WO2021223485A1 - 柜式空调室内机 - Google Patents

柜式空调室内机 Download PDF

Info

Publication number
WO2021223485A1
WO2021223485A1 PCT/CN2021/076475 CN2021076475W WO2021223485A1 WO 2021223485 A1 WO2021223485 A1 WO 2021223485A1 CN 2021076475 W CN2021076475 W CN 2021076475W WO 2021223485 A1 WO2021223485 A1 WO 2021223485A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
air duct
jet
air
indoor unit
Prior art date
Application number
PCT/CN2021/076475
Other languages
English (en)
French (fr)
Inventor
尹晓英
袁俊军
张蕾
王晓刚
王永涛
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2021223485A1 publication Critical patent/WO2021223485A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/005Indoor units, e.g. fan coil units characterised by mounting arrangements mounted on the floor; standing on the floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0033Indoor units, e.g. fan coil units characterised by fans having two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates

Definitions

  • the present invention relates to the technical field of air conditioners, in particular to a cabinet type air conditioner indoor unit.
  • the air outlets of the cabinet-type air conditioner indoor units on the market are strip-shaped air outlets extending in the vertical direction to obtain a larger air supply range in the vertical direction.
  • the applicant of this application has designed a dual tubular air conditioner indoor unit, in which two sets of cross flow fans are arranged in the shell, and the two sets of cross flow fans are respectively provided on both sides of the shell with air inlets corresponding to the two sets of cross flow fans.
  • the part forms an air outlet to improve the air supply efficiency.
  • an air inlet is formed at the rear of the housing and between the two air inlets, and a through ventilation duct is formed on the housing and/or inside the housing.
  • One end is connected to the air outlet, and the other end is connected to the air inlet.
  • the air from the air outlet can form a negative pressure in the through ventilation duct.
  • the indoor non-heat exchange air can be introduced into the through ventilation duct through the air inlet, so that the non-heat exchange air is connected to the air outlet.
  • the heat exchange air is mixed and sent to the room to achieve the purpose of comfortable air supply.
  • the non-heat exchange air is passively introduced into the through ventilation duct under the negative pressure generated by the outlet air, and the amount of induced air is relatively small, so the soft air supply effect is not obvious in actual experience.
  • One objective of the present invention is to overcome at least one defect of the prior art and provide a cabinet type air conditioner indoor unit capable of active jet flow to increase the air supply volume and improve the soft air supply experience.
  • a further object of the present invention is to avoid excessive volume of the cabinet air conditioner indoor unit.
  • Another further object of the present invention is to improve the uniformity of the air outlet of the cabinet air conditioner indoor unit in the vertical direction.
  • the present invention provides a cabinet type air conditioner indoor unit, which includes:
  • a casing the inside of the casing is formed with a through passage that penetrates the casing back and forth, and a first heat exchange air duct and a second heat exchange air duct which are located on both lateral sides of the through passage and are independent of each other, so
  • the first heat exchange air duct and the second heat exchange air duct both have heat exchange airflow outlets, and the first heat exchange air duct and the second heat exchange air duct are both provided with heat exchangers and fans, So as to promote the heat exchange airflow in the first heat exchange air duct and the second heat exchange air duct to be sent out through its own heat exchange airflow outlet by the fan;
  • a jet air duct, and the first heat exchange air duct and the second heat exchange air duct are fixedly arranged inside the through passage independently of each other;
  • the jet fan is set to controlly drive the air outside the cabinet-type air conditioner indoor unit to flow to the jet air duct and send it out through the jet air duct, so that the air flowing out through the jet air duct without heat exchange
  • the natural air is mixed with the heat exchange air flow sent through the first heat exchange air duct and the second heat exchange air duct.
  • the heat exchange airflow outlets of the first heat exchange air duct and the second heat exchange air duct both face the front side of the casing, and the jet air duct is provided with jet air outlets on the front side;
  • the two lateral air channel walls of the jet air channel are respectively arranged at intervals from the two lateral side walls of the through channel, so as to respectively form an air induction channel on the two lateral outer sides of the jet air channel.
  • the jet air duct is fixedly arranged in the rear section of the through channel to convey natural air toward the front section of the through channel through the jet outlet;
  • the heat exchange airflow outlets of the first heat exchange air passage and the second heat exchange air passage, and each of the air-inducing passages are in communication with the front section of the through passage.
  • the rear section of the through channel is tapered from back to front, and the jet air duct is adapted to the shape of the rear section of the through channel.
  • the cross section of the jet air duct is a trapezoid that tapers from back to front;
  • the rearward surface of the jet air duct is flush with the rearward surface of the casing.
  • the jet fan is a centrifugal fan arranged under the jet air duct and communicated with the jet air duct to controlly drive the air outside the cabinet-type air conditioner indoor unit to flow into the centrifugal unit horizontally.
  • the fan flows into the jet air duct from bottom to top.
  • a jet air outlet is provided on the front side of the jet air duct, and both the heat exchange airflow outlet and the jet air outlet are strip-shaped air outlets extending in a vertical direction;
  • the jet air duct defines a vertically extending diversion cavity, and the interior of the jet air duct is symmetrically provided with two vertically extending arc-shaped deflectors, and the two arc-shaped deflectors are formed from behind Protruding and bending forward toward the mutually approaching direction, so that the diversion cavity forms a tapered arc-shaped constriction adjacent to the front part of the jet outflow tuyere.
  • a plurality of guide vanes located inside the jet outflow port are provided in the diversion cavity, and the plurality of guide vanes are arranged at intervals in the vertical direction;
  • the length of the deflector in the front-rear direction is less than or equal to the depth of the arc-shaped deflector in the front-rear direction, so that the deflector is in the arc-shaped constriction.
  • the front side of the jet air duct is provided with a jet outflow tuyere
  • the jet air duct defines a vertically extending diversion cavity
  • the diversion cavity is provided with a multiplicity located inside the jet outflow tuyere.
  • a guide vane, the plurality of guide vanes are arranged at intervals in the vertical direction;
  • the guide vane includes an arc section that curves and extends from back to front from bottom to top, and a straight section that extends forward from the end of the arc section to the jet outlet.
  • the through passage is formed in the middle of the casing, and the casing further has a first air inlet and a second air inlet respectively opened on both lateral sides of the casing, the first air inlet and the The second air inlet is respectively communicated with the first heat exchange air passage and the second heat exchange air passage;
  • the heat exchangers in the first heat exchange air duct and the second heat exchange air duct, and the fans in the first heat exchange air duct and the second heat exchange air duct are all related to the The vertical bisector of the casing in the transverse direction is symmetrically arranged, and the fans in the first heat exchange air duct and the second heat exchange air duct are both cross-flow fans with a rotating shaft extending in a vertical direction.
  • the cabinet-type air conditioner indoor unit of the present invention is provided with jet air ducts in the through passages passing through the cabinet at the front and rear of the cabinet, and is particularly provided with jet fans for driving external air to flow to the jet air ducts and sending out through the jet air ducts, which can pass through the jets
  • the fan actively jets the external air into the air duct, and the unheated natural air flowing out of the jet duct is mixed with the heat exchange air flow from the heat exchange air outlets of the two heat exchange air ducts to form a relatively soft Mixed air avoids overcooling or overheating of the indoor unit of the cabinet-type air conditioner, and improves its comfort experience.
  • the present invention provides a jet fan with active jet flow, which greatly increases the jet air volume and the air supply distance, improves the soft air supply effect of the cabinet-type air conditioner indoor unit, and increases Its overall air supply volume expands its air supply range.
  • the amount of air entering the jet air duct is closely related to the speed of the jet fan, and is not affected by other external factors, and the amount of air injected is relatively stable.
  • the jet fan of the present application is selected as a centrifugal fan, and it is placed below the jet air duct, so as to reduce the size of the component formed by the jet fan and the jet air duct in the horizontal direction, and increase its vertical direction. Therefore, the advantage of the higher height of the cabinet-type air conditioner indoor unit can be fully utilized to make the layout of the jet air duct, jet fan and other structures of the cabinet-type air conditioner indoor unit more compact, avoiding cross-flow
  • the installation of the jet fan in the jet air duct causes the size of the jet air duct in the horizontal direction to be too large, which leads to the problem of the cabinet-type air conditioner indoor unit being too large and occupying too much indoor space.
  • the jet fan is arranged below the jet air duct, the air flows into the air duct from bottom to top, so how to achieve uniform air outlet in the vertical direction at the jet outlet air outlet is one of the design difficulties.
  • a plurality of guide vanes arranged at intervals in the vertical direction are arranged in the arc-shaped constriction, and the shape of the guide vanes is specially designed to facilitate the passage of the arc-shaped constriction and the guide vane.
  • the cooperation of the air outlet makes the air outlet in the vertical direction more uniform.
  • Fig. 1 is a schematic structural diagram of a cabinet type air conditioner indoor unit according to an embodiment of the present invention
  • Fig. 2 is a schematic rear view of a cabinet type air conditioner indoor unit according to an embodiment of the present invention
  • FIG. 3 is a schematic structural exploded view of a cabinet type air conditioner indoor unit according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of the cabinet-type air conditioner indoor unit according to an embodiment of the present invention taken along a vertical cross-sectional plane extending in the front-to-rear direction;
  • Fig. 5 is a schematic cross-sectional view of a cabinet-type air conditioner indoor unit according to an embodiment of the present invention taken along a horizontal cross-sectional plane;
  • FIG. 6 is a schematic structural cross-sectional view taken from a vertical cross-sectional plane of the jet air duct extending in the front-to-rear direction according to an embodiment of the present invention
  • FIG. 7 is a schematic enlarged view of part C in FIG. 6;
  • Fig. 8 is a schematic cross-sectional view of a jet air duct according to an embodiment of the present invention taken along a horizontal cross-sectional plane.
  • FIG. 1 is a schematic structural diagram of a cabinet type air conditioner indoor unit according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a cabinet type air conditioner indoor unit according to an embodiment of the present invention.
  • Rear view FIG. 3 is a schematic structural exploded view of a cabinet type air conditioner indoor unit according to an embodiment of the present invention
  • FIG. 4 is a vertical cross-sectional view of a cabinet type air conditioner indoor unit according to an embodiment of the present invention, which extends in the front-to-rear direction
  • Figure 5 is a schematic cross-sectional view of the cabinet-type air conditioner indoor unit according to an embodiment of the present invention, taken along a horizontal cross-sectional plane.
  • the cabinet-type air conditioner indoor unit 1 of the present invention includes a cabinet 40.
  • the cabinet 40 is formed with a through passage 41 that penetrates the cabinet 40 front and rear, and are located on both lateral sides of the through passage 41 and are independent of each other.
  • the first heat exchange air duct 42 and the second heat exchange air duct 43, the first heat exchange air duct 42 and the second heat exchange air duct 43 both have heat exchange air outlets, and the first heat exchange air duct 42 and the second heat exchange air duct
  • the heat exchange air duct 43 is equipped with a heat exchanger and a fan to promote the heat exchange airflow in the first heat exchange air duct 42 and the second heat exchange air duct 43 to be sent out through their own heat exchange airflow outlets through the fans.
  • two separate volute tongue assemblies 46 may be provided inside the casing 40 to jointly define a first heat exchange air duct 42 and a second heat exchange air duct 43 that are independent of each other with the casing 40.
  • the air paths of the first heat exchange air duct 42 and the second heat exchange air duct 43 are independent of each other.
  • the first heat exchange air duct 42 has a first heat exchange airflow outlet 421, and the first heat exchange air duct 42 is provided with a first The heat exchanger 51 and the first fan 61.
  • the first heat exchanger 51 is used to exchange heat with the airflow in the first heat exchange air duct 42 to generate a heat exchange airflow.
  • the first fan 61 is used to promote the heat exchange airflow It flows to the first heat exchange airflow outlet 421 and flows out through the first heat exchange airflow outlet 421.
  • the second heat exchange air duct 43 has a second heat exchange airflow outlet 431 in which a second heat exchanger 52 and a second fan 62 are provided.
  • the second heat exchanger 52 is used to exchange heat with the airflow in the second heat exchange air duct 43 to generate a heat exchange airflow
  • the second fan 62 is used to promote the heat exchange airflow to the second heat exchange airflow outlet 431, and It flows out through the second heat exchange air outlet 431.
  • the cabinet-type air conditioner indoor unit 1 further includes a jet air duct 10 and a jet fan 20.
  • the jet air duct 10 and the first heat exchange air duct 42 and the second heat exchange air duct 43 are fixedly arranged inside the through passage 41 independently of each other.
  • the jet air duct 10 is fixed inside the through channel 41 and is independent of the first heat exchange air duct 42 and the second heat exchange air duct 43, and the air paths of the three air ducts are independent of each other and do not affect each other.
  • the jet fan 20 is set to controlly drive the air outside the cabinet-type air conditioner indoor unit 1 to flow to the jet air duct 10 and send it out through the jet air duct 10, so that the natural air flowing out through the jet air duct 10 without heat exchange and the air flow
  • the present invention uses the jet fan 20 to actively inject the external air into the air duct 10, and the unheated natural air flowing out of the jet air duct 10 and the heat exchange airflow outlets from the two heat exchange air ducts
  • the outflowing heat exchange air flow is mixed to form a relatively soft mixed air, which prevents the air from the cabinet-type air conditioner indoor unit 1 from being too cold or overheating, and improves its comfort experience.
  • the present invention provides a jet fan 20 with active jet flow, the jet air volume is greatly increased, the air supply distance is increased, and the soft air supply effect of the cabinet-type air conditioner indoor unit 1 is improved.
  • the overall air supply volume is increased, and the air supply range is enlarged.
  • the amount of air entering the jet air duct 10 is closely related to the speed of the jet fan 20, and is not affected by other external factors, and the amount of air injected is relatively stable.
  • the heat exchange airflow outlets of the first heat exchange air duct 42 and the second heat exchange air duct 43 both face the front side of the casing 40, and the front side of the jet air duct 10 is provided with a jet outflow air outlet 12.
  • the three air ducts all send air toward the front side of the casing 40, so that the heat exchange airflow flowing out of the two heat exchange air ducts and the unheated natural air flowing out of the jet air duct 10 are in contact with each other.
  • the front side or the front of the cabinet 40 is mixed.
  • the jet air duct 10 is arranged in the through channel 41 between the two heat exchange air ducts, so that the jet air duct 10 is located between the two heat exchange air ducts, so that the natural air sent by the jet air duct 10 Between the two heat exchange airflows, the mixing between natural air and the heat exchange airflow is more even.
  • the front side of the casing 40 referred to in the present invention may include the front side of the casing 40 or the oblique front side of the casing 40, as long as the direction of the heat exchange airflow outlet has a forward direction component. What is necessary is just to be able to blow air toward the front side of the cabinet 40.
  • the two transverse air duct walls 10f of the jet air duct 10 are respectively arranged at intervals from the two transverse side walls 41a of the through passage 41 to form an air induction duct 44 on the two lateral outer sides of the jet air duct 10 respectively.
  • a certain negative pressure will be generated in the front of the air induction duct 44.
  • the air in the space where the cabinet-type air conditioner indoor unit 1 is located flows into the air induction channel 44, and is sent out through the front opening of the air induction channel 44.
  • the natural air and the heat exchange air flow sent through the first heat exchange air duct 42 and the second heat exchange air duct 43 are mixed.
  • the amount of unheated natural air introduced by the cabinet-type air conditioner indoor unit 1 is increased, and the overall air flow rate thereof is increased.
  • the jet air duct 10 is fixedly arranged in the rear section 411 of the through channel 41 to convey natural air toward the front section 412 of the through channel 41 through the jet outflow port 12.
  • natural air referred to in the present invention means air without heat exchange.
  • the heat exchange airflow outlets of the first heat exchange air passage 42 and the second heat exchange air passage 43 and each of the air induction passages 44 are in communication with the front section 412 of the through passage 41. That is to say, the heat exchange air flow out of the two heat exchange air ducts, the natural air flowing out of the jet air duct 10, and the natural air flowing out of the two induction ducts 44 are collected in the front section 412 of the through duct 41, It is mixed to a certain extent, and then the whole is sent forward from the front section of the through channel 41.
  • the front end of the through channel 41 forms the air outlet 453 of the cabinet-type air conditioner indoor unit 1. This method of pre-mixing the airflow of each wind path before sending it out has a better mixing effect.
  • the two lateral air duct walls 10f of the jet air duct 10 may also abut against the two lateral side walls 41a of the through channel 41 respectively. At this time, the jet air duct 10 almost occupies the rear of the through channel 41. In the entire space of the unit, the natural air introduced by the cabinet-type air conditioner indoor unit 1 is sent out through the jet air duct 10.
  • the casing 40 is further provided with a first air inlet 451 and a second air inlet 452, and the first heat exchange air duct 42 and the second heat exchange air duct 43 are connected to the first air inlet 451 and the second air inlet respectively.
  • the air inlet 452 is connected, so that the air outside the cabinet-type air conditioner indoor unit 1 is encouraged to flow into the first heat exchange air duct 42 through the first air inlet 451 through the first fan 61, and the air outside the cabinet-type air conditioner indoor unit 1 The air flows into the second heat exchange air duct 43 through the second air inlet 452.
  • the through channel 41 may be formed in the middle of the casing 40, and the first air inlet 451 and the second air inlet 452 may be respectively located on both lateral sides of the casing 40 to avoid the first heat exchange air duct 42 and the second heat exchange duct.
  • the inlet air of the hot air duct 43 interferes.
  • the heat exchangers in the first heat exchange air duct 42 and the second heat exchange air duct 43, and the fans in the first heat exchange air duct 42 and the second heat exchange air duct 43 are all vertical to the casing 40 in the transverse direction.
  • the straight planes m are symmetrically arranged, that is, the first heat exchanger 51 and the second heat exchanger 52 are arranged symmetrically, and the first fan 61 and the second fan 62 are arranged symmetrically.
  • the fans in the first heat exchange air duct 42 and the second heat exchange air duct 43 are cross-flow fans with a rotating shaft extending in a vertical direction. That is, both the first fan 61 and the second fan 62 are cross-flow fans extending vertically. Accordingly, the first air inlet 451, the second air inlet 452, the first heat exchange airflow outlet 421, and the second heat exchange The air outlet 431, the jet outlet 12, and the air supply outlet 453 are all elongated air outlets extending in the vertical direction.
  • the jet air duct 10 is a long air duct extending in the vertical direction. As a result, the air outlet height of the cabinet-type air conditioner indoor unit 1 in the vertical direction can be increased, and the air supply range thereof can be enlarged.
  • the first heat exchanger 51 and the second heat exchanger 52 are V-shaped or arc-shaped heat exchangers arranged laterally outside the first fan 61 and the second fan 62, respectively.
  • the rear section 411 of the through channel 41 is tapered from back to front, and the jet air duct 10 matches the shape of the rear section 411 of the through channel.
  • the jet air duct 10 can be The structural layout between the passages 41 is more compact to reduce the volume of the cabinet air conditioner indoor unit 1.
  • the cross section of the jet air duct 10 is a trapezoid that tapers from back to front, and the rear surface 10e of the jet air duct 10 is flush with the rear surface 40a of the casing 40.
  • the completeness and appearance of the cabinet-type air conditioner indoor unit 1 can be improved.
  • the cross section of the jet air duct 10 may be an isosceles trapezoid.
  • the jet fan 20 is a centrifugal fan arranged under the jet air duct 10 and communicated with the jet air duct 10 to controlly drive the air outside the cabinet-type air conditioner indoor unit 1 to flow into the centrifugal fan horizontally and be Flow into the jet air duct 10 from bottom to top.
  • the jet fan 20 of the present application is selected as a centrifugal fan, and it is placed under the jet air duct 10, so as to reduce the size of the assembly formed by the jet fan 20 and the jet air duct 10 in the horizontal direction, and increase the vertical dimension. Therefore, the advantage of the height direction of the cabinet-type air conditioner indoor unit 1 can be fully utilized, so that the jet air duct 10, the jet fan 20, and the cabinet 40 of the cabinet-type air conditioner indoor unit can be arranged More compact, avoid the use of a through-flow jet fan, and install it in the jet air duct, which causes the horizontal size of the jet air duct to be too large, which causes the cabinet air conditioner indoor unit to be too large and occupy too much indoor space. problem.
  • the air supply outlet 453 of the indoor unit of the cabinet type air conditioner is usually a strip-shaped air supply outlet extending in the vertical direction. For this reason, the heat exchange airflow outlets of the first heat exchange air duct 42 and the second heat exchange air duct 43 are arranged in the jet air duct.
  • the jet and outflow air outlets 12 on the front side of 10 are all strip-shaped air outlets extending in the vertical direction to increase the air outlet height of the cabinet-type air conditioner indoor unit 1 in the vertical direction and expand its air supply range.
  • the jet fan 20 is located below the jet air duct 10, and the airflow flows into the air outlet duct 20 from bottom to top, and is perpendicular to the direction of the air from the jet air outlet 12, so how to ensure that the jet air outlet 12 sends out a higher flow rate of air flow , And how to achieve uniform air outlet from the jet outlet 12 in the vertical direction is the design difficulty and design focus of further embodiments of the present application.
  • FIG. 6 is a schematic structural cross-sectional view of a vertical cross-sectional view of the jet air duct extending in the front-to-rear direction according to an embodiment of the present invention
  • FIG. 7 is a schematic enlarged view of part C in FIG. 6,
  • the jet air duct 10 defines a vertically extending diversion cavity 11, and the airflow entering the jet duct 10 flows through the diversion cavity 11 from the jet duct 10 The jet flows out of the tuyere 12.
  • the inside of the jet duct 10 is symmetrically provided with two arc-shaped baffles 13 extending vertically, and the two arc-shaped baffles 13 protrude and bend toward each other from back to front, so as to make the baffle cavity 11 adjacent to the front of the strip-shaped jet outflow tuyere 12 forms a tapered arc-shaped constriction 111.
  • the arc-shaped constricted portion 111 tapers from back to front, and is generally in the shape of a funnel from back to front.
  • the tapered arc-shaped constriction formed by the baffle plate of this shape can reduce the air flow resistance as much as possible, increase the flow velocity of the air flow to the jet and exit the tuyere 12, thereby increasing the air outlet speed of the jet device 1 and extending its air supply. distance.
  • the cross section of the jet air duct 10 is trapezoidal, the upper bottom of the trapezoid is located on the front side where the strip-shaped jet outflow tuyere 12 is located, and the lower bottom of the trapezoid is located on the back side away from the strip-shaped jet outflow tuyere 12.
  • the rear ends of the two arc-shaped baffles 13 are respectively bent and extended forward by the two side plates of the jet air duct 10 corresponding to the two waists of the trapezoid.
  • the jet air duct 10 has a front side plate 10a, a rear side plate 10b, and two lateral side plates 10c.
  • the outer surface of the rear side plate 10b forms the rear surface 10e of the jet air duct 10
  • the outer surface of the lateral side plate 10c forms the transverse air duct wall 10f of the jet air duct 10.
  • the jet outlet 12 is opened on the front side plate 10a
  • the cross section of the front side plate 10a is a trapezoidal upper bottom
  • the cross section of the rear side plate 10b is a trapezoidal lower bottom
  • the cross section of the two lateral side plates 10c is a trapezoid.
  • the two arc-shaped baffles 13 are respectively curved and extended forward from the inner surfaces of the two lateral side plates 10c.
  • the diversion cavity 11 thus formed includes two parts, an arc-shaped constriction 111 at the front and a ladder-shaped cavity 112 at the rear.
  • the dividing line between the ladder-shaped cavity 112 and the arc-shaped constriction 111 is shown as a dotted line in Fig. 8 As shown in the line.
  • the ladder-like cavity 112 not only has a shape that is tapered from back to front to facilitate the acceleration of the air flow toward the arc-shaped constriction 111, but also, the rear side of the ladder-like cavity 112 also has a larger area for entering the jet duct 10
  • the air flow flows from bottom to top through the rear side of the ladder cavity 112, which reduces the flow resistance of the air flow, and facilitates the formation of a relatively uniform air supply at the jet outlet 12.
  • the arc-shaped narrowing portion 111 extends forward to the strip-shaped jet outflow tuyere 12, and the size of the foremost end of the arc-shaped narrowing portion 111 in the transverse direction is the same as the size of the jet outflow tuyere 12 in the transverse direction.
  • the foremost end of the arc-shaped constricted portion 111 is seamlessly butted with the jet outflow tuyere 12, so that turbulence in the vicinity of the jet outflow tuyere 12 can be avoided.
  • the cross section of the diversion cavity 11 has a tapered shape in a direction from back to front.
  • the cross section of the diversion cavity 11 may have a regular tapered shape in the front-to-rear direction, or may have an irregular tapered shape.
  • the diversion cavity 11 shown in FIG. 8 has a ladder-like cavity 112 and an arc-shaped constriction 111 that are arranged from back to front, and both the ladder-like cavity 112 and the arc-shaped constriction 111 are tapered from back to front.
  • the diversion cavity 11 thus formed has an irregularly tapered shape from back to front.
  • the width W 4 of the rearmost end of the diversion cavity 11 in the lateral direction is 5-10 times the width W 6 of the jet outflow tuyere 12 in the lateral direction. Since the diversion cavity 11 is tapered from back to front, and the arc-shaped constriction 111 is seamlessly butted with the jet outflow tuyere 12, the width of the rear end of the diversion cavity 11 is the maximum width, and the width of the jet outflow tuyere 12 is the diversion cavity 11.
  • the minimum width That is, the maximum width of the diversion cavity 11 is 5-10 times the minimum width.
  • the maximum width of the diversion cavity 11 may be 5 times, 6 times, 7 times, 8 times, 9 times or 10 times of its minimum width.
  • the rear portion of the diversion cavity 11 has an area that allows most of the airflow entering the jet duct 10 to flow upwards.
  • the width of the jet outlet 12 is sufficiently small to make the whole The vertically extending slit-shaped jets flow out of the tuyere 12 so that the airflow can be accelerated sufficiently when flowing from the back to the front, so as to obtain a larger air outlet speed and air supply distance. More importantly, it is possible to make the jet outflow tuyere 12 uniformly emit wind in the vertical direction.
  • the width of the rear end of the diversion cavity 11 and the width of the jet outflow port 12 are smaller, the difference in width between the two is small, and the acceleration effect obtained when the airflow flows from back to front is not obvious, and the outflow of the jet out of the tuyere 12 The speed and air supply distance are relatively small.
  • the cross section of the diversion cavity 11 has a tapered shape in the direction from back to front.
  • the ratio between the width W 4 of the rear end of the diversion cavity 11 in the lateral direction and the depth H 4 of the diversion cavity 11 in the front and rear direction is an arbitrary ratio ranging from 2:11 to 2:9.
  • the ratio between the width W 4 and the depth H 4 may be 2:11, 2:10, or 2:9. Therefore, it is possible to maintain a reasonable proportional relationship between the air flow rate allowed to pass through the rear portion of the diversion cavity 11 and the air flow rate capable of obtaining better acceleration backward and forward in the diversion cavity 11, avoiding the width W 4 and the depth H.
  • the ratio between the length H 5 of the arc-shaped deflector 13 in the front- rear direction and the depth H 4 of the deflector cavity 11 in the front-rear direction is in the range of 4:11 to 7:11. Any ratio. It can be understood that the length H 5 of the arc-shaped deflector 13 in the front-rear direction is the vertical distance between the front and rear ends of the arc-shaped deflector 13 in the front-rear direction. For example, the ratio between the length H 5 and the depth H 4 may be 4:11, 5:11, 6:11, or 7:11.
  • the rear portion of the diversion cavity 11 has an area capable of causing most of the airflow entering the jet duct 10 to flow upward
  • the arc-shaped constricted portion 111 has a reasonable length, so that The part of the airflow flowing from bottom to top is better accelerated to obtain a larger wind speed.
  • the ratio between the length H 5 and the depth H 4 is too small, the arc-shaped constricted portion 111 does not have a significant acceleration effect on the air flow, and the velocity of the air jet out of the tuyere 12 is small.
  • the guide cavity 11 is provided with a plurality of guide vanes 14 located inside the jet outlet 12 and extending in the front-to-rear direction.
  • the plurality of guide vanes 14 are arranged at intervals in the vertical direction for guiding the guide.
  • the air flow in the flow cavity 11 flows toward the jet outflow tuyere 12.
  • the length W 1 of the baffle 14 in the front-rear direction is less than or equal to the length H 5 of the arc-shaped baffle 13 in the front-rear direction, so that the baffle 14 is in the arc-shaped constriction 111. That is to say, in the present application, a plurality of guide vanes 14 arranged at intervals in the vertical direction are provided in the arc-shaped necked portion 111, so that the cooperation of the arc-shaped necked portion 111 and the guide vane 14 makes the jet flow out of the tuyere 12 The wind in the vertical direction is more even.
  • the guide vane 14 is located in the arc-shaped constriction 111, which can prevent the airflow flowing in the rear space of the diversion cavity 11 from leading to the front and back, so as to facilitate the airflow entering the jet duct 10 from bottom to top. Flow, thereby facilitating the uniform air discharge in the vertical direction at the jet outlet 12.
  • the guide cavity 11 is provided with a plurality of guide vanes 14 located inside the jet outlet 12 and extending in the front-to-rear direction.
  • the plurality of guide vanes 14 are arranged at intervals in the vertical direction for guiding the guide.
  • the air flow in the flow cavity 11 flows toward the jet outflow tuyere 12.
  • the strip-shaped jet outlet 12 is located on the front side of the jet air duct 10, and the guide vane 14 may include an arc section 141 curved from back to front from bottom to top, and an arc section 141 extending from the end of the arc section 141 toward the front.
  • the front extends to the straight section 142 of the strip-shaped jet exiting the tuyere 12.
  • the preset amount of airflow in the airflow flowing from bottom to top can be kept inside the arc section 141 with the special shape, and the flow of this part of the airflow after encountering the arc section 141 can be reduced as much as possible.
  • it is guided to the straight section 142, and the preset amount of airflow is guided to the jet outflow port 12 through the straight section 142, so as to further improve the jet outflow port through the cooperation of a plurality of guide vanes 14 12 The uniformity of the wind in the vertical direction.
  • a flat section 142 is specially designed on the front of the guide vane 14 adjacent to the jet outflow port 12, and the flat section 142 can guide the air flow to be sent out horizontally through the jet outflow port 12, thereby making the jet flow
  • the air flow sent by the device 1 is consistent with the direction of the air flow sent from the heat exchange air outlet of the cabinet-type air conditioner indoor unit, so that the overall air supply speed of the cabinet-type air conditioner indoor unit is relatively high on the premise of ensuring a better mixing effect of the two air streams. High and long overall air supply distance.
  • the length W 3 of the arc-shaped section 141 in the front-rear direction is greater than or equal to the length W 2 of the straight section 142 in the front-rear direction.
  • the arc-shaped section 141 can be made to have a relatively long length in the front-to-rear direction, so as to increase the guide path length of the arc-shaped section 141 to the airflow and reduce the curvature of the arc-shaped section 141. Therefore, the flow resistance after the airflow encounters the arc-shaped section 141 is reduced as much as possible.
  • the length of the straight section 142 in the front-to-rear direction is made shorter, so as to reduce the length of the entire baffle 14 in the front-to-rear direction, thereby The size of the jet device 1 in the front-to-rear direction is reduced, making it more suitable for a cabinet-type air conditioner indoor unit with compact structure and high volume requirements.
  • each guide vane 14 has the same length in the front-rear direction, and the arc-shaped section 141 of each guide vane 14 has the same length in the front-rear direction.
  • the size of each guide vane 14 is the same to facilitate mold opening and save cost.
  • the applicant has verified through in-depth analysis and a large number of simulations, experiments, etc.: as long as the size of the deflector cavity 11, the arc deflector 13 and/or the deflector 14 is designed according to the scheme in the above embodiment, and the jet fan 20 The air is continuously blown toward the jet air duct 10, even if the size of each guide vane 14 is the same, the jet and outflow tuyere 12 can be evenly discharged in the vertical direction.
  • each guide vane 14 has the same length in the front-rear direction, and the arc-shaped sections 141 of the plurality of guide vanes 14 arranged in sequence from bottom to top are in the front-rear direction.
  • the length increases in turn.
  • the arc-shaped section 141 of the flow vane 14 is of equal length, which may cause the problem of less air flow guided by the upper guide vane 14 so as to ensure uniform air discharge from the jet outlet port 12 in the vertical direction.
  • the rear ends of the plurality of guide vanes 14 are on an inclined straight line. That is to say, the arc sections 141 of the plurality of guide vanes 14 arranged sequentially from bottom to top are successively extended at equal intervals, which further ensures the uniform air discharge of the jet outflow tuyere 12 in the vertical direction.
  • the bottom of the jet air duct 10 and the top of the jet fan 20 are in fluid communication through a volute air duct 30.
  • the volute air duct 30 extends vertically.
  • the air inlet of the jet air duct 10 is opened at its bottom, the air outlet of the jet fan 20 is at the top, and the air inlet of the jet air duct 10 and the air outlet of the jet fan 20 are sealedly connected with a volute air duct 30 to connect
  • the jet fan 20 sends out the air flow and guides it to the jet air duct 10.
  • the air supply opening 453 of the cabinet-type air conditioner indoor unit and the two heat exchange air flow outlets are not adjacent to the ground, but have a certain height.
  • a volute air duct 30 is provided between the bottom of the jet air duct 10 and the top of the jet fan 20, so that the jet air duct 10 is better connected to the cabinet air-conditioning room.
  • the structure of the casing 40, the through passage 41 and the two heat exchange air ducts of the machine 1 are matched.
  • the height of the volute air duct 30 in the vertical direction is set such that the jet outflow air outlet 12 of the jet air duct 10 is consistent with the heat exchange air outlets of the first heat exchange air duct and the second heat exchange air duct. In order to better mix the air flow sent from the jet outflow tuyere 12 and the heat exchange air flow out of the heat exchange air flow outlet.
  • the through passage 41 penetrates the upper part of the casing 40 in the front-rear direction, that is, the through passage 41 is formed only in the middle of the upper part of the casing 40.
  • the jet fan 20 and the volute air duct 30 are fixedly arranged at the lower part of the casing 40 to prevent the jet fan 20 and the volute air duct 30 from being exposed to the outside and affecting the appearance of the cabinet air conditioner indoor unit 1.
  • the air inlet of the jet fan 20 faces the rear side of the cabinet 40, and the rear wall of the cabinet 40 is provided with a jet inlet grill 47 opposite to the air inlet of the jet fan 20, so as to make the cabinet air conditioner indoor unit 1 outside
  • the air enters the jet fan 20 of the casing 40 through the jet flow into the style grill 47.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

柜式空调室内机,包括:机壳(40),其内部形成有前后贯穿机壳(40)的贯穿通道(41)、以及分别位于贯穿通道(41)横向两侧且相互独立的第一换热风道(42)和第二换热风道(43),第一换热风道(42)和第二换热风道(43)均具有换热气流出口(421,431),且第一换热风道(42)和第二换热风道(43)内均设有换热器(51,52)和风机(61,62),以通过风机(61,62)促使第一换热风道(42)和第二换热风道(43)内的换热气流经其自身的换热气流出口(421,431)送出;射流风道(10),与第一换热风道(42)和第二换热风道(43)相互独立地固定设置在贯穿通道(41)的内部;以及射流风机(20),设置成受控地驱动柜式空调室内机外部的空气流向射流风道(10)、并经射流风道(10)送出,从而使得经射流风道(10)流出的未经换热的自然空气与经第一换热风道(42)和第二换热风道(43)送出的换热气流相混合,送风柔和且送风量大。

Description

柜式空调室内机 技术领域
本发明涉及空调技术领域,特别是涉及一种柜式空调室内机。
背景技术
目前,市面上大多柜式空调室内机的出风口都是沿竖直方向延伸的条形出风口,以获得竖直方向上较大的送风范围。本申请的申请人曾设计了一款双贯流空调室内机,其壳体内设置两组贯流风扇,壳体的两侧部分别设置有与两组贯流风扇对应的进风口,壳体前部形成出风口,以提高送风效率。并且,为了实现送风的舒适性,在壳体的后部、两个进风口之间形成有引风口,在壳体上和/或壳体内部形成有前后贯通的贯通风道,贯通风道的一端与出风口相连通,另一端与引风口相连通。空调运行时,出风口的出风能够在贯通风道内形成负压,在该负压作用下可通过引风口向贯通风道内引入室内非热交换风,从而使非热交换风在出风口处与热交换风混合后送往室内,达到了舒适送风的目的。
然而,非热交换风是在出风产生的负压作用下被动引入贯通风道内的,引风量比较小,在实际体验时的柔和送风效果并不明显。
发明内容
本发明的一个目的旨在克服现有技术的至少一个缺陷,提供一种能够主动射流以增大送风量、提高柔和送风体验效果的柜式空调室内机。
本发明的一个进一步的目的是避免柜式空调室内机的体积过大。
本发明的另一个进一步的目的是提高柜式空调室内机在竖直方向上的出风均匀性。
为了实现上述目的,本发明提供一种柜式空调室内机,其包括:
机壳,所述机壳的内部形成有前后贯穿所述机壳的贯穿通道、以及分别位于所述贯穿通道横向两侧且相互独立的第一换热风道和第二换热风道,所述第一换热风道和所述第二换热风道均具有换热气流出口,且所述第一换热风道和所述第二换热风道内均设有换热器和风机,以通过所述风机促使所述第一换热风道和所述第二换热风道内的换热气流经其自身的换热气流出口送出;
射流风道,与所述第一换热风道和所述第二换热风道相互独立地固定设置在所述贯穿通道的内部;以及
射流风机,设置成受控地驱动所述柜式空调室内机外部的空气流向所述射流风道、并经所述射流风道送出,从而使得经所述射流风道流出的未经换热的自然空气与经所述第一换热风道和所述第二换热风道送出的换热气流相混合。
可选地,所述第一换热风道和所述第二换热风道的换热气流出口均朝向所述机壳的前侧,所述射流风道的前侧开设有射流出风口;且
所述射流风道的两个横向风道壁分别与所述贯穿通道的两个横向侧壁间隔设置,以在所述射流风道的两个横向外侧分别形成一个引风通道。
可选地,所述射流风道固定设置在所述贯穿通道的后部区段内,以通过所述射流出风口朝向所述贯穿通道的前部区段输送自然空气;且
所述第一换热风道和所述第二换热风道的换热气流出口、以及每个所述引风通道均与所述贯穿通道的前部区段连通。
可选地,所述贯穿通道的后部区段由后向前地渐缩,所述射流风道与所述贯穿通道后部区段的形状相适配。
可选地,所述射流风道的横截面呈由后向前渐缩的梯形;且
所述射流风道的后向表面与所述机壳的后向表面相平齐。
可选地,所述射流风机为设置于所述射流风道下方并与所述射流风道连通的离心风机,以受控地驱动所述柜式空调室内机外部的空气水平地流入所述离心风机、并由下往上地流进所述射流风道。
可选地,所述射流风道的前侧开设有射流出风口,所述换热气流出口和所述射流出风口均为沿竖向延伸的条形风口;且
所述射流风道内限定有竖向延伸的导流腔,且所述射流风道的内部对称地设有两个竖向延伸的弧形导流板,两个所述弧形导流板由后向前地朝相互靠近的方向凸出弯曲,以使得所述导流腔邻近所述射流出风口的前部形成渐缩的弧形收口部。
可选地,所述导流腔内设有位于所述射流出风口内侧的多个导流片,所述多个导流片在竖直方向上间隔排列;且
所述导流片在前后方向上的长度小于等于所述弧形导流板在前后方向上的深度,以使得所述导流片处于所述弧形收口部内。
可选地,所述射流风道的前侧开设有射流出风口,所述射流风道内限定有竖向延伸的导流腔,所述导流腔内设有位于所述射流出风口内侧的多个导流片,所述多个导流片在竖直方向上间隔排列;且
所述导流片包括从下至上地由后向前弯曲延伸的弧形区段和由所述弧形区段的末端向前延伸至所述射流出风口的平直区段。
可选地,所述贯穿通道形成在所述机壳的中部,所述机壳还具有分别开设在其横向两侧的第一进风口和第二进风口,所述第一进风口和所述第二进风口分别与所述第一换热风道和所述第二换热风道连通;且
所述第一换热风道和所述第二换热风道内的所述换热器、以及所述第一换热风道和所述第二换热风道内的所述风机均关于所述机壳在横向上的竖直平分面对称设置,且所述第一换热风道和所述第二换热风道内的所述风机均为转动轴沿竖直方向延伸的贯流风机。
本发明的柜式空调室内机在其前后贯穿机壳的贯穿通道内设置射流风道,并特别地设有用于驱动外部空气流向射流风道、并经射流风道送出的射流风机,可通过射流风机主动地将外部空气射入射流风道内,从射流风道流出的未经换热的自然空气与从两个换热风道的换热气流出口流出的换热气流相混合,形成比较柔和的混合风,避免了柜式空调室内机出风过冷或过热,提高了其舒适性体验。相比于现有技术中利用负压被动引流的方式,本发明通过设置射流风机主动射流,射流风量大大提高,送风距离增加,提高了柜式空调室内机柔和送风的效果、增大了其整体送风量、扩大了其送风范围。并且,进入射流风道内的风量大小与射流风机的转速紧密相关,不受其他外界因素的影响,射入风量比较稳定。
进一步地,本申请的射流风机选择为离心风机,且使其处于射流风道的下方,以尽可能地减小射流风机和射流风道形成的组件在横向上的尺寸,增加其在竖直方向上的高度,由此,可充分利用柜式空调室内机高度方向上较高的优势,使得射流风道、射流风机与柜式空调室内机的其他结构之间的布局更加紧凑,避免将贯流式的射流风机设置在射流风道内造成射流风道在水平方向上的尺寸过大进而导致柜式空调室内机的体积过大、占用室内空间过大的问题。
进一步地,由于射流风机设置于射流风道的下方,气流从下而上地流入射流风道,因此如何在射流出风口处实现竖直方向上的均匀出风是其中一个 设计难点。为此,本申请在弧形收口部内设有多个沿竖向间隔排列的多个导流片并对导流片的形状进行了特别的设计,以便于通过弧形收口部与导流片的配合使得出风口在竖直方向上的出风更加均匀。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的柜式空调室内机的示意性结构图;
图2是根据本发明一个实施例的柜式空调室内机的示意性后视图;
图3是根据本发明一个实施例的柜式空调室内机的示意性结构分解图;
图4是根据本发明一个实施例的柜式空调室内机沿前后方向延伸的竖直剖切面截取的示意性剖视图;
图5是根据本发明一个实施例的柜式空调室内机沿水平剖切面截取的示意性剖视图;
图6是根据本发明一个实施例的射流风道沿前后方向延伸的竖向剖切面截取的示意性结构剖视图;
图7是图6中部分C的示意性放大图;
图8是根据本发明一个实施例的射流风道沿水平剖切面截取的示意性剖视图。
具体实施方式
本发明提供一种柜式空调室内机,图1是根据本发明一个实施例的柜式空调室内机的示意性结构图,图2是根据本发明一个实施例的柜式空调室内机的示意性后视图,图3是根据本发明一个实施例的柜式空调室内机的示意性结构分解图,图4是根据本发明一个实施例的柜式空调室内机沿前后方向延伸的竖直剖切面截取的示意性剖视图,图5是根据本发明一个实施例的柜式空调室内机沿水平剖切面截取的示意性剖视图。
参见图1至图5,本发明的柜式空调室内机1包括机壳40,机壳40的内部形成有前后贯穿机壳40的贯穿通道41、以及分别位于贯穿通道41横向 两侧且相互独立的第一换热风道42和第二换热风道43,第一换热风道42和第二换热风道43均具有换热气流出口,且第一换热风道42和第二换热风道43内均设有换热器和风机,以通过风机促使第一换热风道42和第二换热风道43内的换热气流经其自身的换热气流出口送出。具体地,机壳40内部可设有两个分开设置的蜗舌组件46,以与机壳40共同地限定出相互独立的第一换热风道42和第二换热风道43。第一换热风道42和第二换热风道43的风路相互独立,第一换热风道42具有第一换热气流出口421,且第一换热风道42内设有第一换热器51和第一风机61,第一换热器51用于与第一换热风道42内的气流进行热交换,从而产生换热气流,第一风机61用于促使该换热气流流向第一换热气流出口421,并经第一换热气流出口421流出。同样地,第二换热风道43具有第二换热气流出口431,其内设有第二换热器52和第二风机62。第二换热器52用于与第二换热风道43内的气流进行热交换,从而产生换热气流,第二风机62用于促使该换热气流流向第二换热气流出口431,并经第二换热气流出口431流出。
特别地,柜式空调室内机1还包括射流风道10和射流风机20。射流风道10与第一换热风道42和第二换热风道43相互独立地固定设置在贯穿通道41的内部。也就是说,射流风道10固定在贯穿通道41的内部,并与第一换热风道42和第二换热风道43相互独立,三个风道的风路相互独立,互不影响。射流风机20设置成受控地驱动柜式空调室内机1外部的空气流向射流风道10、并经射流风道10送出,从而使得经射流风道10流出的未经换热的自然空气与经第一换热风道42和第二换热风道43送出的换热气流相混合。
也就是说,本发明通过射流风机20主动地将外部空气射入射流风道10内,从射流风道10流出的未经换热的自然空气与从两个换热风道的换热气流出口流出的换热气流相混合,形成比较柔和的混合风,避免了柜式空调室内机1出风过冷或过热,提高了其舒适性体验。相比于现有技术中利用负压被动引流的方式,本发明通过设置射流风机20主动射流,射流风量大大提高,送风距离增加,提高了柜式空调室内机1柔和送风的效果、增大了其整体送风量、扩大了其送风范围。并且,进入射流风道10内的风量大小与射流风机20的转速紧密相关,不受其他外界因素的影响,射入风量比较稳定。
在一些实施例中,第一换热风道42和第二换热风道43的换热气流出口 均朝向机壳40的前侧,射流风道10的前侧开设有射流出风口12。也就是说,三个风道都朝向机壳40的前侧送风,以便于使得从两个换热风道流出的换热气流与从射流风道10流出的未经换热的自然空气在机壳40的前侧或前部进行混合。并且,将射流风道10设置在处于两个换热风道之间的贯穿通道41内,可使得射流风道10处于两个换热风道之间,从而使射流风道10送出的自然空气处于两股换热气流之间,进而使得自然空气与换热气流之间的混合更加均匀。需要说明的是,本发明所称的机壳40的前侧可包括机壳40的正前侧,也可以包括机壳40的斜前侧,只要换热气流出口的朝向具有朝前的方向分量以能够朝向机壳40的前侧送风即可。
进一步地,射流风道10的两个横向风道壁10f分别与贯穿通道41的两个横向侧壁41a间隔设置,以在射流风道10的两个横向外侧分别形成一个引风通道44。当第一换热风道42和第二换热风道43内的风机运转时和/或当射流风机20运转时,引风通道44的前部会产生一定的负压。在该负压作用下,柜式空调室内机1所处空间内的空气流入引风通道44,并经引风通道44的前部开口送出,与经射流风道10流出的未经换热的自然空气、以及经第一换热风道42和第二换热风道43送出的换热气流相混合。由此,增大了柜式空调室内机1引入的未经换热的自然空气的量,提高了其整体送风量。
在一些实施例中,射流风道10固定设置在贯穿通道41的后部区段411内,以通过射流出风口12朝向贯穿通道41的前部区段412输送自然空气。本领域技术人员应理解,本发明所称的自然空气意指未经换热的空气。
进一步地,第一换热风道42和第二换热风道43的换热气流出口、以及每个引风通道44均与贯穿通道41的前部区段412连通。也就是说,从两个换热风道内流出的换热气流、从射流风道10流出的自然空气以及从两个引风通道44流出的自然空气在贯穿通道41的前部区段412汇集,并进行一定程度的混合,再整体从贯穿通道41的前部区段朝前送出,贯穿通道41的前端形成了柜式空调室内机1的送风口453。这种将各个风路的气流预先混合后再送出的方式混合效果更佳。
在一些替代性实施例中,射流风道10的两个横向风道壁10f也可以分别与贯穿通道41的两个横向侧壁41a相抵接,此时,射流风道10几乎占据贯穿通道41后部的全部空间,使得柜式空调室内机1引入的自然空气都是通过射流风道10送出的。
在一些实施例中,机壳40上还开设有第一进风口451和第二进风口452,第一换热风道42和第二换热风道43分别与第一进风口451和第二进风口452连通,以通过第一风机61促使柜式空调室内机1外部的空气经第一进风口451流入第一换热风道42,通过第二风机62使柜式空调室内机1外部的空气经第二进风口452流入第二换热风道43。
进一步地,贯穿通道41可形成在机壳40的中部,第一进风口451和第二进风口452可分别位于机壳40的横向两侧,以避免第一换热风道42和第二换热风道43的进风产生干扰。第一换热风道42和第二换热风道43内的换热器、以及第一换热风道42和第二换热风道43内的风机均关于机壳40在横向上的竖直平分面m对称设置,也就是说,第一换热器51和第二换热器52左右对称设置,第一风机61和第二风机62左右对称设置。
在一些实施例中,第一换热风道42和第二换热风道43内的风机均为转动轴沿竖直方向延伸的贯流风机。也即是,第一风机61和第二风机62均为竖向延伸的贯流风机,相应地,第一进风口451、第二进风口452、第一换热气流出口421、第二换热气流出口431、射流出风口12以及送风口453均为沿竖向延伸的长条形风口。射流风道10为沿竖向延伸的长形风道。由此,可增加柜式空调室内机1在竖直方向上的出风高度,扩大其送风范围。第一换热器51和第二换热器52分别为设置在第一风机61和第二风机62横向外侧的V形或弧形换热器。
在一些实施例中,贯穿通道41的后部区段411由后向前地渐缩,射流风道10与贯穿通道后部区段411的形状相匹配,一方面可使得射流风道10与贯穿通道41之间的结构布局更加紧凑以减小柜式空调室内机1的体积,另一方面,还便于在射流风道10内形成由后向前渐缩的导流腔11,使得自然空气快速地从射流出风口12流出。
进一步地,射流风道10的横截面呈由后向前地渐缩的梯形,且射流风道10的后向表面10e与机壳40的后向表面40a相平齐。由此,可提高柜式空调室内机1外形的完整程度和美观程度。进一步地,射流风道10的横截面可以为等腰梯形。
在一些实施例中,射流风机20为设置于射流风道10下方并与射流风道10连通的离心风机,以受控地驱动柜式空调室内机1外部的空气水平地流入离心风机、并由下往上地流进射流风道10。
本申请的射流风机20选择为离心风机,且使其处于射流风道10的下方,以尽可能地减小射流风机20和射流风道10形成的组件在横向上的尺寸,增加其在竖直方向上的高度,由此,可充分利用柜式空调室内机1高度方向上较高的优势,使得射流风道10、射流风机20与柜式空调室内机的机壳40等结构之间的布局更加紧凑,避免采用贯流式的射流风机,并将其设置在射流风道内造成射流风道在水平方向上的尺寸过大进而导致柜式空调室内机的体积过大、占用室内空间过大的问题。
柜式空调室内机的送风口453通常为沿竖向延伸的条形送风口,为此,第一换热风道42和第二换热风道43的换热气流出口以及开设在射流风道10前侧的射流出风口12均为沿竖向延伸的条形风口,以增加柜式空调室内机1在竖直方向上的出风高度,扩大其送风范围。
然而,射流风机20位于射流风道10的下方,气流从下而上地流入出风风道20,与射流出风口12的出风方向垂直,因此如何确保射流出风口12送出较高流速的气流、以及如何实现射流出风口12在竖直方向上的均匀出风是本申请进一步实施例的设计难点和设计重点。
图6是根据本发明一个实施例的射流风道沿前后方向延伸的竖向剖切面截取的示意性结构剖视图,图7是图6中部分C的示意性放大图,图8是根据本发明一个实施例的射流风道沿水平剖切面截取的示意性剖视图。参见图6至图8,在一些实施例中,射流风道10内限定有竖向延伸的导流腔11,进入射流风道10内的气流经导流腔11导流后从射流风道10的射流出风口12流出。射流风道10的内部对称地设有两个竖向延伸的弧形导流板13,两个弧形导流板13由后向前地朝相互靠近的方向凸出弯曲,以使得导流腔11邻近条形射流出风口12的前部形成渐缩的弧形收口部111。也就是说,弧形收口部111由后向前地渐缩,且大致呈由后向前的漏斗状。这种形状的导流板形成的渐缩弧形收口部可尽可能地降低气流流动阻力、提高流向射流出风口12的气流流速,从而提高了射流装置1的出风速度、延长了其送风距离。
在一些实施例中,射流风道10的横截面呈梯形,该梯形的上底位于条形射流出风口12所在的前侧,该梯形的下底位于背离条形射流出风口12的后侧。两个弧形导流板13的后端分别由射流风道10对应于梯形两个腰部的两个侧板向前弯曲延伸。具体地,射流风道10具有前侧板10a、后侧板10b和两个横向侧板10c。后侧板10b的外侧表面形成射流风道10的后向表面 10e,横向侧板10c的外侧表面形成射流风道10的横向风道壁10f。射流出风口12开设在前侧板10a上,前侧板10a的横截面为梯形的上底,后侧板10b的横截面为梯形的下底,两个横向侧板10c的横截面为梯形的两个腰。两个弧形导流板13分别由两个横向侧板10c的内表面向前弯曲延伸。也就是说,两个弧形导流板13的后端并没有延伸至射流风道10的最后侧。由此形成的导流腔11包括处于前部的弧形收口部111和处于后部的梯形容腔112两部分,梯形容腔112与弧形收口部111的分界线如图8中的点划线所示。
梯形容腔112不但具有由后向前地渐缩的形状以便于气流加速流向弧形收口部111,而且,梯形容腔112的后侧还具有较大的面积以供进入射流风道10内的气流经梯形容腔112的后侧从下往上流动,减小了气流的流动阻力,便于在射流出风口12处形成较为均匀的送风。
在一些实施例中,弧形收口部111向前延伸至条形射流出风口12,且弧形收口部111的最前端在横向上的尺寸与射流出风口12在横向上的尺寸一致。也就是说,弧形收口部111的最前端与射流出风口12无缝对接,从而可避免射流出风口12附近产生紊流现象。
在一些实施例中,导流腔11的横截面在由后向前的方向上呈渐缩的形状。具体地,导流腔11的横截面在前后方向上可呈规则的渐缩形状,也可以呈不规则的渐缩形状。例如,图8所示的导流腔11具有由后向前排列的梯形容腔112和弧形收口部111,并且,梯形容腔112和弧形收口部111均由后向前地渐缩,由此形成的导流腔11呈由后向前不规则的渐缩形状。
进一步地,导流腔11的最后端在横向上的宽度W 4为射流出风口12在横向上的宽度W 6的5~10倍。由于导流腔11由后向前渐缩,弧形收口部111与射流出风口12无缝对接,因此导流腔11最后端的宽度为其最大宽度,射流出风口12的宽度为导流腔11的最小宽度。也即是,导流腔11的最大宽度为其最小宽度的5~10倍。例如,导流腔11的最大宽度可以为其最小宽度的5倍、6倍、7倍、8倍、9倍或10倍。由此,一方面可确保导流腔11后部具有能够使得进入射流风道10内的大部分气流向上流过的面积,另一方面,还使得射流出风口12的宽度足够小,使其整体呈竖向延伸的狭缝状射流出风口12以使得气流由后向前流动时获得足够大的加速,从而获得较大的出风速度和送风距离。更为重要的是,可使得射流出风口12在竖直方向上均匀出风。导流腔11的最大宽度和最小宽度的上述比例设计是平衡 考虑多方面技术问题后所获得的结果,在上述各个方面都达到了较佳的技术效果。反之,如果导流腔11最后端的宽度相比于射流出风口12的宽度过大,会导致导流腔11后部的面积过大,气流流经导流腔11后部时距射流出风口12距离较远,此时大部分气流会直接通过导流腔11的后部向上流动,流向射流出风口12的气流量非常少,这就导致射流出风口12顶部的出风量较大、射流出风口12底部和中部的出风量非常小,射流出风口12的出风非常不均衡。如果导流腔11最后端的宽度与射流出风口12的宽度倍数较小,二者之间的宽度差别较小,气流由后向前流动时获得的加速效果不明显,射流出风口12的出风速度和送风距离都比较小。
在一些实施例中,导流腔11的横截面在由后向前的方向上呈渐缩的形状。导流腔11的最后端在横向上的宽度W 4与导流腔11在前后方向上的深度H 4之间的比值为范围在2:11~2:9之间的任意比值。例如,宽度W 4与深度H 4之间的比值可以为2:11、2:10或2:9。由此,可以使得导流腔11后部允许通过的气流量与能够在导流腔11内后向前地获得较佳加速的气流量之间保持合理的比例关系,避免宽度W 4与深度H 4之间的比值过小导致流向射流出风口12的气流加速不够或宽度W 4与深度H 4之间的比值过大导致流向射流出风口12底部的气流量大、射流出风口12底部的气流量小的问题。
在一些实施例中,弧形导流板13在前后方向上的长度H 5与导流腔11在前后方向上的深度H 4之间的比值为范围在4:11~7:11之间的任意比值。可以理解的是,弧形导流板13在前后方向上的长度H 5为弧形导流板13的前端和后端在前后方向上的垂直距离。例如,长度H 5与深度H 4之间的比值可以为4:11、5:11、6:11或7:11。由此,一方面可确保导流腔11后部具有能够使得进入射流风道10内的大部分气流向上流动的面积,另一方面,还可确保弧形收口部111具有合理的长度,以使得对从下往上流动的部分气流进行较佳的加速,以获得较大的出风速度。反之,如果长度H 5与深度H 4之间的比值过小,则弧形收口部111对气流的加速作用不明显,射流出风口12的出风速度小。如果长度H 5与深度H 4之间的比值过大,则导流腔11内的大部分气流都会在弧形收口部111的作用下加速从射流出风口12的底部送出,导致射流出风口12底部风量大、顶部风量小的送风不匀现象。
在一些实施例中,导流腔11内设有位于射流出风口12内侧的多个沿前后方向延伸的导流片14,多个导流片14在竖直方向上间隔排列,用于引导 导流腔11内的气流朝向射流出风口12流动。
进一步地,导流片14在前后方向上的长度W 1小于等于弧形导流板13在前后方向上的长度H 5,以使得导流片14处于弧形收口部111内。也就是说,本申请在弧形收口部111内设有多个沿竖向间隔排列的多个导流片14,以便于通过弧形收口部111与导流片14的配合使得射流出风口12在竖直方向上的出风更加均匀。导流片14处在弧形收口部111内,可避免对导流腔11的后部空间内流动的气流产生前后方向的引导作用,以利于进入射流风道10内的气流从下往上地流动,从而利于射流出风口12处实现竖直方向上的均匀出风。
在一些实施例中,导流腔11内设有位于射流出风口12内侧的多个沿前后方向延伸的导流片14,多个导流片14在竖直方向上间隔排列,用于引导导流腔11内的气流朝向射流出风口12流动。进一步地,条形射流出风口12位于射流风道10的前侧,导流片14可包括从下至上地由后向前弯曲延伸的弧形区段141和由弧形区段141的末端向前延伸至条形射流出风口12的平直区段142。由此,可通过该特别形状的弧形区段141将由下至上流动的气流中的预设量气流保留在其内侧,并尽可能地减小该部分气流遇到弧形区段141后的流动阻力的前提下将其导流至平直区段142,通过平直区段142将该预设量的气流引导至射流出风口12,从而通过多个导流片14的配合进一步提高射流出风口12在竖直方向上的出风均匀性。
进一步地,本申请在导流片14邻近射流出风口12的前部特别设计有平直区段142,可通过平直区间142引导气流水平地经射流出风口12送出,由此,可使得射流装置1送出的气流与柜式空调室内机的换热气流出口送出的气流方向保持一致,从而在确保两股气流较佳的混合效果的前提下,使得柜式空调室内机的整体送风速度较高、整体送风距离较远。
在一些实施例中,弧形区段141在前后方向上的长度W 3大于等于平直区段142在前后方向上的长度W 2。由此,一方面,可使得弧形区段141在前后方向上具有相对较长的长度,以增大弧形区段141对气流的引导路径长度,减小弧形区段141的弯曲度,从而尽可能地减小气流遇到弧形区段141后的流动阻力。另一方面,在保证平直区段142的正常导流功能的基础上使得平直区段142在前后方向上的长度较短,以减小整个导流片14在前后方向上的长度,从而减小了射流装置1在前后方向上的尺寸,使其更适用于结 构紧凑、体积要求较高的柜式空调室内机。
在一些实施例中,每个导流片14的平直区段142在前后方向上的长度均相等,每个导流片14的弧形区段141在前后方向上的长度均相等。也就是说,每个导流片14的尺寸都是相同的,以便于开模,节省成本。申请人经过深入的分析和大量的仿真、试验等验证了:只要按照上面实施例中的方案设计导流腔11、弧形导流板13和/或导流片14的尺寸,并且射流风机20持续地朝向射流风道10送风,即使每个导流片14的尺寸都相同,也可以实现射流出风口12在竖直方向上的均匀出风。
在另一些实施例中,每个导流片14的平直区段142在前后方向上的长度均相等,由下至上依次排列的多个导流片14的弧形区段141在前后方向上的长度依次增大。由此,可避免位于底部的导流片14向后伸出过长导致保留在其内侧的气流量过多进而使得导流腔11内顶部气流量少的问题,同时,还可以避免多个导流片14的弧形区段141等长可能会出现上部导流片14引导的气流量较少的问题,从而确保了射流出风口12在竖直方向上的均匀出风。
进一步地,多个导流片14的后端端部处于一条倾斜的直线上。也就是说,从下至上依次排的多个导流片14的弧形区段141是等间距依次延长的,进一步确保了射流出风口12在竖直方向上的均匀出风。
在一些实施例中,射流风道10的底部与射流风机20的顶部之间通过蜗壳风道30流体连通。具体地,蜗壳风道30竖向延伸。射流风道10的进风口开设在其底部,射流风机20的气流出口位于其顶部,射流风道10的进风口与射流风机20的气流出口之间密封地连接有蜗壳风道30,以将射流风机20送出气流引导至射流风道10。通常情况下,为了获得较佳的送风范围,柜式空调室内机的送风口453、以及两个换热气流出口不会邻近地面,而是具有一定的高度。为了避免射流风道10的射流出风口12过低,在射流风道10的底部与射流风机20的顶部之间设置蜗壳风道30,以使射流风道10更好地与柜式空调室内机1的机壳40、贯穿通道41以及两个换热风道的结构相匹配。
进一步地,蜗壳风道30在竖直方向上的高度设置成使得射流风道10的射流出风口12与第一换热风道和第二换热风道的换热气流出口高度相一致,以便于从射流出风口12送出的气流与从从换热气流出口流出的换热气流更 好的混合。
在一些实施例中,贯穿通道41沿前后方向贯穿机壳40的上部,也就是说,贯穿通道41仅形成在机壳40上部的中部。射流风机20和蜗壳风道30均固定地设置在机壳40内的下部,以避免射流风机20和蜗壳风道30裸露在外影响柜式空调室内机1的美观。
进一步地,射流风机20的气流入口朝向机壳40的后侧,机壳40的后壁开设有与射流风机20的气流入口相对的射流进风格栅47,以使得柜式空调室内机1外部的空气经射流进风格栅47进入机壳40的射流风机20。
本领域技术人员还应理解,本发明实施例中所称的“上”、“下”、“前”、“后”等用于表示方位或位置关系的用语是以柜式空调室内机1的实际使用状态为基准而言的,这些用语仅是为了便于描述和理解本发明的技术方案,而不是指示或暗示所指的装置或不见必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种柜式空调室内机,包括:
    机壳,所述机壳的内部形成有前后贯穿所述机壳的贯穿通道、以及分别位于所述贯穿通道横向两侧且相互独立的第一换热风道和第二换热风道,所述第一换热风道和所述第二换热风道均具有换热气流出口,且所述第一换热风道和所述第二换热风道内均设有换热器和风机,以通过所述风机促使所述第一换热风道和所述第二换热风道内的换热气流经其自身的换热气流出口送出;
    射流风道,与所述第一换热风道和所述第二换热风道相互独立地固定设置在所述贯穿通道的内部;以及
    射流风机,设置成受控地驱动所述柜式空调室内机外部的空气流向所述射流风道、并经所述射流风道送出,从而使得经所述射流风道流出的未经换热的自然空气与经所述第一换热风道和所述第二换热风道送出的换热气流相混合。
  2. 根据权利要求1所述的柜式空调室内机,其中,
    所述第一换热风道和所述第二换热风道的换热气流出口均朝向所述机壳的前侧,所述射流风道的前侧开设有射流出风口;且
    所述射流风道的两个横向风道壁分别与所述贯穿通道的两个横向侧壁间隔设置,以在所述射流风道的两个横向外侧分别形成一个引风通道。
  3. 根据权利要求2所述的柜式空调室内机,其中,
    所述射流风道固定设置在所述贯穿通道的后部区段内,以通过所述射流出风口朝向所述贯穿通道的前部区段输送自然空气;且
    所述第一换热风道和所述第二换热风道的换热气流出口、以及每个所述引风通道均与所述贯穿通道的前部区段连通。
  4. 根据权利要求3所述的柜式空调室内机,其中,
    所述贯穿通道的后部区段由后向前地渐缩,所述射流风道与所述贯穿通道后部区段的形状相适配。
  5. 根据权利要求4所述的柜式空调室内机,其中,
    所述射流风道的横截面呈由后向前渐缩的梯形;且
    所述射流风道的后向表面与所述机壳的后向表面相平齐。
  6. 根据权利要求1所述的柜式空调室内机,其中,
    所述射流风机为设置于所述射流风道下方并与所述射流风道连通的离心风机,以受控地驱动所述柜式空调室内机外部的空气水平地流入所述离心风机、并由下往上地流进所述射流风道。
  7. 根据权利要求6所述的柜式空调室内机,其中,
    所述射流风道的前侧开设有射流出风口,所述换热气流出口和所述射流出风口均为沿竖向延伸的条形风口;且
    所述射流风道内限定有竖向延伸的导流腔,且所述射流风道的内部对称地设有两个竖向延伸的弧形导流板,两个所述弧形导流板由后向前地朝相互靠近的方向凸出弯曲,以使得所述导流腔邻近所述射流出风口的前部形成渐缩的弧形收口部。
  8. 根据权利要求7所述的柜式空调室内机,其中,
    所述导流腔内设有位于所述射流出风口内侧的多个导流片,所述多个导流片在竖直方向上间隔排列;且
    所述导流片在前后方向上的长度小于等于所述弧形导流板在前后方向上的深度,以使得所述导流片处于所述弧形收口部内。
  9. 根据权利要求6所述的柜式空调室内机,其中,
    所述射流风道的前侧开设有射流出风口,所述射流风道内限定有竖向延伸的导流腔,所述导流腔内设有位于所述射流出风口内侧的多个导流片,所述多个导流片在竖直方向上间隔排列;且
    所述导流片包括从下至上地由后向前弯曲延伸的弧形区段和由所述弧形区段的末端向前延伸至所述射流出风口的平直区段。
  10. 根据权利要求1所述的柜式空调室内机,其中,
    所述贯穿通道形成在所述机壳的中部,所述机壳还具有分别开设在其横向两侧的第一进风口和第二进风口,所述第一进风口和所述第二进风口分别与所述第一换热风道和所述第二换热风道连通;且
    所述第一换热风道和所述第二换热风道内的所述换热器、以及所述第一换热风道和所述第二换热风道内的所述风机均关于所述机壳在横向上的竖直平分面对称设置,且所述第一换热风道和所述第二换热风道内的所述风机均为转动轴沿竖直方向延伸的贯流风机。
PCT/CN2021/076475 2020-07-30 2021-02-10 柜式空调室内机 WO2021223485A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010751712.2 2020-07-30
CN202010751712.2A CN114060932A (zh) 2020-07-30 2020-07-30 柜式空调室内机

Publications (1)

Publication Number Publication Date
WO2021223485A1 true WO2021223485A1 (zh) 2021-11-11

Family

ID=78467792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076475 WO2021223485A1 (zh) 2020-07-30 2021-02-10 柜式空调室内机

Country Status (2)

Country Link
CN (1) CN114060932A (zh)
WO (1) WO2021223485A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114811907A (zh) * 2022-03-14 2022-07-29 青岛海信日立空调系统有限公司 空调控制方法及空调
CN115540399A (zh) * 2022-08-09 2022-12-30 青岛海尔空调器有限总公司 蒸发器和换热设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115143527A (zh) * 2022-06-21 2022-10-04 青岛海尔空调器有限总公司 立式空调室内机

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3052941B2 (ja) * 1998-08-28 2000-06-19 ダイキン工業株式会社 空調室内機
KR20030008871A (ko) * 2001-07-20 2003-01-29 엘지전자 주식회사 냉기온도 조절기능이 구비된 에어컨
CN204806620U (zh) * 2015-05-29 2015-11-25 青岛海尔空调器有限总公司 一种壁挂式空调器
CN105333501A (zh) * 2015-09-22 2016-02-17 青岛海尔空调器有限总公司 一种空调室内机送风方法
CN106123264A (zh) * 2016-07-29 2016-11-16 青岛海尔空调器有限总公司 一种立式空调及其送风控制方法
CN107023886A (zh) * 2017-03-15 2017-08-08 青岛海高设计制造有限公司 引流立式空调
CN107327929A (zh) * 2017-07-27 2017-11-07 青岛海尔空调器有限总公司 立式空调器以及立式空调器的控制方法
CN107366960A (zh) * 2017-07-27 2017-11-21 青岛海尔空调器有限总公司 一种具有分区送风功能的双贯流射流空调及送风方法
CN107676864A (zh) * 2016-08-01 2018-02-09 芜湖美智空调设备有限公司 双贯流空调室内机以及双贯流空调
CN208920228U (zh) * 2018-08-02 2019-05-31 青岛海尔空调器有限总公司 可控制引风量和风向的空调室内机及空调器
CN110848796A (zh) * 2018-08-02 2020-02-28 青岛海尔空调器有限总公司 引风量和风向可调的空调室内机及空调器
CN110906448A (zh) * 2018-09-17 2020-03-24 青岛海尔空调器有限总公司 双贯流空调器及其控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100728352B1 (ko) * 2006-09-05 2007-06-13 주식회사 대우일렉트로닉스 냉기 토출방향 가변 장치를 갖는 에어컨
CN105091083B (zh) * 2014-04-19 2017-10-24 海信(山东)空调有限公司 一种立式空调器室内机及立式空调器
CN104896704B (zh) * 2015-05-29 2018-10-12 青岛海尔空调器有限总公司 一种壁挂式空调器
CN106642322B (zh) * 2016-11-22 2023-02-14 青岛海高设计制造有限公司 一种空调柜机
CN207196651U (zh) * 2017-07-27 2018-04-06 青岛海尔空调器有限总公司 一种具有分区送风功能的双贯流射流空调
CN109990389B (zh) * 2019-04-29 2024-05-24 广东美的制冷设备有限公司 空调器
CN210425283U (zh) * 2019-05-27 2020-04-28 青岛海尔智能技术研发有限公司 一种壁挂式空调室内机

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3052941B2 (ja) * 1998-08-28 2000-06-19 ダイキン工業株式会社 空調室内機
KR20030008871A (ko) * 2001-07-20 2003-01-29 엘지전자 주식회사 냉기온도 조절기능이 구비된 에어컨
CN204806620U (zh) * 2015-05-29 2015-11-25 青岛海尔空调器有限总公司 一种壁挂式空调器
CN105333501A (zh) * 2015-09-22 2016-02-17 青岛海尔空调器有限总公司 一种空调室内机送风方法
CN106123264A (zh) * 2016-07-29 2016-11-16 青岛海尔空调器有限总公司 一种立式空调及其送风控制方法
CN107676864A (zh) * 2016-08-01 2018-02-09 芜湖美智空调设备有限公司 双贯流空调室内机以及双贯流空调
CN107023886A (zh) * 2017-03-15 2017-08-08 青岛海高设计制造有限公司 引流立式空调
CN107327929A (zh) * 2017-07-27 2017-11-07 青岛海尔空调器有限总公司 立式空调器以及立式空调器的控制方法
CN107366960A (zh) * 2017-07-27 2017-11-21 青岛海尔空调器有限总公司 一种具有分区送风功能的双贯流射流空调及送风方法
CN208920228U (zh) * 2018-08-02 2019-05-31 青岛海尔空调器有限总公司 可控制引风量和风向的空调室内机及空调器
CN110848796A (zh) * 2018-08-02 2020-02-28 青岛海尔空调器有限总公司 引风量和风向可调的空调室内机及空调器
CN110906448A (zh) * 2018-09-17 2020-03-24 青岛海尔空调器有限总公司 双贯流空调器及其控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114811907A (zh) * 2022-03-14 2022-07-29 青岛海信日立空调系统有限公司 空调控制方法及空调
CN114811907B (zh) * 2022-03-14 2024-01-26 青岛海信日立空调系统有限公司 空调控制方法及空调
CN115540399A (zh) * 2022-08-09 2022-12-30 青岛海尔空调器有限总公司 蒸发器和换热设备

Also Published As

Publication number Publication date
CN114060932A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2021223485A1 (zh) 柜式空调室内机
WO2021227880A1 (zh) 柜式空调室内机
CN212431090U (zh) 壁挂式空调室内机
CN114060933B (zh) 柜式空调室内机
CN103453643B (zh) 设有气流分配组件的立式空调送风装置
CN105698267A (zh) 具有引流结构的壁挂式空调器
CN105333503A (zh) 一种空调室内机
CN106482213B (zh) 一种混流空调
CN105333501A (zh) 一种空调室内机送风方法
CN212431089U (zh) 用于壁挂式空调室内机的射流装置及壁挂式空调室内机
CN105698265A (zh) 具有引流结构的分体壁挂式空调器
CN115143527A (zh) 立式空调室内机
CN105091087A (zh) 具有两个换热器的空调室内机
CN113864880A (zh) 壁挂式新风空调室内机及空调器
CN218295969U (zh) 立式空调室内机
WO2022037723A1 (zh) 壁挂式空调室内机
CN105091090A (zh) 空气调节器
WO2021223648A1 (zh) 用于柜式空调室内机的射流装置及柜式空调室内机
CN213577782U (zh) 用于柜式空调室内机的射流装置及柜式空调室内机
CN105091084A (zh) 一种空调室内机
WO2022037722A1 (zh) 用于壁挂式空调室内机的射流装置及壁挂式空调室内机
CN105091118A (zh) 一种空调器
CN114484611B (zh) 壁挂式空调室内机
CN213272866U (zh) 用于壁挂式空调室内机的射流装置及壁挂式空调室内机
CN204943705U (zh) 一种混流空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21799818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21799818

Country of ref document: EP

Kind code of ref document: A1