KR100485886B1 - Method and apparatus for manufacturing both sides coated superconductors and product thereof - Google Patents

Method and apparatus for manufacturing both sides coated superconductors and product thereof Download PDF

Info

Publication number
KR100485886B1
KR100485886B1 KR10-2003-0011827A KR20030011827A KR100485886B1 KR 100485886 B1 KR100485886 B1 KR 100485886B1 KR 20030011827 A KR20030011827 A KR 20030011827A KR 100485886 B1 KR100485886 B1 KR 100485886B1
Authority
KR
South Korea
Prior art keywords
substrate
deposition
superconducting
heating
unit
Prior art date
Application number
KR10-2003-0011827A
Other languages
Korean (ko)
Other versions
KR20040076473A (en
Inventor
윤여상
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority to KR10-2003-0011827A priority Critical patent/KR100485886B1/en
Publication of KR20040076473A publication Critical patent/KR20040076473A/en
Application granted granted Critical
Publication of KR100485886B1 publication Critical patent/KR100485886B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45597Reactive back side gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 Ag기판의 양면에 초전도층을 형성하기 위한 것으로서, 가열부 일측면에 초전도원료 분사수단이 위치하는 제1증착부와, 가열부 타측면에 초전도원료 분사수단이 위치하는 제2증착부를 소정의 이격거리를 두고 반응로 내에 구비하는 단계; 및 상기 양측 증착부의 가열부와 초전도원료 분사수단 사이를 순차적으로 통과하도록 Ag 또는 Ag합금 기판의 선재를 이송시키는 한편, 상기 기판을 가열함과 더불어 초전도원료를 기판의 양면에 분사하여 증착공정을 수행하는 단계;를 포함하는 고온초전도체 제조방법이 개시된다.The present invention is to form a superconducting layer on both sides of the Ag substrate, the first deposition portion in which the superconducting raw material injection means is located on one side of the heating portion, and the second deposition portion in which the superconducting raw material injection means is located on the other side of the heating portion Providing in the reactor at a predetermined distance; And transferring wires of the Ag or Ag alloy substrate so as to sequentially pass between the heating units of the both deposition units and the superconducting material injection means, while heating the substrate and spraying the superconducting material onto both sides of the substrate to perform the deposition process. A high temperature superconductor manufacturing method is disclosed.

Description

양면증착 고온초전도체의 제조를 위한 방법, 장치 및 그 제조물{Method and apparatus for manufacturing both sides coated superconductors and product thereof}Method, apparatus for manufacturing both sides coated superconductors and product

본 발명은 양면증착 고온초전도체의 제조를 위한 방법, 장치 및 그 제조물에 관한 것으로서, 보다 상세하게는 화학기상증착법(Chemical Vapor Deposition; CVD)을 이용하여 Ag기판의 양면에 초전도층을 형성하기 위한 제조방법과 장치 및 그 제조물에 관한 것이다.The present invention relates to a method, an apparatus, and a product for manufacturing a double-sided deposition high temperature superconductor, and more particularly, to forming a superconducting layer on both sides of an Ag substrate by using chemical vapor deposition (CVD). It relates to a method and an apparatus and a preparation thereof.

금속기판상에 YBa2Cu3O7-X(0<X<0.5)와 같은 초전도층을 형성하기 위해 현재 사용되고 있는 방법으로는 전자선 증발법(electron beam evaporation), 펄스레이져 앱레이션(pulsed laser ablasion-PLD)법, 스퍼터링(sputtering)법, 화학기상증착법 (chemical vapor deposition) 등을 들 수가 있다.Current methods for forming superconducting layers such as YBa 2 Cu 3 O 7-X (0 <X <0.5) on metal substrates include electron beam evaporation and pulsed laser ablasion. PLD) method, sputtering method, chemical vapor deposition method, etc. are mentioned.

이 중에서 특히 화학기상증착법은 다른 방식에 비해 저진공하에서 공정이 수행되므로 생산성을 보다 높일 수 있는 장점이 있다.Among them, the chemical vapor deposition method has an advantage of increasing the productivity because the process is performed under low vacuum compared to other methods.

한편, 상기와 같은 방법을 통해 금속기판상에 초전도층을 구성한 예로는 도 1에 도시된 바와 같이 Ni 또는 Ni합금의 기판(10)(이하, Ni기판으로 통칭하기로 함), 완충층(11) 및 초전도층(12)을 포함하는 구조를 들 수가 있다.On the other hand, as an example of configuring a superconducting layer on a metal substrate through the above method as shown in Figure 1 Ni or Ni alloy substrate 10 (hereinafter referred to collectively as Ni substrate), the buffer layer 11 and The structure containing the superconducting layer 12 is mentioned.

여기서, Ni기판(10)은 집합조직을 갖도록 제조가 되는데, 이를 위한 공정으로는 공지되어 있는 RABiTS(Rolling Assisted Biaxially Textured Substrate)법이 널리 사용된다.Herein, the Ni substrate 10 is manufactured to have an aggregate structure, and a well-known RABiTS (Rolling Assisted Biaxially Textured Substrate) method is widely used.

상기 Ni기판(10)상에 직접적으로 초전도층을 형성하게 되면 격자상수가 상호 불일치할 뿐만 아니라 니켈성분이 초전도층으로 확산되는 문제가 발생하여 초전도 특성을 저하시키므로 이를 방지하기 위해 상기 Ni기판(10)상에는 Ag, CeO2, MgO2, Y2O3, SrTiO3, LaAlO2, Al2O3 등을 포함하는 완충층(11)을 형성한 후, 이 완충층(11) 위에 초전도층(12)을 에피택셜(epitaxial)하게 증착하여 초전도체를 구성하게 된다.When the superconducting layer is directly formed on the Ni substrate 10, not only the lattice constants are inconsistent with each other but also a problem in which nickel is diffused into the superconducting layer occurs, thereby degrading the superconducting property. ), A buffer layer 11 including Ag, CeO 2 , MgO 2 , Y 2 O 3 , SrTiO 3 , LaAlO 2 , Al 2 O 3, etc. is formed, and then a superconducting layer 12 is formed on the buffer layer 11. Epitaxially deposited to form a superconductor.

따라서, 이러한 구조의 초전도체는 완충층(11)의 형성을 위해 펄스레이져 앱레이션(pulsed laser ablasion-PLD)법, 스퍼터링(sputtering)법 또는 화학기상증착법(chemical vapor deposition) 등을 이용한 증착공정이 포함되어야 하므로 제조과정이 복잡하고 생산성도 낮을 수 밖에 없는 취약점이 있다.Therefore, the superconductor having such a structure should include a deposition process using pulsed laser ablasion-PLD, sputtering, chemical vapor deposition, or the like to form the buffer layer 11. As a result, the manufacturing process is complicated and productivity is low.

금속기판상에 초전도층을 구성한 초전도체의 다른 예로는 도 2에 도시된 바와 같이 Ag 또는 Ag합금의 기판(20)(이하, Ag기판으로 통칭하기로 함)의 상면에 초전도층(21)을 형성한 구조를 들 수 있다.Another example of a superconductor having a superconducting layer formed on a metal substrate is a superconducting layer 21 formed on an upper surface of an Ag or Ag alloy substrate 20 (hereinafter, collectively referred to as Ag substrate) as shown in FIG. 2. The structure can be mentioned.

주지하는 바와 같이 Ag 또는 Ag 합금의 기판은 Ag 성분이 초전도층(21)으로의 확산되는 문제가 발생하지 않을 뿐만 아니라 초전도층(21)과의 격자상수 불일치 문제도 없으므로 완충층(11)이 필요없는 장점이 있다.As is well known, the Ag or Ag alloy substrate does not require the diffusion of the Ag component into the superconducting layer 21, and there is no problem of lattice constant mismatch with the superconducting layer 21, thus eliminating the need for the buffer layer 11. There is an advantage.

그러나, 종래에는 Ag기판(20)의 일면에만 초전도원료를 증착하여 초전도층(21)을 형성하는 방식이 사용되었으므로 Ag기판의 이용효율이 낮은 것이 사실이었으며, 전류전송능력을 증대시키기 위해 초전도층(21)의 증착두께를 두껍게 할 경우에는 Ag기판(20)과의 배향성 불일치로 인하여 전류밀도가 감소하는 현상이 발생하는 문제가 있었다(M. W. Rupich 등 Low Cost Y-Ba-Cu-O Coated Conductors, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 11. NO. 1, MARCH 2001).However, in the related art, a method of forming a superconducting layer 21 by depositing a superconducting material on only one surface of the Ag substrate 20 was used, and it was a fact that the utilization efficiency of the Ag substrate was low, and the superconducting layer ( In case of increasing the deposition thickness of 21), there was a problem that current density decreased due to misalignment of the Ag substrate 20 (Low Cost Y-Ba-Cu-O Coated Conductors such as MW Rupich, IEEE). TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 11.NO. 1, MARCH 2001).

본 발명은 상기와 같은 문제점을 고려하여 창출된 것으로서, Ag기판의 양면에 초전도층이 형성되는 양면증착 고온초전도체의 제조 방법 및 장치와 그 제조물을 제공하는데 그 목적이 있다.The present invention has been made in consideration of the above problems, and an object thereof is to provide a method and apparatus for producing a double-sided high temperature superconductor in which a superconducting layer is formed on both sides of an Ag substrate, and an article thereof.

상기와 같은 목적을 달성하기 위해 본 발명에 따른 양면증착 고온초전도체 제조방법은, 가열부 일측면에 초전도원료 분사수단이 위치하는 제1증착부와, 가열부 타측면에 초전도원료 분사수단이 위치하는 제2증착부를 소정의 이격거리를 두고 반응로 내에 구비하는 제1단계; 및 상기 양측 증착부의 가열부와 초전도원료 분사수단 사이를 순차적으로 통과하도록 Ag 또는 Ag합금 기판의 선재를 이송시키는 한편, 상기 기판을 가열함과 더불어 초전도원료를 기판의 양면에 분사하여 증착공정을 수행하는 제2단계;를 포함한다.In order to achieve the above object, the method for manufacturing double-sided deposition high temperature superconductor according to the present invention includes a first deposition unit in which a superconducting raw material injection means is located on one side of the heating unit, and a superconducting raw material injection means in the other side of the heating unit. A first step of providing a second deposition unit in the reactor at a predetermined distance; And transferring wires of the Ag or Ag alloy substrate so as to sequentially pass between the heating units of the both deposition units and the superconducting material injection means, while heating the substrate and spraying the superconducting material onto both sides of the substrate to perform the deposition process. It includes; a second step.

바람직하게 상기 초전도원료로는 Y(THD), Ba(THD) 및 Cu(THD)의 혼합물이 채용되고, 상기 기판의 온도를 상기 가열온도에 비해 상대적으로 낮은 온도로 유지한 상태에서 상기 기판에 산소를 공급하는 제3단계;가 더 포함될 수 있다.Preferably, a mixture of Y (THD), Ba (THD) and Cu (THD) is used as the superconducting material, and oxygen is maintained in the substrate while the temperature of the substrate is maintained at a temperature relatively lower than the heating temperature. Supplying a third step; may be further included.

상기 제3단계는, 증착처리가 완료된 Ag 또는 Ag합금 기판의 선재를 반대방향으로 재이송함과 더불어 상기 가열부의 온도를 상대적으로 낮게 설정한 상태에서 수행되는 것이 바람직하다.The third step is preferably performed in a state in which the wire of the Ag or Ag alloy substrate which has been deposited is retransmitted in the opposite direction and the temperature of the heating unit is set relatively low.

본 발명의 다른 측면에 따르면 내부에 수용공간이 형성되어 있으며, 이 수용공간의 진공유지를 위해 펌핑수단이 결합되어 있는 반응로; 상기 반응로 내에 설치되는 것으로서 가열부와, 상기 가열부 일측면에 위치하는 초전도원료 분사수단으로 이루어지는 제1증착부; 상기 제1증착부로터 소정 거리 이격되며 상기 반응로 내에 설치되는 것으로서 가열부와, 상기 가열부의 타측면에 위치하는 초전도원료 분사수단으로 이루어지는 제2증착부; 및 순차적으로 각 증착부의 가열부와 초전도원료 분사수단 사이를 통과하도록 Ag 또는 Ag합금 기판의 선재를 이송시키는 이송수단;을 포함하는 고온초전도체 제조장치가 제공된다.According to another aspect of the present invention, there is formed a receiving space therein, the reaction furnace is coupled to the pumping means for maintaining the vacuum of the receiving space; A first deposition part installed in the reactor and including a heating part and a superconducting material injection means positioned on one side of the heating part; A second deposition unit comprising a heating unit and a superconducting raw material spraying unit positioned on the other side of the heating unit and spaced apart from the first deposition unit by a predetermined distance; And a transfer means for sequentially transferring the wire rod of the Ag or Ag alloy substrate so as to pass between the heating part and the superconducting material injection means of each deposition unit in a high temperature superconductor manufacturing apparatus.

상기 이송수단은, Ag 또는 Ag합금 기판의 선재가 권취되는 제1보빈; 및 상기 제1증착부와 제2증착부를 사이에 두고 상기 제1보빈의 타측에 설치되어 상기 제1보빈으로부터 풀려서 공급되는 기판 선재를 권취하는 제2보빈;을 포함하는 것이 바람직하다.The transfer means, the first bobbin is wound around the wire rod of Ag or Ag alloy substrate; And a second bobbin disposed on the other side of the first bobbin with the first deposition unit and the second deposition unit interposed therebetween to wind up the substrate wire rod supplied from the first bobbin.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명의 바람직한 실시예에 따른 양면증착 고온초전도체 제조장치의 구성을 개략적으로 보여주는 도면이다. 도면을 참조하면, 본 발명은 수용공간을 가지는 반응로(100)와, 상기 반응로(100)에 수용되는 제1증착부(A) 및 제2증착부(B)와, Ag기판 선재(1)의 이송을 위한 이송수단을 포함한다.3 is a view schematically showing the configuration of a double-sided deposition high temperature superconductor manufacturing apparatus according to a preferred embodiment of the present invention. Referring to the drawings, the present invention is a reactor 100 having a receiving space, the first deposition portion (A) and the second deposition portion (B) accommodated in the reactor 100, Ag substrate wire (1) It includes a conveying means for conveying.

반응로(100)는 Ag기판 선재(1)에 대한 증착처리를 위한 챔버에 해당하는 것으로서, 예컨대 스테인레스강과 같이 내식성이 우수한 금속재료로 이루어지는 것이 바람직하다.The reactor 100 corresponds to a chamber for deposition processing on the Ag substrate wire 1, and preferably made of a metal material having excellent corrosion resistance, such as stainless steel.

상기 반응로(100)에는 내부 수용공간의 진공유지를 위해 펌핑수단이 결합된다. 이 펌핑수단의 기술적 구성으로는 다양한 형태의 공지기술이 채용될 수 있다.The reactor 100 is coupled to the pumping means for maintaining the vacuum of the inner receiving space. As the technical configuration of this pumping means, various forms of well-known techniques can be employed.

바람직하게, 상기 펌핑수단은 반응로(100)에 연결되는 확산펌프(170) 및 로터리펌프(180)를 포함하고, 상기 확산펌프(170)와 반응로(100) 사이에 구비되는 제1밸브(165)와, 상기 로터리펌프(180)와 반응로(100) 사이에 구비되는 제2밸브(175)와, 상기 확산펌프(170)와 로터리펌프(180) 사이에 개재되는 제3밸브(185)를 포함하여 구성될 수 있다.Preferably, the pumping means includes a diffusion pump 170 and a rotary pump 180 connected to the reactor 100, the first valve provided between the diffusion pump 170 and the reactor 100 ( 165, a second valve 175 provided between the rotary pump 180 and the reactor 100, and a third valve 185 interposed between the diffusion pump 170 and the rotary pump 180. It may be configured to include.

상기 반응로(100)에는 초전도원료를 공급하기 위한 공급관(105)이 결합된다. 이때, 초전도원료로는 바람직하게 Y(THD), Ba(THD) 및 Cu(THD)의 혼합물이 사용되나, 이에 한정되지 않고 공지된 다양한 종류의 초전도원료가 사용될 수 있음은 물론이다. 이러한 초전도원료는 공급관(105) 내에서 아르곤(Ar)이나 질소(N2) 등의 불활성가스에 의해 이송되어 반응로(100) 내부의 제1증착부(A) 및 제2증착부(B)로 공급된다.The reactor 100 is coupled to the supply pipe 105 for supplying a superconducting material. In this case, a mixture of Y (THD), Ba (THD) and Cu (THD) is preferably used as the superconducting material, but not limited thereto, and various kinds of known superconducting materials may be used. The superconducting material is transferred by an inert gas such as argon (Ar) or nitrogen (N 2 ) in the supply pipe 105, and thus, the first deposition unit A and the second deposition unit B inside the reactor 100. Is supplied.

제1증착부(A)는 외부로부터 공급되는 Ag기판 선재(1)의 일면에 대한 증착처리를 하는 것으로서, 가열부(115)와, Ag기판 선재(1)를 사이에 두고 상기 가열부(115) 일측면에 위치하는 초전도원료 분사수단(110)을 포함한다.The first deposition unit A is a deposition process for one surface of the Ag substrate wire 1 supplied from the outside, and the heating unit 115 with the heating unit 115 and the Ag substrate wire 1 therebetween. The superconducting raw material injection means 110 is located on one side.

상기 가열부(115)는 바람직하게 예비가열부(115a)와 고온가열부(115b)로 구분되는 두 부분으로 이루어진다. 여기서, 상기 예비가열부(115a)는 이송되는 Ag기판 선재(1)를 예컨대, 600 ~ 750℃로 예열시키고, 고온가열부(115b)는 상기 초전도원료 분사수단(110)과 대향하도록 설치되어 상기 예비가열부(115a)를 통해 예열된 상태에서 이송되는 Ag기판 선재(1)를 예컨대, 700 ~ 1000℃에 해당하는 증착온도로 가열한다.The heating unit 115 preferably consists of two parts, which are divided into a preheating unit 115a and a high temperature heating unit 115b. Here, the preheating unit 115a preheats the transferred Ag substrate wire 1 to, for example, 600 to 750 ° C., and the high temperature heating unit 115b is installed to face the superconducting material injection means 110. The Ag substrate wire 1 transferred in the preheated state through the preheating unit 115a is heated to a deposition temperature corresponding to, for example, 700 to 1000 ° C.

초전도원료 분사수단(110)은 상기 공급관(105)으로부터 공급되는 초전도원료를 Ag기판 선재(1)의 표면에 분사하는 분사노즐(110b)과, 상기 공급관(105)과 분사노즐(110b) 사이에 개재되어 초전도원료의 분사량을 조절하는 가스유량조절부(110a)를 포함한다. 이러한 분사노즐(110b)과 가스유량조절부(110a)는 공지의 기술적 구성이 채용될 수 있으므로 그 상세한 설명은 생략하기로 한다.The superconducting raw material injection means 110 includes an injection nozzle 110b for injecting the superconducting material supplied from the supply pipe 105 to the surface of the Ag substrate wire 1, and between the supply pipe 105 and the injection nozzle 110b. It includes a gas flow rate control unit 110a interposed to control the injection amount of the superconducting material. Since the injection nozzle 110b and the gas flow rate adjusting unit 110a may be known in the art, a detailed description thereof will be omitted.

제2증착부(B)는 상기 제1증착부(A)로부터 예컨대 수 ~ 수십㎝의 이격거리를 두고 반응로(100) 내에 설치되는 한편, 상기 제1증착부(A)와는 반대로 Ag기판 선재(1)의 타면에 대하여 초전도원료를 증착처리하는 기능을 수행한다.The second deposition unit B is installed in the reactor 100 at a distance of, for example, several tens of centimeters from the first deposition unit A, while the Ag substrate wire is opposite to the first deposition unit A. The superconducting material is deposited on the other surface of (1).

이를 위해 상기 제2증착부(B)는 이송되는 Ag기판 선재(1)를 가열하기 위한 가열부(125)와, 상기 Ag기판 선재(1)를 사이에 두고 가열부(125) 타측면에 설치되는 초전도원료 분사수단(120)을 포함한다.To this end, the second deposition unit B is installed on the other side of the heating unit 125 with the heating unit 125 for heating the transferred Ag substrate wire 1 and the Ag substrate wire 1 therebetween. Superconducting raw material injection means 120 is included.

상기 가열부(125)는 예비가열부(125a)와 고온가열부(125b) 두 부분으로 이루어지고, 상기 초전도원료 분사수단(120)은 분사노즐(120b)과 가스유량조절부(120a)를 포함한다. 이러한 가열부(125)와 초전도원료 분사수단(120)은 전술한 제1증착부(A)의 세부구성과 동일하므로 그 상세한 설명은 생략하기로 한다.The heating part 125 is composed of two parts of the preheating part 125a and the high temperature heating part 125b, and the superconducting material injection means 120 includes an injection nozzle 120b and a gas flow control part 120a. do. Since the heating unit 125 and the superconducting material injection means 120 are the same as the detailed configuration of the first deposition unit A described above, the detailed description thereof will be omitted.

부가적으로, 본 발명에는 상기 제1증착부(A)와 제2증착부(B)를 둘러싸도록 튜브형태의 보호관(130)이 구비되고, 상기 제1증착부(A)의 분사노즐(110b)과 제2증착부(B)의 분사노즐(120b)이 각각 상기 보호관(130)을 관통하며 설치됨으로써 Ag기판 선재(1)상에 분사되는 초전도원료가 비산(飛散)되지 않고 기판주변에 머물러 있도록 하여 반응시간을 지속시키는 것이 바람직하다.In addition, the present invention is provided with a tube-shaped protective tube 130 to surround the first deposition portion (A) and the second deposition portion (B), the injection nozzle 110b of the first deposition portion (A) ) And the injection nozzles 120b of the second deposition portion B penetrate the protective tube 130, respectively, so that the superconducting material sprayed on the Ag substrate wire 1 does not scatter and stays around the substrate. It is desirable to sustain the reaction time.

이송수단은 Ag기판 선재(1)를 연속적으로 공급하여 상기 Ag기판 선재(1)가 제1증착부(A)의 가열부(115)와 초전도원료 분사수단(110) 사이를 통과한 후 이어서 제2증착부(B)의 가열부(125)와 초전도원료 분사수단(120) 사이를 통과하여 이송되도록 한다. 여기서, Ag기판 선재(1)의 이송방향은 제2증착부(B)를 먼저 통과하도록 설정될 수도 있으며, 어느 경우든 일방향으로 이송됨에 따라 상기 제1증착부(A) 및 제2증착부(B)를 통해 Ag기판 선재(1)의 양면에 초전도원료의 증착이 이루어지게 된다.The conveying means continuously supplies the Ag substrate wire 1 so that the Ag substrate wire 1 passes between the heating part 115 of the first deposition part A and the superconducting raw material injection means 110, and then 2 is passed through the heating section 125 and the superconducting raw material injection means 120 of the deposition unit (B). Here, the transfer direction of the Ag substrate wire (1) may be set to pass through the second deposition portion (B) first, in any case the first deposition portion (A) and the second deposition portion ( Through B), superconducting materials are deposited on both sides of the Ag substrate wire 1.

바람직하게 상기 이송수단은 셋팅시 Ag기판 선재(1)가 권취되는 제1보빈(135)과, 상기 제1증착부(A) 및 제2증착부(B)를 사이에 두고 상기 제1보빈(135)의 타측에 설치되어 상기 제1보빈(135)으로부터 풀려서 공급되는 기판 선재를 권취하는 제2보빈(145)을 포함한다.Preferably, the conveying means has a first bobbin 135 on which the Ag substrate wire 1 is wound, and the first bobbin (B) between the first deposition unit (A) and the second deposition unit (B). The second bobbin 145 is installed at the other side of the 135 and winds up the substrate wire rod which is unwound from the first bobbin 135 and supplied.

상기 제1보빈(135)과 제2보빈(145)에는 모터 등의 동력장치를 포함하여 이루어지는 구동부(140,150)가 각각 구비되어 Ag기판 선재(1)의 공급 및 권취를 위한 회전동작을 제어한다.The first bobbin 135 and the second bobbin 145 are provided with driving units 140 and 150, each of which includes a power unit such as a motor, to control a rotation operation for supplying and winding the Ag substrate wire 1.

상기와 같은 이송수단에는 제4밸브(155)를 구비한 로터리펌프(160)를 구성하여 진공상태를 유지하는 것이 바람직하다.It is preferable to configure the rotary pump 160 having the fourth valve 155 in the transfer means as described above to maintain the vacuum state.

그러면, 상기와 같은 본 발명을 통해 양면증착 고온초전도체가 제조되는 과정을 설명하기로 한다.Then, the process of manufacturing the double-sided deposition high temperature superconductor through the present invention as described above will be described.

본 발명에 있어서 Ag기판 선재(1)로는 바이엑시얼(biaxial)한 집합조직을 갖는 선재가 사용되는 것이 바람직하며, 이에 따라 {110}<110> 집합조직을 갖는 Ag 또는 Ag 합금의 기판이 사용된다. 이때, 기판의 길이는 예컨대, 1m 에서 1km 까지 다양하게 설정될 수 있고, 그 폭과 두께는 각각 1m 이하와 1cm 이하로 형성될 수 있다.In the present invention, as the Ag substrate wire rod 1, a wire rod having a biaxial aggregate structure is preferably used. Thus, a substrate of Ag or Ag alloy having a {110} <110> aggregate structure is used. do. In this case, the length of the substrate may be variously set, for example, from 1 m to 1 km, and the width and thickness may be formed to 1 m or less and 1 cm or less, respectively.

상기 Ag기판 선재(1)는 제1보빈(135)에 권취되고, 소정길이 만큼은 제1증착부(A) 및 제2증착부(B)를 거쳐서 제2보빈(145)에 감긴 상태로 셋팅이 된다.The Ag substrate wire 1 is wound around the first bobbin 135, and a predetermined length is set in a state in which the Ag substrate wire 1 is wound around the second bobbin 145 via the first deposition unit A and the second deposition unit B. do.

먼저, 반응로(1) 내부를 진공상태로 유지하기 위해 제2밸브(175) 및 제4밸브(155)를 개방하여 로터리펌프(160,180)에 의한 배기동작이 이루어지도록 하고, 일정 진공상태에 도달하면 상기 제2밸브(175)를 닫은 상태에서 제1밸브(165)를 개방하여 확산펌프(170)를 통해 배기동작이 이루어지도록 함과 더불어 제3밸브(185)를 개방하여 배기가스 및 공기가 로터리펌프(180)에 의해 배출되도록 한다. 여기서, 상기 확산펌프(170)가 작동된 후의 반응로(1) 내부의 진공도는 1Torr 이하가 되도록 하는 것이 바람직하다.First, in order to maintain the inside of the reactor 1 in a vacuum state, the second valve 175 and the fourth valve 155 are opened to perform the exhaust operation by the rotary pumps 160 and 180, and reach a constant vacuum state. When the second valve 175 is closed, the first valve 165 is opened to exhaust the gas through the diffusion pump 170, and the third valve 185 is opened to exhaust gas and air. It is to be discharged by the rotary pump 180. Here, it is preferable that the vacuum degree inside the reactor 1 after the diffusion pump 170 is operated is 1 Torr or less.

상기 반응로(1)에 대한 진공셋팅이 완료된 후에는 가열부(115,125)를 구동하여 Ag기판 선재(1)에 대한 가열이 이루어지도록 한다. 이때, 상기 가열부(115,125)는 600 ~ 750 ℃의 온도로 Ag기판 선재(1)를 예열한 후 700 ~ 1000℃로 가열하여 증착처리를 수행하게 되고, 가열속도는 바람직하게 1 ~ 100℃/min 로 설정된다.After the vacuum setting of the reactor 1 is completed, the heating units 115 and 125 are driven to heat the Ag substrate wire 1. At this time, the heating unit (115, 125) preheats the Ag substrate wire (1) at a temperature of 600 ~ 750 ℃ and then heated to 700 ~ 1000 ℃ to perform the deposition treatment, the heating rate is preferably 1 ~ 100 ℃ / It is set to min.

다음으로, 구동부(140,150)에 의해 제1보빈(135) 및 제2보빈(145)이 구동되어 상기 제1보빈(135)으로부터 Ag기판 선재(1)가 풀린 후 제2보빈(145)에 감기는 방식으로 연속적인 공급동작이 수행된다. 이때, Ag기판 선재(1)의 이송속도는 증착온도 및 적정 증착두께 등을 감안했을 때 0.1 ~ 10m/hr의 범위로 설정하는 것이 최적의 초전도 특성을 위해 바람직하다.Next, the first bobbin 135 and the second bobbin 145 are driven by the driving units 140 and 150 so that the Ag substrate wire 1 is unwound from the first bobbin 135 and wound around the second bobbin 145. The continuous feeding operation is performed in such a way. At this time, the transfer speed of the Ag substrate wire 1 is preferably set in the range of 0.1 ~ 10m / hr in consideration of the deposition temperature and the appropriate deposition thickness for the optimal superconductivity.

초전도원료로는 바람직하게 Y(THD), Ba(THD) 및 Cu(THD)를 혼합하여 공급관(105)을 통해 반응로(1) 내부로 공급하고, 이때 초전도원료의 유량은 가스유량조절부(110a,120a)를 이용하여 대략 1 ~ 500 sccm 으로 설정한다.As the superconducting raw material, preferably Y (THD), Ba (THD) and Cu (THD) is mixed and supplied into the reactor 1 through the supply pipe 105, wherein the flow rate of the superconducting raw material is a gas flow control unit ( 110a, 120a) is set to approximately 1 ~ 500 sccm.

상기 초전도원료가 이송가스와 함께 반응로(1) 내부로 공급되면 반응로(1) 내부의 진공도는 0.1 ~ 100 Torr 정도가 된다.When the superconducting raw material is supplied into the reaction furnace 1 together with the transport gas, the vacuum degree inside the reaction furnace 1 is about 0.1 to 100 Torr.

상기 공급관(105)과 연결된 초전도원료 분사수단(110,120)으로 공급된 초전도원료는 분사노즐(110b,120b)에 의해 Ag기판 선재(1)의 상면 및 하면으로 분사되어 증착이 이루어진다. 이때, 증착속도는 0.1 ~ 10 ㎛/hr 정도의 값을 가진다.The superconducting raw material supplied to the superconducting raw material spraying means 110 and 120 connected to the supply pipe 105 is sprayed onto the upper and lower surfaces of the Ag substrate wire 1 by the spray nozzles 110b and 120b to be deposited. At this time, the deposition rate has a value of about 0.1 ~ 10 ㎛ / hr.

제1보빈(135)에서 풀리면서 이송되는 Ag기판 선재(1)는 상기와 같은 과정을 통해 연속적으로 양면증착이 이루어진 후 제2보빈(145)에 권취가 된다.Ag substrate wire (1) to be transported while being released from the first bobbin 135 is wound on the second bobbin 145 after the double-sided deposition is continuously performed through the above process.

도 4에는 상기와 같은 증착공정을 통해 기판부(30)의 일면에 제1초전도층(31)이 형성되고, 타면에는 제2초전도층(32)이 형성된 구조의 단면이 도시되어 있다.4 illustrates a cross section of a structure in which a first superconducting layer 31 is formed on one surface of the substrate unit 30 and a second superconducting layer 32 is formed on the other surface of the substrate 30 through the deposition process as described above.

한편, 주지하는 바와 같이 초전도원료로서 Y(THD), Ba(THD) 및 Cu(THD)의 혼합물이 사용될 경우에는 증착된 Ag기판 선재(1)가 제2보빈(145)에 권취되기 전에 산소(O2) 주입공정을 거침으로써 보다 안정된 상의 초전도층을 형성하게 된다.On the other hand, when a mixture of Y (THD), Ba (THD) and Cu (THD) is used as the superconducting material as is well known, oxygen (A) before the deposited Ag substrate wire 1 is wound on the second bobbin 145, O 2 ) through the implantation process to form a more stable superconducting phase.

이 공정은 양면증착이 이루어진 상기 Ag기판 선재(1)를 냉각하여 상기 가열온도에 비해 상대적으로 낮은 열처리 온도인 450 ~ 600℃ 정도로 유지한 상태에서 수행된다.This process is performed in a state in which the Ag substrate wire 1, which has been formed on both sides, is cooled and maintained at about 450 to 600 ° C., which is a relatively low heat treatment temperature compared to the heating temperature.

보다 바람직하게, 상기 산소주입공정은 증착처리를 거친 Ag기판 선재(1)가 바로 제2보빈(145)에 권취되도록 한 후, 제1보빈(135)의 Ag기판 선재(1)가 모두 풀렸을 때 다시 제1보빈(135)을 감아서 Ag기판 선재(1)를 역방향으로 이송시키면서 수행된다.More preferably, the oxygen injection process causes the Ag substrate wire 1 subjected to the deposition process to be immediately wound on the second bobbin 145 and then, when all the Ag substrate wire 1 of the first bobbin 135 is loosened. The first bobbin 135 is wound again to transfer the Ag substrate wire 1 in the reverse direction.

역방향으로 이송되는 상기 Ag기판 선재(1)는 가열부(115,125)에 의해 450 ~ 600℃로 유지되고, 바람직하게 공급관(105)을 통해 산소(O2)를 공급받는다. 공급되는 산소의 유량은 가스유량조절부(110a,120a)에 의해 조절되어 대략 1 ~ 500 sccm으로 유지되며, 이때 반응로(1)의 진공도는 0.1 ~ 100 Torr의 값을 유지하는 것이 바람직하다.The Ag substrate wire 1 conveyed in the reverse direction is maintained at 450 to 600 ° C. by the heating parts 115 and 125, and is preferably supplied with oxygen (O 2 ) through the supply pipe 105. The flow rate of the supplied oxygen is controlled by the gas flow rate control unit (110a, 120a) is maintained at approximately 1 ~ 500 sccm, wherein the vacuum degree of the reactor (1) is preferably maintained at a value of 0.1 ~ 100 Torr.

상기와 같은 조건하에서 Ag기판 선재(1)를 0.1 ~ 10 m/hr 정도의 속도로 이송시키면 임계온도 77k 이상의 고온초전도 특성을 가지는 YBa2Cu3O 7-X (0<X<0.5)가 제조된다.When the Ag substrate wire 1 is transferred at a speed of about 0.1 to 10 m / hr under the above conditions, YBa 2 Cu 3 O 7-X (0 <X <0.5) having high temperature superconductivity of 77k or more above the critical temperature is produced. do.

그러면, 본 발명에 따라 제공되는 양면증착 고온초전도체 제조방법의 보다 구체적인 실험예를 설명하기로 한다.Then, a more specific experimental example of the double-sided high temperature superconductor manufacturing method provided according to the present invention will be described.

본 실시예에 있어서, Ag기판 선재(1)로는 {110}<110> 집합조직을 가지는 길이 30m, 폭 10cm, 두께 1mm의 기판 선재가 사용되었으며, 반응로(1)의 진공도를 0.5 Torr로 유지한 상태에서 예비가열부(115a,125a)의 온도는 700 ℃, 고온가열부(115b,125b)의 온도는 900℃로 설정하고, 아울러 상기 Ag기판 선재(1)의 이송속도는 1m/hr 로 설정하였다.In this embodiment, the Ag substrate wire 1 has a length of 30 m, a width of 10 cm, and a thickness of 1 mm having a {110} <110> texture, and a vacuum degree of the reactor 1 is maintained at 0.5 Torr. In one state, the temperature of the preheating units 115a and 125a is set to 700 ° C., and the temperature of the high temperature heating units 115b and 125b is set to 900 ° C., and the feeding speed of the Ag substrate wire 1 is 1 m / hr. Set.

초전도원료로는 Y(THD), Ba(THD) 및 Cu(THD)의 혼합물을 채용하고, 이송가스로서 아르곤(Ar)을 사용하여 공급관(105)을 통해 반응로(100) 내로 공급하였다.As a superconducting material, a mixture of Y (THD), Ba (THD), and Cu (THD) was used, and argon (Ar) was used as the feed gas, and was supplied into the reactor 100 through the supply pipe 105.

또한, 가스유량조절부(110a,120a)를 조절하여 공급유량은 50 sccm 으로 설정하였으며, 반응로(1) 내의 진공도를 1 Torr 로 유지한 상태에서 5㎛/hr의 속도로 Ag기판 표면에 대한 증착처리를 수행하였다.In addition, by adjusting the gas flow rate control unit (110a, 120a), the supply flow rate was set to 50 sccm, while maintaining the degree of vacuum in the reactor (1) at 1 Torr to the Ag substrate surface at a rate of 5㎛ / hr Deposition was performed.

제1보빈(135)의 Ag기판 선재(1)가 모두 풀림과 더불어 증착공정이 완료된 후에는 다시 제1보빈(135)을 감아서 역방향으로 Ag기판 선재(1)를 이송시키면서 산소를 공급하였다. 이때, 반응로(1)의 진공도는 5 Torr 로 설정하고, Ag기판 선재(1)의 이송속도는 1m/hr로 유지하였다.After all the Ag substrate wires 1 of the first bobbin 135 were released and the deposition process was completed, the first bobbin 135 was wound again to transfer the Ag substrate wires 1 in the reverse direction to supply oxygen. At this time, the vacuum degree of the reactor 1 was set to 5 Torr, and the feed rate of the Ag substrate wire 1 was maintained at 1 m / hr.

이러한 조건에서, 열처리를 위해 가열부(115,125)의 온도를 550℃로 설정하고, 가스유량조절부(110a,120a)를 조절하여 공급관(105)으로부터 200 sccm의 유량으로 산소(O2)를 공급하게 되면 Ag기판의 양면에 두께 300㎛의 YBa2Cu3 O 7-X(0<X<0.5)층이 형성된다.Under these conditions, the temperature of the heating parts 115 and 125 is set to 550 ° C. for heat treatment, and the gas flow rate adjusting parts 110a and 120a are adjusted to supply oxygen (O 2 ) at a flow rate of 200 sccm from the supply pipe 105. As a result, a 300 탆 YBa 2 Cu 3 O 7 -X (0 <X <0.5) layer is formed on both sides of the Ag substrate.

이상, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조로 설명하였다. 여기서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.In the above, preferred embodiments of the present invention have been described with reference to the accompanying drawings. Herein, the terms or words used in the present specification and claims should not be interpreted as being limited to the ordinary or dictionary meanings, and the inventors properly define the concept of terms in order to explain their own invention in the best way. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that it can. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.

본 발명에 의하면 Ag기판의 양면에 에피택셜하게 고온초전도층이 형성되므로 동일두께의 단면증착 초전도체에 비해 전류전송능력을 두 배로 향상시킬 수 있는 효과가 있다.According to the present invention, since the high temperature superconducting layer is formed epitaxially on both sides of the Ag substrate, there is an effect of doubling the current transfer capability compared to the single-layer deposition superconductor of the same thickness.

또한, 본 발명은 기판 선재의 이송에 따라 기판의 양면이 동시에 증착처리되므로 높은 생산성을 제공하는 장점이 있다.In addition, the present invention has the advantage of providing high productivity because both sides of the substrate is deposited at the same time in accordance with the transfer of the substrate wire.

본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.The following drawings attached to this specification are illustrative of preferred embodiments of the present invention, and together with the detailed description of the invention to serve to further understand the technical spirit of the present invention, the present invention is a matter described in such drawings It should not be construed as limited to

도 1은 종래의 기술에 따라 Ni(니켈)기판 상에 초전도층이 증착된 구조를 보여주는 단면도.1 is a cross-sectional view showing a structure in which a superconducting layer is deposited on a Ni (nickel) substrate according to the related art.

도 2는 종래의 기술에 따라 Ag(은)기판 상에 초전도층이 증착된 구조를 보여주는 단면도.2 is a cross-sectional view showing a structure in which a superconducting layer is deposited on an Ag (silver) substrate according to the related art.

도 3은 본 발명의 바람직한 실시예에 따른 양면증착 고온초전도체 제조장치의 구성을 개략적으로 보여주는 도면.Figure 3 is a schematic view showing the configuration of a double-sided deposition high temperature superconductor manufacturing apparatus according to a preferred embodiment of the present invention.

도 4는 본 발명에 따라 Ag기판의 양면에 초전도층이 증착된 구조를 보여주는 단면도.Figure 4 is a cross-sectional view showing a structure in which a superconducting layer is deposited on both sides of the Ag substrate in accordance with the present invention.

<도면의 주요 참조부호에 대한 설명><Description of main reference numerals in the drawings>

30...기판부 31...제1초전도층30 ... substrate 31 ... first superconducting layer

32...제2초전도층 100...반응로32 second superconducting layer 100 ... reactor

105...공급관 110,120...초전도원료 분사수단105.Supply pipe 110,120 ... Superconducting raw material injection means

115,125...가열부 130...보호관115,125 Heater 130 ... Protector

135...제1보빈 145...제2보빈135 ... First Bobbin 145 ... Second Bobbin

160,180...로터리펌프 170...확산펌프160,180 Rotary pump 170Diffusion pump

Claims (7)

가열부 일측면에 초전도원료 분사수단이 위치하는 제1증착부와, 가열부 타측면에 초전도원료 분사수단이 위치하는 제2증착부를 소정의 이격거리를 두고 반응로 내에 구비하는 제1단계; 및A first step of providing a first deposition part in which the superconducting material injection means is located on one side of the heating part and a second deposition part in which the superconducting material injection means is located on the other side of the heating part at a predetermined distance from the reaction furnace; And 상기 양측 증착부의 가열부와 초전도원료 분사수단 사이를 순차적으로 통과하도록 Ag 또는 Ag합금 기판의 선재를 이송시키는 한편, 상기 기판을 가열함과 더불어 초전도원료를 기판의 양면에 분사하여 증착공정을 수행하는 제2단계;를 포함하는 고온초전도체 제조방법.While transferring the wire of the Ag or Ag alloy substrate to sequentially pass between the heating unit and the superconducting raw material injection means of the both sides of the deposition unit, while heating the substrate and spraying the superconducting raw material on both sides of the substrate to perform the deposition process A high temperature superconductor manufacturing method comprising a second step. 제 1항에 있어서,The method of claim 1, 상기 제2단계에서, 기판 선재의 이송속도가 0.1 ~ 10m/hr로 설정되는 것을 특징으로 하는 고온초전도체 제조방법.In the second step, the high speed superconductor manufacturing method characterized in that the feed rate of the substrate wire is set to 0.1 ~ 10m / hr. 제 1항에 있어서,The method of claim 1, 상기 초전도원료로는 Y(THD), Ba(THD) 및 Cu(THD)의 혼합물이 채용되고,As the superconducting material, a mixture of Y (THD), Ba (THD) and Cu (THD) is employed. 상기 기판의 온도를 상기 가열온도에 비해 상대적으로 낮은 온도로 유지한 상태에서 상기 기판에 산소를 공급하는 제3단계;를 더 포함하는 고온초전도체 제조방법.And a third step of supplying oxygen to the substrate while maintaining the temperature of the substrate at a temperature relatively lower than the heating temperature. 제 3항에 있어서,The method of claim 3, wherein 상기 제3단계가, 증착처리가 완료된 Ag 또는 Ag합금 기판의 선재를 반대방향으로 재이송함과 더불어 상기 가열부의 온도를 상대적으로 낮게 설정한 상태에서 수행되는 것을 특징으로 하는 고온초전도체 제조방법.The third step, the high temperature superconductor manufacturing method characterized in that the re-transfer the wire of the Ag or Ag alloy substrate is completed in the opposite direction and the temperature of the heating unit is set relatively low. 내부에 수용공간이 형성되어 있으며, 이 수용공간의 진공유지를 위해 펌핑수단이 결합되어 있는 반응로;A reactor having an accommodation space formed therein and having a pumping means coupled to maintain the vacuum of the accommodation space; 상기 반응로 내에 설치되는 것으로서 가열부와, 상기 가열부 일측면에 위치하는 초전도원료 분사수단으로 이루어지는 제1증착부;A first deposition part installed in the reactor and including a heating part and a superconducting material injection means positioned on one side of the heating part; 상기 제1증착부로터 소정 거리 이격되며 상기 반응로 내에 설치되는 것으로서 가열부와, 상기 가열부의 타측면에 위치하는 초전도원료 분사수단으로 이루어지는 제2증착부; 및A second deposition unit comprising a heating unit and a superconducting raw material spraying unit positioned on the other side of the heating unit and spaced apart from the first deposition unit by a predetermined distance; And 순차적으로 각 증착부의 가열부와 초전도원료 분사수단 사이를 통과하도록 Ag 또는 Ag합금 기판의 선재를 이송시키는 이송수단;을 포함하는 고온초전도체 제조장치.High temperature superconductor manufacturing apparatus comprising a; transfer means for sequentially transferring the wire of the Ag or Ag alloy substrate so as to pass between the heating portion and the superconducting raw material injection means of each deposition unit. 제 5항에 있어서,The method of claim 5, 상기 이송수단이,The conveying means, Ag 또는 Ag합금 기판의 선재가 권취되는 제1보빈; 및A first bobbin in which a wire rod of Ag or Ag alloy substrate is wound; And 상기 제1증착부와 제2증착부를 사이에 두고 상기 제1보빈의 타측에 설치되어 상기 제1보빈으로부터 풀려서 공급되는 기판 선재를 권취하는 제2보빈;을 포함하는 것을 특징으로 하는 고온초전도체 제조장치.A second bobbin installed on the other side of the first bobbin with the first deposition part and the second deposition part interposed therebetween to wind the substrate wire supplied from the first bobbin and supplied; . Ag 또는 Ag합금으로 이루어지는 기판부;A substrate portion made of Ag or Ag alloy; 상기 기판부의 일면에 형성되는 제1초전도층; 및A first superconducting layer formed on one surface of the substrate portion; And 상기 기판부의 타면에 형성되는 제2초전도층;을 포함하는 양면증착 고온초전도체.And a second superconducting layer formed on the other surface of the substrate portion.
KR10-2003-0011827A 2003-02-25 2003-02-25 Method and apparatus for manufacturing both sides coated superconductors and product thereof KR100485886B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0011827A KR100485886B1 (en) 2003-02-25 2003-02-25 Method and apparatus for manufacturing both sides coated superconductors and product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0011827A KR100485886B1 (en) 2003-02-25 2003-02-25 Method and apparatus for manufacturing both sides coated superconductors and product thereof

Publications (2)

Publication Number Publication Date
KR20040076473A KR20040076473A (en) 2004-09-01
KR100485886B1 true KR100485886B1 (en) 2005-04-29

Family

ID=37362659

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0011827A KR100485886B1 (en) 2003-02-25 2003-02-25 Method and apparatus for manufacturing both sides coated superconductors and product thereof

Country Status (1)

Country Link
KR (1) KR100485886B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021221238A1 (en) * 2020-04-29 2021-11-04 한국전기연구원 Apparatus and method for manufacturing high temperature superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021221238A1 (en) * 2020-04-29 2021-11-04 한국전기연구원 Apparatus and method for manufacturing high temperature superconductor

Also Published As

Publication number Publication date
KR20040076473A (en) 2004-09-01

Similar Documents

Publication Publication Date Title
US8268386B2 (en) Method for manufacturing high-temperature superconducting conductors
US6797313B2 (en) Superconductor methods and reactors
EP2532013B1 (en) Method of forming a ceramic wire
CN101431143B (en) Superconductor material production method
US7910155B2 (en) Method for manufacturing high temperature superconducting conductor
US20050065035A1 (en) Superconductor methods and reactors
KR101664465B1 (en) Oxide superconductor cabling and method of manufacturing oxide superconductor cabling
US8062028B2 (en) Heat treatment apparatus for oxide superconducting wire
US6337307B1 (en) Oxide superconducting conductor with intermediate layer having aligned crystal orientation
US5356474A (en) Apparatus and method for making aligned Hi-Tc tape superconductors
Chern et al. Epitaxial thin films of YBa2Cu3O7− x on LaAlO3 substrates deposited by plasma‐enhanced metalorganic chemical vapor deposition
KR100485886B1 (en) Method and apparatus for manufacturing both sides coated superconductors and product thereof
JP4876044B2 (en) Heat treatment apparatus for oxide superconducting wire and method for manufacturing the same
JP2010238634A (en) Oxide superconducting wire, method of manufacturing the same, and manufacturing device of substrate used for the same
JP4175015B2 (en) Manufacturing method and manufacturing apparatus for oxide superconducting wire
JP4034052B2 (en) Manufacturing method of oxide superconductor
CN101599526A (en) The preparation coated conductor is with the technology of shaping substrate and use the coated conductor of this substrate
US4981839A (en) Method of forming superconducting oxide films using zone annealing
JP3771142B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP4175016B2 (en) Manufacturing method and manufacturing apparatus for oxide superconducting wire
EP0459906A2 (en) Process for preparing superconducting junction of oxide superconductor
JP3067857B2 (en) High-temperature superconducting wire production equipment
Aoki et al. Characteristics of high J/sub c/Y-Ba-Cu-O tape on metal substrate prepared by chemical vapor deposition
JPH05159649A (en) Manufacture of superconductive wire
Kumagai et al. Preparation of YBCO films by CP-process for HTS microwave filters

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130401

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140421

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150420

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160419

Year of fee payment: 12