WO2021221238A1 - Apparatus and method for manufacturing high temperature superconductor - Google Patents

Apparatus and method for manufacturing high temperature superconductor Download PDF

Info

Publication number
WO2021221238A1
WO2021221238A1 PCT/KR2020/011998 KR2020011998W WO2021221238A1 WO 2021221238 A1 WO2021221238 A1 WO 2021221238A1 KR 2020011998 W KR2020011998 W KR 2020011998W WO 2021221238 A1 WO2021221238 A1 WO 2021221238A1
Authority
WO
WIPO (PCT)
Prior art keywords
deposition
space
substrate
vacuum chamber
chamber
Prior art date
Application number
PCT/KR2020/011998
Other languages
French (fr)
Korean (ko)
Inventor
김호섭
오상수
조정현
하홍수
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority claimed from KR1020200113345A external-priority patent/KR20210133839A/en
Publication of WO2021221238A1 publication Critical patent/WO2021221238A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials

Definitions

  • the present invention relates to an apparatus and method for manufacturing a high-temperature superconducting wire for manufacturing a high-temperature superconducting wire by depositing a material layer by at least one of electron beam evaporation, sputtering, and thermal evaporation while supplying a substrate in a reel-to-reel method.
  • the superconducting phenomenon is a physical phenomenon in which the resistance of a material approaches zero below a critical temperature. It has excellent properties. Such characteristics of the superconducting wire can improve product performance as well as realize miniaturization.
  • superconducting wire rods are used in various industrial fields, such as the development of power devices such as superconducting magnets, superconducting cables, superconducting motors and superconducting generators, as well as medical equipment such as NMR and MRI, and large scientific equipment such as accelerators and nuclear fusion devices. Consistent efforts are being made to do this.
  • the superconducting wire is divided into a low temperature superconductor (LTS) and a high temperature superconductor (HTS) based on a critical temperature.
  • LTS low temperature superconductor
  • HTS high temperature superconductor
  • high-temperature superconducting wire has a critical temperature of 100K (-173°C) compared to low-temperature superconducting wire (LTS) with a critical temperature close to absolute 0K (-273 °C), showing superconducting properties at a relatively high temperature.
  • LTS low-temperature superconducting wire
  • 273 °C absolute 0K
  • PVD physical vapor deposition
  • a metal substrate in the form of a tape used must have biaxial orientation.
  • the two-axis-oriented metal substrate manufacturing method is typically divided into Rolling Assisted Biaxially Textured Substrate (RABiTS) and Ion Beam Assisted Deposition (IBAD) method. do.
  • RABiTS Rolling Assisted Biaxially Textured Substrate
  • IBAD Ion Beam Assisted Deposition
  • a plurality of buffer layers are epitaxially formed along the crystal orientation on the tape-shaped biaxially-oriented metal substrate manufactured by the above method, and a high-temperature superconducting layer is deposited on the buffer layer.
  • the buffer layer is formed by pulsed laser deposition, RF-Sputtering, thermal co-evaporation, metal organic chemical vapor deposition, or metal organic chemical vapor deposition. Organic Deposition) and the like may be deposited.
  • the high-temperature superconducting layer it is deposited by PLD (Pulsed Laserdeposition), RF-Sputtering, Thermal Co-evaporation, MOCVD (Metal Organic Chemical Vapor Deposition), or MOD (Metal Organic Deposition) method, etc., and the upper side of the high-temperature superconducting wire is By further forming a protective layer and a stabilizing layer again, the production of the high-temperature superconducting wire is completed.
  • PLD Pulsed Laserdeposition
  • RF-Sputtering RF-Sputtering
  • Thermal Co-evaporation thermal Co-evaporation
  • MOCVD Metal Organic Chemical Vapor Deposition
  • MOD Metal Organic Deposition
  • Korean Patent Registration No. 1093085 “Method and apparatus for forming a superconducting material on a tape substrate,” a number of vacuum chambers corresponding to each process are arranged in series to communicate with each other, and supply and recovery of the tape substrate at both ends A high-temperature superconducting wire is manufactured by sequentially depositing and heat-treating it through a chamber corresponding to each process, including a reel chamber having a reel for each.
  • Another object of the present invention is to provide an apparatus for manufacturing a high-temperature superconducting wire rod that improves crystal orientation even when a polycrystalline substrate is used so that a high-temperature superconducting layer can be deposited.
  • the apparatus for manufacturing a high-temperature superconducting wire includes a vacuum chamber, a plurality of deposition spaces partitioned by a partition member for each deposition material provided in the vacuum chamber, and all of the plurality of deposition spaces inside the vacuum chamber.
  • a guide drum having a length and having a guide groove formed on an outer surface thereof for guiding the movement of the substrate, and a supply reel provided at one side of the guide drum inside the vacuum chamber to supply the substrate along the guide groove; and a recovery reel provided on the other side of the guide drum inside the vacuum chamber to recover the substrates passing through all of the plurality of deposition spaces
  • the partition member constituting the vacuum chamber and a lower chamber providing an evaporation space for the deposition material a lower partition member for preventing the inflow of each deposition material into another space; It is configured to include, and each one surface of the upper partition member and the lower partition member is characterized in that it is formed to correspond to the shape of the outer surface of the drum.
  • the deposition material accommodated in the deposition space includes a material having a crystal orientation of a single crystal level by satisfying [Relational Equation A].
  • FWHM2 is the full width at half maximum of the misorientation angle distribution curve at the grain boundary of the thin film.
  • the lower and upper chambers are provided with lower fixing means and upper fixing means arranged at equal intervals along the longitudinal direction of the guide drum, respectively, and the lower and upper partition members are fixed to the lower part according to the required space. It is characterized in that it is fitted while changing the position of the means and the upper fixing means.
  • the method for manufacturing a high-temperature superconducting wire includes a guide drum preparation step including a guide drum for transferring a substrate in a reel-to-reel method inside a vacuum chamber, and deposition deposited on the guide drum inside the vacuum chamber.
  • FWHM2 is the full width at half maximum of the misorientation angle distribution curve at the grain boundary of the thin film.
  • the deposition step of yttrium oxide to the substrate in the compartment the first space (Y 2 O 3) to the first deposition step of depositing, the yttrium oxide in the compartment second space (Y 2 O 3) is IBAD on the deposited substrate
  • a material having a single crystal level of crystal orientation is deposited by satisfying [Relational A] on the substrate on which the magnesium oxide (MgO) layer is deposited.
  • FWHM2 is the full width at half maximum of the misorientation angle distribution curve at the grain boundary of the thin film.
  • a receiving space for each deposition material is partitioned inside the vacuum chamber, and the deposition material for each section is sequentially stacked while the substrate supplied and recovered in a reel-to-reel method is rotated along the guide groove formed in the drum.
  • a plurality of vacuum chambers are not required, and a continuous stacked structure can be easily formed through a single preparation process, thereby reducing the time and cost required for manufacturing the high-temperature superconducting wire.
  • a space in which the crystal orientation improving material is accommodated is provided in the deposition material provided inside the vacuum chamber, and the material and the superconducting layer are subsequently deposited after the crystal orientation improving material is deposited prior to the deposition of the superconducting material.
  • a high-temperature superconducting wire having a single-crystal-level superconducting layer having improved crystal orientation even on a polycrystalline substrate by epitaxial deposition can be manufactured.
  • the internal space of the vacuum chamber can be easily partitioned using a partition member. Since it can be changed, it is easy to improve the process and has the advantage of reducing the manufacturing cost required for process improvement.
  • FIG. 1 is a view for showing the main configuration of a high-temperature superconducting wire rod manufacturing apparatus according to the present invention.
  • Figure 2 is a view showing the installation structure of the partition member as a main part of the present invention.
  • FIG. 3 is a view for explaining the internal space partition structure of the apparatus for manufacturing a high-temperature superconducting wire according to the present invention
  • FIG 4 is a view showing an embodiment of an upper chamber partition member (a) and a lower chamber partition member (b), which are essential parts of the present invention.
  • FIG. 5 is a view showing an embodiment of a horizontal partition member as a main part of the present invention.
  • FIG. 6 is a view showing an embodiment of the partitioned inner space of the high-temperature superconducting wire manufacturing apparatus according to the present invention.
  • FIG. 7 is a view for showing a process of manufacturing a high-temperature superconducting wire using the high-temperature superconducting wire manufacturing apparatus according to the present invention.
  • FIG. 8 is a view for showing a single crystal formation mechanism of the present invention.
  • FIG. 9 is a view showing a FeCo thin film as a crystal orientation improving material according to a preferred embodiment of the present invention.
  • FIG. 10 is a graph showing the analysis of 2-theta according to the composition ratio of the thin film formed of Fe x Co 1-x alloy according to an embodiment of the present invention.
  • FIG 11 is a view showing the alignment of crystals in the plane direction by analyzing Phi Scan by applying MgO and LMO as a polycrystalline buffer material according to an embodiment of the present invention.
  • FIG. 12 is a view showing the crystal orientation ability according to the half width of the crystal orientation difference angle of the crystal grains at the grain boundary of the polycrystalline buffer material according to an embodiment of the present invention.
  • FIG. 13 is a view showing the crystal orientation ability according to the deposition rate of the crystal orientation improving material by the thermal evaporation method according to an embodiment of the present invention.
  • FIG. 14 is a view showing the crystal orientation ability according to the deposition temperature in the step of forming a thin film by depositing a crystal orientation improving material by a thermal evaporation method according to an embodiment of the present invention.
  • 15 is a view showing the experimental results for the thickness showing the crystal orientation of the single crystal level.
  • the high-temperature superconducting wire manufacturing apparatus is configured to manufacture a high-temperature superconducting wire by sequentially depositing deposition materials according to the movement position of the substrate while the substrate is transferred in a reel-to-reel manner in a vacuum chamber.
  • FIG. 1 is a view showing the main configuration of the apparatus for manufacturing a high-temperature superconducting wire according to the present invention
  • FIG. 2 is a view showing the installation structure of the partition member, which is the main part of the present invention
  • FIG. 3 is the present invention. A drawing for explaining the internal space partition structure of the high-temperature superconducting wire rod manufacturing apparatus according to the present invention is shown.
  • the apparatus for manufacturing a high-temperature superconducting wire rotates the guide drum 400 inside the vacuum chamber 200, along the guide groove (reference numeral not assigned) formed in the guide drum 400 . It is configured to continuously deposit a deposition material on the transferred substrate 100 .
  • the vacuum chamber 200 includes an upper chamber 220 , a lower chamber 260 , and a differential pressure chamber 240 , and the differential pressure chamber 240 is disposed between the upper chamber 220 and the lower chamber 260 . It is provided in the chamber to differential pressure exhaust the reaction gas generated in each chamber.
  • the upper chamber 220 maintains a relatively low vacuum state as oxygen and a reaction gas are supplied through the oxygen supply unit 500 .
  • the deposition material deposited on the substrate 100 is heated and diffused by the heater to provide a reaction space for crystal growth, and an internal heater 420 and an external heater 222 are provided centering on the guide drum 400 . is provided to heat the reaction space.
  • the lower chamber 260 maintains a relatively high vacuum state, and supplies the deposition material so that the deposition material can be deposited on the substrate 100 .
  • differential pressure chamber 240 maintains the lower chamber 260 in a high vacuum state through differential pressure exhaust that interworks with each other between the upper chamber 220 and the lower chamber 260 to clearly separate deposition and crystal growth environments. make it possible
  • the above-described guide drum 400 is provided inside the vacuum chamber 200 in an environment in which deposition and crystal growth environments are separated as described above.
  • the guide drum 400 further includes a supply reel 420 for supplying the substrate 100 and a recovery reel 440 for recovering the deposition-completed substrate 100, and guide grooves (not shown) along the outer circumferential surface. ) is formed.
  • the guide groove (not shown) has a width corresponding to the width of the supplied substrate 100 and is recessed to a predetermined depth inward from the outer circumferential surface of the guide drum 400 , and is formed in a spiral shape advancing toward the recovery reel 440 . .
  • the substrate 100 released from the supply reel 420 may be transferred in the direction of the recovery reel 440 along the guide groove at a constant speed by the rotation of the guide drum 400 while being accommodated in the guide groove.
  • the guide drum 400 uses a weight exposed by gravity to the outside of the guide groove according to the rotation of the drum as in “(Patent Document 2) KR10-0795065 B1” described in the prior art document of the present invention.
  • a structure that reduces friction between the substrate and the guide groove may be applied.
  • the guide drum 400 is provided with a separate slip roller along the longitudinal direction of the drum as in “(Patent Document 3) KR10-0750654 B1” to reduce the friction of the substrate moving along the guide groove.
  • the guide drum 400 according to the present invention is formed with a length passing through all of the accommodating space of the deposition material provided in the lower chamber 260 .
  • a plurality of deposition materials deposited on the substrate 100 are sequentially disposed inside the vacuum chamber 200 , and the deposition sequence according to the movement position of the substrate 100 .
  • This is characterized in that it proceeds continuously so that a plurality of deposition processes can be performed through only one preparation process.
  • a plurality of deposition materials are sequentially arranged in a space partitioned by partition members along the longitudinal direction of the guide drum 400 .
  • the partition member includes a lower partition member 800 that partitions the inner space of the lower chamber 260 in a direction in which a deposition material is supplied toward the substrate 100, and a lower partition member 800 that divides the inner space of the upper chamber 220 into the lower partition member (
  • the horizontal partition member 700 is provided in parallel with the axial direction of the upper partitioning member 600 and the guide drum 400 to partition to correspond to the position of 800) and positioned between the upper chamber 220 and the lower chamber 260. ) are separated.
  • FIG. 4 is a view showing an embodiment of the upper chamber partition member (a) and the lower chamber partition member (b), which are the main parts of the present invention
  • FIG. 5 shows the horizontal partition member that is the main part of the present invention.
  • the horizontal partition member 700 is a flat plate-shaped horizontal partition panel 720 that is formed longer than the length of the guide drum 400, and an opening 740 is formed in the central part, and the width is It is formed to correspond to the inside of the vacuum chamber 200 .
  • the opening 740 has a width smaller than the diameter of the guide drum 400 and is formed to have a length corresponding to the length of the guide drum 400 . Accordingly, when the horizontal partition member 700 is installed in a state in which the guide drum 400 is provided inside the vacuum chamber 200 , only a lower portion of the guide drum 400 is exposed toward the lower chamber 260 and the remaining The part should be shielded.
  • the upper partition member 600 shown in (a) of FIG. 4 is a flat upper partition panel 620 having a height and width corresponding to the height and width of the upper chamber 220, and the guide drum ( 400) and includes a drum upper accommodating portion 640 that is an opening having a shape corresponding to the upper portion.
  • the lower partition member 800 shown in (b) of FIG. 4 has a flat lower partition panel 820 having a height and width corresponding to the height and width of the lower chamber 260 and the guide drum ( 400), except for the shape of the upper drum accommodating part 640, includes a lower drum accommodating part 840 that is an opening having a shape corresponding to the lower shape of the guide drum 400.
  • the upper partitioning member 600, the lower partitioning member 800, and the horizontal partitioning member 700 are the remaining vacuum chamber 200 except for the position where the guide drum 400 is provided outside the guide drum 400. It is formed in a shape corresponding to the inner space, and is installed so as not to contact the guide drum 400 so that the inner space of the vacuum chamber 200 can be divided into a plurality of partitioned spaces.
  • the lower chamber 260 and the upper chamber 220 are individually separated by the partition member as described above as the exhaust pumping for forming a vacuum environment as well as the exhaust pumping by the differential pressure chamber 220 are performed together.
  • the space to be used may act as a deposition space and a reaction space of a region in which the corresponding deposition material is accommodated, respectively.
  • the partition member according to the present invention is installed to form an opening of 10 mm or less with the outer surface of the guide drum 400, so that the vacuum difference between the upper chamber 220 and the lower chamber 260 can be maintained.
  • a fixing means for installing the partition member is further provided inside the vacuum chamber 200 .
  • the horizontal partition member 700 may be fixedly installed on the horizontal fixing means 250 provided on the inner wall of the vacuum chamber 200 .
  • the horizontal fixing means 250 is formed in the form of a pair of protrusions having a distance spaced apart by the thickness of the horizontal partition panel 720 so that both ends of the front and rear sides of the horizontal partition panel 720 can be fitted respectively.
  • the lower partition member 800 may be fixedly installed by a lower fixing means 270 provided on the bottom surface of the lower chamber 260 .
  • the lower fixing means 270 is a plurality of protrusions that are formed to protrude upward along the longitudinal direction of the guide drum 400, and the distance between the protrusions is formed by a distance corresponding to the thickness of the lower fixing panel 820 . do. Accordingly, the lower partition member 800 can be moved and installed at a desired position, and the installation position and quantity can be easily changed according to the quantity and the deposition range of the deposition material.
  • the upper partition member 600 may be fixedly installed by the upper fixing means 230 provided on the upper surface of the upper chamber 220 .
  • the upper fixing means 230 is formed at a position corresponding to the lower fixing means 270 to correspond to the installation position of the lower partition member 800 so that the upper partition member 600 can be fixedly installed.
  • the upper partition member 600 and the lower partition member 800 divide the inner space of the vacuum chamber 200 in a direction crossing the axial direction of the guide drum 400 so that one deposition material is separated from another deposition space. to be deposited and reacted.
  • the deposition can be made using one of the methods.
  • Sm, Ba, and Cu which are materials forming the superconducting layer, are co-evaporated by the EDDC method, and for this purpose, a crucible 280 in which each material is accommodated.
  • QCM Quadrat crystal microbalances
  • FIG. 6 is a view showing an embodiment of the partitioned inner space of the high-temperature superconducting wire rod manufacturing apparatus according to the present invention.
  • FIG. 7 is a view showing a process of manufacturing a high-temperature superconducting wire using the high-temperature superconducting wire manufacturing apparatus according to the present invention.
  • the method of manufacturing a high-temperature superconducting wire using the apparatus for manufacturing a high-temperature superconducting wire according to the present embodiment starts with the guide drum preparation step of installing the guide drum 400 inside the vacuum chamber 200. is carried out
  • the guide drum 400 for transferring the substrate 100 while rotating together with the supply reel 420 and the recovery reel 440 at a constant speed is installed.
  • the guide drum 400 is connected to a rotation motor from the outside so that the rotation speed can be varied, and a horizontal partition member 700 is installed between the upper chamber 220 and the lower chamber 260 to provide a guide drum 400 . Only a lower portion of the lower chamber 260 may be exposed above the lower chamber 260 .
  • the deposition material deposited on the guide drum 400 is disposed inside the vacuum chamber 200, and each arrangement space is partitioned using the lower partition member 800. A partitioning step of the lower chamber. is performed
  • the inner space of the lower chamber 260 is partitioned into a plurality of spaces in a direction crossing the axial direction of the guide drum 400, and in this embodiment, the lower chamber 260 has five lower partitions. It is divided into six spaced spaces by the member 800 .
  • the partitioned space is sequentially provided in a direction from the supply reel 420 to the recovery reel 440 in the first deposition space 262, the second deposition space 263, and the third deposition space ( 264), a fourth deposition space 265 , a fifth deposition space 266 , and a post-heat treatment space 268 will be described.
  • the lower chamber 260 is maintained in a high vacuum state of 10 -4 Torr or less by exhaust pumping, and the first to fifth deposition spaces 262 to 266 and the lower post-heat treatment space 268 contain deposition materials, respectively.
  • a deposition method according to the characteristics and an apparatus configuration for this are added.
  • the upper chamber partitioning step of partitioning the inner space of the upper chamber to correspond to the partitioned space of the lower chamber is performed.
  • the upper partitioning member 600 is installed to correspond to the installation position of the lower partitioning member 800 to divide the inner space into six spaces, respectively, a first reaction space 222 and a second reaction space. 223 , a third reaction space 224 , a fourth reaction space 225 , a fifth reaction space 226 , and an upper post-heat treatment space 228 .
  • the oxygen supply unit 500 is located in the third reaction space 224 and the upper post-heat treatment space 228 where the superconducting layer is located, and for convenience of explanation, a first oxygen supply unit 520 and a second oxygen supply unit ( 540).
  • a deposition step in which the deposition material is sequentially deposited by transferring the substrate 100 while rotating the guide drum 400 positioned between the plurality of deposition and reaction spaces is performed.
  • the guide drum 400 has a diameter of 50 cm and a length of 72 cm, and accommodates a wire rod having a length of 100 m.
  • the guide drum 400 is rotationally controlled at 100 rpm, and all deposition processes are equally applied.
  • deposition materials are disposed as shown in the table below to control operating conditions.
  • yttrium oxide (Y 2 O 3 ) is accommodated as a deposition material, and when the substrate 100 is supplied while the guide drum 400 is rotated, the yttrium oxide is formed into a thin film by electron beam deposition at room temperature. is deposited with Then, the yttrium oxide deposited in the form of a thin film is moved to the first reaction space 222 by rotation, and the yttrium oxide layer is formed by diffusion and crystal growth. The substrate 100 on which the yttrium oxide layer is deposited as described above is transferred to the second deposition space 263 by rotation of the guide drum 400, and magnesium oxide ( MgO) is deposited in the form of a thin film.
  • MgO magnesium oxide
  • magnesium oxide (MgO) deposited in the form of a thin film is transferred to the second reaction space 223 by rotation to form a magnesium oxide layer while diffusion and crystal growth.
  • the substrate on which the magnesium oxide layer is formed as described above is again guided It is transferred to the third deposition space 264 by the rotation of the drum 400 , and silver (Ag), which is a crystal orientation improving material for improving crystal orientation, is deposited in the form of a thin film in the third deposition space 264 .
  • silver (Ag) deposited in the form of a thin film is transferred to the third reaction space 224 by rotation to improve crystal orientation while diffusion and crystal growth to form a single-crystal level silver (Ag) thin film.
  • silver (Ag) accommodated in the third deposition space 264 is an example of a material for improving crystal orientation, Fe, Fe-based alloy, Fe-based compound, Ni, Ni-based alloy, Ni-based compound, It may be selected from Ag or Cu, and the crystal orientation improvement mechanism for selecting such a material will be described in detail with the accompanying drawings below.
  • the substrate on which the silver (Ag) thin film of the single crystal level is formed is transferred to the fourth deposition space 265 by the rotation of the guide drum 400 again, and in the fourth deposition space 265 , Sm, Ba, Cu SmBCO is deposited in the form of a thin film by co-evaporation.
  • the SmBCO is transferred to the fourth reaction space 225 as the silver (Ag) thin film is formed at a single crystal level, and grows epitaxially according to the crystal orientation of the single crystal level when the crystal is grown to form a single crystal level superconducting thin film. .
  • the substrate on which the superconducting thin film of the single crystal level is formed is transferred to the fifth deposition space 266 by the rotation of the guide drum 400 again, and silver (Ag) is formed in the form of a thin film in the fifth deposition space 266 . It is laminated and formed as a silver (Ag) protective layer while passing through the fifth reaction space 226 .
  • the substrate is transferred to the recovery roll 440 in the lower post heat treatment space 268 and the upper post heat treatment space 228 by the rotation of the guide drum 400 .
  • the oxygen composition ratio of the superconducting layer is adjusted to the optimum composition ratio by supplying several hundred Torr of oxygen while heating to 450°C.
  • Figure 8 is a view for showing the single crystal formation mechanism of the present invention is shown.
  • the substrate formed of the polycrystalline first material may have a shape in which the orientation axis direction of each crystal grain constituting the layer is randomly formed (refer to (a) of FIG. 8).
  • a thin film is formed by depositing a polycrystal orientation improving material on the upper side of the polycrystal substrate as described above, but during the deposition, crystal nuclei larger than the grain size of the substrate crystal grains are generated while crystal growth of the crystal orientation improving material A thin film is deposited.
  • crystal orientation improving material when the crystal orientation improving material is deposited, crystal nuclei are instantaneously generated and grown on the substrate while being deposited, and are generated larger than the grain size of the crystal at the grain boundary of the substrate, at this time the crystal grains of the thin film are formed.
  • the direction of the alignment axis coincides with the average direction of the alignment axis of the crystal grains of the substrate, the energy is lowest, so that deposition can be performed parallel to the alignment direction of the average alignment axis of the substrate (refer to FIG. 8(b) ).
  • the grain size of the crystal orientation improving material deposited on the upper side of the substrate is at least twice the size of the substrate grain size, and more preferably, when it is 5 to 6 times or more, the average direction of the orientation axis of the substrate grains and the crystal grains of the thin film The orientation direction can be almost coincident.
  • the crystal grain orientation of the thin film shows single crystallinity in which the half-width of the crystal orientation difference angle at the grain boundary satisfies within 3°. (see Fig. 8(c))
  • FIG. 9 is a view showing a FeCo thin film as a crystal orientation improving material according to a preferred embodiment of the present invention.
  • the FeCo thin film has a rectangular FeCo crystal shape, and the alignment axis is straight and uniformly aligned, which is oriented at the level of a single crystal. It means that the crystal nuclei are generated in a state where the crystals are grown and a thin film is formed as the crystals grow epitaxially.
  • the average orientation axis direction and alignment direction of the substrate crystal grains coincide with each other, and as the FeCo thin film is deposited parallel to the average orientation axis alignment direction of the substrate, the single crystal A FeCo thin film is formed.
  • FIG. 9 shows the cross section of the FeCo alloy thin film as a TEM photograph.
  • the LMO layer is a polycrystalline buffer layer for improving the bonding strength of the FeCo alloy thin film, which is a crystal orientation improving material layer of the substrate.
  • FIG. 9 is a SEM photograph showing the surface at a thickness of 400 nm or less of a FeCo alloy thin film deposited through thermal evaporation at a temperature of 600° C. or higher, wherein the FeCo crystals of the FeCo alloy thin film have a square shape. appear to be sorted.
  • the crystal orientation improving material layer when the crystal orientation improving material layer is deposited, the crystal nuclei are generated and the crystals grow epitaxially, and when the crystal nuclei are generated, the energy is the lowest in FeCo Since the crystal orientation of the thin film is controlled, crystal orientation of a single crystal level is exhibited almost simultaneously with the deposition of the crystal orientation improving material.
  • the crystal orientation improving material layer of the present invention is deposited such that the crystal orientation is parallel to the average direction of the orientation axis of the substrate crystal grains within several tens of nm from the interface with the substrate, and as the crystals are epitaxially grown and deposited as a thin film, hundreds of It may be formed as a single crystalline thin film ranging from nm to several ⁇ m. More preferably, it exhibits single crystallinity satisfying the relation A within 40 nm from the interface with the substrate formed under the crystal orientation improving material layer of the present invention.
  • FWHM 2 is the full width at half maximum of the misorientation angle distribution curve at the grain boundary of the thin film.
  • the crystal orientation improving material of the polycrystal may be Fe, an Fe alloy, or a Fe-based compound.
  • the thin film formed of the Fe-based crystal orientation improving material that is, the crystal orientation improving material layer, has a body-centered cubic (bcc) structure, angles parallel to the average direction of the orientation axes of the substrate crystal grains
  • the crystal nuclei located at the center of the crystal may be deposited while oriented.
  • Fe is the second most common metal in the Earth's crust after aluminum and has the highest specific gravity among elements constituting the Earth. Therefore, the Fe-based single crystalline thin film can be applied to the present invention because it can increase economic feasibility in terms of cost as well as have excellent crystal orientation, and can exhibit excellent crystal orientation regardless of the type of polycrystalline substrate.
  • the Fe-based thin film may be a thin film formed of an alloy of Fe, Co and/or Ni.
  • it may be Fe x Co 1-x (provided that 0 ⁇ x ⁇ 0.5) or FeNi 3 .
  • the crystal orientation improving material forming the thin film may be any one selected from Fe, Fe-based alloy, Fe-based compound, Ni, Ni-based alloy, Ni-based compound, Ag, or Cu.
  • FIG. 10 is a graph showing the analysis of 2-theta according to the composition ratio of the thin film formed of the Fe x Co 1-x alloy according to an embodiment of the present invention, and related to the deposition site of iron and cobalt for measuring the crystal orientation of the FeCo thin film. , means that the closer to #1, the higher the composition ratio of iron, and the closer to #7, the higher the composition ratio of cobalt. Referring to this, even if the composition ratios of iron and cobalt are different, it appears that the degree of alignment in the plane direction of the crystals is maintained.
  • the Fe x Co 1-x thin film can be commercialized as a single crystalline thin film, as it is not sensitive to the composition ratio between iron and cobalt and maintains the crystal orientation well without a significant difference in the crystal orientation according to the change in the composition ratio. do.
  • FIG. 11 is a diagram showing the alignment of crystals in the plane direction by analyzing Phi Scan by applying MgO and LMO as a polycrystalline buffer layer according to an embodiment of the present invention.
  • Phi Scan is a plane view. When viewed at a 360° angle, the cube texture should show 4 peaks, and the sharper each peak, the better the alignment).
  • the average half width of the polycrystalline buffer layer made of MgO grown in the forward direction through the peaks at 0°, 90°, 180°, and 270° is 6.8°, and at 45°, 135°, 225°, and 315°
  • the average half width of the thin film made of the crystal orientation improving material of the FeCo alloy grown in the 45° direction was 2.6° ((a) of FIG. 11), 0°, 90°, 180°
  • the average half-width of the substrate containing LMO grown in the forward direction through the peaks at 270° is 6.8°, and the peaks at 45°, 135°, 225°, and 315° of the FeCo alloy grown in the 45° direction. It was found that the average half width of the thin film made of the crystal orientation improving material was 2.9° (FIG. 11(b)).
  • the FeCo thin film deposited regardless of the type of the polycrystalline buffer layer exhibited a full width at half maximum within 3°, so it can be confirmed that the same monocrystalline orientation is exhibited even if the type of the polycrystalline buffer layer is different.
  • FIG. 12 is a view showing the crystal orientation ability according to the half width of the crystal orientation difference angle of the crystal grains at the grain boundary of the polycrystalline buffer layer according to an embodiment of the present invention.
  • MgO is applied as the polycrystalline buffer layer, and the crystal orientation improving material This shows the crystal orientation ability by analyzing the Phi Scan by applying the same FeCo to the polycrystalline buffer layer, but changing only the half width of MgO in the polycrystalline buffer layer.
  • FIG. 12a shows that the average half-width of the substrate including MgO grown in the forward direction through peaks at 0°, 90°, 180°, and 270° is 6.8°, 45°, 135°, 225°, 315
  • the average of the half width of the thin film made of the crystal orientation improving material of the FeCo alloy grown in the 45° direction through the peak at ° is 2.8°
  • FIG. 12b shows the peaks at 0°, 90°, 180°, and 270°.
  • the crystal orientation improving material of the polycrystal on the polycrystalline buffer layer exhibits single crystallinity as the crystal orientation is oriented. It is characterized in that the crystal orientation of the polycrystalline buffer layer and the crystal orientation improving material layer satisfies 0° ⁇ FWHM 2 ⁇ 3° while satisfying the following [Relational Expression B].
  • FWHM 1 and FWHM 2 are the full width at half maximum of the distribution curve of the misorientation angle at the grain boundary of the substrate and the thin film, respectively.
  • the size of the crystal grains formed while the crystal orientation improving material forming the single-crystal thin film is deposited is at least twice the size of the crystal grains of the substrate, the crystal nuclei are generated, and the orientation is made as the crystal grows, There is a significant difference between the full width at half maximum at the grain boundary of the substrate and the half width of the thin film exhibiting single crystallinity.
  • the crystal nuclei grow rapidly and a thin film can be formed at the level of a single crystal, and the IBAD and RABiTS metal substrates applied to superconductors have an average crystal orientation difference of 6°, and at the grain boundaries of commonly used substrates. Since the half width of the crystal orientation difference angle is about 20° at most, as described above, the crystal orientation of the substrate and the thin film satisfies the relation B, while the crystal orientation of the thin film satisfies 0° ⁇ FWHM 2 ⁇ 3°. will be.
  • the step of forming the thin film according to the present invention crystal nuclei are generated when the crystal orientation improving material of polycrystals is deposited on the upper portion of the substrate, and the crystals grow epitaxially to form a thin film, so that the crystal nuclei are generated. Since the crystal orientation of the thin film is controlled with the lowest energy when the material is deposited, the crystal orientation improving material is deposited and exhibits a single crystal level of crystal orientation, thereby satisfying the aforementioned Relations A and B.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • ALD atomic layer deposition
  • spin-on-glass spin-On-Glass
  • SOG spin-On-Glass
  • plating plating and other various methods
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • ALD atomic layer deposition
  • spin-On-Glass spin-On-Glass
  • SOG spin-On-Glass
  • plating and other various methods
  • CVD method using heat or plasma a PVD method using thermal evaporation, electron beam or sputtering, which forms a thin film by vacuum deposition to control the structure of the thin film and improve crystal orientation is available.
  • FIG. 13 is a view showing the crystal orientation ability according to the deposition rate of the crystal orientation improving material in the step of forming a thin film by depositing the crystal orientation improving material by thermal evaporation according to an embodiment of the present invention.
  • the Phi Scan analysis result of the crystal orientation ability according to the deposition rate of the crystal orientation improving material of the present invention shown in FIGS. is shown as However, the average of the half-width of the substrate including MgO grown in the forward direction through the peaks at 0°, 90°, 180°, and 270° is 6.8°.
  • FIG. 9a shows that the average half width of the thin film made of the crystal orientation improving material of the FeCo alloy grown in the 45° direction through the peaks at 45°, 135°, 225°, and 315° is 1.5°. and the deposition rate was 40 ⁇ /sec.
  • FIG. 13b shows that the average half-width of the thin film made of the crystal orientation improving material of the FeCo alloy grown in the 45° direction through the peaks at 45°, 135°, 225°, and 315° is 3.5°.
  • the deposition rate is a deposition rate that starts from 0 at the deposition starting point and increases by 40 ⁇ /sec.
  • FIG. 14 is a view showing the crystal orientation ability according to the deposition temperature in the step of forming a film by depositing the crystal orientation improving material by the thermal evaporation method according to an embodiment of the present invention, the crystal orientation capability of the FeCo thin film according to the deposition temperature shows the results confirmed by the FeCo (002) peak. That is, in (a) to (h) of Figure 14, the crystal orientation improvement material when the substrate temperature is 150 °C, 200 °C, 300 °C, 400 °C, 500 °C, 600 °C, 700 °C, 800 °C, respectively, FeCo alloy The XRD result of the thin film is shown. Referring to this, it was shown that FeCo is amorphous at a substrate temperature of 150°C and crystallized from 200°C.
  • deposition may be performed at at least 200° C., more preferably at 500 to 600° C. Compared to the general metal thin film formation that is required to be deposited at a high temperature of 700° C. or higher, it can be confirmed that the crystal orientation ability is very excellent, especially when the thin film is formed with an Fe-based crystal orientation improving material.
  • the step of forming a thin film by depositing a polycrystal orientation improving material on the substrate can have a high crystal orientation of a single crystal level by controlling the deposition temperature and the deposition rate.
  • 15 is a view showing experimental results on the thickness showing the crystal orientation of a single crystal level, and shows the crystal orientation timing during deposition according to the thickness of the FeCo alloy among the Fe alloys as the crystal orientation improving material. That is, when the FeCo thin film is deposited on the substrate by varying the lengths of (a) 40 nm, (b) 80 nm, and (c) 120 nm, the distribution of the Fe(110) crystal plane direction is spontaneously aligned within 0.5° at the same time as the deposition, so that the single crystal level indicates the crystal orientation of
  • the thin film formed of the crystal orientation improving material layer is deposited so that the crystal orientation is parallel to the average direction of the orientation axis of the crystal grains of the substrate within several tens of nm from the interface with the substrate on which the polycrystalline buffer layer is formed. More preferably, the crystal orientation improving material layer exhibits single crystallinity satisfying the above-described relational expression A within 40 nm from the interface with the substrate formed under the thin film.
  • the high-temperature superconducting wire according to the present invention can manufacture a high-temperature superconducting wire in which a single-crystal level superconducting layer is formed using a polycrystalline substrate.
  • the super-grid for sharing power resources through linking multi-country power grids and national policy trends for nurturing superconducting technology Since the size and application range of the superconducting market is expected to be further expanded, the industrial applicability of the present invention is expected to be higher.

Abstract

An apparatus for manufacturing a high temperature superconductor, according to the present invention, comprises: a vacuum chamber; a plurality of deposition spaces partitioned by a partition member for each of deposition materials provided inside the vacuum chamber; a guide drum which is formed with a length that passes through all of the plurality of deposition spaces inside the vacuum chamber, and which has, on the outer surface thereof, a guide groove for guiding the movement of a substrate; a supply reel provided inside the vacuum chamber at one side of the guide drum so as to supply the substrate along the guide groove; and a collection reel provided inside the vacuum chamber at the other side of the guide drum so as to collect the substrate having passed through all of the plurality of deposition spaces, wherein the partition member comprises: a lower partition member which forms a vacuum chamber and which prevents the inflow of each deposition material into another space in a lower chamber that provides the evaporation space of the deposition materials; and an upper partition member which forms the vacuum chamber and which partitions an upper chamber, providing the reaction space of a material deposited on the substrate, so that same corresponds to a partitioned position of the lower chamber, and one surface of each of the upper partition member and the lower partition member is formed to correspond to the outer surface shape of the drum.

Description

고온초전도 선재 제조장치 및 방법High-temperature superconducting wire rod manufacturing apparatus and method
본 발명은 릴-투-릴 방식으로 기판을 공급하면서 전자빔증발, 스퍼터링, 열증발 증착 중 하나 이상의 방법으로 물질층을 증착시켜 고온초전도 선재를 제조하기 위한 고온초전도선재 제조장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for manufacturing a high-temperature superconducting wire for manufacturing a high-temperature superconducting wire by depositing a material layer by at least one of electron beam evaporation, sputtering, and thermal evaporation while supplying a substrate in a reel-to-reel method.
초전도 현상은 임계온도(critical temperature) 이하에서 물질의 저항이 0에 가까워지는 물리적 현상으로 이를 이용하여 제조되는 선재(wire) 즉, 초전도 선재(superconducting wire)는 대전류 통전, 고자장 생성 등의 측면에서 우수한 특성을 가진다. 상기 초전도 선재의 이와 같은 특성은 제품의 성능향상은 물론 소형화 구현 등이 가능하다. The superconducting phenomenon is a physical phenomenon in which the resistance of a material approaches zero below a critical temperature. It has excellent properties. Such characteristics of the superconducting wire can improve product performance as well as realize miniaturization.
따라서, 초전도 마그네트, 초전도 케이블, 초전도 모터 및 초전도 발전기 등과 같은 전력용 기기 개발은 물론, NMR, MRI 등의 의료장비 개발, 가속기, 핵융합장치 등의 거대과학장비 개발 등 다양한 산업분야에서 초전도 선재를 활용하기 위한 꾸준한 노력이 이루어지고 있다.Therefore, superconducting wire rods are used in various industrial fields, such as the development of power devices such as superconducting magnets, superconducting cables, superconducting motors and superconducting generators, as well as medical equipment such as NMR and MRI, and large scientific equipment such as accelerators and nuclear fusion devices. Consistent efforts are being made to do this.
한편, 상기 초전도 선재는 임계온도를 기준으로 저온초전도선재(Low temperature superconductor, LTS)와 고온초전도선재(High temperature superconductor, HTS)로 구분된다. Meanwhile, the superconducting wire is divided into a low temperature superconductor (LTS) and a high temperature superconductor (HTS) based on a critical temperature.
그 중 고온초전도선재(HTS)는 절대온도 0K(-273℃)에 가까운 임계온도의 저온초전도선재(LTS)와 비교하여 임계온도가 100K(-173℃)부근으로 비교적 높은 온도에서 초전도 특성을 나타내며, 주로 박막형으로 제조되어 활용되고 있다.Among them, high-temperature superconducting wire (HTS) has a critical temperature of 100K (-173°C) compared to low-temperature superconducting wire (LTS) with a critical temperature close to absolute 0K (-273 ℃), showing superconducting properties at a relatively high temperature. , is mainly manufactured and utilized in thin film type.
그리고, 박막형으로 제조되는 고온초전도선재의 경우 초전도박막의 결정들이 잘 정렬된 형태를 보일 수록 높은 임계전류를 가진다. 따라서, 초전도층의 높은 임계전류 확보를 위하여 결정배향성을 개선하고자 하는 다양한 노력이 이루어지고 있다.And, in the case of a high-temperature superconducting wire manufactured in a thin film type, the higher the critical current is, the better the crystals of the superconducting thin film are aligned. Accordingly, various efforts are being made to improve crystal orientation in order to secure a high critical current of the superconducting layer.
현재 상용화된 고온초전도 선재의 경우에는 2축-배향된 테이프 형태의 금속 기판 위에 물리적 기상증착(Physical Vapor Deposition; PVD) 방식 등을 이용하여 이루어지는데, 제조 공정이 다단계로서 비경제적이다. In the case of the currently commercialized high-temperature superconducting wire, a physical vapor deposition (PVD) method is used on a metal substrate in the form of a biaxially-oriented tape, and the manufacturing process is multi-step, which is uneconomical.
먼저, 우수한 특성을 가지는 고온초전도 박막선재를 제조하기 위해서는 사용하는 테이프 형태의 금속 기판이 2축-배향성을 가져야한다. First, in order to manufacture a high-temperature superconducting thin-film wire having excellent properties, a metal substrate in the form of a tape used must have biaxial orientation.
2축-배향성의 금속기판 제조 방식에는 대표적으로 압연도움 이축배양 집합구조기판(Rolling Assisted Biaxially Textured Substrate, 이하 RABiTS라 함)과, 이온빔 도움 증착(Ion Beam Assisted Deposition, 이하 IBAD라 함) 방법으로 구분된다. The two-axis-oriented metal substrate manufacturing method is typically divided into Rolling Assisted Biaxially Textured Substrate (RABiTS) and Ion Beam Assisted Deposition (IBAD) method. do.
상기와 같은 방법으로 제조된 테이프 형태의 2축-배향 금속기판에는 결정배향을 따라 에피택셜하게 복수의 완충층(buffer layer)이 형성되며, 완충층의 상측으로 고온초전도층이 증착된다. A plurality of buffer layers are epitaxially formed along the crystal orientation on the tape-shaped biaxially-oriented metal substrate manufactured by the above method, and a high-temperature superconducting layer is deposited on the buffer layer.
상세히, 상기 완충층은 펄스레이저 증착(Pulsed Laser deposition), 알에프 스퍼터링(RF-Sputtering), 열 동시증발(Thermal Co-evaporation), 유기금속화학 기상증착(Metal Organic Chemical Vapor Deposition) 또는 유기금속 증착(Metal Organic Deposition) 등의 방법으로 증착될 수 있다.In detail, the buffer layer is formed by pulsed laser deposition, RF-Sputtering, thermal co-evaporation, metal organic chemical vapor deposition, or metal organic chemical vapor deposition. Organic Deposition) and the like may be deposited.
그리고, 고온초전도층의 경우에도 PLD(Pulsed Laserdeposition), RF-Sputtering, Thermal Co-evaporation, MOCVD(Metal Organic Chemical Vapor Deposition), 혹은 MOD(Metal Organic Deposition) 방법 등으로 증착되며, 고온초전도 선재의 상측으로 다시 보호층 및 안정화층을 더 형성하여 고온초전도선재의 제조가 완료된다.Also, in the case of the high-temperature superconducting layer, it is deposited by PLD (Pulsed Laserdeposition), RF-Sputtering, Thermal Co-evaporation, MOCVD (Metal Organic Chemical Vapor Deposition), or MOD (Metal Organic Deposition) method, etc., and the upper side of the high-temperature superconducting wire is By further forming a protective layer and a stabilizing layer again, the production of the high-temperature superconducting wire is completed.
일 예로 대한민국 등록특허 제1093085호,“테이프 기판 위에 초전도체 재료를 형성하기 위한 방법 및 장치”에는 각 공정에 대응되는 수의 진공챔버를 직렬로 배치하여 상호 연통되고, 양단에 테이프 기판의 공급 및 회수를 위한 릴이 각각 구비되는 릴챔버를 포함하여 각 공정에 해당되는 챔버를 거치면서 순차적으로 증착 및 열처리되어 고온초전도 선제가 제조된다. For example, in Korean Patent Registration No. 1093085, “Method and apparatus for forming a superconducting material on a tape substrate,” a number of vacuum chambers corresponding to each process are arranged in series to communicate with each other, and supply and recovery of the tape substrate at both ends A high-temperature superconducting wire is manufactured by sequentially depositing and heat-treating it through a chamber corresponding to each process, including a reel chamber having a reel for each.
하지만, 상기와 같은 경우 각 제조공정에 대응되는 수의 진공챔버가 요구되고, 각 챔버 사이를 분리시키기 위한 분리챔버가 별도로 더 포함되어야 하므로 제조단가가 높아지게 되는 문제점을 가진다. However, in the above case, the number of vacuum chambers corresponding to each manufacturing process is required, and since separation chambers for separating the chambers must be additionally included, there is a problem in that the manufacturing cost is increased.
또한, 각각의 챔버를 직렬로 배치함에 따라 고온초전도 선재 제조장치의 설치를 위한 공간 확보에 어려움이 있으며, 기판의 상측에 순차적으로 증착되는 완충층의 종류나 수량이 가변될 경우 진공챔버를 이에 대응하여 배치해야만 하는 문제점을 가진다.In addition, as each chamber is arranged in series, it is difficult to secure a space for the installation of the high-temperature superconducting wire rod manufacturing apparatus. I have a problem with having to place it.
본 발명의 목적은 제조 공정을 간소화하면서 증착하고자 하는 물질층의 종류와 수량에 따라 진공챔버 내부공간을 가변시킬 수 있는 고온초전도 선재 제조장치를 제공하는 것이다. It is an object of the present invention to provide an apparatus for manufacturing a high-temperature superconducting wire rod capable of varying the internal space of a vacuum chamber according to the type and quantity of material layers to be deposited while simplifying the manufacturing process.
본 발명의 다른 목적은 다결정의 기판을 이용하는 경우에도 결정배향성을 개선시켜 고온초전도층이 증착될 수 있도록 하는 고온초전도 선재 제조장치를 제공하는 것이다. Another object of the present invention is to provide an apparatus for manufacturing a high-temperature superconducting wire rod that improves crystal orientation even when a polycrystalline substrate is used so that a high-temperature superconducting layer can be deposited.
본 발명의 목적은 상기와 같은 목적의 고온초전도 선재 제조장치를 이용하여 단결정 수준의 초전도층이 형성되는 고온초전도 선재를 제조하기 위한 고온초전도 선재 제조방법을 제공하는 것이다.It is an object of the present invention to provide a method for manufacturing a high-temperature superconducting wire rod for manufacturing a high-temperature superconducting wire in which a single-crystal level superconducting layer is formed using the high-temperature superconducting wire rod manufacturing apparatus for the above purpose.
본 발명에 따른 고온초전도 선재 제조장치는 진공챔버와, 상기 진공챔버 내부에 구비되는 증착물질 별로 구획부재에 의해 구획되는 복수의 증착공간과, 상기 진공챔버 내부에서 상기 복수의 증착공간을 모두 경유하는 길이로 형성되며, 외면에 기판의 이동을 안내하기 위한 가이드홈이 형성되는 가이드 드럼과, 상기 진공챔버 내부에서 상기 가이드 드럼의 일측에 구비되어 상기 가이드홈을 따라 기판을 공급하는 공급릴과, 상기 진공챔버 내부에서 가이드 드럼의 타측에 구비되어 상기 복수의 증착공간을 모두 경유한 기판을 회수하는 회수릴을 포함하고, 상기 구획부재는 진공챔버를 구성하며, 증착물질의 증발공간을 제공하는 하부챔버에서 각 증착물질의 타 공간 유입을 방지하기 위한 하부구획부재와, 진공챔버를 구성하며 기판에 증착된 물질의 반응공간을 제공하는 상부챔버를 하부챔버의 구획위치와 대응되도록 구획하는 상부구획부재;를 포함하도록 구성되고, 상기 상부구획부재와 하부구획부재의 각 일면은 상기 드럼의 외면 형상과 대응되도록 형성되는 것을 특징으로 한다.The apparatus for manufacturing a high-temperature superconducting wire according to the present invention includes a vacuum chamber, a plurality of deposition spaces partitioned by a partition member for each deposition material provided in the vacuum chamber, and all of the plurality of deposition spaces inside the vacuum chamber. a guide drum having a length and having a guide groove formed on an outer surface thereof for guiding the movement of the substrate, and a supply reel provided at one side of the guide drum inside the vacuum chamber to supply the substrate along the guide groove; and a recovery reel provided on the other side of the guide drum inside the vacuum chamber to recover the substrates passing through all of the plurality of deposition spaces, the partition member constituting the vacuum chamber and a lower chamber providing an evaporation space for the deposition material a lower partition member for preventing the inflow of each deposition material into another space; It is configured to include, and each one surface of the upper partition member and the lower partition member is characterized in that it is formed to correspond to the shape of the outer surface of the drum.
상기 증착공간에 수용되는 증착물질에는 [관계식 A]를 만족하여 단결정 수준의 결정배향성을 가지는 물질이 포함되는 것을 특징으로 한다.It is characterized in that the deposition material accommodated in the deposition space includes a material having a crystal orientation of a single crystal level by satisfying [Relational Equation A].
[관계식 A][Relational A]
0°< FWHM2 ≤ 3° (단, FWHM2는 박막 결정립계에서의 결정방위차 각도(misorientation angle) 분포곡선의 반가폭(full width at half maximum)이다.)0°< FWHM2 ≤ 3° (However, FWHM2 is the full width at half maximum of the misorientation angle distribution curve at the grain boundary of the thin film.)
상기 하부챔버 및 상부챔버에는 각각 가이드 드럼의 길이방향을 따라 등 간격으로 배치되는 하부고정수단과 상부고정수단이 구비되며, 상기 하부구획부재 및 상부구획부재는 요구되는 공간의 범위에 따라 상기 하부고정수단과 상부고정수단에 위치 가변하면서 끼움 장착되는 것을 특징으로 한다.The lower and upper chambers are provided with lower fixing means and upper fixing means arranged at equal intervals along the longitudinal direction of the guide drum, respectively, and the lower and upper partition members are fixed to the lower part according to the required space. It is characterized in that it is fitted while changing the position of the means and the upper fixing means.
다른 측면에서 본 발명에 따른 고온초전도 선재 제조방법은 진공챔버 내부에 릴-투-릴 방식으로 기판 이송을 위한 가이드 드럼을 구비하는 가이드 드럼 준비단계와, 상기 진공챔버 내부에 가이드 드럼에 증착되는 증착물질을 배치하고, 각 증착물질 배치 공간을 하부구획부재를 이용하여 구획하는 하부챔버 구획단계와, 상기 하부챔버 구획단계와 대응되도록 상부챔버 내부 공간을 상부구획부재를 이용하여 구획하는 상부챔버 구획단계와, 내부공간이 구획된 진공챔버 내부에서 가이드 드럼을 회전시키며 증착물질을 순차적으로 증착시키는 증착단계를 포함하는 것을 특징으로 한다.In another aspect, the method for manufacturing a high-temperature superconducting wire according to the present invention includes a guide drum preparation step including a guide drum for transferring a substrate in a reel-to-reel method inside a vacuum chamber, and deposition deposited on the guide drum inside the vacuum chamber. A lower chamber partitioning step of disposing a material and partitioning each deposition material arrangement space using a lower partition member, and an upper chamber partitioning step of partitioning an upper chamber inner space using an upper partition member to correspond to the lower chamber partitioning step and a deposition step of sequentially depositing a deposition material while rotating a guide drum in a vacuum chamber in which an internal space is partitioned.
상기 하부챔버 구획단계에서는 증착물질의 배치 시 초전도 층을 형성하는 물질의 배치공간 전측에 [관계식 A]를 만족하여 단결정 수준의 결정배향성을 가지는 물질을 배치하는 것을 특징으로 한다.In the lower chamber partitioning step, when the deposition material is disposed, a material having a single crystal level of crystal orientation is disposed in front of the arrangement space of the material forming the superconducting layer by satisfying [Relational Expression A].
[관계식 A][Relational A]
0°< FWHM2 ≤ 3° (단, FWHM2는 박막 결정립계에서의 결정방위차 각도(misorientation angle) 분포곡선의 반가폭(full width at half maximum)이다.)0°< FWHM2 ≤ 3° (However, FWHM2 is the full width at half maximum of the misorientation angle distribution curve at the grain boundary of the thin film.)
상기 증착단계는 구획된 제1공간에서 기판에 이트륨 옥사이드(Y 2O 3)를 증착하는 제1증착공정과, 구획된 제2공간에서 상기 이트륨 옥사이드(Y 2O 3)가 증착된 기판에 IBAD 방식으로 산화마그네슘(MgO)을 증착하는 제2증착공정과, 구획된 제3공간에서 산화마그네슘(MgO)층이 증착된 기판에 [관계식 A]를 만족하여 단결정 수준의 결정배향성을 가지는 물질을 증착시켜 단결정 수준의 배향 증착이 이루어지는 제3증착공정과, 구획된 제4공간에서 단결정 수준으로 배향 증착된 결정배향성 개선 물질층의 상측으로 동시 열증발 증착법을 이용하여 초전도층을 증착하는 제4증착공정과, 구획된 제5공간에서 상기 초전도층의 상측으로 은(Ag)을 증착시켜 보호층을 형성하는 제5증착공정 및 구획된 제6공간에서 상기 제5증착공정까지 완료된 기판을 회수릴로 모두 권취한 이후 제6공간 내부로 산소를 공급하여 초전도층의 산소조성비를 조절하는 제6공정;을 포함하여 이루어지는 것을 특징으로 한다.The deposition step of yttrium oxide to the substrate in the compartment the first space (Y 2 O 3) to the first deposition step of depositing, the yttrium oxide in the compartment second space (Y 2 O 3) is IBAD on the deposited substrate In the second deposition process of depositing magnesium oxide (MgO) in this way, and in the partitioned third space, a material having a single crystal level of crystal orientation is deposited by satisfying [Relational A] on the substrate on which the magnesium oxide (MgO) layer is deposited. The third deposition process in which the orientation deposition of single crystal level is performed and the fourth deposition process of depositing the superconducting layer using the simultaneous thermal evaporation method on the upper side of the crystal orientation improvement material layer oriented and deposited at the single crystal level in the divided fourth space And, a fifth deposition process of forming a protective layer by depositing silver (Ag) on the upper side of the superconducting layer in the partitioned fifth space, and the fifth deposition process in the partitioned sixth space. and then a sixth process of controlling the oxygen composition ratio of the superconducting layer by supplying oxygen into the sixth space.
[관계식 A][Relational A]
0°< FWHM2 ≤ 3° (단, FWHM2는 박막 결정립계에서의 결정방위차 각도(misorientation angle) 분포곡선의 반가폭(full width at half maximum)이다.)0°< FWHM2 ≤ 3° (However, FWHM2 is the full width at half maximum of the misorientation angle distribution curve at the grain boundary of the thin film.)
본 발명에 따르면 진공챔버 내부에 증착물질 별 수용공간이 구획되고, 릴-투-릴 방식으로 공급 및 회수되는 기판이 드럼에 형성된 가이드 홈을 따라 회전 이송되면서 각 구간별 증착물질이 순차적으로 적층될 수 있다. According to the present invention, a receiving space for each deposition material is partitioned inside the vacuum chamber, and the deposition material for each section is sequentially stacked while the substrate supplied and recovered in a reel-to-reel method is rotated along the guide groove formed in the drum. can
따라서, 복수의 진공챔버가 요구되지 않으며, 한번의 준비과정을 통해 연속된 적층구조를 용이하게 형성할 수 있으므로 고온초전도 선재의 제조에 소요되는 시간과 경비를 줄일 수 있는 이점을 가진다. Accordingly, a plurality of vacuum chambers are not required, and a continuous stacked structure can be easily formed through a single preparation process, thereby reducing the time and cost required for manufacturing the high-temperature superconducting wire.
또한, 본 발명에 따르면, 진공챔버 내부에 구비되는 증착물질에 결정배향성 개선 물질이 수용되는 공간이 마련되고, 초전도 물질의 증착에 앞서 결정배향성 개선 물질이 증착된 이후 후속 증착되는 물질 및 초전도층을 에피택셜하게 증착시켜 다결정 기판에서도 결정배향성이 개선된 단결정 수준의 초전도 층이 형성된 고온초전도 선재가 제조될 수 있다. In addition, according to the present invention, a space in which the crystal orientation improving material is accommodated is provided in the deposition material provided inside the vacuum chamber, and the material and the superconducting layer are subsequently deposited after the crystal orientation improving material is deposited prior to the deposition of the superconducting material. A high-temperature superconducting wire having a single-crystal-level superconducting layer having improved crystal orientation even on a polycrystalline substrate by epitaxial deposition can be manufactured.
뿐만 아니라, 완충층에 또 다른 기능층을 부가하거나 완충층의 종류를 줄이고자 할 경우와, 초전도층의 형성 이후 보호층 및 안정화층을 형성하고자 할 경우 모두 진공챔버 내부공간을 구획부재를 이용하여 용이하게 가변시킬 수 있으므로 공정 개선이 용이함은 물론 공정 개선에 소요되는 제조경비를 절감할 수 있는 이점을 가진다. In addition, in the case of adding another functional layer to the buffer layer or reducing the type of the buffer layer, and in the case of forming the protective layer and the stabilization layer after the formation of the superconducting layer, the internal space of the vacuum chamber can be easily partitioned using a partition member. Since it can be changed, it is easy to improve the process and has the advantage of reducing the manufacturing cost required for process improvement.
도 1 은 본 발명에 따른 고온초전도 선재 제조장치의 주요 구성을 보이기 위한 도면. 1 is a view for showing the main configuration of a high-temperature superconducting wire rod manufacturing apparatus according to the present invention.
도 2 는 본 발명의 요부구성인 구획부재의 설치 구조를 보인 도면.Figure 2 is a view showing the installation structure of the partition member as a main part of the present invention.
도 3 은 본 발명에 따른 고온초전도 선재 제조장치의 내부공간 구획 구조를 설명하기 위한 도면.3 is a view for explaining the internal space partition structure of the apparatus for manufacturing a high-temperature superconducting wire according to the present invention;
도 4 는 본 발명의 요부구성인 상부챔버 구획부재(a)와 하부챔버 구획부재(b)의 일실시 예를 보인 도면.4 is a view showing an embodiment of an upper chamber partition member (a) and a lower chamber partition member (b), which are essential parts of the present invention.
도 5 는 본 발명의 요부구성인 수평 구획부재의 일실시 예를 보인 도면.5 is a view showing an embodiment of a horizontal partition member as a main part of the present invention.
도 6 은 본 발명에 따른 고온초전도 선재 제조장치의 구획된 내부공간의 일 실시 예를 보인 도면.6 is a view showing an embodiment of the partitioned inner space of the high-temperature superconducting wire manufacturing apparatus according to the present invention.
도 7 은 본 발명에 따른 고온초전도 선재 제조장치를 이용하여 고온초전도 선재를 제조하는 과정을 보이기 위한 도면.7 is a view for showing a process of manufacturing a high-temperature superconducting wire using the high-temperature superconducting wire manufacturing apparatus according to the present invention.
도 8 은 본 발명의 단결정 형성 매커니즘을 보이기 위한 도면.8 is a view for showing a single crystal formation mechanism of the present invention.
도 9 는 본 발명의 바람직한 실시 예에 따른 결정배향성 개선 물질로 FeCo 박막을 보인 도면.9 is a view showing a FeCo thin film as a crystal orientation improving material according to a preferred embodiment of the present invention.
도 10 은 본 발명의 일 실시 예에 따른 Fe xCo 1-x 합금으로 형성된 박막의 조성비에 따른 2-theta를 분석하여 나타낸 그래프10 is a graph showing the analysis of 2-theta according to the composition ratio of the thin film formed of Fe x Co 1-x alloy according to an embodiment of the present invention;
도 11 은 본 발명의 일 실시예에 따른 다결정 완충물질로 MgO 및 LMO를 적용해 Phi Scan을 분석하여 결정들의 평면방향으로의 정렬도를 나타낸 도면.11 is a view showing the alignment of crystals in the plane direction by analyzing Phi Scan by applying MgO and LMO as a polycrystalline buffer material according to an embodiment of the present invention.
도 12 는 본 발명의 일 실시예에 따른 다결정 완충물질의 결정립계에서의 결정립들의 결정방위차 각도의 반가폭에 따른 결정배향능력을 나타낸 도면.12 is a view showing the crystal orientation ability according to the half width of the crystal orientation difference angle of the crystal grains at the grain boundary of the polycrystalline buffer material according to an embodiment of the present invention.
도 13 은 본 발명의 일 실시예에 따른 열증발증착법으로 결정배향성 개선물질의 증착률에 따른 결정배향능력을 나타낸 도면.13 is a view showing the crystal orientation ability according to the deposition rate of the crystal orientation improving material by the thermal evaporation method according to an embodiment of the present invention.
도 14 는 본 발명의 일 실시예에 따른 열증발증착법으로 결정배향성 개선물질을 증착시켜 박막을 형성하는 단계에서 증착온도에 따른 결정배향능력을 나타낸 도면.14 is a view showing the crystal orientation ability according to the deposition temperature in the step of forming a thin film by depositing a crystal orientation improving material by a thermal evaporation method according to an embodiment of the present invention.
도 15 는 단결정 수준의 결정배향성을 나타내는 두께에 대한 실험결과를 나타낸 도면.15 is a view showing the experimental results for the thickness showing the crystal orientation of the single crystal level.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세히 설명한다.각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호로 기재된다. 또한, 실시 예의 설명에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 설명을 간략히 하거나 생략하였으며, 어떤 구성요소가 다른 구성요소의 상측에 “구비”,“적층”,“증착”또는“형성”된다고 기재된 경우, 그 구성요소는 그 다른 구성요소의 상면에 직접적으로 구비, 적층, 증착 또는 형성될 수 있지만, 각 구성요소 사이에 또 다른 구성 요소가 “구비”,“적층”,“증착”또는“형성”될 수도 있다고 이해되어야 할 것이다. Hereinafter, some embodiments of the present invention will be described in detail with reference to exemplary drawings. In adding reference numerals to components in each drawing, the same components are denoted by the same reference numerals as much as possible even though they are indicated in different drawings. described. In addition, in the description of the embodiment, if it is determined that a detailed description of a related known configuration or function interferes with the understanding of the embodiment of the present invention, the description is simplified or omitted, and a certain element is located above another element. When it is described as “having”, “laminated”, “deposited” or “formed”, the component may be provided, laminated, deposited, or formed directly on the top surface of the other component, but another component may be formed between each component. It should be understood that a component may be “prepared,” “laminated,” “deposited,” or “formed.”
본 발명에 따른 고온초전도 선재 제조장치는 진공챔버 내부에서 릴-투-릴 방식으로 기판이 이송되면서 기판의 이동위치에 따라 순차적으로 증착물질을 증착시켜 고온초전도 선재를 제조하도록 구성된다. The high-temperature superconducting wire manufacturing apparatus according to the present invention is configured to manufacture a high-temperature superconducting wire by sequentially depositing deposition materials according to the movement position of the substrate while the substrate is transferred in a reel-to-reel manner in a vacuum chamber.
이하에서는 첨부된 도면을 참조하여 상기와 같은 기능의 본 발명을 보다 상세히 설명하기로 한다. Hereinafter, the present invention having the above functions will be described in more detail with reference to the accompanying drawings.
도 1 에는 본 발명에 따른 고온초전도 선재 제조장치의 주요 구성을 보이기 위한 도면이 도시되고, 도 2 에는 본 발명의 요부구성인 구획부재의 설치 구조를 보인 도면이 도시되며, 도 3 에는 본 발명에 따른 고온초전도 선재 제조장치의 내부공간 구획 구조를 설명하기 위한 도면이 도시된다. 1 is a view showing the main configuration of the apparatus for manufacturing a high-temperature superconducting wire according to the present invention, FIG. 2 is a view showing the installation structure of the partition member, which is the main part of the present invention, and FIG. 3 is the present invention. A drawing for explaining the internal space partition structure of the high-temperature superconducting wire rod manufacturing apparatus according to the present invention is shown.
이들 도면을 참조하면, 본 발명에 따른 고온초전도 선재 제조장치는 진공챔버(200) 내부에서 가이드 드럼(400)을 회전시키면서, 가이드 드럼(400)에 형성된 가이드 홈(도면부호 부여되지 않음)을 따라 이송되는 기판(100)에 증착물질을 연속해서 증착시키도록 구성된다. Referring to these drawings, the apparatus for manufacturing a high-temperature superconducting wire according to the present invention rotates the guide drum 400 inside the vacuum chamber 200, along the guide groove (reference numeral not assigned) formed in the guide drum 400 . It is configured to continuously deposit a deposition material on the transferred substrate 100 .
상세히, 상기 진공챔버(200)는 상부챔버(220)와 하부챔버(260) 및 차압챔버(240)로 구성되며, 상기 차압챔버(240)는 상기 상부챔버(220)와 하부챔버(260) 사이에 구비되어 각 챔버에서 발생되는 반응가스를 차압 배기한다. In detail, the vacuum chamber 200 includes an upper chamber 220 , a lower chamber 260 , and a differential pressure chamber 240 , and the differential pressure chamber 240 is disposed between the upper chamber 220 and the lower chamber 260 . It is provided in the chamber to differential pressure exhaust the reaction gas generated in each chamber.
상기 상부챔버(220)는 산소공급부(500)를 통해 산소 및 반응 가스 등이 공급됨에 따라 상대적으로 저진공 상태를 유지한다. 그리고, 기판(100)에 증착되는 증착물질이 히터에 의해 가열되어 확산되면서 결정성장 될 수 있는 반응공간을 제공하며, 상기 가이드 드럼(400)을 중심으로 내부히터(420)와 외부히터(222)를 구비하여 반응공간을 가열할 수 있도록 구성된다. The upper chamber 220 maintains a relatively low vacuum state as oxygen and a reaction gas are supplied through the oxygen supply unit 500 . In addition, the deposition material deposited on the substrate 100 is heated and diffused by the heater to provide a reaction space for crystal growth, and an internal heater 420 and an external heater 222 are provided centering on the guide drum 400 . is provided to heat the reaction space.
상기 하부챔버(260)는 상대적으로 고진공 상태를 유지하며, 증착물질을 공급하여 기판(100)에 증착물질이 증착될 수 있도록 구성된다. The lower chamber 260 maintains a relatively high vacuum state, and supplies the deposition material so that the deposition material can be deposited on the substrate 100 .
그리고, 상기 차압챔버(240)는 상기 상부챔버(220)와 하부챔버(260) 사이에서 서로 연동 작용하는 차압 배기를 통해 하부챔버(260)를 고진공 상태로 유지시켜 증착 및 결정성장 환경이 명확히 분리될 수 있도록 한다.In addition, the differential pressure chamber 240 maintains the lower chamber 260 in a high vacuum state through differential pressure exhaust that interworks with each other between the upper chamber 220 and the lower chamber 260 to clearly separate deposition and crystal growth environments. make it possible
상기와 같이 증착과 결정성장 환경이 구분된 환경의 진공챔버(200) 내부에는 전술한 가이드 드럼(400)이 구비된다. The above-described guide drum 400 is provided inside the vacuum chamber 200 in an environment in which deposition and crystal growth environments are separated as described above.
상기 가이드 드럼(400)은 기판(100)의 공급을 위한 공급릴(420)과 증착이 완료된 기판(100)을 회수하기 위한 회수릴(440)을 더 포함하며, 외주면을 따라 가이드 홈(미도시)이 형성된다. The guide drum 400 further includes a supply reel 420 for supplying the substrate 100 and a recovery reel 440 for recovering the deposition-completed substrate 100, and guide grooves (not shown) along the outer circumferential surface. ) is formed.
상기 가이드 홈(미도시)은 공급되는 기판(100)의 폭과 대응되는 폭으로 가이드 드럼(400) 외주면에서 내측으로 소정 깊이 함몰 형성되며, 회수릴(440) 방향으로 진출하는 나선형상으로 형성된다. The guide groove (not shown) has a width corresponding to the width of the supplied substrate 100 and is recessed to a predetermined depth inward from the outer circumferential surface of the guide drum 400 , and is formed in a spiral shape advancing toward the recovery reel 440 . .
따라서, 상기 공급릴(420)에서 풀려 나오는 기판(100)은 가이드 홈에 수용된 상태로 가이드 드럼(400)의 회전에 의해 일정한 속도로 가이드 홈을 따라 회수릴(440) 방향으로 이송될 수 있다. Accordingly, the substrate 100 released from the supply reel 420 may be transferred in the direction of the recovery reel 440 along the guide groove at a constant speed by the rotation of the guide drum 400 while being accommodated in the guide groove.
한편, 상기와 같은 공급구조에서는 기판(100)이 가이드 홈과 접촉되어 접촉저항이 발생될 수 있으므로, 이를 방지하기 위한 다양한 구조가 적용될 수 있다. On the other hand, in the supply structure as described above, since the substrate 100 may come into contact with the guide groove to generate contact resistance, various structures for preventing this may be applied.
일 예로, 상기 가이드 드럼(400)에는 본 발명의 선행기술문헌으로 기재된 “(특허문헌 2) KR10-0795065 B1”에서와 같이 드럼의 회전에 따라 가이드홈 외측으로 중력에 의해 노출되는 무게추를 이용하여 기판과 가이드 홈의 마찰을 줄이는 구조가 적용될 수 있다. As an example, the guide drum 400 uses a weight exposed by gravity to the outside of the guide groove according to the rotation of the drum as in “(Patent Document 2) KR10-0795065 B1” described in the prior art document of the present invention. Thus, a structure that reduces friction between the substrate and the guide groove may be applied.
다른 예로, 상기 가이드 드럼(400)에는 “(특허문헌 3) KR10-0750654 B1”과 같이 드럼의 길이 방향을 따라 별도의 슬립롤러를 구비하여 가이드 홈을 따라 이동하는 기판의 마찰을 줄이는 구조가 적용될 수 있다. As another example, the guide drum 400 is provided with a separate slip roller along the longitudinal direction of the drum as in “(Patent Document 3) KR10-0750654 B1” to reduce the friction of the substrate moving along the guide groove. can
또한, 본 발명에 따른 가이드 드럼(400)은 하부챔버(260) 내부에 구비되는 증착물질의 수용공간을 모두 경유하는 길이로 형성된다. In addition, the guide drum 400 according to the present invention is formed with a length passing through all of the accommodating space of the deposition material provided in the lower chamber 260 .
즉, 본 발명에 따른 고온초전도 선재 제조장치는 기판(100)에 증착되는 다수의 증착물질이 진공챔버(200) 내부에 순차적으로 배치되고, 기판(100)의 이동 위치에 따라 배치 순서에 따른 증착이 연속해서 진행되어 복수의 증착공정이 단 1번의 준비과정을 통해 이루어질 수 있도록 하는데 특징을 가진다. That is, in the apparatus for manufacturing a high-temperature superconducting wire according to the present invention, a plurality of deposition materials deposited on the substrate 100 are sequentially disposed inside the vacuum chamber 200 , and the deposition sequence according to the movement position of the substrate 100 . This is characterized in that it proceeds continuously so that a plurality of deposition processes can be performed through only one preparation process.
이를 위해 본 발명에 따른 진공챔버(200) 내부에는 가이드 드럼(400)의 길이방향을 따라 복수의 증착물질들이 구획부재에 의해 개별적으로 구획되는 공간에 순차적으로 배치된다. To this end, in the vacuum chamber 200 according to the present invention, a plurality of deposition materials are sequentially arranged in a space partitioned by partition members along the longitudinal direction of the guide drum 400 .
상기 구획부재는 하부챔버(260)의 내부공간을 증착물질이 기판(100)을 향해 공급되는 방향으로 구획하는 하부구획부재(800)와, 상부챔버(220)의 내부공간을 상기 하부구획부재(800)의 위치와 대응하도록 구획하는 상부구획부재(600) 및 상기 가이드 드럼(400)의 축방향과 나란하게 구비되어 상부챔버(220)와 하부챔버(260) 사이에 위치되는 수평구획부재(700)로 구분된다. The partition member includes a lower partition member 800 that partitions the inner space of the lower chamber 260 in a direction in which a deposition material is supplied toward the substrate 100, and a lower partition member 800 that divides the inner space of the upper chamber 220 into the lower partition member ( The horizontal partition member 700 is provided in parallel with the axial direction of the upper partitioning member 600 and the guide drum 400 to partition to correspond to the position of 800) and positioned between the upper chamber 220 and the lower chamber 260. ) are separated.
상세히, 도 4 에는 본 발명의 요부구성인 상부챔버 구획부재(a)와 하부챔버 구획부재(b)의 일실시 예를 보인 도면이 도시되고, 도 5 에는 본 발명의 요부구성인 수평 구획부재의 일실시 예를 보인 도면이 도시된다.In detail, FIG. 4 is a view showing an embodiment of the upper chamber partition member (a) and the lower chamber partition member (b), which are the main parts of the present invention, and FIG. 5 shows the horizontal partition member that is the main part of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS A drawing showing one embodiment is shown.
도 5를 우선 참조하면, 상기 수평구획부재(700)는 상기 가이드 드럼(400)의 길이보다 길게 형성되는 평판 형상의 수평구획패널(720)로 중앙 부분에 개구부(740)가 형성되며, 폭은 진공챔버(200)의 내부와 대응되도록 형성된다. Referring to FIG. 5 first, the horizontal partition member 700 is a flat plate-shaped horizontal partition panel 720 that is formed longer than the length of the guide drum 400, and an opening 740 is formed in the central part, and the width is It is formed to correspond to the inside of the vacuum chamber 200 .
그리고, 상기 개구부(740)는 상기 가이드 드럼(400)의 직경보다는 작은 폭을 가지면서 가이드 드럼(400)의 길이와 대응되는 길이로 형성된다. 따라서, 상기 가이드 드럼(400)이 진공챔버(200) 내부에 구비된 상태에서 상기 수평구획부재(700)가 설치되면, 가이드 드럼(400)의 하부 일부분만 하부챔버(260)를 향해 노출되고 나머지 부분은 차폐될 수 있도록 한다. In addition, the opening 740 has a width smaller than the diameter of the guide drum 400 and is formed to have a length corresponding to the length of the guide drum 400 . Accordingly, when the horizontal partition member 700 is installed in a state in which the guide drum 400 is provided inside the vacuum chamber 200 , only a lower portion of the guide drum 400 is exposed toward the lower chamber 260 and the remaining The part should be shielded.
한편, 도 4 의 (a)에 도시된 상부구획부재(600)는 상기 상부챔버(220) 높이 및 폭과 대응되는 높이와 폭을 가지는 평판 형상의 상부구획패널(620)로, 상기 가이드 드럼(400)의 상측 일부분과 대응되는 형상의 개구부인 드럼상부 수용부(640)를 포함한다. On the other hand, the upper partition member 600 shown in (a) of FIG. 4 is a flat upper partition panel 620 having a height and width corresponding to the height and width of the upper chamber 220, and the guide drum ( 400) and includes a drum upper accommodating portion 640 that is an opening having a shape corresponding to the upper portion.
그리고, 도 4의 (b)에 도시된 하부구획부재(800)는 상기 하부챔버(260)의 높이 및 폭과 대응되는 높이와 폭을 가지는 평판 형상의 하부구획패널(820)과 상기 가이드 드럼(400)의 형상 중 상기 드럼상부 수용부(640)의 형상을 제외한 나머지 가이드 드럼(400)의 하부 형상과 대응되는 형상의 개구부인 드럼하부 수용부(840)를 포함한다. And, the lower partition member 800 shown in (b) of FIG. 4 has a flat lower partition panel 820 having a height and width corresponding to the height and width of the lower chamber 260 and the guide drum ( 400), except for the shape of the upper drum accommodating part 640, includes a lower drum accommodating part 840 that is an opening having a shape corresponding to the lower shape of the guide drum 400.
즉, 상기 상부구획부재(600)와 하부구획부재(800) 및 수평구획부재(700)는 상기 가이드 드럼(400)의 외부에서 가이드 드럼(400)이 구비되는 위치를 제외한 나머지 진공챔버(200) 내부공간과 대응되는 형상으로 형성되되, 가이드 드럼(400)과 접하지 않도록 설치됨으로써 진공챔버(200) 내부공간이 구획된 복수의 공간으로 구분될 수 있도록 한다. That is, the upper partitioning member 600, the lower partitioning member 800, and the horizontal partitioning member 700 are the remaining vacuum chamber 200 except for the position where the guide drum 400 is provided outside the guide drum 400. It is formed in a shape corresponding to the inner space, and is installed so as not to contact the guide drum 400 so that the inner space of the vacuum chamber 200 can be divided into a plurality of partitioned spaces.
이를 위해 상기 하부챔버(260) 및 상부챔버(220)에는 각각 진공환경 형성을 위한 배기 펌핑은 물론 상기 차압챔버(220)에 의한 배기펌핑이 함께 이루어짐에 따라 상기와 같은 구획부재에 의해 개별적으로 분리되는 공간은 각각 해당 증착물질이 수용되는 영역의 증착공간 및 반응공간으로 작용할 수 있다. To this end, the lower chamber 260 and the upper chamber 220 are individually separated by the partition member as described above as the exhaust pumping for forming a vacuum environment as well as the exhaust pumping by the differential pressure chamber 220 are performed together. The space to be used may act as a deposition space and a reaction space of a region in which the corresponding deposition material is accommodated, respectively.
게다가 본 발명에 따른 구획부재는 상기 가이드 드럼(400)의 외면과 10mm 이하의 공극(opening)을 형성하도록 설치되어 상부챔버(220)와 하부챔버(260)의 진공도 차이가 유지될 수 있다. In addition, the partition member according to the present invention is installed to form an opening of 10 mm or less with the outer surface of the guide drum 400, so that the vacuum difference between the upper chamber 220 and the lower chamber 260 can be maintained.
상기와 같은 설치 구조를 위해 상기 진공챔버(200) 내부에는 구획부재의 설치를 위한 고정수단이 더 구비된다. For the installation structure as described above, a fixing means for installing the partition member is further provided inside the vacuum chamber 200 .
상세히, 상기 수평구획부재(700)는 상기 진공챔버(200)의 내벽에 구비되는 수평고정수단(250)에 고정 설치될 수 있다.In detail, the horizontal partition member 700 may be fixedly installed on the horizontal fixing means 250 provided on the inner wall of the vacuum chamber 200 .
상기 수평고정수단(250)은 상기 수평구획패널(720)의 전측 및 후측 양 단부가 각각 끼움 장착될 수 있도록 수평구획패널(720)의 두께만큼 이격된 거리를 가지는 한 쌍의 돌기부 형태로 형성될 수 있다. The horizontal fixing means 250 is formed in the form of a pair of protrusions having a distance spaced apart by the thickness of the horizontal partition panel 720 so that both ends of the front and rear sides of the horizontal partition panel 720 can be fitted respectively. can
상기 하부구획부재(800)는 상기 하부챔버(260)의 저면에 구비되는 하부고정수단(270)에 의해 고정 설치될 수 있다. The lower partition member 800 may be fixedly installed by a lower fixing means 270 provided on the bottom surface of the lower chamber 260 .
상기 하부고정수단(270)은 상기 가이드 드럼(400)의 길이방향을 따라 상방으로 돌출 형성되는 복수개의 돌기부로, 각 돌기부 사이의 이격 거리는 상기 하부고정패널(820)의 두께와 대응되는 거리만큼 형성된다. 따라서, 상기 하부구획부재(800)를 원하는 위치에 이동 설치 가능하며, 증착물질의 수량 및 증착범위에 따라 설치 위치 및 수량이 용이하게 가변될 수 있다. The lower fixing means 270 is a plurality of protrusions that are formed to protrude upward along the longitudinal direction of the guide drum 400, and the distance between the protrusions is formed by a distance corresponding to the thickness of the lower fixing panel 820 . do. Accordingly, the lower partition member 800 can be moved and installed at a desired position, and the installation position and quantity can be easily changed according to the quantity and the deposition range of the deposition material.
그리고, 상기 상부구획부재(600)는 상기 상부챔버(220)의 상면에 구비되는 상부고정수단(230)에 의해 고정 설치될 수 있다. In addition, the upper partition member 600 may be fixedly installed by the upper fixing means 230 provided on the upper surface of the upper chamber 220 .
상기 상부고정수단(230)은 상기 하부고정수단(270)과 대응되는 위치에 형성되어 상기 하부구획부재(800)의 설치위치에 대응되어 상기 상부구획부재(600)가 고정 설치될 수 있도록 한다. The upper fixing means 230 is formed at a position corresponding to the lower fixing means 270 to correspond to the installation position of the lower partition member 800 so that the upper partition member 600 can be fixedly installed.
따라서, 상기 상부구획부재(600)과 하부구획부재(800)는 진공챔버(200) 내부공간을 가이드 드럼(400) 축방향과 교차되는 방향으로 구획하여 하나의 증착물질이 다른 증착공간과 구분되어 증착 및 반응할 수 있도록 한다. Accordingly, the upper partition member 600 and the lower partition member 800 divide the inner space of the vacuum chamber 200 in a direction crossing the axial direction of the guide drum 400 so that one deposition material is separated from another deposition space. to be deposited and reacted.
한편, 상기와 같이 구획되는 증착공간에는 증착물질의 특성에 따라 전자빔 증착(E-beam evaporation), 스퍼터링(Sputtering), 열증발증착(Thermal evaporator) 및 동시증발증착(Evaporation using Drun in Dual Chamber, EDDC) 방법 중 하나를 이용하여 증착이 이루어질 수 있다. Meanwhile, in the deposition space divided as described above, depending on the characteristics of the deposition material, E-beam evaporation, sputtering, thermal evaporator, and evaporation using Drun in Dual Chamber, EDDC ), the deposition can be made using one of the methods.
일 예로 초전도층이 형성되는 증착공간에서는 상기 동시증발증착(EDDC) 방법에 의해 초전도층을 형성하는 물질인 Sm, Ba, Cu 가 동시증발 증착되며, 이를 위해 각각의 물질이 수용되는 도가니(280)와 각 물질별 증발률을 제어하기 위한 QCM(Quartz crystal microbalances) 센서가 구비될 수 있다. For example, in the deposition space where the superconducting layer is formed, Sm, Ba, and Cu, which are materials forming the superconducting layer, are co-evaporated by the EDDC method, and for this purpose, a crucible 280 in which each material is accommodated. And QCM (Quartz crystal microbalances) sensor for controlling the evaporation rate for each material may be provided.
도 6 에는 본 발명에 따른 고온초전도 선재 제조장치의 구획된 내부공간의 일 실시 예를 보인 도면이 도시된다. 그리고, 도 7 에는 본 발명에 따른 고온초전도 선재 제조장치를 이용하여 고온초전도 선재를 제조하는 과정을 보이기 위한 도면이 도시된다. 6 is a view showing an embodiment of the partitioned inner space of the high-temperature superconducting wire rod manufacturing apparatus according to the present invention. And, FIG. 7 is a view showing a process of manufacturing a high-temperature superconducting wire using the high-temperature superconducting wire manufacturing apparatus according to the present invention.
이들 도면을 참조하면, 본 실시 예에 따른 고온초전도 선재 제조장치를 이용하여 고온초전도 선재를 제조하는 방법은 우선, 진공챔버(200)의 내부에 가이드 드럼(400)을 설치하는 가이드 드럼 준비단계부터 수행된다. Referring to these drawings, the method of manufacturing a high-temperature superconducting wire using the apparatus for manufacturing a high-temperature superconducting wire according to the present embodiment starts with the guide drum preparation step of installing the guide drum 400 inside the vacuum chamber 200. is carried out
상기 가이드 드럼 준비단계에서는 상기 공급릴(420) 및 회수릴(440)과 함께 일정속도로 회전하면서 기판(100)을 이송시키기 위한 가이드 드럼(400)이 설치된다. 상기 가이드 드럼(400)은 외부에서 회전 모터와 연결되어 회전 속도가 가변될 수 있으며, 상부챔버(220)와 하부챔버(260) 사이에 수평구획부재(700)를 설치하여, 가이드 드럼(400)의 하부 일부분만 하부챔버(260)의 상측에 노출될 수 있도록 한다.In the guide drum preparation step, the guide drum 400 for transferring the substrate 100 while rotating together with the supply reel 420 and the recovery reel 440 at a constant speed is installed. The guide drum 400 is connected to a rotation motor from the outside so that the rotation speed can be varied, and a horizontal partition member 700 is installed between the upper chamber 220 and the lower chamber 260 to provide a guide drum 400 . Only a lower portion of the lower chamber 260 may be exposed above the lower chamber 260 .
상기 가이드 드럼(400)이 설치된 이후에는 진공챔버(200) 내부에 가이드 드럼(400)에 증착되는 증착물질을 배치하고, 각 배치 공간을 하부구획부재(800)를 이용하여 구획하는 하부챔버 구획단계가 수행된다.After the guide drum 400 is installed, the deposition material deposited on the guide drum 400 is disposed inside the vacuum chamber 200, and each arrangement space is partitioned using the lower partition member 800. A partitioning step of the lower chamber. is performed
상기 하부챔버 구획단계에서는 상기 가이드 드럼(400)의 축방향과 교차되는 방향으로 하부챔버(260) 내부공간을 복수의 공간으로 구획하며, 본 실시 예에서는 상기 하부챔버(260)가 5개의 하부구획부재(800)에 의해 6개의 구분된 공간으로 구획된다. In the lower chamber partitioning step, the inner space of the lower chamber 260 is partitioned into a plurality of spaces in a direction crossing the axial direction of the guide drum 400, and in this embodiment, the lower chamber 260 has five lower partitions. It is divided into six spaced spaces by the member 800 .
이하에서는 설명의 편의를 위해 구획된 공간을 공급릴(420)에서 회수릴(440)을 향하는 방향을 따라 순차적으로 제1증착공간(262), 제2증착공간(263), 제3증착공간(264), 제4증착공간(265), 제5증착공간(266) 그리고, 후열처리공간(268)로 구분하여 설명한다. Hereinafter, for convenience of explanation, the partitioned space is sequentially provided in a direction from the supply reel 420 to the recovery reel 440 in the first deposition space 262, the second deposition space 263, and the third deposition space ( 264), a fourth deposition space 265 , a fifth deposition space 266 , and a post-heat treatment space 268 will be described.
그리고, 상기 하부챔버(260)는 배기펌핑에 의해 10 -4 Torr 이하의 고진공 상태로 유지되며, 상기 제1내지 5 증착공간(262~266) 및 하부후열처리공간(268)에는 각각 증착물질의 특성에 따른 증착방법과 이를 위한 장치 구성이 부가된다. In addition, the lower chamber 260 is maintained in a high vacuum state of 10 -4 Torr or less by exhaust pumping, and the first to fifth deposition spaces 262 to 266 and the lower post-heat treatment space 268 contain deposition materials, respectively. A deposition method according to the characteristics and an apparatus configuration for this are added.
한편, 상기와 같이 하부챔버 구획단계가 완료되면, 상기 하부챔버의 구획된 공간과 대응되도록 상부챔버 내부 공간을 구획하는 상부챔버 구획단계가 수행된다. Meanwhile, when the lower chamber partitioning step is completed as described above, the upper chamber partitioning step of partitioning the inner space of the upper chamber to correspond to the partitioned space of the lower chamber is performed.
상기 상부챔버 구획단계에서는 상기 하부구획부재(800)의 설치 위치와 대응되도록 상부구획부재(600)를 설치하여 내부공간을 6개의 공간으로 구획하여 각각 제1반응공간(222), 제2반응공간(223), 제3반응공간(224), 제4반응공간(225), 제5반응공간(226) 그리고, 상부후열처리공간(228)로 구분된다. In the upper chamber partitioning step, the upper partitioning member 600 is installed to correspond to the installation position of the lower partitioning member 800 to divide the inner space into six spaces, respectively, a first reaction space 222 and a second reaction space. 223 , a third reaction space 224 , a fourth reaction space 225 , a fifth reaction space 226 , and an upper post-heat treatment space 228 .
한편, 상기와 같이 구획된 상부챔버(220)에도 배기펌핑에 의해 진공상태가 유지되나, 전술한 바와 같이 산소공급부(500)를 통해 산소 및/또는 반응가스 등이 공급됨에 따라 상대적으로 저진공 상태로 유지된다.On the other hand, although the vacuum state is maintained by the exhaust pumping in the upper chamber 220 divided as described above, as described above, as oxygen and/or reaction gas are supplied through the oxygen supply unit 500, a relatively low vacuum state is maintained as
상기 산소공급부(500)는 초전도층이 위치되는 제3반응공간(224) 및 상부후열처리공간(228)에 위치되며, 설명의 편의를 위해 각각 제1산소공급부(520) 및 제2산소공급부(540)로 구분한다. The oxygen supply unit 500 is located in the third reaction space 224 and the upper post-heat treatment space 228 where the superconducting layer is located, and for convenience of explanation, a first oxygen supply unit 520 and a second oxygen supply unit ( 540).
상기와 같이 상부챔버 구획단계가 완료되면, 복수의 증착 및 반응공간 사이에 위치되는 가이드 드럼(400)을 회전시키면서 기판(100)을 이송시켜 증착물질이 순차적으로 증착되는 증착단계가 수행된다. When the upper chamber partitioning step is completed as described above, a deposition step in which the deposition material is sequentially deposited by transferring the substrate 100 while rotating the guide drum 400 positioned between the plurality of deposition and reaction spaces is performed.
이하에서는 본 발명의 구체적인 실시예를 참조하여 본 발명의 고온초전도 선재 제조과정에 대해 설명한다. Hereinafter, a process for manufacturing a high-temperature superconducting wire of the present invention will be described with reference to specific embodiments of the present invention.
본 실시 예에서 가이드 드럼(400)은 직경 50cm에 72cm의 길이를 가지고, 100m 길이의 선재를 수용한다. In this embodiment, the guide drum 400 has a diameter of 50 cm and a length of 72 cm, and accommodates a wire rod having a length of 100 m.
상기 가이드 드럼(400)은 100rpm 으로 회전제어되며, 각 증착공정 모두 동일하게 적용된다. The guide drum 400 is rotationally controlled at 100 rpm, and all deposition processes are equally applied.
한편, 각 증착공간은 아래 표와 같이 증착물질이 배치되어 운전조건이 제어된다.Meanwhile, in each deposition space, deposition materials are disposed as shown in the table below to control operating conditions.
구분division 증착물질deposition material 증착법vapor deposition 증착온도deposition temperature 진공도degree of vacuum 증착률deposition rate
제1증착공간first deposition space Y 2O 3 Y 2 O 3 전자빔증착법electron beam deposition 상온room temperature 10 -4 Torr 이하10 -4 Torr or less 수 nm/secseveral nm/sec
제2증착공간2nd deposition space MgOMgO 전자빔증착법electron beam deposition 상온room temperature 10 -4 Torr 이하10 -4 Torr or less 수 nm/secseveral nm/sec
제3증착공간3rd deposition space AgAg 열증발증착법 thermal evaporation 600℃600 10 -4 Torr 이하10 -4 Torr or less 수십/sectens/sec
제4증착공간4th deposition space SmBCOSmBCO 동시열증발증착법Simultaneous thermal evaporation 800℃800℃ 5~20mTorr5-20mTorr 수 nm/secseveral nm/sec
제5증착공간5th deposition space AgAg 열증발증착법 thermal evaporation 500~700℃500~700 10 -4 Torr 이하10 -4 Torr or less 수 nm/secseveral nm/sec
상세히, 상기 제1증착공간(262)에서는 이트륨 산화물(Y 2O 3)이 증착물질로 수용되어 가이드 드럼(400)이 회전하면서 기판(100)이 공급되면 상온에서 전자빔증착법으로 이트륨산화물이 박막 형태로 증착된다. 그리고, 박막 형태로 증착된 이트륨산화물은 회전에 의해 제1반응공간(222)으로 이동되며, 확산 및 결정성장되어 이트륨산화물층이 형성된다. 상기와 같이 이트륨산화물층이 증착된 기판(100)은 가이드 드럼(400)의 회전에 의해 제2증착공간(263)으로 이송되고, 제2증착공간(264)에서는 상온에서 전자빔증착법으로 산화마그네슘(MgO)을 박막 형태로 증착된다. 그리고, 박막 형태로 증착된 산화마그네슘(MgO)은 회전에 의해 제2반응공간(223)으로 이송되어 확산 및 결정성장되면서 산화마그네슘층이 형성된다.상기와 같이 산화마그네슘층이 형성된 기판은 다시 가이드 드럼(400)의 회전에 의해 제3증착공간(264)으로 이송되고, 상기 제3증착공간(264)에서는 결정배향성을 개선시키기 위한 결정배향성 개선물질인 은(Ag)이 박막 형태로 증착된다. 상기와 같이 박막 형태로 증착되는 은(Ag)은 회전에 의해 제3반응공간(224)으로 이송되어 확산 및 결정성장하면서 결정배향성을 개선시켜 단결정 수준의 은(Ag) 박막이 형성된다. 즉, 상기 제3증착공간(264)에 수용되는 은(Ag)은 결정배향성을 개선시키기 위한 물질의 일 실시 예로, Fe, Fe계 합금, Fe계 화합물, Ni, Ni계 합금, Ni계 화합물, Ag 또는 Cu 중에서 선택될 수 있으며, 이와 같은 물질을 선택하기 위한 결정배향성 개선 매커니즘은 아래에서 첨부된 도면들과 함께 상세히 설명한다. In detail, in the first deposition space 262 , yttrium oxide (Y 2 O 3 ) is accommodated as a deposition material, and when the substrate 100 is supplied while the guide drum 400 is rotated, the yttrium oxide is formed into a thin film by electron beam deposition at room temperature. is deposited with Then, the yttrium oxide deposited in the form of a thin film is moved to the first reaction space 222 by rotation, and the yttrium oxide layer is formed by diffusion and crystal growth. The substrate 100 on which the yttrium oxide layer is deposited as described above is transferred to the second deposition space 263 by rotation of the guide drum 400, and magnesium oxide ( MgO) is deposited in the form of a thin film. Then, magnesium oxide (MgO) deposited in the form of a thin film is transferred to the second reaction space 223 by rotation to form a magnesium oxide layer while diffusion and crystal growth. The substrate on which the magnesium oxide layer is formed as described above is again guided It is transferred to the third deposition space 264 by the rotation of the drum 400 , and silver (Ag), which is a crystal orientation improving material for improving crystal orientation, is deposited in the form of a thin film in the third deposition space 264 . As described above, the silver (Ag) deposited in the form of a thin film is transferred to the third reaction space 224 by rotation to improve crystal orientation while diffusion and crystal growth to form a single-crystal level silver (Ag) thin film. That is, silver (Ag) accommodated in the third deposition space 264 is an example of a material for improving crystal orientation, Fe, Fe-based alloy, Fe-based compound, Ni, Ni-based alloy, Ni-based compound, It may be selected from Ag or Cu, and the crystal orientation improvement mechanism for selecting such a material will be described in detail with the accompanying drawings below.
상기와 같이 단결정 수준의 은(Ag) 박막이 형성된 기판은 다시 가이드 드럼(400)의 회전에 의해 제4증착공간(265)으로 이송되고, 상기 제4증착공간(265)에서는 Sm, Ba, Cu를 동시증발시켜 SmBCO가 박막 형태로 증착된다. 이때, 상기 SmBCO는 상기 은(Ag) 박막이 단결정 수준으로 형성됨에 제4반응공간(225)으로 이송되어 결정성장할 시 단결정 수준의 결정배향성을 따라 에피택셜하게 성장하여 단결정 수준의 초전도 박막으로 형성된다.As described above, the substrate on which the silver (Ag) thin film of the single crystal level is formed is transferred to the fourth deposition space 265 by the rotation of the guide drum 400 again, and in the fourth deposition space 265 , Sm, Ba, Cu SmBCO is deposited in the form of a thin film by co-evaporation. At this time, the SmBCO is transferred to the fourth reaction space 225 as the silver (Ag) thin film is formed at a single crystal level, and grows epitaxially according to the crystal orientation of the single crystal level when the crystal is grown to form a single crystal level superconducting thin film. .
상기와 같이 단결정 수준의 초전도 박막이 형성된 기판은 다시 가이드 드럼(400)의 회전에 의해 제5증착공간(266)으로 이송되고, 상기 제5증착공간(266)에서는 은(Ag)이 박막형태로 적층되어 제5반응공간(226)을 경유하면서 은(Ag) 보호층으로 형성된다. As described above, the substrate on which the superconducting thin film of the single crystal level is formed is transferred to the fifth deposition space 266 by the rotation of the guide drum 400 again, and silver (Ag) is formed in the form of a thin film in the fifth deposition space 266 . It is laminated and formed as a silver (Ag) protective layer while passing through the fifth reaction space 226 .
상기와 같이 기판에 은(Ag) 보호층의 증착이 완료된 이후에는 상기 가이드 드럼(400)의 회전에 의해 하부후열처리공간(268) 및 상부후열처리공간(228)에서 회수롤(440)에 기판 권취가 완료된 상태로 450℃로 가열하면서 산소 수백Torr를 공급하여 산소 후열처리하여 증착시 부족한 초전도층의 산소 조성비를 최적 조성비로 맞춰준다. After the deposition of the silver (Ag) protective layer on the substrate is completed as described above, the substrate is transferred to the recovery roll 440 in the lower post heat treatment space 268 and the upper post heat treatment space 228 by the rotation of the guide drum 400 . After the winding is completed, the oxygen composition ratio of the superconducting layer, which is insufficient during deposition, is adjusted to the optimum composition ratio by supplying several hundred Torr of oxygen while heating to 450°C.
한편, 도 8 은 본 발명의 단결정 형성 매커니즘을 보이기 위한 도면이 도시된다. On the other hand, Figure 8 is a view for showing the single crystal formation mechanism of the present invention is shown.
도면을 참조하면, 다결정의 제1 물질로 형성된 기판은 층을 이루는 결정립 각각의 배향축 방향이 랜덤하게 형성된 형태일 수 있다.(도 8의 (a) 참조). Referring to the drawings, the substrate formed of the polycrystalline first material may have a shape in which the orientation axis direction of each crystal grain constituting the layer is randomly formed (refer to (a) of FIG. 8).
상기와 같은 다결정의 기판 상측에 다결정의 결정배향성 개선물질을 증착시켜 박막을 형성하되, 상기 증착시 기판 결정립의 결정 크기(grain size)보다 큰 결정핵이 생성되면서 결정배향성 개선물질의 결정성장과 함께 박막이 증착된다. A thin film is formed by depositing a polycrystal orientation improving material on the upper side of the polycrystal substrate as described above, but during the deposition, crystal nuclei larger than the grain size of the substrate crystal grains are generated while crystal growth of the crystal orientation improving material A thin film is deposited.
즉, 상기 결정배향성 개선물질이 증착될 때, 순간적으로 기판 상에 결정핵이 빠르게 생성 및 성장하면서 증착되고, 기판 결정립계에서의 결정의 크기(grain size)보다 크게 생성되며, 이 때 박막의 결정립들의 배향축 방향이 기판의 결정립들의 배향축 평균방향과 정렬방향이 일치할 때 가장 에너지가 낮아 기판의 평균 배향축 정렬방향과 평행하게 증착될 수 있게 된다(도 8의 (b) 참조). That is, when the crystal orientation improving material is deposited, crystal nuclei are instantaneously generated and grown on the substrate while being deposited, and are generated larger than the grain size of the crystal at the grain boundary of the substrate, at this time the crystal grains of the thin film are formed. When the direction of the alignment axis coincides with the average direction of the alignment axis of the crystal grains of the substrate, the energy is lowest, so that deposition can be performed parallel to the alignment direction of the average alignment axis of the substrate (refer to FIG. 8(b) ).
이를 위해 상기 기판의 상측에 증착되는 결정배향성 개선물질의 결정립 크기는 상기 기판 결정립 크기의 적어도 2배 이상이며, 보다 바람직하게는 5~6배 이상일 때 기판 결정립들의 배향축 평균방향과 박막의 결정립들의 배향방향이 거의 일치할 수 있게 된다. 이후 결정배향성 개선물질의 증착이 지속됨에 따라 상기 결정핵이 성장하면서 박막 증착이 완료되면, 박막의 결정립 결정배향성은 결정립계에서의 결정방위차 각도의 반가폭이 3°이내를 만족하는 단결정성을 나타내게 된다.(도 8의 (c) 참조)To this end, the grain size of the crystal orientation improving material deposited on the upper side of the substrate is at least twice the size of the substrate grain size, and more preferably, when it is 5 to 6 times or more, the average direction of the orientation axis of the substrate grains and the crystal grains of the thin film The orientation direction can be almost coincident. Thereafter, as the deposition of the crystal orientation improving material continues, the crystal nuclei grow and the thin film deposition is completed, the crystal grain orientation of the thin film shows single crystallinity in which the half-width of the crystal orientation difference angle at the grain boundary satisfies within 3°. (see Fig. 8(c))
보다 구체적으로, 도 9 에는 본 발명의 바람직한 실시 예에 따른 결정배향성 개선 물질로 FeCo 박막을 보인 도면이 도시된다.More specifically, FIG. 9 is a view showing a FeCo thin film as a crystal orientation improving material according to a preferred embodiment of the present invention.
도 9의 (a)는 FeCo 합금 박막의 표면을 SEM 사진을 나타낸 것으로 이를 참조하면, FeCo 박막은 FeCo 결정모양이 직사각형을 형성하며 배향축이 반듯하고 일정하게 정렬되어 있는 바, 이는 단결정 수준으로 배향된 상태로 결정핵이 생성되고 결정이 에피택셜하게 성장하면서 박막이 형성되었음을 의미한다. 9 (a) is an SEM photograph of the surface of the FeCo alloy thin film. Referring to this, the FeCo thin film has a rectangular FeCo crystal shape, and the alignment axis is straight and uniformly aligned, which is oriented at the level of a single crystal. It means that the crystal nuclei are generated in a state where the crystals are grown and a thin film is formed as the crystals grow epitaxially.
즉, 다결정의 기판 상에 다결정인 FeCo 합금박막이 형성됨에도 불구하고, 기판 결정립들의 배향축 평균방향과 정렬방향이 일치하여, 기판의 평균 배향축 정렬방향과 평행하게 FeCo 박막이 증착됨에 따라 단결정성의 FeCo 박막이 형성된다.That is, in spite of the formation of a polycrystalline FeCo alloy thin film on a polycrystalline substrate, the average orientation axis direction and alignment direction of the substrate crystal grains coincide with each other, and as the FeCo thin film is deposited parallel to the average orientation axis alignment direction of the substrate, the single crystal A FeCo thin film is formed.
또한, 도 9의 (b)는 FeCo 합금 박막의 단면을 TEM 사진으로 나타낸 것으로 이를 참고하면, LMO층과 FeCo 합금 박막의 계면에서부터 에피택셜하게 결정 성장이 이루어짐을 단적으로 나타내고 있다. 여기서 상기 LMO 층은 기판의 결정배향성 개선물질층인 FeCo 합금 박막의 결합력을 향상시키기 위한 다결정 완충층으로 이와 같은 구조는 아래에서 첨부된 도면을 참조하여 보다 상세히 설명한다.In addition, (b) of FIG. 9 shows the cross section of the FeCo alloy thin film as a TEM photograph. Referring to this, it is clearly shown that crystal growth occurs epitaxially from the interface between the LMO layer and the FeCo alloy thin film. Here, the LMO layer is a polycrystalline buffer layer for improving the bonding strength of the FeCo alloy thin film, which is a crystal orientation improving material layer of the substrate. Such a structure will be described in more detail with reference to the accompanying drawings below.
그리고, 도 9의 (c)는 600℃ 이상의 온도에서 열증발증착법을 통해 증착 형성된 FeCo 합금 박막의 400nm 이하 두께에서의 표면을 SEM 사진으로 나타낸 것으로, FeCo 합금 박막의 FeCo 결정들이 사각형을 가지면서 일자로 정렬된 모습을 보인다. And, (c) of FIG. 9 is a SEM photograph showing the surface at a thickness of 400 nm or less of a FeCo alloy thin film deposited through thermal evaporation at a temperature of 600° C. or higher, wherein the FeCo crystals of the FeCo alloy thin film have a square shape. appear to be sorted.
또한, 도 9의 (d)의 경우 400~600℃의 온도에서 열증발증착법을 통해 증착 형성된 FeCo 합금 박막의 400nm 이상의 두께에서의 표면을 SEM 사진으로 나타낸 것으로, FeCo 합금 박막의 FeCo 결정들이 합쳐져서 평탄한 표면을 가짐을 나타낸다.In addition, in the case of (d) of FIG. 9, the surface at a thickness of 400 nm or more of the FeCo alloy thin film formed by deposition through thermal evaporation at a temperature of 400 to 600 ° C is shown as an SEM photograph. indicates that it has a surface.
따라서, 본 발명에서 결정배향성을 개선시키기 위한 박막은 상술한 바와 같이 결정배향성 개선물질층 증착시 결의핵이 생성되고 결정이 에피택셜하게 성장하며, 결정핵이 생성될 때 에너지가 가장 낮은 상태로 FeCo 박막의 결정배향성이 제어되므로, 결정배향성 개선물질이 증착됨과 거의 동시에 단결정 수준의 결정배향성을 나타내게 된다.Therefore, in the present invention, in the thin film for improving crystal orientation, as described above, when the crystal orientation improving material layer is deposited, the crystal nuclei are generated and the crystals grow epitaxially, and when the crystal nuclei are generated, the energy is the lowest in FeCo Since the crystal orientation of the thin film is controlled, crystal orientation of a single crystal level is exhibited almost simultaneously with the deposition of the crystal orientation improving material.
바람직하게는 본 발명의 결정배향성 개선 물질층은 기판과의 계면에서부터 수십 nm 이내에서 기판 결정립들의 배향축 평균방향과 평행하게 결정배향되도록 증착되고, 결정이 에피택셜하게 성장하면서 박막으로 증착됨에 따라 수백 nm 내지 수 ㎛에 이르는 단결정성 박막으로 형성될 수 있다. 보다 바람직하게는 본 발명의 결정배향성 개선 물질층 하부에 형성된 기판과의 계면에서부터 40nm 이내에서 관계식 A를 만족시키는 단결정성을 나타낸다.Preferably, the crystal orientation improving material layer of the present invention is deposited such that the crystal orientation is parallel to the average direction of the orientation axis of the substrate crystal grains within several tens of nm from the interface with the substrate, and as the crystals are epitaxially grown and deposited as a thin film, hundreds of It may be formed as a single crystalline thin film ranging from nm to several μm. More preferably, it exhibits single crystallinity satisfying the relation A within 40 nm from the interface with the substrate formed under the crystal orientation improving material layer of the present invention.
[관계식 A][Relational A]
0°< FWHM 2 ≤ 3°0°< FWHM 2 ≤ 3°
(단, FWHM 2는 박막 결정립계에서의 결정방위차 각도(misorientation angle) 분포곡선의 반가폭(full width at half maximum)이다.)(However, FWHM 2 is the full width at half maximum of the misorientation angle distribution curve at the grain boundary of the thin film.)
또한, 본 발명에 있어서 다결정의 결정배향성 개선물질은 Fe, Fe합금 또는 Fe계 화합물일 수 있다. 이 때, 상기 Fe계의 결정배향성 개선 물질로 형성되는 박막 즉 결정배향성 개선물질층은, 체심입방(body-centered cubic: bcc) 구조를 가짐에 따라, 기판 결정립들의 배향축의 평균방향과 평행하게 각 결정의 중심에 위치하는 결정핵이 배향되면서 증착될 수 있다. In addition, in the present invention, the crystal orientation improving material of the polycrystal may be Fe, an Fe alloy, or a Fe-based compound. At this time, as the thin film formed of the Fe-based crystal orientation improving material, that is, the crystal orientation improving material layer, has a body-centered cubic (bcc) structure, angles parallel to the average direction of the orientation axes of the substrate crystal grains The crystal nuclei located at the center of the crystal may be deposited while oriented.
또한, Fe는 지각에서 알루미늄 다음으로 흔한 금속이며 지구를 구성하는 원소 중 가장 비중이 높다. 따라서 상기 Fe계 단결정성 박막은, 원가면에서 경제성을 높이는 것은 물론 결정배향성이 우수하고, 다결정 기판의 종류에 관계없이 우수한 결정배향성을 나타낼 수 있어 본 발명에 적용될 수 있다.In addition, Fe is the second most common metal in the Earth's crust after aluminum and has the highest specific gravity among elements constituting the Earth. Therefore, the Fe-based single crystalline thin film can be applied to the present invention because it can increase economic feasibility in terms of cost as well as have excellent crystal orientation, and can exhibit excellent crystal orientation regardless of the type of polycrystalline substrate.
이 때, 바람직하게는 상기 Fe계 박막은 Fe와 Co 및/또는 Ni의 합금으로 형성된 박막일 수 있다. In this case, preferably, the Fe-based thin film may be a thin film formed of an alloy of Fe, Co and/or Ni.
보다 바람직하게는 Fe xCo 1-x(단, 0≤x≤0.5) 또는 FeNi 3일 수 있다.More preferably, it may be Fe x Co 1-x (provided that 0≤x≤0.5) or FeNi 3 .
또한, 상기 박막을 형성하는 결정배향성 개선물질은 Fe, Fe계 합금, Fe계 화합물, Ni, Ni계 합금, Ni계 화합물, Ag 또는 Cu 중에서 선택되는 어느 하나 일 수 있다. In addition, the crystal orientation improving material forming the thin film may be any one selected from Fe, Fe-based alloy, Fe-based compound, Ni, Ni-based alloy, Ni-based compound, Ag, or Cu.
도 10 은 본 발명의 일 실시예에 따른 Fe xCo 1-x합금으로 형성된 박막의 조성비에 따른 2-theta를 분석하여 나타낸 그래프로 FeCo 박막의 결정배향성을 측정하기 위한 철과 코발트의 증착부위 관련, #1에 가까울수록 철의 조성비가 높고 #7에 가까울수록 코발트의 조성비가 높음을 의미한다. 이를 참고하면, 철과 코발트의 조성비가 상이하더라도 결정들의 평면방향으로의 정렬도가 유지되는 것으로 나타난다. 10 is a graph showing the analysis of 2-theta according to the composition ratio of the thin film formed of the Fe x Co 1-x alloy according to an embodiment of the present invention, and related to the deposition site of iron and cobalt for measuring the crystal orientation of the FeCo thin film. , means that the closer to #1, the higher the composition ratio of iron, and the closer to #7, the higher the composition ratio of cobalt. Referring to this, even if the composition ratios of iron and cobalt are different, it appears that the degree of alignment in the plane direction of the crystals is maintained.
이러한 결과로부터 철과 코발트 사이의 조성비에 민감하지 않고 조성비의 변화에 따라 결정배향이 큰 차이 없이 결정배향성을 잘 유지하고 있는 바 Fe xCo 1-x 박막은 단결정성 박막으로서 상용화될 수 있음을 의미한다. From these results, it is implied that the Fe x Co 1-x thin film can be commercialized as a single crystalline thin film, as it is not sensitive to the composition ratio between iron and cobalt and maintains the crystal orientation well without a significant difference in the crystal orientation according to the change in the composition ratio. do.
한편, 도 11은 본 발명의 일 실시예에 따른, 다결정 완충층으로 MgO 및 LMO를 적용해 Phi Scan을 분석하여 결정들의 평면방향으로의 정렬도를 나타낸 도면이 도시된다.(단, Phi Scan은 평면을 360°각도로 보았을 때, cube texture는 4개의 피크가 보여야 하는데, 각 피크가 샤프할수록 정렬이 잘 되었다고 볼 수 있다).Meanwhile, FIG. 11 is a diagram showing the alignment of crystals in the plane direction by analyzing Phi Scan by applying MgO and LMO as a polycrystalline buffer layer according to an embodiment of the present invention. (However, Phi Scan is a plane view. When viewed at a 360° angle, the cube texture should show 4 peaks, and the sharper each peak, the better the alignment).
이를 참고하면, 0°, 90°, 180°, 270°에서의 피크를 통해 정방향으로 성장된 MgO로 이루어진 다결정 완충층 반가폭의 평균이 6.8°이고, 45°, 135°, 225°, 315°에서의 피크를 통해 45°방향으로 성장된 FeCo 합금의 결정배향성 개선물질로 이루어진 박막의 반가폭의 평균이 2.6°인 것으로 나타났고(도 11의 (a)), 0°, 90°, 180°, 270°에서의 피크를 통해 정방향으로 성장된 LMO를 포함하는 기판 반가폭의 평균이 6.8°이고, 45°, 135°, 225°, 315°에서의 피크를 통해 45°방향으로 성장된 FeCo 합금의 결정배향성 개선물질로 이루어진 박막의 반가폭의 평균이 2.9°인 것으로 나타났다(도 11의 (b)). Referring to this, the average half width of the polycrystalline buffer layer made of MgO grown in the forward direction through the peaks at 0°, 90°, 180°, and 270° is 6.8°, and at 45°, 135°, 225°, and 315° It was found that the average half width of the thin film made of the crystal orientation improving material of the FeCo alloy grown in the 45° direction was 2.6° ((a) of FIG. 11), 0°, 90°, 180°, The average half-width of the substrate containing LMO grown in the forward direction through the peaks at 270° is 6.8°, and the peaks at 45°, 135°, 225°, and 315° of the FeCo alloy grown in the 45° direction. It was found that the average half width of the thin film made of the crystal orientation improving material was 2.9° (FIG. 11(b)).
즉, 다결정 완충층의 종류에 상관없이 증착되는 FeCo 박막은 3°이내의 반가폭을 나타내었는바, 다결정 완충층의 종류가 다르더라도 유사한 단결정성의 배향성을 보임을 확인할 수 있게 된다.That is, the FeCo thin film deposited regardless of the type of the polycrystalline buffer layer exhibited a full width at half maximum within 3°, so it can be confirmed that the same monocrystalline orientation is exhibited even if the type of the polycrystalline buffer layer is different.
그리고, 도 12 는 본 발명의 일 실시예에 따른, 다결정 완충층의 결정립계에서의 결정립들의 결정방위차 각도의 반가폭에 따른 결정배향능력을 나타낸 도면으로 다결정 완충층으로 MgO를 적용하고, 결정배향성 개선물질로 FeCo를 동일하게 적용하되, 다결정 완충층의 MgO의 반가폭만을 달리하여 Phi Scan을 분석해 결정배향능력을 나타낸 것이다.12 is a view showing the crystal orientation ability according to the half width of the crystal orientation difference angle of the crystal grains at the grain boundary of the polycrystalline buffer layer according to an embodiment of the present invention. MgO is applied as the polycrystalline buffer layer, and the crystal orientation improving material This shows the crystal orientation ability by analyzing the Phi Scan by applying the same FeCo to the polycrystalline buffer layer, but changing only the half width of MgO in the polycrystalline buffer layer.
이를 참고하면 도 12a는 0°, 90°, 180°, 270°에서의 피크를 통해 정방향으로 성장된 MgO를 포함하는 기판 반가폭의 평균이 6.8°이고, 45°, 135°, 225°, 315°에서의 피크를 통해 45°방향으로 성장된 FeCo 합금의 결정배향성 개선물질로 이루어진 박막의 반가폭의 평균이 2.8°이고, 도 12b는 0°, 90°, 180°, 270°에서의 피크를 통해 정방향으로 성장된 MgO를 포함하는 기판 반가폭의 평균이 무려 13.53°이고, 45°, 135°, 225°, 315°에서의 피크를 통해 45°방향으로 성장된 FeCo 합금의 결정배향성 개선 물질로 이루어진 박막의 반가폭의 평균이 2.6°인 것으로 나타났다. With reference to this, FIG. 12a shows that the average half-width of the substrate including MgO grown in the forward direction through peaks at 0°, 90°, 180°, and 270° is 6.8°, 45°, 135°, 225°, 315 The average of the half width of the thin film made of the crystal orientation improving material of the FeCo alloy grown in the 45° direction through the peak at ° is 2.8°, and FIG. 12b shows the peaks at 0°, 90°, 180°, and 270°. The average half-width of the substrate containing MgO grown in the forward direction through It was found that the average half width of the formed thin film was 2.6°.
이러한 결과로부터 다결정 완충층이 형성된 기판의 평균 배향축의 결정방위차 각도가 6.8° 혹은 13.53°로 치우쳐 있더라도 기판의 결정립들의 전체적인 배향축 평균방향은 한 방향이므로, 다결정 완충층인 MgO의 결정배향능력이 나쁘더라도 FeCo 박막이 단결정 수준으로 배향됨을 확인할 수 있다.From these results, even if the crystal orientation difference angle of the average orientation axis of the substrate on which the polycrystalline buffer layer is formed is biased to 6.8° or 13.53°, the overall orientation axis average direction of the grains of the substrate is in one direction, so even if the crystal orientation ability of MgO, the polycrystalline buffer layer, is poor It can be seen that the FeCo thin film is oriented to a single crystal level.
따라서, 본 발명에 있어서 상기 다결정 완충층의 상부에 다결정의 결정배향성 개선물질이 결정배향되면서 단결정성을 나타내게 되는 바, 본 발명에 따른 결정배향성 개선물질층은 특히 기판과 결정배향성 개선물질층의 결정배향성이 아래의 [관계식 B]를 만족하면서, 다결정 완충층과 결정배향성 개선물질층의 결정배향성이 0°< FWHM 2 ≤ 3°를 만족하는 것을 특징으로 한다.Therefore, in the present invention, the crystal orientation improving material of the polycrystal on the polycrystalline buffer layer exhibits single crystallinity as the crystal orientation is oriented. It is characterized in that the crystal orientation of the polycrystalline buffer layer and the crystal orientation improving material layer satisfies 0°< FWHM 2 ≤ 3° while satisfying the following [Relational Expression B].
[관계식 B][Relation B]
5°< FWHM 1 - FWHM 2 ≤ 20°5°< FWHM 1 - FWHM 2 ≤ 20°
(단, FWHM 1,FWHM 2는 각각 기판과 박막의 결정립계에서의 결정방위차 각도(misorientation angle) 분포곡선의 반가폭(full width at half maximum)이다.)(However, FWHM 1 and FWHM 2 are the full width at half maximum of the distribution curve of the misorientation angle at the grain boundary of the substrate and the thin film, respectively.)
즉, 단결정성 박막을 형성하는 결정배향성 개선물질이 증착되면서 형성되는 결정립의 크기가 기판의 결정립의 크기의 적어도 2배 이상으로 형성되면서 결정핵이 생성되고, 결정이 성장하면서 배향이 이루어지게 되므로, 기판의 결정립계에서의 반가폭과 단결정성을 나타내는 박막의 반가폭은 상당한 차이를 나타내게 된다. That is, the size of the crystal grains formed while the crystal orientation improving material forming the single-crystal thin film is deposited is at least twice the size of the crystal grains of the substrate, the crystal nuclei are generated, and the orientation is made as the crystal grows, There is a significant difference between the full width at half maximum at the grain boundary of the substrate and the half width of the thin film exhibiting single crystallinity.
특히, 증착 속도가 증가할수록 결정핵이 급격히 성장하면서 단결정 수준으로 박막이 형성될 수 있고, 초전도체에 적용되는 IBAD, RABiTS 금속기판은 결정방위차 각도가 평균 6°이고 일반적으로 사용되는 기판의 결정립계에서의 결정방위차 각도의 반가폭은 최대 20°정도이므로, 상술한 바와 같이 기판과 박막의 결정배향성이 관계식 B를 만족하면서, 박막의 결정배향성이 0°< FWHM 2 ≤ 3°를 만족할 수 있게 되는 것이다.In particular, as the deposition rate increases, the crystal nuclei grow rapidly and a thin film can be formed at the level of a single crystal, and the IBAD and RABiTS metal substrates applied to superconductors have an average crystal orientation difference of 6°, and at the grain boundaries of commonly used substrates. Since the half width of the crystal orientation difference angle is about 20° at most, as described above, the crystal orientation of the substrate and the thin film satisfies the relation B, while the crystal orientation of the thin film satisfies 0°< FWHM 2 ≤ 3°. will be.
한편, 본 발명에 따른 박막을 형성하는 단계는, 기판의 상부에 다결정의 결정배향성 개선물질이 증착될 때 결정핵이 생성되고 결정이 에피택셜하게 성장하여 박막이 형성되는 바, 결정핵이 생성될 때 에너지가 가장 낮은 상태로 박막의 결정배향성이 제어되므로, 결정배향성 개선물질이 증착됨과 거의 동시에 단결정 수준의 결정배향성을 나타내어, 상술한 관계식 A 및 관계식 B를 만족하게 된다.On the other hand, in the step of forming the thin film according to the present invention, crystal nuclei are generated when the crystal orientation improving material of polycrystals is deposited on the upper portion of the substrate, and the crystals grow epitaxially to form a thin film, so that the crystal nuclei are generated. Since the crystal orientation of the thin film is controlled with the lowest energy when the material is deposited, the crystal orientation improving material is deposited and exhibits a single crystal level of crystal orientation, thereby satisfying the aforementioned Relations A and B.
이 때, 상기 증착방법으로는 화학적 기상증착(CVD:chemical vapor deposition), 물리적 기상증착(PVD: Physical Vapor Deposition), 원자층 증착(ALD:atomic layer deposition), 스핀 온 글라스(Spin-On-Glass, SOG), 도금 기타 다양한 방법을 이용할 수 있다. 바람직하게는, 상기 박막을 형성하는 단계는 박막의 조직을 제어하고 결정배향성을 향상시키기 위하여 진공증착에 의하여 박막을 형성하는, 열 또는 플라즈마를 이용하는 CVD법, 열증발, 전자빔 또는 스퍼터링을 이용하는 PVD법을 이용할 수 있다.At this time, as the deposition method, chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), spin-on-glass (Spin-On-Glass) , SOG), plating and other various methods can be used. Preferably, in the step of forming the thin film, a CVD method using heat or plasma, a PVD method using thermal evaporation, electron beam or sputtering, which forms a thin film by vacuum deposition to control the structure of the thin film and improve crystal orientation is available.
도 13은 본 발명의 일 실시예에 따른, 열증발증착법으로 결정배향성 개선물질을 증착시켜 박막을 형성하는 단계에서, 결정배향성 개선물질의 증착률에 따른 결정배향능력을 나타낸 도면이다.13 is a view showing the crystal orientation ability according to the deposition rate of the crystal orientation improving material in the step of forming a thin film by depositing the crystal orientation improving material by thermal evaporation according to an embodiment of the present invention.
즉, 결정배향성 개선물질의 증착률을 빨리 했을 때와 느리게 했을 때를 도 13의 (a) 내지 (c)에 나타낸 본 발명의 결정배향성 개선물질의 증착률에 따른 결정배향능력을 Phi Scan 분석결과로 나타낸 것이다. 단, 0°, 90°, 180°, 270°에서의 피크를 통해 정방향으로 성장된 MgO를 포함하는 기판 반가폭의 평균이 6.8°이다.That is, the Phi Scan analysis result of the crystal orientation ability according to the deposition rate of the crystal orientation improving material of the present invention shown in FIGS. is shown as However, the average of the half-width of the substrate including MgO grown in the forward direction through the peaks at 0°, 90°, 180°, and 270° is 6.8°.
이를 참고하면, 도 9a는 45°, 135°, 225°, 315°에서의 피크를 통해 45°방향으로 성장된 FeCo 합금의 결정배향성 개선물질로 이루어진 박막의 반가폭의 평균이 1.5°인 것으로 나타났으며, 이 때 증착률은 40Å/sec이다. 또한 도 13b는 45°, 135°, 225°, 315°에서의 피크를 통해 45°방향으로 성장된 FeCo 합금의 결정배향성 개선물질로 이루어진 박막의 반가폭의 평균이 3.5°이다. 이때 증착률은 증착시작점에서 0에서부터 시작하여 40Å/sec 증가하는 증착률이다. 또한 도 13의 (c)는 45°, 135°, 225°, 315° 부근에서의 피크를 통해 45°방향으로 성장된 FeNi 3의 결정배향성 개선물질로 이루어진 박막의 반가폭의 평균이 1.5°인 것으로 나타났으며, 이 때 증착률은 40Å/sec이다.Referring to this, FIG. 9a shows that the average half width of the thin film made of the crystal orientation improving material of the FeCo alloy grown in the 45° direction through the peaks at 45°, 135°, 225°, and 315° is 1.5°. and the deposition rate was 40 Å/sec. In addition, FIG. 13b shows that the average half-width of the thin film made of the crystal orientation improving material of the FeCo alloy grown in the 45° direction through the peaks at 45°, 135°, 225°, and 315° is 3.5°. In this case, the deposition rate is a deposition rate that starts from 0 at the deposition starting point and increases by 40 Å/sec. In addition, (c) of FIG. 13 shows that the average half-width of the thin film made of the crystal orientation improving material of FeNi 3 grown in the 45° direction through peaks at 45°, 135°, 225°, and 315° is 1.5°. , and the deposition rate at this time was 40 Å/sec.
상기 도 13의 (a) 내지 (c)의 결과로부터 증착률이 클 경우 결정핵의 생성 및 결정의 성장이 빨리 이루어져 결정립의 크기가 증대되어 결정배향성이 높아지고, 증착률이 작은 경우 결정핵의 생성 및 결정의 성장이 상대적으로 천천히 이루어짐에 따라 결정립의 크기가 작고 결정배향성이 낮아짐을 확인할 수 있다. 따라서 증착률이 높을수록 결정배향성이 높아진다. 또한 결정배향성 개선물질로서 Fe계 물질은 체심입방구조를 가짐에 따라 기판의 결정립들의 배향축의 평균방향과 평행하게 각 결정의 중심에 위치하는 결정핵이 배향되면서 높은 증착률로 증착될 때 결정배향성이 높아진다. From the results of (a) to (c) of FIG. 13, when the deposition rate is high, the generation of crystal nuclei and the growth of the crystal are fast, so that the size of the crystal grains is increased to increase the crystal orientation, and when the deposition rate is small, the generation of crystal nuclei And it can be confirmed that as the crystal growth is made relatively slowly, the size of the crystal grains is small and the crystal orientation is lowered. Therefore, the higher the deposition rate, the higher the crystal orientation. In addition, as a crystal orientation improving material, Fe-based material has a body-centered cubic structure, so that crystal orientation is improved when deposited at a high deposition rate while crystal nuclei located at the center of each crystal are oriented parallel to the average direction of the orientation axes of the crystal grains of the substrate. rises
도 14 는 본 발명의 일 실시예에 따른, 열증발증착법으로 결정배향성 개선물질을 증착시켜 막을 형성하는 단계에서 증착온도에 따른 결정배향능력을 나타낸 도면으로, 증착온도에 따른 FeCo 박막의 결정배향능력을 FeCo(002) 피크에 의해 확인한 결과를 나타낸 것이다. 즉, 도 14의 (a) 내지 (h)는 기판의 온도가 각각 150℃, 200℃, 300℃, 400℃, 500℃, 600℃, 700℃, 800℃일 때 결정배향성 개선물질인 FeCo 합금 박막의 XRD 결과를 나타낸 것이다. 이를 참조하면, FeCo가 기판 온도 150℃에서 비정질이다가 200℃에서부터 결정배향이 이루어져 결정화되는 것으로 나타났으며, 이렇게 200℃에서부터 결정배향이 이루어지다가 800℃에서도 결정배향이 이루어진 것을 확인할 수 있다.14 is a view showing the crystal orientation ability according to the deposition temperature in the step of forming a film by depositing the crystal orientation improving material by the thermal evaporation method according to an embodiment of the present invention, the crystal orientation capability of the FeCo thin film according to the deposition temperature shows the results confirmed by the FeCo (002) peak. That is, in (a) to (h) of Figure 14, the crystal orientation improvement material when the substrate temperature is 150 ℃, 200 ℃, 300 ℃, 400 ℃, 500 ℃, 600 ℃, 700 ℃, 800 ℃, respectively, FeCo alloy The XRD result of the thin film is shown. Referring to this, it was shown that FeCo is amorphous at a substrate temperature of 150°C and crystallized from 200°C.
따라서, 바람직하게는 상기 Fe계의 결정배향성 개선물질로 박막을 형성하는 단계는 적어도 200℃, 보다 바람직하게는 500 내지 600℃에서 증착이 이루어질 수 있다. 일반적인 금속박막 형성시 700℃이상의 고온에서 증착되는 것이 요구되는 것과 비교하면 특히 Fe계의 결정배향성 개선물질로 박막을 형성할 때 결정배향능력이 매우 뛰어난 것을 확인할 수 있다.Therefore, preferably, in the step of forming a thin film with the Fe-based crystal orientation improving material, deposition may be performed at at least 200° C., more preferably at 500 to 600° C. Compared to the general metal thin film formation that is required to be deposited at a high temperature of 700° C. or higher, it can be confirmed that the crystal orientation ability is very excellent, especially when the thin film is formed with an Fe-based crystal orientation improving material.
이처럼 본 발명에 따르면, 상기 기판의 상부에 다결정의 결정배향성 개선물질을 증착시켜 박막을 형성하는 단계는 증착온도 및 증착율을 제어함으로써 단결정 수준의 높은 결정배향성을 갖도록 할 수 있다.As described above, according to the present invention, the step of forming a thin film by depositing a polycrystal orientation improving material on the substrate can have a high crystal orientation of a single crystal level by controlling the deposition temperature and the deposition rate.
도 15 는 단결정 수준의 결정배향성을 나타내는 두께에 대한 실험결과를 나타낸 도면으로, 결정배향성 개선물질로 Fe 합금 중 FeCo 합금의 두께에 따른 증착 시 결정배향시점을 나타낸 것이다. 즉, 기판 상에 (a) 40nm, (b) 80nm, (c) 120nm로 달리하여 FeCo박막을 증착시킨 경우, 증착과 거의 동시에 Fe(110) 결정면 방향 분포도가 0.5° 이내로 자발적으로 정렬되어 단결정 수준의 결정배향성을 나타낸다.15 is a view showing experimental results on the thickness showing the crystal orientation of a single crystal level, and shows the crystal orientation timing during deposition according to the thickness of the FeCo alloy among the Fe alloys as the crystal orientation improving material. That is, when the FeCo thin film is deposited on the substrate by varying the lengths of (a) 40 nm, (b) 80 nm, and (c) 120 nm, the distribution of the Fe(110) crystal plane direction is spontaneously aligned within 0.5° at the same time as the deposition, so that the single crystal level indicates the crystal orientation of
따라서, 본 발명의 단결정 형성 매커니즘에 따르면 결정배향성 개선물질층으로 형성되는 박막은 다결정 완충층이 형성된 기판과의 계면에서부터 수십 nm 이내에서 기판의 결정립들의 배향축의 평균방향과 평행하게 결정배향되도록 증착되며, 보다 바람직하게는 결정배향성 개선물질층 박막의 하부에 형성된 기판과의 계면에서부터 40nm 이내에서 상술한 관계식 A를 만족시키는 단결정성을 나타낸다.Therefore, according to the single crystal formation mechanism of the present invention, the thin film formed of the crystal orientation improving material layer is deposited so that the crystal orientation is parallel to the average direction of the orientation axis of the crystal grains of the substrate within several tens of nm from the interface with the substrate on which the polycrystalline buffer layer is formed. More preferably, the crystal orientation improving material layer exhibits single crystallinity satisfying the above-described relational expression A within 40 nm from the interface with the substrate formed under the thin film.
본 발명에 따른 고온초전도선재는 다결정 기판을 이용하여 단결정 수준의 초전도층이 형성되는 고온초전도 선재를 제조할 수 있다. The high-temperature superconducting wire according to the present invention can manufacture a high-temperature superconducting wire in which a single-crystal level superconducting layer is formed using a polycrystalline substrate.
따라서, 전력생산, 전력계통, 에너지 다소비 산업은 물론 고온 저자장분야와 저온 고자장분야 등에 적용 가능하며, 이를 바탕으로 보다 다양한 제품분야로 응용될 수 있다. Therefore, it can be applied to power production, power system, and energy consuming industries, as well as high temperature low magnetic field fields and low temperature high magnetic field fields, and based on this, it can be applied to more diverse product fields.
또한, 세계 초전도 시장 규모가 2050년 1130억 달러를 초과할 것으로 추정되는 가운데 다국가(多國家) 간 전력망 연계를 통해 전력자원을 공유하기 위한 슈퍼그리드와 초전도 기술 육성을 위한 국가별 정책동향에 힘입어 초전도 시장 규모 및 적용 범위는 더욱 확대될 것으로 전망되고 있으므로, 본 발명의 산업상 이용가능성은 보다 높아질 것으로 예상된다. In addition, while the global superconducting market is estimated to exceed 113 billion dollars in 2050, the super-grid for sharing power resources through linking multi-country power grids and national policy trends for nurturing superconducting technology Since the size and application range of the superconducting market is expected to be further expanded, the industrial applicability of the present invention is expected to be higher.

Claims (6)

  1. 진공챔버;vacuum chamber;
    상기 진공챔버 내부에 구비되는 증착물질 별로 구획부재에 의해 구획되는 복수의 증착공간;a plurality of deposition spaces partitioned by partition members for each deposition material provided inside the vacuum chamber;
    상기 진공챔버 내부에서 상기 복수의 증착공간을 모두 경유하는 길이로 형성되며, 외면에 기판의 이동을 안내하기 위한 가이드홈이 형성되는 가이드 드럼;a guide drum having a length passing through all of the plurality of deposition spaces inside the vacuum chamber, and having a guide groove formed on an outer surface thereof to guide the movement of the substrate;
    상기 진공챔버 내부에서 상기 가이드 드럼의 일측에 구비되어 상기 가이드홈을 따라 기판을 공급하는 공급릴;a supply reel provided on one side of the guide drum inside the vacuum chamber to supply a substrate along the guide groove;
    상기 진공챔버 내부에서 가이드 드럼의 타측에 구비되어 상기 복수의 증착공간을 모두 경유한 기판을 회수하는 회수릴;을 포함하며,a recovery reel provided on the other side of the guide drum inside the vacuum chamber to recover the substrates that have passed through the plurality of deposition spaces; and
    상기 구획부재는 진공챔버를 구성하며, 증착물질의 증발공간을 제공하는 하부챔버에서 각 증착물질의 타 공간 유입을 방지하기 위한 하부구획부재와, 진공챔버를 구성하며 기판에 증착된 물질의 반응공간을 제공하는 상부챔버를 하부챔버의 구획위치와 대응되도록 구획하는 상부구획부재;를 포함하도록 구성되며,The partition member constitutes a vacuum chamber, a lower partition member for preventing the inflow of each deposition material into another space in the lower chamber providing an evaporation space of the deposition material, and a reaction space of the material deposited on the substrate constituting the vacuum chamber It is configured to include; an upper partition member for partitioning the upper chamber to correspond to the partition position of the lower chamber,
    상기 상부구획부재와 하부구획부재의 각 일면은 상기 드럼의 외면 형상과 대응되도록 형성되는 것을 특징으로 하는 고온초전도 선재 제조장치. Each surface of the upper partition member and the lower partition member is formed to correspond to the shape of the outer surface of the drum.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 증착공간에 수용되는 증착물질에는 [관계식 A]를 만족하여 단결정 수준의 결정배향성을 가지는 물질이 포함되는 것을 특징으로 하는 고온초전도 선재 제조장치.The deposition material accommodated in the deposition space includes a material having a crystal orientation of a single crystal level by satisfying [Relational Equation A].
    [관계식 A][Relational A]
    0°< FWHM2 ≤ 3° (단, FWHM2는 박막 결정립계에서의 결정방위차 각도(misorientation angle) 분포곡선의 반가폭(full width at half maximum)이다.)0°< FWHM2 ≤ 3° (However, FWHM2 is the full width at half maximum of the misorientation angle distribution curve at the grain boundary of the thin film.)
  3. 제 1 항에 있어서, The method of claim 1,
    상기 하부챔버 및 상부챔버에는 각각 가이드 드럼의 길이방향을 따라 등 간격으로 배치되는 하부고정수단과 상부고정수단이 구비되며, 상기 하부구획부재 및 상부구획부재는 요구되는 공간의 범위에 따라 상기 하부고정수단과 상부고정수단에 위치 가변하면서 끼움 장착되는 것을 특징으로 하는 고온초전도 선재 제조장치.The lower and upper chambers are provided with lower fixing means and upper fixing means arranged at equal intervals along the longitudinal direction of the guide drum, respectively, and the lower and upper partition members are fixed to the lower part according to the required space. A high-temperature superconducting wire manufacturing apparatus, characterized in that it is fitted to the means and the upper fixing means while changing positions.
  4. 진공챔버 내부에 릴-투-릴 방식으로 기판 이송을 위한 가이드 드럼을 구비하는 가이드 드럼 준비단계;A guide drum preparation step including a guide drum for transferring a substrate in a reel-to-reel manner in a vacuum chamber;
    상기 진공챔버 내부에 가이드 드럼에 증착되는 증착물질을 배치하고, 각 증착물질 배치 공간을 하부구획부재를 이용하여 구획하는 하부챔버 구획단계;a lower chamber partitioning step of disposing a deposition material deposited on a guide drum inside the vacuum chamber and partitioning each deposition material arrangement space using a lower partition member;
    상기 하부챔버 구획단계와 대응되도록 상부챔버 내부 공간을 상부구획부재를 이용하여 구획하는 상부챔버 구획단계;an upper chamber partitioning step of partitioning an inner space of the upper chamber using an upper partitioning member to correspond to the lower chamber partitioning step;
    내부공간이 구획된 진공챔버 내부에서 가이드 드럼을 회전시키며 증착물질을 순차적으로 증착시키는 증착단계;를 포함하는 고온초전도 선재 제조방법.A method of manufacturing a high-temperature superconducting wire, comprising: a deposition step of sequentially depositing deposition materials while rotating a guide drum in a vacuum chamber having an internal space partitioned thereon.
  5. 제 4 항에 있어서, 5. The method of claim 4,
    상기 하부챔버 구획단계에서는 증착물질의 배치 시 초전도 층을 형성하는 물질의 배치공간 전측에 [관계식 A]를 만족하여 단결정 수준의 결정배향성을 가지는 물질을 배치하는 것을 특징으로 하는 고온초전도 선재 제조방법.In the lower chamber partitioning step, a high temperature superconducting wire manufacturing method, characterized in that when the deposition material is disposed, a material having a single crystal level crystal orientation is disposed in front of the arrangement space of the material forming the superconducting layer by satisfying [Relational Equation A].
    [관계식 A][Relational A]
    0°< FWHM2 ≤ 3° (단, FWHM2는 박막 결정립계에서의 결정방위차 각도(misorientation angle) 분포곡선의 반가폭(full width at half maximum)이다.)0°< FWHM2 ≤ 3° (However, FWHM2 is the full width at half maximum of the misorientation angle distribution curve at the grain boundary of the thin film.)
  6. 제 4 항에 있어서, 상기 증착단계는5. The method of claim 4, wherein the depositing step
    구획된 제1공간에서 기판에 이트륨 옥사이드(Y 2O 3)를 증착하는 제1증착공정과,A first deposition process of depositing yttrium oxide (Y 2 O 3 ) on a substrate in a partitioned first space;
    구획된 제2공간에서 상기 이트륨 옥사이드(Y 2O 3)가 증착된 기판에 IBAD 방식으로 산화마그네슘(MgO)을 증착하는 제2증착공정과,A second deposition process of depositing magnesium oxide (MgO) in an IBAD method on the substrate on which the yttrium oxide (Y 2 O 3 ) is deposited in the partitioned second space;
    구획된 제3공간에서 산화마그네슘(MgO)층이 증착된 기판에 [관계식 A]를 만족하여 단결정 수준의 결정배향성을 가지는 물질을 증착시켜 단결정 수준의 배향 증착이 이루어지는 제3증착공정과,A third deposition process in which a single crystal level orientation deposition is performed by depositing a material having a single crystal level crystal orientation by satisfying [Relational Equation A] on a substrate on which a magnesium oxide (MgO) layer is deposited in the partitioned third space;
    구획된 제4공간에서 단결정 수준으로 배향 증착된 결정배향성 개선 물질층의 상측으로 동시 열증발 증착법을 이용하여 초전도층을 증착하는 제4증착공정과,A fourth deposition process of depositing a superconducting layer using a simultaneous thermal evaporation method on the upper side of the crystal orientation improving material layer orientation-deposited at a single crystal level in the divided fourth space;
    구획된 제5공간에서 상기 초전도층의 상측으로 은(Ag)을 증착시켜 보호층을 형성하는 제5증착공정 및a fifth deposition process of forming a protective layer by depositing silver (Ag) on the upper side of the superconducting layer in the divided fifth space; and
    구획된 제6공간에서 상기 제5증착공정까지 완료된 기판을 회수릴로 모두 권취한 이후 제6공간 내부로 산소를 공급하여 초전도층의 산소조성비를 조절하는 제6공정;을 포함하여 이루어지는 것을 특징으로 하는 고온초전도 선재의 제조방법.A sixth process of controlling the oxygen composition ratio of the superconducting layer by supplying oxygen into the sixth space after winding all the substrates completed up to the fifth deposition process on a recovery reel in the divided sixth space; characterized in that it comprises a A method for manufacturing a high-temperature superconducting wire.
    [관계식 A][Relational A]
    0°< FWHM2 ≤ 3° (단, FWHM2는 박막 결정립계에서의 결정방위차 각도(misorientation angle) 분포곡선의 반가폭(full width at half maximum)이다.)0°< FWHM2 ≤ 3° (However, FWHM2 is the full width at half maximum of the misorientation angle distribution curve at the grain boundary of the thin film.)
PCT/KR2020/011998 2020-04-29 2020-09-04 Apparatus and method for manufacturing high temperature superconductor WO2021221238A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0052677 2020-04-29
KR20200052677 2020-04-29
KR1020200113345A KR20210133839A (en) 2020-04-29 2020-09-04 A manufacturing apparatus and method for high temperature superconductive wires
KR10-2020-0113345 2020-09-04

Publications (1)

Publication Number Publication Date
WO2021221238A1 true WO2021221238A1 (en) 2021-11-04

Family

ID=78332050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011998 WO2021221238A1 (en) 2020-04-29 2020-09-04 Apparatus and method for manufacturing high temperature superconductor

Country Status (1)

Country Link
WO (1) WO2021221238A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485886B1 (en) * 2003-02-25 2005-04-29 엘에스전선 주식회사 Method and apparatus for manufacturing both sides coated superconductors and product thereof
WO2007016492A2 (en) * 2005-07-29 2007-02-08 American Superconductor Corporation Architecture for high temperature superconductor wire
KR100741726B1 (en) * 2006-02-16 2007-08-10 한국기계연구원 Apparatus and method of manufacturing super conducting tapes using wet chemical process
KR101610789B1 (en) * 2014-11-20 2016-04-08 한국전기연구원 Superconducting multilayer thin film and method of manufacturing the same
KR20160070494A (en) * 2014-12-10 2016-06-20 한국전기연구원 Deposition drum system to prevent sagging of substrate for superconducting coated conductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485886B1 (en) * 2003-02-25 2005-04-29 엘에스전선 주식회사 Method and apparatus for manufacturing both sides coated superconductors and product thereof
WO2007016492A2 (en) * 2005-07-29 2007-02-08 American Superconductor Corporation Architecture for high temperature superconductor wire
KR100741726B1 (en) * 2006-02-16 2007-08-10 한국기계연구원 Apparatus and method of manufacturing super conducting tapes using wet chemical process
KR101610789B1 (en) * 2014-11-20 2016-04-08 한국전기연구원 Superconducting multilayer thin film and method of manufacturing the same
KR20160070494A (en) * 2014-12-10 2016-06-20 한국전기연구원 Deposition drum system to prevent sagging of substrate for superconducting coated conductor

Similar Documents

Publication Publication Date Title
Feenstra et al. Effect of oxygen pressure on the synthesis of YBa2Cu3O7− x thin films by post‐deposition annealing
US20040168636A1 (en) Process and apparatus for producing cystalline thin film buffer layers and structures having biaxial texture
Ramesh et al. Ferroelectric bismuth titanate/superconductor (Y‐Ba‐Cu‐O) thin‐film heterostructures on silicon
US20100065417A1 (en) Methods for forming superconducting conductors
WO2006036215A2 (en) Superconductor fabrication processes
WO2021221238A1 (en) Apparatus and method for manufacturing high temperature superconductor
WO2006071542A2 (en) Architecture for coated conductors
EP0410868A2 (en) Superconducting thin film of compound oxide and process for preparing the same
US5361720A (en) Epitaxial deposition
US5276010A (en) Process for producing bismuth-based oxide superconducting films
JP2002075079A (en) High-temperature superconducting thick-layer material and method for manufacturing the same
KR20210133839A (en) A manufacturing apparatus and method for high temperature superconductive wires
EP0412986B1 (en) Epitaxial deposition
JP2716138B2 (en) Method and apparatus for forming composite oxide superconducting thin film by facing target type sputtering method
Kuppusami et al. Processing and properties of thin films of high critical temperature superconductors
WO2020091425A1 (en) Monocrystalline thin film, method for manufacturing same, and product using same
Takano et al. Annealing in a PbO atmosphere for high T c superconductivity of Bi‐Sr‐Ca‐Cu‐O films
JP2785977B2 (en) Method and apparatus for forming oxide high-temperature superconducting film by plasma-induced evaporation
Aoki et al. Characteristics of high J/sub c/Y-Ba-Cu-O tape on metal substrate prepared by chemical vapor deposition
JPH0388725A (en) Oxide superconductor
EP0402128B1 (en) Method of forming an oxide superconductor/semiconductor junction
Gavaler et al. Optimization of YBCO surfaces of tunnel junctions
Appelboom et al. Sm-Ba-Cu-O, La-Ba-Cu-O, and Y-(Ca, La)-Ba-Cu-O films grown at low temperature and pressure
US20050107260A1 (en) Superconductor with optimized microstructure and method for making such a superconductor
Nakaoka et al. Optimization of process parameters for calcination in TFA-MOD method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933018

Country of ref document: EP

Kind code of ref document: A1