WO2021220635A1 - 液化天然ガス供給設備 - Google Patents

液化天然ガス供給設備 Download PDF

Info

Publication number
WO2021220635A1
WO2021220635A1 PCT/JP2021/009865 JP2021009865W WO2021220635A1 WO 2021220635 A1 WO2021220635 A1 WO 2021220635A1 JP 2021009865 W JP2021009865 W JP 2021009865W WO 2021220635 A1 WO2021220635 A1 WO 2021220635A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural gas
liquefied natural
storage tank
dispenser
line
Prior art date
Application number
PCT/JP2021/009865
Other languages
English (en)
French (fr)
Inventor
靖典 大岡
剛史 定
陽一 高木
直英 小豊
Original Assignee
エア・ウォーター株式会社
三菱商事株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エア・ウォーター株式会社, 三菱商事株式会社 filed Critical エア・ウォーター株式会社
Publication of WO2021220635A1 publication Critical patent/WO2021220635A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases

Definitions

  • the present invention relates to a liquefied natural gas supply facility capable of supplying liquefied natural gas (LNG: Liquefied Natural Gas) stored in a storage tank to the outside as a liquid using a dispenser.
  • LNG liquefied natural gas
  • a liquefied natural gas station is known as a liquefied natural gas supply facility.
  • a liquefied natural gas station is a fuel station that supplies liquefied natural gas as a liquid to a vehicle that uses natural gas as fuel, and is different from a natural gas station that supplies vaporized natural gas to a vehicle in this respect. be.
  • liquefied natural gas Since the volume of liquefied natural gas is about 1/600 that of natural gas in a gaseous state, liquefied natural gas is supplied to the vehicle as it is, and this is vaporized on the vehicle side and used as fuel. If this is done, the cruising range of the vehicle can be dramatically improved. Therefore, in recent years, its practical application has attracted attention.
  • This liquefied natural gas station is equipped with a storage tank for storing liquefied natural gas, as well as piping and a dispenser for supplying liquefied natural gas from the storage tank to the vehicle.
  • a storage tank for storing liquefied natural gas
  • piping and a dispenser for supplying liquefied natural gas from the storage tank to the vehicle.
  • supercooling is performed so that the natural gas stored in the storage tank is maintained in a liquid state (that is, the temperature of the natural gas is maintained below the boiling point). It is kept in a state.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2018-76943
  • the liquefied natural gas station disclosed in the publication is provided with a return path for returning the liquefied natural gas supplied from the storage tank to the dispenser to the storage tank, and prior to the supply of the liquefied natural gas to the vehicle, It is configured to perform a precooling operation in which liquefied natural gas is circulated using the return path.
  • the above-mentioned piping and dispenser are pre-cooled by the supercooled liquefied natural gas, and then the liquefied natural gas is supplied to the vehicle to be supplied to the vehicle. It is possible to significantly reduce the amount of BOG that is generated.
  • the BOG generated in the piping and the dispenser during the precooling operation is returned to the storage tank together with the liquefied natural gas via the reflux path, and is stored in the gas phase portion inside the storage tank.
  • the gaseous natural gas stored in the gas phase portion of the storage tank is pressurized, and the liquefied natural gas is generated by the gaseous natural gas in the pressurized state.
  • the liquefied natural gas is configured to be supplied to the vehicle via the pipes and dispensers described above.
  • the BOG is returned to the gas phase portion of the storage tank during the precooling operation as described above, so that the storage tank is returned to the gas phase portion during the precooling operation.
  • the gas phase part of the gas phase cannot be sufficiently pressurized. Therefore, during the precooling operation, it becomes necessary to pump the liquefied natural gas by driving the pump provided in the above-mentioned piping.
  • the present invention has been made in view of the above-mentioned problems, and not only can the mixing of BOG into the liquefied natural gas supplied to the outside be suppressed, but also the energy consumption is reduced in a short time.
  • the purpose is to provide a liquefied natural gas supply facility that can perform pre-cooling operation.
  • the liquefied natural gas supply facility based on the present invention includes a storage tank, a lead-out line, a dispenser, and a reflux line.
  • the storage tank stores liquefied natural gas
  • the lead-out line is for deriving the liquefied natural gas stored in the storage tank.
  • the dispenser is located downstream of the lead-out line and is for supplying the liquefied natural gas derived from the storage tank to the outside.
  • the reflux line is for returning the liquefied natural gas introduced into the dispenser to the storage tank.
  • the outlet for liquefied natural gas to the outlet line provided in the storage tank is located higher than the outlet for liquefied natural gas to the outside provided in the dispenser. positioned.
  • the dispenser is located below the storage tank when viewed along the vertical direction.
  • the liquefied natural gas supply facility based on the present invention may further include a building.
  • the building may include a skeleton and a partition wall, and the building may be divided into an upper space and a lower space by the partition wall.
  • the storage tank is arranged in the upper space
  • the dispenser is arranged in the lower space.
  • the liquefied natural gas supply facility based on the present invention may further include a temperature controller.
  • the temperature controller may be provided in the lead-out line in order to adjust the temperature of the liquefied natural gas led out from the storage tank. In that case, it is preferable that the temperature controller is arranged in the lower space.
  • the liquefied natural gas supply facility based on the present invention may further include a buffer tank.
  • the buffer tank can temporarily store the boil-off gas generated by vaporizing the liquefied natural gas, and is connected to the storage tank via a gas discharge line. In that case, it is preferable that the buffer tank is arranged in the lower space.
  • the height dimension of the storage tank is smaller than at least one of the width dimension and the depth dimension of the storage tank.
  • a liquefied natural gas supply facility capable of not only suppressing the mixing of BOG into the liquefied natural gas supplied to the outside but also performing a precooling operation in a short time and with reduced energy consumption. can do.
  • FIG. 1 It is a perspective view when the liquefied natural gas stand which concerns on embodiment is seen from diagonally upper left on the front side. It is a perspective view of the liquefied natural gas stand shown in FIG. 1 when viewed from diagonally upper right on the back side. It is a perspective view which omitted the illustration of a part of the building of the liquefied natural gas stand shown in FIG. It is a front view which omitted the illustration of a part of the building of the liquefied natural gas stand shown in FIG. It is a system block diagram of the liquefied natural gas stand shown in FIG. It is a figure for demonstrating the precooling operation in the liquefied natural gas stand shown in FIG. It is a figure for demonstrating the supply operation in the liquefied natural gas stand shown in FIG. It is a figure for demonstrating the replenishment operation in the liquefied natural gas stand shown in FIG.
  • FIG. 1 is a perspective view of the liquefied natural gas stand according to the embodiment of the present invention when viewed from diagonally above the front left
  • FIG. 2 is a perspective view when viewed from diagonally above right on the back side. ..
  • the appearance structure of the liquefied natural gas stand 1 according to the present embodiment will be described with reference to FIGS. 1 and 2.
  • the liquefied natural gas station 1 is a satellite base for supplying liquefied natural gas as fuel to a vehicle as a liquid, and includes a building 10, a storage tank 20, and a dispenser 30. Mainly equipped with.
  • the liquefied natural gas stand 1 is designed so that it can be assembled and disassembled by a relatively easy operation, so that it can be relocated as needed.
  • the building 10 has a two-story structure including the first floor portion 10A and the second floor portion 10B, and has an elongated substantially rectangular parallelepiped shape as a whole.
  • the building 10 has been downsized to a size slightly larger than that of one large trailer when viewed along the vertical direction so that the installation area of the building 10 does not become larger than necessary.
  • the liquefied natural gas stand 1 supplies the liquefied natural gas to the vehicle by using the dispenser 30, the vehicle receiving the supply of the liquefied natural gas is the liquefied natural gas stand in which the dispenser 30 is installed. It is placed next to the first floor part 10A of 1. The surface of the building 10 on the side on which this vehicle is laid is the front surface of the liquefied natural gas stand 1.
  • the building 10 includes a skeleton 11 composed of a base, columns, beams, etc., a floor 12A and a wall 13A provided on the first floor portion 10A, and a floor 12B and a wall 13B provided on the second floor portion 10B.
  • the above-mentioned dispenser 30 is installed on the first floor portion 10A
  • the above-mentioned storage tank 20 is installed on the second floor portion 10B.
  • various facilities described later are installed on the first floor portion 10A and the second floor portion 10B.
  • the first floor portion 10A is surrounded on all sides by walls 13A, and the above-mentioned dispenser 30 and various facilities are installed inside the wall 13A.
  • the various equipment installed on the first floor portion 10A includes a temperature controller 40, a buffer tank 50, a boiler 70, a hot water evaporator 80, a control panel 90 (see FIGS. 3 and 5 and the like), which will be described in detail later. Is included.
  • a plurality of frontages are provided at predetermined positions on the wall 13A of the first floor portion 10A, and doors 14 and shutters 15 are provided at these frontages so as to be openable and closable.
  • These multiple frontages include those that allow people to enter and exit, those that are used when carrying in and out of the various equipment mentioned above, and those that are used when supplying liquefied natural gas to vehicles. include.
  • the frontage 16 provided in front of the dispenser 30 corresponds to the one used for supplying liquefied natural gas to the vehicle described above.
  • a shutter (not shown) is also provided on the frontage 16 so as to be openable and closable.
  • a ventilation unit 17 composed of a ventilation fan and a hood is provided at a predetermined position on the wall 13A of the first floor portion 10A.
  • the ventilation unit 17 ventilates by exhausting the air inside the first floor portion 10A of the building 10 to the outside.
  • the second floor portion 10B is provided with a portion in which three of the four sides are surrounded by the wall 13B and a deck portion not surrounded by the wall 13B.
  • the storage tank 20 described above is installed in the portion surrounded by the wall 13B, and the cogeneration unit 60, which will be described in detail later, is installed in the deck portion.
  • the ceiling is not provided above the space where the storage tank 20 is installed, and the storage tank 20 is in an open state.
  • a frontage is provided at a predetermined position on the wall 13B of the second floor portion 10B (more specifically, a position facing the deck portion of the wall 13B), and a door 14 is provided at this frontage so as to be openable and closable. Has been done.
  • the frontage allows people to enter and exit.
  • a staircase 18 is provided at a position on the back side of the building 10.
  • the stairs 18 are for people to go up and down on the deck portion provided on the second floor portion 10B.
  • a handrail 19 for preventing a fall is installed between the stairs 18 and the deck portion provided on the second floor portion 10B.
  • FIGS. 3 and 4 are a perspective view and a front view of a part of the liquefied natural gas stand building according to the present embodiment, respectively, without illustration.
  • FIG. 5 is a system configuration diagram of the liquefied natural gas stand according to the present embodiment.
  • FIGS. 3 and 4 in addition to a part of the building 10 described above, various piping lines and valves excluding the lead-out line L1, the return line L3, the valve V4, etc., which will be described later, are used for easy understanding. , Pumps, etc. are omitted.
  • a storage tank 20 is installed on the second floor portion 10B of the building 10 of the liquefied natural gas stand 1 as described above.
  • the storage tank 20 temporarily stores liquefied natural gas, and has an elongated substantially columnar outer shape.
  • the height dimension of the storage tank 20 is preferably configured to be smaller than at least one of the width dimension and the depth dimension of the storage tank 20, and in the present embodiment, the height dimension is set. However, it is configured to be smaller than the width dimension and is configured to be equivalent to the depth dimension.
  • the height direction means the vertical direction (that is, the vertical direction) when viewed from the front side of the liquefied natural gas stand 1
  • the width dimension is the width dimension when viewed from the front side of the liquefied natural gas stand 1. It means the external dimension in the left-right direction in the case, and the depth dimension means the external dimension in the front-rear direction when viewed from the front side of the liquefied natural gas stand 1.
  • the storage tank 20 is installed in a so-called horizontal state, so that the installation stability of the storage tank 20 is increased, for example, when a large-scale disaster occurs. It becomes possible to reduce the risk of the storage tank 20 falling. Therefore, it is possible to obtain a liquefied natural gas stand with higher safety.
  • an outlet 21 for deriving the liquefied natural gas to the outside is provided on the side surface of the storage tank 20 on the side facing the deck portion provided on the second floor portion 10B of the building 10.
  • a lead-out line L1 to be described later is connected to the lead-out port 21, and the liquefied natural gas stored in the storage tank 20 is sent out from the lead-out port 21 to the lead-out line L1.
  • a dispenser 30 is installed on the first floor portion 10A of the building 10 of the liquefied natural gas stand 1 as described above. As shown in FIG. 5, the dispenser 30 is located downstream of the lead-out line L1 and is for supplying the liquefied natural gas led out from the storage tank 20 to the vehicle 100.
  • the dispenser 30 supplies the liquefied natural gas to the vehicle while adjusting the flow rate of the liquefied natural gas and measuring the flow rate, and is a device provided with a liquefied natural gas supply port 31 (see FIG. 4). It has a main body and a hose 32 with a supply nozzle attached to the supply port 31.
  • the supply port 31 provided in the device main body corresponds to a liquefied natural gas discharge port provided in the dispenser 30 so as not to be movable, and the liquefied natural gas is discharged from the device main body through the supply port 31. ..
  • the user can supply the liquefied natural gas to the vehicle 100 by using the hose 32 with a supply nozzle.
  • a supply line L2 is shown on the downstream side of the dispenser 30 for easy understanding, but this supply line L2 constitutes a part of the dispenser 30. Further, the downstream end portion of the supply line L2 corresponds to the above-mentioned hose 32 with a supply nozzle.
  • the temperature controller 40 in addition to the dispenser 30, the temperature controller 40, the buffer tank 50, the boiler 70, and the hot water A type evaporator 80, a control panel 90, and the like are installed.
  • a cogeneration unit 60 is installed in addition to the storage tank 20 on the second floor portion 10B of the building 10 of the liquefied natural gas stand 1.
  • the storage tank 20, the dispenser 30, the temperature controller 40, the buffer tank 50, the cogeneration unit 60, the boiler 70, and the hot water evaporator 80 are mutually connected.
  • the piping line includes a return line L3, a gas discharge line L4, a replenishment line L5, a branch line L6, and a hot water circulation line L7 in addition to the above-mentioned lead-out line L1 and supply line L2). Connected by.
  • natural gas liquefied natural gas, natural gas in a gaseous state, or a mixture thereof
  • the lead-out line L1 the supply line L2, the recirculation line L3, the gas discharge line L4, the replenishment line L5, and the branch line L6.
  • Water that has been heated by being heated flows through the hot water circulation line L7 that has passed through and remains.
  • the temperature controller 40 is provided on the lead-out line L1 on the downstream side of the storage tank 20 and on the upstream side of the dispenser 30.
  • the temperature controller 40 is for adjusting the temperature of the liquefied natural gas derived from the storage tank 20, and more specifically, the liquefied natural gas in a supercooled state is heated to a predetermined temperature. The temperature is raised to.
  • the temperature controller 40 may be a hot water type or an air temperature type.
  • a hot water type when used as a temperature controller, it is in a supercooled state in which the hot water generated by the boiler 70, which will be described later, is used to exchange heat with the hot water to pass through the lead-out line L1. You may also heat the liquefied natural gas in.
  • the reflux line L3 is provided so as to connect the above-mentioned supply line L2 and the storage tank 20.
  • the reflux line L3 is for returning the liquefied natural gas introduced into the dispenser 30 to the storage tank 20.
  • the gas discharge line L4 is provided so as to connect the storage tank 20 and the cogeneration unit 60.
  • the cogeneration unit 60 is a generator that uses natural gas (BOG) in a gaseous state stored in the storage tank 20 as fuel to generate electricity, and the power generated by the cogeneration unit 60 is a dispenser 30 or a hot water type. Power is supplied to the evaporator 80, the control panel 90, various other transmitters provided in the liquefied natural gas stand 1, and the like.
  • BOG natural gas
  • an uninterruptible power supply (UPS) is installed in the cogeneration unit 60, even in an environment where commercial power is not supplied (for example, during a power failure or in an area where commercial power is not supplied).
  • the liquefied natural gas station can be operated, and the liquefied natural gas can be stably supplied to the vehicle 100 at all times.
  • the gas discharge line L4 is provided with a hot water evaporator 80 and a buffer tank 50.
  • the hot water evaporator 80 is for heating the BOG discharged from the storage tank 20 and sending it to the cogeneration unit 60 because the temperature is relatively low.
  • the buffer tank 50 temporarily stores the BOG and sends the required amount to the cogeneration unit 60.
  • the hot water evaporator 80 heats the BOG passing through the gas discharge line L4 by exchanging heat with the hot water using the hot water generated by the boiler 70 described later.
  • an air temperature type evaporator may be used instead of the hot water type evaporator 80.
  • a branch line L6 is provided on the gas discharge line L4 on the downstream side of the buffer tank 50 and on the upstream side of the cogeneration unit 60.
  • a boiler 70 is provided on the downstream side of the branch line L6.
  • This boiler 70 uses BOG as fuel to generate hot water, and supplies the generated hot water to the hot water evaporator 80. Therefore, a hot water circulation line L7 is provided between the boiler 70 and the hot water evaporator 80 as a circulation path through which water flows.
  • a required amount of BOG is sent from the buffer tank 50 described above to the boiler 70 via the gas discharge line L4 and the branch line L6.
  • a chimney 71 for discharging the exhaust gas generated by the boiler 70 will be attached to the liquefied natural gas stand 1 (see FIGS. 1 to 4).
  • the replenishment line L5 is connected to the storage tank 20.
  • the replenishment line L5 is used when replenishing the liquefied natural gas from the outside when the amount of the liquefied natural gas stored in the storage tank 20 decreases.
  • replenishment of liquefied natural gas is performed via a liquefied natural gas transport vehicle 200 (generally a tank lorry), and the liquefied natural gas transported by the transport vehicle 200 is supplied to the storage tank 20 via the replenishment line L5. It is done by being sent.
  • valves, pumps, blowers, etc. are installed in the various piping lines described above as needed.
  • valves V1 to V5 provided in the lead-out line L1, the supply line L2, the reflux line L3, the gas discharge line L4, and the replenishment line L5 are shown.
  • valves V1 to V3 and V5 are open / close valves that switch the presence or absence of natural gas flow
  • valve V4 is a safety valve that reduces pressure by opening when a predetermined pressure is exceeded. ..
  • the valve V4 is provided on the gas discharge line L4, and when the pressure of the gas phase portion of the storage tank 20 exceeds a predetermined pressure, the BOG is discharged to the outside through the valve V4 to obtain the pressure. To reduce.
  • a control panel 90 is installed on the first floor portion 10A of the building 10 of the liquefied natural gas stand 1. As described above, the control panel 90 receives power from the cogeneration unit 60, thereby appropriately controlling the operation of various facilities installed in the liquefied natural gas stand 1.
  • the outlet 21 provided in the storage tank 20 is arranged at a higher position than the supply port 31 provided in the dispenser 30.
  • the height H1 at the position where the outlet 21 of the storage tank 20 is provided is the position where the supply port 31 of the dispenser 30 is provided. Higher than height H2.
  • the liquid head effectively contributes to the transfer of the liquefied natural gas stored in the storage tank 20 during the precooling operation and the supply operation, which will be described later. It will be described in detail later.
  • FIGS. 6 to 8 are diagrams for explaining the precooling operation, the supply operation, and the replenishment operation in the liquefied natural gas stand according to the present embodiment, respectively.
  • the precooling operation, the supply operation, and the replenishment operation in the liquefied natural gas stand 1 according to the present embodiment will be described in detail.
  • the valves V1 and V3 are opened and the valves V2 are closed.
  • the liquefied natural gas is led out from the storage tank 20 to the lead-out line L1
  • the liquefied natural gas drawn out from the storage tank 20 is introduced into the dispenser 30 via the temperature controller 40.
  • the liquefied natural gas introduced into the dispenser 30 flows into the reflux line L3 and is returned to the storage tank 20 via the reflux line L3.
  • the supercooled natural gas stored in the storage tank 20 is circulated in the order of the lead-out line L1, the dispenser 30, the reflux line L3, and the storage tank 20.
  • the liquefied natural gas in the supercooled state cools the lead-out line L1 and the dispenser 30, and the temperature thereof is significantly lowered.
  • the operation of the temperature controller 40 is stopped.
  • the liquefied natural gas passes through the lead-out line L1 and the dispenser 30, it receives the heat of the lead-out line L1 and the dispenser 30 and raises the temperature, and BOG is generated.
  • the temperatures of the lead-out line L1 and the dispenser 30 have not yet been sufficiently lowered, a particularly large amount of BOG is generated.
  • the BOG generated during this precooling operation is returned to the storage tank 20 together with the liquefied natural gas via the reflux line L3. Then, the BOG returned to the storage tank 20 is stored in the gas phase portion inside the storage tank 20.
  • the BOG is transferred to the buffer tank 50 via the gas discharge line L4 and temporarily stored by the buffer tank 50.
  • the valves V1 and V2 are opened and the valves V3 are closed.
  • the liquefied natural gas led out from the storage tank 20 to the lead-out line L1 is introduced into the dispenser 30 via the temperature controller 40.
  • the liquefied natural gas introduced into the dispenser 30 is supplied to the vehicle 100 via the supply line L2 (finally, via the above-mentioned hose 32 with a supply nozzle).
  • the temperature controller 40 is operated, the temperature of the liquefied natural gas supplied to the vehicle 100 can be adjusted.
  • the valve V1 is opened while the transport vehicle 200 is connected to the replenishment line L5.
  • the liquefied natural gas stored in the tank of the transport vehicle 200 is transferred to the storage tank 20 via the replenishment line L5, whereby the liquefied natural gas is replenished in the storage tank 20.
  • the inside of the tank is pressurized during the above-mentioned replenishment operation, whereby the liquefied natural gas is released. It can be transferred.
  • the cogeneration unit 60, the boiler 70 and the hot water evaporator 80 described above are operated as necessary during the precooling operation, the supply operation and the replenishment operation, or during other operations or standbys. It will be.
  • the outlet 21 provided in the storage tank 20 is connected to the supply port 31 provided in the dispenser 30 as described above. Is also located at a high place. Therefore, the liquid head effectively contributes to the transfer of the liquefied natural gas stored in the storage tank 20 during the precooling operation and the supply operation described above, and the power (that is, energy consumption) required for this is significantly increased. It becomes possible to reduce to.
  • the liquid head also increases the transfer speed of the liquefied natural gas, which makes it possible to efficiently lower the temperatures of the lead-out line L1 and the dispenser 30 during the precooling operation, and as a result, the time required for the precooling operation. Can be significantly shortened.
  • the liquefied natural gas stand 1 by using the liquefied natural gas stand 1 according to the present embodiment, not only the mixing of BOG into the liquefied natural gas supplied to the vehicle 100 can be suppressed, but also the energy consumption is reduced in a short time. It can be a liquefied natural gas stand that can be precooled in the state.
  • the storage tank 20 is arranged in the second floor portion 10B as the upper space partitioned by the floor 12B of the building 10.
  • the dispenser 30 is arranged in the first floor portion 10A as a lower space. Therefore, if the floor 12B is configured with a high-strength partition wall, the storage tank 20 and the equipment installed on the first floor portion 10A can be isolated from each other, so that the liquefied natural gas with improved safety is achieved. It can be a stand.
  • the liquefied natural gas stand 1 when viewed along the vertical direction, the above-mentioned dispenser 30, temperature controller 40, buffer tank 50, hot water evaporator 80, control panel 90, etc. However, all of them are arranged below the storage tank 20. With this configuration, the outer shape of the building 10 when viewed along the vertical direction can be reduced. Therefore, since the installation area required for the installation of the liquefied natural gas stand 1 is significantly reduced, the liquefied natural gas stand can be made with a higher degree of freedom in installation as compared with the conventional case.
  • the present invention is applied to a liquefied natural gas stand that supplies liquefied natural gas to a vehicle
  • the object of application of the present invention is The present invention is not limited to this, and the present invention can be applied to any liquefied natural gas supply facility that supplies liquefied natural gas as a liquid to the outside.
  • 1 liquefied natural gas stand 10 building, 10A first floor, 10B second floor, 11 skeleton, 12A, 12B floor, 13A, 13B wall, 14 door, 15 shutter, 16 frontage, 17 ventilation, 18 stairs, 19 handrail , 20 storage tank, 21 outlet, 30 dispenser, 31 supply port, 32 hose with supply nozzle, 40 temperature controller, 50 buffer tank, 60 cogeneration unit, 70 boiler, 71 chimney, 80 hot water evaporator, 90 Control panel, 100 vehicles, 200 transport vehicles, 300 ground, L1 lead-out line, L2 supply line, L3 recirculation line, L4 gas discharge line, L5 replenishment line, L6 branch line, L7 hot water circulation line, V1 to V5 valves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

液化天然ガス供給設備(1)は、液化天然ガスを貯留する貯留タンク(20)と、貯留タンク(20)に貯留された液化天然ガスを導出して外部に対してこれを供給する導出ライン(L1)およびディスペンサ(30)と、ディスペンサ(30)に導入された液化天然ガスを貯留タンク(20)に戻すための還流ライン(L2)とを備える。貯留タンク(20)に設けられた導出ライン(L1)に対する液化天然ガスの導出口(21)は、ディスペンサ(30)に設けられた液化天然ガスの外部に対する供給口(31)よりも高所に位置する。

Description

液化天然ガス供給設備
 本発明は、貯留タンクに貯留した液化天然ガス(LNG:Liquefied Natural Gas)をディスペンサを用いて液体のまま外部に対して供給することができる液化天然ガス供給設備に関する。
 従来、液化天然ガス供給設備としての液化天然ガススタンドが知られている。液化天然ガススタンドは、天然ガスを燃料とする車両に対して液化天然ガスを液体のまま供給する燃料スタンドであり、この点において気化した天然ガスを車両に供給する天然ガススタンドとは異なるものである。
 液化天然ガスは、気体状態にある天然ガスに比べてその体積が約600分の1であるため、液化天然ガスをそのまま車両に供給し、車両側においてこれを気化させて燃料として使用することとすれば、車両の航続距離を飛躍的に向上させることができる。そのため、近年、その実用化が注目されている。
 この液化天然ガススタンドは、液化天然ガスを貯留する貯留タンクに加えて、貯留タンクから液化天然ガスを車両に供給するための配管およびディスペンサを備えている。ここで、液化天然ガススタンドにおいては、貯留タンクにて貯留される天然ガスが液体の状態に維持されるように(すなわち、天然ガスの温度が沸点以下に維持されるように)、過冷却の状態に保たれている。
 そのため、液化天然ガスを車両に対して供給するためにこれを配管およびディスペンサに通流させた場合には、液化天然ガスが配管およびディスペンサの熱を受け取って昇温し、多くの気化したガス(BOG:Boil Off Gas)が発生してしまう。発生したBOGは、液化天然ガスと共に車両へと供給されてしまうため、これによって車両に具備された燃料タンクの内圧が上昇してしまい、結果として十分な量の液化天然ガスが供給できない不具合が発生する。
 この問題の解決が図られた液化天然ガススタンドとしては、たとえば特開2018-76943号公報(特許文献1)に開示のものがある。当該公報に開示された液化天然ガススタンドにおいては、貯留タンクからディスペンサに供給された液化天然ガスを貯留タンクへと戻す還流路が設けられており、液化天然ガスの車両への供給に先立って、当該還流路を用いて液化天然ガスが循環される予冷動作が行なわれるように構成されている。
 このように構成することにより、上述した配管およびディスペンサが過冷却の状態にある液化天然ガスによって予め冷却されることになるため、その後において液化天然ガスを車両に供給することにより、車両に供給されてしまうBOGの量を大幅に抑制することが可能になる。なお、予冷動作時において配管およびディスペンサにおいて発生したBOGは、還流路を経由して液化天然ガスと共に貯留タンクに戻され、貯留タンクの内部の気相部分に貯留されることになる。
特開2018-76943号公報
 ここで、一般に、液化天然ガススタンドにおいては、貯留タンクの気相部分に貯留された気体状態の天然ガスが加圧され、この加圧された状態にある気体状態の天然ガスによって液化天然ガスが押し出されることにより、液化天然ガスが上述した配管およびディスペンサを介して車両へと供給されるように構成される。
 しかしながら、上記公報に開示の如くの液化天然ガススタンドとした場合には、上述したように予冷動作時において貯留タンクの気相部分にBOGが戻されることになるため、当該予冷動作中において貯留タンクの気相部分を十分に加圧することができない。そのため、予冷動作中においては、上述した配管に設けられたポンプを駆動することで液化天然ガスを圧送することが必要になってしまう。
 このポンプを用いた液化天然ガスの圧送には、非常に大きな動力が必要となり、何ら対策を施さなかった場合には、消費エネルギの削減の観点で大きく劣ってしまうことになる。また、消費エネルギの削減の観点から当該ポンプの出力を低くした場合には、予冷動作に長い時間を要してしまうことになる。
 したがって、本発明は、上述した問題に鑑みてなされたものであり、外部に対して供給される液化天然ガスへのBOGの混入が抑制できるばかりでなく、短時間にかつ消費エネルギを低減した状態で予冷動作が行なえる液化天然ガス供給設備を提供することを目的とする。
 本発明に基づく液化天然ガス供給設備は、貯留タンクと、導出ラインと、ディスペンサと、還流ラインとを備えている。上記貯留タンクは、液化天然ガスを貯留するものであり、上記導出ラインは、上記貯留タンクに貯留された液化天然ガスを導出するためのものである。上記ディスペンサは、上記導出ラインの下流に位置しており、上記貯留タンクから導出された液化天然ガスを外部に対して供給するためのものである。上記還流ラインは、上記ディスペンサに導入された液化天然ガスを上記貯留タンクに戻すためのものである。上記本発明に基づく液化天然ガス供給設備は、上記貯留タンクに設けられた上記導出ラインに対する液化天然ガスの導出口は、上記ディスペンサに設けられた液化天然ガスの外部に対する供給口よりも高所に位置している。
 上記本発明に基づく液化天然ガス供給設備にあっては、鉛直方向に沿って見た場合に、上記ディスペンサが、上記貯留タンクの下方に位置していることが好ましい。
 上記本発明に基づく液化天然ガス供給設備は、さらに建屋を備えていてもよい。ここで、上記建屋は、躯体および隔壁を含んでいてもよく、上記建屋が、上記隔壁によって上部空間と下部空間とに仕切られていてもよい。その場合には、上記貯留タンクが、上記上部空間に配置されていることが好ましく、また、上記ディスペンサが、上記下部空間に配置されていることが好ましい。
 上記本発明に基づく液化天然ガス供給設備は、さらに温度調整器を備えていてもよい。ここで、上記温度調整器は、上記貯留タンクから導出された液化天然ガスの温度を調整するために上記導出ラインに設けられていてもよい。その場合には、上記温度調整器が、上記下部空間に配置されていることが好ましい。
 上記本発明に基づく液化天然ガス供給設備は、さらにバッファタンクを備えていてもよい。ここで、上記バッファタンクは、液化天然ガスが気化することで発生するボイルオフガスを一時的に貯留することが可能なものであり、上記貯留タンクにガス排出ラインを介して接続されている。その場合には、上記バッファタンクが、上記下部空間に配置されていることが好ましい。
 上記本発明に基づく液化天然ガス供給設備にあっては、上記貯留タンクの高さ寸法が、上記貯留タンクの幅寸法および奥行き寸法の少なくとも一方より小さいことが好ましい。
 本発明によれば、外部に対して供給される液化天然ガスへのBOGの混入が抑制できるばかりでなく、短時間にかつ消費エネルギを低減した状態で予冷動作が行なえる液化天然ガス供給設備とすることができる。
実施の形態に係る液化天然ガススタンドを正面側左斜め上方から見た場合の斜視図である。 図1に示す液化天然ガススタンドを背面側右斜め上方から見た場合の斜視図である。 図1に示す液化天然ガススタンドの建屋の一部の図示を省略した斜視図である。 図1に示す液化天然ガススタンドの建屋の一部の図示を省略した正面図である。 図1に示す液化天然ガススタンドのシステム構成図である。 図1に示す液化天然ガススタンドにおける予冷動作を説明するための図である。 図1に示す液化天然ガススタンドにおける供給動作を説明するための図である。 図1に示す液化天然ガススタンドにおける補充動作を説明するための図である。
 以下、本発明の実施の形態について、図を参照して詳細に説明する。以下に示す実施の形態は、液化天然ガス供給設備としての液化天然ガススタンドに本発明を適用した場合を例示するものである。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。
 図1は、本発明の実施の形態に係る液化天然ガススタンドを正面側左斜め上方から見た場合の斜視図であり、図2は、背面側右斜め上方から見た場合の斜視図である。まず、これら図1および図2を参照して、本実施の形態に係る液化天然ガススタンド1の外観構造について説明する。
 図1および図2に示すように、液化天然ガススタンド1は、燃料としての液化天然ガスを液体のまま車両に供給するためのサテライト基地であり、建屋10と、貯留タンク20と、ディスペンサ30とを主として備えている。液化天然ガススタンド1は、比較的容易な作業によってその組立てや分解ができるように設計されており、これにより必要に応じてその移設が可能に構成されている。
 建屋10は、一階部分10Aおよび二階部分10Bを含む二階建ての構造を有しており、全体として細長の略直方体形状を有している。建屋10は、必要以上にその設置面積が大きくならないように、鉛直方向に沿って見た場合の外形が大型トレーラー1台分よりも僅かに大きい程度の大きさにまで小型化されている。
 ここで、液化天然ガススタンド1は、ディスペンサ30を用いて車両に対して液化天然ガスを供給するものであるため、液化天然ガスの供給を受ける車両は、ディスペンサ30が設置された液化天然ガススタンド1の一階部分10Aに横付けされる。この車両が横付けされる側の建屋10の面を、液化天然ガススタンド1の正面とする。
 建屋10は、土台や柱、梁等からなる躯体11と、一階部分10Aに設けられた床12Aおよび壁13Aと、二階部分10Bに設けられた床12Bおよび壁13Bとを含んでいる。一階部分10Aには、上述したディスペンサ30が設置されており、二階部分10Bには、上述した貯留タンク20が設置されている。また、一階部分10Aおよび二階部分10Bには、これらの他にも後述する各種の設備が設置されている。
 一階部分10Aは、その四方が壁13Aによって囲われており、その内部に上述したディスペンサ30や各種の設備が設置されている。この一階部分10Aに設置された各種の設備には、後において詳説する温度調整器40、バッファタンク50、ボイラ70、温水式蒸発器80および制御盤90(図3および図5等参照)等が含まれる。
 一階部分10Aの壁13Aの所定位置には、複数の間口が設けられており、この間口には、開閉可能に扉14やシャッタ15が設けられている。これら複数の間口には、人の出入りを可能にするものや、上述した各種の設備の搬入および搬出の際に使用されるもの、車両に対する液化天然ガスの供給の際に使用されるもの等が含まれている。特に、図1を参照して、ディスペンサ30の前に設けられた間口16は、上述したうちの車両に対する液化天然ガスの供給の際に使用されるものに該当する。なお、当該間口16にも図示しないシャッタが開閉可能に設けられている。
 また、一階部分10Aの壁13Aの所定位置には、換気扇およびフードからなる換気部17が設けられている。当該換気部17は、建屋10の一階部分10Aの内部の空気を外部に排気することで換気を行なうものである。
 一方、二階部分10Bは、その四方のうちの三方が壁13Bによって囲われた部分と、当該壁13Bによって囲われていないデッキ部分とが設けられている。この壁13Bによって囲われた部分には、上述した貯留タンク20が設置されており、デッキ部分には、後において詳説するコジェネレーションユニット60が設置されている。なお、貯留タンク20が設置された空間の上方には、天井が設けられておらず、開放された状態とされている。
 二階部分10Bの壁13Bの所定位置(より具体的には、壁13Bのうちのデッキ部分に面する位置)には、間口が設けられており、この間口には、開閉可能に扉14が設けられている。当該間口は、人の出入りを可能にするものである。
 なお、図2に示すように、建屋10の背面側の位置には、階段18が設けられている。当該階段18は、二階部分10Bに設けられたデッキ部分に人が上り下りするためのものである。ここで、この階段18と、二階部分10Bに設けられたデッキ部分とには、転落の防止のための手摺り19が設置されている。
 図3および図4は、それぞれ本実施の形態に係る液化天然ガススタンドの建屋の一部の図示を省略した斜視図および正面図である。また、図5は、本実施の形態に係る液化天然ガススタンドのシステム構成図である。次に、これら図3ないし図5を参照して、本実施の形態に係る液化天然ガススタンド1の内部構造ならびにシステム構成について詳細に説明する。なお、図3および図4においては、理解を容易とするために、上述した建屋10の一部に加えて、後述する導出ラインL1、還流ラインL3およびバルブV4等を除く各種の配管ライン、バルブ、ポンプ等の図示を省略している。
 図3および図4に示すように、液化天然ガススタンド1の建屋10の二階部分10Bには、上述したように貯留タンク20が設置されている。この貯留タンク20は、液化天然ガスを一時的に貯留するものであり、細長の略円柱状の外形を有している。
 より詳細には、貯留タンク20の高さ寸法は、当該貯留タンク20の幅寸法および奥行き寸法の少なくともいずれか一方よりも小さく構成されていることが好ましく、本実施の形態においては、高さ寸法が、幅寸法よりも小さく構成されているとともに奥行き寸法と同等に構成されている。
 ここで、高さ方向とは、液化天然ガススタンド1の正面側から見た場合における上下方向(すなわち鉛直方向)を意味しており、幅寸法は、液化天然ガススタンド1の正面側から見た場合における左右方向の外形寸法を意味しており、奥行き寸法は、液化天然ガススタンド1の正面側から見た場合における前後方向の外形寸法を意味している。
 このように構成することにより、貯留タンク20がいわゆる横置きの状態で設置されることになるため、貯留タンク20の設置安定性が増すことになり、たとえば大規模な災害が発生した場合等の貯留タンク20の転倒リスクを低減することが可能になる。したがって、より安全性に優れた液化天然ガススタンドとすることができる。
 図5に示すように、貯留タンク20の内部においては、天然ガスが下方において液体の状態で貯留されており、上方において気体の状態で貯留されている。貯留タンク20には、圧力調整機構が付設されており、当該圧力調整機構によってその内部の圧力が概ね一定となるように調整されている。
 図3および図4に示すように、建屋10の二階部分10Bに設けられたデッキ部分に面する側の貯留タンク20の側面には、液化天然ガスを外部に向けて導出するための導出口21が設けられている。この導出口21には、後述する導出ラインL1が接続されており、貯留タンク20に貯留された液化天然ガスは、この導出口21から導出ラインL1へと送り出されることになる。
 図3および図4に示すように、液化天然ガススタンド1の建屋10の一階部分10Aには、上述したようにディスペンサ30が設置されている。図5に示すように、このディスペンサ30は、導出ラインL1の下流に位置しており、貯留タンク20から導出された液化天然ガスを車両100に対して供給するためのものである。
 ディスペンサ30は、液化天然ガスの流量を調整しつつその流量を計測しながら車両に対して液化天然ガスを供給するものであり、液化天然ガスの供給口31(図4参照)が設けられた装置本体と、当該供給口31に取付けられた供給用ノズル付きホース32とを有している。
 ここで、装置本体に設けられた供給口31は、ディスペンサ30に移動不能に設けられた液化天然ガスの排出口に相当し、当該供給口31を介して装置本体から液化天然ガスが排出される。この供給口31に上述した供給用ノズル付きホース32が取付けられることにより、使用者が当該供給用ノズル付きホース32を用いることで車両100に対して液化天然ガスを供給することが可能になる。
 なお、図5においては、理解を容易とするために、ディスペンサ30の下流側に供給ラインL2を図示しているが、この供給ラインL2は、ディスペンサ30の一部を構成するものである。また、供給ラインL2の下流側末端部は、上述した供給用ノズル付きホース32に該当している。
 図3および図4を参照して、液化天然ガススタンド1の建屋10の一階部分10Aには、上述したように、ディスペンサ30の他に、温度調整器40、バッファタンク50、ボイラ70、温水式蒸発器80および制御盤90等が設置されている。一方、液化天然ガススタンド1の建屋10の二階部分10Bには、上述したように、貯留タンク20の他に、コジェネレーションユニット60が設置されている。
 図5に示すように、液化天然ガススタンド1においては、このうちの貯留タンク20、ディスペンサ30、温度調整器40、バッファタンク50、コジェネレーションユニット60、ボイラ70および温水式蒸発器80が、相互に各種の配管ライン(当該配管ラインには、上述した導出ラインL1および供給ラインL2に加えて、還流ラインL3、ガス排出ラインL4、補充ラインL5、分岐ラインL6および温水循環ラインL7が含まれる)によって接続されている。
 このうち、導出ラインL1、供給ラインL2、還流ラインL3、ガス排出ラインL4、補充ラインL5および分岐ラインL6には、天然ガス(液化天然ガスまたは気体状態の天然ガスあるいはそれらが混ざったもの)が通流し、残る温水循環ラインL7には、加熱されることで昇温した状態の水が通流する。
 温度調整器40は、貯留タンク20の下流側であってディスペンサ30の上流側の部分の導出ラインL1に設けられている。当該温度調整器40は、貯留タンク20から導出された液化天然ガスの温度を調整するためのものであり、より具体的には、過冷却の状態にある液化天然ガスを加熱して所定の温度にまで昇温させるものである。
 温度調整器40は、温水式のものであってもよいし、空温式のものであってもよい。ここで、温水式のものを温度調整器として使用する場合には、後述するボイラ70で生成される温水を用いて当該温水と熱交換させることにより、導出ラインL1を通流する過冷却の状態にある液化天然ガスを加熱することとしてもよい。
 還流ラインL3は、上述した供給ラインL2と貯留タンク20とを結ぶように設けられている。還流ラインL3は、ディスペンサ30に導入された液化天然ガスを貯留タンク20に戻すためのものである。
 ガス排出ラインL4は、貯留タンク20とコジェネレーションユニット60とを結ぶように設けられている。コジェネレーションユニット60は、貯留タンク20に貯留された気体状態の天然ガス(BOG)を燃料として発電を行なう発電機であり、当該コジェネレーションユニット60にて発電された電力は、ディスペンサ30や温水式蒸発器80、制御盤90、液化天然ガススタンド1に設けられるその他各種の伝送器等に給電される。
 ここで、コジェネレーションユニット60に無停電電源装置(UPS)を併設することとすれば、商用電源が供給されない環境下(たとえば停電時や、商用電源が供給されないエリアでの使用等)においても、液化天然ガススタンドの稼働が可能になり、常時安定して液化天然ガスを車両100に対して供給することができる。
 ガス排出ラインL4には、温水式蒸発器80とバッファタンク50とが設けられている。温水式蒸発器80は、貯留タンク20から排出されるBOGが比較的低温であるため、これを加熱してコジェネレーションユニット60に送るためのものである。一方、バッファタンク50は、BOGを一時的に貯蔵して必要量をコジェネレーションユニット60に送るものである。
 ここで、温水式蒸発器80は、後述するボイラ70で生成される温水を用いて当該温水と熱交換させることにより、ガス排出ラインL4を通流するBOGを加熱するものである。なお、この温水式蒸発器80に代えて、空温式の蒸発器を用いることとしてもよい。
 バッファタンク50の下流側であってコジェネレーションユニット60の上流側の部分のガス排出ラインL4には、分岐ラインL6が設けられている。この分岐ラインL6の下流側には、ボイラ70が設けられている。
 このボイラ70は、BOGを燃料として温水を生成し、生成した温水を温水式蒸発器80に供給するものである。そのため、ボイラ70と温水式蒸発器80との間には、水が通流する循環路としての温水循環ラインL7が設けられている。
 ここで、ボイラ70には、上述したバッファタンク50から必要量のBOGがガス排出ラインL4および分岐ラインL6を介して送られる。なお、ボイラ70を設置することに伴い、液化天然ガススタンド1には、ボイラ70にて発生する排ガスを排出するための煙突71が付設されることになる(図1ないし図4参照)。
 補充ラインL5は、貯留タンク20に接続されている。補充ラインL5は、貯留タンク20に貯留されている液化天然ガスの量が減少した場合に、外部から液化天然ガスを補充する際に使用されるものである。通常、液化天然ガスの補充は、液化天然ガスの輸送車200(一般にタンクローリ)を介して行なわれ、当該輸送車200によって輸送されてきた液化天然ガスが当該補充ラインL5を介して貯留タンク20に送り込まれることで行なわれる。
 ここで、上述した各種の配管ラインには、必要に応じてバルブやポンプあるいはブロア等が設置される。このうち、図5においては、代表的なものとして、導出ラインL1、供給ラインL2、還流ラインL3、ガス排出ラインL4および補充ラインL5に設けられたバルブV1~V5を図示している。
 このうち、バルブV1~V3,V5は、天然ガスの通流の有無を切り換える開閉バルブであり、バルブV4は、所定の圧力を超えた場合に開放されることで圧力を低下させる安全バルブである。当該バルブV4は、ガス排出ラインL4に設けられることにより、貯留タンク20の気相部分の圧力が所定の圧力を超えた場合に、当該バルブV4を介してBOGを外部へ放出することでその圧力を低下させる。
 図3および図4に示すように、液化天然ガススタンド1の建屋10の一階部分10Aには、制御盤90が設置されている。この制御盤90は、上述したようにコジェネレーションユニット60からの給電を受け、これによって液化天然ガススタンド1に設置された各種の設備の動作を適切に制御するものである。
 図4に示すように、本実施の形態に係る液化天然ガススタンド1においては、貯留タンク20に設けられた導出口21が、ディスペンサ30に設けられた供給口31よりも高所に配置されている。すなわち、液化天然ガススタンド1が設置された地面300を基準とした場合に、貯留タンク20の導出口21が設けられた位置の高さH1が、ディスペンサ30の供給口31が設けられた位置の高さH2よりも高い。
 このように構成することにより、後述する予冷動作時および供給動作時における貯留タンク20に貯留された液化天然ガスの移送に、その液ヘッドが効果的に寄与することになるが、この点については後において詳述することとする。
 図6ないし図8は、それぞれ本実施の形態に係る液化天然ガススタンドにおける予冷動作、供給動作および補充動作を説明するための図である。次に、これら図6ないし図8を参照して、本実施の形態に係る液化天然ガススタンド1における予冷動作、供給動作および補充動作について詳説する。
 図6に示すように、車両100に対して液化天然ガスを供給する前に実施される予冷動作においては、バルブV1,V3が開放され、バルブV2が閉鎖される。これにより、貯留タンク20から液化天然ガスが導出ラインL1へと導出され、貯留タンク20から導出された液化天然ガスは、温度調整器40を経由してディスペンサ30へと導入される。ディスペンサ30に導入された液化天然ガスは、還流ラインL3に流れ込み、当該還流ラインL3を経由して貯留タンク20へと戻される。
 すなわち、予冷動作中においては、貯留タンク20に貯留された過冷却の状態にある液化天然ガスが、導出ラインL1、ディスペンサ30、還流ラインL3、貯留タンク20の順で循環されることになる。これにより、当該過冷却の状態にある液化天然ガスによって導出ラインL1およびディスペンサ30が冷却されることになり、その温度が著しく低下することになる。なお、その際、温度調整器40は、その稼働が停止されることが好ましい。
 予冷動作中においては、液化天然ガスが、導出ラインL1およびディスペンサ30を通流する際にこれら導出ラインL1およびディスペンサ30の熱を受け取って昇温し、BOGが発生する。特に、予冷動作が開始された初期段階においては、導出ラインL1およびディスペンサ30の温度が未だ十分に低下していないため、特に多くのBOGが発生する。
 この予冷動作中に発生したBOGは、還流ラインL3を経由して液化天然ガスと共に貯留タンク20に戻される。そして、貯留タンク20に戻されたBOGは、当該貯留タンク20の内部の気相部分に貯留されることになる。
 これにより、貯留タンク20の圧力が一定の値以上に達した場合には、ガス排出ラインL4を介してBOGがバッファタンク50へと移送され、当該バッファタンク50によって一時的に貯蔵される。
 図7に示すように、車両100に対して液化天然ガスを供給する供給動作においては、バルブV1,V2が開放され、バルブV3が閉鎖される。これにより、貯留タンク20から導出ラインL1に導出された液化天然ガスは、温度調整器40を経由してディスペンサ30へと導入される。ディスペンサ30に導入された液化天然ガスは、供給ラインL2を経て(最終的には、上述した供給用ノズル付きホース32を経由して)車両100へと供給される。なお、その際、温度調整器40を稼働させることとすれば、車両100に供給される液化天然ガスの温度を調整することが可能になる。
 この供給動作に先だって上述した予冷動作が実施されていることにより、当該供給動作時においては、導出ラインL1およびディスペンサ30においてBOGが発生することが抑制されることになり、車両100に対してBOGが供給されてしまうことを顕著に低減することができる。したがって、十分な量の液化天然ガスを車両100に対して供給することが可能になる。
 図8に示すように、貯留タンク20に外部から液化天然ガスを補充する補充動作においては、輸送車200が補充ラインL5に接続された状態においてバルブV1が開放される。これにより、輸送車200のタンクに貯留されている液化天然ガスが補充ラインL5を介して貯留タンク20へと移送され、これによって貯留タンク20に液化天然ガスが補充されることになる。なお、輸送車200のタンクの内圧は、その輸送時において低く保たれているため、上述した補充動作の際には、当該タンクの内部が加圧されることになり、これによって液化天然ガスが移送可能となる。
 なお、上述した補充動作は、導出ラインL1、供給ラインL2および還流ラインL3等から独立しているため、前述の予冷動作や供給動作と並行して(すなわち同時に)これを実施することが可能である。
 また、上述したコジェネレーションユニット60、ボイラ70および温水式蒸発器80は、これら予冷動作、供給動作および補充動作中において、あるいはそれら以外の動作中または待機時等において、必要に応じて稼働されることになる。
 ここで、図4を参照して、本実施の形態に係る液化天然ガススタンド1においては、貯留タンク20に設けられた導出口21が、上述したようにディスペンサ30に設けられた供給口31よりも高所に配置されている。そのため、上述した予冷動作時および供給動作時における貯留タンク20に貯留された液化天然ガスの移送に、その液ヘッドが効果的に寄与することになり、これに要する動力(すなわち消費エネルギ)を大幅に削減することが可能になる。
 また同時に、液ヘッドによって液化天然ガスの移送の速度も速まることになり、予冷動作時において導出ラインL1およびディスペンサ30の温度を効率的に低下させることが可能になり、結果として予冷動作に要する時間を大幅に短縮化させることができる。
 したがって、本実施の形態に係る液化天然ガススタンド1とすることにより、車両100に対して供給される液化天然ガスへのBOGの混入が抑制できるばかりでなく、短時間にかつ消費エネルギを低減した状態で予冷動作が行なえる液化天然ガススタンドとすることができる。
 ここで、図3および図4に示すように、本実施の形態に係る液化天然ガススタンド1においては、建屋10の床12Bによって仕切られた上部空間としての二階部分10Bに貯留タンク20が配置されており、下部空間としての一階部分10Aにディスペンサ30が配置されている。そのため、この床12Bを高い強度の隔壁にて構成すれば、貯留タンク20と一階部分10Aに設置された設備とを隔絶することが可能になるため、より安全性が高められた液化天然ガススタンドとすることができる。
 また、本実施の形態に係る液化天然ガススタンド1においては、鉛直方向に沿って見た場合に、上述したディスペンサ30、温度調整器40、バッファタンク50、温水式蒸発器80および制御盤90等が、いずれも貯留タンク20の下方に配置されている。このように構成することにより、鉛直方向に沿って見た場合の建屋10の外形を小さくすることができる。したがって、液化天然ガススタンド1の設置に要する設置面積が大幅に小さくなるため、設置の自由度が従来に比して高められた液化天然ガススタンドとすることができる。
 以上において説明した本発明の実施の形態においては、車両に対して液化天然ガスを供給する液化天然ガススタンドに本発明を適用した場合を例示して説明を行なったが、本発明の適用対象はこれに制限されるものではなく、液化天然ガスを液体のまま外部に供給する液化天然ガス供給設備であれば、どのようなものに対しても本発明の適用が可能である。
 このように、今回開示した上記実施の形態はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は請求の範囲によって画定され、また請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
 1 液化天然ガススタンド、10 建屋、10A 一階部分、10B 二階部分、11 躯体、12A,12B 床、13A,13B 壁、14 扉、15 シャッタ、16 間口、17 換気部、18 階段、19 手摺り、20 貯留タンク、21 導出口、30 ディスペンサ、31 供給口、32 供給用ノズル付きホース、40 温度調整器、50 バッファタンク、60 コジェネレーションユニット、70 ボイラ、71 煙突、80 温水式蒸発器、90 制御盤、100 車両、200 輸送車、300 地面、L1 導出ライン、L2 供給ライン、L3 還流ライン、L4 ガス排出ライン、L5 補充ライン、L6 分岐ライン、L7 温水循環ライン、V1~V5 バルブ。 

Claims (6)

  1.  液化天然ガスを貯留する貯留タンクと、
     前記貯留タンクに貯留された液化天然ガスを導出するための導出ラインと、
     前記導出ラインの下流に位置し、前記貯留タンクから導出された液化天然ガスを外部に対して供給するためのディスペンサと、
     前記ディスペンサに導入された液化天然ガスを前記貯留タンクに戻すための還流ラインとを備え、
     前記貯留タンクに設けられた前記導出ラインに対する液化天然ガスの導出口が、前記ディスペンサに設けられた液化天然ガスの外部に対する供給口よりも高所に位置している、液化天然ガス供給設備。
  2.  鉛直方向に沿って見た場合に、前記ディスペンサが、前記貯留タンクの下方に位置している、請求項1に記載の液化天然ガス供給設備。
  3.  躯体および隔壁を含み、前記隔壁によって上部空間と下部空間とに仕切られた建屋をさらに備え、
     前記貯留タンクが、前記上部空間に配置され、
     前記ディスペンサが、前記下部空間に配置されている、請求項1または2に記載の液化天然ガス供給設備。
  4.  前記導出ラインに設けられ、前記貯留タンクから導出された液化天然ガスの温度を調整するための温度調整器をさらに備え、
     前記温度調整器が、前記下部空間に配置されている、請求項3に記載の液化天然ガス供給設備。
  5.  前記貯留タンクにガス排出ラインを介して接続され、液化天然ガスが気化することで発生するボイルオフガスを一時的に貯留することが可能なバッファタンクをさらに備え、
     前記バッファタンクが、前記下部空間に配置されている、請求項3または4に記載の液化天然ガス供給設備。
  6.  前記貯留タンクの高さ寸法が、前記貯留タンクの幅寸法および奥行き寸法の少なくとも一方より小さい、請求項1から5のいずれかに記載の液化天然ガス供給設備。
PCT/JP2021/009865 2020-04-28 2021-03-11 液化天然ガス供給設備 WO2021220635A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-079434 2020-04-28
JP2020079434A JP7321968B2 (ja) 2020-04-28 2020-04-28 液化天然ガス供給設備

Publications (1)

Publication Number Publication Date
WO2021220635A1 true WO2021220635A1 (ja) 2021-11-04

Family

ID=78281383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009865 WO2021220635A1 (ja) 2020-04-28 2021-03-11 液化天然ガス供給設備

Country Status (2)

Country Link
JP (1) JP7321968B2 (ja)
WO (1) WO2021220635A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144913A (ja) * 2008-12-22 2010-07-01 Ud Trucks Corp 液化天然ガス車両の燃料系システム
JP2010144845A (ja) * 2008-12-19 2010-07-01 Ud Trucks Corp 液化天然ガス車両の燃料系システム
JP2011247368A (ja) * 2010-05-28 2011-12-08 Kagla Vaportech Corp Lpg液移充填装置
CN207814920U (zh) * 2017-11-03 2018-09-04 重庆厚海能源设备制造有限公司 一种无需潜液泵和预冷的lng加液机构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144845A (ja) * 2008-12-19 2010-07-01 Ud Trucks Corp 液化天然ガス車両の燃料系システム
JP2010144913A (ja) * 2008-12-22 2010-07-01 Ud Trucks Corp 液化天然ガス車両の燃料系システム
JP2011247368A (ja) * 2010-05-28 2011-12-08 Kagla Vaportech Corp Lpg液移充填装置
CN207814920U (zh) * 2017-11-03 2018-09-04 重庆厚海能源设备制造有限公司 一种无需潜液泵和预冷的lng加液机构

Also Published As

Publication number Publication date
JP2021173372A (ja) 2021-11-01
JP7321968B2 (ja) 2023-08-07

Similar Documents

Publication Publication Date Title
US20180094772A1 (en) Virtual gaseous fuel pipeline
US7757727B2 (en) High pressure gas tank heat management by circulation of the refueling gas
KR101168299B1 (ko) 연료가스 공급장치
JP2007514597A (ja) 海洋船舶のガス供給装置および海洋船舶のガス供給装置におけるガス圧を制御する方法
JP5184630B2 (ja) 閉鎖空間における防火及び/又は消火方法並びに閉鎖空間における防火及び/又は消火装置
US4211085A (en) Systems for supplying tanks with cryogen
JP2009506264A (ja) 可搬式水素燃料供給スタンド
US20120240599A1 (en) Air conditioning system for an aircraft
JP2012076561A (ja) 舶用燃料供給システム
CN106170658A (zh) 用于对车辆燃料箱中的低温燃料进行排放和重新填充的系统
WO2021220635A1 (ja) 液化天然ガス供給設備
CA2108190A1 (en) Co2 temperature control system for transport vehicles
CN108698673B (zh) 具有气体再汽化系统的船舶
JP7083660B2 (ja) 可燃性ガス供給ユニット及び水素ステーション
AU767530B2 (en) Cyrogenic densification through introduction of a second cryogenic fluid
JP2023130138A (ja) 水素充填設備、水素提供システム及び水素提供方法
KR102610000B1 (ko) 발전 유닛으로 연료를 공급하는 장치와 방법
US20220299165A1 (en) Mobile liquid hydrogen recharger
JPH06117599A (ja) Lng基地からの送ガス装置
KR102606577B1 (ko) 액화가스 재기화 시스템
JP5773943B2 (ja) 船舶、ガス燃料供給設備、ガス燃料供給設備の運転方法
JPH06185699A (ja) 液化ガス貯蔵タンク内に発生するbogの抑制装置
EP3769003B1 (en) Pressurized container for liquefied gas and consumer connection
JP2003020294A (ja) ガス発生設備及びその運転方法
CN201129617Y (zh) 撬式移动气化站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797553

Country of ref document: EP

Kind code of ref document: A1