WO2021223168A1 - 样本分析仪、样本分析方法及计算机可读存储介质 - Google Patents

样本分析仪、样本分析方法及计算机可读存储介质 Download PDF

Info

Publication number
WO2021223168A1
WO2021223168A1 PCT/CN2020/089005 CN2020089005W WO2021223168A1 WO 2021223168 A1 WO2021223168 A1 WO 2021223168A1 CN 2020089005 W CN2020089005 W CN 2020089005W WO 2021223168 A1 WO2021223168 A1 WO 2021223168A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
motor
sampling needle
sample container
sampling
Prior art date
Application number
PCT/CN2020/089005
Other languages
English (en)
French (fr)
Inventor
胡力坚
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2020/089005 priority Critical patent/WO2021223168A1/zh
Priority to CN202080099774.8A priority patent/CN115427817A/zh
Publication of WO2021223168A1 publication Critical patent/WO2021223168A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • the embodiments of the present invention relate to the field of medical devices, and in particular, to a sample analyzer, a sample analysis method, and a computer-readable storage medium for executing the method.
  • a sample analyzer such as a blood sample analyzer
  • a blood sample analyzer is an instrument that analyzes and detects samples of blood, urine, and body fluid (ascites, cerebrospinal fluid, pleural fluid, etc.) collected from a patient.
  • the sampling needle of the sample analyzer is inserted into the test tube containing the sample to be tested to suck the sample.
  • the test tube used for loading venous blood is equipped with a cap for sealing the mouth of the tube. Therefore, the sampling needle of the sample analyzer usually needs to be supplemented with a large driving force to ensure sampling when sampling the test tube with cap.
  • the needle can pierce the cap of the tube and extend into the lumen of the sample container for sampling.
  • the sampling needle usually needs to be moved to the needle near the bottom of the test tube. Therefore, a large driving force may cause the sampling needle to be damaged or puncture the bottom of the test tube when it touches the bottom of the test tube.
  • the embodiment of the present invention provides a sample analyzer, a sample analysis method, and a computer-readable storage medium for executing the method.
  • a sample analyzer By changing the working current of the motor to drive the sampling needle to move inside the sample container, it is possible to ensure that the sampling needle pierces the cap of the tube while avoiding damage to the bottom of the sample container due to sampling.
  • a drive chip with a motor locked-rotor detection function to control the motor, the risk of damage to the sampling needle and test tube sample container can also be reduced.
  • the first aspect of the present invention provides a sample analyzer, including:
  • the transport device is used to transport the sample container loaded with the sample to be tested to the sampling location;
  • the sampling device includes a sampling needle and a motor for driving the sampling needle to move down to the inside of the sample container to collect the loaded sample to be tested;
  • the control device is electrically connected to the transport device and the sampling device, and is configured to:
  • the motor is controlled to work with a second driving current that is less than the first driving current to drive the sampling needle to continue to move down until the sample container is filled. Collect samples to be tested at the bottom of the cavity.
  • the second aspect of the present invention provides another sample analyzer, including:
  • the transport device is used to transport the sample container loaded with the sample to be tested to the sampling location;
  • the sampling device includes a sampling needle and a motor for driving the sampling needle to move down to the inside of the sample container to collect the loaded sample to be tested;
  • a control device that is electrically connected to the transport device and the sampling device and is configured to control its actions, the control device includes a drive chip with a motor stall detection function, and the drive chip is configured to control the motor Drive the sampling needle to move and monitor whether the motor is locked when controlling the motor.
  • the third aspect of the present invention also provides a sample analyzer, including:
  • the transport device is used to transport the sample container loaded with the sample to be tested to the sampling location;
  • the sampling device includes a sampling needle and a motor for driving the sampling needle to move down to the inside of the sample container to collect the loaded sample to be tested;
  • the control device is electrically connected to the conveying device and the sampling device and configured to:
  • controlling the motor to stop working and controlling the sampling needle to suck a second amount of sample from the sample container The second amount is different from the first amount.
  • the fourth aspect of the present invention provides a sample analysis method, including the following steps:
  • Control the motor to work with the first drive current to drive the sampling needle to move down and extend into the sample container at the sampling position to a first predetermined height above the bottom of the cavity of the sample container;
  • the motor is controlled to work with a second driving current that is less than the first driving current to drive the sampling needle to continue to move down until the sample container is filled. Collect samples to be tested at the bottom of the cavity.
  • the fifth aspect of the present invention provides another sample analysis method, including the following steps:
  • controlling the motor to stop working and controlling the sampling needle to suck a second amount of sample from the sample container The second amount is different from the first amount.
  • the sixth aspect of the present invention provides a computer-readable storage medium that stores executable instructions and is configured to cause a processor to execute the executable instructions to implement the sample analysis methods of the fourth and fifth aspects of the present invention.
  • FIG. 1 is a schematic diagram of the frame of a sample analyzer according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the external structure of a sample analyzer according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a part of the internal structure of a sample analyzer according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a transport device in a sample analyzer according to an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of a sampling device in a sample analyzer according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a working scene of a sampling device in a sample analyzer according to an embodiment of the present invention
  • Fig. 7 is a schematic diagram of a motor in a sample analyzer according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the comparison between the motor speed and the back electromotive force in the sample analyzer involved in an embodiment of the present invention
  • FIG. 9 is a schematic diagram of the frame of another sample analyzer involved in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the frame of still another sample analyzer according to an embodiment of the present invention.
  • 11 to 13 are flowcharts of a sample analysis method involved in an embodiment of the present invention.
  • FIG. 14 is a flowchart of a sample analysis method according to another embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a frame of a computer-readable storage medium according to an embodiment of the present invention.
  • connection and “connection” in the present invention include direct and indirect connection (connection) unless otherwise specified.
  • connection connection
  • the “on” or “under” of the first feature on the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. touch.
  • the “above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the sample analyzer 100 includes a transport device 10, a sampling device 20 and a control device 30.
  • the control device 30 is electrically connected to the conveying device 10 and the sampling device 20 respectively, and the control device 30 is used to control the coordinated movement of the conveying device 10 and the sampling device 20 to realize the sampling operation.
  • the control device 30 controls the transport device 10 to transport the sample rack 300 in the X1 direction, and causes the sample container 200 (see FIG. 6) placed on the sample rack 300 to be sent to the sampling position of the sample analyzer 100.
  • the sample container 200 contains a sample to be tested.
  • the control device 30 also controls the sampling device 20 to sample the sample container 200 located at the sampling position.
  • the sample analyzer 100 is, for example, a blood analyzer for acquiring blood routine parameters.
  • the sample analyzer 100 may also be a specific protein analyzer, such as a CRP analyzer or SAA analyzer, or a pusher stainer (also called a blood smear preparation device).
  • the conveying device 10 includes a sample rack supporting member 11, a sample rack feeding device 12, a sample rack lateral conveying device 13 and a sample rack sending device 14.
  • the sample rack support member 11 includes a pre-analyzed sample rack storage area 111 in which a number of sample racks 300 holding samples before analysis can be fixed, and a sample rack in which a number of sample containers 200 holding samples after analysis can be fixed.
  • the post-analysis sample rack storage area 112 of 300 and the sample analysis area 113 located between the pre-analysis sample rack storage area 111 and the post-analysis sample rack storage area 112. Before analysis, the sample rack storage area 111 is close to the sample analysis area 113 with a sample rack delivery turning area 111a.
  • the sample rack storage area 112 is provided with a sample rack delivery turning area 112a on the side close to the sample analysis area 113.
  • the sample rack feeding device 12 can transport the sample rack 300 along the Y2 direction to the sample rack delivery turning area 111a, the sample rack lateral transport device 13 can transport the sample rack 300 on the sample analysis area 113 along the X1 direction, and the sample rack delivery device 14
  • the sample rack 300 can be transported out of the sample rack delivery diverting area 112a along the Y1 direction.
  • the sampling device 20 includes a sampling needle 21 and a motor 22 for driving the sampling needle 21 to move down.
  • the control device 30 drives the sampling needle 21 to move down toward the sample container 200 placed on the sampling position by controlling the motor 22, and extends into the sample container 200 to perform a sampling operation.
  • the control device 30 of the sample analyzer 100 provided by the embodiment of the present invention causes the motor 22 to operate with at least two different driving currents during the process of controlling the operation of the motor 22.
  • the sample container 200 includes a tube body 210 having a cavity 230 for loading the sample to be tested and a tube cap 220 for sealing the cavity 230.
  • the cap 220 is arranged at the top of the tube 210 close to the sampling needle 21. If the sampling needle 21 is to be inserted into the inner cavity of the tube body 210 to perform a sampling operation, the tube cap 220 needs to be pierced before moving down.
  • the driving power required to pierce the tube cap 220 is relatively large. Therefore, it is necessary to make the motor 22 work with a relatively large first driving current, so that the sampling needle 21 pierces the tube cap 220 with sufficient force.
  • the motor 22 can be controlled by the control device 30 so that the motor 22 can continue to drive the sampling needle 21 down to the cavity of the sample container 200 with a second drive current smaller than the first drive current.
  • the vicinity of the bottom 240 such as the position C or the position D in FIG. 6, is used to collect the sample to be tested.
  • the sampling needle 21 may be in contact with the sample container 200.
  • Contact with the bottom 240 of the chamber (position D in Figure 6); or the motor 22 can also directly drive the sampling needle 21 down to make contact with the bottom 240 of the chamber of the sample container 200 (position C in Figure 6), and then proceed Sampling operation.
  • the working current of the motor 22 is the second driving current that is smaller than the first driving current, the sampling needle 21 is in contact with the bottom 240 of the cavity of the sample container 200, forming an impact on the sample container 200.
  • the impact will be lower than the impact formed by the motor 22 driving the sampling needle 21 down to contact with the bottom 240 of the cavity of the sample container 200 with the first driving current.
  • the second driving current can be significantly smaller than the first driving current, so that when the motor 22 drives the sampling needle 21 with the second driving current to contact the bottom 240 of the cavity of the sample container 200, the sampling needle 21 faces the sample container.
  • the impact force formed by the 200 is significantly reduced.
  • the sample analyzer 100 of the present invention controls the motor 22 by the control device 30, so that the motor 22 can work with a larger first drive current first, and drive the sampling needle 21 down to the cavity 230 of the sample container 200.
  • the motor 22 is operated with a smaller second driving current, so that the sampling needle 21 continues to move down to the bottom 240 of the cavity of the sample container 200, and the sampling operation is effectively completed at the same time
  • the impact of the sampling needle 21 on the bottom 240 of the cavity of the sample container 200 is reduced, thereby reducing or even directly avoiding possible damage to the sample container 200 caused by the sampling needle 21, or possible damage to the sampling needle 21 itself.
  • the sample analyzer 100 may further include a sample preparation device 40 and a detection device 50.
  • the sample preparation device 40 is used to provide a reaction place for the sample to be tested and the processing reagent collected by the sampling device 20 to prepare a sample solution to be tested.
  • the detecting device 50 is used for detecting the sample liquid to be tested.
  • the control device 30 is also electrically connected to the sample preparation device 40 and the detection device 50 to control, so as to complete the entire operation process of the sample analyzer 100 from transporting the sample to collecting the sample, preparing the sample liquid, and finally detecting the sample liquid.
  • the first driving current of the motor 22 needs to be matched to the cap 220, that is, it is ensured that the motor 22 drives the sampling needle with the first driving current.
  • the sampling needle 21 can pierce the cap 220 and extend into the sample container 220.
  • the setting of the first drive current also needs to consider the material of the cap 220 and the material of the sampling needle 21 at the same time, so as to ensure that when the motor 22 works at the first drive current, the sampling needle 21 can smoothly pierce the cap 220 and extend.
  • the cavity 230 of the sample container 200 Into the cavity 230 of the sample container 200.
  • the material of the cap 220 for sealing on different sample containers 200 on the sample rack is different, the material of the cap 220 with the highest hardness is used as a reference to design the value of the first driving current.
  • a puncture area that facilitates the puncture of the sampling needle may be provided on the cap 220 to reduce the first driving current.
  • the second driving current also needs to be designed to match the material of the tube body 210 of the sample container 200 to ensure that the motor 22 drives the sampling needle 21 down to the bottom 240 of the cavity of the sample container 200 with the second driving current.
  • the setting of the second driving current should consider the material of the sample container 200 and the material of the sampling needle 21 at the same time, so as to ensure that when the motor 22 works at the second driving current, the sampling needle 21 will not pierce the cavity of the sample container 200. 240 at the bottom.
  • the material of the tube body 210 of the different sample containers 200 on the sample rack is different, the material of the tube body 210 with the lowest hardness is used as a reference to design the value of the second driving current.
  • the predetermined height is set such that the distance between the needle of the sampling needle 21 and the bottom 240 of the cavity of the sample container 200 at the sampling position is at least 1/3 of the height of the cavity of the sample container 200. That is, when the motor 22 operates at the first driving current, the sampling needle 21 is driven to move down until the distance between the needle of the sampling needle 21 and the cavity bottom 240 of the sample container 200 is at least 1/3 of the cavity height of the sample container 200.
  • Such a setting can enable the motor 22 to work with the second driving current and drive the sampling needle 21 down in the subsequent process, and the sampling needle 21 can obtain a sufficient buffer distance for control.
  • the sample analyzer 100 further includes a parameter setting device (not shown) electrically connected to the control device 30 for setting at least one parameter of the first driving current, the second driving current, and the predetermined height.
  • the parameter setting device is set on the display interface of the sample analyzer 100, for example. The user can set the matching first drive current, second drive current, and the predetermined height according to the height and material of the cavity of the sample container used by the user.
  • control device 30 is configured to monitor whether the motor 22 is locked when the motor 22 is controlled to operate at the second driving current, so as to determine whether the sampling needle 21 moves down to the cavity of the sample container 200.
  • the bottom 240 touches.
  • the motor 22 is stopped, thereby further reducing the risk of the sampling needle 21 piercing the bottom of the cavity of the sample container or being damaged.
  • the sample container 200 may include a constant sample container 201 and a micro sample container 202, corresponding to different amounts of constant samples and micro samples, that is, the constant sample container 201 can load a larger amount of samples than the micro sample container 202.
  • the constant sample container 201 can load a larger amount of samples than the micro sample container 202.
  • blood samples it is usually suitable for adult patients to collect venous blood (ie macro samples), but for infants, children or severely ill patients, it is sometimes difficult to collect blood through veins. In this case, it is often necessary to collect peripheral blood (ie micro samples). .
  • the amount of blood collected for macro samples is larger ( ⁇ 1mL), and the amount of blood collected for micro samples is smaller ( ⁇ 100 ⁇ L in most cases).
  • the macro sample container 201 used for loading the macro sample is different from the micro sample container 202 used for loading the micro sample. Therefore, the height of the cavity of the micro sample container 202 is smaller than that of the constant sample container 201.
  • the constant sample container 201 is usually placed directly on the sample rack 300, and the micro sample container 202 is usually installed at the bottom of the micro sample container 202.
  • the support (the support and the micro sample container are formed integrally or separately) are placed on the sample rack 300, so that when a sample rack is loaded with both the micro sample container 202 and the constant sample container 201, the micro sample container 202
  • the bottom 240 of the chamber is farther from the bottom of the sample rack than the bottom 240 of the chamber of the constant sample container 201. That is to say, the height of the cavity of the constant sample container 201 is usually long and is provided with a cap 220.
  • the sampling needle 21 moves down to the bottom of the cavity of the constant sample container 201 for sampling, the sampling needle 21 is close to the constant sample container 201.
  • the bottom position of the chamber; and the height of the chamber of the micro sample container 202 is usually short, and the cap 220 may not be provided, and the sample contained is small.
  • the sampling needle 21 is lowered When moving to the bottom of the cavity of the micro sample container 202 for sampling, the sampling needle 21 almost contacts the bottom of the cavity of the micro sample container 202.
  • the motor 22 drives the sampling needle 21 down to the first predetermined height (B) with the first driving current, it can ensure that the sampling needle 21 smoothly pierces the cap 220; Then, when the motor 22 drives the sampling needle 21 down with the second driving current, the sampling needle is moved down to a second predetermined height (D) where the needle is close to but does not touch the bottom of the cavity of the constant sample container 201.
  • the motor 22 drives the sampling needle 21 to move down with the second drive current, because the constant sample container 201 and the micro sample container 202 are placed on the same sample rack 300 when the micro sample container The bottom of the chamber 202 is higher than the bottom of the constant sample container 201.
  • the control motor 22 drives the sampling needle 21 down with the same second predetermined height (D) as the target, the sampling needle 21 moves down to the second predetermined height.
  • control device 30 detects that the motor 22 is blocked, and then controls the motor 22 to stop driving the sampling needle to prevent the sampling needle or the micro sample container 202 from being damaged.
  • the sample analyzer 100 provided by the embodiment of the present invention drives the sampling needle to move at different currents successively by making the motor 22 work and simultaneously detects whether the motor is locked, and can use the same sampling needle to move for different types of sample containers.
  • the control method does not need to obtain the type of sample container in advance, and can even determine the type of sample container to control the amount of sample aspirated by the sampling needle.
  • control device 30 always targets the second predetermined height corresponding to the constant sample container 201 to control the motor 22 (operating at the second drive current) to drive the sampling needle 21 downward. If the sampling needle 21 moves downward before the second predetermined height , The control device 30 detects that the motor is locked and stops the motor.
  • the control device 30 controls the sampling needle to suck the first amount of sample, and optionally controls the sample preparation device 40 Prepare the sample liquid to be tested at the first dilution; if the motor 20 drives the sampling needle 21 to move down to the second predetermined height and then stops, the control device 30 does not detect that the motor is locked, which indicates that the current sample container is a constant sample The container, and then the control device 30 controls the sampling needle to suck a second amount of sample larger than the first amount, and optionally controls the sample preparation device 40 to prepare a sample solution to be tested with a second dilution smaller than the first dilution.
  • the motor 20 is a stepper motor. If the sample container currently being sampled is a micro sample container, when the needle of the sampling needle 21 touches the bottom of the cavity of the sample container, the stepping motor will be out of step, making the needle of the sampling needle 21 always stay at position C; If the sample container is a constant container, the needle of the sampling needle 21 will eventually drop to the position D, so that the descending height of the sampling needle can meet the requirements for aspirating samples in the micro sample container 91 and the constant sample container 90 at the same time.
  • an encoder is installed on the rotating shaft of the motor 20, and the output signal of the encoder is changed (changes in frequency, voltage, current, etc.) to determine whether a stall has occurred.
  • the encoder can be a photoelectric encoder or a magnetic encoder.
  • control device 30 includes a driving chip 31 with a motor stall detection function.
  • the driving chip 31 is configured to control the action of the motor 22 and monitor whether the motor 22 is locked when the motor 22 is controlled to work at the second driving current.
  • the driving chip 31 is further used to control the motor 22 to stop working when it is determined that the motor 22 is locked.
  • the motor 22 may be a stepping motor, and in this case, the motor 22 includes a stator 221 and a rotor 222.
  • a coil is wound on the stator 221, and a silicon steel sheet is fixed on the rotor 222.
  • the driving chip 31 generates an alternating magnetic field by controlling the current magnitude and direction of the coil in the stator 221, and the magnetic field interacts with the silicon steel sheet of the rotor 222 to generate a rotating magnetic force to drive the rotor 222 to rotate.
  • an alternating magnetic field is generated around the coil of the stator 221.
  • the alternating magnetic field acts on the coil of the stator 221 to induce an electric field, which is defined as a back electromotive force.
  • the back electromotive force is related to the coil inductance of the stator 221, and is also related to the size of the magnetic field generated by the silicon steel sheet of the rotor 222 and the rotation speed of the rotor 222.
  • the coil inductance of the stator 221 and the silicon steel sheet of the rotor 222 have been determined, and the magnitude of the back electromotive force is only positively correlated with the rotation speed of the rotor 222.
  • the driving chip 31 can determine whether the motor 22 is blocked by detecting the rotation speed or the back electromotive force of the motor 22. It is understandable that when the motor 22 works with the second driving current and drives the sampling needle 21 to move down and does not make contact with the bottom of the cavity of the sample container 200, it is defined that the rotor 221 of the motor 22 has the first rotation speed M1. At this time, the motor 22 The coil of the stator 221 will induce the first back electromotive force E1.
  • the driving chip 31 can detect the working state of the motor 22 by continuously capturing the change of the back electromotive force, and the driving chip 31 can also detect the working state of the motor 22 by continuously detecting the rotation speed of the motor 22.
  • the motor 22 When the needle of the sampling needle 21 touches the bottom of the cavity of the sample container 200, because the sampling needle 21 cannot penetrate the sample container 200, the motor 22 will be blocked. The rotation speed of the motor 22 will be reduced from the first rotation speed M1 to zero, or a value approaching zero. At this time, the driving chip 31 detects the change in the rotation speed of the motor 22, and when the rotation speed decreases from the first rotation speed M1 to 0 or approaches 0, it can be judged that the motor 22 is locked, and accordingly stop the work of the motor 22 to avoid The motor 22 continuously drives the sampling needle 21 to move down and impacts the bottom of the cavity of the sample container 200, and at the same time shortens the noise time generated after the motor 22 is locked.
  • the driving chip 31 can also determine that the motor 22 is blocked by detecting the change of the back electromotive force of the motor 22, and accordingly stop the operation of the motor 22.
  • the motor 22 can be stopped in advance by setting a second rotation speed M2 lower than the first rotation speed M1 or a second back electromotive force E2 lower than the first back electromotive force E1 in the driving chip 31. And reduce the impact on the bottom of the sample container 200 when the motor 22 is locked.
  • the second rotation speed M2 and the second back electromotive force E2 can be regarded as critical thresholds for the drive chip 31 to stop the motor 22 from working.
  • the back electromotive force starts to decrease from the first back electromotive force E1. Therefore, the drive chip 31 does not actually need to detect that the rotation speed of the motor 22 or the back electromotive force drops to 0 or approaches 0 before it can determine that the motor 22 is locked. After the second rotation speed M2, or after the back electromotive force of the motor 22 drops to the preset second back electromotive force E2, it is determined that the motor 22 is locked.
  • the driving chip 31 also stops the work of the motor 22 in advance, which further reduces the impact of the motor 22 driving the sampling needle 21 on the bottom of the sample container 200.
  • the value of the second rotation speed M2 can be set to be no greater than that of the first rotation speed M1.
  • the drive chip 31 set up in this way it stops the work of the motor 22 when it detects that the rotation speed of the motor 22 drops to 0 or approaches 0, or detects that the back electromotive force of the motor 22 drops to 0 or approaches 0. Therefore, the damage to the bottom of the inner cavity of the sample container 200 by the sampling needle 21 can be further reduced.
  • the model of the driving chip 31 may include TMC5130, TMC5160 or TMC5161 with automatic motor stall detection function from TRINAMIC.
  • TMC5130, TMC5160 or TMC5161 with automatic motor stall detection function from TRINAMIC.
  • these types of motor drive chips drive the motor 22 to rotate
  • the back electromotive force generated by the motor 22 at different speeds can be calculated according to the coil resistance and inductance parameters of the motor 22, that is, it can detect that the motor 22 drives the circuit when it rotates.
  • the generated back electromotive force is therefore suitable for use in the sample analyzer 100 of the present invention.
  • FIG. 9 showing another sample analyzer 100a provided in the second aspect of the present invention, which includes a transport device 10a, a sampling device 20a, and a control device 30a.
  • the control device 30a is electrically connected to the conveying device 10a and the sampling device 20a, respectively, and is configured to control the actions thereof.
  • the control device 30a further includes a drive chip 31a with a motor locked-rotor detection function.
  • the drive chip 31a is configured to control the motor 22a to drive the sampling needle 21a to move and monitor whether the motor 22a is locked when controlling the motor 22a.
  • sample analyzer 100a provided by the present invention is provided with a drive chip 31a that has the function of detecting whether the motor 22a is locked-rotating or not, so that it can achieve timely when the motor 22a is locked-rotating. The effect of stopping the operation of the motor 22a. Therefore, the sample analyzer 100a of the present invention can also reduce the impact of the sampling needle 21a on the sample container, thereby protecting the sample container and the sampling needle 21a.
  • Fig. 10 illustrates another sample analyzer 100b provided in the third aspect of the present invention, which includes a transport device 10b, an adopting device 20b, and a control device 30b.
  • the embodiments of the conveying device 10b and the sampling device 20b can also refer to the foregoing embodiments of the conveying device 10 and the sampling device 20, wherein the sampling device 20b also has a sampling needle 21b and a motor 22b.
  • the control device 30b is electrically connected to the conveying device 10b and the sampling device 20b and configured to control their actions, after the conveying device 10b is controlled to convey the sample container 200 to the sampling position, the motor 22b is controlled to drive the sampling needle 21b to move down to a predetermined height Move down for the target and extend into the sample container 200.
  • control device 30b also monitors whether the motor 22b is locked when the sampling needle 21b is driven to the predetermined lowering height, that is, it is determined whether the sampling needle 21b is in contact with the bottom of the sample container 200 at the predetermined lowering height.
  • the control device 30b controls the motor 22b to stop working, and controls the sampling needle 21b to suck the first amount of sample from the sample container 200; and when the motor 22b is not locked, the control device 30b
  • the control motor 22b stops working, and controls the sampling needle 21b to suck a second amount of sample from the sample container 200, and the second amount is different from the first amount.
  • the second amount is greater than the first amount.
  • the sample volume sucked by the sampling needle 21b is also controlled by whether the motor 22b is locked.
  • the predetermined downward movement height can be set in accordance with the position of the bottom (D) of the constant sample container 201.
  • the motor 22b does not need to obtain the type of the sample container 200 in advance.
  • the control device 30b directly controls the motor 22b to work first, and drives the sampling needle 21b to move downward with a predetermined downward height as the target. At this time, if the sample container 200 is a micro sample container 202, the sampling needle 21b will first contact the bottom of the micro sample container 202 before moving down to a predetermined lower height, and cause the motor 22b to lock up.
  • the control device 30b determines that the motor 22b is locked before driving the sampling needle 21b to the predetermined downward movement height to determine that the sample currently being sampled is a micro sample, and then controls the sampling needle 21b to draw the first sample from the micro sample container 202. Amount of sample. Conversely, if the motor 22b is not locked during the process of the sampling needle 21b at the predetermined lower height position, the sampling needle 21b will directly move down to the predetermined lower height under the drive of the motor 22b, that is, the sampling needle 21b moves down to the predetermined lower height.
  • Figure 6 illustrates the D position.
  • the control device 30b detects that the motor 22b is driving the sampling needle 21b down to the predetermined downward movement height without blocking, and can determine that the sample currently being sampled is a constant sample, and then controls the sampling needle 21b draws a second amount of sample from the constant sample container 201. And because the sample size of the constant sample is larger than the sample size of the micro sample, the second amount also needs to be larger than the first amount.
  • the sample analyzer 100b provided in the third aspect of the present invention does not need to obtain the type of sample container in advance, and only drives the sampling needle 21b down to a predetermined lower height during the motor Whether 22b is locked or not is used to determine the type of the sample container 200 in real time, and correspondingly control the sample suction amount of the sampling needle 21b.
  • control device 30b may also include a drive chip 31b with a motor stall detection function, and the drive chip 31b is also configured to control the action of the motor 22b and monitor whether the motor 22b occurs. Stalled.
  • the model of the aforementioned driving chip 31a and/or the driving chip 31b may include TMC5130, TMC5160 or TMC5161 of TRINAMIC.
  • the sample analyzer 100b may further include a sample preparation device 40b for preparing the sample liquid to be tested, and the sample preparation device 40b is also electrically connected to the control device 30b.
  • the control device 30b controls the sampling needle 21b to suck the first or second amount of sample, it further controls the volume of the reagent for mixing added to the corresponding sample by the sample preparation device 40b in the process of preparing the sample solution to be tested. .
  • the control device 30b determines that the motor 22b is locked when the sampling needle 21b moves to the predetermined downward movement height
  • the control device 30b subsequently controls the sample preparation device 40b to dilute the first amount of the absorbed amount according to the first dilution ratio.
  • the sample when the control device 30b determines that the motor 22b is not locked during the movement of the sampling needle 21b to the predetermined downward movement height, it controls the sample preparation device 40b to dilute according to a second dilution ratio that is different from, for example, lower than the first dilution ratio The second amount of sample drawn.
  • the first amount of the micro sample extracted by the sampling needle 21b is usually about 50 ⁇ L
  • the second amount of the constant sample is usually about 75 ⁇ L.
  • the dilution of the first amount of micro sample is usually about 94 times (ie the first dilution ratio)
  • the dilution of the second amount of constant sample is usually about 71 times (ie the first dilution ratio). Two dilution rate).
  • the subsequent measurement time for the sample solution to be tested (approximately 71 ⁇ L capacity) prepared for a micro sample is about 8 seconds, and the measurement time for the sample solution to be tested (approximately 40 ⁇ L capacity) prepared for a constant sample is about 4.5 seconds.
  • the above-mentioned differential settings are used to ensure the detection accuracy of micro samples and constant samples, and improve the detection efficiency.
  • the sample analyzer 100b of the present invention uses the control device 30b to have the function of detecting the locked rotation of the motor 22b, and does not need to obtain the type of the sample container in advance. Whether the motor 22b is blocked, the type of the sample container 200 can be judged in real time, and the subsequent detection steps such as the sample suction amount and the dilution ratio of the sampling needle 21b can be controlled accordingly, which improves the detection efficiency.
  • sample analyzer 100a and the sample analyzer 100b of the present invention may refer to the various embodiments of the sample analyzer 100 introduced in the first aspect of the present invention.
  • Figure 11 illustrates a sample analysis method provided by the fourth aspect of the present invention, which includes the following steps:
  • S200 Control the motor 22 to operate at the first drive current to drive the sampling needle 21 to move downward and extend into the sample container 200 at the sampling position to a first predetermined height above the bottom of the cavity of the sample container 200;
  • the motor 22 is controlled to work with a second driving current smaller than the first driving current to drive the sampling needle 21 to continue to move down to the bottom of the cavity of the sample container 200 To collect samples to be tested.
  • the sample analysis method of the present invention is also applied to the sampling device 20 in the sample analyzer 100 sampling the sample to be tested in the sample container 200.
  • the motor 22 in the sampling device 20 first operates with a first drive current to ensure that the sampling needle 21 extends into the sample container 200 at a first predetermined height (such as When the position B in FIG. 6) has a sufficiently large driving force, at this time, regardless of whether the cap 220 is provided at the opening position of the sample container 200, the method can make the sampling needle 21 smoothly move down to the first predetermined height.
  • the downward movement of the sampling needle 21 is not affected; while for the sample container 202 with the cap 220, the sampling needle 21 has a larger driving force. , It can be ensured that the sampling needle 21 pierces the cap 220 and moves down to a predetermined height. Then, the motor 22 operates with a second driving current that is less than the first driving current, and drives the sampling needle 21 to continue to move down to the bottom of the cavity of the sample container 200 to collect the sample to be tested.
  • the second driving current is smaller than the second driving current, when the sampling needle 21 moves down to the bottom of the cavity of the sample container 200, no matter whether the sampling needle 21 is in contact with the bottom of the cavity of the sample container 200, it will be caused by the sampling needle.
  • the driving force of 21 is smaller, and the bottom of the cavity of the sample container 200 is protected.
  • controlling the motor 22 to operate at the first driving current in step S200 and controlling the motor 22 to operate at the second driving current in step S300 can be implemented by the driving chip 31.
  • the sample analysis method further includes:
  • the sample analysis method further includes:
  • the sample analysis method further includes:
  • the drive chip 31 is used to monitor whether the motor 22 is locked to determine whether the sampling needle 21 moves down to the bottom of the cavity contacting the sample container 22.
  • the drive chip 31 detects whether the motor 22 is locked, and the drive chip 31 can also monitor the rotation speed or back electromotive force of the motor 22 to monitor whether the motor 22 is locked. For example, the driving chip 31 monitors whether the rotation speed or the back electromotive force of the motor 22 reaches a preset threshold value, where the preset threshold value is less than the rotation speed or the back electromotive force value of the motor 22 when the motor 22 operates at the second driving current.
  • the driving chip 31 monitors the rotation speed or back electromotive force of the motor 22 to determine whether the motor 22 is locked, which can be achieved by monitoring the rotation speed of the motor 22 or the back electromotive force drops to 0 or approaches 0 by the driving chip 31 .
  • the rotation speed or back electromotive force of the motor 22 when operating at the second driving current has a first value, and a second value smaller than the first value may be preset in the driving chip 31, and the driving chip may be set 31
  • the definition of “first value” and “second value” in this method can refer to the above description of the sample analyzer 100, that is, the motor 22 has the first rotation speed M1 when working at the second driving current.
  • the motor 22 has the first back electromotive force E1 when operating at the second driving current, and after the motor 22 is decelerated to the second electromotive force E2 preset in the driving chip 31, the driving chip 31 determines that the motor 22 is locked and rotating. The operation of the motor 22 is stopped.
  • the driving chip 31 can also determine that the motor 22 is generating When the rotor is locked, the motor 22 is further controlled to stop working in advance, so that the time for the motor 22 to be locked can be shortened, and the sampling needle 21 and the sample container 200 are protected from shock.
  • step S200 includes:
  • the motor is controlled to drive the sampling needle 21 to move down so that the distance between the needle of the sampling needle 21 and the bottom of the cavity of the sample container 200 is at least 1/3 of the height of the cavity of the sample container.
  • the setting of the first driving current needs to be determined corresponding to the material of the cap 220 and the sampling needle 21. That is, it is ensured that the sampling needle 21 can have enough driving force to pierce the cap 220 when the motor 22 is working at the first driving current.
  • the setting of the sampling needle 21 moving to a predetermined height it is also necessary to ensure that the sampling needle 21 can obtain a sufficient deceleration distance while the motor 22 continues to drive the sampling needle 21 down with the second drive current, and the sampling needle 21
  • the needle 21 moves down to the bottom of the sample container 200 with a driving force matching the second driving current, so as to protect the sample container 200 and the sampling needle 21 from damage.
  • step S300 includes:
  • the motor 22 is controlled to work with a second driving current that does not pierce the bottom of the cavity of the sample container 200 to drive the sampling needle 21 to continue to move down until the bottom of the cavity of the sample container 200 collects the sample to be tested.
  • the setting of the second driving current also needs to be determined corresponding to the material of the tube body 210 of the sample container 200 and the sampling needle 21. That is, it is ensured that the driving force of the sampling needle 21 can be sufficiently small when the motor 22 is operating at the second driving current, and the sampling needle 21 is prevented from forming a large impact on the bottom of the cavity of the sample container 200.
  • the sample analysis method further includes:
  • the method of the present invention effectively collects the sample to be tested from the sample container 200, it is possible to continue processing the collected sample to be tested, so that the sample to be tested and processing reagents (such as diluents, fluorescent dyes, etc.)
  • the reaction is to prepare the sample solution to be tested, and detect the cells in the prepared sample solution to be tested, and complete the entire process of sample analysis from transporting the sample to collecting the sample, preparing the sample solution, and finally testing the sample solution.
  • Figure 14 illustrates the sample analysis method provided by the fifth aspect of the present invention, and the specific steps include:
  • S100b Control the transport device 10b to transport the sample container 200 loaded with the sample to be tested to the sampling position;
  • the sample analysis method in FIG. 14 may correspond to the above-mentioned embodiment of the sample analyzer 100b of the third aspect of the present invention. Because the control device 30b has the function of detecting the stall of the motor 22b, this method can determine whether the motor 22b is stalled by detecting whether the motor 22b is at the sampling position while the sampling needle 21b is moving down with the predetermined downward height as the target.
  • the sample solution to be tested is prepared based on the first amount of sample; or correspondingly, the second amount of sample is drawn and the sample solution to be tested is prepared based on the second amount of sample, so as to achieve the effect of improving the detection accuracy and detection efficiency of sample analysis.
  • an embodiment of the present invention also relates to a computer-readable storage medium 400, which includes a processor 401 and a storage device 402.
  • the storage device 402 stores executable instructions and is configured to cause the processor 401 to execute the executable instructions to implement the above-mentioned sample analysis method.
  • the storage device 402 may include a volatile memory device, such as a random-access memory device (RAM); or a non-volatile memory device (non-volatile memory), such as a flash memory device ( flash memory), solid-state drive (solid-state drive, SSD), etc.; or a combination including the above types of storage devices.
  • a volatile memory device such as a random-access memory device (RAM); or a non-volatile memory device (non-volatile memory), such as a flash memory device ( flash memory), solid-state drive (solid-state drive, SSD), etc.; or a combination including the above types of storage devices.
  • the processor 401 may be a central processing unit (CPU).
  • the processor 301 can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (ASIC), ready-made programmable gate arrays (Field-Programmable Gate Array, FPGA) Or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the processor 401 calls the program instructions stored in the storage device 402 to perform the following operations:
  • the motor 22 is controlled to work with the first driving current to drive the sampling needle 21 to move down and extend into the sample container 200 at the sampling position to a predetermined height above the bottom of the cavity of the sample container 200;
  • the motor 22 is controlled to work with a second driving current smaller than the first driving current to drive the sampling needle 21 to continue moving down until the bottom of the cavity of the sample container 200 collects the sample to be tested.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种样本分析仪(100),包括运送装置(10)、采样装置(20)和控制装置(30)。其中控制装置(30)与运送装置(10)和采样装置(20)电连接,并配置用于控制运送装置(30)将样本容器(200)运送至采样位,然后控制电机(22)以第一驱动电流工作,以驱动采样针(21)下移伸入样本容器(200)内至预定高度后,再控制电机(22)以小于第一驱动电流的第二驱动电流工作,以驱动采样针(21)继续下移至样本容器(200)的容腔底部采集待测样本。利用第一驱动电流可以保证采样针(21)刺破样本容器(200)的管帽,而利用第二驱动电流可以保证采样针(21)不损坏样本容器的容腔底部。

Description

样本分析仪、样本分析方法及计算机可读存储介质 技术领域
本发明实施例涉及医疗器械领域,特别涉及一种样本分析仪,以及一种样本分析方法和执行该方法的计算机可读存储介质。
背景技术
样本分析仪、例如血液样本分析仪是对从患者采集的血液、尿液、体液(腹水、脑脊髓、胸水等)样本进行分析检测的仪器。在样本分析仪的工作过程中,样本分析仪的采样针伸入到装载有待测样本的试管中吸取样本。通常,用于装载静脉血的试管设置有密封管口用的管帽,因此样本分析仪的采样针在对设有管帽的试管进行采样时,通常需要辅以较大的驱动力以保证采样针能够刺破管帽,并伸入样本容器的管腔内部进行采样。然而,为了确保尽可能完全吸取试管中的样本,采样针通常需要被移动到针头接近试管底部,因此,较大的驱动力可能导致采样针在接触到试管底部时被损坏或刺破试管底部。
发明内容
本发明实施例提出一种样本分析仪、一种样本分析方法和执行该方法的计算机可读存储介质。通过改变电机的工作电流来驱动采样针移动到样本容器内部,可以在保证采样针刺破管帽的同时避免采样针对样本容器的底部造成损害。此外,通过使用带有电机堵转检测功能的驱动芯片来控制电机,也能够降低采样针和试管样本容器被损坏的风险。
本发明第一方面提供了一种样本分析仪,包括:
运送装置,用于将装载有待测样本的样本容器运送至采样位;
采样装置,包括采样针和用于驱动所述采样针下移至所述样本容器内部采集所装载的待测样本的电机;
控制装置,与所述运送装置和所述采样装置电连接,并配置用于:
控制所述运送装置将所述样本容器运送至所述采样位,
控制所述电机以第一驱动电流工作,以驱动所述采样针下移伸入位于所述采样位的样本容器内直至该样本容器的容腔底部上方的预定高度,
在所述采样针下移至所述预定高度后,再控制所述电机以小于所述第一驱动电流的第二驱动电流工作,以驱动所述采样针继续下移直至所述样本容器的容腔底部采集待测样本。
本发明第二方面提供了另一种样本分析仪,包括:
运送装置,用于将装载有待测样本的样本容器运送至采样位;
采样装置,包括采样针和用于驱动所述采样针下移至所述样本容器内部采集所装载的待测样本的电机;
控制装置,与所述运送装置和所述采样装置电连接并配置用于控制其动作,所述控制装置包括具有电机堵转检测功能的驱动芯片,所述驱动芯片被配置用于控制所述电机驱动所述采样针移动并且在控制所述电机时监测所述电机是否发生堵转。
本发明第三方面还提供一种样本分析仪,包括:
运送装置,用于将装载有待测样本的样本容器运送至采样位;
采样装置,包括采样针和用于驱动所述采样针下移至所述样本容器内部采集所装载的待测样本的电机;
控制装置,与所述运送装置和所述采样装置电连接并配置用于:
控制所述运送装置将所述样本容器运送至所述采样位,
以预定下移高度为目标,控制所述电机驱动所述采样针下移伸入位于所述采样位的样本容器内,
在控制所述电机使所述采样针以所述预定下移高度为目标下移时,监测所述电机是否发生堵转,以判断所述采样针在下移至所述预定下移高度之前是否与所述样本容器的容腔底部接触;
在判断所述电机发生堵转时,控制所述电机停止工作以及控制所述采样针从所述样本容器中吸取第一量的样本;
在判断所述电机没有发生堵转且所述采样针下移至所述预定下移高度时,控制所述电机停止工作以及控制所述采样针从所述样本容器中吸取第二量的样本,所述第二量不同于所述第一量。
本发明第四方面提供了一种样本分析方法,包括如下步骤:
控制运送装置将装载有待测样本的样本容器运送至采样位;
控制电机以第一驱动电流工作,以驱动采样针下移伸入位于所述采样位的样本容器内直至该样本容器的容腔底部上方的第一预定高度;
在所述采样针下移至所述预定高度后,再控制所述电机以小于所述第一驱动电流的第二驱动电流工作,以驱动所述采样针继续下移直至所述样本容器的容腔底部采集待测样本。
本发明第五方面提供另一种样本分析分方法,包括如下步骤:
控制运送装置将装载有待测样本的样本容器运送至采样位;
以预定下移高度为目标,控制电机驱动采样针下移伸入位于所述采样位的样本容器内;
在控制所述电机使所述采样针以所述预定下移高度为目标下移时,监测所述电机是否发生堵转,以判断所述采样针在下移至所述预定下移高度之前是否与所述样本容器的容腔底部接触;
在判断所述电机发生堵转时,控制所述电机停止工作以及控制所述采样针从所述样本容器中吸取第一量的样本;
在判断所述电机没有发生堵转且所述采样针下移至所述预定下移高度时,控制所述电机停止工作以及控制所述采样针从所述样本容器中吸取第二量的样本,所述第二量不同于所述第一量。
本发明第六方面提供了一种计算机可读存储介质,存储有可执行指令,配置为引起处理器执行所述可执行指令时,实现上述本发明第四和第五方面的样本分析方法。
通过本发明各方面,都能够降低、甚至避免由于电机始终以同一驱动电流驱动采样针下移取样的过程中,因为电流过大而造成采样针或样本容器被损坏的风险,保证样本分析仪的运转安全。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例所涉及的样本分析仪的框架示意图;
图2是本发明一实施例所涉及的样本分析仪的外部结构示意图;
图3是本发明一实施例所涉及的样本分析仪的部分内部结构示意图;
图4是本发明一实施例所涉及的样本分析仪中运送装置的示意图;
图5是本发明一实施例所涉及的样本分析仪中采样装置的示意图;
图6是本发明一实施例所涉及的样本分析仪中采样装置的工作场景示意图;
图7是本发明一实施例所涉及的样本分析仪中电机的示意图;
图8是本发明一实施例所涉及的样本分析仪中电机转速与反生电动势的对照示意图;
图9是本发明一实施例所涉及的另一种样本分析仪的框架示意图;
图10是本发明一实施例所涉及的再一种样本分析仪的框架示意图;
图11至13是本发明一实施例所涉及的样本分析方法的流程图;
图14是本发明另一实施例所涉及的样本分析方法的流程图;
图15是本发明一实施例所涉及的计算机可读存储介质的框架示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本发明所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装 置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参见图1所示的本发明一实施例的样本分析仪100,以及图2和图3所示的样本分析仪100的外观图和部分内部结构示意图。样本分析仪100包括运送装置10、采样装置20以及控制装置30。控制装置30分别与运送装置10和采样装置20电性连接,控制装置30用于控制运送装置10和采样装置20的配合运动以实现采样操作。具体的,控制装置30控制运送装置10沿X1方向运送样本架300,并使得样本架300上放置的样本容器200(参见图6)被送入样本分析仪100的采样位上。样本容器200内装载有待测样本。然后,控制装置30还控制采样装置20对位于采样位上的样本容器200进行采样。在本发明实施例中,样本分析仪100例如为用于获取血常规参数的血液分析仪。在其他实施例中,样本分析仪100也可以为特定蛋白分析仪,例如CRP分析仪或SAA分析仪,也可以是推片染色机(也称为血涂片制备装置)。
如图4所示,运送装置10包括样本架支撑部件11、样本架送入装置12、样本架横向运送装置13和样本架送出装置14。样本架支撑部件11包括可放置若干固定有盛放分析前样本的样本容器200的样本架300的分析前样本架存放区111、可放置若干固定有盛放分析后样本的样本容器200的样本架300的分析后样本架存放区112以及位于分析前样本架存放区111和分析后样本架存放区112之间的样本分析区113。在分析前样本架存放区111靠近样本分析区113的一侧设有样本架送入转向区111a,在分析后样本架存放区112靠近样本分析区113的一侧设有样本架送出转向区112a。样本架送入装置12可以沿Y2方向将样本架300运送至样本架送入转向区111a,样本架横向运送装置13可以沿X1方向在样本分析区113上运送样本架300,样本架送出装置14可以沿 Y1方向将样本架300从样本架送出转向区112a运出。
参见图5,采样装置20包括采样针21和用于驱动采样针21下移的电机22。控制装置30通过控制电机22来驱动采样针21朝向置于采样位上的样本容器200下移,并伸入样本容器200中进行采样操作。本发明实施例提供的样本分析仪100的控制装置30在控制电机22工作的过程中使电机22以至少两种不同的驱动电流运转。
请参见图6,当采样针21处于初始位置,如图6中A位置或更高的位置时,控制装置30开始控制电机22以第一驱动电流工作并驱动采样针21下移至预定高度,如图6中的B位置。可以看到,样本容器200包括具有用于装载待测样本的容腔230的管体210和用于密封容腔230的管帽220。管帽220设置于管体210的顶部靠近采样针21的位置。若采样针21要伸入管体210的内腔中进行采样操作,需要先刺破管帽220之后才能继续下移。而刺破管帽220所需的驱动动力较大,因此需要使得电机22以较大的第一驱动电流工作,使得采样针21以足够的力刺破管帽220。同时,对于采样针21所下移的预定高度的设置,需要保证采样针21的针头完全穿过管帽220,且采样针21的针头还未接触到样本容器200的容腔底部240,以便于后续采样针21在电机22的驱动下继续下移。
当采样针21下移至预定高度之后,通过控制装置30对电机22的控制,可以使得电机22以小于第一驱动电流的第二驱动电流继续驱动采样针21下移至样本容器200的容腔底部240附近,如图6中的C位置或D位置,以采集待测样本。为了保证采样针21能有效采集到待测样本并且尽可能完全吸取样本容器200中的待测样本,需要控制采样针21下移至靠近或接触到样本容器200的容腔底部240的位置,保证采样针21的针头可靠地吸取样本容器200中的待测样本。
而鉴于控制装置30的控制精度,或电机22对采样针21的驱动精度影响,电机22在驱动采样针21下移至靠近样本容器200的容腔底部240时,采样针21可能与样本容器200的容腔底部240发生接触(图6中D位置);或电机22还可以直接驱动采样针21下移至与样本容器200的容腔底部240发生接触(图6中C位置),然后再进行采样操作。此时,因为电机22的工作电流为 相较于第一驱动电流更小的第二驱动电流,因此采样针21在与样本容器200的容腔底部240发生接触时,对样本容器200所形成的冲击会低于电机22以第一驱动电流驱动采样针21下移至与样本容器200的容腔底部240接触所形成的冲击。在一些实施例中,第二驱动电流可以明显小于第一驱动电流,这样可以使得电机22以第二驱动电流驱动采样针21与样本容器200的容腔底部240接触时,采样针21对样本容器200形成的冲击力明显减小。
由此,本发明样本分析仪100通过控制装置30对电机22的控制,能够使电机22先以较大的第一驱动电流工作,将采样针21驱动下移至样本容器200的容腔230的内部,保证采样针21刺破管帽220;随后使电机22以较小的第二驱动电流工作,使得采样针21继续下移至样本容器200的容腔底部240,在有效完成采样操作的同时减小了采样针21对样本容器200的容腔底部240形成的冲击,从而降低甚至直接避免了采样针21对样本容器200可能造成的损坏,或采样针21自身可能受到的损坏。
在一些实施例中,如图1所示,样本分析仪100还可以包括样本制备装置40和检测装置50。样本制备装置40用于为采样装置20所采集的待测样本和处理试剂提供反应场所,以制备成待测样本液。检测装置50用于对待测样本液进行检测。控制装置30还分别与样本制备装置40和检测装置50电性连接以控制,以完成样本分析仪100从运送样本至采集样本、制作样本液并最后检测样本液的全部操作过程。
可以理解的,当样本容器200的顶部开口处设有密封用的管帽220时,电机22的第一驱动电流需要针对管帽220做匹配设计,即保证电机22以第一驱动电流驱动采样针21在下移至预定高度的过程中,采样针21能刺破管帽220并伸入样本容器220内。具体而言,第一驱动电流的设置还需要同时考虑管帽220的材质以及采样针21的材质,进而保证电机22以第一驱动电流工作时,采样针21能顺利刺破管帽220并伸入样本容器200的容腔230中。例如,当样本架上的不同样本容器200上密封用的管帽220材质不同时,以硬度最高的管帽220的材质作为参考以设计第一驱动电流的数值。在一些实施例中,可以在管帽220上设置便于采样针穿刺的穿刺区,以减小第一驱动电流。
另一方面,第二驱动电流也需要对样本容器200的管体210的材质做匹配 设计,以保证电机22在以第二驱动电流驱动采样针21下移至样本容器200的容腔底部240时,不会刺破样本容器200。具体而言,第二驱动电流的设置宜同时考虑样本容器200的材质以及采样针21的材质,进而保证电机22以第二驱动电流工作时,采样针21不会刺破样本容器200的容腔底部240。例如,当样本架上的不同样本容器200的管体210材质不同时,以硬度最低的管体210的材质作为参考以设计第二驱动电流的数值。
在一些实施例中,这样设置预定高度,使得采样针21的针头与位于采样位的样本容器200的容腔底部240的距离为该样本容器200的容腔高度的至少1/3。即,电机22以第一驱动电流工作时,驱动采样针21下移直至采样针21的针头与样本容器200的容腔底部240的距离为样本容器200的容腔高度的至少1/3。这样的设置可以使得电机22在后续以第二驱动电流工作并驱动采样针21下移的过程中,采样针21能得到足够的缓冲距离以便控制。
在一些实施例中,样本分析仪100进一步包括与控制装置30电连接的参数设置装置(未示出),用于设置第一驱动电流、第二驱动电流和预定高度中的至少一个参数。参数设置装置例如设置在样本分析仪100的显示界面上。用户能够根据其所使用的样本容器的容腔高度和材质等,自行设置匹配的第一驱动电流、第二驱动电流和预定高度的大小。
在一些实施例中,控制装置30配置用于在控制电机22以第二驱动电流工作时,监测电机22是否发生堵转,以判断采样针21是否下移至与所述样本容器200的容腔底部240接触。当判断采样针21与所述样本容器200的容腔底部240接触时,使电机22停止工作,从而进一步降低采样针21刺破样本容器的容腔底部或被损坏的风险。这些实施例尤其是适合于样本架300上混合放置不同样本容器的情况。例如,在图6中,样本容器200可以包括常量样本容器201和微量样本容器202,对应装载不同量的常量样本和微量样本,即常量样本容器201能够比微量样本容器202装载更大量的样本。以血样本为例,通常对成年患者适用采集静脉血(即常量样本),而对于婴幼儿、儿童或重症患者有时难以通过静脉方式采血,这种情况下往往需要采集末梢血(即微量样本)。常量样本的采血量较多(≥1mL),微量样本的采血量较少(大部分情况≤100μL)。介于常量样本(静脉血)和微量样本(末梢血)的血量差异,用于装载常量样 本的常量样本容器201与用于装载微量样本的微量样本容器202也不相同。因此,微量样本容器202的容腔高度比常量样本容器201的容腔高度更小,常量样本容器201通常直接放置在样本架300上,而微量样本容器202通常通过在微量样本容器202的底部设置的支撑件(该支撑件与微量样本容器构成为一体或分开构成)来放置在样本架300上,从而当一个样本架上同时装载有微量样本容器202和常量样本容器201时,微量样本容器202的容腔底部240比常量样本容器201的容腔底部240距离样本架底部更远。也就是说,常量样本容器201的容腔高度通常较长且设置有管帽220,当采样针21下移至常量样本容器201的容腔底部进行采样时,采样针21处于靠近常量样本容器201的容腔底部位置;而微量样本容器202的容腔高度通常较短,可能没有设置管帽220,而且所容纳的样本少,为尽可能吸取微量样本容器202中的样本,当采样针21下移至微量样本容器202的容腔底部进行采样时,采样针21几乎与微量样本容器202的容腔底部接触。
对于处于样本架300上的常量样本容器201而言,电机22在以第一驱动电流驱动采样针21下移至第一预定高度(B)时,可以保证采样针21顺利刺破管帽220;然后,电机22再以第二驱动电流驱动采样针21下移时,使采样针下移到针头靠近但不接触常量样本容器201的容腔底部的第二预定高度(D)。而对于处于样本架300上的微量样本容器202而言,电机在以第一驱动电流驱动采样针21下移至第一预定高度时,无论微量样本容器202是否设置了管帽220,都不会影响采样针21顺利下移至该预定高度;然后,电机22再以第二驱动电流驱动采样针21下移,由于常量样本容器201和微量样本容器202放置在同一样本架300上时微量样本容器202的容腔底部比常量样本容器201的容腔底部更高,当控制电机22以同样的第二预定高度(D)为目标驱动采样针21下移时,采样针21在下移至第二预定高度之前就与微量样本容器202的容腔底部发生接触,此时控制装置30监测到电机22发生了堵转,进而控制电机22停止驱动采样针,避免采样针或微量样本容器202被损坏。
也即,本发明实施例提供的样本分析仪100通过使电机22先后以不同的电流工作以驱动采样针移动并同时检测电机是否发生堵转,可以针对不同类型的样本容器采用相同的采样针移动控制方式,不需要事先获取样本容器的类型, 甚至能够判断出样本容器的类型,以便控制采样针的吸样量。
例如,控制装置30始终以与常量样本容器201对应的第二预定高度为目标控制电机22(以第二驱动电流工作)驱动采样针21下移,若采样针21下移至第二预定高度之前,控制装置30监测到电机发生了堵转,则使电机停止工作,此时表明当前样本容器为微量样本容器,然后控制装置30控制采样针吸取第一量的样本,可选地控制样本制备装置40制备第一稀释度的待测样本液;若电机20驱动采样针21顺利下移至第二预定高度后停止,控制装置30没有监测到电机发生堵转,此时表明当前样本容器为常量样本容器,然后控制装置30控制采样针吸取大于第一量的第二量的样本,可选地控制样本制备装置40制备小于第一稀释度的第二稀释度的待测样本液。
在一些实施例中,电机20为步进电机。若当前采样的样本容器为微量样本容器,当采样针21的针头触及样本容器的容腔底部时,步进电机将发生失步,使得采样针21的针头始终停留在位置C;若当前采样的样本容器为常量容器,则采样针21的针头最终将下降到位置D,这样能够使得采样针的下降高度同时满足吸移微量样本容器91和常量样本容器90中样本的要求。
在一些实施例中,在电机20的转轴上安装编码器,通过编码器的输出信号的变化(频率、电压、电流等变化),判断是否发生堵转。该编码器可以是光电编码器或磁编码器。
在一些实施例中,控制装置30包括具有电机堵转检测功能的驱动芯片31。驱动芯片31被配置用于控制电机22的动作,并在控制电机22以第二驱动电流工作时监测电机22是否发生堵转。驱动芯片31进一步用于在判断到电机22发生堵转时控制电机22停止工作。
例如参见图7,电机22可以采用步进电机,此时电机22包含定子221和转子222。定子221上绕有线圈,转子222上固设有硅钢片。驱动芯片31通过控制定子221中线圈的电流大小和方向进而产生交变磁场,该磁场与转子222的硅钢片作用产生旋转磁力从而驱动转子222转动。转子222在转动的同时,会在定子221的线圈周边产生交变的磁场,该交变磁场作用于定子221的线圈感应出电场,该电场被定义为反生电动势。反生电动势与定子221的线圈电感相关,同时也与转子222的硅钢片产生的磁场大小以及转子222的转速 相关。而对于制作为成品的电机22,其定子221的线圈电感和转子222的硅钢片已经确定,反生电动势的大小仅与转子222的转速正相关。
参见图8,当电机转速越高,定子221的线圈感应到的反生电动势越大。因此,驱动芯片31可以通过检测电机22的转速或反生电动势来判断电机22是否发生堵转。可以理解的,当电机22以第二驱动电流工作并驱动采样针21下移且未与样本容器200的容腔底部发生接触时,定义电机22的转子221具有第一转速M1,此时电机22的定子221的线圈会感应出第一反生电动势E1。驱动芯片31通过持续捕获反生电动势的变化可以检测到电机22的工作状态,驱动芯片31还可以通过持续检测电机22的转速来检测电机22的工作状态。
当采样针21的针头触碰到样本容器200的容腔底部时,因为采样针21无法穿透样本容器200,电机22将发生堵转。电机22的转速将由第一转速M1降低至0,或趋近于0的数值。此时驱动芯片31检测到电机22的转速变化,在转速由第一转速M1降低至0或趋近于0时,可以判断到电机22发生了堵转,并依此停止电机22的工作,避免电机22持续驱动采样针21下移并对样本容器200的容腔底部形成冲击,同时缩短了电机22发生堵转后所产生的噪音时长。相应的,在电机22转速由第一转速M1降低至0或趋近于0时,因为定子221的线圈电感和转子222的硅钢片状态已确定,定子221的线圈产生的第一反生电动势E1与电机22的转速正相关,定子221的线圈产生的反生电动势也会从第一反生电动势E1随之降低至0或趋近于0的数值。此时驱动芯片31通过检测电机22反生电动势的变化,同样可以判断到电机22发生了堵转,并依此停止电机22的工作。
在一种实施例中,还可以通过在驱动芯片31内设置低于第一转速M1的第二转速M2,或低于第一反生电动势E1的第二反生电动势E2,来提前停止电机22的工作,并减少电机22发生堵转时对样本容器200底部所产生的冲击。具体的,第二转速M2和第二反生电动势E2可以视为驱动芯片31停止电机22工作的临界阈值。当电机22驱动采样针21下移时,需要采样针21开始触及样本容器200的容腔底部时,电机22的转速才会由第一转速M1开始降低,并伴随电机22定子221的线圈产生的反生电动势由第一反生电动势E1开始降低。因此驱动芯片31实际不需要检测到电机22的转速或反生电动势降至0 或者趋近于0,才判断到电机22发生了堵转,而只要通过检测到电机22的转速下降至预设的第二转速M2,或电机22的反生电动势下降至预设的第二反生电动势E2后,即判断到电机22发生了堵转。驱动芯片31也因为提前停止了电机22的工作,进一步减少了电机22驱动采样针21对样本容器200底部所产生的冲击。
在一种实施例中,为了进一步减少电机22驱动采样针21下移至与样本容器200的容腔底部接触后形成堵转的时长,可以设置第二转速M2的数值不大于第一转速M1的数值的一半,或设置第二反生电动势E2的数值不大于第一反生电动势E1的数值的一半。这样设置的驱动芯片31相较于在检测到电机22的转速降至0或趋近于0,或检测到电机22的反生电动势降至0或趋近于0的时候才停止电机22的工作,可以进一步降低采样针21对样本容器200内腔底部的损伤。
在一种实施例中,驱动芯片31的型号可以包括TRINAMIC公司的带有自动检测电机堵转功能的TMC5130、TMC5160或TMC5161。这几种型号的电机驱动芯片在驱动电机22旋转时,可以根据电机22的线圈电阻、电感参数计算出电机22在不同转速下产生的反生电动势大小,即能够检测电机22在旋转时驱动回路所产生的反生电动势,因而适用于本发明样本分析仪100中。
请参见图9所示的本发明第二方面所提供的另一种样本分析仪100a,包括运送装置10a、采样装置20a以及控制装置30a。运送装置10a和采样装置20a的实施例可参考上述运送装置10和采样装置20的实施例。控制装置30a分别与运送装置10a和采样装置20a电连接并配置用于控制其动作。进一步的,控制装置30a还包括具有电机堵转检测功能的驱动芯片31a,驱动芯片31a被配置用于控制电机22a驱动采样针21a移动并且在控制电机22a时监测电机22a是否发生堵转。
可以理解的,本发明提供的另一种样本分析仪100a,因为在控制装置30a中设置了具有检测电机22a是否发生堵转的功能的驱动芯片31a,而达到了在电机22a发生堵转时及时停止电机22a工作的效果。因此本发明样本分析仪100a也能够减小采样针21a对样本容器形成的冲击,从而保护样本容器以及采样针21a。
图10示意了本发明第三方面提供的另一种样本分析仪100b,包括有运送装置10b、采用装置20b以及控制装置30b。运送装置10b和采样装置20b的实施例可同样参考上述运送装置10和采样装置20的实施例,其中采样装置20b同样具有采样针21b和电机22b。控制装置30b在分别与运送装置10b和采样装置20b电连接并配置用于控制其动作时,控制运送装置10b将样本容器200运送至采样位后,控制电机22b驱动采样针21b以预定下移高度为目标下移并伸入样本容器200内。同时,控制装置30b还监测电机22b在将采样针21b驱动至预定下移高度时是否发生堵转,即判断采样针21b在预定下移高度位置是否与样本容器200的底部发生接触。
后续的,当电机22b发生堵转时,控制装置30b控制电机22b停止工作,并控制采样针21b从样本容器200中吸取第一量的样本;而当电机22b没有发生堵转时,控制装置30b控制电机22b停止工作,并控制采样针21b从样本容器200中吸取第二量的样本,且第二量不同于第一量。例如,相比于常量样本容器放置在样本架上的情况,当微量样本容器放置在样本架上时,微量样本容腔底部更高,通常会发生堵转的情况,因此,在该情况下,第二量大于第一量。
具体的,在本实施例样本分析仪100b中,同样通过电机22b是否发生堵转来控制采样针21b吸取的样本容量。结合图6的示意可以看出,预定下移高度可以配合常量样本容器201的底部(D)位置来设置。电机22b不需要事先获取样本容器200的类型,控制装置30b直接先控制电机22b工作,驱动采样针21b以预定下移高度为目标下移。此时如果样本容器200为微量样本容器202,则采样针21b会在下移至预定下移高度之前先接触到微量样本容器202的底部并使得电机22b发生堵转。控制装置30b通过判断到电机22b在将采样针21b驱动至预定下移高度之前发生了堵转,来判断当前进行采样的样本为微量样本,随即控制采样针21b从微量样本容器202中吸取第一量的样本。反之,若采样针21b在预定下移高度位置的过程中电机22b没有发生堵转,则采样针21b会在电机22b的驱动下直接下移至预定下移高度处,即采样针21b下移至图6示意中的D位置。可以理解的,此时控制装置30b通过检测电机22b在驱动采样针21b下移至预定下移高度的过程中没有发生堵转现象,可以判断到当前进行采样的样本为常量样本,随即控制采样针21b从常量样本容器201 中吸取第二量的样本。而因为常量样本的样本量大于微量样本的样本量,因此第二量也需要大于第一量。
利用控制装置30b对电机22b的堵转监测功能,本发明第三方面提供的样本分析仪100b不需要事先获取样本容器的类型,仅通过驱动采样针21b下移至预定下移高度的过程中电机22b是否发生堵转,来对样本容器200的类型进行实时判断,并对应控制采样针21b的样本吸取量。
可以理解的,在本实施例样本分析仪100b中,控制装置30b也可以包括具有电机堵转检测功能的驱动芯片31b,驱动芯片31b同样被配置用于控制电机22b的动作并监测电机22b是否发生堵转。
在一些实施例中,上述的驱动芯片31a和/或驱动芯片31b的型号可以包括TRINAMIC公司的TMC5130、TMC5160或TMC5161。
对于本发明第三方面提供的样本分析仪100b,其还可以包括用于制备待测样本液的样本制备装置40b,且样本制备装置40b同样与控制装置30b电连接。控制装置30b在控制采样针21b吸取了第一量或第二量的样本之后,还进一步控制样本制备装置40b在制备待测样本液的过程中对相应样本所加入的用于混合的试剂的容量。
具体的,控制装置30b在判断到电机22b于采样针21b运动至预定下移高度处发生堵转时,控制装置30b后续控制样本制备装置40b按照第一稀释倍率来稀释吸取到的第一量的样本;控制装置30b在判断电机22b于采样针21b运动至预定下移高度的过程中没有发生堵转时,控制样本制备装置40b按照不同于、例如低于第一稀释倍率的第二稀释倍率稀释吸取到的第二量的样本。
例如,样本制备装置40b在制备待测样本液的过程中,通过采样针21b提取到的第一量的微量样本通常为50μL左右,而在提取常量样本时第二量通常为75μL左右。且对第一量的微量样本进行稀释混合时的稀释度通常为94倍左右(即第一稀释倍率),对第二量的常量样本进行稀释混合时的稀释度通常为71倍左右(即第二稀释倍率)。后续对微量样本制备的待测样本液(约71μL容量)的测定时长约为8秒,而对常量样本制备的待测样本液(约40μL容量)的测定时长约为4.5秒。上述的区别设置分别用于保证微量样本和常量样本的检测精度,并提高检测效率。
因此,本发明样本分析仪100b在利用控制装置30b具备检测电机22b堵转的功能前提下,不需要事先获取样本容器的类型,仅通过驱动采样针21b下移至预定下移高度的过程中检测电机22b是否发生堵转,即可对样本容器200的类型进行实时判断,并对应控制采样针21b的样本吸取量以及稀释倍率等后续检测步骤的准确实施,提高了检测效率。
可以理解的,本发明样本分析仪100a和样本分析仪100b的其余实施例可以参见本发明第一方面介绍的样本分析仪100的各个实施例。
图11示意了本发明第四方面提供的一种样本分析方法,包括如下步骤:
S100、控制运送装置10将装载有待测样本的样本容器200运送至采样位;
S200、控制电机22以第一驱动电流工作,以驱动采样针21下移伸入位于采样位的样本容器200内直至该样本容器200的容腔底部上方的第一预定高度;
S300、在采样针21下移至所述第一预定高度后,再控制电机22以小于第一驱动电流的第二驱动电流工作,以驱动采样针21继续下移直至样本容器200的容腔底部,以采集待测样本。
具体的,可以参见上述样本分析仪100的实施例描述。本发明样本分析方法同样应用于样本分析仪100中采样装置20对样本容器200中的待测样本进行采样的环节。具体的,在运送装置10将样本容器200运送至采样位之后,采样装置20中的电机22先以第一驱动电流工作,保证采样针21在伸入样本容器200内的第一预定高度(如图6中的B位置)时具备足够大的驱动力,此时无论样本容器200的开口位置是否设置有管帽220,本方法都能使得采样针21顺利下移至该第一预定高度。即,对于没有设置管帽220的样本容器201而言,采样针21的下移动作不受影响;而对于设有管帽220的样本容器202,则因为采样针21具备较大的驱动力驱动,可以保证采样针21刺破管帽220并下移至预定高度。然后,电机22再以小于第一驱动电流的第二驱动电流工作,驱动采样针21继续下移至样本容器200的容腔底部,以采集待测样本。此时因为第二驱动电流小于第二驱动电流,因此采样针21在下移至样本容器200的容腔底部过程中,无论采样针21是否与样本容器200的容腔底部发生接触,都会因为采样针21的驱动力更小,而对样本容器200的容腔底部形成保护。
在一种实施例中,在步骤S200中控制电机22以第一驱动电流工作以及步骤S300中控制电机22以第二驱动电流工作,都可以通过驱动芯片31来实现。
在一些实施例中,如图12所示,样本分析方法进一步包括:
S400,在控制电机22以第二驱动电流工作时,监测电机22是否发生堵转,以判断采样针21是否下移至与样本容器200的容腔底部接触;
S500a,在判断电机22发生堵转时,控制所述电机停止工作(如图6中的C位置)。
在一些实施例中,如图12所示,样本分析方法进一步包括:
S500b,在判断电机22没有发生堵转时,控制电机22驱动采样针21下移直至样本容器容腔底部上方的接近样本容器容腔底部的第二预定高度(如图6中的D位置),所述第一预定高度高于所述第二预定高度。
在一些实施例中,同样如图12所示,样本分析方法进一步包括:
S600a,在判断电机22发生堵转时,控制采样针21从样本容器201中吸取第一量的样本;
S600b,在判断电机22没有发生堵转且采样针21下移至第二预定高度时,控制采样针21从样本容器202中吸取第二量的样本,所述第二量大于所述第一量。
在一种实施例中,通过驱动芯片31监测电机22是否发生堵转以判断采样针21是否下移至接触样本容器22的容腔底部。
进一步的,驱动芯片31对电机22是否发生堵转的检测,还可以通过驱动芯片31监测电机22的转速或反生电动势以监测电机22是否发生堵转。例如,驱动芯片31监测电机22的转速或反生电动势是否达到预设阈值,其中,预设阈值小于电机22以第二驱动电流工作时的转速或反生电动势的数值。
具体的,驱动芯片31对电机22的转速或反生电动势的监测以判断电机22是否发生堵转,可以通过驱动芯片31监测电机22的转速或反生电动势下降至0或趋近于0来实现。
在另一种实施例中,电机22以第二驱动电流工作时的转速或反生电动势具有第一数值,驱动芯片31中还可以预设小于该第一数值的第二数值,并设置驱动芯片31在监测到电机22的转速或反生电动势下降至该第二数值时,判 断电机22已经发生堵转并停止电机22的工作。需要提出的是,本方法中对“第一数值”和“第二数值”的定义,可以参见上述关于样本分析仪100的描述,即电机22在以第二驱动电流工作时具有第一转速M1,而当采样针21与样本容器200的底部接触使得电机22减速至驱动芯片31内预设的第二转速M2时,即可判断电机22发生堵转。相应的,电机22在以第二驱动电流工作时具有第一反生电动势E1,而当电机22减速至驱动芯片31内预设的第二电动势E2之后,驱动芯片31判断电机22发生堵转并停止电机22的工作。可以理解的,当设置第二转速M2不小于第一转速M1的一半,或设置第二反生电动势E2不小于第一反生电动势E1的一半时,驱动芯片31还可以在判断出电机22发生堵转时进一步提前控制电机22停止工作,缩短电机22发生堵转的时间,保护采样针21和样本容器200少受冲击。
在一些实施例中,对于样本容器200的开口处设有密封用的管帽220的情况,步骤S200包括:
控制电机22以驱动采样针21下移至预定高度的过程中能刺破管帽220的第一驱动电流工作;以及
控制电机驱动采样针21下移至使得采样针21的针头距离样本容器200的容腔底部的距离为样本容器的容腔高度的至少1/3。
具体的,第一驱动电流的设置,需要对应管帽220和采样针21的材质来确定。即保证采样针21能在电机22以第一驱动电流工作的时候,具备足够的驱动力以刺破管帽220。另一方面,对于采样针21移动至预定高度的设置,也需要保证电机22在以第二驱动电流继续驱动采样针21下移的过程中,采样针21能得到足够的减速距离,并使得采样针21以匹配第二驱动电流的驱动力下移至样本容器200的底部,保护样本容器200和采样针21免受损坏。
在一种实施例中,步骤S300包括:
控制电机22以不会刺破样本容器200的容腔底部的第二驱动电流工作,以驱动采样针21继续下移直至样本容器200的容腔底部采集待测样本。
具体的,第二驱动电流的设置,也需要对应样本容器200的管体210和采样针21的材质来确定。即保证采样针21能在电机22以第二驱动电流工作的时候,其驱动力足够小,并避免采样针21对样本容器200的容腔底部形成较 大冲击。
在一种实施例中,如图13所示,在步骤S300之后,样本分析方法还包括:
S700、使从采样装置20所采集的待测样本和处理试剂反应,以制备待测样本液;
S800、对待测样本液进行检测。
具体的,在本发明方法有效的从样本容器200中采集到待测样本之后,还可以继续对采集到的待测样本进行处理,使待测样本和处理试剂(例如稀释液、荧光染料等)反应,以制备待测样本液,并对制备完成的待测样本液中的细胞进行检测,完成样本分析从运送样本至采集样本、制作样本液并最后检测样本液的全部过程。
图14示意了本发明第五方面提供的样本分析方法,具体步骤包括:
S100b、控制运送装置10b将装载有待测样本的样本容器200运送至采样位;
S200b、以预定下移高度为目标,控制电机22b驱动采样针21b下移伸入位于采样位的样本容器200内;
S300b、在控制电机22b使采样针21b以预定下移高度为目标下移时,监测电机22b是否发生堵转,以判断采样针21b在下移至预定下移高度之前是否与样本容器200的容腔底部接触;
S401b、在判断电机22b发生堵转时,控制电机22b停止工作以及控制采样针21b从样本容器200中吸取第一量的样本;
S402b、在判断电机22b没有发生堵转且采样针21b下移至预定下移高度时,控制电机22b停止工作以及控制采样针21b从样本容器200中吸取第二量的样本,且第二量不同于第一量。
具体的,图14的样本分析方法可以对应到上述本发明第三方面的样本分析仪100b的实施例展开。因为控制装置30b具备了检测电机22b堵转的功能,本方法可以在采样针21b以预定下移高度为目标下移的过程中,通过检测电机22b是否发生堵转,来判断当前处于采样位的样本容器200的类型,并在后续对样本进行吸取的过程中,以及对样本进行处理制备待测样本液的过程中,基于对样本容器200类型的判断,来对应的吸取第一量的样本并基于第一量的样 本制备待测样本液;或对应的吸取第二量的样本并基于第二量的样本制备待测样本液,达到提升样本分析的检测精度和检测效率的效果。
请参见图15,本发明实施例还涉及一种计算机可读存储介质400,包括有处理器401和存储装置402。其中存储装置402存储有可执行指令,并配置为引起处理器401执行可执行指令时,实现上述的样本分析方法。
存储装置402可以包括易失性存储装置(volatile memory),例如随机存取存储装置(random-access memory,RAM);或者非易失性存储装置(non-volatile memory),例如快闪存储装置(flash memory)、固态硬盘(solid-state drive,SSD)等;或者包括上述种类的存储装置的组合。
处理器401可以是中央处理器(central processing unit,CPU)。该处理器301还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在一种实施例中,处理器401调用存储装置402中存储的程序指令,执行以下操作:
控制运送装置10将装载有待测样本的样本容器200运送至采样位;
控制电机22以第一驱动电流工作,以驱动采样针21下移伸入位于采样位的样本容器200内直至该样本容器200的容腔底部上方的预定高度;
在采样针21下移至预定高度后,再控制电机22以小于第一驱动电流的第二驱动电流工作,以驱动采样针21继续下移直至样本容器200的容腔底部采集待测样本。
需要提出的是,本发明实施例提供的样本分析方法和计算机可读存储介质中其他实施例可以参见对上述样本分析仪的各实施例的描述。
以上在说明书、权利要求书以及附图中提及的特征,只要在本发明的范围内是有意义的,均可以任意相互组合,并不构成对该技术方案保护范围的限定。任何在上述实施方式的精神和原则之内所作的修改、等同替换和改进等,均应包含在该技术方案的保护范围之内。

Claims (29)

  1. 一种样本分析仪,其特征在于,包括:
    运送装置,用于将装载有待测样本的样本容器运送至采样位;
    采样装置,包括采样针和用于驱动所述采样针下移至所述样本容器内部采集所装载的待测样本的电机;
    控制装置,与所述运送装置和所述采样装置电连接,并配置用于:
    控制所述运送装置将所述样本容器运送至所述采样位,
    控制所述电机以第一驱动电流工作,以驱动所述采样针下移伸入位于所述采样位的样本容器内直至该样本容器的容腔底部上方的预定高度,
    在所述采样针下移至所述预定高度后,再控制所述电机以小于所述第一驱动电流的第二驱动电流工作,以驱动所述采样针继续下移直至所述样本容器的容腔底部采集待测样本。
  2. 根据权利要求1所述的样本分析仪,其特征在于,所述控制装置配置用于,在控制所述电机以所述第二驱动电流工作时,监测所述电机是否发生堵转,以判断所述采样针是否下移至与所述样本容器的容腔底部接触。
  3. 根据权利要求1或2所述的样本分析仪,其特征在于,所述控制装置包括具有电机堵转检测功能的驱动芯片,所述驱动芯片被配置用于控制所述电机的动作,在控制所述电机以所述第二驱动电流工作时监测所述电机是否发生堵转并且在判断所述电机发生堵转时控制所述电机停止工作。
  4. 根据权利要求3所述的样本分析仪,其特征在于,所述驱动芯片被配置用于根据所述电机的转速或反生电动势判断所述电机是否发生堵转。
  5. 根据权利要求4所述的样本分析仪,其特征在于,所述电机在以所述第二驱动电流工作时的转速或反生电动势具有第一数值,其中,所述驱动芯片被配置用于,在控制所述电机以所述第二驱动电流工作时,若所述电机的转速或反生电动势达到小于第一数值的第二数值,则控制所述电机停止工作。
  6. 根据权利要求5所述的样本分析仪,其特征在于,所述第二数值不大于所述第一数值的一半。
  7. 根据权利要求3至6中任一项所述的样本分析仪,其特征在于,所述驱动芯片的型号包括TRINAMIC公司的TMC5130、TMC5160或TMC5161。
  8. 根据权利要求1至7中任一项所述的样本分析仪,其特征在于,所述样本容器的开口处设有密封用的管帽,所述第一驱动电流被设计使得所述采样针在下移至所述预定高度的过程中能刺破所述管帽并伸入所述样本容器内。
  9. 根据权利要求1至8中任一项所述的样本分析仪,其特征在于,所述预定高度被设计使得所述采样针的针头与位于所述采样位的样本容器的容腔底部的距离为该样本容器的容腔高度的至少1/3。
  10. 根据权利要求1至9中任一项所述的样本分析仪,其特征在于,所述第二驱动电流被设计使得所述采样针在下移至接触所述样本容器的容腔底部时不会刺破所述样本容器的容腔底部。
  11. 根据权利要求1至10中任一项所述的样本分析仪,其特征在于,所述样本分析仪进一步包括:
    样本制备装置,用于从所述采样装置所采集的待测样本和处理试剂制备待测样本液;
    检测装置,用于对所述待测样本液进行检测。
  12. 根据权利要求1至11中任一项所述的样本分析仪,其特征在于,所述样本分析仪进一步包括:
    参数设置装置,与所述控制装置电连接并且用于设置所述第一驱动电流、所述第二驱动电流和所述预定高度中的至少一个参数。
  13. 一种样本分析仪,其特征在于,包括:
    运送装置,用于将装载有待测样本的样本容器运送至采样位;
    采样装置,包括采样针和用于驱动所述采样针下移至所述样本容器内部采集所装载的待测样本的电机;
    控制装置,与所述运送装置和所述采样装置电连接并配置用于控制其动作,所述控制装置包括具有电机堵转检测功能的驱动芯片,所述驱动芯片被配置用于控制所述电机驱动所述采样针移动并且在控制所述电机时监测所述电机是否发生堵转。
  14. 根据权利要求13所述的样本分析仪,其特征在于,所述驱动芯片被 配置用于根据所述电机的转速或反生电动势判断所述电机是否发生堵转。
  15. 根据权利要求13或14所述的样本分析仪,其特征在于,所述驱动芯片的型号包括TRINAMIC公司的TMC5130、TMC5160或TMC5161。
  16. 根据权利要求13至15中任一项所述的样本分析仪,其特征在于,所述样本分析仪进一步包括:
    样本制备装置,用于从所述采样装置所采集的待测样本和处理试剂制备待测样本液;
    检测装置,用于对所述待测样本液进行检测。
  17. 一种样本分析仪,其特征在于,包括:
    运送装置,用于将装载有待测样本的样本容器运送至采样位;
    采样装置,包括采样针和用于驱动所述采样针下移至所述样本容器内部采集所装载的待测样本的电机;
    控制装置,与所述运送装置和所述采样装置电连接并配置用于:
    控制所述运送装置将所述样本容器运送至所述采样位,
    以预定下移高度为目标,控制所述电机驱动所述采样针下移伸入位于所述采样位的样本容器内,
    在控制所述电机使所述采样针以所述预定下移高度为目标下移时,监测所述电机是否发生堵转,以判断所述采样针在下移至所述预定下移高度之前是否与所述样本容器的容腔底部接触;
    在判断所述电机发生堵转时,控制所述电机停止工作以及控制所述采样针从所述样本容器中吸取第一量的样本;
    在判断所述电机没有发生堵转且所述采样针下移至所述预定下移高度时,控制所述电机停止工作以及控制所述采样针从所述样本容器中吸取第二量的样本,所述第二量不同于所述第一量。
  18. 根据权利要求17所述的样本分析仪,其特征在于,所述第二量大于所述第一量。
  19. 根据权利要求17或18所述的样本分析仪,其特征在于,所述控制装置包括具有电机堵转检测功能的驱动芯片,所述驱动芯片被配置用于控制所述电机的动作并监测所述电机是否发生堵转。
  20. 根据权利要求17至19中任一项所述的样本分析仪,其特征在于,所述驱动芯片的型号包括TRINAMIC公司的TMC5130、TMC5160或TMC5161。
  21. 根据权利要求17至20中任一项所述的样本分析仪,其特征在于,所述样本分析仪还包括用于通过将试剂与样本容器中的样本混合来制备待测样本液的样本制备装置,所述控制装置还配置用于:
    在判断所述电机发生堵转时,控制所述样本制备装置按照第一稀释倍率稀释样本;
    在判断所述电机没有发生堵转且所述采样针下移至所述预定下移高度时,控制所述样本制备装置按照不同于第一稀释倍率的第二稀释倍率稀释样本。
  22. 一种样本分析方法,特征在于,包括如下步骤:
    控制运送装置将装载有待测样本的样本容器运送至采样位;
    控制电机以第一驱动电流工作,以驱动采样针下移伸入位于所述采样位的样本容器内直至该样本容器的容腔底部上方的第一预定高度;
    在所述采样针下移至所述预定高度后,再控制所述电机以小于所述第一驱动电流的第二驱动电流工作,以驱动所述采样针继续下移直至所述样本容器的容腔底部采集待测样本。
  23. 根据权利要求22所述的样本分析方法,其特征在于,进一步包括:
    在控制所述电机以所述第二驱动电流工作时,监测所述电机是否发生堵转,以判断所述采样针是否下移至与所述样本容器的容腔底部接触;
    在判断所述电机发生堵转时,控制所述电机停止工作。
  24. 根据权利要求23所述的样本分析方法,其特征在于,进一步包括:
    在判断所述电机没有发生堵转时,控制所述电机驱动所述采样针下移直至接近所述样本容器的容腔底部的第二预定高度,所述第一预定高度高于所述第二预定高度。
  25. 根据权利要求22或23所述的样本分析方法,其特征在于,监测所述电机是否发生堵转的步骤包括:
    监测所述电机的转速或反生电动势是否达到预设阈值,其中,所述预设阈值小于所述电机以第二驱动电流工作时的转速或反生电动势的数值。
  26. 根据权利要求22至25中任一项所述的样本分析方法,其特征在于, 所述样本容器的开口处设有密封用的管帽,所述控制电机以第一驱动电流工作包括:控制所述电机以驱动所述采样针下移至所述预定高度的过程中能刺破所述管帽的所述第一驱动电流工作。
  27. 根据权利要求24所述的样本分析方法,其特征在于,进一步包括:
    在判断所述电机发生堵转时,控制所述采样针从所述样本容器中吸取第一量的样本;
    在判断所述电机没有发生堵转且所述采样针下移至所述第二预定高度时,控制所述采样针从所述样本容器中吸取第二量的样本,所述第二量大于所述第一量。
  28. 根据权利要求22至27中任一项所述的样本分析方法,其特征在于,进一步包括:
    使所述采样针所采集的待测样本与处理试剂反应,以制备待测样本液;
    对所述待测样本液进行检测。
  29. 一种样本分析方法,其特征在于,包括:
    控制运送装置将装载有待测样本的样本容器运送至采样位;
    以预定下移高度为目标,控制电机驱动采样针下移伸入位于所述采样位的样本容器内;
    在控制所述电机使所述采样针以所述预定下移高度为目标下移时,监测所述电机是否发生堵转,以判断所述采样针在下移至所述预定下移高度之前是否与所述样本容器的容腔底部接触;
    在判断所述电机发生堵转时,控制所述电机停止工作以及控制所述采样针从所述样本容器中吸取第一量的样本;
    在判断所述电机没有发生堵转且所述采样针下移至所述预定下移高度时,控制所述电机停止工作以及控制所述采样针从所述样本容器中吸取第二量的样本,所述第二量不同于所述第一量。
PCT/CN2020/089005 2020-05-07 2020-05-07 样本分析仪、样本分析方法及计算机可读存储介质 WO2021223168A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/089005 WO2021223168A1 (zh) 2020-05-07 2020-05-07 样本分析仪、样本分析方法及计算机可读存储介质
CN202080099774.8A CN115427817A (zh) 2020-05-07 2020-05-07 样本分析仪、样本分析方法及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089005 WO2021223168A1 (zh) 2020-05-07 2020-05-07 样本分析仪、样本分析方法及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021223168A1 true WO2021223168A1 (zh) 2021-11-11

Family

ID=78467682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089005 WO2021223168A1 (zh) 2020-05-07 2020-05-07 样本分析仪、样本分析方法及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN115427817A (zh)
WO (1) WO2021223168A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713974A (en) * 1986-04-18 1987-12-22 Varian Associates, Inc./Scientific Systems, Inc. Autosampler
CN101611322A (zh) * 2006-04-11 2009-12-23 德赛诊断系统有限公司 定量与混合的方法
CN203502424U (zh) * 2013-10-15 2014-03-26 深圳德夏科技发展有限公司 一种加样针保护装置
CN105606837A (zh) * 2015-12-17 2016-05-25 苏州长光华医生物医学工程有限公司 一种自适应液面探测采样系统及其控制方法
WO2017008249A1 (zh) * 2015-07-14 2017-01-19 深圳迈瑞生物医疗电子股份有限公司 采样机构及其空吸检测方法、样本分析仪
CN205982303U (zh) * 2016-08-23 2017-02-22 厦门市波生生物技术有限公司 防碰撞试剂加注装置
CN107290561A (zh) * 2017-07-19 2017-10-24 上海惠中医疗科技有限公司 取样针和包括该取样针的全自动化学发光免疫仪
WO2020056668A1 (zh) * 2018-09-20 2020-03-26 深圳迈瑞生物医疗电子股份有限公司 样本分析仪、采样装置及采样方法
CN210401445U (zh) * 2019-06-18 2020-04-24 深圳迈瑞生物医疗电子股份有限公司 一种样本分析仪

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713974A (en) * 1986-04-18 1987-12-22 Varian Associates, Inc./Scientific Systems, Inc. Autosampler
CN101611322A (zh) * 2006-04-11 2009-12-23 德赛诊断系统有限公司 定量与混合的方法
CN203502424U (zh) * 2013-10-15 2014-03-26 深圳德夏科技发展有限公司 一种加样针保护装置
WO2017008249A1 (zh) * 2015-07-14 2017-01-19 深圳迈瑞生物医疗电子股份有限公司 采样机构及其空吸检测方法、样本分析仪
CN105606837A (zh) * 2015-12-17 2016-05-25 苏州长光华医生物医学工程有限公司 一种自适应液面探测采样系统及其控制方法
CN205982303U (zh) * 2016-08-23 2017-02-22 厦门市波生生物技术有限公司 防碰撞试剂加注装置
CN107290561A (zh) * 2017-07-19 2017-10-24 上海惠中医疗科技有限公司 取样针和包括该取样针的全自动化学发光免疫仪
WO2020056668A1 (zh) * 2018-09-20 2020-03-26 深圳迈瑞生物医疗电子股份有限公司 样本分析仪、采样装置及采样方法
CN210401445U (zh) * 2019-06-18 2020-04-24 深圳迈瑞生物医疗电子股份有限公司 一种样本分析仪

Also Published As

Publication number Publication date
CN115427817A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
CN110398597B (zh) 全自动进样血细胞分析测量方法及装置、试管类型的确定方法
WO2017128806A1 (zh) 全自动荧光定量免疫分析仪及检测方法
CN103884850B (zh) 样本分析装置
JP5686744B2 (ja) 自動分析装置
JP4538478B2 (ja) 自動分析装置
US11754580B2 (en) Sample measurement method and sample measurement device
US9671419B2 (en) Liquid collection device and automated analyzer provided therewith
CN103123317B (zh) 血细胞计数装置及血细胞计数方法
JP4755927B2 (ja) 血液試料中の血球測定方法及び装置
JP2023011906A (ja) 検体測定装置及び検体測定方法
WO2020037671A1 (zh) 血样分析仪、血样分析方法及计算机存储介质
JP2018185145A (ja) 自動分析装置および分注方法
JP5941692B2 (ja) 自動分析装置
WO2021223168A1 (zh) 样本分析仪、样本分析方法及计算机可读存储介质
JP3907819B2 (ja) 液面検知装置
JPH11271318A (ja) 分注装置及びこの分注装置を構成要素とする分析装置
JP5163903B2 (ja) 分注方法
WO2022000511A1 (zh) 样本分析仪以及样本分析方法
JP6463997B2 (ja) 自動分析装置
US11846632B2 (en) Sample measurement device and sample measurement method
US20130121882A1 (en) Dispensing device and nucleic acid analyzer
CN113624983A (zh) 样本分析仪、样本分析方法及计算机可读存储介质
JP2000171470A (ja) 自動分析装置
JP2013148360A (ja) 自動分析装置、分注機構および分注方法
JP2000088862A (ja) 液体吸引装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934448

Country of ref document: EP

Kind code of ref document: A1