WO2021220456A1 - Processing system - Google Patents

Processing system Download PDF

Info

Publication number
WO2021220456A1
WO2021220456A1 PCT/JP2020/018256 JP2020018256W WO2021220456A1 WO 2021220456 A1 WO2021220456 A1 WO 2021220456A1 JP 2020018256 W JP2020018256 W JP 2020018256W WO 2021220456 A1 WO2021220456 A1 WO 2021220456A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
work
measuring
processing system
stage
Prior art date
Application number
PCT/JP2020/018256
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 立崎
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2020/018256 priority Critical patent/WO2021220456A1/en
Priority to TW110115215A priority patent/TW202142339A/en
Publication of WO2021220456A1 publication Critical patent/WO2021220456A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece

Definitions

  • the present invention relates to, for example, the technical field of a processing system that processes an object with processing light.
  • Patent Document 1 describes a processing device that processes an object by irradiating the object with a laser beam, which is a specific example of processing light. In the technical field related to the processing of such an object, it is desired to improve the performance related to the processing of the object.
  • an object mounting device for mounting an object, a processing device for processing the object mounted on the object mounting device with processing light, and a processing device mounted on the object mounting device.
  • a measuring device for measuring the object, a changing device for moving at least one of the object and the processing device mounted on the object mounting device, and the processing light can irradiate the first side of the object.
  • a processing system including a control device for controlling the changing device and controlling the changing device so that the processing light can irradiate the second side opposite to the first side is provided.
  • an object mounting device for mounting an object, a processing device for processing the object mounted on the object mounting device with processing light, and a processing device mounted on the object mounting device.
  • the measuring device for measuring the object, the changing device for moving at least one of the object and the processing device mounted on the object mounting device, and the first side of the object can be processed by the processing device.
  • a processing system including a control device for controlling the changing device and controlling the changing device so that the processing device can process the second side opposite to the first side is provided.
  • an object mounting device for mounting an object, a processing device for processing the object mounted on the object mounting device with processing light, and a processing device mounted on the object mounting device.
  • a measuring device for measuring the object and a changing device for moving at least one of the object mounted on the object mounting device and the processing device are provided, and the measuring device is attached to the object mounting device.
  • the index is measured to obtain the first measurement result, and after moving at least one of the object mounted on the object mounting device and the processing device, the index is measured to obtain the second measurement result.
  • a processing system is provided.
  • an object mounting device for mounting an object, a processing device for irradiating the object with processing light to remove a part of the object, and the object from which the part has been removed are provided.
  • a machining system including a control device for controlling the machining device so as to perform machining is provided.
  • FIG. 1 is a perspective view showing the appearance of the processing system of the present embodiment.
  • FIG. 2 is a cross-sectional view showing the structure of the processing system of the present embodiment.
  • FIG. 3 is a block diagram showing a system configuration of the processing system of the present embodiment.
  • Each of FIGS. 4 (a) to 4 (c) is a cross-sectional view showing a state of removal processing performed on the work.
  • FIG. 5 is a cross-sectional view showing the structure of the processing head.
  • FIG. 6 is a perspective view showing the structure of the processing science system.
  • 7 (a) is a plan view showing an index
  • each of FIGS. 7 (b) and 7 (c) is a cross-sectional view showing the index.
  • FIG. 1 is a perspective view showing the appearance of the processing system of the present embodiment.
  • FIG. 2 is a cross-sectional view showing the structure of the processing system of the present embodiment.
  • FIG. 3 is a block diagram showing a system configuration of the processing system of
  • FIG. 8 is a flowchart showing the flow of the position information calculation operation.
  • FIG. 9 is a block diagram showing a system configuration of another example of the processing system of the present embodiment.
  • FIG. 10 is a flowchart showing the flow of the machining operation.
  • FIG. 11 is a cross-sectional view showing a processing system for measuring the first surface of the work.
  • FIG. 12 is a cross-sectional view showing a processing system for measuring the second surface of the work.
  • FIG. 13 is a cross-sectional view showing a processing system for processing the first surface of the work.
  • FIG. 14 is a cross-sectional view showing a deformed work.
  • FIG. 13 is a cross-sectional view showing a processing system for processing the second surface of the work.
  • FIG. 16 is a cross-sectional view showing a deformed work.
  • FIG. 17 is a cross-sectional view showing a processing system for measuring the second surface of the work.
  • FIG. 18 is a cross-sectional view showing a processing system for processing the second surface of the work.
  • FIG. 19 is a cross-sectional view showing a work whose second surface has been machined.
  • FIG. 20 is a cross-sectional view showing a processing system for measuring the first surface of the work.
  • FIG. 21 is a cross-sectional view showing a processing system for processing the first surface of the work.
  • FIG. 22 is a cross-sectional view showing a work whose first surface has been machined.
  • FIG. 23 is a block diagram showing a system configuration of the processing system of the first modification.
  • FIG. 23 is a block diagram showing a system configuration of the processing system of the first modification.
  • FIG. 24 is a cross-sectional view showing the structure of the processing system of the first modification.
  • FIG. 25 is a cross-sectional view showing the structure of the processing system of the first modification.
  • FIG. 26 is a cross-sectional view showing the structure of the processing system of the first modification.
  • FIG. 27 is a cross-sectional view showing the structure of the processing system of the first modification.
  • FIG. 28 is a block diagram showing a system configuration of the processing system of the second modification.
  • FIG. 29 is a cross-sectional view showing the structure of the processing system of the second modification.
  • each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction orthogonal to the horizontal plane). Yes, it is assumed that it is substantially in the vertical direction or the gravity direction).
  • the rotation directions (in other words, the inclination direction) around the X-axis, the Y-axis, and the Z-axis are referred to as the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction, respectively.
  • the Z-axis direction may be the direction of gravity.
  • the XY plane may be horizontal.
  • FIG. 1 is a perspective view showing the appearance of the processing system SYS.
  • FIG. 2 is a cross-sectional view showing the structure of the processing system SYS.
  • FIG. 3 is a block diagram showing a system configuration of the processing system SYS.
  • the processing system SYS includes a processing device 1, a measuring device 2, a stage device 3, a housing 4, and a control device 5.
  • the processing device 1 can process the work W under the control of the control device 5.
  • the work W is an object processed by the processing apparatus 1.
  • the work W may be, for example, a metal, an alloy (for example, duralmine, etc.), a semiconductor (for example, silicon), a resin, or CFRP. It may be a composite material such as (Carbon Fiber Reinforced Plastic), glass, ceramics, or an object composed of any other material.
  • the processing device 1 irradiates the work W with processing light EL in order to process the work W.
  • the processing light EL may be any kind of light as long as the work W can be processed by being irradiated with the work W. In the present embodiment, the description will be made using an example in which the processing light EL is a laser light, but the processing light EL may be a type of light different from the laser light.
  • the wavelength of the processing light EL may be any wavelength as long as the work W can be processed by irradiating the work W.
  • the processed light EL may be visible light or invisible light (for example, at least one of infrared light and ultraviolet light).
  • the processing apparatus 1 irradiates the work W with processing light EL to perform removal processing for removing a part of the work W.
  • the processing apparatus 1 may perform processing different from the removal processing (for example, additional processing or marking processing).
  • the removal process includes flat surface processing, cylindrical processing, drilling processing, smoothing processing, cutting processing, and engraving processing (in other words, engraving) that forms (in other words, engraves) any character or any pattern. ) May be included.
  • FIGS. 4 (a) to 4 (c) are cross-sectional views showing a state of removal processing performed on the work W.
  • the processing apparatus 1 irradiates the processing light EL to the target irradiation region EA set on the surface of the work W as the region to which the processing light EL from the processing apparatus 1 is irradiated. ..
  • the energy of the processing light EL is applied to the energy transfer portion including at least one of the portion of the work W that overlaps the target irradiation region EA and the portion that is close to the target irradiation region EA. Be transmitted.
  • the heat generated by the energy of the processing light EL is transferred, the material constituting the energy transfer portion of the work W is melted by the heat generated by the energy of the processing light EL.
  • the molten material becomes droplets and scatters.
  • the molten material evaporates due to the heat generated by the energy of the processing light EL.
  • the energy transfer portion of the work W is removed. That is, as shown in FIG.
  • a recess (in other words, a groove) is formed on the surface of the work W.
  • the processing apparatus 1 processes the work W by utilizing the so-called thermal processing principle.
  • the processing apparatus 1 uses the galvano mirror 1122 described later to move the target irradiation region EA on the surface of the work W so that the processing light EL scans the surface of the work W.
  • the surface of the work W is at least partially removed along the scanning locus of the processed light EL (that is, the moving locus of the target irradiation region EA).
  • the processing apparatus 1 appropriately removes the portion of the work W to be removed by causing the processing light EL to scan the surface of the work W along a desired scanning locus corresponding to the region to be removed. be able to.
  • the processing apparatus 1 may process the work W by utilizing the principle of non-thermal processing (for example, ablation processing). That is, the processing apparatus 1 may perform non-thermal processing (for example, ablation processing) on the work W.
  • non-thermal processing for example, ablation processing
  • the processing apparatus 1 may perform non-thermal processing (for example, ablation processing) on the work W.
  • pulsed light with a light emission time of picoseconds or less or, in some cases, nanoseconds or femtoseconds or less
  • the material constituting the energy transfer portion of the work W evaporates instantly and Scatter.
  • the material constituting the energy transfer portion of the work W goes through a molten state. It may sublimate without. Therefore, a recess (in other words, a groove) can be formed on the surface of the work W while suppressing the influence of heat caused by the energy of the processing light EL on the work W as much as possible.
  • the processing apparatus 1 includes a processing head 11, a head drive system 12, and a position measuring instrument 13. Further, the processing head 11 includes a processing light source 111 and a processing optical system 112, as shown in FIG. 3 and FIG. 5, which is a cross-sectional view showing the structure of the processing head 11. However, the processing light source 111 may be arranged outside the processing head 11. That is, while the processing head 11 includes the processing optical system 112, the processing head 11 does not have to include the processing light source 111.
  • the processing light source 111 can generate processing light EL.
  • the processing light source 111 may be, for example, a laser diode. Further, the processing light source 111 may be a light source capable of pulse oscillation. In this case, the processing light source 111 can generate pulsed light (for example, pulsed light having a light emission time of picoseconds or less) as the processing light EL.
  • the processing light source 111 emits the generated processing light EL toward the processing optical system 112.
  • the processing optical system 112 is an optical system in which the processing light EL emitted from the processing light source 111 is incident.
  • the processing optical system 112 is an optical system for emitting (that is, guiding) the processing light EL from the processing light source 111 toward the work W.
  • the processing optical system 112 includes a focus lens 1121, a galvanometer mirror 1122, and an f ⁇ lens 1123 in order to emit the processing light EL toward the work W.
  • the focus lens 1121 controls the degree of convergence or the degree of divergence of the processed light EL emitted from the processed optical system 112. As a result, the focus position (for example, the so-called best focus position) of the processed light EL is controlled.
  • the processing optical system 112 may include, in addition to or in place of the focus lens 1121, an optical element capable of controlling an arbitrary state of the processing light EL. Any state of the processing light EL is in addition to at least one of the focus position of the processing light EL, the beam diameter of the processing light EL, the convergence degree, the divergence degree, the parallelism of the processing light EL, and the intensity distribution of the processing light EL.
  • it may include at least one of the pulse length of the processing light EL, the number of pulses of the processing light EL, the intensity of the processing light EL, the traveling direction of the processing light EL, and the polarization state of the processing light EL.
  • the galvano mirror 1122 is arranged in the optical path of the processed light EL from the focus lens 1121.
  • the processed light EL is such that the processed light EL emitted from the f ⁇ lens 1123 scans the work W (that is, the target irradiation region EA irradiated with the processed light EL moves on the surface of the work W).
  • the galvano mirror 1122 functions as an optical element capable of changing the irradiation position of the processed light EL on the work W (that is, the position of the target irradiation region EA). Therefore, the galvano mirror 1122 may be referred to as a beam irradiation position changing member.
  • the galvano mirror 1122 includes, for example, a Z scanning mirror 1122Z and a Y scanning mirror 1122Y, as shown in FIG. 6, which is a perspective view showing a part of the structure of the processing optical system 112.
  • the Z scanning mirror 1122Z reflects the processed light EL toward the Y scanning mirror 1122Y.
  • the Z scanning mirror 1122Z can swing or rotate along the ⁇ Y direction (that is, the direction of rotation about the Y axis). Due to the swing or rotation of the Z scanning mirror 1122Z, the processing light EL scans the surface of the work W along the Z axis direction. Due to the swing or rotation of the Z scanning mirror 1122Z, the target irradiation region EA moves along the Z-axis direction on the surface of the work W.
  • the position of the target irradiation region EA in the Z-axis direction is changed by swinging or rotating the Z scanning mirror 1122Z.
  • the Y scanning mirror 1122Y reflects the processed light EL toward the f ⁇ lens 1123.
  • the Y scanning mirror 1122Y can swing or rotate along the ⁇ Z direction (that is, the direction of rotation about the Z axis).
  • the processing light EL scans the surface of the work W along the Y-axis direction.
  • Due to the swing or rotation of the Y scanning mirror 1122Y the target irradiation region EA moves on the surface of the work W along the Y-axis direction.
  • the position of the target irradiation region EA in the Y-axis direction is changed by swinging or rotating the Y scanning mirror 1122Y.
  • the f ⁇ lens 1123 is an optical element for irradiating the work W with the processed light EL from the galvano mirror 1122. Therefore, the f ⁇ lens 1123 may be referred to as an irradiation optical system.
  • the f ⁇ lens 1123 is an optical element for condensing the processed light EL from the galvano mirror 1122 on the work W.
  • the work W is arranged on the side of the machining head 11 (in the example shown in FIGS. 1 and 2, the ⁇ X side). Therefore, the processing light EL is emitted sideways from the f ⁇ lens 1123 (that is, the processing head 11).
  • the processing optical system 112 does not have to include the galvano mirror 1122.
  • an optical system having a projection characteristic other than f ⁇ may be used.
  • the head drive system 12 moves (that is, moves) the machining head 11 under the control of the control device 5.
  • the head drive system 12 may move the machining head 11 with respect to at least one of the surface plate 31 and the stage 32 (furthermore, the work W mounted on the stage 32) included in the stage device 3 described later. .. Further, the head drive system 12 may move the processing head 11 with respect to the measuring device 2.
  • the head drive system 12 moves the machining head 11 along at least one of the X-axis direction, the Y-axis direction, the Z-axis direction, the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction.
  • Moving the machining head 11 along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction changes the posture around at least one of the X-axis, Y-axis, and Z-axis of the machining head 11.
  • the head drive system 12 moves the machining head 11 along the X-axis direction and the Z-axis direction, respectively.
  • the head drive system 12 may include a head drive system 12X that moves the machining head 11 along the X-axis direction and a head drive system 12Z that moves the machining head 11 along the Z-axis direction.
  • the head drive system 12Z includes, for example, a guide member 121Z arranged on a surface plate 31 described later via a vibration isolator and extending along the Z-axis direction, a slider member 122Z movable along the guide member 121Z, and the like. It includes a motor (not shown) for moving the slider member 122Z.
  • the head drive system 12X is, for example, a guide member 121X connected to the slider member 122Z and extending along the X-axis direction, a slider member 122X movable along the guide member 121X, and a slider member 122X (not shown) for moving the slider member 122X. It is equipped with a motor.
  • a processing head 11 is connected to the slider member 122X. When the slider member 122Z moves, the machining head 11 connected to the slider member 122Z via the head drive system 12X moves along the Z-axis direction. When the slider member 122X moves, the machining head 11 connected to the slider member 122X moves along the X-axis direction.
  • the machining shot region PSA is a region (in other words, a range) in which machining is performed by the machining apparatus 1 in a state where the positional relationship between the machining head 11 and the work W is fixed (that is, without changing).
  • the machining shot region PSA coincides with or is narrower than the scanning range of the machining light EL deflected by the galvanometer mirror 1122 in a state where the positional relationship between the machining apparatus 1 and the machining object is fixed. Set to be an area.
  • the head drive system 12 can change the positional relationship between the work W, the target irradiation region EA, and the machining shot region PSA by moving the machining head 11. Further, when the head drive system 12 moves the processing head 11, the positional relationship between the stage 32 and the work W and the processing head 11 (particularly, the f ⁇ lens 1123) changes. Therefore, the head drive system 12 may be referred to as a changing device. The head drive system 12 may also be referred to as a mobile device.
  • the position measuring instrument 13 can measure the position of the processing head 11 moved by the head drive system 12.
  • the position measuring instrument 13 may include, for example, at least one of an encoder and a laser interferometer.
  • the measuring device 2 can measure the work W under the control of the control device 5.
  • the measuring device 2 may be a device capable of measuring the state of the work W.
  • the state of the work W may include the position of the work W.
  • the position of the work W may include the position of the surface of the work W.
  • the position of the surface of the work W may include a position in at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction of each surface portion obtained by subdividing the surface of the work W.
  • the state of the work W may include the shape of the work W (for example, a three-dimensional shape).
  • the shape of the work W may include the shape of the surface of the work W.
  • the shape of the surface of the work W includes, in addition to or in place of the position of the surface of the work W described above, the orientation of each surface portion of the surface of the work W subdivided (for example, the orientation of the normal of each surface portion). You may be.
  • the measurement information regarding the measurement result of the measuring device 2 is output from the measuring device 2 to the control device 5.
  • the measuring device 2 includes a measuring head 21, a head drive system 22, and a position measuring instrument 23.
  • the measuring head 21 measures the work W using a predetermined measuring method.
  • a predetermined measuring method light cutting method, white interferometry, pattern projection method, time of flight method, moire topography method (specifically, lattice irradiation method or lattice projection method), holographic interferometry, autocollimation.
  • moire topography method specifically, lattice irradiation method or lattice projection method
  • holographic interferometry specifically, holographic interferometry
  • autocollimation At least one of a method, a stereo method, a non-point aberration method, a critical angle method, a knife edge method, an interferometry method, and an autocollimation method can be mentioned.
  • the measurement head 21 is a measurement light source that emits measurement light (for example, slit light or white light) ML, and reflection of light from the work W irradiated with the measurement light ML (for example, reflection of the measurement light ML). It may be provided with a receiver that receives at least one of light and scattered light).
  • the measuring device 2 measures the work W by receiving light from the work W (for example, at least one of the reflected light and the scattered light of the measuring light ML). That is, the measuring device 2 measures the work W based on the light reception result of the light from the work W (for example, at least one of the reflected light and the scattered light of the measurement light ML).
  • the work W is arranged on the side of the measuring head 21 (in the example shown in FIGS. 1 and 2, the ⁇ X side). Therefore, the measurement light ML is emitted from the measurement head 21 toward the side.
  • the measuring device 2 may measure the work W by using a contact type measuring method in which the work W is measured by contacting the work W.
  • the measuring device 2 may measure the work W by bringing the probe or the cantilever into contact with the work W.
  • the head drive system 22 moves (that is, moves) the measurement head 21 under the control of the control device 5.
  • the head drive system 22 may move the measurement head 21 with respect to at least one of the surface plate 31 and the stage 32 (furthermore, the work W mounted on the stage 32) included in the stage device 3 described later. .. Further, the head drive system 22 may move the measurement head 21 with respect to the measurement device 2.
  • the head drive system 22 moves the measurement head 21 along at least one of the X-axis direction, the Y-axis direction, the Z-axis direction, the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction. Moving the measurement head 21 along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction changes the posture of the measurement head 21 around at least one of the X-axis, Y-axis, and Z-axis. It may be considered equivalent.
  • 1 to 2 show an example in which the head drive system 22 moves the measurement head 21 along the X-axis direction and the Z-axis direction, respectively.
  • the head drive system 22 may include a head drive system 22X that moves the measurement head 21 along the X-axis direction and a head drive system 22Z that moves the measurement head 21 along the Z-axis direction.
  • the head drive system 22Z includes, for example, a guide member 221Z arranged on a surface plate 31 described later via a vibration isolator and extending along the Z-axis direction, and a slider member 222Z movable along the guide member 221Z. It includes a motor (not shown) for moving the slider member 222Z.
  • the head drive system 22X is, for example, a guide member 221X connected to the slider member 222Z and extending along the X-axis direction, a slider member 222X movable along the guide member 221X, and a slider member 222X (not shown) for moving the slider member 222X. It is equipped with a motor.
  • a measuring head 21 is connected to the slider member 222X. When the slider member 222Z moves, the measurement head 21 connected to the slider member 222Z via the head drive system 22X moves along the Z-axis direction. When the slider member 222X moves, the measurement head 21 connected to the slider member 222X moves along the X-axis direction.
  • the measurement shot area MSA is an area (in other words, a range) in which measurement is performed by the measurement head 21 in a state where the positional relationship between the measurement head 21 and the work W is fixed (that is, without changing). Therefore, the head drive system 22 can change the positional relationship between the work W and the measurement shot area MSA by moving the measurement head 21. Further, when the head drive system 22 moves the measurement head 21, the positional relationship between the stage 32 and the work W and the measurement head 21 changes. Therefore, the head drive system 22 may be referred to as a changing device.
  • the position measuring instrument 23 can measure the position of the measuring head 21 moved by the head drive system 22.
  • the position measuring instrument 23 may include, for example, at least one of an encoder and a laser interferometer.
  • the stage device 3 includes a surface plate 31, a stage 32, a stage drive system 33, and a position measuring instrument 34.
  • the surface plate 31 is arranged on the bottom surface of the housing 4 (or on a supporting surface such as a floor on which the housing 4 is placed).
  • a stage 32 is arranged on the surface plate 31.
  • head drive systems 12 and 22 that substantially support the processing device 1 and the measuring device 2, respectively, may be arranged on the surface plate 31. That is, the processing device 1 and the measuring device 2 (further, the stage 32) may be supported by the same surface plate 31.
  • the stage 32 does not have to hold the mounted work W. That is, the stage 32 does not have to apply a holding force for holding the work W to the mounted work W.
  • the stage 32 may hold the mounted work W. That is, the stage 32 may apply a holding force for holding the work W to the mounted work W.
  • the stage 32 may hold the work W by adsorbing the work W at least one of vacuum suction, electrostatic suction, and electromagnetic suction.
  • the stage 32 is arranged on the side of the processing head 11 and the measuring head 21 (in the example shown in FIGS. 1 to 2, the ⁇ X side). Therefore, the processing head 11 is mounted on the stage 32 by injecting the processing light EL sideways from the processing head 11 (toward the ⁇ X side in the examples shown in FIGS. 1 to 2).
  • the work W is irradiated with the processing light EL.
  • the measuring head 21 emits the measuring light ML from the measuring head 21 toward the side (in the example shown in FIGS. 1 to 2 toward the ⁇ X side), so that the work W mounted on the stage 32 is mounted on the stage 32. Is irradiated with the measurement light ML.
  • the work W may be supported by a jig 321 which is a member for assisting the placement of the work W on the stage 32.
  • the jig 321 is arranged on the mounting surface 322 of the stage 32 on which the work W is mounted.
  • the work W includes a jig 321 # 1 that supports the first surface WS1 of the work W (in the example shown in FIGS. 1 to 2, the surface facing the + X side), and the first surface WS1.
  • the work W does not have to be supported by the jig 321.
  • An index member 6 that can be measured by the measuring device 2 may be attached (or may be formed) to the jig 321.
  • the index member 6 may be attached (or formed) to a member different from the jig 321.
  • the index member 6 may be attached (or formed) to the main body of the stage 32.
  • the index member 6 may be attached (or formed) to the stage drive system 33 (for example, at least one of the tables 333Y and 331 Tz described later).
  • the index member 6 may be attached (or formed) to the member attached to the stage 32.
  • FIGS. 7 (a) to 7 (c) 7 (a) is a plan view showing the index member 6, and each of FIGS. 7 (b) and 7 (c) is a cross-sectional view showing the index member 6.
  • the index member 6 may be attached to the jig 321 so as to be embedded in the jig 321. However, the index member 6 may be attached to the jig 321 so as to be arranged on the surface of the jig 321. The index member 6 may be integrated with the jig 321 (that is, a part of the jig 321 may be used as the index member 6).
  • An opening 61 is formed in the index member 6.
  • the opening 61 functions as a marker that can be measured by the measuring device 2. That is, the measuring device 2 measures the index member 6 by measuring the opening 61.
  • the measurement result of the opening 61 by the measuring device 2 (that is, the measurement result of the index member 6) may be output to the control device 5.
  • an arbitrary marker different from the opening 61 may be formed on the index member 6.
  • the opening 61 may be a through hole penetrating from the front surface to the back surface of the index member 6 (or jig 321).
  • the opening 61 may be a recess (that is, a non-through hole) formed on the surface of the index member 6 (or the jig 321).
  • the shape of the opening 61 in the plane along the YZ plane is a slit shape, but any other shape (for example, at least one of a circular shape (pinhole shape), an L shape, and a cross shape). You may.
  • the size of the opening 61 in the plane along the XY plane is, for example, a few micrometers to a few tens of micrometers (eg, 5 micrometers to 10 micrometers). , Other sizes may be used.
  • a plurality of index members 6 may be attached along the direction intersecting the rotation axis of the stage 32 (in the example shown in FIGS. 1 to 2, the rotation axis 32 ⁇ Z).
  • the work W is supported by two jigs 321 # 1 and 321 # 2 arranged along the X-axis direction intersecting the Z-axis direction. Therefore, when the index member 6 is formed on each of the jigs 321 # 1 and 321 # 2, a plurality of jigs 321 # 1 and 321 # 2 are formed along the X-axis direction intersecting the rotation axis 32 ⁇ Z (that is, the Z-axis) of the stage 32. It can be said that the index member 6 is attached.
  • the relative positional relationship between the plurality of index members 6 may be information known to the control device 5.
  • the opening 61 may be an opening through which the processing light EL can pass.
  • the opening 61 may be an opening through which the processing light EL can be incident.
  • the index member 6 (or the jig 321) may be equipped with a detector 62 capable of detecting the processing light EL through the opening 61.
  • the detector 62 is attached to the bottom surface of the index member 6 that defines the space formed by the opening 61.
  • the detector 62 is a photodetector capable of detecting (for example, receiving light) the processed light EL.
  • the detection result of the detector 62 is output to the control device 5.
  • the index member 6 may be a member provided with an attenuation film for attenuating the processing light EL on a part of the surface of the optical member through which the processing light EL can be transmitted. In this case, the portion where the damping film is not provided is the opening.
  • the attenuation film may shield the processed light EL from light.
  • the index member 6 does not have to be equipped with a photodetector capable of detecting the processing light. Further, when the index member is used as the measurement reference in the optical axis direction, the index member 6 may not have a pattern (opening or the like) formed.
  • the stage drive system 33 moves (that is, moves) the stage 32 on the surface plate 31 under the control of the control device 5.
  • the stage drive system 33 may move the stage 32 with respect to at least one of the processing head 11 and the measurement head 21.
  • the stage drive system 33 moves the stage 32 along at least one of the X-axis direction, the Y-axis direction, the Z-axis direction, the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction.
  • Moving the stage 32 along at least one of the ⁇ X, ⁇ Y, and ⁇ Z directions is the X-axis, Y-axis, and Z-axis of the stage 32 (furthermore, the work W mounted on the stage 32). It may be regarded as equivalent to changing the posture around at least one of the above, or rotating the work W placed on the stage 32 around at least one of the X-axis, Y-axis, and Z-axis. ..
  • FIGS. 1 to 2 show an example in which the stage drive system 33 moves the stage 32 along the Y-axis direction and the ⁇ Z direction, respectively. That is, FIGS. 1 to 2 show an example in which the stage drive system 33 moves the stage 32 along the Y-axis direction and rotates the stage 32 around the Z-axis.
  • the stage drive system 33 may include a stage drive system 33Y that moves the stage 32 along the Y-axis direction and a stage drive system 33Tz that moves the stage 32 along the ⁇ Z direction.
  • the stage drive system 33Y includes, for example, a guide member 331Y arranged on the surface plate 31 via a vibration isolator and extending along the Y-axis direction, a slider member 332Y movable along the guide member 331Y, and a slider member. It includes a table 333Y connected to the 332Y and a motor (not shown) for moving the slider member 332Y.
  • the stage drive system 33Tz includes, for example, a table 331Tz arranged on the table 333Y and a motor 332Tz that rotates the table 331Tz around a rotation axis 32 ⁇ Z along the Z axis.
  • a stage 32 is connected to the table 331 Tz. However, the table 331 Tz may be used as the stage 32.
  • the stage 32 connected to the slider member 332Y via the stage drive system 33Tz moves along the Y-axis direction.
  • the stage 32 connected to the table 331Tz rotates around the rotation axis 32 ⁇ Z.
  • the stage device 3 (particularly, the stage drive system 33 that moves the stage 32) may be referred to as a change device.
  • the stage 32 may be moved so that at least a part of the work W is located in the machining shot region PSA during at least a part of the machining period in which the machining apparatus 1 processes the work W.
  • the machining apparatus 1 is a machine W of the work W located in the machining shot area PSA.
  • At least a part of the processing light EL can be irradiated. As a result, at least a part of the work W is processed by the processing light EL from the processing apparatus 1 in a state of being placed on the stage 32.
  • the stage 32 may be moved so that at least a part of the work W is located in the measurement shot area MSA during at least a part of the measurement period in which the measuring device 2 measures the work W.
  • the measuring device 2 is the work W located in the machining shot area PSA.
  • At least a part of the measurement light ML can be irradiated. As a result, at least a part of the work W is measured by the measuring device 2 while being placed on the stage 32.
  • the stage 32 may move between the machining shot area PSA and the measurement shot area MSA with the work W placed on the stage 32.
  • the stage 32 may be moved so that the work W moves between the machining shot area PSA and the measurement shot area MSA while the work W is placed on the stage 32. That is, in the work W, in addition to the processing period in which the processing device 1 processes the work W and the measurement period in which the measuring device 2 measures the work W, the work W moves between the processing shot area PSA and the measurement shot area MSA. It may also remain mounted on the stage 32 during the moving period.
  • the housing 4 houses the processing device 1, the measuring device 2, and the stage device 3 in the internal storage space SP separated from the space outside the housing 4. That is, in the present embodiment, the processing device 1, the measuring device 2, and the stage device 3 are arranged in the same housing 4.
  • the processing device 1, the measuring device 2, and the stage device 3 are arranged in the same accommodation space SP.
  • the housing 4 accommodates the work W in the accommodation space SP inside the work W. That is, the processing device 1, the measuring device 2, and the work W are arranged in the same accommodation space SP.
  • at least a part of the processing device 1, the measuring device 2, and the stage device 3 may not be arranged in the accommodation space SP.
  • the control device 5 controls the operation of the processing system SYS. Specifically, the control device 5 performs the operation of the processing system SYS (for example, at least one operation of the processing device 1, the measuring device 2, and the stage device 3) so that the processing device 1 appropriately processes the work W. Control.
  • the control device 5 may include, for example, an arithmetic unit and a storage device.
  • the arithmetic unit may include, for example, at least one of a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • the control device 5 functions as a device that controls the operation of the processing system SYS by executing a computer program by the arithmetic unit.
  • This computer program is a computer program for causing the control device 5 (for example, an arithmetic unit) to perform (that is, execute) an operation described later to be performed by the control device 5. That is, this computer program is a computer program for causing the control device 5 to function so that the processing system SYS performs the operation described later.
  • the computer program executed by the arithmetic unit may be recorded in a storage device (that is, a recording medium) included in the control device 5, or any storage built in the control device 5 or externally attached to the control device 5. It may be recorded on a medium (for example, a hard disk or a semiconductor memory). Alternatively, the arithmetic unit may download the computer program to be executed from an external device of the control device 5 via the network interface.
  • a storage device that is, a recording medium included in the control device 5, or any storage built in the control device 5 or externally attached to the control device 5. It may be recorded on a medium (for example, a hard disk or a semiconductor memory).
  • the arithmetic unit may download the computer program to be executed from an external device of the control device 5 via the network interface.
  • the control device 5 may not be provided inside the processing system SYS, and may be provided as a server or the like outside the processing system SYS, for example.
  • the control device 5 and the processing system SYS may be connected by a wired and / or wireless network (or a data bus and / or a communication line).
  • the control device 5 and the processing system SYS may be configured so that various types of information can be transmitted and received via the network.
  • the control device 5 may be able to transmit information such as commands and control parameters to the processing system SYS via the network.
  • the processing system SYS may include a receiving device that receives information such as commands and control parameters from the control device 5 via the network.
  • the first control device that performs a part of the processing performed by the control device 5 is provided inside the processing system SYS
  • the second control device that performs the other part of the processing performed by the control device 5 is performed.
  • the control device may be provided outside the processing system SYS.
  • the recording medium for recording the computer program executed by the arithmetic unit, at least one of an optical disk, a magnetic medium, a magneto-optical disk, a semiconductor memory such as a USB memory, and any other medium capable of storing the program is used. You may.
  • the recording medium may include a device capable of recording a computer program.
  • each process or function included in the computer program may be realized by a logical processing block realized in the control device 5 by the control device 5 (that is, the computer) executing the computer program. It may be realized by hardware such as a predetermined gate array (FPGA, ASIC) included in the control device 5, or a logical processing block and a partial hardware module that realizes a part of the hardware are mixed. It may be realized in the form of.
  • FPGA predetermined gate array
  • the machining system SYS performs a machining operation for machining the work W. Further, the machining system SYS uses the index member 6 described above before the machining operation is started (or after the machining operation is started or after the machining operation is finished), and the machining head 11 and the measurement head 21 are combined with each other.
  • a position information calculation operation for calculating information regarding a relative position (typically, a baseline amount described later) may be performed. Therefore, in the following, the position information calculation operation and the processing operation will be described in order.
  • FIG. 8 is a flowchart showing the flow of the position information calculation operation.
  • the stage 32 and / or the machining head 11 moves so that the index member 6 (that is, the opening 61) is located in the machining shot region PSA (step S11). That is, the stage 32 and / or the processing head 11 moves so that the opening 61 is located at a position where the processing light EL from the processing head 11 can be received.
  • the machining head 11 irradiates the machining reference point in the machining shot area PSA with the machining light EL (step S12).
  • the processing head 11 irradiates the processing light EL to the processing reference point by irradiating the processing light EL without deflecting the processing light EL with the galvano mirror 1122 (that is, without driving the galvano mirror 1122). You may.
  • the processing head 11 may irradiate the processing reference point with the processing light EL by deflecting the processing light EL (that is, driving the galvano mirror 1122) and irradiating the processing light EL.
  • the machining reference point may be, for example, the center of the machining shot region PSA.
  • the processing reference point may be, for example, an intersection of the optical axis of the processing optical system 112 and the processing shot region PSA. In that state, the stage 32 and / or the processing head 11 moves until the detector 62 can detect the processing light EL (step S12).
  • the control device 5 provides stage position information regarding the position of the stage 32 at the time when the detector 62 can detect the processing light EL. , Obtained from the position measuring instrument 34 (step S13). Further, the control device 5 determines the machining position with respect to the position of the machining head 11 at the time when the detector 62 can detect the machining light EL when the machining head 11 moves at least one of steps S11 and S12. Information is acquired from the position measuring instrument 13 (step S13).
  • the stage 32 and / or the measurement head 21 moves so that the index member 6 (that is, the opening 61) irradiated with the processing light EL in step S12 is located in the measurement shot area MSA (step S14). ..
  • the measuring head 21 measures the opening 61 (step S15). In particular, the measuring head 21 measures the position of the opening 61. In that state, the stage 32 and / or the measurement head 21 moves until the opening 61 is located at the measurement reference point in the measurement shot area MSA (step S15).
  • the measurement reference point may be, for example, the center of the measurement shot area MSA.
  • the measurement reference point may be, for example, an intersection of the optical axis of the measurement head 21 and the measurement shot area MSA.
  • the control device 5 provides the stage position information regarding the position of the stage 32 at the time when the opening 61 is located at the measurement reference point, and the position measuring instrument 34. Obtained from (step S16). Further, when the measurement head 21 moves at least one of steps S14 and S15, the control device 5 measures the measurement position information regarding the position of the measurement head 21 when the opening 61 is located at the measurement reference point. Obtained from the vessel 23 (step S16).
  • the stage position information acquired in step S13 corresponds to information regarding the position of the stage 32 when the opening 61 is located at the machining reference point. Since the jig 321 on which the opening 61 is formed is arranged on the stage 32, the information regarding the position of the stage 32 when the opening 61 is located at the machining reference point is the opening located at the machining reference point. It can be said that the position of 61 (that is, the position of the processing reference point) is indirectly indicated. Further, the stage position information acquired in step S16 corresponds to information regarding the position of the stage 32 when the opening 61 is located at the measurement reference point.
  • the information regarding the position of the stage 32 when the opening 61 is located at the measurement reference point indirectly indicates the position of the opening 61 located at the measurement reference point (that is, the position of the measurement reference point). It can be said that it shows. Therefore, the difference between the position of the stage 32 indicated by the stage position information acquired in step S13 and the position of the stage 32 indicated by the stage position information acquired in step S16 is the position of the machining reference point and the position of the measurement reference point. Corresponds to the difference of. Therefore, the control device 5 sets the distance between the machining reference point and the measurement reference point (specifically, the distance along the XY plane) based on the stage position information acquired in steps S13 and S16. The corresponding baseline amount may be calculated (step S17).
  • the machining position information acquired in step S13 corresponds to the information regarding the position of the machining head 11 in the state where the opening 61 is located at the machining reference point. Furthermore, since the position of the machining shot region PSA (furthermore, the machining reference point) is a position determined with reference to the machining head 11, the machining position information acquired in step S13 is the machining head that serves as the reference for the machining reference point. It can be said that the relative position between 11 and the opening 61 is indirectly indicated.
  • the measurement position information acquired in step S16 corresponds to information regarding the position of the measurement head 21 when the opening 61 is located at the measurement reference point.
  • the measurement position information acquired in step S16 is the measurement head that serves as the reference for the measurement reference point. It can be said that the relative position between the 21 and the opening 61 is indirectly indicated. Therefore, the difference between the position of the machining head 11 indicated by the machining position information acquired in step S13 and the position of the measurement head 21 indicated by the measurement position information acquired in step S16 is also the position of the machining reference point and the measurement reference. It corresponds to the difference from the position of the point.
  • control device 5 sets the distance between the machining reference point and the measurement reference point (specifically, on the XY plane) based on the machining position information and the measurement position information acquired in steps S13 and S16, respectively.
  • the baseline amount corresponding to the distance along the line) may be calculated (step S17).
  • the calculated baseline amount may be used by the control device 5 during the period in which the processing system SYS actually processes the work W (that is, during the period in which the processing operation described later is performed). Specifically, the control device 5 may control the stage drive system 33 so that the stage 32 moves based on the calculated baseline amount. The control device 5 may control the head drive system 12 so that the machining head 11 moves based on the calculated baseline amount. The control device 5 may control the head drive system 22 so that the measurement head 21 moves based on the calculated baseline amount.
  • the machining system SYS can perform the machining operation based on the relative position between the machining head 11 and the measurement head 21 (for example, the relative position between the machining reference point and the measurement reference point). can. Therefore, the machining system SYS can be connected to the machining head 11 even when the relative position between the machining head 11 and the measurement head 21 (for example, the relative position between the machining reference point and the measurement reference point) fluctuates with the passage of time. The machining operation can be performed without being affected by the fluctuation of the relative position with the measuring head 21. As a result, the machining system SYS can machine the work W with relatively high accuracy as compared with the case where the position information calculation operation is not performed.
  • a plurality of index members 6 are attached to the stage 32.
  • the processing system SYS may perform the position information calculation operation using any one of the plurality of index members 6.
  • the processing system SYS may perform the position information calculation operation using at least two of the plurality of index members 6.
  • the processing system SYS performs the position information calculation operation using the first index member 6, and then the first index member 6 is used.
  • the position information calculation operation may be performed using a different second index member 6. That is, in the processing system SYS, at least of the processing head 11, the measuring head 21 and the stage 32 so that the first index member 6 is measured by the measuring head 21 and the first index member 6 is irradiated with the processing light EL.
  • One of the processing head 11, the measuring head 21 and the stage 32 is moved so that the second index member 6 is measured by the measuring head 21 and the second index member 6 is irradiated with the processing light EL.
  • the position information calculation operation may be performed by moving at least one of them.
  • the plurality of index members 6 are in the direction of intersecting the rotation axis of the stage 32 (in this embodiment, the rotation axis 32 ⁇ Z). It may be mounted along. In this case, if the stage 32 rotates around the rotation axis 32 ⁇ Z, the measuring device 2 can measure at least one of the plurality of index members 6. That is, even if the stage 32 rotates around the rotation axis 32 ⁇ Z, it is unlikely that any of the plurality of index members 6 cannot be located in the measurement shot area MSA of the measuring device 2.
  • the processing system SYS can appropriately perform the above-mentioned position information calculation operation.
  • An index member 6 is attached to each of the above. Therefore, when the first index member 6 (for example, the index member 6 attached to the jig 321 # 1) can be measured by the measuring head 21, the second index member 6 (for example, the jig 321) can be measured.
  • the index member 6) attached to # 2 is not measurable by the measuring head 21.
  • the second index member 6 is located outside the measurement shot area MSA of the measurement head 21 that measures the first index member 6. In this way, when a plurality of index members 6 are attached to the stage 32, the second index member 6 is located outside the measurement shot area MSA of the measurement head 21 that measures the first index member 6. , A plurality of index members 6 may be attached.
  • the plurality of index members 6 are positioned at the stage 32 during the machining operation (or before the machining operation is started or after the machining operation is completed). It may be used for the purpose of measuring.
  • the plurality of index members 6 may be used for the purpose of measuring the position of the stage 32 around the rotation axis of the stage 32 (in this embodiment, the rotation axis 32 ⁇ Z).
  • a plurality of (specifically, at least two) index members 6 whose relative positional relationships are known are attached to the stage 32 along a direction intersecting the rotation axis of the stage 32. Is preferable.
  • the control device 5 can appropriately calculate the position of the stage 32 around the rotation axis 32 ⁇ Z based on the measurement results of the plurality of index members 6 by the measuring device 2.
  • the measuring device 2 may not be able to measure the number (for example, two) of the index members 6 required to specify the position of the stage 32 at one time. In this case, the measuring device 2 measures the first index member 6, and then at least the measuring head 21 and the stage 32 so that the second index member 6 is located in the measurement shot area MSA of the measuring device 2. One may move and then the measuring device 2 may measure the second index member 6. As a result, even when a plurality of index members 6 are attached so that the second index member 6 is located outside the measurement shot area MSA of the measurement head 21 that measures the first index member 6.
  • the control device 5 can appropriately calculate the position of the stage 32 around the rotation axis 32 ⁇ Z based on the measurement results of the plurality of index members 6 by the measuring device 2.
  • the single index member 6 may be used for the purpose of measuring the position of the stage 32.
  • any one of the plurality of index members 6 may be used for the purpose of measuring the position of the stage 32.
  • the measuring device 2 measures the index member 6, then the stage 32 moves, and then the measuring device 2 measures the index member 6 located at a position different from the initial position as the stage 32 moves. May be good.
  • the control device 5 rotates based on the measurement results of the single index member 6 at different positions by the measuring device 2.
  • the position of the stage 32 around the axis 32 ⁇ Z can be appropriately calculated.
  • the machining system SYS may include a plurality of measuring devices 2 having different measurement shot area MSAs, as shown in FIG. 9, which shows a system configuration of another example of the machining system SYS.
  • the first measuring device 2 measures the index member 6, then the stage 32 moves, and then the second measuring device 2 is positioned at a position different from the initial position as the stage 32 moves.
  • the index member 6 may be measured.
  • the control device 5 can appropriately calculate the position of the stage 32 around the rotation axis 32 ⁇ Z based on the measurement results of the same index member 6 by the plurality of measuring devices 2 at different positions.
  • FIG. 10 is a flowchart showing a flow of machining operations performed by the machining system SYS.
  • a machining operation for machining the first surface WS1 and the second surface WS2 of the work W shown in FIGS. 1 to 2 will be described. That is, by removing the portion (part) on the first surface WS1 side of the work W and the portion (part) on the second surface WS2 side of the work W that is different from the portion on the first surface WS1 side of the work W.
  • the processing operation for thinning the work W will be described.
  • the work W has a plate-like shape, but may have other shapes.
  • the machining system SYS may perform a machining operation different from the machining operation for machining the first surface WS1 and the second surface WS2 of the work W.
  • step S21 the work W to be machined by the machining system SYS is placed on the stage 32 (step S21).
  • the measuring device 2 measures the work W mounted on the stage 32 (step S22). Specifically, the measuring device 2 measures a portion of the work W to be machined by the machining system SYS (that is, the first surface WS1 and the second surface WS2).
  • the control device 5 measures the work W so that the measuring device 2 can measure the first surface WS1 of the work W. Move the head 21 and / or the stage 32. That is, the control device 5 moves the measurement head 21 and / or the stage 32 so that the measurement head 21 can irradiate the first surface WS1 with the measurement light ML.
  • FIG. 11 is a cross-sectional view showing the processing system SYS that measures the work W
  • the control device 5 measures the work W so that the measuring device 2 can measure the first surface WS1 of the work W.
  • Move the head 21 and / or the stage 32 That is, the control device 5 moves the measurement head 21 and / or the stage 32 so that the measurement head 21 can irradiate the first surface WS1 with the measurement light
  • the control device 5 moves the measurement head 21 and / or the stage 32 so that the first surface WS1 faces the measurement head 21 side (that is, faces the + X side). After that, the measuring device 2 measures the first surface WS1. After the measurement of the first surface WS1 is completed, as shown in FIG. 12, which is a cross-sectional view showing the processing system SYS that measures the work W, the control device 5 uses the measuring device 2 to measure the second surface WS2 of the work W. The measuring head 21 and / or the stage 32 is moved so that the measurement can be performed. That is, the control device 5 moves the measurement head 21 and / or the stage 32 so that the measurement head 21 can irradiate the second surface WS2 with the measurement light ML. In the example shown in FIG.
  • the control device 5 moves the measurement head 21 and / or the stage 32 so that the second surface WS2 faces the measurement head 21 side (that is, faces the + X side). Since the second surface WS2 is the surface opposite to the first surface WS1 and the second surface WS2 and the first surface WS1 are aligned along the direction intersecting the rotation axis 32 ⁇ Z of the stage 32, the control device 5 May rotate the stage 32 around the rotation axis 32 ⁇ Z in order to change the state of the work W from the state shown in FIG. 11 to the state shown in FIG. After that, the measuring device 2 measures the second surface WS2. Alternatively, the measuring device 2 may measure the first surface WS1 after measuring the second surface WS2.
  • the processing apparatus 1 processes either one of the first surface WS1 and the second surface WS2 of the work W, and then processes one of the first surface WS1 and the second surface WS2 of the work W.
  • the processing apparatus 1 processes the first surface WS1 (step S23) and then processes the second surface WS2 (step S24).
  • the processing apparatus 1 may process the second surface WS2 and then the first surface WS1.
  • FIG. 13 which is a cross-sectional view showing a processing system SYSTEM for processing the first surface WS1 in order to process the first surface WS1, in the control device 5, the processing device 1 processes the first surface WS1.
  • the machining head 11 and / or the stage 32 is moved so that the processing head 11 and / or the stage 32 can be moved. That is, the control device 5 moves the measuring head 21 and / or the stage 32 so that the machining head 11 can irradiate the first surface WS1 with the machining light EL.
  • the control device 5 moves the machining head 11 and / or the stage 32 so that the first surface WS1 faces the machining head 11 side (that is, faces the + X side).
  • the processing apparatus 1 processes the first surface WS1. That is, the processing apparatus 1 removes the portion of the work W on the first surface WS1 side.
  • the processing apparatus 1 processes the first surface WS1 so as to remove the portion of the work W on the first surface WS1 side by a predetermined thickness (in the example shown in FIG. 13, the thickness in the X-axis direction). explain.
  • the work W When the first surface WS1 is processed, the work W may be deformed as shown in FIG. 14, which is a cross-sectional view showing the work W on which the first surface WS1 is processed. That is, when the portion of the work W on the first surface WS1 side is removed by a predetermined thickness, the first surface WS1 (furthermore, the first surface WS1) of the work W should be flat even though the first surface WS1 of the work W should be flat.
  • the two-sided WS2) may not be flat (for example, curved).
  • One of the reasons for this is that when the first surface WS1 is processed, the stress accumulated in the work W is released.
  • the degree of such deformation of the work W increases as it approaches the center of the work W (specifically, the center of the plate-shaped work W in a plan view, and in the example shown in FIG. 14, the center in the YZ plane). There is a possibility of becoming. That is, the amount of deformation of the work W may increase as it approaches the center of the work W.
  • the jig 321 for supporting the work W is not shown in FIGS. 14 and 14 and thereafter.
  • the processing system SYS 1 mainly aims to release the stress. Is provisionally processed, and then the deformed work W is measured by releasing the stress, and then, based on the measurement result of the deformed work W, the deformed work W has the desired shape. W is processed again (that is, it is finished). Therefore, in step S23 of FIG. 10, if the processing apparatus 1 removes the portion of the work W on the first surface WS1 side by an amount corresponding to the thickness capable of releasing the stress accumulated in the work W. It is enough.
  • the processing apparatus 1 provisionally processes the first surface WS1 mainly for the purpose of releasing the stress, and then provisionally processes the second surface WS2 mainly for the purpose of releasing the stress.
  • FIG. 15 which is a cross-sectional view showing a processing system SYSTEM for processing the second surface WS2 of the work W in order to process the second surface WS2, in the control device 5, the processing device 1 is the second surface of the work W.
  • the machining head 11 and / or the stage 32 is moved so that the surface WS2 can be machined.
  • control device 5 moves the processing head 11 and / or the stage 32 so that the processing head 11 can irradiate the second surface WS2 with the processing light EL.
  • the control device 5 moves the machining head 11 and / or the stage 32 so that the second surface WS2 faces the machining head 11 side (that is, faces the + X side).
  • the control device 5 may rotate the stage 32 around the rotation axis 32 ⁇ Z, as described above.
  • the processing apparatus 1 processes the second surface WS2. That is, the processing apparatus 1 removes the portion of the work W on the second surface WS2 side.
  • the processing apparatus 1 processes the second surface WS2 so as to remove the portion of the work W on the second surface WS2 side by a predetermined thickness.
  • the processing in step S24 is the processing of the second surface WS2 whose main purpose is to release stress
  • the processing apparatus 1 applies the portion of the work W on the second surface WS2 side to the work W. It is sufficient to remove only the amount corresponding to the thickness that can release the stress accumulated in.
  • the processing system SYS When the residual stress is deeply inserted from the surface of the work W, the processing system SYS temporarily processes the surface of the work W and then measures it with the measuring device 2, and deforms the work W per unit processing amount. You may estimate the amount. Then, the processing system SYS may further process the work W based on the estimated amount of deformation.
  • FIG. 16 is a cross-sectional view showing the work W on which the second surface WS2 is processed
  • the work W is the same as when the first surface WS1 is processed. May be further deformed. The reason is as described above.
  • the processing system SYS measures the processed first surface WS1 (that is, the first surface WS1 newly exposed by removing the portion of the work W on the first surface WS1 side), and the first surface WS1. Based on the measurement result of, the processed first surface WS1 is further processed. That is, the machining system SYS measures the portion of the machined work W on the first surface WS1 side (that is, the deformed portion), and obtains the measurement result of the portion of the machined work W on the first surface WS1 side. Based on this, the portion of the processed work W on the first surface WS1 side is further removed.
  • the processing system SYS measures the processed second surface WS2 (that is, the second surface WS2 newly exposed by removing the portion of the work W on the second surface WS2 side), and measures the second surface WS2. Based on the result, the processed second surface WS2 is further processed. That is, the machining system SYS measures the portion of the machined work W on the second surface WS2 side (that is, the deformed portion), and obtains the measurement result of the portion of the machined work W on the second surface WS2 side. Based on this, the portion of the processed work W on the second surface WS2 side is further removed. In the following, as shown in FIG.
  • the second surface WS2 is measured (step S25), then the second surface WS2 is processed (step S26), and then the first surface WS1 is measured (step S27).
  • step S28 an example in which the first surface WS1 is processed (step S28) will be described.
  • the second surface WS2 may be measured and processed.
  • FIG. 17 which is a cross-sectional view showing a processing system SYSTEM for measuring the work W in order to measure the second surface WS2, in the control device 5, the measuring device 2 is the second surface of the processed work W.
  • the measurement head 21 and / or the stage 32 is moved so that the WS2 can be measured.
  • the measuring device 2 measures the second surface WS2.
  • the control device 5 provisionally processes the second surface WS2 based on the measurement result of the second surface WS2 in step S22 of FIG. 10 and the measurement result of the second surface WS2 in step S25 of FIG.
  • the amount of deformation of the second surface WS2 due to the above can be obtained. That is, based on the measurement results of the second surface WS2 in steps S22 and S25, the amount of deformation of the portion of the work W on the second surface WS2 side can be obtained.
  • the processing system SYS processes the second surface WS2. Specifically, the control device 5 calculates the amount of processing of the second surface WS2 of the deformed work W based on the amount of deformation of the second surface WS2 and the design information regarding the work W after processing. That is, the control device 5 calculates the amount of deformation of the portion of the work W on the second surface WS2 side and the amount of processing of the portion of the deformed work W on the second surface WS2 side based on the design information regarding the work W after machining. do. For example, when the design information includes information on the dimensions of the work W after machining, the control device 5 may use the deformed work W dimensions (particularly, the dimensions of the second surface WS2 and the second surface WS2 of the work W).
  • the control device 5 determines the deformed shape of the work W (particularly, the shape of the second surface WS2 and the second surface WS2 of the work W). Calculate the amount of processing required to make at least one of the shapes of the side parts) into the ideal shape indicated by the design information.
  • FIG. 18 which is a cross-sectional view showing the processing system SYS for processing the work W, the processing apparatus 1 processes the second surface WS2 by the processing amount calculated by the control device 5.
  • the processing device 1 removes the portion of the work W on the second surface WS2 side by the processing amount calculated by the control device 5.
  • FIG. 19 which is a cross-sectional view showing the work W on which the second surface WS2 has been finished
  • at least one of the dimensions of the second surface WS2 and the dimension of the portion of the work W on the second surface WS2 side The ideal dimensions indicated by the design information.
  • at least one of the shape of the second surface WS2 and the shape of the portion of the work W on the second surface WS2 side becomes an ideal shape indicated by the design information.
  • the processing system SYS may perform an operation of calculating the position of the stage 32 using the index member 6 described above.
  • the measuring device 2 may measure the index member 6.
  • the control device 5 may calculate the position of the stage 32 based on the measurement result of the index member 6.
  • the control device 5 can grasp how the work W is placed on the stage 32. That is, the control device 5 is relative to the stage 32 and the work W (particularly, the portion of the work W on the second surface WS2 side) based on the measurement result of the index member 6 and the measurement result of the second surface WS2.
  • the positional relationship can be calculated.
  • control device 5 is suitable for the portion of the work W on the second surface WS2 side based on the relative positional relationship between the stage 32 and the work W (particularly, the portion of the work W on the second surface WS2 side).
  • the processing device 1 and / or the stage device 3 may be controlled so as to be machined.
  • the measuring device 2 measures the first surface WS1. Therefore, as shown in FIG. 20, which is a cross-sectional view showing a processing system SYSTEM for measuring the work W, in the control device 5, the measuring device 2 has the work W on which the first surface WS1 has been processed in step S26 of FIG. The measurement head 21 and / or the stage 32 is moved so that the second surface WS2 of the above can be measured. After that, the measuring device 2 measures the first surface WS1. As a result, the control device 5 obtains the amount of deformation of the first surface WS1 based on the measurement result of the first surface WS1 in step S22 of FIG. 10 and the measurement result of the first surface WS1 in step S27 of FIG. be able to. That is, based on the measurement results of the first surface WS1 in steps S22 and S27, the amount of deformation of the portion of the work W on the first surface WS1 side can be obtained.
  • FIG. 20 is a cross-sectional view showing a processing system SYSTEM for measuring the
  • the processing system SYS processes the first surface WS1. Specifically, the control device 5 calculates the amount of processing of the first surface WS1 of the deformed work W based on the amount of deformation of the first surface WS1 and the design information regarding the work W after processing. That is, the control device 5 calculates the amount of deformation of the portion of the work W on the first surface WS1 side and the amount of processing of the portion of the deformed work W on the first surface WS1 side based on the design information regarding the work W after machining. do. For example, when the design information includes information on the dimensions of the work W after machining, the control device 5 determines the dimensions of the deformed work W (particularly, the dimensions of the first surface WS1 and the first surface WS1 of the work W).
  • the control device 5 determines the deformed shape of the work W (particularly, the shape of the first surface WS1 and the first surface WS1 of the work W). Calculate the amount of processing required to make at least one of the shapes of the side parts) into the ideal shape indicated by the design information.
  • FIG. 21 which is a cross-sectional view showing the processing system SYS for processing the work W, the processing apparatus 1 processes the first surface WS1 by the processing amount calculated by the control device 5.
  • the processing device 1 removes the portion of the work W on the first surface WS1 side by the processing amount calculated by the control device 5.
  • FIG. 22 which is a cross-sectional view showing the work W on which the first surface WS1 has been finished
  • at least one of the dimensions of the first surface WS1 and the dimension of the portion of the work W on the first surface WS1 side The ideal dimensions indicated by the design information.
  • at least one of the shape of the first surface WS1 and the shape of the portion of the work W on the first surface WS1 side becomes an ideal shape indicated by the design information.
  • the processing system SYS may perform an operation of calculating the position of the stage 32 using the index member 6 described above.
  • the measuring device 2 may measure the index member 6 after the machining head 11 and / or the stage 32 has moved to measure and finish the second surface WS2.
  • the control device 5 may calculate the position of the stage 32 based on the measurement result of the index member 6.
  • the control device 5 can grasp how the work W is placed on the stage 32. That is, the control device 5 is relative to the stage 32 and the work W (particularly, the portion of the work W on the first surface WS1 side) based on the measurement result of the index member 6 and the measurement result of the first surface WS1.
  • control device 5 is suitable for the portion of the work W on the first surface WS1 side based on the relative positional relationship between the stage 32 and the work W (particularly, the portion of the work W on the first surface WS1 side).
  • the processing device 1 and / or the stage device 3 may be controlled so as to be machined.
  • the index member 6 measured by the measuring device 2 at the timing when the first surface WS1 is measured in step S27 of FIG. 10 is an index measured by the measuring device 2 at the timing when the second surface WS2 is measured in step S25 of FIG. It may be different from the member 6.
  • the measuring device 2 is the first index member 6 (for example, the index member 6 attached to the jig 321 # 2 supporting the second surface WS2) at the timing when the second surface WS2 is measured in step S25. May be measured. After that, after the stage 32 and / the processing head 11 move so as to process the second surface WS2 based on the measurement result of the first index member 6, the measuring device 2 measures the first surface WS1 in step S27.
  • the second index member 6 (for example, the index member 6 attached to the jig 321 # 1 supporting the first surface WS1) may be measured at the same timing.
  • the second index member 6 is located outside the measurement shot area MSA of the measuring device 2 that measures the first index member 6, and the measuring device 2 measures the second index member 6.
  • the first index member 6 is located outside the measurement shot area MSA.
  • the processing system SYS includes a plurality of measuring devices 2 having different measurement shot area MSAs as shown in FIG. 9, the index member 6 is measured at the timing when the first surface WS1 is measured in step S27 of FIG.
  • the measuring device 2 that measures the index member 6 may be different from the measuring device 2 that measures the index member 6 at the timing when the second surface WS2 is measured in step S25 of FIG.
  • the processing system SYS described above can process both sides of the work W while the work W is placed (or held). Since the processing system SYS can process both sides of the work W without remounting (reholding) the work W, the work W can be processed with high accuracy. Further, the machining system SYS tentatively machined the work W mainly for the purpose of releasing the stress based on the fact that the stress accumulated in the work W is released when the work W is machined, and then the work W is tentatively machined. The deformed work W is finished by releasing the stress. After the stress accumulated in the work W is released, the work W is not deformed so much or hardly even if the work W is further processed.
  • the machining system SYS can machine the work W with high accuracy so as to reduce or cancel the influence of the deformation of the work W.
  • the processing system SYS can process the work W with high accuracy so that the shape of the work W becomes an ideal shape.
  • the machining system SYS can machine the work W with high accuracy so that the dimensions of the work W become ideal dimensions.
  • FIG. 23 is a block diagram showing a system configuration of the processing system SYSA of the first modification.
  • FIG. 24 is a cross-sectional view showing the structure of the processing system SYSA of the first modification.
  • FIG. 25 is a cross-sectional view showing the structure of the processing system SYS of the first modification.
  • the machining apparatus 1 includes a head drive system 12a instead of the head drive system 12 as compared with the above-mentioned machining system SYS. It differs in that.
  • the processing system SYSa is different from the processing system SYS described above in that the measuring device 2 includes a head drive system 22a instead of the head drive system 22.
  • the processing system SYSa is different from the processing system SYS described above in that the stage device 3 includes a stage drive system 33a instead of the stage drive system 33.
  • the machining system SYSa differs from the above-mentioned machining system SYS in that the stage device 3 (particularly, the stage 32) is arranged below the machining head 11 and the measurement head 21 (that is, on the ⁇ Z side).
  • the processing head 11 and the measuring head 21 have an arch-shaped shape (or any other shape) that overhangs above the stage device 3 (particularly, the stage 32), and the surface plate 31 via a vibration isolator 31. It may be supported by the support member 8b arranged above. Therefore, in the processing system SYS, as compared with the above-mentioned processing system SYS, the processing head 11 irradiates the processing light EL downward and the measuring head 21 irradiates the measuring light ML downward. different.
  • Other features of the machining system SYS may be the same as the other features of the machining system SYS.
  • the head drive system 12a is different from the head drive system 12 in that the processing head 11 is moved along the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively. Other features of the head drive system 12a may be the same as other features of the head drive system 12.
  • the head drive system 12a includes a head drive system 12Xa, a head drive system 12Ya, and a head drive system 12Za in order to move the machining head 11 along each of the X-axis direction, the Y-axis direction, and the Z-axis direction. You may be.
  • the head drive system 12Xa moves the processing head 11 along the X-axis direction.
  • the head drive system 12Ya moves the processing head 11 along the Y-axis direction.
  • the head drive system 12Za moves the processing head 11 along the Z-axis direction.
  • the head drive system 12Y includes, for example, a guide member 121Y arranged on a surface plate 31 described later via a vibration isolator and extending along the Y-axis direction, a slider member 122Ya movable along the guide member 121Ya, and the like. It includes a support column member 123Ya that is connected to the slider member 122Ya and extends to a position higher than the stage device 3 along the Z-axis direction, and a motor (not shown) that moves the slider member 122Ya.
  • the head drive system 12Xa is, for example, unable to move the guide member 121Xa connected to the upper end of the support column member 123Ya and extending along the X-axis direction, the slider member 122Xa movable along the guide member 121Xa, and the slider member 122Xa. It is equipped with the motor shown in the figure.
  • the head drive system 12Z is not shown, for example, to move the guide member 121Za connected to the slider member 122Xa and extending along the Z-axis direction, the slider member 122Za movable along the guide member 121Za, and the slider member 122Za. It is equipped with a motor.
  • a processing head 11 is connected to the slider member 122Za.
  • the processing head 11 connected to the slider member 122Ya via the head drive systems 12Xa and 12Za moves along the Y-axis direction.
  • the machining head 11 connected to the slider member 122Xa via the head drive system 12Za moves along the X-axis direction.
  • the machining head 11 connected to the slider member 122Za moves along the Z-axis direction.
  • the head drive system 22a is different from the head drive system 22 in that the measurement head 21 is moved along the Z-axis direction. Other features of the head drive system 22a may be the same as other features of the head drive system 22.
  • the head drive system 22a includes, for example, a head drive system 22Z that moves the measurement head 21 along the Z-axis direction.
  • the head drive system 22Z is not shown, for example, a guide member 221Za connected to the slider member 122Xa and extending along the Z-axis direction, a slider member 222Z movable along the guide member 221Za, and a slider member 222Za. It is equipped with a motor.
  • a measuring head 21 is connected to the slider member 222Za.
  • the measurement head 21 connected to the slider member 222Za moves along the Z-axis direction.
  • the guide member 221Za is connected to the slider member 122Xa
  • the measurement head 21 connected to the slider member 122Ya via the head drive system 12Xa and 22Za moves along the Y-axis direction. do.
  • the measurement head 21 connected to the slider member 122Xa via the head drive system 22Za moves along the X-axis direction. Therefore, the measurement head 21 can be moved along the X-axis direction, the Y-axis direction, and the Z-axis direction by the head drive systems 12a and 22a, respectively.
  • the stage drive system 33a is different from the stage drive system 33 in that the stage 32 is moved along each of the ⁇ Z direction and the ⁇ X direction. That is, the stage drive system 33a differs from the stage drive system 33 in that the stage 32 is rotated around each of the Z axis and the X axis. Other features of the stage drive system 33a may be the same as other features of the stage drive system 33.
  • the stage drive system 33a may include a stage drive system 33Tza and a stage drive system 33Txa.
  • the stage drive system 33Tza includes, for example, a table 331Tza and a motor 332Tza that rotates the table 331Tza around a rotation axis 32 ⁇ Za along the Z axis.
  • the stage drive system 33Txa includes, for example, a support column member 331Txa extending from the table 331Tza along the Z-axis direction, a table 332Txa attached to the support column member 331Txa so as to be rotatable around a rotation axis 32 ⁇ Xa along the X-axis, and a table. It includes a motor (not shown) that rotates 332Txa around a rotation shaft 32 ⁇ Xa.
  • a stage 32 is connected to the table 332Txa.
  • the table 332Txa has a shape in which the portion on which the stage 32 is placed is located below the portion connected to the support column member 331Txa, but other It may have a shape.
  • the table 332Txa may be used as the stage 32.
  • the stage 32 connected to the table 331Tza via the stage drive system 33Txa rotates around the rotation shaft 32 ⁇ Za.
  • the stage 32 connected to the table 332Txa rotates around the rotation axis 32 ⁇ Xa.
  • the stage drive system 33Txa since the processing head 11 and the measurement head 21 are arranged above the stage 32 (that is, on the + Z side), the stage drive system 33Txa typically rotates the stage 32 around the rotation axis 32 ⁇ Xa. By doing so, the state of the work W can be switched between a state in which the processing light EL can irradiate the first surface WS1 of the work W and a state in which the processing light EL can irradiate the second surface WS2 of the work W. Similarly, when the stage drive system 33Txa rotates the stage 32 around the rotation axis 32 ⁇ Xa, the state of the work W can be measured by the measurement light ML on the first surface WS1 of the work W and the measurement light ML on the work W.
  • FIG. 26 shows a state in which the stage 32 is rotated around the rotation axis 32 ⁇ Xa so that the processing light EL or the measurement light ML can irradiate the first surface WS1 of the work W.
  • FIG. 27 shows a state in which the stage 32 is rotated around the rotation axis 32 ⁇ Xa so that the processing light EL or the measurement light ML can irradiate the second surface WS2 of the work W.
  • the stage 32 can rotate around a plurality of rotation axes (specifically, two rotation axes 32 ⁇ Za and 32 ⁇ Xa) having different directions. In this case, it may be considered that the direction of the rotation axis of the stage 32 is substantially changed.
  • a plurality of the index members 6 described above may be attached along a direction intersecting each rotation axis of the stage 32. Specifically, at least two index members 6 are attached along the direction intersecting either one of the rotating shafts 32 ⁇ Za and 32 ⁇ Xa, and at least two index members 6 are attached in the direction along the other of the rotating shafts 32 ⁇ Za and 32 ⁇ Xa.
  • Another index member 6 different from 6 may be attached.
  • the position of the stage 32 around each of the plurality of rotation axes (specifically, the two rotation axes 32 ⁇ Za and 32 ⁇ Xa) is appropriate. Can be calculated.
  • FIGS. 28 to 29 the machining system SYS of the second modified example (hereinafter, the machining system SYS of the second modified example is referred to as “machining system SYSb”. ) Will be explained.
  • FIG. 28 is a block diagram showing a system configuration of the processing system SYSb of the second modification.
  • FIG. 29 is a cross-sectional view showing the structure of the processing system SYSb of the second modification.
  • the machining device 1 does not have to include the head drive system 12 and the position measuring instrument 13 as compared with the above-mentioned machining system SYS. It differs in that.
  • the processing system SYSa is different from the processing system SYS described above in that the measuring device 2 does not have to include the head drive system 22 and the position measuring instrument 23 described above.
  • the processing system SYSa is different from the processing system SYS described above in that the stage device 3 includes a stage drive system 33b instead of the stage drive system 33.
  • the machining system SYSb is different from the above-mentioned machining system SYS in that the stage device 3 (particularly, the stage 32) is arranged below the machining head 11 and the measurement head 21 (that is, on the ⁇ Z side). Therefore, in the processing system SYSb, as compared with the above-mentioned processing system SYS, the processing head 11 irradiates the processing light EL downward and the measuring head 21 irradiates the measuring light ML downward. different.
  • Other features of the machining system SYSb may be the same as the other features of the machining system SYS.
  • the stage drive system 33a is different from the stage drive system 33 in that the stage 32 is moved at least along the X-axis direction and the Y-axis direction. Further, the stage drive system 33a is different from the stage drive system 33 in that the robot arm 33Rb is provided. Other features of the stage drive system 33b may be the same as other features of the stage drive system 33.
  • the stage drive system 33b In order to move the stage 32 along the X-axis direction and the Y-axis direction, the stage drive system 33b has the stage drive system 33Xb that moves the stage 32 along the X-axis direction and the stage 32 in the Y-axis direction. It may be provided with a stage drive system 33Yb to be moved along the line.
  • the stage drive system 33Yb includes, for example, a guide member 331Yb arranged on the surface plate 31 via a vibration isolator and extending along the Y-axis direction, a slider member 332Yb movable along the guide member 331Yb, and a slider member. It includes a table 333Yb connected to 332Yb and a motor (not shown) for moving the slider member 332Yb.
  • the stage drive system 33Xb includes, for example, a guide member 331Xb connected to the table 333Yb and extending along the X-axis direction, a slider member 332Xb movable along the guide member 331Xb, and a table 333Xb connected to the slider member 332Xb.
  • a motor (not shown) for moving the slider member 332Xb is provided.
  • a stage 32 is connected to the table 333Xb.
  • the table 333Xb may be used as the stage 32.
  • the robot arm 33Rb may be, for example, an articulated robot arm.
  • the end effector of the robot arm 33Rb is preferably an end effector capable of grasping the work W.
  • the robot arm 33Rb may move the work W while holding the work W.
  • the robot arm 33Rb may move the work W along at least one of the X-axis direction, the Y-axis direction, the Z-axis direction, the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction while grasping the work W.
  • the robot arm 33Rb determines the state of the work W by the first surface WS1.
  • a state in which at least one of the processing light EL and the measurement light ML can irradiate the first surface WS1 and a state in which the second surface WS2 is facing upward that is, the processing light EL and the processing light EL and
  • the work W may be moved so as to switch between (a state in which at least one of the measurement light MLs can irradiate the second surface WS2). That is, the robot arm 33Rb may move the work W so as to turn over the work W placed on the stage 32 (that is, reverse the vertical relationship between the first surface WS1 and the second surface WS2).
  • the work W may be placed on the stage 32 via the jig 323b so that the robot arm 33Rb can easily grasp the work W.
  • the jig 323b may function as a spacer for securing a gap between the work W and the stage 32. As a result, the robot arm 33Rb can grasp the work W relatively easily as compared with the case where a gap is not secured between the work W and the stage 32.
  • the processing apparatus 1 irradiates the work W with processing light EL to perform removal processing for removing a part of the work W.
  • the processing apparatus 1 may irradiate the work W with the processing light EL to perform processing different from the removal processing.
  • the processing apparatus 1 may irradiate the work W with the processing light EL to perform additional processing on the work W.
  • the processing apparatus 1 may perform marking processing to form a desired pattern on the surface of the work W by changing at least a part of the characteristics of the surface of the work W by irradiation with the processing light EL.
  • the stage device 3 includes a stage drive system 33. However, the stage device 3 does not have to include the stage drive system 33. That is, the stage 32 does not have to move. If the stage 32 does not move, the stage device 3 may not include the position measuring instrument 34.
  • the processing apparatus 1 includes a head drive system 12. However, the processing device 1 does not have to include the head drive system 12. That is, the processing head 11 does not have to move. In this case, the processing device 1 does not have to include the position measuring instrument 13.
  • the measuring device 2 includes a head drive system 22. However, the measuring device 2 does not have to include the head drive system 22. That is, the measurement head 21 does not have to move. In this case, the measuring device 2 does not have to include the position measuring device 23.
  • the processing apparatus 1 processes the work W by irradiating the work W with the processing light EL.
  • the processing apparatus 1 may process the work W by irradiating the work W with an arbitrary energy beam different from light (this energy beam may be referred to as a “processing beam”).
  • the processing device 1 may include a beam irradiating device capable of irradiating an arbitrary energy beam in addition to or in place of the processing light source 111.
  • An example of an arbitrary energy beam is a charged particle beam such as an electron beam and an ion beam.
  • Another example of an arbitrary energy beam is an electromagnetic wave.
  • the present invention is not limited to the above-described embodiment, and can be appropriately modified within the scope of claims and within a range not contrary to the gist or idea of the invention that can be read from the entire specification, and a processing system accompanied by such modification is also possible. It is also included in the technical scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A processing system is provided with: an object placement device for placing an object thereon; a processing device for processing the object placed on the object placement device with processing light; a measurement device for measuring the object placed on the object placement device; a changing device for moving at least one of the object placed on the object placement device and the processing device; and a control device for controlling the changing device in such a manner that a first side of the object can be irradiated with the processing light, and controlling the changing device in such a manner that a second side opposite to the first side can be irradiated with the processing light.

Description

加工システムProcessing system
 本発明は、例えば、加工光で物体を加工する加工システムの技術分野に関する。 The present invention relates to, for example, the technical field of a processing system that processes an object with processing light.
 特許文献1には、加工光の一具体例であるレーザ光を物体に照射して物体を加工する加工装置が記載されている。このような物体の加工に関する技術分野では、物体の加工に関する性能の向上が望まれている。 Patent Document 1 describes a processing device that processes an object by irradiating the object with a laser beam, which is a specific example of processing light. In the technical field related to the processing of such an object, it is desired to improve the performance related to the processing of the object.
米国特許出願公開第2005/0045090号明細書U.S. Patent Application Publication No. 2005/0045090
 第1の態様によれば、物体を載置する物体載置装置と、前記物体載置装置に載置された前記物体を加工光で加工する加工装置と、前記物体載置装置に載置された前記物体を計測する計測装置と、前記物体載置装置に載置された前記物体と前記加工装置との少なくとも一方を動かす変更装置と、前記物体の第1の側に前記加工光が照射できるように前記変更装置を制御し、前記第1の側と反対側の第2の側を前記加工光が照射できるように前記変更装置を制御する制御装置と備える加工システムが提供される。 According to the first aspect, an object mounting device for mounting an object, a processing device for processing the object mounted on the object mounting device with processing light, and a processing device mounted on the object mounting device. A measuring device for measuring the object, a changing device for moving at least one of the object and the processing device mounted on the object mounting device, and the processing light can irradiate the first side of the object. A processing system including a control device for controlling the changing device and controlling the changing device so that the processing light can irradiate the second side opposite to the first side is provided.
 第2の態様によれば、物体を載置する物体載置装置と、前記物体載置装置に載置された前記物体を加工光で加工する加工装置と、前記物体載置装置に載置された前記物体を計測する計測装置と、前記物体載置装置に載置された前記物体と前記加工装置との少なくとも一方を動かす変更装置と、前記物体の第1の側を前記加工装置で加工できるように前記変更装置を制御し、前記第1の側と反対側の第2の側を前記加工装置が加工できるように前記変更装置を制御する制御装置とを備える加工システムが提供される。 According to the second aspect, an object mounting device for mounting an object, a processing device for processing the object mounted on the object mounting device with processing light, and a processing device mounted on the object mounting device. The measuring device for measuring the object, the changing device for moving at least one of the object and the processing device mounted on the object mounting device, and the first side of the object can be processed by the processing device. A processing system including a control device for controlling the changing device and controlling the changing device so that the processing device can process the second side opposite to the first side is provided.
 第3の態様によれば、物体を載置する物体載置装置と、前記物体載置装置に載置された前記物体を加工光で加工する加工装置と、前記物体載置装置に載置された前記物体を計測する計測装置と、前記物体載置装置に載置された前記物体と前記加工装置との少なくとも一方を動かす変更装置と備え、前記計測装置は、前記物体載置装置に取り付けられた指標を計測して第1計測結果を得て、前記物体載置装置に載置された前記物体と前記加工装置との少なくとも一方を動かした後に前記指標を計測して第2計測結果を得る加工システムが提供される。 According to the third aspect, an object mounting device for mounting an object, a processing device for processing the object mounted on the object mounting device with processing light, and a processing device mounted on the object mounting device. A measuring device for measuring the object and a changing device for moving at least one of the object mounted on the object mounting device and the processing device are provided, and the measuring device is attached to the object mounting device. The index is measured to obtain the first measurement result, and after moving at least one of the object mounted on the object mounting device and the processing device, the index is measured to obtain the second measurement result. A processing system is provided.
 第4の態様によれば、物体を載置する物体載置装置と、前記物体に加工光を照射して前記物体の一部を除去する加工装置と、前記一部が除去された前記物体を計測する計測装置と、前記計測装置による計測結果を用いて、前記一部が除去された前記物体の変形を求める演算装置と、前記演算装置による前記変形に関する情報を用いて、変形した前記物体を加工するように前記加工装置を制御する制御装置とを備える加工システムが提供される。 According to the fourth aspect, an object mounting device for mounting an object, a processing device for irradiating the object with processing light to remove a part of the object, and the object from which the part has been removed are provided. A measuring device for measuring, a calculation device for obtaining deformation of the object from which the part has been removed by using the measurement result by the measuring device, and the deformed object using information on the deformation by the calculation device. A machining system including a control device for controlling the machining device so as to perform machining is provided.
図1は、本実施形態の加工システムの外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of the processing system of the present embodiment. 図2は、本実施形態の加工システムの構造を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of the processing system of the present embodiment. 図3は、本実施形態の加工システムのシステム構成を示すブロック図である。FIG. 3 is a block diagram showing a system configuration of the processing system of the present embodiment. 図4(a)から図4(c)のそれぞれは、ワークに対して行われる除去加工の様子を示す断面図である。Each of FIGS. 4 (a) to 4 (c) is a cross-sectional view showing a state of removal processing performed on the work. 図5は、加工ヘッドの構造を示す断面図である。FIG. 5 is a cross-sectional view showing the structure of the processing head. 図6は、加工学系の構造を示す斜視図である。FIG. 6 is a perspective view showing the structure of the processing science system. 図7(a)は、指標を示す平面図であり、図7(b)及び図7(c)のそれぞれは、指標を示す断面図である。7 (a) is a plan view showing an index, and each of FIGS. 7 (b) and 7 (c) is a cross-sectional view showing the index. 図8は、位置情報算出動作の流れを示すフローチャートである。FIG. 8 is a flowchart showing the flow of the position information calculation operation. 図9は、本実施形態の加工システムの他の例のシステム構成を示すブロック図である。FIG. 9 is a block diagram showing a system configuration of another example of the processing system of the present embodiment. 図10は、加工動作の流れを示すフローチャートである。FIG. 10 is a flowchart showing the flow of the machining operation. 図11は、ワークの第1面を計測する加工システムを示す断面図である。FIG. 11 is a cross-sectional view showing a processing system for measuring the first surface of the work. 図12は、ワークの第2面を計測する加工システムを示す断面図である。FIG. 12 is a cross-sectional view showing a processing system for measuring the second surface of the work. 図13は、ワークの第1面を加工する加工システムを示す断面図である。FIG. 13 is a cross-sectional view showing a processing system for processing the first surface of the work. 図14は、変形したワークを示す断面図である。FIG. 14 is a cross-sectional view showing a deformed work. 図13は、ワークの第2面を加工する加工システムを示す断面図である。FIG. 13 is a cross-sectional view showing a processing system for processing the second surface of the work. 図16は、変形したワークを示す断面図である。FIG. 16 is a cross-sectional view showing a deformed work. 図17は、ワークの第2面を計測する加工システムを示す断面図である。FIG. 17 is a cross-sectional view showing a processing system for measuring the second surface of the work. 図18は、ワークの第2面を加工する加工システムを示す断面図である。FIG. 18 is a cross-sectional view showing a processing system for processing the second surface of the work. 図19は、第2面が加工されたワークを示す断面図である。FIG. 19 is a cross-sectional view showing a work whose second surface has been machined. 図20は、ワークの第1面を計測する加工システムを示す断面図である。FIG. 20 is a cross-sectional view showing a processing system for measuring the first surface of the work. 図21は、ワークの第1面を加工する加工システムを示す断面図である。FIG. 21 is a cross-sectional view showing a processing system for processing the first surface of the work. 図22は、第1面が加工されたワークを示す断面図である。FIG. 22 is a cross-sectional view showing a work whose first surface has been machined. 図23は、第1変形例の加工システムのシステム構成を示すブロック図である。FIG. 23 is a block diagram showing a system configuration of the processing system of the first modification. 図24は、第1変形例の加工システムの構造を示す断面図である。FIG. 24 is a cross-sectional view showing the structure of the processing system of the first modification. 図25は、第1変形例の加工システムの構造を示す断面図である。FIG. 25 is a cross-sectional view showing the structure of the processing system of the first modification. 図26は、第1変形例の加工システムの構造を示す断面図である。FIG. 26 is a cross-sectional view showing the structure of the processing system of the first modification. 図27は、第1変形例の加工システムの構造を示す断面図である。FIG. 27 is a cross-sectional view showing the structure of the processing system of the first modification. 図28は、第2変形例の加工システムのシステム構成を示すブロック図である。FIG. 28 is a block diagram showing a system configuration of the processing system of the second modification. 図29は、第2変形例の加工システムの構造を示す断面図である。FIG. 29 is a cross-sectional view showing the structure of the processing system of the second modification.
 以下、図面を参照して加工システムの実施形態について説明する。以下では、以下では、ワークWを加工する加工システムSYSを一例として用いて、加工システム及び加工方法の実施形態を説明する。 Hereinafter, embodiments of the processing system will be described with reference to the drawings. In the following, an embodiment of the processing system and the processing method will be described using the processing system SYS for processing the work W as an example.
 また、以下の説明では、互いに直交するX軸、Y軸及びZ軸から定義されるXYZ直交座標系を用いて、加工システムSYSを構成する各種構成要素の位置関係について説明する。尚、以下の説明では、説明の便宜上、X軸方向及びY軸方向のそれぞれが水平方向(つまり、水平面内の所定方向)であり、Z軸方向が鉛直方向(つまり、水平面に直交する方向であり、実質的には上下方向或いは重力方向)であるものとする。また、X軸、Y軸及びZ軸周りの回転方向(言い換えれば、傾斜方向)を、それぞれ、θX方向、θY方向及びθZ方向と称する。ここで、Z軸方向を重力方向としてもよい。また、XY平面を水平方向としてもよい。 Further, in the following description, the positional relationship of various components constituting the machining system SYS will be described using the XYZ Cartesian coordinate system defined from the X-axis, the Y-axis, and the Z-axis which are orthogonal to each other. In the following description, for convenience of explanation, each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction orthogonal to the horizontal plane). Yes, it is assumed that it is substantially in the vertical direction or the gravity direction). Further, the rotation directions (in other words, the inclination direction) around the X-axis, the Y-axis, and the Z-axis are referred to as the θX direction, the θY direction, and the θZ direction, respectively. Here, the Z-axis direction may be the direction of gravity. Further, the XY plane may be horizontal.
 (1)加工システムSYSの構造
 初めに、図1から図3を参照しながら、加工システムSYSの構造について説明する。図1は、加工システムSYSの外観を示す斜視図である。図2は、加工システムSYSの構造を示す断面図である。図3は、加工システムSYSのシステム構成を示すブロック図である。
(1) Structure of Machining System SYS First, the structure of the machining system SYS will be described with reference to FIGS. 1 to 3. FIG. 1 is a perspective view showing the appearance of the processing system SYS. FIG. 2 is a cross-sectional view showing the structure of the processing system SYS. FIG. 3 is a block diagram showing a system configuration of the processing system SYS.
 図1から図3に示すように、加工システムSYSは、加工装置1と、計測装置2と、ステージ装置3と、筐体4と、制御装置5とを備える。 As shown in FIGS. 1 to 3, the processing system SYS includes a processing device 1, a measuring device 2, a stage device 3, a housing 4, and a control device 5.
 加工装置1は、制御装置5の制御下で、ワークWを加工可能である。ワークWは、加工装置1によって加工される物体である。ワークWは、例えば、金属であってもよいし、合金(例えば、ジュラルミン等)であってもよいし、半導体(例えば、シリコン)であってもよいし、樹脂であってもよいし、CFRP(Carbon Fiber Reinforced Plastic)等の複合材料であってもよいし、ガラスであってもよいし、セラミックスであってもよいし、それ以外の任意の材料から構成される物体であってもよい。 The processing device 1 can process the work W under the control of the control device 5. The work W is an object processed by the processing apparatus 1. The work W may be, for example, a metal, an alloy (for example, duralmine, etc.), a semiconductor (for example, silicon), a resin, or CFRP. It may be a composite material such as (Carbon Fiber Reinforced Plastic), glass, ceramics, or an object composed of any other material.
 加工装置1は、ワークWを加工するために、ワークWに対して加工光ELを照射する。加工光ELは、ワークWに照射されることでワークWを加工可能である限りは、どのような種類の光であってもよい。本実施形態では、加工光ELがレーザ光である例を用いて説明を進めるが、加工光ELは、レーザ光とは異なる種類の光であってもよい。更に、加工光ELの波長は、ワークWに照射されることでワークWを加工可能である限りは、どのような波長であってもよい。例えば、加工光ELは、可視光であってもよいし、不可視光(例えば、赤外光及び紫外光の少なくとも一方等)であってもよい。 The processing device 1 irradiates the work W with processing light EL in order to process the work W. The processing light EL may be any kind of light as long as the work W can be processed by being irradiated with the work W. In the present embodiment, the description will be made using an example in which the processing light EL is a laser light, but the processing light EL may be a type of light different from the laser light. Further, the wavelength of the processing light EL may be any wavelength as long as the work W can be processed by irradiating the work W. For example, the processed light EL may be visible light or invisible light (for example, at least one of infrared light and ultraviolet light).
 本実施形態では、加工装置1は、ワークWに加工光ELを照射して、ワークWの一部を除去する除去加工を行う。但し、後述するように、加工装置1は、除去加工とは異なる加工(例えば、付加加工又はマーキング加工)を行ってもよい。除去加工は、平面への加工、円筒への加工、穴あけ加工、平滑化加工、切断加工、及び、任意の文字若しくは任意のパターンを形成する(言い換えれば、刻む)彫刻加工(言い換えれば、刻印加工)の少なくとも一つを含んでいてもよい。 In the present embodiment, the processing apparatus 1 irradiates the work W with processing light EL to perform removal processing for removing a part of the work W. However, as will be described later, the processing apparatus 1 may perform processing different from the removal processing (for example, additional processing or marking processing). The removal process includes flat surface processing, cylindrical processing, drilling processing, smoothing processing, cutting processing, and engraving processing (in other words, engraving) that forms (in other words, engraves) any character or any pattern. ) May be included.
 ここで、図4(a)から図4(c)のそれぞれを参照しながら、加工光ELを用いた除去加工の一例について説明する。図4(a)から図4(c)のそれぞれは、ワークWに対して行われる除去加工の様子を示す断面図である。図4(a)に示すように、加工装置1は、加工装置1からの加工光ELが照射される領域としてワークWの表面に設定される目標照射領域EAに対して加工光ELを照射する。目標照射領域EAに加工光ELが照射されると、ワークWのうち目標照射領域EAと重なる部分及び目標照射領域EAと近接する部分の少なくとも一方を含むエネルギ伝達部分に、加工光ELのエネルギが伝達される。加工光ELのエネルギに起因した熱が伝達されると、加工光ELのエネルギに起因した熱によって、ワークWのエネルギ伝達部分を構成する材料が溶融する。溶融した材料は、液滴となって飛散する。或いは、溶融した材料は、加工光ELのエネルギに起因した熱によって蒸発する。その結果、ワークWのエネルギ伝達部分が除去される。つまり、図4(b)に示すように、ワークWの表面に凹部(言い換えれば、溝部)が形成される。この場合、加工装置1は、いわゆる熱加工の原理を利用して、ワークWを加工しているといえる。更に、後述するように、加工装置1は、後述するガルバノミラー1122を用いて、加工光ELがワークWの表面を走査するように、ワークWの表面上で目標照射領域EAを移動させる。その結果、図4(c)に示すように、加工光ELの走査軌跡(つまり、目標照射領域EAの移動軌跡)に沿って、ワークWの表面が少なくとも部分的に除去される。つまり、加工光ELの走査軌跡(つまり、目標照射領域EAの移動軌跡)に沿って、ワークWの表面が実質的に削り取られる。このため、加工装置1は、除去加工したい領域に対応する所望の走査軌跡に沿って加工光ELにワークWの表面上を走査させることで、ワークWのうち除去加工したい部分を適切に除去することができる。 Here, an example of removal processing using the processing optical EL will be described with reference to each of FIGS. 4 (a) to 4 (c). Each of FIGS. 4 (a) to 4 (c) is a cross-sectional view showing a state of removal processing performed on the work W. As shown in FIG. 4A, the processing apparatus 1 irradiates the processing light EL to the target irradiation region EA set on the surface of the work W as the region to which the processing light EL from the processing apparatus 1 is irradiated. .. When the target irradiation region EA is irradiated with the processing light EL, the energy of the processing light EL is applied to the energy transfer portion including at least one of the portion of the work W that overlaps the target irradiation region EA and the portion that is close to the target irradiation region EA. Be transmitted. When the heat generated by the energy of the processing light EL is transferred, the material constituting the energy transfer portion of the work W is melted by the heat generated by the energy of the processing light EL. The molten material becomes droplets and scatters. Alternatively, the molten material evaporates due to the heat generated by the energy of the processing light EL. As a result, the energy transfer portion of the work W is removed. That is, as shown in FIG. 4B, a recess (in other words, a groove) is formed on the surface of the work W. In this case, it can be said that the processing apparatus 1 processes the work W by utilizing the so-called thermal processing principle. Further, as will be described later, the processing apparatus 1 uses the galvano mirror 1122 described later to move the target irradiation region EA on the surface of the work W so that the processing light EL scans the surface of the work W. As a result, as shown in FIG. 4C, the surface of the work W is at least partially removed along the scanning locus of the processed light EL (that is, the moving locus of the target irradiation region EA). That is, the surface of the work W is substantially scraped along the scanning locus of the processing light EL (that is, the moving locus of the target irradiation region EA). Therefore, the processing apparatus 1 appropriately removes the portion of the work W to be removed by causing the processing light EL to scan the surface of the work W along a desired scanning locus corresponding to the region to be removed. be able to.
 一方で、加工光ELの特性によっては、加工装置1は、非熱加工(例えば、アブレーション加工)の原理を利用して、ワークWを加工してもよい。つまり、加工装置1は、ワークWに対して非熱加工(例えば、アブレーション加工)を行ってもよい。例えば、発光時間がピコ秒以下(或いは、場合によっては、ナノ秒又はフェムト秒以下)のパルス光が加工光ELとして用いられると、ワークWのエネルギ伝達部分を構成する材料は、瞬時に蒸発及び飛散する。尚、発光時間がピコ秒以下(或いは、場合によっては、ナノ秒又はフェムト秒以下)のパルス光が加工光ELとして用いられる場合、ワークWのエネルギ伝達部分を構成する材料は、溶融状態を経ずに昇華することもある。このため、加工光ELのエネルギに起因した熱によるワークWへの影響を極力抑制しながら、ワークWの表面に凹部(言い換えれば、溝部)が形成可能となる。 On the other hand, depending on the characteristics of the processing light EL, the processing apparatus 1 may process the work W by utilizing the principle of non-thermal processing (for example, ablation processing). That is, the processing apparatus 1 may perform non-thermal processing (for example, ablation processing) on the work W. For example, when pulsed light with a light emission time of picoseconds or less (or, in some cases, nanoseconds or femtoseconds or less) is used as the processing light EL, the material constituting the energy transfer portion of the work W evaporates instantly and Scatter. When pulsed light having a light emission time of picoseconds or less (or, in some cases, nanoseconds or femtoseconds or less) is used as the processing light EL, the material constituting the energy transfer portion of the work W goes through a molten state. It may sublimate without. Therefore, a recess (in other words, a groove) can be formed on the surface of the work W while suppressing the influence of heat caused by the energy of the processing light EL on the work W as much as possible.
 このような除去加工を行うために、加工装置1は、加工ヘッド11と、ヘッド駆動系12と、位置計測器13とを備えている。更に、加工ヘッド11は、図3及び加工ヘッド11の構造を示す断面図である図5に示すように、加工光源111と、加工光学系112とを備えている。但し、加工光源111は、加工ヘッド11の外部に配置されてもよい。つまり、加工ヘッド11は、加工光学系112を備える一方で、加工光源111を備えていなくてもよい。 In order to perform such removal processing, the processing apparatus 1 includes a processing head 11, a head drive system 12, and a position measuring instrument 13. Further, the processing head 11 includes a processing light source 111 and a processing optical system 112, as shown in FIG. 3 and FIG. 5, which is a cross-sectional view showing the structure of the processing head 11. However, the processing light source 111 may be arranged outside the processing head 11. That is, while the processing head 11 includes the processing optical system 112, the processing head 11 does not have to include the processing light source 111.
 加工光源111は、加工光ELを生成可能である。加工光ELがレーザ光である場合には、加工光源111は、例えば、レーザダイオードであってもよい。更に、加工光源111は、パルス発振可能な光源であってもよい。この場合、加工光源111は、パルス光(例えば、発光時間がピコ秒以下のパルス光)を加工光ELとして生成可能である。加工光源111は、生成した加工光ELを、加工光学系112に向けて射出する。 The processing light source 111 can generate processing light EL. When the processing light EL is a laser light, the processing light source 111 may be, for example, a laser diode. Further, the processing light source 111 may be a light source capable of pulse oscillation. In this case, the processing light source 111 can generate pulsed light (for example, pulsed light having a light emission time of picoseconds or less) as the processing light EL. The processing light source 111 emits the generated processing light EL toward the processing optical system 112.
 加工光学系112は、加工光源111から射出された加工光ELが入射する光学系である。加工光学系112は、加工光源111からの加工光ELをワークWに向けて射出する(つまり、導く)ための光学系である。加工光ELをワークWに向けて射出するために、図5に示すように、加工光学系112は、フォーカスレンズ1121と、ガルバノミラー1122と、fθレンズ1123とを備える。 The processing optical system 112 is an optical system in which the processing light EL emitted from the processing light source 111 is incident. The processing optical system 112 is an optical system for emitting (that is, guiding) the processing light EL from the processing light source 111 toward the work W. As shown in FIG. 5, the processing optical system 112 includes a focus lens 1121, a galvanometer mirror 1122, and an fθ lens 1123 in order to emit the processing light EL toward the work W.
 フォーカスレンズ1121は、加工光学系112から射出される加工光ELの収斂度又は発散度を制御する。これにより、加工光ELのフォーカス位置(例えば、いわゆるベストフォーカス位置)が制御される。尚、加工光学系112は、フォーカスレンズ1121に加えて又は代えて、加工光ELの任意の状態を制御可能な光学素子を備えていてもよい。加工光ELの任意の状態は、加工光ELのフォーカス位置、加工光ELのビーム径、加工光ELの収斂度、発散度、平行度、及び、加工光ELの強度分布の少なくとも一つに加えて又は代えて、加工光ELのパルス長、加工光ELのパルス数、加工光ELの強度、加工光ELの進行方向及び加工光ELの偏光状態の少なくとも一つを含んでいてもよい。 The focus lens 1121 controls the degree of convergence or the degree of divergence of the processed light EL emitted from the processed optical system 112. As a result, the focus position (for example, the so-called best focus position) of the processed light EL is controlled. The processing optical system 112 may include, in addition to or in place of the focus lens 1121, an optical element capable of controlling an arbitrary state of the processing light EL. Any state of the processing light EL is in addition to at least one of the focus position of the processing light EL, the beam diameter of the processing light EL, the convergence degree, the divergence degree, the parallelism of the processing light EL, and the intensity distribution of the processing light EL. Alternatively or instead, it may include at least one of the pulse length of the processing light EL, the number of pulses of the processing light EL, the intensity of the processing light EL, the traveling direction of the processing light EL, and the polarization state of the processing light EL.
 ガルバノミラー1122は、フォーカスレンズ1121からの加工光ELの光路に配置される。ガルバノミラー1122は、fθレンズ1123から射出される加工光ELがワークWを走査する(つまり、加工光ELが照射される目標照射領域EAがワークWの表面を移動する)ように、加工光ELを偏向する。つまり、ガルバノミラー1122は、ワークW上での加工光ELの照射位置(つまり、目標照射領域EAの位置)を変更可能な光学素子として機能する。このため、ガルバノミラー1122は、ビーム照射位置変更部材と称されてもよい。ガルバノミラー1122は、例えば、加工光学系112の一部の構造を示す斜視図である図6に示すように、Z走査ミラー1122Zと、Y走査ミラー1122Yとを備える。Z走査ミラー1122Zは、加工光ELをY走査ミラー1122Yに向けて反射する。Z走査ミラー1122Zは、θY方向(つまり、Y軸周りの回転方向)に沿って揺動又は回転可能である。Z走査ミラー1122Zの揺動又は回転により、加工光ELは、ワークWの表面をZ軸方向に沿って走査する。Z走査ミラー1122Zの揺動又は回転により、目標照射領域EAは、ワークWの表面上をZ軸方向に沿って移動する。Z走査ミラー1122Zの揺動又は回転により、Z軸方向における目標照射領域EAの位置が変更される。Y走査ミラー1122Yは、加工光ELをfθレンズ1123に向けて反射する。Y走査ミラー1122Yは、θZ方向(つまり、Z軸周りの回転方向)に沿って揺動又は回転可能である。Y走査ミラー1122Yの揺動又は回転により、加工光ELは、ワークWの表面をY軸方向に沿って走査する。Y走査ミラー1122Yの揺動又は回転により、目標照射領域EAは、ワークWの表面上をY軸方向に沿って移動する。Y走査ミラー1122Yの揺動又は回転により、Y軸方向における目標照射領域EAの位置が変更される。 The galvano mirror 1122 is arranged in the optical path of the processed light EL from the focus lens 1121. In the galvano mirror 1122, the processed light EL is such that the processed light EL emitted from the fθ lens 1123 scans the work W (that is, the target irradiation region EA irradiated with the processed light EL moves on the surface of the work W). Bias. That is, the galvano mirror 1122 functions as an optical element capable of changing the irradiation position of the processed light EL on the work W (that is, the position of the target irradiation region EA). Therefore, the galvano mirror 1122 may be referred to as a beam irradiation position changing member. The galvano mirror 1122 includes, for example, a Z scanning mirror 1122Z and a Y scanning mirror 1122Y, as shown in FIG. 6, which is a perspective view showing a part of the structure of the processing optical system 112. The Z scanning mirror 1122Z reflects the processed light EL toward the Y scanning mirror 1122Y. The Z scanning mirror 1122Z can swing or rotate along the θY direction (that is, the direction of rotation about the Y axis). Due to the swing or rotation of the Z scanning mirror 1122Z, the processing light EL scans the surface of the work W along the Z axis direction. Due to the swing or rotation of the Z scanning mirror 1122Z, the target irradiation region EA moves along the Z-axis direction on the surface of the work W. The position of the target irradiation region EA in the Z-axis direction is changed by swinging or rotating the Z scanning mirror 1122Z. The Y scanning mirror 1122Y reflects the processed light EL toward the fθ lens 1123. The Y scanning mirror 1122Y can swing or rotate along the θZ direction (that is, the direction of rotation about the Z axis). By swinging or rotating the Y scanning mirror 1122Y, the processing light EL scans the surface of the work W along the Y-axis direction. Due to the swing or rotation of the Y scanning mirror 1122Y, the target irradiation region EA moves on the surface of the work W along the Y-axis direction. The position of the target irradiation region EA in the Y-axis direction is changed by swinging or rotating the Y scanning mirror 1122Y.
 fθレンズ1123は、ガルバノミラー1122からの加工光ELをワークWに照射するための光学素子である。このため、fθレンズ1123は、照射光学系と称されてもよい。特に、fθレンズ1123は、ガルバノミラー1122からの加工光ELをワークW上に集光するための光学素子である。図1及び図2に示すように、本実施形態では、ワークWは、加工ヘッド11の側方(図1及び図2に示す例では、-X側)に配置されている。このため、fθレンズ1123(つまり、加工ヘッド11)からは、側方に向けて加工光ELが射出される。尚、加工光学系112はガルバノミラー1122を備えていなくてもよい。また、照射光学系としては、fθ以外の射影特性を有する光学系が用いられてもよい。 The fθ lens 1123 is an optical element for irradiating the work W with the processed light EL from the galvano mirror 1122. Therefore, the fθ lens 1123 may be referred to as an irradiation optical system. In particular, the fθ lens 1123 is an optical element for condensing the processed light EL from the galvano mirror 1122 on the work W. As shown in FIGS. 1 and 2, in the present embodiment, the work W is arranged on the side of the machining head 11 (in the example shown in FIGS. 1 and 2, the −X side). Therefore, the processing light EL is emitted sideways from the fθ lens 1123 (that is, the processing head 11). The processing optical system 112 does not have to include the galvano mirror 1122. Further, as the irradiation optical system, an optical system having a projection characteristic other than fθ may be used.
 再び図1から図3において、ヘッド駆動系12は、制御装置5の制御下で、加工ヘッド11を移動させる(つまり、動かす)。ヘッド駆動系12は、後述するステージ装置3が備える定盤31及びステージ32の少なくとも一つ(更には、ステージ32に載置されるワークW)に対して、加工ヘッド11を移動させてもよい。また、ヘッド駆動系12は、計測装置2に対して、加工ヘッド11を移動させてもよい。 Again in FIGS. 1 to 3, the head drive system 12 moves (that is, moves) the machining head 11 under the control of the control device 5. The head drive system 12 may move the machining head 11 with respect to at least one of the surface plate 31 and the stage 32 (furthermore, the work W mounted on the stage 32) included in the stage device 3 described later. .. Further, the head drive system 12 may move the processing head 11 with respect to the measuring device 2.
 ヘッド駆動系12は、加工ヘッド11を、X軸方向、Y軸方向、Z軸方向、θX方向、θY方向及びθZ方向の少なくとも一つに沿って移動させる。尚、加工ヘッド11をθX方向、θY方向及びθZ方向の少なくとも一つに沿って移動させることは、加工ヘッド11のX軸、Y軸及びZ軸の少なくとも一つの廻りの姿勢を変更すること、或いは加工ヘッド11をX軸、Y軸及びZ軸の少なくとも一つの軸廻りに回転させることと等価であるとみなしてもよい。すなわち、加工ヘッドを動かすことは、加工ヘッドを直線の軸に沿って移動させることと軸廻りの姿勢を変更することとの双方を含む。 The head drive system 12 moves the machining head 11 along at least one of the X-axis direction, the Y-axis direction, the Z-axis direction, the θX direction, the θY direction, and the θZ direction. Moving the machining head 11 along at least one of the θX direction, the θY direction, and the θZ direction changes the posture around at least one of the X-axis, Y-axis, and Z-axis of the machining head 11. Alternatively, it may be considered equivalent to rotating the machining head 11 around at least one of the X-axis, Y-axis and Z-axis. That is, moving the machining head includes both moving the machining head along the axis of a straight line and changing the posture around the axis.
 図1から図2は、ヘッド駆動系12が加工ヘッド11をX軸方向及びZ軸方向のそれぞれに沿って移動させる例を示している。この場合、ヘッド駆動系12は、加工ヘッド11をX軸方向に沿って移動させるヘッド駆動系12Xと、加工ヘッド11をZ軸方向に沿って移動させるヘッド駆動系12Zとを備えていてもよい。ヘッド駆動系12Zは、例えば、防振装置を介して後述する定盤31上に配置され且つZ軸方向に沿って延びるガイド部材121Zと、ガイド部材121Zに沿って移動可能なスライダ部材122Zと、スライダ部材122Zを移動させる不図示のモータとを備えている。ヘッド駆動系12Xは、例えば、スライダ部材122Zに接続され且つX軸方向に沿って延びるガイド部材121Xと、ガイド部材121Xに沿って移動可能なスライダ部材122Xと、スライダ部材122Xを移動させる不図示のモータとを備えている。スライダ部材122Xには、加工ヘッド11が接続されている。スライダ部材122Zが移動すると、ヘッド駆動系12Xを介してスライダ部材122Zに接続された加工ヘッド11がZ軸方向に沿って移動する。スライダ部材122Xが移動すると、スライダ部材122Xに接続された加工ヘッド11がX軸方向に沿って移動する。 1 to 2 show an example in which the head drive system 12 moves the machining head 11 along the X-axis direction and the Z-axis direction, respectively. In this case, the head drive system 12 may include a head drive system 12X that moves the machining head 11 along the X-axis direction and a head drive system 12Z that moves the machining head 11 along the Z-axis direction. .. The head drive system 12Z includes, for example, a guide member 121Z arranged on a surface plate 31 described later via a vibration isolator and extending along the Z-axis direction, a slider member 122Z movable along the guide member 121Z, and the like. It includes a motor (not shown) for moving the slider member 122Z. The head drive system 12X is, for example, a guide member 121X connected to the slider member 122Z and extending along the X-axis direction, a slider member 122X movable along the guide member 121X, and a slider member 122X (not shown) for moving the slider member 122X. It is equipped with a motor. A processing head 11 is connected to the slider member 122X. When the slider member 122Z moves, the machining head 11 connected to the slider member 122Z via the head drive system 12X moves along the Z-axis direction. When the slider member 122X moves, the machining head 11 connected to the slider member 122X moves along the X-axis direction.
 ヘッド駆動系12が加工ヘッド11を移動させると、ワークW上において、目標照射領域EAが移動する。更に、ヘッド駆動系12が加工ヘッド11を移動させると、ワークW上において、加工ショット領域PSA(図6参照)が移動する。加工ショット領域PSAは、加工ヘッド11とワークWとの位置関係を固定した状態で(つまり、変更することなく)加工装置1による加工が行われる領域(言い換えれば、範囲)である。典型的には、加工ショット領域PSAは、加工装置1と加工対象物との位置関係を固定した状態でガルバノミラー1122によって偏向される加工光ELの走査範囲と一致する又は当該走査範囲よりも狭い領域になるように設定される。従って、ヘッド駆動系12は、加工ヘッド11を移動させることで、ワークWと目標照射領域EA及び加工ショット領域PSAとの位置関係を変更可能である。更に、ヘッド駆動系12が加工ヘッド11を移動させると、ステージ32及びワークWと加工ヘッド11(特に、fθレンズ1123)との位置関係が変わる。このため、ヘッド駆動系12は、変更装置と称されてもよい。尚、ヘッド駆動系12は、移動装置とも称されてもよい。 When the head drive system 12 moves the processing head 11, the target irradiation region EA moves on the work W. Further, when the head drive system 12 moves the machining head 11, the machining shot region PSA (see FIG. 6) moves on the work W. The machining shot region PSA is a region (in other words, a range) in which machining is performed by the machining apparatus 1 in a state where the positional relationship between the machining head 11 and the work W is fixed (that is, without changing). Typically, the machining shot region PSA coincides with or is narrower than the scanning range of the machining light EL deflected by the galvanometer mirror 1122 in a state where the positional relationship between the machining apparatus 1 and the machining object is fixed. Set to be an area. Therefore, the head drive system 12 can change the positional relationship between the work W, the target irradiation region EA, and the machining shot region PSA by moving the machining head 11. Further, when the head drive system 12 moves the processing head 11, the positional relationship between the stage 32 and the work W and the processing head 11 (particularly, the fθ lens 1123) changes. Therefore, the head drive system 12 may be referred to as a changing device. The head drive system 12 may also be referred to as a mobile device.
 位置計測器13は、ヘッド駆動系12が移動させる加工ヘッド11の位置を計測可能である。位置計測器13は、例えば、エンコーダ及びレーザ干渉計のうちの少なくとも一方を含んでいてもよい。 The position measuring instrument 13 can measure the position of the processing head 11 moved by the head drive system 12. The position measuring instrument 13 may include, for example, at least one of an encoder and a laser interferometer.
 計測装置2は、制御装置5の制御下で、ワークWを計測可能である。例えば、計測装置2は、ワークWの状態を計測可能な装置であってもよい。ワークWの状態は、ワークWの位置を含んでいてもよい。ワークWの位置は、ワークWの表面の位置を含んでいてもよい。ワークWの表面の位置は、ワークWの表面を細分化した各面部分のX軸方向、Y軸方向及びZ軸方向の少なくとも一つにおける位置を含んでいてもよい。ワークWの状態は、ワークWの形状(例えば、3次元形状)を含んでいてもよい。ワークWの形状は、ワークWの表面の形状を含んでいてもよい。ワークWの表面の形状は、上述したワークWの表面の位置に加えて又は代えて、ワークWの表面を細分化した各面部分の向き(例えば、各面部分の法線の向き)を含んでいてもよい。計測装置2の計測結果に関する計測情報は、計測装置2から制御装置5に出力される。 The measuring device 2 can measure the work W under the control of the control device 5. For example, the measuring device 2 may be a device capable of measuring the state of the work W. The state of the work W may include the position of the work W. The position of the work W may include the position of the surface of the work W. The position of the surface of the work W may include a position in at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction of each surface portion obtained by subdividing the surface of the work W. The state of the work W may include the shape of the work W (for example, a three-dimensional shape). The shape of the work W may include the shape of the surface of the work W. The shape of the surface of the work W includes, in addition to or in place of the position of the surface of the work W described above, the orientation of each surface portion of the surface of the work W subdivided (for example, the orientation of the normal of each surface portion). You may be. The measurement information regarding the measurement result of the measuring device 2 is output from the measuring device 2 to the control device 5.
 ワークWを計測するために、計測装置2は、計測ヘッド21と、ヘッド駆動系22と、位置計測器23とを備えている。 In order to measure the work W, the measuring device 2 includes a measuring head 21, a head drive system 22, and a position measuring instrument 23.
 計測ヘッド21は、所定の計測方法を用いて、ワークWを計測する。計測方法の一例として、光切断法、白色干渉法、パターン投影法、タイム・オブ・フライト法、モアレトポグラフィ法(具体的には、格子照射法又は格子投影法)、ホログラフィック干渉法、オートコリメーション法、ステレオ法、非点収差法、臨界角法、ナイフエッジ法、干渉計測法、及び、共焦点法の少なくとも一つがあげられる。いずれの場合においても、計測ヘッド21は、計測光(例えば、スリット光又は白色光)MLを射出する計測光源と、計測光MLが照射されたワークWからの光(例えば、計測光MLの反射光及び散乱光の少なくとも一方)を受光する受光器とを備えていてもよい。この場合、計測装置2は、ワークWからの光(例えば、計測光MLの反射光及び散乱光の少なくとも一方)を受光することでワークWを計測することになる。つまり、計測装置2は、ワークWからの光(例えば、計測光MLの反射光及び散乱光の少なくとも一方)の受光結果に基づいて、ワークWを計測することになる。尚、図1及び図2に示すように、本実施形態では、ワークWは、計測ヘッド21の側方(図1及び図2に示す例では、-X側)に配置されている。このため、計測ヘッド21からは、側方に向けて計測光MLが射出される。 The measuring head 21 measures the work W using a predetermined measuring method. As an example of the measurement method, light cutting method, white interferometry, pattern projection method, time of flight method, moire topography method (specifically, lattice irradiation method or lattice projection method), holographic interferometry, autocollimation. At least one of a method, a stereo method, a non-point aberration method, a critical angle method, a knife edge method, an interferometry method, and an autocollimation method can be mentioned. In either case, the measurement head 21 is a measurement light source that emits measurement light (for example, slit light or white light) ML, and reflection of light from the work W irradiated with the measurement light ML (for example, reflection of the measurement light ML). It may be provided with a receiver that receives at least one of light and scattered light). In this case, the measuring device 2 measures the work W by receiving light from the work W (for example, at least one of the reflected light and the scattered light of the measuring light ML). That is, the measuring device 2 measures the work W based on the light reception result of the light from the work W (for example, at least one of the reflected light and the scattered light of the measurement light ML). As shown in FIGS. 1 and 2, in the present embodiment, the work W is arranged on the side of the measuring head 21 (in the example shown in FIGS. 1 and 2, the −X side). Therefore, the measurement light ML is emitted from the measurement head 21 toward the side.
 尚、上述した計測方法はいずれも、計測装置2がワークWに接触することなくワークWを計測する非接触タイプの計測方法である。しかしながら、計測装置2は、ワークWに接触することでワークWを計測する接触タイプの計測方法を用いて、ワークWを計測してもよい。例えば、計測装置2は、プローブ又はカンチレバーをワークWに接触させることでワークWを計測してもよい。 Note that all of the above-mentioned measurement methods are non-contact type measurement methods in which the measuring device 2 measures the work W without contacting the work W. However, the measuring device 2 may measure the work W by using a contact type measuring method in which the work W is measured by contacting the work W. For example, the measuring device 2 may measure the work W by bringing the probe or the cantilever into contact with the work W.
 ヘッド駆動系22は、制御装置5の制御下で、計測ヘッド21を移動させる(つまり、動かす)。ヘッド駆動系22は、後述するステージ装置3が備える定盤31及びステージ32の少なくとも一つ(更には、ステージ32に載置されるワークW)に対して、計測ヘッド21を移動させてもよい。また、ヘッド駆動系22は、計測装置2に対して、計測ヘッド21を移動させてもよい。 The head drive system 22 moves (that is, moves) the measurement head 21 under the control of the control device 5. The head drive system 22 may move the measurement head 21 with respect to at least one of the surface plate 31 and the stage 32 (furthermore, the work W mounted on the stage 32) included in the stage device 3 described later. .. Further, the head drive system 22 may move the measurement head 21 with respect to the measurement device 2.
 ヘッド駆動系22は、計測ヘッド21を、X軸方向、Y軸方向、Z軸方向、θX方向、θY方向及びθZ方向の少なくとも一つに沿って移動させる。尚、計測ヘッド21をθX方向、θY方向及びθZ方向の少なくとも一つに沿って移動させることは、計測ヘッド21のX軸、Y軸及びZ軸の少なくとも一つの廻りの姿勢を変更することと等価であるとみなしてもよい。図1から図2は、ヘッド駆動系22が計測ヘッド21をX軸方向及びZ軸方向のそれぞれに沿って移動させる例を示している。この場合、ヘッド駆動系22は、計測ヘッド21をX軸方向に沿って移動させるヘッド駆動系22Xと、計測ヘッド21をZ軸方向に沿って移動させるヘッド駆動系22Zとを備えていてもよい。ヘッド駆動系22Zは、例えば、防振装置を介して後述する定盤31上に配置され且つZ軸方向に沿って延びるガイド部材221Zと、ガイド部材221Zに沿って移動可能なスライダ部材222Zと、スライダ部材222Zを移動させる不図示のモータとを備えている。ヘッド駆動系22Xは、例えば、スライダ部材222Zに接続され且つX軸方向に沿って延びるガイド部材221Xと、ガイド部材221Xに沿って移動可能なスライダ部材222Xと、スライダ部材222Xを移動させる不図示のモータとを備えている。スライダ部材222Xには、計測ヘッド21が接続されている。スライダ部材222Zが移動すると、ヘッド駆動系22Xを介してスライダ部材222Zに接続された計測ヘッド21がZ軸方向に沿って移動する。スライダ部材222Xが移動すると、スライダ部材222Xに接続された計測ヘッド21がX軸方向に沿って移動する。 The head drive system 22 moves the measurement head 21 along at least one of the X-axis direction, the Y-axis direction, the Z-axis direction, the θX direction, the θY direction, and the θZ direction. Moving the measurement head 21 along at least one of the θX direction, the θY direction, and the θZ direction changes the posture of the measurement head 21 around at least one of the X-axis, Y-axis, and Z-axis. It may be considered equivalent. 1 to 2 show an example in which the head drive system 22 moves the measurement head 21 along the X-axis direction and the Z-axis direction, respectively. In this case, the head drive system 22 may include a head drive system 22X that moves the measurement head 21 along the X-axis direction and a head drive system 22Z that moves the measurement head 21 along the Z-axis direction. .. The head drive system 22Z includes, for example, a guide member 221Z arranged on a surface plate 31 described later via a vibration isolator and extending along the Z-axis direction, and a slider member 222Z movable along the guide member 221Z. It includes a motor (not shown) for moving the slider member 222Z. The head drive system 22X is, for example, a guide member 221X connected to the slider member 222Z and extending along the X-axis direction, a slider member 222X movable along the guide member 221X, and a slider member 222X (not shown) for moving the slider member 222X. It is equipped with a motor. A measuring head 21 is connected to the slider member 222X. When the slider member 222Z moves, the measurement head 21 connected to the slider member 222Z via the head drive system 22X moves along the Z-axis direction. When the slider member 222X moves, the measurement head 21 connected to the slider member 222X moves along the X-axis direction.
 ヘッド駆動系22が計測ヘッド21を移動させると、ワークW上において、計測ショット領域MSAが移動する。計測ショット領域MSAは、計測ヘッド21とワークWとの位置関係を固定した状態で(つまり、変更することなく)計測ヘッド21による計測が行われる領域(言い換えれば、範囲)である。従って、ヘッド駆動系22は、計測ヘッド21を移動させることで、ワークWと計測ショット領域MSAとの位置関係を変更可能である。更に、ヘッド駆動系22が計測ヘッド21を移動させると、ステージ32及びワークWと計測ヘッド21との位置関係が変わる。このため、ヘッド駆動系22は、変更装置と称されてもよい。 When the head drive system 22 moves the measurement head 21, the measurement shot area MSA moves on the work W. The measurement shot area MSA is an area (in other words, a range) in which measurement is performed by the measurement head 21 in a state where the positional relationship between the measurement head 21 and the work W is fixed (that is, without changing). Therefore, the head drive system 22 can change the positional relationship between the work W and the measurement shot area MSA by moving the measurement head 21. Further, when the head drive system 22 moves the measurement head 21, the positional relationship between the stage 32 and the work W and the measurement head 21 changes. Therefore, the head drive system 22 may be referred to as a changing device.
 位置計測器23は、ヘッド駆動系22が移動させる計測ヘッド21の位置を計測可能である。位置計測器23は、例えば、エンコーダ及びレーザ干渉計のうちの少なくとも一方を含んでいてもよい。 The position measuring instrument 23 can measure the position of the measuring head 21 moved by the head drive system 22. The position measuring instrument 23 may include, for example, at least one of an encoder and a laser interferometer.
 ステージ装置3は、定盤31と、ステージ32と、ステージ駆動系33と、位置計測器34とを備える。 The stage device 3 includes a surface plate 31, a stage 32, a stage drive system 33, and a position measuring instrument 34.
 定盤31は、筐体4の底面上(或いは、筐体4が載置される床面等の支持面上)に配置される。定盤31上には、ステージ32が配置される。更に、定盤31上には、加工装置1及び計測装置2をそれぞれ実質的に支持するヘッド駆動系12及び22が配置されていてもよい。つまり、加工装置1及び計測装置2(更には、ステージ32)は、同じ定盤31によって支持されていてもよい。 The surface plate 31 is arranged on the bottom surface of the housing 4 (or on a supporting surface such as a floor on which the housing 4 is placed). A stage 32 is arranged on the surface plate 31. Further, head drive systems 12 and 22 that substantially support the processing device 1 and the measuring device 2, respectively, may be arranged on the surface plate 31. That is, the processing device 1 and the measuring device 2 (further, the stage 32) may be supported by the same surface plate 31.
 ステージ32上には、ワークWが載置される。この際、ステージ32は、載置されたワークWを保持しなくてもよい。つまり、ステージ32は、載置されたワークWに対して、当該ワークWを保持するための保持力を加えなくてもよい。或いは、ステージ32は、載置されたワークWを保持してもよい。つまり、ステージ32は、載置されたワークWに対して、当該ワークWを保持するための保持力を加えてもよい。例えば、ステージ32は、ワークWを真空吸着、静電吸着及び電磁吸着のうち少なくとも1つの吸着を行うことで、ワークWを保持してもよい。 Work W is placed on the stage 32. At this time, the stage 32 does not have to hold the mounted work W. That is, the stage 32 does not have to apply a holding force for holding the work W to the mounted work W. Alternatively, the stage 32 may hold the mounted work W. That is, the stage 32 may apply a holding force for holding the work W to the mounted work W. For example, the stage 32 may hold the work W by adsorbing the work W at least one of vacuum suction, electrostatic suction, and electromagnetic suction.
 ステージ32は、加工ヘッド11及び計測ヘッド21の側方(図1から図2に示す例では、-X側)に配置される。このため、加工ヘッド11は、加工ヘッド11から側方に向けて(図1から図2に示す例では、-X側に向けて)加工光ELを射出することで、ステージ32に載置されるワークWに加工光ELを照射する。計測ヘッド21は、計測ヘッド21から側方に向けて(図1から図2に示す例では、-X側に向けて)計測光MLを射出することで、ステージ32に載置されるワークWに計測光MLを照射する。 The stage 32 is arranged on the side of the processing head 11 and the measuring head 21 (in the example shown in FIGS. 1 to 2, the −X side). Therefore, the processing head 11 is mounted on the stage 32 by injecting the processing light EL sideways from the processing head 11 (toward the −X side in the examples shown in FIGS. 1 to 2). The work W is irradiated with the processing light EL. The measuring head 21 emits the measuring light ML from the measuring head 21 toward the side (in the example shown in FIGS. 1 to 2 toward the −X side), so that the work W mounted on the stage 32 is mounted on the stage 32. Is irradiated with the measurement light ML.
 ワークWは、ステージ32におけるワークWの載置を補助するための部材である治具321によって支持されていてもよい。治具321は、ワークWが載置されるステージ32の載置面322に配置されている。図1から図2に示す例では、ワークWは、ワークWの第1面WS1(図1から図2に示す例では、+X側を向いた面)を支持する治具321#1と、第1面WS2の反対側のワークWの第2面WS2(図1から図2に示す例では、-X側を向いた面)を支持する治具321#2とによって支持されている。つまり、治具321#1及び321#2は、ワークWを挟み込むことでワークWを支持する。但し、ワークWは、治具321によって支持されていなくてもよい。 The work W may be supported by a jig 321 which is a member for assisting the placement of the work W on the stage 32. The jig 321 is arranged on the mounting surface 322 of the stage 32 on which the work W is mounted. In the example shown in FIGS. 1 to 2, the work W includes a jig 321 # 1 that supports the first surface WS1 of the work W (in the example shown in FIGS. 1 to 2, the surface facing the + X side), and the first surface WS1. It is supported by jigs 321 # 2 that support the second surface WS2 (the surface facing the −X side in the examples shown in FIGS. 1 to 2) of the work W on the opposite side of the first surface WS2. That is, the jigs 321 # 1 and 321 # 2 support the work W by sandwiching the work W. However, the work W does not have to be supported by the jig 321.
 治具321には、計測装置2が計測可能な指標部材6が取り付けられていてもよい(或いは、形成されていてもよい)。但し、治具321とは異なる部材に指標部材6が取り付けられていても(或いは、形成されていても)よい。例えば、ステージ32本体に指標部材6が取り付けられていても(或いは、形成されていても)よい。例えば、ステージ駆動系33(例えば、後述するテーブル333Y及び331Tzの少なくとも一方)に指標部材6が取り付けられていても(或いは、形成されていても)よい。例えば、ステージ32に取り付けられた部材に指標部材6が取り付けられていても(或いは、形成されていても)よい。以下、図7(a)から図7(c)を参照しながら、指標部材6について説明する。図7(a)は、指標部材6を示す平面図であり、図7(b)及び図7(c)のそれぞれは、指標部材6を示す断面図である。 An index member 6 that can be measured by the measuring device 2 may be attached (or may be formed) to the jig 321. However, the index member 6 may be attached (or formed) to a member different from the jig 321. For example, the index member 6 may be attached (or formed) to the main body of the stage 32. For example, the index member 6 may be attached (or formed) to the stage drive system 33 (for example, at least one of the tables 333Y and 331 Tz described later). For example, the index member 6 may be attached (or formed) to the member attached to the stage 32. Hereinafter, the index member 6 will be described with reference to FIGS. 7 (a) to 7 (c). 7 (a) is a plan view showing the index member 6, and each of FIGS. 7 (b) and 7 (c) is a cross-sectional view showing the index member 6.
 図7(a)から図7(c)に示すように、指標部材6は、治具321に埋め込まれるように治具321に取り付けられていてもよい。但し、指標部材6は、治具321の表面に配置されるように治具321に取り付けられていてもよい。指標部材6は、治具321と一体化されていてもよい(つまり、治具321の一部が指標部材6として用いられてもよい)。 As shown in FIGS. 7 (a) to 7 (c), the index member 6 may be attached to the jig 321 so as to be embedded in the jig 321. However, the index member 6 may be attached to the jig 321 so as to be arranged on the surface of the jig 321. The index member 6 may be integrated with the jig 321 (that is, a part of the jig 321 may be used as the index member 6).
 指標部材6には、開口61が形成されている。本実施形態では、開口61が、計測装置2が計測可能なマーカとして機能する。つまり、計測装置2は、開口61を計測することで、指標部材6を計測する。計測装置2による開口61の計測結果(つまり、指標部材6の計測結果)は、制御装置5に出力されてもよい。但し、開口61とは異なる任意のマーカが指標部材6に形成されていてもよい。 An opening 61 is formed in the index member 6. In the present embodiment, the opening 61 functions as a marker that can be measured by the measuring device 2. That is, the measuring device 2 measures the index member 6 by measuring the opening 61. The measurement result of the opening 61 by the measuring device 2 (that is, the measurement result of the index member 6) may be output to the control device 5. However, an arbitrary marker different from the opening 61 may be formed on the index member 6.
 開口61は、指標部材6(或いは、治具321)の表面から裏面まで貫通する貫通穴であってもよい。開口61は、指標部材6(或いは、治具321)の表面に形成されたくぼみ(つまり、非貫通孔)であってもよい。YZ平面に沿った面内での開口61の形状は、スリット形状であるが、その他の任意の形状(例えば、円形状(ピンホール状)、L字形状及び十字形状の少なくとも一つ)であってもよい。XY平面に沿った面内での開口61のサイズ(例えば、スリット形状の長手方向のサイズ)は、例えば、数マイクロメートルから数十マイクロメートル(例えば、5マイクロメートルから10マイクロメートル)であるが、その他のサイズであってもよい。 The opening 61 may be a through hole penetrating from the front surface to the back surface of the index member 6 (or jig 321). The opening 61 may be a recess (that is, a non-through hole) formed on the surface of the index member 6 (or the jig 321). The shape of the opening 61 in the plane along the YZ plane is a slit shape, but any other shape (for example, at least one of a circular shape (pinhole shape), an L shape, and a cross shape). You may. The size of the opening 61 in the plane along the XY plane (eg, the longitudinal size of the slit shape) is, for example, a few micrometers to a few tens of micrometers (eg, 5 micrometers to 10 micrometers). , Other sizes may be used.
 指標部材6は、ステージ32の回転軸(図1から図2に示す例では、回転軸32θZ)に交差する方向に沿って複数取り付けられていてもよい。例えば、図1から図2に示す例では、ワークWは、Z軸方向に交差するX軸方向に沿って並ぶ二つの治具321#1及び321#2によって支持されている。このため、治具321#1及び321#2のそれぞれに指標部材6が形成されている場合には、ステージ32の回転軸32θZ(つまり、Z軸)に交差するX軸方向に沿って複数の指標部材6が取り付けられていると言える。複数の指標部材6の間の相対的な位置関係は、制御装置5にとって既知の情報であってもよい。 A plurality of index members 6 may be attached along the direction intersecting the rotation axis of the stage 32 (in the example shown in FIGS. 1 to 2, the rotation axis 32θZ). For example, in the examples shown in FIGS. 1 to 2, the work W is supported by two jigs 321 # 1 and 321 # 2 arranged along the X-axis direction intersecting the Z-axis direction. Therefore, when the index member 6 is formed on each of the jigs 321 # 1 and 321 # 2, a plurality of jigs 321 # 1 and 321 # 2 are formed along the X-axis direction intersecting the rotation axis 32θZ (that is, the Z-axis) of the stage 32. It can be said that the index member 6 is attached. The relative positional relationship between the plurality of index members 6 may be information known to the control device 5.
 開口61は、加工光ELが通過可能な開口であってもよい。開口61は、加工光ELが入射可能な開口であってもよい。この場合、指標部材6(或いは、治具321)には、開口61を介した加工光ELを検出可能な検出器62が取り付けられていてもよい。図7(a)から図7(c)に示す例では、開口61が形成する空間を規定する指標部材6の底面に検出器62が取り付けられている。検出器62は、加工光ELを検出可能な(例えば、受光可能な)光検出器である。検出器62の検出結果は、制御装置5に出力される。尚、指標部材6は、加工光ELが透過可能な光学部材の表面の一部に、加工光ELを減衰させる減衰膜を設けた部材であってもよい。この場合、減衰膜が設けられていない部分が開口となる。なお、減衰膜は、加工光ELを遮光するものであってもよい。 The opening 61 may be an opening through which the processing light EL can pass. The opening 61 may be an opening through which the processing light EL can be incident. In this case, the index member 6 (or the jig 321) may be equipped with a detector 62 capable of detecting the processing light EL through the opening 61. In the example shown in FIGS. 7 (a) to 7 (c), the detector 62 is attached to the bottom surface of the index member 6 that defines the space formed by the opening 61. The detector 62 is a photodetector capable of detecting (for example, receiving light) the processed light EL. The detection result of the detector 62 is output to the control device 5. The index member 6 may be a member provided with an attenuation film for attenuating the processing light EL on a part of the surface of the optical member through which the processing light EL can be transmitted. In this case, the portion where the damping film is not provided is the opening. The attenuation film may shield the processed light EL from light.
 また、指標部材6には加工光を検出可能な光検出器が取り付けられていなくてもよい。また、光軸方向の計測基準として指標部材を用いる場合では、指標部材6にはパターン(開口等)が形成されていなくてもよい。 Further, the index member 6 does not have to be equipped with a photodetector capable of detecting the processing light. Further, when the index member is used as the measurement reference in the optical axis direction, the index member 6 may not have a pattern (opening or the like) formed.
 再び図1から図3において、ステージ駆動系33は、制御装置5の制御下で、定盤31上においてステージ32を移動させる(つまり、動かす)。ステージ駆動系33は、加工ヘッド11及び計測ヘッド21の少なくとも一つに対して、ステージ32を移動させてもよい。 Again in FIGS. 1 to 3, the stage drive system 33 moves (that is, moves) the stage 32 on the surface plate 31 under the control of the control device 5. The stage drive system 33 may move the stage 32 with respect to at least one of the processing head 11 and the measurement head 21.
 ステージ駆動系33は、ステージ32を、X軸方向、Y軸方向、Z軸方向、θX方向、θY方向及びθZ方向の少なくとも一つに沿って移動させる。尚、ステージ32をθX方向、θY方向及びθZ方向の少なくとも一つに沿って移動させることは、ステージ32(更には、ステージ32に載置されたワークW)のX軸、Y軸及びZ軸の少なくとも一つの廻りの姿勢を変更すること、或いはステージ32に載置されたワークWをX軸、Y軸及びZ軸の少なくとも一つの軸廻りに回転させることと等価であるとみなしてもよい。図1から図2は、ステージ駆動系33がステージ32をY軸方向及びθZ方向のそれぞれに沿って移動させる例を示している。つまり、図1から図2は、ステージ駆動系33がステージ32をY軸方向に沿って移動させ且つステージ32をZ軸周りに回転させる例を示している。この場合、ステージ駆動系33は、ステージ32をY軸方向に沿って移動させるステージ駆動系33Yと、ステージ32をθZ方向に沿って移動させるステージ駆動系33Tzとを備えていてもよい。ステージ駆動系33Yは、例えば、防振装置を介して定盤31上に配置され且つY軸方向に沿って延びるガイド部材331Yと、ガイド部材331Yに沿って移動可能なスライダ部材332Yと、スライダ部材332Yに接続されるテーブル333Yと、スライダ部材332Yを移動させる不図示のモータとを備えている。ステージ駆動系33Tzは、例えば、テーブル333Y上に配置されるテーブル331Tzと、テーブル331TzをZ軸に沿った回転軸32θZ周りに回転させるモータ332Tzとを備えている。テーブル331Tzには、ステージ32が接続されている。但し、テーブル331Tzがステージ32として用いられてもよい。スライダ部材332Yが移動すると、ステージ駆動系33Tzを介してスライダ部材332Yに接続されたステージ32がY軸方向に沿って移動する。テーブル331Tzが回転すると、テーブル331Tzに接続されたステージ32が回転軸32θZ周りに回転する。 The stage drive system 33 moves the stage 32 along at least one of the X-axis direction, the Y-axis direction, the Z-axis direction, the θX direction, the θY direction, and the θZ direction. Moving the stage 32 along at least one of the θX, θY, and θZ directions is the X-axis, Y-axis, and Z-axis of the stage 32 (furthermore, the work W mounted on the stage 32). It may be regarded as equivalent to changing the posture around at least one of the above, or rotating the work W placed on the stage 32 around at least one of the X-axis, Y-axis, and Z-axis. .. 1 to 2 show an example in which the stage drive system 33 moves the stage 32 along the Y-axis direction and the θZ direction, respectively. That is, FIGS. 1 to 2 show an example in which the stage drive system 33 moves the stage 32 along the Y-axis direction and rotates the stage 32 around the Z-axis. In this case, the stage drive system 33 may include a stage drive system 33Y that moves the stage 32 along the Y-axis direction and a stage drive system 33Tz that moves the stage 32 along the θZ direction. The stage drive system 33Y includes, for example, a guide member 331Y arranged on the surface plate 31 via a vibration isolator and extending along the Y-axis direction, a slider member 332Y movable along the guide member 331Y, and a slider member. It includes a table 333Y connected to the 332Y and a motor (not shown) for moving the slider member 332Y. The stage drive system 33Tz includes, for example, a table 331Tz arranged on the table 333Y and a motor 332Tz that rotates the table 331Tz around a rotation axis 32θZ along the Z axis. A stage 32 is connected to the table 331 Tz. However, the table 331 Tz may be used as the stage 32. When the slider member 332Y moves, the stage 32 connected to the slider member 332Y via the stage drive system 33Tz moves along the Y-axis direction. When the table 331Tz rotates, the stage 32 connected to the table 331Tz rotates around the rotation axis 32θZ.
 ステージ32が移動すると、ステージ32(更には、ステージ32に載置されたワークW)と加工ヘッド11及び計測ヘッド21のそれぞれとの位置関係が変わる。つまり、ステージ32が移動すると、加工ヘッド11及び計測ヘッド21のそれぞれに対するステージ32及びワークWのそれぞれの位置が変わる。従って、ステージ32を移動させることは、ステージ32及びワークWのそれぞれと加工ヘッド11及び計測ヘッド21のそれぞれとの位置関係を変更することと等価である。このため、ステージ装置3(特に、ステージ32を移動させるステージ駆動系33)は、変更装置と称されてもよい。 When the stage 32 moves, the positional relationship between the stage 32 (furthermore, the work W mounted on the stage 32) and the processing head 11 and the measuring head 21 changes. That is, when the stage 32 moves, the positions of the stage 32 and the work W with respect to each of the processing head 11 and the measuring head 21 change. Therefore, moving the stage 32 is equivalent to changing the positional relationship between each of the stage 32 and the work W and each of the processing head 11 and the measuring head 21. Therefore, the stage device 3 (particularly, the stage drive system 33 that moves the stage 32) may be referred to as a change device.
 ステージ32は、加工装置1がワークWを加工する加工期間の少なくとも一部において加工ショット領域PSA内にワークWの少なくとも一部が位置するように、移動してもよい。加工ショット領域PSA内にワークWの少なくとも一部が位置する(つまり、ワークW上に加工ショット領域PSAが位置する)場合には、加工装置1は、加工ショット領域PSA内に位置するワークWの少なくとも一部に加工光ELを照射することができる。その結果、ワークWの少なくとも一部は、ステージ32上に載置された状態で、加工装置1からの加工光ELによって加工される。 The stage 32 may be moved so that at least a part of the work W is located in the machining shot region PSA during at least a part of the machining period in which the machining apparatus 1 processes the work W. When at least a part of the work W is located in the machining shot area PSA (that is, the machining shot area PSA is located on the work W), the machining apparatus 1 is a machine W of the work W located in the machining shot area PSA. At least a part of the processing light EL can be irradiated. As a result, at least a part of the work W is processed by the processing light EL from the processing apparatus 1 in a state of being placed on the stage 32.
 ステージ32は、計測装置2がワークWを計測する計測期間の少なくとも一部において計測ショット領域MSA内にワークWの少なくとも一部が位置するように、移動してもよい。計測ショット領域MSA内にワークWの少なくとも一部が位置する(つまり、ワークW上に計測ショット領域MSAが位置する)場合には、計測装置2は、加工ショット領域PSA内に位置するワークWの少なくとも一部に計測光MLを照射することができる。その結果、ワークWの少なくとも一部は、ステージ32上に載置された状態で、計測装置2によって計測される。 The stage 32 may be moved so that at least a part of the work W is located in the measurement shot area MSA during at least a part of the measurement period in which the measuring device 2 measures the work W. When at least a part of the work W is located in the measurement shot area MSA (that is, the measurement shot area MSA is located on the work W), the measuring device 2 is the work W located in the machining shot area PSA. At least a part of the measurement light ML can be irradiated. As a result, at least a part of the work W is measured by the measuring device 2 while being placed on the stage 32.
 ステージ32は、ステージ32上にワークWが載置された状態で、加工ショット領域PSAと計測ショット領域MSAとの間で移動してもよい。ステージ32は、ステージ32上にワークWが載置された状態で、ワークWが加工ショット領域PSAと計測ショット領域MSAとの間で移動するように移動してもよい。つまり、ワークWは、加工装置1がワークWを加工する加工期間及び計測装置2がワークWを計測する計測期間に加えて、ワークWが加工ショット領域PSAと計測ショット領域MSAとの間を移動する移動期間中もまた、ステージ32に載置されたままであってもよい。 The stage 32 may move between the machining shot area PSA and the measurement shot area MSA with the work W placed on the stage 32. The stage 32 may be moved so that the work W moves between the machining shot area PSA and the measurement shot area MSA while the work W is placed on the stage 32. That is, in the work W, in addition to the processing period in which the processing device 1 processes the work W and the measurement period in which the measuring device 2 measures the work W, the work W moves between the processing shot area PSA and the measurement shot area MSA. It may also remain mounted on the stage 32 during the moving period.
 筐体4は、筐体4の外部の空間に対して隔てられた内部の収容空間SPに、加工装置1、計測装置2及びステージ装置3を収容する。つまり、本実施形態では、加工装置1、計測装置2及びステージ装置3は、同じ筐体4に配置されている。加工装置1、計測装置2及びステージ装置3は、同じ収容空間SPに配置されている。ステージ装置3のステージ32にワークWが載置されている場合には、筐体4は、その内部の収容空間SPにワークWを収容する。つまり、加工装置1、計測装置2及びワークWは、同じ収容空間SPに配置されている。但し、加工装置1、計測装置2及びステージ装置3の少なくとも一部が収容空間SPに配置されていなくてもよい。 The housing 4 houses the processing device 1, the measuring device 2, and the stage device 3 in the internal storage space SP separated from the space outside the housing 4. That is, in the present embodiment, the processing device 1, the measuring device 2, and the stage device 3 are arranged in the same housing 4. The processing device 1, the measuring device 2, and the stage device 3 are arranged in the same accommodation space SP. When the work W is placed on the stage 32 of the stage device 3, the housing 4 accommodates the work W in the accommodation space SP inside the work W. That is, the processing device 1, the measuring device 2, and the work W are arranged in the same accommodation space SP. However, at least a part of the processing device 1, the measuring device 2, and the stage device 3 may not be arranged in the accommodation space SP.
 制御装置5は、加工システムSYSの動作を制御する。具体的には、制御装置5は、加工装置1がワークWを適切に加工するように、加工システムSYSの動作(例えば、加工装置1、計測装置2及びステージ装置3の少なくとも一つの動作)を制御する。 The control device 5 controls the operation of the processing system SYS. Specifically, the control device 5 performs the operation of the processing system SYS (for example, at least one operation of the processing device 1, the measuring device 2, and the stage device 3) so that the processing device 1 appropriately processes the work W. Control.
 制御装置5は、例えば、演算装置と記憶装置とを含んでいてもよい。演算装置は、例えば、CPU(Central Processing Unit)及びGPU(Graphics Processing Unit))の少なくとも一方を含んでいてもよい。制御装置5は、演算装置がコンピュータプログラムを実行することで、加工システムSYSの動作を制御する装置として機能する。このコンピュータプログラムは、制御装置5が行うべき後述する動作を制御装置5(例えば、演算装置)に行わせる(つまり、実行させる)ためのコンピュータプログラムである。つまり、このコンピュータプログラムは、加工システムSYSに後述する動作を行わせるように制御装置5を機能させるためのコンピュータプログラムである。演算装置が実行するコンピュータプログラムは、制御装置5が備える記憶装置(つまり、記録媒体)に記録されていてもよいし、制御装置5に内蔵された又は制御装置5に外付け可能な任意の記憶媒体(例えば、ハードディスクや半導体メモリ)に記録されていてもよい。或いは、演算装置は、実行するべきコンピュータプログラムを、ネットワークインタフェースを介して、制御装置5の外部の装置からダウンロードしてもよい。 The control device 5 may include, for example, an arithmetic unit and a storage device. The arithmetic unit may include, for example, at least one of a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit). The control device 5 functions as a device that controls the operation of the processing system SYS by executing a computer program by the arithmetic unit. This computer program is a computer program for causing the control device 5 (for example, an arithmetic unit) to perform (that is, execute) an operation described later to be performed by the control device 5. That is, this computer program is a computer program for causing the control device 5 to function so that the processing system SYS performs the operation described later. The computer program executed by the arithmetic unit may be recorded in a storage device (that is, a recording medium) included in the control device 5, or any storage built in the control device 5 or externally attached to the control device 5. It may be recorded on a medium (for example, a hard disk or a semiconductor memory). Alternatively, the arithmetic unit may download the computer program to be executed from an external device of the control device 5 via the network interface.
 制御装置5は、加工システムSYSの内部に設けられていなくてもよく、例えば、加工システムSYS外にサーバ等として設けられていてもよい。この場合、制御装置5と加工システムSYSとは、有線及び/又は無線のネットワーク(或いは、データバス及び/又は通信回線)で接続されていてもよい。この場合、制御装置5と加工システムSYSとはネットワークを介して各種の情報の送受信が可能となるように構成されていてもよい。また、制御装置5は、ネットワークを介して加工システムSYSにコマンドや制御パラメータ等の情報を送信可能であってもよい。加工システムSYSは、制御装置5からのコマンドや制御パラメータ等の情報を、上記ネットワークを介して受信する受信装置を備えていてもよい。或いは、制御装置5が行う処理のうちの一部を行う第1制御装置が加工システムSYSの内部に設けられている一方で、制御装置5が行う処理のうちの他の一部を行う第2制御装置が加工システムSYSの外部に設けられていてもよい。 The control device 5 may not be provided inside the processing system SYS, and may be provided as a server or the like outside the processing system SYS, for example. In this case, the control device 5 and the processing system SYS may be connected by a wired and / or wireless network (or a data bus and / or a communication line). In this case, the control device 5 and the processing system SYS may be configured so that various types of information can be transmitted and received via the network. Further, the control device 5 may be able to transmit information such as commands and control parameters to the processing system SYS via the network. The processing system SYS may include a receiving device that receives information such as commands and control parameters from the control device 5 via the network. Alternatively, while the first control device that performs a part of the processing performed by the control device 5 is provided inside the processing system SYS, the second control device that performs the other part of the processing performed by the control device 5 is performed. The control device may be provided outside the processing system SYS.
 尚、演算装置が実行するコンピュータプログラムを記録する記録媒体としては、光ディスク、磁気媒体、光磁気ディスク、USBメモリ等の半導体メモリ、及び、その他プログラムを格納可能な任意の媒体の少なくとも一つが用いられてもよい。記録媒体には、コンピュータプログラムを記録可能な機器が含まれていてもよい。更に、コンピュータプログラムに含まれる各処理や機能は、制御装置5(つまり、コンピュータ)がコンピュータプログラムを実行することで制御装置5内に実現される論理的な処理ブロックによって実現されてもよいし、制御装置5が備える所定のゲートアレイ(FPGA、ASIC)等のハードウェアによって実現されてもよいし、論理的な処理ブロックとハードウェアの一部の要素を実現する部分的ハードウェアモジュールとが混在する形式で実現してもよい。 As the recording medium for recording the computer program executed by the arithmetic unit, at least one of an optical disk, a magnetic medium, a magneto-optical disk, a semiconductor memory such as a USB memory, and any other medium capable of storing the program is used. You may. The recording medium may include a device capable of recording a computer program. Further, each process or function included in the computer program may be realized by a logical processing block realized in the control device 5 by the control device 5 (that is, the computer) executing the computer program. It may be realized by hardware such as a predetermined gate array (FPGA, ASIC) included in the control device 5, or a logical processing block and a partial hardware module that realizes a part of the hardware are mixed. It may be realized in the form of.
 (2)加工システムSYSが行う動作
 続いて、加工システムSTSが行う動作について説明する。上述したように、加工システムSYSは、ワークWを加工する加工動作を行う。更に、加工システムSYSは、加工動作を開始する前に(或いは、加工動作を開始した後に又は加工動作を終了した後に)、上述した指標部材6を用いて、加工ヘッド11と計測ヘッド21との相対位置に関する情報(典型的には、後述するベースライン量)を算出するための位置情報算出動作を行ってもよい。従って、以下では、位置情報算出動作と加工動作とについて順に説明する。
(2) Operation performed by the machining system SYS Next, the operation performed by the machining system STS will be described. As described above, the machining system SYS performs a machining operation for machining the work W. Further, the machining system SYS uses the index member 6 described above before the machining operation is started (or after the machining operation is started or after the machining operation is finished), and the machining head 11 and the measurement head 21 are combined with each other. A position information calculation operation for calculating information regarding a relative position (typically, a baseline amount described later) may be performed. Therefore, in the following, the position information calculation operation and the processing operation will be described in order.
 (2-1)位置情報算出動作
 初めに、図8を参照しながら、指標部材6を用いて行われる位置情報算出動作について説明する。図8は、位置情報算出動作の流れを示すフローチャートである。
(2-1) Position Information Calculation Operation First, the position information calculation operation performed by using the index member 6 will be described with reference to FIG. FIG. 8 is a flowchart showing the flow of the position information calculation operation.
 図8に示すように、まず、ステージ32及び/又は加工ヘッド11は、加工ショット領域PSA内に指標部材6(つまり、開口61)が位置するように、移動する(ステップS11)。つまり、ステージ32及び/又は加工ヘッド11は、加工ヘッド11からの加工光ELを受光可能な位置に開口61が位置するように、移動する。 As shown in FIG. 8, first, the stage 32 and / or the machining head 11 moves so that the index member 6 (that is, the opening 61) is located in the machining shot region PSA (step S11). That is, the stage 32 and / or the processing head 11 moves so that the opening 61 is located at a position where the processing light EL from the processing head 11 can be received.
 その後、加工ヘッド11は、加工ショット領域PSA内の加工基準ポイントに対して加工光ELを照射する(ステップS12)。例えば、加工ヘッド11は、ガルバノミラー1122で加工光ELを偏向することなく(つまり、ガルバノミラー1122を駆動することなく)加工光ELを照射することで、加工基準ポイントに加工光ELを照射してもよい。但し、加工ヘッド11は、加工光ELを偏向して(つまり、ガルバノミラー1122を駆動して)加工光ELを照射することで、加工基準ポイントに加工光ELを照射してもよい。加工基準ポイントは、例えば、加工ショット領域PSAの中心であってもよい。加工基準ポイントは、例えば、加工光学系112の光軸と加工ショット領域PSAとの交点であってもよい。その状態で、ステージ32及び/又は加工ヘッド11は、検出器62が加工光ELを検出することができるようになるまで、移動する(ステップS12)。 After that, the machining head 11 irradiates the machining reference point in the machining shot area PSA with the machining light EL (step S12). For example, the processing head 11 irradiates the processing light EL to the processing reference point by irradiating the processing light EL without deflecting the processing light EL with the galvano mirror 1122 (that is, without driving the galvano mirror 1122). You may. However, the processing head 11 may irradiate the processing reference point with the processing light EL by deflecting the processing light EL (that is, driving the galvano mirror 1122) and irradiating the processing light EL. The machining reference point may be, for example, the center of the machining shot region PSA. The processing reference point may be, for example, an intersection of the optical axis of the processing optical system 112 and the processing shot region PSA. In that state, the stage 32 and / or the processing head 11 moves until the detector 62 can detect the processing light EL (step S12).
 その後、ステップS11及びS12の少なくとも一方でステージ32が移動した場合には、制御装置5は、検出器62が加工光ELを検出することができた時点でのステージ32の位置に関するステージ位置情報を、位置計測器34から取得する(ステップS13)。更に、制御装置5は、ステップS11及びS12の少なくとも一方で加工ヘッド11が移動した場合には、検出器62が加工光ELを検出することができた時点での加工ヘッド11の位置に関する加工位置情報を、位置計測器13から取得する(ステップS13)。 After that, when the stage 32 moves at least one of steps S11 and S12, the control device 5 provides stage position information regarding the position of the stage 32 at the time when the detector 62 can detect the processing light EL. , Obtained from the position measuring instrument 34 (step S13). Further, the control device 5 determines the machining position with respect to the position of the machining head 11 at the time when the detector 62 can detect the machining light EL when the machining head 11 moves at least one of steps S11 and S12. Information is acquired from the position measuring instrument 13 (step S13).
 その後、ステージ32及び/又は計測ヘッド21は、計測ショット領域MSA内に、ステップS12で加工光ELが照射された指標部材6(つまり、開口61)が位置するように、移動する(ステップS14)。その後、計測ヘッド21は、開口61を計測する(ステップS15)。特に、計測ヘッド21は、開口61の位置を計測する。その状態で、ステージ32及び/又は計測ヘッド21は、開口61が計測ショット領域MSA内の計測基準ポイントに位置するようになるまで、移動する(ステップS15)。計測基準ポイントは、例えば、計測ショット領域MSAの中心であってもよい。計測基準ポイントは、例えば、計測ヘッド21の光軸と計測ショット領域MSAとの交点であってもよい。 After that, the stage 32 and / or the measurement head 21 moves so that the index member 6 (that is, the opening 61) irradiated with the processing light EL in step S12 is located in the measurement shot area MSA (step S14). .. After that, the measuring head 21 measures the opening 61 (step S15). In particular, the measuring head 21 measures the position of the opening 61. In that state, the stage 32 and / or the measurement head 21 moves until the opening 61 is located at the measurement reference point in the measurement shot area MSA (step S15). The measurement reference point may be, for example, the center of the measurement shot area MSA. The measurement reference point may be, for example, an intersection of the optical axis of the measurement head 21 and the measurement shot area MSA.
 その後、ステップS14及びS15の少なくとも一方でステージ32が移動した場合には、制御装置5は、開口61が計測基準ポイントに位置した時点でのステージ32の位置に関するステージ位置情報を、位置計測器34から取得する(ステップS16)。更に、ステップS14及びS15の少なくとも一方で計測ヘッド21が移動した場合には、制御装置5は、開口61が計測基準ポイントに位置した時点での計測ヘッド21の位置に関する計測位置情報を、位置計測器23から取得する(ステップS16)。 After that, when the stage 32 moves at least one of steps S14 and S15, the control device 5 provides the stage position information regarding the position of the stage 32 at the time when the opening 61 is located at the measurement reference point, and the position measuring instrument 34. Obtained from (step S16). Further, when the measurement head 21 moves at least one of steps S14 and S15, the control device 5 measures the measurement position information regarding the position of the measurement head 21 when the opening 61 is located at the measurement reference point. Obtained from the vessel 23 (step S16).
 ステップS13で取得されたステージ位置情報は、開口61が加工基準ポイントに位置している状態でのステージ32の位置に関する情報に相当する。開口61が形成された治具321がステージ32に配置されているため、開口61が加工基準ポイントに位置している状態でのステージ32の位置に関する情報は、加工基準ポイントに位置している開口61の位置(つまり、加工基準ポイントの位置)を間接的に示しているとも言える。更に、ステップS16で取得されたステージ位置情報は、開口61が計測基準ポイントに位置している状態でのステージ32の位置に関する情報に相当する。このため、開口61が計測基準ポイントに位置している状態でのステージ32の位置に関する情報は、計測基準ポイントに位置している開口61の位置(つまり、計測基準ポイントの位置)を間接的に示しているとも言える。従って、ステップS13で取得されたステージ位置情報が示すステージ32の位置とステップS16で取得されたステージ位置情報が示すステージ32の位置との差分は、加工基準ポイントの位置と計測基準ポイントの位置との差分に相当する。このため、制御装置5は、ステップS13及びステップS16で取得されたステージ位置情報に基づいて、加工基準ポイントと計測基準ポイントとの間の距離(具体的には、XY平面に沿った距離)に相当するベースライン量を算出してもよい(ステップS17)。 The stage position information acquired in step S13 corresponds to information regarding the position of the stage 32 when the opening 61 is located at the machining reference point. Since the jig 321 on which the opening 61 is formed is arranged on the stage 32, the information regarding the position of the stage 32 when the opening 61 is located at the machining reference point is the opening located at the machining reference point. It can be said that the position of 61 (that is, the position of the processing reference point) is indirectly indicated. Further, the stage position information acquired in step S16 corresponds to information regarding the position of the stage 32 when the opening 61 is located at the measurement reference point. Therefore, the information regarding the position of the stage 32 when the opening 61 is located at the measurement reference point indirectly indicates the position of the opening 61 located at the measurement reference point (that is, the position of the measurement reference point). It can be said that it shows. Therefore, the difference between the position of the stage 32 indicated by the stage position information acquired in step S13 and the position of the stage 32 indicated by the stage position information acquired in step S16 is the position of the machining reference point and the position of the measurement reference point. Corresponds to the difference of. Therefore, the control device 5 sets the distance between the machining reference point and the measurement reference point (specifically, the distance along the XY plane) based on the stage position information acquired in steps S13 and S16. The corresponding baseline amount may be calculated (step S17).
 また、ステップS13で取得された加工位置情報は、開口61が加工基準ポイントに位置している状態での加工ヘッド11の位置に関する情報に相当する。更には、加工ショット領域PSAの位置(更には、加工基準ポイント)が加工ヘッド11を基準に定まる位置であるため、ステップS13で取得された加工位置情報は、加工基準ポイントの基準となる加工ヘッド11と開口61との相対位置を間接的に示すと言える。ステップS16で取得された計測位置情報は、開口61が計測基準ポイントに位置している状態での計測ヘッド21の位置に関する情報に相当する。更には、計測ショット領域MSAの位置(更には、計測基準ポイント)が計測ヘッド21を基準に定まる位置であるため、ステップS16で取得された計測位置情報は、計測基準ポイントの基準となる計測ヘッド21と開口61との相対位置を間接的に示すと言える。このため、ステップS13で取得された加工位置情報が示す加工ヘッド11の位置とステップS16で取得された計測位置情報が示す計測ヘッド21の位置との差分もまた、加工基準ポイントの位置と計測基準ポイントの位置との差分に相当する。このため、制御装置5は、ステップS13及びステップS16でそれぞれ取得された加工位置情報及び計測位置情報に基づいて、加工基準ポイントと計測基準ポイントとの間の距離(具体的には、XY平面に沿った距離)に相当するベースライン量を算出してもよい(ステップS17)。 Further, the machining position information acquired in step S13 corresponds to the information regarding the position of the machining head 11 in the state where the opening 61 is located at the machining reference point. Furthermore, since the position of the machining shot region PSA (furthermore, the machining reference point) is a position determined with reference to the machining head 11, the machining position information acquired in step S13 is the machining head that serves as the reference for the machining reference point. It can be said that the relative position between 11 and the opening 61 is indirectly indicated. The measurement position information acquired in step S16 corresponds to information regarding the position of the measurement head 21 when the opening 61 is located at the measurement reference point. Furthermore, since the position of the measurement shot area MSA (furthermore, the measurement reference point) is a position determined with reference to the measurement head 21, the measurement position information acquired in step S16 is the measurement head that serves as the reference for the measurement reference point. It can be said that the relative position between the 21 and the opening 61 is indirectly indicated. Therefore, the difference between the position of the machining head 11 indicated by the machining position information acquired in step S13 and the position of the measurement head 21 indicated by the measurement position information acquired in step S16 is also the position of the machining reference point and the measurement reference. It corresponds to the difference from the position of the point. Therefore, the control device 5 sets the distance between the machining reference point and the measurement reference point (specifically, on the XY plane) based on the machining position information and the measurement position information acquired in steps S13 and S16, respectively. The baseline amount corresponding to the distance along the line) may be calculated (step S17).
 算出されたベースライン量は、加工システムSYSが実際にワークWを加工する期間中(つまり、後述する加工動作が行われる期間中)において制御装置5によって用いられてもよい。具体的には、制御装置5は、算出されたベースライン量に基づいてステージ32が移動するように、ステージ駆動系33を制御してもよい。制御装置5は、算出されたベースライン量に基づいて加工ヘッド11が移動するように、ヘッド駆動系12を制御してもよい。制御装置5は、算出されたベースライン量に基づいて計測ヘッド21が移動するように、ヘッド駆動系22を制御してもよい。 The calculated baseline amount may be used by the control device 5 during the period in which the processing system SYS actually processes the work W (that is, during the period in which the processing operation described later is performed). Specifically, the control device 5 may control the stage drive system 33 so that the stage 32 moves based on the calculated baseline amount. The control device 5 may control the head drive system 12 so that the machining head 11 moves based on the calculated baseline amount. The control device 5 may control the head drive system 22 so that the measurement head 21 moves based on the calculated baseline amount.
 以上説明した位置情報算出動作により、加工システムSYSは、加工ヘッド11と計測ヘッド21との相対位置(例えば、加工基準ポイントと計測基準ポイントとの相対位置)に基づいて、加工動作を行うことができる。従って、加工システムSYSは、時間の経過と共に加工ヘッド11と計測ヘッド21との相対位置(例えば、加工基準ポイントと計測基準ポイントとの相対位置)が変動する場合であっても、加工ヘッド11と計測ヘッド21との相対位置の変動の影響を受けることなく、加工動作を行うことができる。その結果、加工システムSYSは、位置情報算出動作が行われない場合と比較して、ワークWを相対的に高精度に加工することができる。 By the position information calculation operation described above, the machining system SYS can perform the machining operation based on the relative position between the machining head 11 and the measurement head 21 (for example, the relative position between the machining reference point and the measurement reference point). can. Therefore, the machining system SYS can be connected to the machining head 11 even when the relative position between the machining head 11 and the measurement head 21 (for example, the relative position between the machining reference point and the measurement reference point) fluctuates with the passage of time. The machining operation can be performed without being affected by the fluctuation of the relative position with the measuring head 21. As a result, the machining system SYS can machine the work W with relatively high accuracy as compared with the case where the position information calculation operation is not performed.
 尚、上述したように、ステージ32には、複数の指標部材6が取り付けられている。この場合、加工システムSYSは、複数の指標部材6のうちのいずれか一つを用いて位置情報算出動作を行ってもよい。或いは、加工システムSYSは、複数の指標部材6のうちの少なくとも二つを用いて位置情報算出動作を行ってもよい。少なくとも二つの指標部材6を用いて位置情報算出動作を行う場合には、加工システムSYSは、第1の指標部材6を用いて位置情報算出動作を行い、その後、第1の指標部材6とは異なる第2の指標部材6を用いて位置情報算出動作を行ってもよい。つまり、加工システムSYSは、第1の指標部材6が計測ヘッド21によって計測され且つ第1の指標部材6に加工光ELが照射されるように、加工ヘッド11、計測ヘッド21及びステージ32の少なくとも一つを移動させ、その後、第2の指標部材6が計測ヘッド21によって計測され且つ第2の指標部材6に加工光ELが照射されるように、加工ヘッド11、計測ヘッド21及びステージ32の少なくとも一つを移動させることで、位置情報算出動作を行ってもよい。 As described above, a plurality of index members 6 are attached to the stage 32. In this case, the processing system SYS may perform the position information calculation operation using any one of the plurality of index members 6. Alternatively, the processing system SYS may perform the position information calculation operation using at least two of the plurality of index members 6. When the position information calculation operation is performed using at least two index members 6, the processing system SYS performs the position information calculation operation using the first index member 6, and then the first index member 6 is used. The position information calculation operation may be performed using a different second index member 6. That is, in the processing system SYS, at least of the processing head 11, the measuring head 21 and the stage 32 so that the first index member 6 is measured by the measuring head 21 and the first index member 6 is irradiated with the processing light EL. One of the processing head 11, the measuring head 21 and the stage 32 is moved so that the second index member 6 is measured by the measuring head 21 and the second index member 6 is irradiated with the processing light EL. The position information calculation operation may be performed by moving at least one of them.
 複数の指標部材6を用いて位置情報算出動作が行われる場合には、上述したように、複数の指標部材6がステージ32の回転軸(本実施形態では、回転軸32θZ)に交差する方向に沿って取り付けられていてもよい。この場合、ステージ32が回転軸32θZ周りに回転すれば、計測装置2は、複数の指標部材6のうちの少なくとも一つを計測することができる。つまり、ステージ32が回転軸32θZ周りに回転したとしても複数の指標部材6のいずれもが計測装置2の計測ショット領域MSA内に位置することができない状況は生じにくい。加工装置1も同様に、ステージ32が回転軸32θZ周りに回転すれば、複数の指標部材6のうちの少なくとも一つに加工光ELを照射することができる。従って、加工システムSYSは、上述した位置情報算出動作を適切に行うことができる。 When the position information calculation operation is performed using the plurality of index members 6, as described above, the plurality of index members 6 are in the direction of intersecting the rotation axis of the stage 32 (in this embodiment, the rotation axis 32θZ). It may be mounted along. In this case, if the stage 32 rotates around the rotation axis 32θZ, the measuring device 2 can measure at least one of the plurality of index members 6. That is, even if the stage 32 rotates around the rotation axis 32θZ, it is unlikely that any of the plurality of index members 6 cannot be located in the measurement shot area MSA of the measuring device 2. Similarly, in the processing apparatus 1, if the stage 32 rotates around the rotation axis 32θZ, at least one of the plurality of index members 6 can be irradiated with the processing light EL. Therefore, the processing system SYS can appropriately perform the above-mentioned position information calculation operation.
 図1から図2に示す例では、ワークWの第1面WS1を支持する治具321#1と、第1面WS1の反対側のワークWの第2面WS2を支持する治具321#2とのそれぞれに指標部材6が取り付けられている。このため、第1の指標部材6(例えば、治具321#1に取り付けられた指標部材6)が計測ヘッド21によって計測可能である場合には、第2の指標部材6(例えば、治具321#2に取り付けられた指標部材6)が計測ヘッド21によって計測可能ではない。なぜならば、治具321#2に取り付けられた指標部材6に向けて照射された計測光MLは、治具321#2と計測ヘッド21との間に位置するワークWによって遮られるからである。つまり、第1の指標部材6を計測する計測ヘッド21の計測ショット領域MSAの外側に、第2の指標部材6が位置する。このように、複数の指標部材6がステージ32に取り付けられる場合には、第1の指標部材6を計測する計測ヘッド21の計測ショット領域MSAの外側に第2の指標部材6が位置するように、複数の指標部材6が取り付けられてもよい。 In the examples shown in FIGS. 1 to 2, the jig 321 # 1 that supports the first surface WS1 of the work W and the jig 321 # 2 that supports the second surface WS2 of the work W on the opposite side of the first surface WS1. An index member 6 is attached to each of the above. Therefore, when the first index member 6 (for example, the index member 6 attached to the jig 321 # 1) can be measured by the measuring head 21, the second index member 6 (for example, the jig 321) can be measured. The index member 6) attached to # 2 is not measurable by the measuring head 21. This is because the measurement light ML emitted toward the index member 6 attached to the jig 321 # 2 is blocked by the work W located between the jig 321 # 2 and the measurement head 21. That is, the second index member 6 is located outside the measurement shot area MSA of the measurement head 21 that measures the first index member 6. In this way, when a plurality of index members 6 are attached to the stage 32, the second index member 6 is located outside the measurement shot area MSA of the measurement head 21 that measures the first index member 6. , A plurality of index members 6 may be attached.
 尚、複数の指標部材6は、上述したベースライン量を算出する目的に加えて又は代えて、加工動作中に(或いは、加工動作を開始する前又は加工動作を完了した後に)ステージ32の位置を計測する目的で用いられてもよい。特に、複数の指標部材6は、ステージ32の回転軸(本実施形態では、回転軸32θZ)周りのステージ32の位置を計測する目的で用いられてもよい。この場合、ステージ32には、相対的な位置関係が既知である複数の(具体的には、少なくとも二つの)指標部材6が、ステージ32の回転軸に交差する方向に沿って取り付けられていることが好ましい。その結果、制御装置5は、計測装置2による複数の指標部材6の計測結果に基づいて、回転軸32θZ周りのステージ32の位置を適切に算出することができる。 In addition to or instead of the purpose of calculating the baseline amount described above, the plurality of index members 6 are positioned at the stage 32 during the machining operation (or before the machining operation is started or after the machining operation is completed). It may be used for the purpose of measuring. In particular, the plurality of index members 6 may be used for the purpose of measuring the position of the stage 32 around the rotation axis of the stage 32 (in this embodiment, the rotation axis 32θZ). In this case, a plurality of (specifically, at least two) index members 6 whose relative positional relationships are known are attached to the stage 32 along a direction intersecting the rotation axis of the stage 32. Is preferable. As a result, the control device 5 can appropriately calculate the position of the stage 32 around the rotation axis 32θZ based on the measurement results of the plurality of index members 6 by the measuring device 2.
 但し、上述したように、第1の指標部材6を計測する計測ヘッド21の計測ショット領域MSAの外側に第2の指標部材6が位置するように複数の指標部材6が取り付けられている場合には、計測装置2は、ステージ32の位置を特定するために必要な数(例えば、二つ)の指標部材6を一度に計測することができない可能性がある。この場合には、計測装置2が第1の指標部材6を計測し、その後、第2の指標部材6が計測装置2の計測ショット領域MSA内に位置するように計測ヘッド21及びステージ32の少なくとも一方が移動し、その後、計測装置2が第2の指標部材6を計測してもよい。その結果、第1の指標部材6を計測する計測ヘッド21の計測ショット領域MSAの外側に第2の指標部材6が位置するように複数の指標部材6が取り付けられている場合であっても、制御装置5は、計測装置2による複数の指標部材6の計測結果に基づいて、回転軸32θZ周りのステージ32の位置を適切に算出することができる。 However, as described above, when a plurality of index members 6 are attached so that the second index member 6 is located outside the measurement shot area MSA of the measurement head 21 that measures the first index member 6. The measuring device 2 may not be able to measure the number (for example, two) of the index members 6 required to specify the position of the stage 32 at one time. In this case, the measuring device 2 measures the first index member 6, and then at least the measuring head 21 and the stage 32 so that the second index member 6 is located in the measurement shot area MSA of the measuring device 2. One may move and then the measuring device 2 may measure the second index member 6. As a result, even when a plurality of index members 6 are attached so that the second index member 6 is located outside the measurement shot area MSA of the measurement head 21 that measures the first index member 6. The control device 5 can appropriately calculate the position of the stage 32 around the rotation axis 32θZ based on the measurement results of the plurality of index members 6 by the measuring device 2.
 或いは、ステージ32に単一の指標部材6が取り付けられている場合であっても、当該単一の指標部材6が、ステージ32の位置を計測する目的で用いられてもよい。或いは、複数の指標部材6のうちのいずれか一つが、ステージ32の位置を計測する目的で用いられてもよい。この場合、計測装置2が指標部材6を計測し、その後、ステージ32が移動し、その後、計測装置2がステージ32の移動に伴って当初とは異なる位置に位置する指標部材6を計測してもよい。その結果、単一の指標部材6がステージ32に取り付けられている場合であっても、制御装置5は、計測装置2による単一の指標部材6の異なる位置での計測結果に基づいて、回転軸32θZ周りのステージ32の位置を適切に算出することができる。但し、計測装置2の計測ショット領域MSAのサイズに限りがあることを考慮すれば、当初は計測ショット領域MSAの中に位置していた指標部材6が、ステージ32の移動に伴って計測ショット領域MSAの外側に出てしまう可能性がある。つまり、計測装置2は、指標部材6を計測した後に、ステージ32の移動に伴って当初とは異なる位置に位置する指標部材6を計測することができなくなる可能性がある。そこで、加工システムSYSは、加工システムSYSの他の例のシステム構成を示す図9に示すように、計測ショット領域MSAが異なる複数の計測装置2を備えていてもよい。この場合、第1の計測装置2が指標部材6を計測し、その後、ステージ32が移動し、その後、第2の計測装置2が、ステージ32の移動に伴って当初とは異なる位置に位置する指標部材6を計測してもよい。その結果、制御装置5は、複数の計測装置2による同じの指標部材6の異なる位置での計測結果に基づいて、回転軸32θZ周りのステージ32の位置を適切に算出することができる。 Alternatively, even when a single index member 6 is attached to the stage 32, the single index member 6 may be used for the purpose of measuring the position of the stage 32. Alternatively, any one of the plurality of index members 6 may be used for the purpose of measuring the position of the stage 32. In this case, the measuring device 2 measures the index member 6, then the stage 32 moves, and then the measuring device 2 measures the index member 6 located at a position different from the initial position as the stage 32 moves. May be good. As a result, even when the single index member 6 is attached to the stage 32, the control device 5 rotates based on the measurement results of the single index member 6 at different positions by the measuring device 2. The position of the stage 32 around the axis 32θZ can be appropriately calculated. However, considering that the size of the measurement shot area MSA of the measurement device 2 is limited, the index member 6 initially located in the measurement shot area MSA moves to the measurement shot area as the stage 32 moves. There is a possibility that it will come out of the MSA. That is, after measuring the index member 6, the measuring device 2 may not be able to measure the index member 6 located at a position different from the initial position as the stage 32 moves. Therefore, the machining system SYS may include a plurality of measuring devices 2 having different measurement shot area MSAs, as shown in FIG. 9, which shows a system configuration of another example of the machining system SYS. In this case, the first measuring device 2 measures the index member 6, then the stage 32 moves, and then the second measuring device 2 is positioned at a position different from the initial position as the stage 32 moves. The index member 6 may be measured. As a result, the control device 5 can appropriately calculate the position of the stage 32 around the rotation axis 32θZ based on the measurement results of the same index member 6 by the plurality of measuring devices 2 at different positions.
 (2-2)加工動作
 続いて、図10を参照しながら、加工システムSYSが行う加工動作(つまり、ワークWを加工する加工動作)について説明する。図10は、加工システムSYSが行う加工動作の流れを示すフローチャートである。
(2-2) Machining Operation Next, the machining operation performed by the machining system SYS (that is, the machining operation for machining the work W) will be described with reference to FIG. FIG. 10 is a flowchart showing a flow of machining operations performed by the machining system SYS.
 以下では、説明の便宜上、図1から図2に示すワークWの第1面WS1及び第2面WS2を加工する加工動作について説明する。つまり、ワークWの第1面WS1側の部分(部位)と、ワークWの第1面WS1側の部分とは異なるワークWの第2面WS2側の部分(部位)とを除去することで、ワークWを薄くする加工動作について説明する。この場合、ワークWは、板状の形状を有するが、その他の形状を有していてもよい。但し、加工システムSYSは、ワークWの第1面WS1及び第2面WS2を加工するための加工動作とは異なる加工動作を行ってもよい。 Hereinafter, for convenience of explanation, a machining operation for machining the first surface WS1 and the second surface WS2 of the work W shown in FIGS. 1 to 2 will be described. That is, by removing the portion (part) on the first surface WS1 side of the work W and the portion (part) on the second surface WS2 side of the work W that is different from the portion on the first surface WS1 side of the work W. The processing operation for thinning the work W will be described. In this case, the work W has a plate-like shape, but may have other shapes. However, the machining system SYS may perform a machining operation different from the machining operation for machining the first surface WS1 and the second surface WS2 of the work W.
 図10に示すように、まず、加工システムSYSが加工するべきワークWがステージ32に載置される(ステップS21)。 As shown in FIG. 10, first, the work W to be machined by the machining system SYS is placed on the stage 32 (step S21).
 その後、計測装置2は、ステージ32に載置されたワークWを計測する(ステップS22)。具体的には、計測装置2は、ワークWのうち加工システムSYSが加工するべき部分(つまり、第1面WS1及び第2面WS2)を計測する。この場合、ワークWを計測する加工システムSYSを示す断面図である図11に示すように、制御装置5は、計測装置2がワークWの第1面WS1を計測することができるように、計測ヘッド21及び/又はステージ32を移動させる。つまり、制御装置5は、計測ヘッド21が第1面WS1に計測光MLを照射できるように、計測ヘッド21及び/又はステージ32を移動させる。図11に示す例では、制御装置5は、第1面WS1が計測ヘッド21側を向くように(つまり、+X側を向くように)、計測ヘッド21及び/又はステージ32を移動させている。その後、計測装置2は、第1面WS1を計測する。第1面WS1の計測が完了した後には、ワークWを計測する加工システムSYSを示す断面図である図12に示すように、制御装置5は、計測装置2がワークWの第2面WS2を計測することができるように、計測ヘッド21及び/又はステージ32を移動させる。つまり、制御装置5は、計測ヘッド21が第2面WS2に計測光MLを照射できるように、計測ヘッド21及び/又はステージ32を移動させる。図12に示す例では、制御装置5は、第2面WS2が計測ヘッド21側を向くように(つまり、+X側を向くように)、計測ヘッド21及び/又はステージ32を移動させている。第2面WS2が第1面WS1の反対側の面であって且つ第2面WS2と第1面WS1とがステージ32の回転軸32θZに交差する方向に沿って並んでいるため、制御装置5は、ワークWの状態を図11に示す状態から図12に示す状態に変更するために、ステージ32を回転軸32θZ周りに回転させてもよい。その後、計測装置2は、第2面WS2を計測する。或いは、計測装置2は、第2面WS2を計測した後に、第1面WS1を計測してもよい。 After that, the measuring device 2 measures the work W mounted on the stage 32 (step S22). Specifically, the measuring device 2 measures a portion of the work W to be machined by the machining system SYS (that is, the first surface WS1 and the second surface WS2). In this case, as shown in FIG. 11, which is a cross-sectional view showing the processing system SYS that measures the work W, the control device 5 measures the work W so that the measuring device 2 can measure the first surface WS1 of the work W. Move the head 21 and / or the stage 32. That is, the control device 5 moves the measurement head 21 and / or the stage 32 so that the measurement head 21 can irradiate the first surface WS1 with the measurement light ML. In the example shown in FIG. 11, the control device 5 moves the measurement head 21 and / or the stage 32 so that the first surface WS1 faces the measurement head 21 side (that is, faces the + X side). After that, the measuring device 2 measures the first surface WS1. After the measurement of the first surface WS1 is completed, as shown in FIG. 12, which is a cross-sectional view showing the processing system SYS that measures the work W, the control device 5 uses the measuring device 2 to measure the second surface WS2 of the work W. The measuring head 21 and / or the stage 32 is moved so that the measurement can be performed. That is, the control device 5 moves the measurement head 21 and / or the stage 32 so that the measurement head 21 can irradiate the second surface WS2 with the measurement light ML. In the example shown in FIG. 12, the control device 5 moves the measurement head 21 and / or the stage 32 so that the second surface WS2 faces the measurement head 21 side (that is, faces the + X side). Since the second surface WS2 is the surface opposite to the first surface WS1 and the second surface WS2 and the first surface WS1 are aligned along the direction intersecting the rotation axis 32θZ of the stage 32, the control device 5 May rotate the stage 32 around the rotation axis 32θZ in order to change the state of the work W from the state shown in FIG. 11 to the state shown in FIG. After that, the measuring device 2 measures the second surface WS2. Alternatively, the measuring device 2 may measure the first surface WS1 after measuring the second surface WS2.
 その後、加工装置1は、ワークWの第1面WS1及び第2面WS2のいずれか一方を加工し、その後、ワークWの第1面WS1及び第2面WS2のいずれか他方を加工する。以下では、加工装置1が、第1面WS1を加工し(ステップS23)、その後、第2面WS2を加工する(ステップS24)例について説明する。但し、加工装置1は、第2面WS2を加工し、その後、第1面WS1を加工してもよい。 After that, the processing apparatus 1 processes either one of the first surface WS1 and the second surface WS2 of the work W, and then processes one of the first surface WS1 and the second surface WS2 of the work W. In the following, an example will be described in which the processing apparatus 1 processes the first surface WS1 (step S23) and then processes the second surface WS2 (step S24). However, the processing apparatus 1 may process the second surface WS2 and then the first surface WS1.
 第1面WS1を加工するために、第1面WS1を加工する加工システムSYSを示す断面図である図13に示すように、制御装置5は、加工装置1が第1面WS1を加工することができるように、加工ヘッド11及び/又はステージ32を移動させる。つまり、制御装置5は、加工ヘッド11が第1面WS1に加工光ELを照射できるように、計測ヘッド21及び/又はステージ32を移動させる。図13に示す例では、制御装置5は、第1面WS1が加工ヘッド11側を向くように(つまり、+X側を向くように)、加工ヘッド11及び/又はステージ32を移動させている。その後、加工装置1は、第1面WS1を加工する。つまり、加工装置1は、ワークWの第1面WS1側の部分を除去する。以下では、加工装置1が、ワークWの第1面WS1側の部分を所定の厚み(図13に示す例では、X軸方向の厚み)だけ除去するように第1面WS1を加工する例について説明する。 As shown in FIG. 13, which is a cross-sectional view showing a processing system SYSTEM for processing the first surface WS1 in order to process the first surface WS1, in the control device 5, the processing device 1 processes the first surface WS1. The machining head 11 and / or the stage 32 is moved so that the processing head 11 and / or the stage 32 can be moved. That is, the control device 5 moves the measuring head 21 and / or the stage 32 so that the machining head 11 can irradiate the first surface WS1 with the machining light EL. In the example shown in FIG. 13, the control device 5 moves the machining head 11 and / or the stage 32 so that the first surface WS1 faces the machining head 11 side (that is, faces the + X side). After that, the processing apparatus 1 processes the first surface WS1. That is, the processing apparatus 1 removes the portion of the work W on the first surface WS1 side. In the following, the processing apparatus 1 processes the first surface WS1 so as to remove the portion of the work W on the first surface WS1 side by a predetermined thickness (in the example shown in FIG. 13, the thickness in the X-axis direction). explain.
 第1面WS1が加工されると、第1面WS1が加工されたワークWを示す断面図である図14に示すように、ワークWが変形することがある。つまり、ワークWの第1面WS1側の部分を所定の厚みだけ除去されると、ワークWの第1面WS1が平面になるべきであるにも関わらず、第1面WS1(更には、第2面WS2)が平面にならない(例えば、湾曲する)ことがある。この理由の一つとして、第1面WS1が加工されると、ワークWに蓄積されていた応力が解放されることがあげられる。このようなワークWの変形の程度は、ワークWの中心(具体的には、板状のワークWの平面視における中心であり、図14に示す例では、YZ平面における中心)に近づくほど大きくなる可能性がある。つまり、ワークWの変形量は、ワークWの中心に近づくほど大きくなる可能性がある。尚、図面の見やすさを優先するために、図14以降では、ワークWを支持するための治具321の図示は省略する。 When the first surface WS1 is processed, the work W may be deformed as shown in FIG. 14, which is a cross-sectional view showing the work W on which the first surface WS1 is processed. That is, when the portion of the work W on the first surface WS1 side is removed by a predetermined thickness, the first surface WS1 (furthermore, the first surface WS1) of the work W should be flat even though the first surface WS1 of the work W should be flat. The two-sided WS2) may not be flat (for example, curved). One of the reasons for this is that when the first surface WS1 is processed, the stress accumulated in the work W is released. The degree of such deformation of the work W increases as it approaches the center of the work W (specifically, the center of the plate-shaped work W in a plan view, and in the example shown in FIG. 14, the center in the YZ plane). There is a possibility of becoming. That is, the amount of deformation of the work W may increase as it approaches the center of the work W. In order to give priority to the legibility of the drawings, the jig 321 for supporting the work W is not shown in FIGS. 14 and 14 and thereafter.
 そこで、本実施形態では、第1面WS1が加工されるとワークWに蓄積されていた応力が解放されることを踏まえ、加工システムSYSは、応力を開放することを主たる目的として第1面WS1を暫定的に加工し、その後、応力が解放されることで変形したワークWを計測し、その後、変形したワークWの計測結果に基づいて、変形したワークWが目的の形状となるようにワークWを再度加工する(つまり、仕上げ加工する)。このため、図10のステップS23では、加工装置1は、ワークWの第1面WS1側の部分を、ワークWに蓄積された応力を開放することが可能な厚みに相当する分量だけ除去すれば十分である。 Therefore, in the present embodiment, based on the fact that the stress accumulated in the work W is released when the first surface WS1 is processed, the processing system SYS 1 mainly aims to release the stress. Is provisionally processed, and then the deformed work W is measured by releasing the stress, and then, based on the measurement result of the deformed work W, the deformed work W has the desired shape. W is processed again (that is, it is finished). Therefore, in step S23 of FIG. 10, if the processing apparatus 1 removes the portion of the work W on the first surface WS1 side by an amount corresponding to the thickness capable of releasing the stress accumulated in the work W. It is enough.
 但し、第1面WS1が加工された後に未加工の第2面WS2が加工される場合にも、ワークWに蓄積されていた応力が解放される可能性がある。そこで、加工装置1は、応力を開放することを主たる目的として第1面WS1を暫定的に加工した後に、応力を開放することを主たる目的として第2面WS2を暫定的に加工する。第2面WS2を加工するために、ワークWの第2面WS2を加工する加工システムSYSを示す断面図である図15に示すように、制御装置5は、加工装置1がワークWの第2面WS2を加工することができるように、加工ヘッド11及び/又はステージ32を移動させる。つまり、制御装置5は、加工ヘッド11が第2面WS2に加工光ELを照射できるように、加工ヘッド11及び/又はステージ32を移動させる。図15に示す例では、制御装置5は、第2面WS2が加工ヘッド11側を向くように(つまり、+X側を向くように)、加工ヘッド11及び/又はステージ32を移動させている。典型的には、制御装置5は、上述したように、ステージ32を回転軸32θZ周りに回転させてもよい。その後、加工装置1は、第2面WS2を加工する。つまり、加工装置1は、ワークWの第2面WS2側の部分を除去する。以下では、加工装置1が、ワークWの第2面WS2側の部分を所定の厚みだけ除去するように第2面WS2を加工する例について説明する。具体的には、ステップS24の加工は、応力を開放することを主たる目的とした第2面WS2の加工であるため、加工装置1は、ワークWの第2面WS2側の部分を、ワークWに蓄積された応力を開放することが可能な厚みに相当する分量だけ除去すれば十分である。 However, even when the unprocessed second surface WS2 is processed after the first surface WS1 is processed, the stress accumulated in the work W may be released. Therefore, the processing apparatus 1 provisionally processes the first surface WS1 mainly for the purpose of releasing the stress, and then provisionally processes the second surface WS2 mainly for the purpose of releasing the stress. As shown in FIG. 15, which is a cross-sectional view showing a processing system SYSTEM for processing the second surface WS2 of the work W in order to process the second surface WS2, in the control device 5, the processing device 1 is the second surface of the work W. The machining head 11 and / or the stage 32 is moved so that the surface WS2 can be machined. That is, the control device 5 moves the processing head 11 and / or the stage 32 so that the processing head 11 can irradiate the second surface WS2 with the processing light EL. In the example shown in FIG. 15, the control device 5 moves the machining head 11 and / or the stage 32 so that the second surface WS2 faces the machining head 11 side (that is, faces the + X side). Typically, the control device 5 may rotate the stage 32 around the rotation axis 32θZ, as described above. After that, the processing apparatus 1 processes the second surface WS2. That is, the processing apparatus 1 removes the portion of the work W on the second surface WS2 side. Hereinafter, an example in which the processing apparatus 1 processes the second surface WS2 so as to remove the portion of the work W on the second surface WS2 side by a predetermined thickness will be described. Specifically, since the processing in step S24 is the processing of the second surface WS2 whose main purpose is to release stress, the processing apparatus 1 applies the portion of the work W on the second surface WS2 side to the work W. It is sufficient to remove only the amount corresponding to the thickness that can release the stress accumulated in.
 尚、残留応力がワークWの表面から深く入っている場合には、加工システムSYSは、ワークWの表面を暫定的に加工した後に計測装置2で計測し、単位加工量あたりのワークWの変形量を見積もってもよい。そして、加工システムSYSは、見積もられた変形量に基づいて、さらにワークWを加工してもよい。 When the residual stress is deeply inserted from the surface of the work W, the processing system SYS temporarily processes the surface of the work W and then measures it with the measuring device 2, and deforms the work W per unit processing amount. You may estimate the amount. Then, the processing system SYS may further process the work W based on the estimated amount of deformation.
 第2面WS2が加工された場合においても、第2面WS2が加工されたワークWを示す断面図である図16に示すように、第1面WS1が加工された場合と同様に、ワークWが更に変形することがある。その理由は、上述したとおりである。 Even when the second surface WS2 is processed, as shown in FIG. 16, which is a cross-sectional view showing the work W on which the second surface WS2 is processed, the work W is the same as when the first surface WS1 is processed. May be further deformed. The reason is as described above.
 その後、加工システムSYSは、加工された第1面WS1(つまり、ワークWの第1面WS1側の部分が除去されることで新たに露出した第1面WS1)を計測し、第1面WS1の計測結果に基づいて、加工された第1面WS1を更に加工する。つまり、加工システムSYSは、加工されたワークWの第1面WS1側の部分(つまり、変形している部分)を計測し、加工されたワークWの第1面WS1側の部分の計測結果に基づいて、加工されたワークWの第1面WS1側の部分を更に除去する。加工システムSYSは、加工された第2面WS2(つまり、ワークWの第2面WS2側の部分が除去されることで新たに露出した第2面WS2)を計測し、第2面WS2の計測結果に基づいて、加工された第2面WS2を更に加工する。つまり、加工システムSYSは、加工されたワークWの第2面WS2側の部分(つまり、変形している部分)を計測し、加工されたワークWの第2面WS2側の部分の計測結果に基づいて、加工されたワークWの第2面WS2側の部分を更に除去する。以下では、図10に示すように、第2面WS2が計測され(ステップS25)、その後、第2面WS2が加工され(ステップS26)、その後、第1面WS1が計測され(ステップS27)、その後、第1面WS1が加工される(ステップS28)例について説明する。但し、第1面WS1が計測及び加工された後に、第2面WS2が計測及び加工されてもよい。 After that, the processing system SYS measures the processed first surface WS1 (that is, the first surface WS1 newly exposed by removing the portion of the work W on the first surface WS1 side), and the first surface WS1. Based on the measurement result of, the processed first surface WS1 is further processed. That is, the machining system SYS measures the portion of the machined work W on the first surface WS1 side (that is, the deformed portion), and obtains the measurement result of the portion of the machined work W on the first surface WS1 side. Based on this, the portion of the processed work W on the first surface WS1 side is further removed. The processing system SYS measures the processed second surface WS2 (that is, the second surface WS2 newly exposed by removing the portion of the work W on the second surface WS2 side), and measures the second surface WS2. Based on the result, the processed second surface WS2 is further processed. That is, the machining system SYS measures the portion of the machined work W on the second surface WS2 side (that is, the deformed portion), and obtains the measurement result of the portion of the machined work W on the second surface WS2 side. Based on this, the portion of the processed work W on the second surface WS2 side is further removed. In the following, as shown in FIG. 10, the second surface WS2 is measured (step S25), then the second surface WS2 is processed (step S26), and then the first surface WS1 is measured (step S27). After that, an example in which the first surface WS1 is processed (step S28) will be described. However, after the first surface WS1 is measured and processed, the second surface WS2 may be measured and processed.
 第2面WS2を計測するために、ワークWを計測する加工システムSYSを示す断面図である図17に示すように、制御装置5は、計測装置2が、加工されたワークWの第2面WS2を計測することができるように、計測ヘッド21及び/又はステージ32を移動させる。その後、計測装置2は、第2面WS2を計測する。その結果、制御装置5は、図10のステップS22における第2面WS2の計測結果と、図10のステップS25における第2面WS2の計測結果とに基づいて、第2面WS2の暫定的な加工に起因した第2面WS2の変形量を求めることができる。つまり、ステップS22及びS25における第2面WS2の計測結果に基づいて、ワークWの第2面WS2側の部分の変形量を求めることができる。 As shown in FIG. 17, which is a cross-sectional view showing a processing system SYSTEM for measuring the work W in order to measure the second surface WS2, in the control device 5, the measuring device 2 is the second surface of the processed work W. The measurement head 21 and / or the stage 32 is moved so that the WS2 can be measured. After that, the measuring device 2 measures the second surface WS2. As a result, the control device 5 provisionally processes the second surface WS2 based on the measurement result of the second surface WS2 in step S22 of FIG. 10 and the measurement result of the second surface WS2 in step S25 of FIG. The amount of deformation of the second surface WS2 due to the above can be obtained. That is, based on the measurement results of the second surface WS2 in steps S22 and S25, the amount of deformation of the portion of the work W on the second surface WS2 side can be obtained.
 その後、加工システムSYSは、第2面WS2を加工する。具体的には、制御装置5は、第2面WS2の変形量及び加工後のワークWに関する設計情報に基づいて、変形したワークWの第2面WS2の加工量を算出する。つまり、制御装置5は、ワークWの第2面WS2側の部位の変形量及び加工後のワークWに関する設計情報に基づいて、変形したワークWの第2面WS2側の部分の加工量を算出する。例えば、設計情報が加工後のワークWの寸法に関する情報を含んでいる場合には、制御装置5は、変形したワークWの寸法(特に、第2面WS2の寸法及びワークWの第2面WS2側の部分の寸法の少なくとも一方)を設計情報が示す理想的な寸法にするために必要な加工量を算出する。例えば、設計情報が加工後のワークWの形状に関する情報を含んでいる場合には、制御装置5は、変形したワークWの形状(特に、第2面WS2の形状及びワークWの第2面WS2側の部分の形状の少なくとも一方)を設計情報が示す理想的な形状にするために必要な加工量を算出する。その後、ワークWを加工する加工システムSYSを示す断面図である図18に示すように、加工装置1は、制御装置5が算出した加工量だけ第2面WS2を加工する。つまり、加工装置1は、制御装置5が算出した加工量だけワークWの第2面WS2側の部分を除去する。その結果、第2面WS2が仕上げ加工されたワークWを示す断面図である図19に示すように、第2面WS2の寸法及びワークWの第2面WS2側の部分の寸法の少なくとも一方が、設計情報が示す理想的な寸法になる。また、第2面WS2の形状及びワークWの第2面WS2側の部分の形状の少なくとも一方が、設計情報が示す理想的な形状になる。 After that, the processing system SYS processes the second surface WS2. Specifically, the control device 5 calculates the amount of processing of the second surface WS2 of the deformed work W based on the amount of deformation of the second surface WS2 and the design information regarding the work W after processing. That is, the control device 5 calculates the amount of deformation of the portion of the work W on the second surface WS2 side and the amount of processing of the portion of the deformed work W on the second surface WS2 side based on the design information regarding the work W after machining. do. For example, when the design information includes information on the dimensions of the work W after machining, the control device 5 may use the deformed work W dimensions (particularly, the dimensions of the second surface WS2 and the second surface WS2 of the work W). Calculate the amount of machining required to make at least one of the dimensions of the side part) the ideal dimension indicated by the design information. For example, when the design information includes information on the shape of the work W after machining, the control device 5 determines the deformed shape of the work W (particularly, the shape of the second surface WS2 and the second surface WS2 of the work W). Calculate the amount of processing required to make at least one of the shapes of the side parts) into the ideal shape indicated by the design information. After that, as shown in FIG. 18, which is a cross-sectional view showing the processing system SYS for processing the work W, the processing apparatus 1 processes the second surface WS2 by the processing amount calculated by the control device 5. That is, the processing device 1 removes the portion of the work W on the second surface WS2 side by the processing amount calculated by the control device 5. As a result, as shown in FIG. 19, which is a cross-sectional view showing the work W on which the second surface WS2 has been finished, at least one of the dimensions of the second surface WS2 and the dimension of the portion of the work W on the second surface WS2 side , The ideal dimensions indicated by the design information. Further, at least one of the shape of the second surface WS2 and the shape of the portion of the work W on the second surface WS2 side becomes an ideal shape indicated by the design information.
 尚、図10のステップS25において第2面WS2が計測されるタイミングで、加工システムSYSは、上述した指標部材6を用いてステージ32の位置を算出する動作を行ってもよい。具体的には、計測装置2は、指標部材6を計測してもよい。更に、制御装置5は、指標部材6の計測結果に基づいて、ステージ32の位置を算出してもよい。その結果、制御装置5は、ステージ32上でワークWがどのように載置されているかを把握することができる。つまり、制御装置5は、指標部材6の計測結果と第2面WS2の計測結果とに基づいて、ステージ32とワークW(特に、ワークWの第2面WS2側の部分)との相対的な位置関係を算出することができる。この場合、制御装置5は、ステージ32とワークW(特に、ワークWの第2面WS2側の部分)との相対的な位置関係に基づいて、ワークWの第2面WS2側の部分が適切に加工されるように、加工装置1及び/又はステージ装置3を制御してもよい。 Note that, at the timing when the second surface WS2 is measured in step S25 of FIG. 10, the processing system SYS may perform an operation of calculating the position of the stage 32 using the index member 6 described above. Specifically, the measuring device 2 may measure the index member 6. Further, the control device 5 may calculate the position of the stage 32 based on the measurement result of the index member 6. As a result, the control device 5 can grasp how the work W is placed on the stage 32. That is, the control device 5 is relative to the stage 32 and the work W (particularly, the portion of the work W on the second surface WS2 side) based on the measurement result of the index member 6 and the measurement result of the second surface WS2. The positional relationship can be calculated. In this case, the control device 5 is suitable for the portion of the work W on the second surface WS2 side based on the relative positional relationship between the stage 32 and the work W (particularly, the portion of the work W on the second surface WS2 side). The processing device 1 and / or the stage device 3 may be controlled so as to be machined.
 その後、計測装置2は、第1面WS1を計測する。このため、ワークWを計測する加工システムSYSを示す断面図である図20に示すように、制御装置5は、計測装置2が、図10のステップS26において第1面WS1が加工されたワークWの第2面WS2を計測することができるように、計測ヘッド21及び/又はステージ32を移動させる。その後、計測装置2は、第1面WS1を計測する。その結果、制御装置5は、図10のステップS22における第1面WS1の計測結果と、図10のステップS27における第1面WS1の計測結果とに基づいて、第1面WS1の変形量を求めることができる。つまり、ステップS22及びS27における第1面WS1の計測結果に基づいて、ワークWの第1面WS1側の部分の変形量を求めることができる。 After that, the measuring device 2 measures the first surface WS1. Therefore, as shown in FIG. 20, which is a cross-sectional view showing a processing system SYSTEM for measuring the work W, in the control device 5, the measuring device 2 has the work W on which the first surface WS1 has been processed in step S26 of FIG. The measurement head 21 and / or the stage 32 is moved so that the second surface WS2 of the above can be measured. After that, the measuring device 2 measures the first surface WS1. As a result, the control device 5 obtains the amount of deformation of the first surface WS1 based on the measurement result of the first surface WS1 in step S22 of FIG. 10 and the measurement result of the first surface WS1 in step S27 of FIG. be able to. That is, based on the measurement results of the first surface WS1 in steps S22 and S27, the amount of deformation of the portion of the work W on the first surface WS1 side can be obtained.
 その後、加工システムSYSは、第1面WS1を加工する。具体的には、制御装置5は、第1面WS1の変形量及び加工後のワークWに関する設計情報に基づいて、変形したワークWの第1面WS1の加工量を算出する。つまり、制御装置5は、ワークWの第1面WS1側の部位の変形量及び加工後のワークWに関する設計情報に基づいて、変形したワークWの第1面WS1側の部位の加工量を算出する。例えば、設計情報が加工後のワークWの寸法に関する情報を含んでいる場合には、制御装置5は、変形したワークWの寸法(特に、第1面WS1の寸法及びワークWの第1面WS1側の部分の寸法の少なくとも一方)を設計情報が示す理想的な寸法にするために必要な加工量を算出する。例えば、設計情報が加工後のワークWの形状に関する情報を含んでいる場合には、制御装置5は、変形したワークWの形状(特に、第1面WS1の形状及びワークWの第1面WS1側の部分の形状の少なくとも一方)を設計情報が示す理想的な形状にするために必要な加工量を算出する。その後、ワークWを加工する加工システムSYSを示す断面図である図21に示すように、加工装置1は、制御装置5が算出した加工量だけ第1面WS1を加工する。つまり、加工装置1は、制御装置5が算出した加工量だけワークWの第1面WS1側の部分を除去する。その結果、第1面WS1が仕上げ加工されたワークWを示す断面図である図22に示すように、第1面WS1の寸法及びワークWの第1面WS1側の部分の寸法の少なくとも一方が、設計情報が示す理想的な寸法になる。また、第1面WS1の形状及びワークWの第1面WS1側の部分の形状の少なくとも一方が、設計情報が示す理想的な形状になる。 After that, the processing system SYS processes the first surface WS1. Specifically, the control device 5 calculates the amount of processing of the first surface WS1 of the deformed work W based on the amount of deformation of the first surface WS1 and the design information regarding the work W after processing. That is, the control device 5 calculates the amount of deformation of the portion of the work W on the first surface WS1 side and the amount of processing of the portion of the deformed work W on the first surface WS1 side based on the design information regarding the work W after machining. do. For example, when the design information includes information on the dimensions of the work W after machining, the control device 5 determines the dimensions of the deformed work W (particularly, the dimensions of the first surface WS1 and the first surface WS1 of the work W). Calculate the amount of machining required to make at least one of the dimensions of the side part) the ideal dimension indicated by the design information. For example, when the design information includes information on the shape of the work W after machining, the control device 5 determines the deformed shape of the work W (particularly, the shape of the first surface WS1 and the first surface WS1 of the work W). Calculate the amount of processing required to make at least one of the shapes of the side parts) into the ideal shape indicated by the design information. After that, as shown in FIG. 21 which is a cross-sectional view showing the processing system SYS for processing the work W, the processing apparatus 1 processes the first surface WS1 by the processing amount calculated by the control device 5. That is, the processing device 1 removes the portion of the work W on the first surface WS1 side by the processing amount calculated by the control device 5. As a result, as shown in FIG. 22, which is a cross-sectional view showing the work W on which the first surface WS1 has been finished, at least one of the dimensions of the first surface WS1 and the dimension of the portion of the work W on the first surface WS1 side , The ideal dimensions indicated by the design information. Further, at least one of the shape of the first surface WS1 and the shape of the portion of the work W on the first surface WS1 side becomes an ideal shape indicated by the design information.
 尚、図10のステップS27において第1面WS1が計測されるタイミングで、加工システムSYSは、上述した指標部材6を用いてステージ32の位置を算出する動作を行ってもよい。具体的には、第2面WS2の計測及び仕上げ加工を行うために加工ヘッド11及び/又はステージ32が移動した後に、計測装置2は、指標部材6を計測してもよい。更に、制御装置5は、指標部材6の計測結果に基づいて、ステージ32の位置を算出してもよい。その結果、制御装置5は、ステージ32上でワークWがどのように載置されているかを把握することができる。つまり、制御装置5は、指標部材6の計測結果と第1面WS1の計測結果とに基づいて、ステージ32とワークW(特に、ワークWの第1面WS1側の部分)との相対的な位置関係を算出することいができる。この場合、制御装置5は、ステージ32とワークW(特に、ワークWの第1面WS1側の部分)との相対的な位置関係に基づいて、ワークWの第1面WS1側の部分が適切に加工されるように、加工装置1及び/又はステージ装置3を制御してもよい。 Note that, at the timing when the first surface WS1 is measured in step S27 of FIG. 10, the processing system SYS may perform an operation of calculating the position of the stage 32 using the index member 6 described above. Specifically, the measuring device 2 may measure the index member 6 after the machining head 11 and / or the stage 32 has moved to measure and finish the second surface WS2. Further, the control device 5 may calculate the position of the stage 32 based on the measurement result of the index member 6. As a result, the control device 5 can grasp how the work W is placed on the stage 32. That is, the control device 5 is relative to the stage 32 and the work W (particularly, the portion of the work W on the first surface WS1 side) based on the measurement result of the index member 6 and the measurement result of the first surface WS1. It is possible to calculate the positional relationship. In this case, the control device 5 is suitable for the portion of the work W on the first surface WS1 side based on the relative positional relationship between the stage 32 and the work W (particularly, the portion of the work W on the first surface WS1 side). The processing device 1 and / or the stage device 3 may be controlled so as to be machined.
 図10のステップS27において第1面WS1が計測されるタイミングで計測装置2が計測する指標部材6は、図10のステップS25において第2面WS2が計測されるタイミングで計測装置2が計測する指標部材6と異なっていてもよい。この場合、計測装置2は、ステップS25において第2面WS2が計測されるタイミングで第1の指標部材6(例えば、第2面WS2を支持する治具321#2に取り付けられた指標部材6)を計測してもよい。その後、第1の指標部材6の計測結果に基づいて第2面WS2を加工するようにステージ32及び/加工ヘッド11が移動した後に、計測装置2は、ステップS27において第1面WS1が計測されるタイミングで、第2の指標部材6(例えば、第1面WS1を支持する治具321#1に取り付けられた指標部材6)を計測してもよい。この場合、典型的には、第1の指標部材6を計測する計測装置2の計測ショット領域MSAの外側に第2の指標部材6が位置し、第2の指標部材6を計測する計測装置2の計測ショット領域MSAの外側に第1の指標部材6が位置する。或いは、図9に示すように計測ショット領域MSAが異なる複数の計測装置2を加工システムSYSが備えている場合には、図10のステップS27において第1面WS1が計測されるタイミングで指標部材6を計測する計測装置2は、図10のステップS25において第2面WS2が計測されるタイミングで指標部材6を計測する計測装置2と異なっていてもよい。 The index member 6 measured by the measuring device 2 at the timing when the first surface WS1 is measured in step S27 of FIG. 10 is an index measured by the measuring device 2 at the timing when the second surface WS2 is measured in step S25 of FIG. It may be different from the member 6. In this case, the measuring device 2 is the first index member 6 (for example, the index member 6 attached to the jig 321 # 2 supporting the second surface WS2) at the timing when the second surface WS2 is measured in step S25. May be measured. After that, after the stage 32 and / the processing head 11 move so as to process the second surface WS2 based on the measurement result of the first index member 6, the measuring device 2 measures the first surface WS1 in step S27. The second index member 6 (for example, the index member 6 attached to the jig 321 # 1 supporting the first surface WS1) may be measured at the same timing. In this case, typically, the second index member 6 is located outside the measurement shot area MSA of the measuring device 2 that measures the first index member 6, and the measuring device 2 measures the second index member 6. The first index member 6 is located outside the measurement shot area MSA. Alternatively, when the processing system SYS includes a plurality of measuring devices 2 having different measurement shot area MSAs as shown in FIG. 9, the index member 6 is measured at the timing when the first surface WS1 is measured in step S27 of FIG. The measuring device 2 that measures the index member 6 may be different from the measuring device 2 that measures the index member 6 at the timing when the second surface WS2 is measured in step S25 of FIG.
 (3)加工システムSYSの技術的効果
 以上説明した加工システムSYSは、ワークWを載置したまま(或いは保持したまま)、ワークWの両面を加工することができる。加工システムSYSは、ワークWを載置し直す(保持し直す)ことなくワークWの両面を加工できるため、ワークWを高精度に加工することができる。また、加工システムSYSは、ワークWが加工されるとワークWに蓄積されていた応力が解放されることを踏まえ、応力を開放することを主たる目的としてワークWを暫定的に加工し、その後、応力が解放されることで変形したワークWを仕上げ加工する。ワークWに蓄積されていた応力が解放された後は、ワークWが更に加工されたとしてワークWはそれほど又は殆ど変形しない。このため、加工システムSYSは、ワークWの変形の影響を低減する又は相殺するように、ワークWを高精度に加工することができる。その結果、例えば、加工システムSYSは、ワークWの形状が理想的な形状となるように、ワークWを高精度に加工することができる。例えば、加工システムSYSは、ワークWの寸法が理想的な寸法となるように、ワークWを高精度に加工することができる。
(3) Technical Effects of Processing System SYS The processing system SYS described above can process both sides of the work W while the work W is placed (or held). Since the processing system SYS can process both sides of the work W without remounting (reholding) the work W, the work W can be processed with high accuracy. Further, the machining system SYS tentatively machined the work W mainly for the purpose of releasing the stress based on the fact that the stress accumulated in the work W is released when the work W is machined, and then the work W is tentatively machined. The deformed work W is finished by releasing the stress. After the stress accumulated in the work W is released, the work W is not deformed so much or hardly even if the work W is further processed. Therefore, the machining system SYS can machine the work W with high accuracy so as to reduce or cancel the influence of the deformation of the work W. As a result, for example, the processing system SYS can process the work W with high accuracy so that the shape of the work W becomes an ideal shape. For example, the machining system SYS can machine the work W with high accuracy so that the dimensions of the work W become ideal dimensions.
 (4)変形例
 続いて、加工システムSYSの変形例について説明する。
(4) Modification Example Next, a modification of the machining system SYS will be described.
 (4-1)第1変形例
 初めに、図23から図25を参照しながら、第1変形例の加工システムSYS(以降、第1変形例の加工システムSYSを、“加工システムSYSa”と称する)について説明する。図23は、第1変形例の加工システムSYSaのシステム構成を示すブロック図である。図24は、第1変形例の加工システムSYSaの構造を示す断面図である。図25は、第1変形例の加工システムSYSの構造を示す断面図である。
(4-1) First Modified Example First , with reference to FIGS. 23 to 25, the machining system SYS of the first modified example (hereinafter, the machining system SYS of the first modified example is referred to as “machining system SYSA”. ) Will be explained. FIG. 23 is a block diagram showing a system configuration of the processing system SYSA of the first modification. FIG. 24 is a cross-sectional view showing the structure of the processing system SYSA of the first modification. FIG. 25 is a cross-sectional view showing the structure of the processing system SYS of the first modification.
 図23から図25に示すように、第1変形例の加工システムSYSaは、上述した加工システムSYSと比較して、加工装置1がヘッド駆動系12に代えてヘッド駆動系12aを備えているという点で異なる。加工システムSYSaは、上述した加工システムSYSと比較して、計測装置2がヘッド駆動系22に代えてヘッド駆動系22aを備えているという点で異なる。加工システムSYSaは、上述した加工システムSYSと比較して、ステージ装置3がステージ駆動系33に代えてステージ駆動系33aを備えているという点で異なる。加工システムSYSaは、上述した加工システムSYSと比較して、加工ヘッド11及び計測ヘッド21の下方(つまり、-Z側)にステージ装置3(特に、ステージ32)が配置されるという点で異なる。加工ヘッド11及び計測ヘッド21は、ステージ装置3(特に、ステージ32)の上方をオーバーハングするアーチ状の形状(或いは、その他の任意の形状)を有し且つ防振装置を介して定盤31上に配置された支持部材8bによって支持されていてもよい。このため、加工システムSYSaは、上述した加工システムSYSと比較して、加工ヘッド11が下方に向けて加工光ELを照射し且つ計測ヘッド21が下方に向けて計測光MLを照射するという点で異なる。加工システムSYSaのその他の特徴は、加工システムSYSのその他の特徴と同一であってもよい。 As shown in FIGS. 23 to 25, in the machining system SYS of the first modification, the machining apparatus 1 includes a head drive system 12a instead of the head drive system 12 as compared with the above-mentioned machining system SYS. It differs in that. The processing system SYSa is different from the processing system SYS described above in that the measuring device 2 includes a head drive system 22a instead of the head drive system 22. The processing system SYSa is different from the processing system SYS described above in that the stage device 3 includes a stage drive system 33a instead of the stage drive system 33. The machining system SYSa differs from the above-mentioned machining system SYS in that the stage device 3 (particularly, the stage 32) is arranged below the machining head 11 and the measurement head 21 (that is, on the −Z side). The processing head 11 and the measuring head 21 have an arch-shaped shape (or any other shape) that overhangs above the stage device 3 (particularly, the stage 32), and the surface plate 31 via a vibration isolator 31. It may be supported by the support member 8b arranged above. Therefore, in the processing system SYS, as compared with the above-mentioned processing system SYS, the processing head 11 irradiates the processing light EL downward and the measuring head 21 irradiates the measuring light ML downward. different. Other features of the machining system SYS may be the same as the other features of the machining system SYS.
 ヘッド駆動系12aは、加工ヘッド11を、X軸方向、Y軸方向及びZ軸方向のそれぞれに沿って移動させるという点で、ヘッド駆動系12とは異なる。ヘッド駆動系12aのその他の特徴は、ヘッド駆動系12のその他の特徴と同一であってもよい。X軸方向、Y軸方向及びZ軸方向のそれぞれに沿って加工ヘッド11を移動させるために、ヘッド駆動系12aは、ヘッド駆動系12Xaと、ヘッド駆動系12Yaと、ヘッド駆動系12Zaとを備えていてもよい。ヘッド駆動系12Xaは、加工ヘッド11をX軸方向に沿って移動させる。ヘッド駆動系12Yaは、加工ヘッド11をY軸方向に沿って移動させる。ヘッド駆動系12Zaは、加工ヘッド11をZ軸方向に沿って移動させる。ヘッド駆動系12Yaは、例えば、防振装置を介して後述する定盤31上に配置され且つY軸方向に沿って延びるガイド部材121Yaと、ガイド部材121Yaに沿って移動可能なスライダ部材122Yaと、スライダ部材122Yaに接続され且つZ軸方向に沿ってステージ装置3よりも高い位置にまで延びる支柱部材123Yaと、スライダ部材122Yaを移動させる不図示のモータとを備えている。ヘッド駆動系12Xaは、例えば、支柱部材123Yaの上端に接続され且つX軸方向に沿って延びるガイド部材121Xaと、ガイド部材121Xaに沿って移動可能なスライダ部材122Xaと、スライダ部材122Xaを移動させる不図示のモータとを備えている。ヘッド駆動系12Zaは、例えば、スライダ部材122Xaに接続され且つZ軸方向に沿って延びるガイド部材121Zaと、ガイド部材121Zaに沿って移動可能なスライダ部材122Zaと、スライダ部材122Zaを移動させる不図示のモータとを備えている。スライダ部材122Zaには、加工ヘッド11が接続されている。スライダ部材122Yaが移動すると、ヘッド駆動系12Xa及び12Zaを介してスライダ部材122Yaに接続された加工ヘッド11がY軸方向に沿って移動する。スライダ部材122Xaが移動すると、ヘッド駆動系12Zaを介してスライダ部材122Xaに接続された加工ヘッド11がX軸方向に沿って移動する。スライダ部材122Zaが移動すると、スライダ部材122Zaに接続された加工ヘッド11がZ軸方向に沿って移動する。 The head drive system 12a is different from the head drive system 12 in that the processing head 11 is moved along the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively. Other features of the head drive system 12a may be the same as other features of the head drive system 12. The head drive system 12a includes a head drive system 12Xa, a head drive system 12Ya, and a head drive system 12Za in order to move the machining head 11 along each of the X-axis direction, the Y-axis direction, and the Z-axis direction. You may be. The head drive system 12Xa moves the processing head 11 along the X-axis direction. The head drive system 12Ya moves the processing head 11 along the Y-axis direction. The head drive system 12Za moves the processing head 11 along the Z-axis direction. The head drive system 12Y includes, for example, a guide member 121Y arranged on a surface plate 31 described later via a vibration isolator and extending along the Y-axis direction, a slider member 122Ya movable along the guide member 121Ya, and the like. It includes a support column member 123Ya that is connected to the slider member 122Ya and extends to a position higher than the stage device 3 along the Z-axis direction, and a motor (not shown) that moves the slider member 122Ya. The head drive system 12Xa is, for example, unable to move the guide member 121Xa connected to the upper end of the support column member 123Ya and extending along the X-axis direction, the slider member 122Xa movable along the guide member 121Xa, and the slider member 122Xa. It is equipped with the motor shown in the figure. The head drive system 12Z is not shown, for example, to move the guide member 121Za connected to the slider member 122Xa and extending along the Z-axis direction, the slider member 122Za movable along the guide member 121Za, and the slider member 122Za. It is equipped with a motor. A processing head 11 is connected to the slider member 122Za. When the slider member 122Ya moves, the processing head 11 connected to the slider member 122Ya via the head drive systems 12Xa and 12Za moves along the Y-axis direction. When the slider member 122Xa moves, the machining head 11 connected to the slider member 122Xa via the head drive system 12Za moves along the X-axis direction. When the slider member 122Za moves, the machining head 11 connected to the slider member 122Za moves along the Z-axis direction.
 ヘッド駆動系22aは、計測ヘッド21を、Z軸方向に沿って移動させるという点で、ヘッド駆動系22とは異なる。ヘッド駆動系22aのその他の特徴は、ヘッド駆動系22のその他の特徴と同一であってもよい。Z軸方向に沿って計測ヘッド21を移動させるために、ヘッド駆動系22aは、例えば、計測ヘッド21をZ軸方向に沿って移動させるヘッド駆動系22Zaを備えている。ヘッド駆動系22Zaは、例えば、スライダ部材122Xaに接続され且つZ軸方向に沿って延びるガイド部材221Zaと、ガイド部材221Zaに沿って移動可能なスライダ部材222Zaと、スライダ部材222Zaを移動させる不図示のモータとを備えている。スライダ部材222Zaには、計測ヘッド21が接続されている。スライダ部材222Zaが移動すると、スライダ部材222Zaに接続された計測ヘッド21がZ軸方向に沿って移動する。更に、ガイド部材221Zaがスライダ部材122Xaに接続されているため、スライダ部材122Yaが移動すると、ヘッド駆動系12Xa及び22Zaを介してスライダ部材122Yaに接続された計測ヘッド21がY軸方向に沿って移動する。また、スライダ部材122Xaが移動すると、ヘッド駆動系22Zaを介してスライダ部材122Xaに接続された計測ヘッド21がX軸方向に沿って移動する。従って、計測ヘッド21は、ヘッド駆動系12a及び22aにより、X軸方向、Y軸方向及びZ軸方向のそれぞれに沿って移動可能である。 The head drive system 22a is different from the head drive system 22 in that the measurement head 21 is moved along the Z-axis direction. Other features of the head drive system 22a may be the same as other features of the head drive system 22. In order to move the measurement head 21 along the Z-axis direction, the head drive system 22a includes, for example, a head drive system 22Z that moves the measurement head 21 along the Z-axis direction. The head drive system 22Z is not shown, for example, a guide member 221Za connected to the slider member 122Xa and extending along the Z-axis direction, a slider member 222Z movable along the guide member 221Za, and a slider member 222Za. It is equipped with a motor. A measuring head 21 is connected to the slider member 222Za. When the slider member 222Za moves, the measurement head 21 connected to the slider member 222Za moves along the Z-axis direction. Further, since the guide member 221Za is connected to the slider member 122Xa, when the slider member 122Ya moves, the measurement head 21 connected to the slider member 122Ya via the head drive system 12Xa and 22Za moves along the Y-axis direction. do. Further, when the slider member 122Xa moves, the measurement head 21 connected to the slider member 122Xa via the head drive system 22Za moves along the X-axis direction. Therefore, the measurement head 21 can be moved along the X-axis direction, the Y-axis direction, and the Z-axis direction by the head drive systems 12a and 22a, respectively.
 ステージ駆動系33aは、ステージ32をθZ方向及びθX方向のそれぞれに沿って移動させるという点で、ステージ駆動系33とは異なる。つまり、ステージ駆動系33aは、ステージ32をZ軸及びX軸のそれぞれの周りに回転させるという点で、ステージ駆動系33とは異なる。ステージ駆動系33aのその他の特徴は、ステージ駆動系33のその他の特徴と同一であってもよい。θZ方向及びθX方向のそれぞれに沿ってステージ32を移動さるために、ステージ駆動系33aは、ステージ駆動系33Tzaと、ステージ駆動系33Txaとを備えていてもよい。ステージ駆動系33Tzaは、例えば、テーブル331Tzaと、テーブル331TzaをZ軸に沿った回転軸32θZa周りに回転させるモータ332Tzaとを備えている。ステージ駆動系33Txaは、例えば、テーブル331TzaからZ軸方向に沿って延びる支柱部材331Txaと、X軸に沿った回転軸32θXa周りに回転可能なように支柱部材331Txaに取り付けられたテーブル332Txaと、テーブル332Txaを回転軸32θXa周りに回転させる不図示のモータとを備えている。テーブル332Txaには、ステージ32が接続されている。尚、図24から図25に示す例では、テーブル332Txaは、ステージ32が載置される部分が、支柱部材331Txaに接続される部分よりも下方に位置する形状を有しているが、その他の形状を有していてもよい。或いは、テーブル332Txaがステージ32として用いられてもよい。テーブル331Tzaが回転すると、ステージ駆動系33Txaを介してテーブル331Tzaに接続されたステージ32が回転軸32θZa周りに回転する。テーブル332Txaが回転すると、テーブル332Txaに接続されたステージ32が回転軸32θXa周りに回転する。 The stage drive system 33a is different from the stage drive system 33 in that the stage 32 is moved along each of the θZ direction and the θX direction. That is, the stage drive system 33a differs from the stage drive system 33 in that the stage 32 is rotated around each of the Z axis and the X axis. Other features of the stage drive system 33a may be the same as other features of the stage drive system 33. In order to move the stage 32 along the θZ direction and the θX direction, the stage drive system 33a may include a stage drive system 33Tza and a stage drive system 33Txa. The stage drive system 33Tza includes, for example, a table 331Tza and a motor 332Tza that rotates the table 331Tza around a rotation axis 32θZa along the Z axis. The stage drive system 33Txa includes, for example, a support column member 331Txa extending from the table 331Tza along the Z-axis direction, a table 332Txa attached to the support column member 331Txa so as to be rotatable around a rotation axis 32θXa along the X-axis, and a table. It includes a motor (not shown) that rotates 332Txa around a rotation shaft 32θXa. A stage 32 is connected to the table 332Txa. In the example shown in FIGS. 24 to 25, the table 332Txa has a shape in which the portion on which the stage 32 is placed is located below the portion connected to the support column member 331Txa, but other It may have a shape. Alternatively, the table 332Txa may be used as the stage 32. When the table 331Tza rotates, the stage 32 connected to the table 331Tza via the stage drive system 33Txa rotates around the rotation shaft 32θZa. When the table 332Txa rotates, the stage 32 connected to the table 332Txa rotates around the rotation axis 32θXa.
 第1変形例では、ステージ32の上方(つまり、+Z側)に加工ヘッド11及び計測ヘッド21が配置されているため、典型的には、ステージ駆動系33Txaがステージ32を回転軸32θXa周りに回転させることで、ワークWの状態を、加工光ELがワークWの第1面WS1に照射可能な状態と加工光ELがワークWの第2面WS2に照射可能な状態との間で切り替えられる。同様に、ステージ駆動系33Txaがステージ32を回転軸32θXa周りに回転させることで、ワークWの状態を、計測光MLがワークWの第1面WS1に照射可能な状態と計測光MLがワークWの第2面WS2に照射可能な状態との間で切り替えられる。尚、図26は、加工光EL又は計測光MLがワークWの第1面WS1に照射可能となるようにステージ32を回転軸32θXa周りに回転した状態を示す。図27は、加工光EL又は計測光MLがワークWの第2面WS2に照射可能となるようにステージ32を回転軸32θXa周りに回転した状態を示す。 In the first modification, since the processing head 11 and the measurement head 21 are arranged above the stage 32 (that is, on the + Z side), the stage drive system 33Txa typically rotates the stage 32 around the rotation axis 32θXa. By doing so, the state of the work W can be switched between a state in which the processing light EL can irradiate the first surface WS1 of the work W and a state in which the processing light EL can irradiate the second surface WS2 of the work W. Similarly, when the stage drive system 33Txa rotates the stage 32 around the rotation axis 32θXa, the state of the work W can be measured by the measurement light ML on the first surface WS1 of the work W and the measurement light ML on the work W. It is switched between the state where the second surface WS2 of the above can be irradiated. FIG. 26 shows a state in which the stage 32 is rotated around the rotation axis 32θXa so that the processing light EL or the measurement light ML can irradiate the first surface WS1 of the work W. FIG. 27 shows a state in which the stage 32 is rotated around the rotation axis 32θXa so that the processing light EL or the measurement light ML can irradiate the second surface WS2 of the work W.
 第1変形例では、ステージ32は、方向が異なる複数の回転軸(具体的には、二つの回転軸32θZa及び32θXa)周りに回転可能である。この場合、実質的には、ステージ32の回転軸の方向が変更されているとみなしてもよい。また、ステージ32が複数の回転軸周りに回転可能である場合には、上述した指標部材6は、ステージ32の各回転軸に交差する方向に沿って複数取り付けられていてもよい。具体的には、回転軸32θZa及び32θXaのいずれか一方に交差する方向に沿って少なくとも二つの指標部材6が取り付けられ、回転軸32θZa及び32θXaのいずれか他方に沿った方向において少なくとも二つの指標部材6とは異なる他の指標部材6が取り付けられていてもよい。この場合、上述した指標部材6を用いてステージ32の位置を算出する際に、複数の回転軸(具体的には、二つの回転軸32θZa及び32θXa)のそれぞれの周りのステージ32の位置が適切に算出可能となる。 In the first modification, the stage 32 can rotate around a plurality of rotation axes (specifically, two rotation axes 32θZa and 32θXa) having different directions. In this case, it may be considered that the direction of the rotation axis of the stage 32 is substantially changed. Further, when the stage 32 is rotatable around a plurality of rotation axes, a plurality of the index members 6 described above may be attached along a direction intersecting each rotation axis of the stage 32. Specifically, at least two index members 6 are attached along the direction intersecting either one of the rotating shafts 32θZa and 32θXa, and at least two index members 6 are attached in the direction along the other of the rotating shafts 32θZa and 32θXa. Another index member 6 different from 6 may be attached. In this case, when calculating the position of the stage 32 using the index member 6 described above, the position of the stage 32 around each of the plurality of rotation axes (specifically, the two rotation axes 32θZa and 32θXa) is appropriate. Can be calculated.
 (4-2)第2変形例
 続いて、図28から図29を参照しながら、第2変形例の加工システムSYS(以降、第2変形例の加工システムSYSを、“加工システムSYSb”と称する)について説明する。図28は、第2変形例の加工システムSYSbのシステム構成を示すブロック図である。図29は、第2変形例の加工システムSYSbの構造を示す断面図である。
(4-2) Second Modified Example Next, referring to FIGS. 28 to 29, the machining system SYS of the second modified example (hereinafter, the machining system SYS of the second modified example is referred to as “machining system SYSb”. ) Will be explained. FIG. 28 is a block diagram showing a system configuration of the processing system SYSb of the second modification. FIG. 29 is a cross-sectional view showing the structure of the processing system SYSb of the second modification.
 図28から図29に示すように、第2変形例の加工システムSYSbは、上述した加工システムSYSと比較して、加工装置1がヘッド駆動系12及び位置計測器13を備えていなくてもよいという点で異なる。加工システムSYSaは、上述した加工システムSYSと比較して、計測装置2が上述したヘッド駆動系22及び位置計測器23を備えていなくてもよいという点で異なる。加工システムSYSaは、上述した加工システムSYSと比較して、ステージ装置3がステージ駆動系33に代えてステージ駆動系33bを備えているという点で異なる。加工システムSYSbは、上述した加工システムSYSと比較して、加工ヘッド11及び計測ヘッド21の下方(つまり、-Z側)にステージ装置3(特に、ステージ32)が配置されるという点で異なる。このため、加工システムSYSbは、上述した加工システムSYSと比較して、加工ヘッド11が下方に向けて加工光ELを照射し且つ計測ヘッド21が下方に向けて計測光MLを照射するという点で異なる。加工システムSYSbのその他の特徴は、加工システムSYSのその他の特徴と同一であってもよい。 As shown in FIGS. 28 to 29, in the machining system SYSb of the second modification, the machining device 1 does not have to include the head drive system 12 and the position measuring instrument 13 as compared with the above-mentioned machining system SYS. It differs in that. The processing system SYSa is different from the processing system SYS described above in that the measuring device 2 does not have to include the head drive system 22 and the position measuring instrument 23 described above. The processing system SYSa is different from the processing system SYS described above in that the stage device 3 includes a stage drive system 33b instead of the stage drive system 33. The machining system SYSb is different from the above-mentioned machining system SYS in that the stage device 3 (particularly, the stage 32) is arranged below the machining head 11 and the measurement head 21 (that is, on the −Z side). Therefore, in the processing system SYSb, as compared with the above-mentioned processing system SYS, the processing head 11 irradiates the processing light EL downward and the measuring head 21 irradiates the measuring light ML downward. different. Other features of the machining system SYSb may be the same as the other features of the machining system SYS.
 ステージ駆動系33aは、ステージ32を少なくともX軸方向及びY軸方向のそれぞれに沿って移動させるという点で、ステージ駆動系33とは異なる。更に、ステージ駆動系33aは、ロボットアーム33Rbを備えているという点で、ステージ駆動系33とは異なる。ステージ駆動系33bのその他の特徴は、ステージ駆動系33のその他の特徴と同一であってもよい。 The stage drive system 33a is different from the stage drive system 33 in that the stage 32 is moved at least along the X-axis direction and the Y-axis direction. Further, the stage drive system 33a is different from the stage drive system 33 in that the robot arm 33Rb is provided. Other features of the stage drive system 33b may be the same as other features of the stage drive system 33.
 X軸方向及びY軸方向のそれぞれに沿ってステージ32を移動さるために、ステージ駆動系33bは、ステージ32をX軸方向に沿って移動させるステージ駆動系33Xbと、ステージ32をY軸方向に沿って移動させるステージ駆動系33Ybとを備えていてもよい。ステージ駆動系33Ybは、例えば、防振装置を介して定盤31上に配置され且つY軸方向に沿って延びるガイド部材331Ybと、ガイド部材331Ybに沿って移動可能なスライダ部材332Ybと、スライダ部材332Ybに接続されるテーブル333Ybと、スライダ部材332Ybを移動させる不図示のモータとを備えている。ステージ駆動系33Xbは、例えば、テーブル333Ybに接続され且つX軸方向に沿って延びるガイド部材331Xbと、ガイド部材331Xbに沿って移動可能なスライダ部材332Xbと、スライダ部材332Xbに接続されるテーブル333Xbと、スライダ部材332Xbを移動させる不図示のモータとを備えている。テーブル333Xbには、ステージ32が接続されている。但し、テーブル333Xbがステージ32として用いられてもよい。スライダ部材332Ybが移動すると、ステージ駆動系33Xbを介してスライダ部材332Ybに接続されたステージ32がY軸方向に沿って移動する。スライダ部材332Xbが移動すると、スライダ部材332Xbに接続されたステージ32がX軸方向に沿って移動する。 In order to move the stage 32 along the X-axis direction and the Y-axis direction, the stage drive system 33b has the stage drive system 33Xb that moves the stage 32 along the X-axis direction and the stage 32 in the Y-axis direction. It may be provided with a stage drive system 33Yb to be moved along the line. The stage drive system 33Yb includes, for example, a guide member 331Yb arranged on the surface plate 31 via a vibration isolator and extending along the Y-axis direction, a slider member 332Yb movable along the guide member 331Yb, and a slider member. It includes a table 333Yb connected to 332Yb and a motor (not shown) for moving the slider member 332Yb. The stage drive system 33Xb includes, for example, a guide member 331Xb connected to the table 333Yb and extending along the X-axis direction, a slider member 332Xb movable along the guide member 331Xb, and a table 333Xb connected to the slider member 332Xb. A motor (not shown) for moving the slider member 332Xb is provided. A stage 32 is connected to the table 333Xb. However, the table 333Xb may be used as the stage 32. When the slider member 332Yb moves, the stage 32 connected to the slider member 332Yb via the stage drive system 33Xb moves along the Y-axis direction. When the slider member 332Xb moves, the stage 32 connected to the slider member 332Xb moves along the X-axis direction.
 ロボットアーム33Rbは、例えば、多関節型ロボットアームであってもよい。ロボットアーム33Rbのエンドエフェクタは、ワークWを掴むことが可能なエンドエフェクタであることが好ましい。ロボットアーム33Rbは、ワークWを掴んだまま、ワークWを移動させてもよい。例えば、ロボットアーム33Rbは、ワークWをつかんだまま、ワークWをX軸方向、Y軸方向、Z軸方向、θX方向、θY方向及びθZ方向の少なくとも一つに沿って移動させてもよい。本実施形態では特に、上述したようにワークWの第1面WS1と第2面WS2との双方が計測及び加工されるがゆえに、ロボットアーム33Rbは、ワークWの状態を、第1面WS1が上方を向いている状態(つまり、加工光EL及び計測光MLの少なくとも一方が第1面WS1に照射可能な状態)と、第2面WS2が上方を向いている状態(つまり、加工光EL及び計測光MLの少なくとも一方が第2面WS2に照射可能な状態)との間で切り替えるように、ワークWを移動してもよい。つまり、ロボットアーム33Rbは、ステージ32に載置されたワークWを裏返す(つまり、第1面WS1と第2面WS2との上下関係を逆転させる)ように、ワークWを移動させてもよい。 The robot arm 33Rb may be, for example, an articulated robot arm. The end effector of the robot arm 33Rb is preferably an end effector capable of grasping the work W. The robot arm 33Rb may move the work W while holding the work W. For example, the robot arm 33Rb may move the work W along at least one of the X-axis direction, the Y-axis direction, the Z-axis direction, the θX direction, the θY direction, and the θZ direction while grasping the work W. In the present embodiment, in particular, since both the first surface WS1 and the second surface WS2 of the work W are measured and processed as described above, the robot arm 33Rb determines the state of the work W by the first surface WS1. A state in which at least one of the processing light EL and the measurement light ML can irradiate the first surface WS1 and a state in which the second surface WS2 is facing upward (that is, the processing light EL and the processing light EL and The work W may be moved so as to switch between (a state in which at least one of the measurement light MLs can irradiate the second surface WS2). That is, the robot arm 33Rb may move the work W so as to turn over the work W placed on the stage 32 (that is, reverse the vertical relationship between the first surface WS1 and the second surface WS2).
 尚、ロボットアーム33RbがワークWを掴みやすくなるように、ワークWは、治具323bを介してステージ32に載置されていてもよい。治具323bは、ワークWとステージ32との間に間隙を確保するスペーサとして機能してもよい。その結果、ワークWとステージ32との間に間隙が確保されない場合と比較して、ロボットアーム33Rbは、ワークWを相対的に容易に掴むことができる。 The work W may be placed on the stage 32 via the jig 323b so that the robot arm 33Rb can easily grasp the work W. The jig 323b may function as a spacer for securing a gap between the work W and the stage 32. As a result, the robot arm 33Rb can grasp the work W relatively easily as compared with the case where a gap is not secured between the work W and the stage 32.
 (4-3)その他の変形例
 上述した説明では、加工装置1は、ワークWに加工光ELを照射して、ワークWの一部を除去する除去加工を行っている。しかしながら、加工装置1は、ワークWに加工光ELを照射して、除去加工とは異なる加工を行ってもよい。例えば、加工装置1は、ワークWに加工光ELを照射して、ワークWに付加加工を行ってもよい。例えば、加工装置1は、ワークWの表面の少なくとも一部の特性を加工光ELの照射によって変えて、ワークWの表面に所望のパターンを形成するマーキング加工を行ってもよい。
(4-3) Other Modification Examples In the above description, the processing apparatus 1 irradiates the work W with processing light EL to perform removal processing for removing a part of the work W. However, the processing apparatus 1 may irradiate the work W with the processing light EL to perform processing different from the removal processing. For example, the processing apparatus 1 may irradiate the work W with the processing light EL to perform additional processing on the work W. For example, the processing apparatus 1 may perform marking processing to form a desired pattern on the surface of the work W by changing at least a part of the characteristics of the surface of the work W by irradiation with the processing light EL.
 上述した説明では、ステージ装置3は、ステージ駆動系33を備えている。しかしながら、ステージ装置3は、ステージ駆動系33を備えていなくてもよい。つまり、ステージ32が移動しなくてもよい。ステージ32が移動しない場合には、ステージ装置3は、位置計測器34を備えていなくてもよい。上述した説明では、加工装置1は、ヘッド駆動系12を備えている。しかしながら、加工装置1は、ヘッド駆動系12を備えていなくてもよい。つまり、加工ヘッド11が移動しなくてもよい。この場合、加工装置1は、位置計測器13を備えていなくてもよい。上述した説明では、計測装置2は、ヘッド駆動系22を備えている。しかしながら、計測装置2は、ヘッド駆動系22を備えていなくてもよい。つまり、計測ヘッド21が移動しなくてもよい。この場合、計測装置2は、位置計測器23を備えていなくてもよい。 In the above description, the stage device 3 includes a stage drive system 33. However, the stage device 3 does not have to include the stage drive system 33. That is, the stage 32 does not have to move. If the stage 32 does not move, the stage device 3 may not include the position measuring instrument 34. In the above description, the processing apparatus 1 includes a head drive system 12. However, the processing device 1 does not have to include the head drive system 12. That is, the processing head 11 does not have to move. In this case, the processing device 1 does not have to include the position measuring instrument 13. In the above description, the measuring device 2 includes a head drive system 22. However, the measuring device 2 does not have to include the head drive system 22. That is, the measurement head 21 does not have to move. In this case, the measuring device 2 does not have to include the position measuring device 23.
 上述した説明では、加工装置1は、ワークWに加工光ELを照射することで、ワークWを加工している。しかしながら、加工装置1は、光とは異なる任意のエネルギビーム(このエネルギビームを、“加工ビーム”と称してもよい)をワークWに照射して、ワークWを加工してもよい。この場合、加工装置1は、加工光源111に加えて又は代えて、任意のエネルギビームを照射可能なビーム照射装置を備えていてもよい。任意のエネルギビームの一例として、電子ビーム及びイオンビーム等の荷電粒子ビームがあげられる。任意のエネルギビームの他の一例として、電磁波があげられる。 In the above description, the processing apparatus 1 processes the work W by irradiating the work W with the processing light EL. However, the processing apparatus 1 may process the work W by irradiating the work W with an arbitrary energy beam different from light (this energy beam may be referred to as a “processing beam”). In this case, the processing device 1 may include a beam irradiating device capable of irradiating an arbitrary energy beam in addition to or in place of the processing light source 111. An example of an arbitrary energy beam is a charged particle beam such as an electron beam and an ion beam. Another example of an arbitrary energy beam is an electromagnetic wave.
 上述の各実施形態の構成要件の少なくとも一部は、上述の各実施形態の構成要件の少なくとも他の一部と適宜組み合わせることができる。上述の各実施形態の構成要件のうちの一部が用いられなくてもよい。また、法令で許容される限りにおいて、上述の各実施形態で引用した全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。 At least a part of the constituent elements of each of the above-described embodiments can be appropriately combined with at least another part of the constituent requirements of each of the above-described embodiments. Some of the constituent requirements of each of the above embodiments may not be used. In addition, to the extent permitted by law, the disclosures of all published gazettes and US patents cited in each of the above embodiments shall be incorporated as part of the text.
 本発明は、上述した実施例に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う加工システムもまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, and can be appropriately modified within the scope of claims and within a range not contrary to the gist or idea of the invention that can be read from the entire specification, and a processing system accompanied by such modification is also possible. It is also included in the technical scope of the present invention.
 SYS 加工システム
 1 加工装置
 11 加工ヘッド
 12 ヘッド駆動系
 2 計測装置
 21 計測ヘッド
 22 ヘッド駆動系
 3 ステージ装置
 32 ステージ
 321 治具
 33 ステージ駆動系
 5 制御装置
 6 指標部材
 61 開口
 62 検出器
 W ワーク
 EL 加工光
SYS machining system 1 machining device 11 machining head 12 head drive system 2 measuring device 21 measuring head 22 head drive system 3 stage device 32 stage 321 jig 33 stage drive system 5 control device 6 index member 61 opening 62 detector W work EL machining light

Claims (33)

  1.  物体を載置する物体載置装置と、
     前記物体載置装置に載置された前記物体を加工光で加工する加工装置と、
     前記物体載置装置に載置された前記物体を計測する計測装置と、
     前記物体載置装置に載置された前記物体と前記加工装置との少なくとも一方を動かす変更装置と、
     前記物体の第1の側に前記加工光が照射できるように前記変更装置を制御し、前記第1の側と反対側の第2の側を前記加工光が照射できるように前記変更装置を制御する制御装置と
     を備える加工システム。
    An object mounting device for mounting objects and
    A processing device that processes the object mounted on the object mounting device with processing light, and
    A measuring device for measuring the object mounted on the object mounting device, and a measuring device for measuring the object.
    A changing device that moves at least one of the object and the processing device mounted on the object mounting device.
    The changing device is controlled so that the first side of the object can be irradiated with the processing light, and the changing device is controlled so that the second side opposite to the first side can be irradiated with the processing light. A processing system equipped with a control device.
  2.  前記制御装置は、前記物体の前記第1の側を前記計測装置で計測できるように前記変更装置を制御し、前記物体の前記第2の側を前記計測装置で計測できるように前記変更装置を制御する
     請求項1に記載の加工システム。
    The control device controls the changing device so that the first side of the object can be measured by the measuring device, and the changing device can measure the second side of the object by the measuring device. The processing system according to claim 1, which is controlled.
  3.  前記計測装置は、前記第1の側が加工された前記物体の前記第1の側を計測し、
     前記制御装置は、前記計測装置による前記第1の側の計測結果に基づいて、前記物体の前記第1の側を加工するように前記加工装置を制御する
     請求項2に記載の加工システム。
    The measuring device measures the first side of the object whose first side has been processed.
    The processing system according to claim 2, wherein the control device controls the processing device so as to process the first side of the object based on the measurement result of the first side by the measuring device.
  4.  前記計測装置は、前記第2の側が加工された前記物体の前記第2の側を計測し、
     前記制御装置は、前記計測装置による前記第2の側の計測結果に基づいて、前記物体の前記第2の側を加工するように前記加工装置を制御する
     請求項3に記載の加工システム。
    The measuring device measures the second side of the object whose second side has been processed.
    The processing system according to claim 3, wherein the control device controls the processing device so as to process the second side of the object based on the measurement result of the second side by the measuring device.
  5.  前記制御装置は、前記物体の前記第2の側を前記加工装置で加工するために、前記計測装置による前記第1の側の計測結果に基づいて前記第1の側が加工された前記物体と前記加工装置との少なくとも一方を動かすように前記変更装置を制御する
     請求項3又は4に記載の加工システム。
    In order to process the second side of the object with the processing device, the control device has the object and the object whose first side has been processed based on the measurement result of the first side by the measuring device. The processing system according to claim 3 or 4, wherein the changing device is controlled so as to move at least one of the processing devices.
  6.  前記変更装置は、前記物体載置装置に載置された前記物体の姿勢と、前記加工装置の姿勢とのうち、少なくとも一方を変更する
     請求項1から5のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 1 to 5, wherein the changing device changes at least one of the posture of the object mounted on the object mounting device and the posture of the processing device. ..
  7.  前記変更装置は、前記物体載置装置に載置された前記物体の第1軸廻りの姿勢を変更する
     請求項6に記載の加工システム。
    The processing system according to claim 6, wherein the changing device changes the posture of the object mounted on the object mounting device around the first axis.
  8.  前記計測装置は、前記第1軸と交差する方向に沿って設けられた第1及び第2の指標を計測する
     請求項7に記載の加工システム。
    The processing system according to claim 7, wherein the measuring device measures first and second indexes provided along a direction intersecting the first axis.
  9.  前記第1及び第2の指標の位置関係は既知である
     請求項8に記載の加工システム。
    The processing system according to claim 8, wherein the positional relationship between the first and second indicators is known.
  10.  前記変更装置は、前記第1軸の方向を変更する
     請求項7から9のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 7 to 9, wherein the changing device changes the direction of the first axis.
  11.  前記計測装置は、前記第1軸と交差する第1方向に沿って設けられた第1及び第2の指標と、前記第1方向と交差する第2方向において前記第1の指標と異なる位置に設けられた第3の指標とを計測する
     請求項10に記載の加工システム。
    The measuring device is located at a position different from the first index in the second direction intersecting with the first direction and the first and second indexes provided along the first direction intersecting with the first axis. The processing system according to claim 10, wherein the third index provided is measured.
  12.  前記第1から第3の指標の位置関係は既知である
     請求項11に記載の加工システム。
    The processing system according to claim 11, wherein the positional relationship between the first to third indicators is known.
  13.  前記計測装置は、前記物体からの光の受光結果に基づいて前記物体を計測する
     請求項1から12のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 1 to 12, wherein the measuring device measures the object based on the result of receiving light from the object.
  14.  前記計測装置は、前記物体載置装置に取り付けられた指標を計測する
     請求項1から7及び13のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 1 to 7 and 13, wherein the measuring device measures an index attached to the object mounting device.
  15.  前記加工装置は、前記加工光を用いて前記物体を除去加工する
     請求項1から14のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 1 to 14, wherein the processing apparatus uses the processing light to remove and process the object.
  16.  物体を載置する物体載置装置と、
     前記物体載置装置に載置された前記物体を加工光で加工する加工装置と、
     前記物体載置装置に載置された前記物体を計測する計測装置と、
     前記物体載置装置に載置された前記物体と前記加工装置との少なくとも一方を動かす変更装置と、
     前記物体の第1の側を前記加工装置で加工できるように前記変更装置を制御し、前記第1の側と反対側の第2の側を前記加工装置が加工できるように前記変更装置を制御する制御装置と
     を備える加工システム。
    An object mounting device for mounting objects and
    A processing device that processes the object mounted on the object mounting device with processing light, and
    A measuring device for measuring the object mounted on the object mounting device, and a measuring device for measuring the object.
    A changing device that moves at least one of the object and the processing device mounted on the object mounting device.
    The changing device is controlled so that the first side of the object can be machined by the processing device, and the changing device is controlled so that the processing device can process the second side opposite to the first side. A processing system equipped with a control device.
  17.  物体を載置する物体載置装置と、
     前記物体載置装置に載置された前記物体を加工光で加工する加工装置と、
     前記物体載置装置に載置された前記物体を計測する計測装置と、
     前記物体載置装置に載置された前記物体と前記加工装置との少なくとも一方を動かす変更装置と
     を備え、
     前記計測装置は、前記物体載置装置に取り付けられた指標を計測して第1計測結果を得て、前記物体載置装置に載置された前記物体と前記加工装置との少なくとも一方を動かした後に前記指標を計測して第2計測結果を得る
     加工システム。
    An object mounting device for mounting objects and
    A processing device that processes the object mounted on the object mounting device with processing light, and
    A measuring device for measuring the object mounted on the object mounting device, and a measuring device for measuring the object.
    It is provided with a changing device for moving at least one of the object mounted on the object mounting device and the processing device.
    The measuring device measured an index attached to the object mounting device to obtain a first measurement result, and moved at least one of the object mounted on the object mounting device and the processing device. A processing system that later measures the index and obtains the second measurement result.
  18.  前記指標は、第1指標と、前記第1指標と既知の位置関係にある第2指標とを備え、
     前記計測装置は、前記第1指標を計測し、前記物体載置装置に載置された前記物体と前記加工装置との少なくとも一方を動かした後に前記第2指標を計測する
     請求項17に記載の加工システム。
    The index includes a first index and a second index having a known positional relationship with the first index.
    The 17th aspect of claim 17, wherein the measuring device measures the first index, and after moving at least one of the object mounted on the object mounting device and the processing device, the second index is measured. Processing system.
  19.  前記第1指標を計測するときの前記計測装置の計測範囲の外に前記第2指標が位置する
     請求項18に記載の加工システム。
    The processing system according to claim 18, wherein the second index is located outside the measurement range of the measuring device when measuring the first index.
  20.  前記計測装置は、第1計測装置と、前記第1計測装置と異なる第2計測装置とを備え、
     前記第1計測装置は前記指標を計測し、
     前記第2計測装置は、前記物体載置装置に載置された前記物体と前記加工装置との少なくとも一方を動かした後に前記指標を計測する
     請求項17に記載の加工システム。
    The measuring device includes a first measuring device and a second measuring device different from the first measuring device.
    The first measuring device measures the index and
    The processing system according to claim 17, wherein the second measuring device measures the index after moving at least one of the object mounted on the object mounting device and the processing device.
  21.  前記第1計測装置の計測範囲と前記第2計測装置の計測範囲とは異なる
     請求項20に記載の加工システム。
    The processing system according to claim 20, wherein the measurement range of the first measuring device and the measuring range of the second measuring device are different from each other.
  22.  前記加工装置の加工位置と前記指標との位置関係を求める加工位置計測装置をさらに備える
     請求項17から21のいずれか一項に記載の加工システム。
    The machining system according to any one of claims 17 to 21, further comprising a machining position measuring device for obtaining a positional relationship between a machining position of the machining device and the index.
  23.  前記指標に対する前記計測装置の計測位置に関する情報と、前記指標に対する前記加工装置の前記加工位置に関する情報とを用いて前記物体を加工するように前記加工装置および前記変更装置を制御する制御装置をさらに備える
     請求項22に記載の加工システム。
    Further, a control device that controls the processing device and the changing device so as to process the object by using the information regarding the measurement position of the measuring device with respect to the index and the information regarding the processing position of the processing device with respect to the index. The processing system according to claim 22.
  24.  前記加工位置計測装置は、前記指標に形成された開口部を介した前記加工光を受光する
     請求項22又は23に記載の加工システム。
    The processing system according to claim 22 or 23, wherein the processing position measuring device receives the processing light through an opening formed in the index.
  25.  前記物体の第1の側を加工した後に、前記物体載置装置に載置された前記物体と前記加工装置との少なくとも一方を動かして前記第1の側と反対側の第2の側を加工するように前記加工装置および前記変更装置を制御する制御部をさらに備える
     請求項17から24のいずれか一項に記載の加工システム。
    After processing the first side of the object, at least one of the object mounted on the object mounting device and the processing device is moved to process the second side opposite to the first side. The processing system according to any one of claims 17 to 24, further comprising a control unit that controls the processing apparatus and the changing apparatus.
  26.  物体を載置する物体載置装置と、
     前記物体に加工光を照射して前記物体の一部を除去する加工装置と、
     前記一部が除去された前記物体を計測する計測装置と、
     前記計測装置による計測結果を用いて、前記一部が除去された前記物体の変形を求める演算装置と、
     前記演算装置による前記変形に関する情報を用いて、変形した前記物体を加工するように前記加工装置を制御する制御装置と
     を備える加工システム。
    An object mounting device for mounting objects and
    A processing device that irradiates the object with processing light to remove a part of the object,
    A measuring device that measures the object from which the part has been removed, and
    An arithmetic unit that obtains the deformation of the object from which a part of the object has been removed by using the measurement result of the measuring device.
    A processing system including a control device that controls the processing device so as to process the deformed object by using information on the deformation by the arithmetic unit.
  27.  前記物体載置装置は、前記物体載置装置に載置された前記物体に対して、前記物体を保持するための保持力を加えない
     請求項26に記載の加工システム。
    The processing system according to claim 26, wherein the object mounting device does not apply a holding force for holding the object to the object mounted on the object mounting device.
  28.  前記計測装置は、前記加工装置による加工前に前記物体を計測して、第1計測結果を出力し、
     前記一部が除去された前記物体を計測した際の前記計測結果を第2計測結果とするとき、前記演算装置は、前記第1及び第2計測結果を用いて、前記物体の変形を求める
     請求項26又は27に記載の加工システム。
    The measuring device measures the object before processing by the processing device, outputs the first measurement result, and outputs the first measurement result.
    When the measurement result when the object from which the part is removed is used as the second measurement result, the arithmetic unit uses the first and second measurement results to obtain the deformation of the object. Item 26 or 27. The processing system according to item 26 or 27.
  29.  前記計測装置は、前記物体の除去された前記一部と異なる部位を計測する
     請求項26から28のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 26 to 28, wherein the measuring device measures a portion of the object that is different from the removed portion of the object.
  30.  前記制御装置は、前記物体の前記異なる部位を加工するように前記加工装置を制御する
     請求項26から29のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 26 to 29, wherein the control device controls the processing device so as to process the different parts of the object.
  31.  前記制御装置は、前記変形に関する情報および前記物体の設計情報を用いて、前記物体を加工するように前記加工装置を制御する
     請求項26から30のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 26 to 30, wherein the control device controls the processing device so as to process the object by using the information regarding the deformation and the design information of the object.
  32.  前記物体の設計情報は前記物体の寸法を含み、
     前記制御装置は、前記物体が前記寸法となるように前記加工装置を制御して前記物体を加工する
     請求項31に記載の加工システム。
    The design information of the object includes the dimensions of the object.
    The processing system according to claim 31, wherein the control device controls the processing device so that the object has the same dimensions to process the object.
  33.  前記物体の設計情報は前記物体の形状を含み、
     前記制御装置は、前記物体が前記形状となるように前記加工装置を制御して前記物体を加工する
     請求項31又は32に記載の加工システム。
    The design information of the object includes the shape of the object.
    The processing system according to claim 31 or 32, wherein the control device controls the processing device so that the object has the shape, and processes the object.
PCT/JP2020/018256 2020-04-30 2020-04-30 Processing system WO2021220456A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/018256 WO2021220456A1 (en) 2020-04-30 2020-04-30 Processing system
TW110115215A TW202142339A (en) 2020-04-30 2021-04-28 Processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018256 WO2021220456A1 (en) 2020-04-30 2020-04-30 Processing system

Publications (1)

Publication Number Publication Date
WO2021220456A1 true WO2021220456A1 (en) 2021-11-04

Family

ID=78331891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018256 WO2021220456A1 (en) 2020-04-30 2020-04-30 Processing system

Country Status (2)

Country Link
TW (1) TW202142339A (en)
WO (1) WO2021220456A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07266066A (en) * 1994-03-29 1995-10-17 O M C Kk Method for laser machining of work and device therefor
JP2006239765A (en) * 2005-03-07 2006-09-14 Honda Motor Co Ltd Laser beam machining method for interior material
JP2007216379A (en) * 2006-02-13 2007-08-30 Stama Maschinenfabrik Gmbh Machine tool and method for cutting work of a plurality of work pieces, in particular, a plurality of metallic work pieces
JP2013043196A (en) * 2011-08-24 2013-03-04 Mitsubishi Materials Corp Laser beam machining device and laser beam machining method
JP2018008307A (en) * 2016-07-15 2018-01-18 株式会社リコー Optical processing device and manufacturing method of optical workpiece
JP2018094616A (en) * 2016-12-16 2018-06-21 澁谷工業株式会社 Laser processing apparatus and method
JP2019136705A (en) * 2018-02-06 2019-08-22 東レエンジニアリング株式会社 Laser marking apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07266066A (en) * 1994-03-29 1995-10-17 O M C Kk Method for laser machining of work and device therefor
JP2006239765A (en) * 2005-03-07 2006-09-14 Honda Motor Co Ltd Laser beam machining method for interior material
JP2007216379A (en) * 2006-02-13 2007-08-30 Stama Maschinenfabrik Gmbh Machine tool and method for cutting work of a plurality of work pieces, in particular, a plurality of metallic work pieces
JP2013043196A (en) * 2011-08-24 2013-03-04 Mitsubishi Materials Corp Laser beam machining device and laser beam machining method
JP2018008307A (en) * 2016-07-15 2018-01-18 株式会社リコー Optical processing device and manufacturing method of optical workpiece
JP2018094616A (en) * 2016-12-16 2018-06-21 澁谷工業株式会社 Laser processing apparatus and method
JP2019136705A (en) * 2018-02-06 2019-08-22 東レエンジニアリング株式会社 Laser marking apparatus

Also Published As

Publication number Publication date
TW202142339A (en) 2021-11-16

Similar Documents

Publication Publication Date Title
JP3234551B2 (en) Surface roughness measurement method
EP2339331A1 (en) Inspection and positioning systems and methods
KR100928609B1 (en) Probe and shape measuring device for shape measuring device
CA2597891A1 (en) Multi-beam optical probe and system for dimensional measurement
JPWO2020090962A1 (en) Processing system and processing method
JP5700540B2 (en) Optical device and optical measuring device
JP2024096206A (en) Processing system and measurement member
CN113727804A (en) Machining system, machining method, robot system, connecting device, and terminal effector device
WO2021220456A1 (en) Processing system
JPWO2020090961A1 (en) Processing system and processing method
JP7435626B2 (en) Beam processing equipment
CN114258344A (en) Controlled manufacturing system and method
JP2003181672A (en) Method for laser processing
JP5741417B2 (en) Laser processing robot system
US20230166359A1 (en) Processing system
WO2019069926A1 (en) Surface-shape measuring device, surface-shape measuring method, structural-member manufacturing system, structural member manufacturing method, and surface-shape measuring program
EP4414119A1 (en) Processing system
US20230142998A1 (en) Processing apparatus
WO2023032054A1 (en) Movement error calculating system, machine tool, calculating device, calibration method, and optical measuring device
WO2023233514A1 (en) Processing system
JP5221211B2 (en) Shape measuring device
JP3886356B2 (en) Attaching the optical fiber to the light emitting / receiving module
JP2022170955A (en) Tool edge molding device and tool edge molding method
KR20220036095A (en) LASER machining apparatus
TW202035055A (en) Laser machining device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP