体的应用场景。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的保护范围之内并且形成不同的实施例。例如,在本发明的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种热泵系统,其特征在于,所述热泵系统包括双级压缩机、用于与室外空气进行换热的第一换热器、用于与室内空气进行换热的第二换热器、电子膨胀阀、第一三通阀、第二三通阀、第一单向阀、第二单向阀、第三单向阀和第四单向阀;
    所述双级压缩机具有低压腔和高压腔,且所述双级压缩机上设置有与所述低压腔连通的低压进口和低压出口,以及与所述高压腔连通的高压进口和高压出口;
    所述热泵系统中形成有制冷循环管线和制热循环管线;
    所述第一三通阀的第一端与所述双级压缩机的高压出口连通,所述第二三通阀的第一端与所述双级压缩机的低压进口连通;
    在所述制冷循环管线中,所述第一三通阀的第二端与所述第一换热器的第一端连通,所述第一换热器的第二端与所述第一单向阀的进口端连通,所述第一单向阀的出口端与所述电子膨胀阀的进口端连通,所述电子膨胀阀的出口端与所述第二单向阀的进口端连通,所述第二单向阀的出口端与所述第二换热器的第一端连通,所述第二换热器的第二端与所述第二三通阀的第二端连通;
    在所述制热循环管线中,所述第一三通阀的第三端与所述第二换热器的第二端连通,所述第二换热器的第一端与所述第三单向阀的进口端连通,所述第三单向阀的出口端与所述电子膨胀阀的进口端连通,所述电子膨胀阀的出口端与所述第四单向阀的进口端连通,所述第四单向阀的出口端与所述第一换热器的第二端连通,所述第二换热器的第一端与所述第二三通阀的第三端连通。
  2. 根据权利要求1所述的热泵系统,其特征在于,所述热泵系统还包括热水器;
    所述热水器的进口端分别与所述第一单向阀的出口端、所述第三单向阀的出口端连通,所述热水器的出口端与所述电子膨胀阀的进口端连通。
  3. 根据权利要求1所述的热泵系统,其特征在于,所述热泵系统还包 括中间冷却器;
    所述中间冷却器的进口端与所述双级压缩机的低压出口连通,所述中间冷却器的出口端与所述双级压缩机的高压进口连通。
  4. 根据权利要求3所述的热泵系统,其特征在于,所述热泵系统还包括第三三通阀;
    所述第三三通阀的第一端与所述双级压缩机的低压出口连通;所述第三三通阀的第二端与所述中间冷却器的出口端、所述双级压缩机的高压进口连通;所述第三三通阀的第三端与所述中间冷却器的进口端连通。
  5. 根据权利要求3所述的热泵系统,其特征在于,所述中间冷却器设置为与所述第一换热器共用散热风机。
  6. 根据权利要求2所述的热泵系统,其特征在于,所述热泵系统还包括回热器,所述回热器具有互相进行换热的蒸发腔和冷凝腔;
    所述蒸发腔将所述第二三通阀的第一端与所述双级压缩机的低压进口连通;所述冷凝腔将所述热水器的出口端与所述电子膨胀阀的进口端连通。
  7. 根据权利要求6所述的热泵系统,其特征在于,所述热泵系统还包括第四三通阀;
    所述第四三通阀的第一端与所述热水器的出口端连通,所述第四三通阀的第二端与所述冷凝腔的进口端连通;所述第四三通阀的第三端与所述冷凝腔的出口端、所述电子膨胀阀的进口端连通。
  8. 根据权利要求6所述的热泵系统,其特征在于,所述热泵系统还包括气液分离器;
    所述气液分离器将所述第二三通阀的第一端与所述蒸发腔的进口端连通。
  9. 根据权利要求1所述的热泵系统,其特征在于,所述热泵系统还包 括第一干燥过滤器、第二干燥过滤器、第三干燥过滤器、第四干燥过滤器、第五干燥过滤器中的至少一个;
    所述第一干燥过滤器将所述第一换热器的第二端与所述第一单向阀的进口端连通;
    所述第二干燥过滤器将所述电子膨胀阀的出口端与所述第二单向阀的进口端连通;
    所述第三干燥过滤器将所述第二换热器的第一端与所述第三单向阀的进口端连通;
    所述第四干燥过滤器将所述电子膨胀阀的出口端与所述第四单向阀的进口端连通;
    所述第五干燥过滤器将所述第一单向阀的出口路端与所述电子膨胀阀的进口端连通。
  10. 根据权利要求1所述的热泵系统,其特征在于,所述热泵系统还包括通断阀,所述通断阀设置于所述双级压缩机的高压出口与所述第一三通阀的第一端之间;并且/或者
    所述热泵系统还包括冷水管路,所述冷水管路包括与所述第二换热器进行换热的第一管路段以及与室内空气进行换热的第二管路段。
PCT/CN2021/082102 2020-05-25 2021-03-22 热泵系统 WO2021223529A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010449579.5A CN111623553A (zh) 2020-05-25 2020-05-25 热泵系统
CN202010449579.5 2020-05-25

Publications (1)

Publication Number Publication Date
WO2021223529A1 true WO2021223529A1 (zh) 2021-11-11

Family

ID=72257963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082102 WO2021223529A1 (zh) 2020-05-25 2021-03-22 热泵系统

Country Status (2)

Country Link
CN (1) CN111623553A (zh)
WO (1) WO2021223529A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114393970A (zh) * 2021-12-31 2022-04-26 郑州科林车用空调有限公司 一种电动大巴用跨临界二氧化碳空调系统
CN114427766A (zh) * 2022-02-11 2022-05-03 新昌县丰亿电器有限公司 一种实现正反向高低压切换的制冷回路配置方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111623553A (zh) * 2020-05-25 2020-09-04 青岛海尔空调电子有限公司 热泵系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161435A (en) * 1981-03-31 1982-10-05 Komatsu Zenoa Kk Cooling and heating equipment by heat pump system
US4893476A (en) * 1988-08-12 1990-01-16 Phenix Heat Pump Systems, Inc. Three function heat pump system with one way receiver
CN102853579A (zh) * 2011-11-04 2013-01-02 杭州杭宁热能科技有限公司 一种热泵三合一机组
CN107906777A (zh) * 2017-10-24 2018-04-13 青岛海尔空调电子有限公司 热泵机组
CN107990581A (zh) * 2017-11-24 2018-05-04 北京理工大学 一种电动汽车二氧化碳热泵空调系统
CN109916109A (zh) * 2019-01-28 2019-06-21 珠海格力电器股份有限公司 一种热泵系统和空调器
CN210463643U (zh) * 2019-05-30 2020-05-05 武晓宁 Co2双级变频空气源热泵热水机组
CN111623553A (zh) * 2020-05-25 2020-09-04 青岛海尔空调电子有限公司 热泵系统
CN112032884A (zh) * 2020-08-27 2020-12-04 青岛海尔空调电子有限公司 空调机组及其控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240949B (zh) * 2008-03-13 2010-06-02 上海交通大学 梯级能量利用的可调容量的家庭能源系统
FR3025299A1 (fr) * 2014-08-28 2016-03-04 Valeo Systemes Thermiques Boucle de climatisation a architecture amelioree
CN207156890U (zh) * 2017-08-03 2018-03-30 南京协众汽车空调集团有限公司 使用co2制冷剂的热泵型电动汽车空调系统
CN107990584B (zh) * 2017-11-23 2019-03-01 西安交通大学 一种跨临界二氧化碳热泵式制冷系统
CN110171267A (zh) * 2019-05-28 2019-08-27 中国科学院理化技术研究所 电动汽车热泵空调系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161435A (en) * 1981-03-31 1982-10-05 Komatsu Zenoa Kk Cooling and heating equipment by heat pump system
US4893476A (en) * 1988-08-12 1990-01-16 Phenix Heat Pump Systems, Inc. Three function heat pump system with one way receiver
CN102853579A (zh) * 2011-11-04 2013-01-02 杭州杭宁热能科技有限公司 一种热泵三合一机组
CN107906777A (zh) * 2017-10-24 2018-04-13 青岛海尔空调电子有限公司 热泵机组
CN107990581A (zh) * 2017-11-24 2018-05-04 北京理工大学 一种电动汽车二氧化碳热泵空调系统
CN109916109A (zh) * 2019-01-28 2019-06-21 珠海格力电器股份有限公司 一种热泵系统和空调器
CN210463643U (zh) * 2019-05-30 2020-05-05 武晓宁 Co2双级变频空气源热泵热水机组
CN111623553A (zh) * 2020-05-25 2020-09-04 青岛海尔空调电子有限公司 热泵系统
CN112032884A (zh) * 2020-08-27 2020-12-04 青岛海尔空调电子有限公司 空调机组及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114393970A (zh) * 2021-12-31 2022-04-26 郑州科林车用空调有限公司 一种电动大巴用跨临界二氧化碳空调系统
CN114427766A (zh) * 2022-02-11 2022-05-03 新昌县丰亿电器有限公司 一种实现正反向高低压切换的制冷回路配置方法

Also Published As

Publication number Publication date
CN111623553A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
WO2021223529A1 (zh) 热泵系统
CN108759142B (zh) 一种特殊的复叠式空气源高温热泵冷暖系统
CA3066275C (en) Two-pipe enhanced-vapor-injection outdoor unit and multi-split system
US11300329B2 (en) Two-pipe enhanced-vapor-injection outdoor unit and multi-split system
WO2021228018A1 (zh) 空调机组及其控制方法
KR20100046365A (ko) 히트펌프 시스템
CN113899095B (zh) 一种带喷射器增效的准二级压缩式循环系统
CN109724284A (zh) 一种两级节流的超临界二氧化碳制冷系统
KR20100005736U (ko) 히트펌프 시스템
CN115289702A (zh) 换热系统
CN204593946U (zh) 空调热水系统
CN210089184U (zh) 一种增焓型冷热全能效回收热泵
KR101497813B1 (ko) 증기분사 히트펌프 시스템 및 그 작동방법
JP2010236833A (ja) 空気熱源ターボヒートポンプおよびその制御方法
KR100688166B1 (ko) 공기조화기
CN106440431B (zh) 冷却机组的制冷系统
JP2615496B2 (ja) 2段圧縮冷凍サイクル
CN111141049A (zh) 一种复叠式高温热泵实验台
CN218120237U (zh) 换热系统
CN213362912U (zh) 空气源热泵系统
KR100554566B1 (ko) 극저온용 히트펌프 사이클
CN212657902U (zh) 一种蒸发冷离心式冷水机组
CN109869945B (zh) 吸收式跨临界二氧化碳双级压缩制冷系统
KR20100005738U (ko) 급탕 히트펌프 시스템
CN212253218U (zh) 一种低温强热空气源热泵系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21799537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21799537

Country of ref document: EP

Kind code of ref document: A1