WO2021220439A1 - Terminal - Google Patents

Terminal Download PDF

Info

Publication number
WO2021220439A1
WO2021220439A1 PCT/JP2020/018189 JP2020018189W WO2021220439A1 WO 2021220439 A1 WO2021220439 A1 WO 2021220439A1 JP 2020018189 W JP2020018189 W JP 2020018189W WO 2021220439 A1 WO2021220439 A1 WO 2021220439A1
Authority
WO
WIPO (PCT)
Prior art keywords
scell
state
bwp
ccs
dormancy
Prior art date
Application number
PCT/JP2020/018189
Other languages
French (fr)
Japanese (ja)
Inventor
浩樹 原田
尚哉 芝池
聡 永田
ジン ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/018189 priority Critical patent/WO2021220439A1/en
Priority to JP2022518523A priority patent/JPWO2021220439A1/ja
Publication of WO2021220439A1 publication Critical patent/WO2021220439A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present disclosure relates to a terminal that executes wireless communication, particularly a terminal that executes wireless communication using a plurality of component carriers.
  • the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
  • 5G New Radio
  • NG Next Generation
  • Release 15 and Release 16 (NR) of 3GPP specify the operation of multiple frequency ranges, specifically, bands including FR1 (410MHz to 7.125GHz) and FR2 (24.25GHz to 52.6GHz). ..
  • Non-Patent Document 1 studies are underway on NR that supports up to 71 GHz beyond 52.6 GHz.
  • 5G Evolution or 6G aims to support frequency bands above 71GHz.
  • Carrier Aggregation stipulates the number of CCs that can be set. For example, in 3GPP Release 15 and Release 16, the maximum number of CCs that can be set for a terminal (User Equipment, UE) is 16 for downlink (DL) and uplink (UL), respectively.
  • the physical layer (PHY) and medium access control layer (MAC) settings are executed for each CC.
  • DCI Downlink Control Information
  • one downlink control information can be scheduled for only one CC, so a large number of DCIs are required to schedule a large number of CCs.
  • the secondary cell can be set to the dormant state, but when the SCell returns from the dormant state to the non-dormancy state, the SCell is controlled by wireless resources.
  • a specific BWP (Bandwidth part) set by the layer (RRC) is applied (Non-Patent Document 2).
  • a specific BWP is applied to the SCell, so it is applied between multiple CCs that are subject to control using a single DCI.
  • BWP may not match.
  • such a problem is not limited to BWP, but is the same for TCI (Transmission Configuration Indication).
  • the following disclosure was made in view of such a situation, and the purpose is to provide a terminal capable of adapting to the dormant state and the non-sleeping state of SCell even when a plurality of CCs are controlled by using DCI. do.
  • One aspect of the present disclosure is a receiving unit (control signal / reference signal processing unit 240) that receives downlink control information from the network, and a control unit (control unit) that schedules a plurality of component carriers using the downlink control information.
  • the control unit is a terminal (UE200) that determines the active / inactive state of the secondary cell and applies the active / inactive state to the plurality of component carriers in common.
  • One aspect of the present disclosure includes a receiving unit that receives downlink control information from a network, and a control unit (control unit 270) that schedules a plurality of component carriers using the downlink control information. , A terminal that applies the setting state of the reference component carrier included in the plurality of component carriers to other reactivated component carriers.
  • One aspect of the present disclosure includes a receiving unit that receives downlink control information from a network, and a control unit (control unit 270) that schedules a plurality of component carriers using the downlink control information. , A terminal that holds the set state of the component carrier associated with the deactivated secondary cell and applies the held set state to the reactivated component carrier.
  • One aspect of the present disclosure is a receiving unit (control signal / reference signal processing unit 240) that receives downlink control information from the network, and a control unit (control unit) that schedules a plurality of component carriers using the downlink control information.
  • the control unit is a terminal that determines the dormant / non-sleeping state of the secondary cell and applies the dormant / non-sleeping state to the plurality of component carriers in common.
  • One aspect of the present disclosure is a receiving unit (control signal / reference signal processing unit 240) that receives downlink control information from the network, and a control unit (control unit) that schedules a plurality of component carriers using the downlink control information.
  • the control unit is a terminal that applies the setting state of the reference component carrier included in the plurality of component carriers to another component carrier that returns from the dormant state to the non-sleeping state.
  • One aspect of the present disclosure is a receiving unit (control signal / reference signal processing unit 240) that receives downlink control information from the network, and a control unit (control unit) that schedules a plurality of component carriers using the downlink control information. 270), the control unit holds the set state of the component carrier related to the secondary cell that transitions to the dormant state, and holds the component carrier that returns from the dormant state to the non-sleep state. It is a terminal to which the setting state is applied.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • FIG. 4 is a functional block configuration diagram of the UE 200.
  • FIG. 5 is an explanatory diagram of a problem in the case of adapting to SCell activation / deactivation.
  • FIG. 6 is an explanatory diagram of a problem in the case of adapting to SCell activation / deactivation.
  • FIG. 7 is a diagram showing an example of the BWP setting state according to the operation example 1-1.
  • FIG. 8 is a diagram showing a configuration example (part) of a new MAC CE according to operation example 1-1.
  • FIG. 9 is a diagram showing an example of the BWP setting state according to the operation example 1-2.
  • FIG. 10 is a diagram showing an example of the BWP setting state according to the operation example 1-3.
  • FIG. 11 is a diagram showing an example of problem occurrence (No. 1) in the case of adapting to SCell dormancy indication.
  • FIG. 12 is a diagram showing an example of problem occurrence (No. 2) in the case of adapting to SCell dormancy indication.
  • FIG. 13 is a diagram showing an example (No. 1) of the BWP setting state according to the operation example 2-1.
  • FIG. 14 is a diagram showing an example (No. 2) of the BWP setting state according to the operation example 2-1.
  • FIG. 15 is a diagram showing an example of the BWP setting state according to the operation example 2-2.
  • FIG. 16 is a diagram showing an example
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200)).
  • NR 5G New Radio
  • NG-RAN20 Next Generation-Radio Access Network
  • UE200 terminal 200
  • the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
  • NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B).
  • gNB100A radio base station 100A
  • gNB100B radio base station 100B
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • the NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G.
  • NG-RAN20 and 5GC may be simply expressed as "network”.
  • GNB100A and gNB100B are radio base stations that comply with 5G, and execute wireless communication according to UE200 and 5G.
  • the gNB100A, gNB100B and UE200 are Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) that generate more directional beam BM by controlling radio signals transmitted from multiple antenna elements. ) Can be bundled and used for carrier aggregation (CA), and dual connectivity (DC) for simultaneous communication between the UE and each of the two NG-RAN Nodes.
  • Massive MIMO Multiple-Input Multiple-Output
  • CC component carriers
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 10 supports a plurality of frequency ranges (FR).
  • FIG. 2 shows the frequency range used in the wireless communication system 10.
  • the wireless communication system 10 corresponds to FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410 MHz to 7.125 GHz
  • FR2 24.25 GHz to 52.6 GHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 has a higher frequency than FR1
  • SCS 60 or 120kHz (240kHz may be included)
  • BW bandwidth
  • SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 corresponds to a frequency band exceeding 52.6 GHz and up to 71 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT- Discrete Fourier Transform-Spread
  • SCS Sub-Carrier Spacing
  • FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • the SCS is not limited to the interval (frequency) shown in FIG. For example, 480kHz, 960kHz and the like may be used.
  • the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols).
  • the number of slots per subframe may vary from SCS to SCS.
  • the time direction (t) shown in FIG. 3 may be referred to as a time domain, a symbol period, a symbol time, or the like.
  • the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a bandwidth part (BWP), or the like.
  • BWP may be interpreted as a continuous set of PRBs (Physical Resource Blocks) selected from a continuous subset of common resource blocks for a given numerology on a given carrier.
  • PRBs Physical Resource Blocks
  • the BWP information (bandwidth, frequency position, subcarrier spacing (SCS)) that the UE200 should use for wireless communication can be set in the UE200 using signaling from the upper layer (eg, the radio resource control layer (RRC)).
  • RRC radio resource control layer
  • a different BWP may be set for each UE200 (terminal).
  • the BWP may be changed by higher layer signaling or lower layer (specifically, physical layer (L1) signaling (such as DCI described later)). ..
  • the wireless communication system 10 may support a large number of CCs for CA in order to achieve higher throughput. For example, if the maximum bandwidth of CCs is 400MHz, FR2x, specifically, up to 32 CCs can be placed in the frequency band of 57GHz to 71GHz. The maximum number of CCs to be set may exceed 32 or may be less than that.
  • the wireless communication system 10 may support dynamic BWP switching (switching) of a plurality of CCs via one downlink control information (DCI). That is, in the wireless communication system 10, a single DCI can be used to schedule a plurality of CCs. The details of dynamic BWP switching using a single DCI will be described later.
  • DCI downlink control information
  • the wireless communication system 10 may support switching of transmission setting display (TCI: Transmission Configuration Indication) states of a plurality of CCs via one downlink control information (DCI). That is, in the wireless communication system 10, a single DCI can be used to schedule a plurality of CCs. The details of TCI switching using a single DCI will be described later.
  • TCI Transmission Configuration Indication
  • TCI may be specified by the parameters of the upper layer (for example, the field of tci-PresentInDCI).
  • the tci-PresentInDCI may indicate whether the TCI field is present in the DL-related DCI.
  • the UE200 may consider the TCI to be absent or invalid if the TCI field does not exist.
  • the network can effectively set the TCI field for CORESET (control resource sets) used for cross-carrier scheduling in the scheduling cell.
  • the TCI provides information on pseudo-collocation (QCL: Quasi Co-Location) of an antenna port for PDCCH (Physical Downlink Control Channel), for example.
  • a QCL is, for example, when the characteristics of the channel on which the symbol on one antenna port is carried can be inferred from the channel on which the symbol on the other antenna port is carried, the two antenna ports are in pseudo-same location. It may be interpreted as being.
  • DCI may contain the following information.
  • DCI schedules downlink data channel (eg PDSCH (Physical Downlink Shared Channel)) or uplink data channel (eg PUSCH (Physical Uplink Shared Channel)). It may be interpreted as a set of information that can be used. Such a DCI may be specifically referred to as a scheduling DCI.
  • the secondary cell can be activated and deactivated (activation / deactivation).
  • SCell activation / deactivation is specified in Chapter 5.9 of 3GPP TS 38.321.
  • the SCell can be set to the dormancy state.
  • SCelldormancy indication is specified in Release-16 of 3GPP, and realizes efficient and low-delay SCell dormant (sleeping) / non-dormant state layer 1 (L1) display.
  • SCell dormancy indication is specified in Chapter 10.3 of 3GPP TS38.213.
  • FIG. 4 is a functional block configuration diagram of the UE 200.
  • the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
  • the wireless signal transmitter / receiver 210 transmits / receives a wireless signal according to NR.
  • the radio signal transmission / reception unit 210 corresponds to Massive MIMO, a CA that bundles and uses a plurality of CCs, and a DC that simultaneously communicates between a UE and each of two NG-RAN Nodes.
  • the amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like.
  • the amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
  • the modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100A or other gNB).
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) may be applied to the modulation / demodulation unit 230. Further, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
  • the control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
  • control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100A via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB100A via a predetermined control channel.
  • a predetermined control channel for example, control signals of the radio resource control layer (RRC).
  • RRC radio resource control layer
  • the control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signal
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • DMRS is a known reference signal (pilot signal) between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
  • the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), PositioningReferenceSignal (PRS) for position information, and the like. ..
  • CSI-RS ChannelStateInformation-ReferenceSignal
  • SRS SoundingReferenceSignal
  • PRS PositioningReferenceSignal
  • control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel, Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI)), and Physical. Broadcast Channel (PBCH) etc. are included.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • DCI Downlink Control Information
  • PBCH Broadcast Channel
  • Data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data means data transmitted over a data channel.
  • the data channel may be read as a shared channel.
  • control signal / reference signal processing unit 240 receives downlink control information (DCI) from the network.
  • DCI downlink control information
  • control signal / reference signal processing unit 240 constitutes a receiving unit.
  • control signal / reference signal processing unit 240 can receive a plurality of types (formats) of DCI including scheduling DCI.
  • the DCI format may include PUSCH, PDSCH scheduling, slot format, TPC (Transmit Power Control) command for PUCCH, PUSCH, and the like. More specifically, the DCI format specified in Chapter 7.3.1 of 3GPP TS38.212 may be targeted.
  • the coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100A or other gNB).
  • the coding / decoding unit 250 divides the data output from the data transmitting / receiving unit 260 into a predetermined size, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
  • the data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU).
  • the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a wireless link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble.
  • the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
  • the control unit 270 controls each functional block constituting the UE 200.
  • the control unit 270 can schedule a plurality of component carriers (CCs) using DCI.
  • CCs component carriers
  • the wireless communication system 10 can support dynamic BWP switching of a plurality of CCs via one downlink control information (DCI).
  • DCI downlink control information
  • the control unit 270 schedules a plurality of CCs using one (single) DCI received via the control signal / reference signal processing unit 240. good. That is, the control unit 270 can apply the BWP information indicated by DCI to a plurality of CCs.
  • the wireless communication system 10 can support switching of TCIs of a plurality of CCs via one downlink control information (DCI).
  • the control unit 270 may schedule a plurality of CCs using one (single) DCI received via the control signal / reference signal processing unit 240. That is, the control unit 270 can apply the TCI information indicated by DCI to a plurality of CCs.
  • control unit 270 can determine the active / inactive state (activation / deactivation) of the secondary cell (SCell).
  • SCell activation / deactivation is specified in Chapter 5.9 of 3GPP TS38.321.
  • SCellactivation / deactivation can be controlled by the network sending an SCell Activation / Deactivation MAC CE to the UE200.
  • the SCell can form a serving cell together with the primary cell (PCell, PSCell (Primary SCell) may be included).
  • a serving cell may simply be interpreted as a cell to which the UE200 is connected, but more strictly speaking, in the case of an RRC_CONNECTED UE with no carrier aggregation (CA) set, only one serving cell constitutes the primary cell. It may be.
  • CA carrier aggregation
  • the serving cell may be interpreted to represent a set of one or more cells including the primary cell and all secondary cells.
  • the control unit 270 can apply the active / inactive state of the SCell to the above-mentioned multiple CCs in common. That is, the control unit 270 can apply the active / inactive state of a common SCell to a plurality of CCs controlled by one DCI.
  • the control unit 270 has the same active / inactive state of the SCell, that is, an active state or an inactive state for the plurality of CCs. Can be assumed.
  • control unit 270 may apply the setting state of the reference component carrier (reference CC) included in the plurality of CCs to other reactivated component carriers.
  • control unit 270 can apply the setting state of reference CC (setting related to BWP and / or TCI, etc.) to other CCs included in the plurality of CCs.
  • the selection criteria for reference CC will be described later.
  • control unit 270 may hold the CC setting state related to the deactivated SCell. Specifically, the control unit 270 can hold the setting state (setting related to BWP and / or TCI, etc.) of the CC related to the deactivated SCell among the plurality of CCs.
  • the term "retention" as used herein may mean that information on the set state is stored in a storage device or storage medium inside or outside the UE 200.
  • the control unit 270 may apply the held setting state to the CC that has been reactivated after being deactivated. Specifically, the control unit 270 may hold the set state for each CC, and applies the set state of the held CC to the reactivated CC.
  • the SCell can be set to a dormant state (dormancy) or a non-dormancy state (non-dormancy).
  • SCell dormancy indication is specified in Chapter 10.3 of 3GPP TS38.213 and Chapter 7.3.1.3.7 of 3GPP TS38.212.
  • SCelldormancy indication can be specified together with Wake-up indication by the parameters (PS-RNTI, dci-Format2-6) of the upper layer (RRC).
  • DCI Format 2_6 notifies information about power saving outside the DRX (Discontinuous Reception) active time of one or more UEs.
  • the dormancy state of the SCell may be interpreted as the state in which the UE200 does not have to monitor the PDCCH, and the non-dormancy state of the SCell may be interpreted as the state in which the UE200 monitors the PDCCH.
  • the control unit 270 can determine the dormant / non-diapause state of the SCell.
  • the control unit 270 can commonly apply the dormant state (dormancy) / non-dormancy state (non-dormancy) of the SCell to the above-mentioned plurality of CCs. That is, the control unit 270 can apply a common SCell dormant / non-diapause state to a plurality of CCs controlled by one DCI.
  • the control unit 270 has the same dormant / non-diapause state of the SCell, that is, a dormant state or a non-sleeping state. Can be assumed.
  • control unit 270 may apply the setting state of the reference component carrier included in the plurality of CCs to another component carrier that returns from the dormant state to the non-sleeping state.
  • control unit 270 can apply the setting state of the reference CC (settings related to BWP and / or TCI, etc.) to other CCs included in the plurality of CCs in the same manner as the above-mentioned SCell activation / deactivation.
  • control unit 270 may hold the CC setting state related to the SCell that transitions to the dormant state. Specifically, the control unit 270 can hold the setting state (setting related to BWP and / or TCI, etc.) of the CC related to the SCell transitioning to the dormant state among the plurality of CCs.
  • the control unit 270 may apply the held setting state to the CC that returns from the dormant state to the non-sleeping state. Specifically, the control unit 270 may hold the set state for each CC, and applies the set state of the held CC to the CC that returns to the non-dormant state.
  • the wireless communication system 10 corresponds to the frequency band (FR2x) exceeding 52.6 GHz and up to 71 GHz as described above.
  • High frequency bands such as FR2x are essentially different from FR1 and FR2 in the following respects.
  • CA carrier aggregation
  • the maximum number of CCs that can be set for UE200 is 16 for DL and UL, respectively (Chapter 5.4.1 of 3GPP 38.300).
  • the physical layer (L1, PHY) and medium access control layer (MAC) settings are executed for each CC.
  • L1, PHY physical layer
  • MAC medium access control layer
  • 3GPP Release-15,16 one DCI can schedule only one CC, so a large number of DCIs are required to schedule a large number of CCs.
  • the capacity of PDCCH can be tight.
  • one transport block can only be transmitted by one CC (that is, one TB cannot be mapped to multiple CCs), and many CCs have many Hybrid Automatic repeat requests. (HARQ) Acknowledgement (ACK) bit is required.
  • HARQ Hybrid Automatic repeat requests.
  • ACK Acknowledgement
  • BWP switching is also executed for each CC. For example, if it is necessary to change the SCS for multiple CCs according to service requirements (delay, etc.), a separate display is required for each CC.
  • beam management (TCI status display) is also executed for each CC.
  • one MAC-CE can update / activate the TCI state of a plurality of CCs, but one DCI can update only the TCI state of one CC.
  • BWP and / or TCI information is applied to a plurality of CCs based on a single DCI.
  • the SCell is deactivated before the UE200 receives the SCell Activation / Deactivation MAC CE, the upper layer parameters firstActiveDownlinkBWP-Id and DLBWP and ULBWP indicated by the firstActiveUplinkBWP-Id will be activated ( See Chapter 5.9 of 3GPP TS38.321). That is, in order to change the SCell from the inactive state to the active state, activate firstActiveDownlinkBWP-Id and firstActiveUplinkBWP-Id.
  • the field of BWP indicator included in DCI may be determined by signaling (BandwidthPart-Config) of the upper layer, and BWP can be applied to a group (or subgroup) of multiple CCs by BWP indicator.
  • the network specifically, gNB
  • UE when scheduling, TCI state, BWP switching or HARQ-ACK feedback, etc. are controlled by a single DCI, the network (specifically, gNB) and UE always operate in the same active BWP. It is desirable to do. Moreover, such a problem is not limited to BWP, but is the same for TCI.
  • FIG. 5 and 6 are explanatory diagrams of problems in adapting to SCell activation / deactivation.
  • FIG. 5 shows a plurality of BWPs (# 1, 2, 3) having different contents, and one of these BWPs (DL BWPs), that is, the same BWP is applied to a plurality of CCs. Will be done. That is, the BWP specified by a single DCI is applied to multiple CCs (here, firstActiveDownlinkBWP-Id is BWP # 1 and ULBWP is the same).
  • a single DCI is applied to multiple CCs (# 1, 2, 3), but CC # 2 is subject to SCell activation / deactivation, is deactivated, and then When reactivated, if BWP switching is performed during this time, it is unclear which BWP should be applied to CC # 2 to be reactivated. According to firstActiveDownlinkBWP-Id, it becomes BWP # 1, but in this case, the BWP applied to multiple CCs (# 1, 2, 3) does not match.
  • Operation example 1 (3.2.2) Operation example 1 (3.2.2.1) Operation example 1-1
  • the UE 200 can apply the active / inactive state of the SCell to the above-mentioned plurality of CCs in common.
  • FIG. 7 shows an example of the BWP setting state according to the operation example 1-1.
  • the active / inactive state is common for a plurality of CCs (SCells) belonging to the same group (subgroup).
  • CC # 1, 2, and 3 may be deactivated at the same time, that is, at the same timing, and reactivated at the same time.
  • a new MAC CE may be defined and the UE 200 may be instructed to activate or deactivate in units of groups belonging to the SCell.
  • the UE 200 may not expect the group to which the SCell belongs to receive an activation or deactivation instruction of the SCell different from the existing SCell Activation / Deactivation MAC CE.
  • the UE200 when the UE200 receives the SCell Activation / Deactivation MAC CE targeting a specific SCell belonging to the group by the SCell Activation / Deactivation MAC CE, the setting for the group is permitted by the signaling of the upper layer (RRC). If so, the SCell Activation / Deactivation MAC CE may be applied to all SCells (CCs) in the group.
  • RRC upper layer
  • the sCellDeactivationTimer used to deactivate the SCell may be set and maintained for each group. Also, in this operation example, since PCell / PSCell cannot be deactivated (because sCellDeactivationTimer is not configured for PUCCHPCell), a group (subgroup) that does not include PCell / PSCell (and / or PUCCHSCell). May be applied as a target.
  • the new MAC CE described above may have the same configuration as the existing SCell Activation / Deactivation MAC CE. However, a new Logical Channel ID (LCID) for the new MAC CE may be set.
  • LCID Logical Channel ID
  • FIG. 8 shows a configuration example (part) of a new MAC CE according to operation example 1-1. Specifically, FIG. 8 shows an example in which eight groups (C_0 to C_7) are configured. For example, in the case of 16 groups, 2 octets of MAC CE may be used.
  • the sCellDeactivationTimer may be set and managed for each group. For all SCells belonging to a group, if the MAC PDU is sent by a configured ULgrant or received by a configured DL resource allocation, the UE200 may restart the sCellDeactivationTimer associated with that group. ..
  • the UE 200 can apply the setting state of the reference component carrier (reference CC) included in the plurality of CCs to other reactivated component carriers.
  • reference CC reference component carrier
  • any CC included in the group may be predefined and set as a reference CC based on a predetermined rule.
  • SCell a CC included in the same group
  • the UE200 applies all the settings of the reference CC in the group (such as settings related to BWP and / or TCI) to the CC to be reactivated. good.
  • FIG. 9 shows an example of the BWP setting state according to the operation example 1-2.
  • CC # 2 is the target of SCell activation / deactivation, as in FIG.
  • CC # 1 is the reference CC, and after reactivation, the CC # 1 setting (BWP # 3) is applied to all CCs.
  • the reference CC may be selected from PCell, PSCell, the cell with the smallest cell index in the group or PUCCH Cell, or any cell set by the upper layer (RRC).
  • the UE200 only needs to monitor the DCI applied to the DL reference CC, and a single DCI applied to multiple CCs can be used to reduce blind decoding (BD).
  • BD blind decoding
  • the DL reference CC and the UL reference CC may be set separately.
  • the UE 200 may report uplink control information (UCI) via PUCCH / PUSCH on UL reference CC.
  • UCI uplink control information
  • the reference CC setting may be applied to all groups (or subgroups) regardless of whether PCell / PSCell / PUCCHCell is included in the group.
  • the upper layer targets multiple CCs controlled by a single DCI, and the specific BWP and / or TCI state is set as the reference BWP / TCI state, and the active BWP. And / or may be set as a TCI state.
  • the reference BWP / TCI state may be applied to all CCs in the same group (subgroup).
  • Operation example 1-3 the UE 200 holds the CC setting state related to the deactivated SCell, and can apply the held setting state to the reactivated CC.
  • the UE200 when controlling multiple CCs with a single DCI, the UE200 will set the BWP and / or TCI (which may contain other configuration information) per CC when the SCell is deactivated. Can be held in.
  • the UE 200 may apply the setting state of the CC held to the CC associated with the reactivated SCell. Specifically, the UE200 retains (remembers) the reactivated SCell (and associated CC) instead of applying the firstActiveDownlinkBWP-Id and firstActiveUplinkBWP-Id settings and the CC.
  • the existing BWP and / or TCI state (which may include other configuration information) may be applied.
  • FIG. 10 shows an example of the BWP setting state according to the operation example 1-3.
  • CC # 2 is the target of SCell activation / deactivation, as in FIG.
  • the BWP setting state (BWP # 2) at the time when CC # 2 (and related SCell) is deactivated is held by the UE200 (see (M: # 2) in the figure).
  • BWP switching is executed and active BWP (may be called activate BWP) is switched to BWP # 3, but UE200 also changes the setting state of BWP applied to CC # 2 to BWP # 3 (Fig.) (See (M: # 3) inside) and keep holding.
  • UE200 can apply the retained BWP # 3 to CC # 2.
  • the BWP applied to multiple CCs associated with the SCell may differ from the BWP applied to one or more CCs associated with the other SCell and controlled by the same (single) DCI. .. Therefore, as with SCell activation / deactivation according to operation example 1, the problem that BWP applied to multiple CCs (# 1, 2, 3) does not match is the transition between dormancy / non-dormancy of SCell (hereinafter, It also exists in SCell dormancy indication).
  • the BWP (and TCI) mismatch associated with SCell activation / deactivation and the BWP (and TCI) mismatch associated with SCell dormancy indication may occur at the same time.
  • FIGS. 11 and 12 show an example of the occurrence of a problem when applying to SCell dormancy indication.
  • the problem is how to control by a single DCI.
  • the active BWP applied to multiple CCs belonging to the same group may not be the same when returning from dormancy to non-dormancy (see CC # 3).
  • the first-non-dormant-BWP-ID-xxx may be notified to the UE 200 by the upper layer (RRC).
  • FIG. 12 shows an example in which CC # 2 is the target of SCell activation / deactivation and CC # 3 is the target of SCell dormancy indication.
  • Operation example 2 An operation example of UE200 applicable to SCelldormancy indication will be described below. Since the operation examples 2-1 to 2-3 correspond to the above-mentioned operation examples 1-1 to 1-3, the description thereof will be omitted as appropriate for the same parts.
  • a common (that is, the same) dormant state (dormancy) and / or non-dormancy state (non-dormancy) may be applied to a plurality of CCs belonging to a group (subgroup).
  • the "SCell group" set for the SCell dormancy indication is preferably the same as the group composed of multiple CCs. Therefore, a single dormancy or non-dormancy state may be applied to the SCell group.
  • the UE200 may not expect the SCell group (or subgroup) to be notified of a different SCell dormancy indication.
  • the SCell dormancy indication is given if the setting for the group is permitted by the signaling of the upper layer (RRC). , May be applied to all SCells (CCs) in the group.
  • dormancy / non-dormancy may be applied only to any state (SCell dormancy indication) such as both at the same time or only non-dormancy.
  • this operation example cannot be applied to PCell / PSCell / PUCCH SCell in the non-diapause state, it may be applied only to the group (subgroup) that does not include PCell / PSCell / PUCCH SCell.
  • FIG. 13 and 14 show an example of the BWP setting state according to the operation example 2-1. Specifically, FIG. 13 shows an operation example in which both a dormant state (dormancy) and a non-dormancy state (non-dormancy) are common among a plurality of CCs.
  • FIG. 14 shows an operation example in which only the non-dormancy state is common among a plurality of CCs. As shown in FIG. 14, the timing of transition to dormancy does not match (not common) between CC # 1, 2, and 3, but the timing of transition (return) to non-dormancy does match.
  • Operation example 2-2 the UE 200 can apply the setting state of the reference component carrier (reference CC) included in the plurality of CCs to other component carriers that return from the dormant state to the non-sleeping state.
  • reference CC reference component carrier
  • any CC included in the group may be predefined and set as a reference CC based on a predetermined rule.
  • the UE200 sets all the settings of the reference CC in the group (such as settings related to BWP and / or TCI) to the non-dormancy state. May be applied to.
  • FIG. 15 shows an example of the BWP setting state according to the operation example 2-2.
  • CC # 2 is the target of SCell dormancy indication.
  • CC # 1 is reference CC, and after returning to the non-dormancy state, the setting of CC # 1 (BWP # 3) is applied to all CCs.
  • the reference CC may be selected from PCell, PSCell, the cell having the smallest cell index in the group or PUCCH Cell, or any cell set by the upper layer (RRC), as in operation example 1. ..
  • the UE200 only needs to monitor the DCI applied to the DL reference CC, and a single DCI applied to multiple CCs can be used to reduce blind decoding (BD).
  • BD blind decoding
  • the DL reference CC and the UL reference CC may be set separately.
  • the UE 200 may report ULreference CC by uplink control information (UCI) via PUCCH / PUSCH.
  • UCI uplink control information
  • the reference CC setting may be applied to all groups (or subgroups) regardless of whether PCell / PSCell / PUCCHCell is included in the group.
  • the upper layer targets multiple CCs controlled by a single DCI, and the specific BWP and / or TCI state is set as the reference BWP / TCI state, and the active BWP. And / or may be set as a TCI state.
  • the reference BWP / TCI state may be applied to all CCs in the same group (subgroup).
  • Operation example 2-3 In this operation example, the UE 200 holds the CC setting state related to the SCell that has transitioned to the dormant state, and the held setting state can be applied to the CC that has returned to the non-sleeping state.
  • the UE200 when controlling multiple CCs with a single DCI, the UE200 retains the configuration status for BWP and / or TCI (which may include other configuration information) for each CC when the SCell transitions to dormancy. can do.
  • the UE200 may apply the setting state of the CC held to the CC associated with the SCell that returns to non-dormancy. Specifically, the UE200 holds for the SCell (and associated CC) that returns to non-dormancy instead of applying the first-non-dormant-BWP-ID-xxx setting and the CC.
  • the (stored) BWP and / or TCI state (which may include other configuration information) may be applied.
  • the following action / effect can be obtained.
  • the UE 200 can determine the active / inactive state of the SCell and apply the determined active / inactive state to a plurality of CCs controlled by a single DCI in common.
  • the UE200 can also apply the setting state of the reference CC included in the multiple CCs to other reactivated CCs.
  • the UE200 holds the setting state of the CC related to the deactivated SCell, and can apply the held setting state to the reactivated CC.
  • UE200 can adapt to SCell activation / deactivation even when controlling multiple CCs using DCI.
  • the UE200 can determine the dormant / non-diapause state of the SCell and apply the determined dormant / non-diapause state to a plurality of CCs controlled by a single DCI in common.
  • the UE200 can also apply the setting state of the reference CC included in the plurality of CCs to other CCs that return to the non-sleeping state.
  • the UE200 holds the setting state of the CC related to the SCell that transitions to the dormant state, and can apply the held setting state to the CC that returns to the non-sleeping state.
  • UE200 can adapt to SCelldormancy indication even when controlling multiple CCs using DCI.
  • the use of a high frequency band such as FR2x was assumed, but the use of such a high frequency band is not always necessary. That is, even when FR1 or FR2 is used, the BWP information represented by a single DCI as described above may be applied to a plurality of CCs in common.
  • a plurality of CCs may be scheduled separately for Primary Component Carrier (PCC) and Secondary Component Carrier (SCC).
  • PCC Primary Component Carrier
  • SCC Secondary Component Carrier
  • each functional block is realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block (constituent unit) for functioning transmission is called a transmitting unit or a transmitter.
  • the method of realizing each of them is not particularly limited.
  • FIG. 16 is a diagram showing an example of the hardware configuration of the UE 200.
  • the UE 200 may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the UE200 (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function in the UE 200 is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory 1002 and the memory 1002. It is realized by controlling at least one of reading and writing of data in the storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node.
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website that uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception.
  • SCS SubCarrier Spacing
  • TTI transmission time interval
  • At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be in numerology-based time units.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain.
  • the mini-slot may also be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
  • Physical RB Physical RB: PRB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common RBs (common resource blocks) for a neurology in a carrier. good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, minislots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain.
  • Electromagnetic energy with wavelengths in the microwave and light (both visible and invisible) regions, etc. can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS) and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot pilot
  • references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • Accessing (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
  • judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Radio communication system 20 NG-RAN 100A, 100B gNB UE 200 210 Radio signal transmission / reception unit 220 Amplifier unit 230 Modulation / demodulation unit 240 Control signal / reference signal processing unit 250 Coding / decoding unit 260 Data transmission / reception unit 270 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal receives downlink control information from a network and uses the downlink control information to schedule a plurality of component carriers. The terminal determines a dormancy/non-dormancy state of a secondary cell, and commonly applies the dormancy/non-dormancy state to the plurality of component carriers.

Description

端末Terminal
 本開示は、無線通信を実行する端末、特に、複数のコンポーネントキャリアを用いて無線通信を実行する端末に関する。 The present disclosure relates to a terminal that executes wireless communication, particularly a terminal that executes wireless communication using a plurality of component carriers.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
 3GPPのRelease 15及びRelease 16(NR)では、複数の周波数レンジ、具体的には、FR1(410 MHz~7.125 GHz)及びFR2(24.25 GHz~52.6 GHz)を含む帯域の動作が仕様化されている。 Release 15 and Release 16 (NR) of 3GPP specify the operation of multiple frequency ranges, specifically, bands including FR1 (410MHz to 7.125GHz) and FR2 (24.25GHz to 52.6GHz). ..
 また、52.6GHzを超え、71GHzまでをサポートするNRについても検討が進められている(非特許文献1)。さらに、Beyond 5G、5G Evolution或いは6G(Release-18以降)は、71GHzを超える周波数帯もサポートすることを目標としている。 In addition, studies are underway on NR that supports up to 71 GHz beyond 52.6 GHz (Non-Patent Document 1). In addition, Beyond 5G, 5G Evolution or 6G (Release-18 or later) aims to support frequency bands above 71GHz.
 使用可能な周波数帯が拡張されると、より多くのコンポーネントキャリア(CC)が設定される可能性が高まると想定される。 It is expected that as the usable frequency band is expanded, the possibility that more component carriers (CC) will be set will increase.
 キャリアアグリゲーション(CA)では、設定できるCC数が規定されている。例えば、3GPPのRelease 15及びRelease 16では、端末(User Equipment, UE)に対して設定できるCCの最大数は、下りリンク(DL)及び上りリンク(UL)において、それぞれ16個である。 Carrier Aggregation (CA) stipulates the number of CCs that can be set. For example, in 3GPP Release 15 and Release 16, the maximum number of CCs that can be set for a terminal (User Equipment, UE) is 16 for downlink (DL) and uplink (UL), respectively.
 一方、物理レイヤ(PHY)及び媒体アクセス制御レイヤ(MAC)の設定は、CC毎に実行される。例えば、一つの下りリンク制御情報(DCI:Downlink Control Information)は、一つのCCのみスケジューリングすることができるため、多数のCCをスケジューリングするためには、多数のDCIが必要となる。 On the other hand, the physical layer (PHY) and medium access control layer (MAC) settings are executed for each CC. For example, one downlink control information (DCI: Downlink Control Information) can be scheduled for only one CC, so a large number of DCIs are required to schedule a large number of CCs.
 また、3GPPのRelease 16では、セカンダリーセル(SCell)を休眠(dormancy)状態に設定可能だが、SCellが休眠状態から非休眠(non-dormancy)状態に復帰する場合、当該SCellには、無線リソース制御レイヤ(RRC)によって設定された特定のBWP(Bandwidth part)が適用される(非特許文献2)。 Also, in 3GPP Release 16, the secondary cell (SCell) can be set to the dormant state, but when the SCell returns from the dormant state to the non-dormancy state, the SCell is controlled by wireless resources. A specific BWP (Bandwidth part) set by the layer (RRC) is applied (Non-Patent Document 2).
 上述したような状況を考慮すると、単一のDCIを用いて複数のCCを制御することが考えられる。 Considering the above situation, it is conceivable to control multiple CCs using a single DCI.
 しかしながら、このような場合において、SCellが休眠状態に遷移し、その後、非休眠状態に復帰すると、当該複数のCCのうちの一部のCCのみが休眠状態に遷移し、その後、非休眠状態に復帰することが発生し得る。 However, in such a case, when the SCell transitions to the dormant state and then returns to the non-sleeping state, only a part of the CCs among the plurality of CCs transitions to the dormant state, and then becomes the non-sleeping state. It can happen to come back.
 上述したように、SCellが休眠状態から非休眠状態に復帰する場合、当該SCellには特定のBWPが適用されるため、単一のDCIを用いた制御の対象となる複数のCC間に適用されるBWPが一致しない可能性がある。また、このような問題は、BWPに限らず、TCI(Transmission Configuration Indication)についても同様である。 As mentioned above, when a SCell returns from a dormant state to a non-dormant state, a specific BWP is applied to the SCell, so it is applied between multiple CCs that are subject to control using a single DCI. BWP may not match. Moreover, such a problem is not limited to BWP, but is the same for TCI (Transmission Configuration Indication).
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、DCIを用いて複数のCCを制御する場合でも、SCellの休眠状態及び非休眠状態に適応できる端末の提供を目的とする。 Therefore, the following disclosure was made in view of such a situation, and the purpose is to provide a terminal capable of adapting to the dormant state and the non-sleeping state of SCell even when a plurality of CCs are controlled by using DCI. do.
 本開示の一態様は、ネットワークから下りリンク制御情報を受信する受信部(制御信号・参照信号処理部240)と、前記下りリンク制御情報を用いて複数のコンポーネントキャリアをスケジューリングする制御部(制御部270)とを備え、前記制御部は、セカンダリーセルのアクティブ/非アクティブ状態をを判定し、前記アクティブ/非アクティブ状態を前記複数のコンポーネントキャリアに共通に適用する端末(UE200)である。 One aspect of the present disclosure is a receiving unit (control signal / reference signal processing unit 240) that receives downlink control information from the network, and a control unit (control unit) that schedules a plurality of component carriers using the downlink control information. The control unit is a terminal (UE200) that determines the active / inactive state of the secondary cell and applies the active / inactive state to the plurality of component carriers in common.
 本開示の一態様は、ネットワークから下りリンク制御情報を受信する受信部と、前記下りリンク制御情報を用いて複数のコンポーネントキャリアをスケジューリングする制御部(制御部270)とを備え、前記制御部は、前記複数のコンポーネントキャリアに含まれる参照コンポーネントキャリアの設定状態を、再アクティブ化された他のコンポーネントキャリアに適用する端末。 One aspect of the present disclosure includes a receiving unit that receives downlink control information from a network, and a control unit (control unit 270) that schedules a plurality of component carriers using the downlink control information. , A terminal that applies the setting state of the reference component carrier included in the plurality of component carriers to other reactivated component carriers.
 本開示の一態様は、ネットワークから下りリンク制御情報を受信する受信部と、前記下りリンク制御情報を用いて複数のコンポーネントキャリアをスケジューリングする制御部(制御部270)とを備え、前記制御部は、非アクティブ化されたセカンダリーセルに関連するコンポーネントキャリアの設定状態を保持し、再アクティブ化された前記コンポーネントキャリアに対して、保持している前記設定状態を適用する端末である。 One aspect of the present disclosure includes a receiving unit that receives downlink control information from a network, and a control unit (control unit 270) that schedules a plurality of component carriers using the downlink control information. , A terminal that holds the set state of the component carrier associated with the deactivated secondary cell and applies the held set state to the reactivated component carrier.
 本開示の一態様は、ネットワークから下りリンク制御情報を受信する受信部(制御信号・参照信号処理部240)と、前記下りリンク制御情報を用いて複数のコンポーネントキャリアをスケジューリングする制御部(制御部270)とを備え、前記制御部は、セカンダリーセルの休眠/非休眠状態を判定し、前記休眠/非休眠状態を前記複数のコンポーネントキャリアに共通に適用する端末である。 One aspect of the present disclosure is a receiving unit (control signal / reference signal processing unit 240) that receives downlink control information from the network, and a control unit (control unit) that schedules a plurality of component carriers using the downlink control information. The control unit is a terminal that determines the dormant / non-sleeping state of the secondary cell and applies the dormant / non-sleeping state to the plurality of component carriers in common.
 本開示の一態様は、ネットワークから下りリンク制御情報を受信する受信部(制御信号・参照信号処理部240)と、前記下りリンク制御情報を用いて複数のコンポーネントキャリアをスケジューリングする制御部(制御部270)とを備え、前記制御部は、前記複数のコンポーネントキャリアに含まれる参照コンポーネントキャリアの設定状態を、休眠状態から非休眠状態に復帰する他のコンポーネントキャリアに適用する端末である。 One aspect of the present disclosure is a receiving unit (control signal / reference signal processing unit 240) that receives downlink control information from the network, and a control unit (control unit) that schedules a plurality of component carriers using the downlink control information. The control unit is a terminal that applies the setting state of the reference component carrier included in the plurality of component carriers to another component carrier that returns from the dormant state to the non-sleeping state.
 本開示の一態様は、ネットワークから下りリンク制御情報を受信する受信部(制御信号・参照信号処理部240)と、前記下りリンク制御情報を用いて複数のコンポーネントキャリアをスケジューリングする制御部(制御部270)とを備え、前記制御部は、休眠状態に遷移するセカンダリーセルに関連するコンポーネントキャリアの設定状態を保持し、休眠状態から非休眠状態に復帰する前記コンポーネントキャリアに対して、保持している前記設定状態を適用する端末である。 One aspect of the present disclosure is a receiving unit (control signal / reference signal processing unit 240) that receives downlink control information from the network, and a control unit (control unit) that schedules a plurality of component carriers using the downlink control information. 270), the control unit holds the set state of the component carrier related to the secondary cell that transitions to the dormant state, and holds the component carrier that returns from the dormant state to the non-sleep state. It is a terminal to which the setting state is applied.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10. 図2は、無線通信システム10において用いられる周波数レンジを示す図である。FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10. 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10. 図4は、UE200の機能ブロック構成図である。FIG. 4 is a functional block configuration diagram of the UE 200. 図5は、SCellactivation/deactivationに適応する場合における問題の説明図である。FIG. 5 is an explanatory diagram of a problem in the case of adapting to SCell activation / deactivation. 図6は、SCellactivation/deactivationに適応する場合における問題の説明図である。FIG. 6 is an explanatory diagram of a problem in the case of adapting to SCell activation / deactivation. 図7は、動作例1-1に係るBWPの設定状態の例を示す図である。FIG. 7 is a diagram showing an example of the BWP setting state according to the operation example 1-1. 図8は、動作例1-1に係る新たなMAC CEの構成例(一部)を示す図である。FIG. 8 is a diagram showing a configuration example (part) of a new MAC CE according to operation example 1-1. 図9は、動作例1-2に係るBWPの設定状態の例を示す図である。FIG. 9 is a diagram showing an example of the BWP setting state according to the operation example 1-2. 図10は、動作例1-3に係るBWPの設定状態の例を示す図である。FIG. 10 is a diagram showing an example of the BWP setting state according to the operation example 1-3. 図11は、SCell dormancy indicationに適応する場合における問題の発生例(その1)を示す図である。FIG. 11 is a diagram showing an example of problem occurrence (No. 1) in the case of adapting to SCell dormancy indication. 図12は、SCell dormancy indicationに適応する場合における問題の発生例(その2)を示す図である。FIG. 12 is a diagram showing an example of problem occurrence (No. 2) in the case of adapting to SCell dormancy indication. 図13は、動作例2-1に係るBWPの設定状態の例(その1)を示す図である。FIG. 13 is a diagram showing an example (No. 1) of the BWP setting state according to the operation example 2-1. 図14は、動作例2-1に係るBWPの設定状態の例(その2)を示す図である。FIG. 14 is a diagram showing an example (No. 2) of the BWP setting state according to the operation example 2-1. 図15は、動作例2-2に係るBWPの設定状態の例を示す図である。FIG. 15 is a diagram showing an example of the BWP setting state according to the operation example 2-2. 図16は、UE200のハードウェア構成の一例を示す図である。FIG. 16 is a diagram showing an example of the hardware configuration of the UE 200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE200)を含む。
(1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment. The wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200)).
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。 Note that the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
 NG-RAN20は、無線基地局100A(以下、gNB100A)及び無線基地局100B(以下、gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B). The specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 The NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G. In addition, NG-RAN20 and 5GC may be simply expressed as "network".
 gNB100A及びgNB100Bは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。 GNB100A and gNB100B are radio base stations that comply with 5G, and execute wireless communication according to UE200 and 5G. The gNB100A, gNB100B and UE200 are Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) that generate more directional beam BM by controlling radio signals transmitted from multiple antenna elements. ) Can be bundled and used for carrier aggregation (CA), and dual connectivity (DC) for simultaneous communication between the UE and each of the two NG-RAN Nodes.
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。 In addition, the wireless communication system 10 supports a plurality of frequency ranges (FR). FIG. 2 shows the frequency range used in the wireless communication system 10.
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。 As shown in FIG. 2, the wireless communication system 10 corresponds to FR1 and FR2. The frequency bands of each FR are as follows.
  ・FR1:410 MHz~7.125 GHz
  ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
・ FR1: 410 MHz to 7.125 GHz
・ FR2: 24.25 GHz to 52.6 GHz
In FR1, Sub-Carrier Spacing (SCS) of 15, 30 or 60kHz is used, and a bandwidth (BW) of 5 to 100MHz may be used. FR2 has a higher frequency than FR1, SCS of 60 or 120kHz (240kHz may be included) is used, and a bandwidth (BW) of 50 to 400MHz may be used.
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける1つのサブキャリア間隔と対応する。 SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、71GHzまでの周波数帯に対応する。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。 Furthermore, the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 corresponds to a frequency band exceeding 52.6 GHz and up to 71 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
 このような問題を解決するため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。 To solve this problem, when using a band exceeding 52.6 GHz, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-) with a larger Sub-Carrier Spacing (SCS) S-OFDM) may be applied.
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。 FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
 図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。 As shown in FIG. 3, one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). The SCS is not limited to the interval (frequency) shown in FIG. For example, 480kHz, 960kHz and the like may be used.
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。 Further, the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols). In addition, the number of slots per subframe may vary from SCS to SCS.
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間またはシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP:Bandwidth part)などと呼ばれてもよい。 The time direction (t) shown in FIG. 3 may be referred to as a time domain, a symbol period, a symbol time, or the like. Further, the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a bandwidth part (BWP), or the like.
 BWPは、所与のキャリア上における所与のnumerologyに対する共通リソースブロックの連続サブセットから選択される、PRB(Physical Resource Block)の連続セットと解釈されてもよい。 BWP may be interpreted as a continuous set of PRBs (Physical Resource Blocks) selected from a continuous subset of common resource blocks for a given numerology on a given carrier.
 UE200が無線通信に用いるべきBWP情報(帯域幅、周波数位置、サブキャリア間隔 (SCS))は、上位レイヤ(例えば、無線リソース制御レイヤ(RRC)のシグナリングを用いてUE200に設定することができる。UE200(端末)毎に異なるBWPが設定されてもよい。BWPは、上位レイヤのシグナリング、または下位レイヤ、具体的には、物理レイヤ(L1)シグナリング(後述するDCIなど)によって変更されてもよい。 The BWP information (bandwidth, frequency position, subcarrier spacing (SCS)) that the UE200 should use for wireless communication can be set in the UE200 using signaling from the upper layer (eg, the radio resource control layer (RRC)). A different BWP may be set for each UE200 (terminal). The BWP may be changed by higher layer signaling or lower layer (specifically, physical layer (L1) signaling (such as DCI described later)). ..
 無線通信システム10では、より高いスループットを達成するため、CA用の多数のCCがサポートされてよい。例えば、CCの最大帯域幅が400MHzの場合、FR2x、具体的には、57GHz~71GHzの周波数帯域内に最大32個のCCを配置できる。なお、設定されるCCの最大数は、32個を超えても構わないし、それ以下の数でもよい。 The wireless communication system 10 may support a large number of CCs for CA in order to achieve higher throughput. For example, if the maximum bandwidth of CCs is 400MHz, FR2x, specifically, up to 32 CCs can be placed in the frequency band of 57GHz to 71GHz. The maximum number of CCs to be set may exceed 32 or may be less than that.
 さらに、無線通信システム10では、1つの下りリンク制御情報(DCI)を介して複数CCの動的なBWPの切り替え(スイッチング)がサポートされてよい。つまり、無線通信システム10では、単一のDCIを用いて複数のCCをスケジューリングすることができる。なお、単一のDCIを用いた動的なBWPスイッチングの詳細については、さらに後述する。 Furthermore, the wireless communication system 10 may support dynamic BWP switching (switching) of a plurality of CCs via one downlink control information (DCI). That is, in the wireless communication system 10, a single DCI can be used to schedule a plurality of CCs. The details of dynamic BWP switching using a single DCI will be described later.
 無線通信システム10では、1つの下りリンク制御情報(DCI)を介して複数CCの送信設定表示(TCI:Transmission Configuration Indication)状態の切り替え(スイッチング)がサポートされてよい。つまり、無線通信システム10では、単一のDCIを用いて複数のCCをスケジューリングすることができる。なお、単一のDCIを用いたTCIスイッチングの詳細については、さらに後述する。 The wireless communication system 10 may support switching of transmission setting display (TCI: Transmission Configuration Indication) states of a plurality of CCs via one downlink control information (DCI). That is, in the wireless communication system 10, a single DCI can be used to schedule a plurality of CCs. The details of TCI switching using a single DCI will be described later.
 TCIは、上位レイヤのパラメータ(例えば、tci-PresentInDCIのフィールド)によって規定されてもよい。tci-PresentInDCIは、DL関連のDCIにTCIフィールドが存在するか否かを示してよい。UE200は、TCIフィールドが存在しない場合、TCIが存在しない或いは無効であると見なしてよい。 TCI may be specified by the parameters of the upper layer (for example, the field of tci-PresentInDCI). The tci-PresentInDCI may indicate whether the TCI field is present in the DL-related DCI. The UE200 may consider the TCI to be absent or invalid if the TCI field does not exist.
 クロスキャリア・スケジューリングの場合、ネットワークは、スケジューリングセル内のクロスキャリア・スケジューリングに使用されるCORESET(control resource sets:制御リソースセット)に対して、TCIフィールドを有効に設定できる。TCIは、例えば、PDCCH(Physical Downlink Control Channel)用のアンテナポートの擬似コロケーション(QCL:Quasi Co-Location)に関する情報を提供する。 In the case of cross-carrier scheduling, the network can effectively set the TCI field for CORESET (control resource sets) used for cross-carrier scheduling in the scheduling cell. The TCI provides information on pseudo-collocation (QCL: Quasi Co-Location) of an antenna port for PDCCH (Physical Downlink Control Channel), for example.
 QCLとは、例えば、一方のアンテナポート上のシンボルが搬送されるチャネルの特性が、他方のアンテナポート上のシンボルが搬送されるチャネルから推測できる場合、2つのアンテナポートは擬似的に同じ場所にあるとするものと解釈されてよい。 A QCL is, for example, when the characteristics of the channel on which the symbol on one antenna port is carried can be inferred from the channel on which the symbol on the other antenna port is carried, the two antenna ports are in pseudo-same location. It may be interpreted as being.
 DCIには、次のような情報が含まれてもよい。 DCI may contain the following information.
  (i)上りリンク(UL)のリソース割り当て(永続的または非永続的)
  (ii)UE200に送信される下りリンク(DL)データの説明
 DCIは、下りデータチャネル(例えば、PDSCH(Physical Downlink Shared Channel))または上りデータチャネル(例えば、PUSCH(Physical Uplink Shared Channel))をスケジュールすることができる情報のセットと解釈されてもよい。このようなDCIは、特にスケジューリングDCIと呼ばれてもよい。
(I) Uplink (UL) resource allocation (persistent or non-persistent)
(Ii) Description of downlink (DL) data transmitted to UE200 DCI schedules downlink data channel (eg PDSCH (Physical Downlink Shared Channel)) or uplink data channel (eg PUSCH (Physical Uplink Shared Channel)). It may be interpreted as a set of information that can be used. Such a DCI may be specifically referred to as a scheduling DCI.
 無線通信システム10では、セカンダリーセル(SCell)のアクティブ化及び非アクティブ化(activation/deactivation)が可能である。SCell activation/deactivationは、3GPP TS 38.321の5.9章などにおいて規定されている。 In the wireless communication system 10, the secondary cell (SCell) can be activated and deactivated (activation / deactivation). SCell activation / deactivation is specified in Chapter 5.9 of 3GPP TS 38.321.
 また、無線通信システム10では、SCellを休眠(dormancy)状態に設定可能である。SCelldormancy indicationは、3GPPのRelease-16において規定されており、効率的かつ低遅延のSCellのドーマント(休眠)/非ドーマント状態のレイヤ1(L1)での表示を実現する。SCell dormancy indicationは、3GPP TS38.213の10.3章などにおいて規定されている。 Also, in the wireless communication system 10, the SCell can be set to the dormancy state. SCelldormancy indication is specified in Release-16 of 3GPP, and realizes efficient and low-delay SCell dormant (sleeping) / non-dormant state layer 1 (L1) display. SCell dormancy indication is specified in Chapter 10.3 of 3GPP TS38.213.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。
(2) Functional block configuration of the wireless communication system Next, the functional block configuration of the wireless communication system 10 will be described. Specifically, the functional block configuration of UE200 will be described.
 図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。 FIG. 4 is a functional block configuration diagram of the UE 200. As shown in FIG. 4, the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。 The wireless signal transmitter / receiver 210 transmits / receives a wireless signal according to NR. The radio signal transmission / reception unit 210 corresponds to Massive MIMO, a CA that bundles and uses a plurality of CCs, and a DC that simultaneously communicates between a UE and each of two NG-RAN Nodes.
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。 The amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like. The amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
 変復調部230は、所定の通信先(gNB100Aまたは他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。 The modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100A or other gNB). Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) may be applied to the modulation / demodulation unit 230. Further, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。  The control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
 具体的には、制御信号・参照信号処理部240は、gNB100Aから所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100Aに向けて、所定の制御チャネルを介して各種の制御信号を送信する。  Specifically, the control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100A via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB100A via a predetermined control channel.
 制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。 The control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。 DMRS is a known reference signal (pilot signal) between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation. PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)などが含まれてもよい。 In addition to DMRS and PTRS, the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), PositioningReferenceSignal (PRS) for position information, and the like. ..
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。 In addition, the channel includes a control channel and a data channel. Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel, Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI)), and Physical. Broadcast Channel (PBCH) etc. are included.
 データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。 Data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data means data transmitted over a data channel. The data channel may be read as a shared channel.
 本実施形態では、制御信号・参照信号処理部240は、ネットワークから下りリンク制御情報(DCI)を受信する。本実施形態において、制御信号・参照信号処理部240は、受信部を構成する。 In this embodiment, the control signal / reference signal processing unit 240 receives downlink control information (DCI) from the network. In the present embodiment, the control signal / reference signal processing unit 240 constitutes a receiving unit.
 具体的には、制御信号・参照信号処理部240は、スケジューリングDCIを含む複数種類(フォーマット)のDCIを受信できる。DCIのフォーマットには、PUSCH, PDSCHのスケジューリング、スロットフォーマット、PUCCH, PUSCH用のTPC(Transmit Power Control)コマンドなどが含まれてもよい。より具体的には、3GPP TS38.212の7.3.1章に規定されるDCIフォーマットを対象としてよい。 Specifically, the control signal / reference signal processing unit 240 can receive a plurality of types (formats) of DCI including scheduling DCI. The DCI format may include PUSCH, PDSCH scheduling, slot format, TPC (Transmit Power Control) command for PUCCH, PUSCH, and the like. More specifically, the DCI format specified in Chapter 7.3.1 of 3GPP TS38.212 may be targeted.
 符号化/復号部250は、所定の通信先(gNB100Aまたは他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。 The coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100A or other gNB).
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。 Specifically, the coding / decoding unit 250 divides the data output from the data transmitting / receiving unit 260 into a predetermined size, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、ハイブリッドARQ(Hybrid automatic repeat request)に基づいて、データの誤り訂正及び再送制御を実行する。 The data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a wireless link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble. Further, the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
 制御部270は、UE200を構成する各機能ブロックを制御する。特に、本実施形態では、制御部270は、DCIを用いて複数のコンポーネントキャリア(CC)をスケジューリングすることができる。 The control unit 270 controls each functional block constituting the UE 200. In particular, in this embodiment, the control unit 270 can schedule a plurality of component carriers (CCs) using DCI.
 上述したように、無線通信システム10では、1つの下りリンク制御情報(DCI)を介して複数CCの動的なBWPの切り替え(スイッチング)をサポートできる。このような動的なBWPスイッチングをサポートするため、制御部270は、制御信号・参照信号処理部240を介して受信した1つ(単一)のDCIを用いて、複数のCCをスケジューリングしてよい。つまり、制御部270は、DCIによって示されるBWPの情報を複数のCCに適用できる。 As described above, the wireless communication system 10 can support dynamic BWP switching of a plurality of CCs via one downlink control information (DCI). In order to support such dynamic BWP switching, the control unit 270 schedules a plurality of CCs using one (single) DCI received via the control signal / reference signal processing unit 240. good. That is, the control unit 270 can apply the BWP information indicated by DCI to a plurality of CCs.
 また、無線通信システム10では、1つの下りリンク制御情報(DCI)を介して複数CCのTCIの切り替え(スイッチング)をサポートできる。このようなTCIスイッチングをサポートするため、制御部270は、制御信号・参照信号処理部240を介して受信した1つ(単一)のDCIを用いて、複数のCCをスケジューリングしてよい。つまり、制御部270は、DCIによって示されるTCIの情報を複数のCCに適用できる。 In addition, the wireless communication system 10 can support switching of TCIs of a plurality of CCs via one downlink control information (DCI). In order to support such TCI switching, the control unit 270 may schedule a plurality of CCs using one (single) DCI received via the control signal / reference signal processing unit 240. That is, the control unit 270 can apply the TCI information indicated by DCI to a plurality of CCs.
 また、制御部270は、セカンダリーセル(SCell)のアクティブ/非アクティブ状態(activation/deactivation)を判定することができる。上述したように、SCell activation/deactivationは、3GPP TS38.321の5.9章などにおいて規定されている。SCellactivation/deactivationは、ネットワークがSCell Activation/Deactivation MAC CEをUE200に送信することによって制御できる。 Further, the control unit 270 can determine the active / inactive state (activation / deactivation) of the secondary cell (SCell). As mentioned above, SCell activation / deactivation is specified in Chapter 5.9 of 3GPP TS38.321. SCellactivation / deactivation can be controlled by the network sending an SCell Activation / Deactivation MAC CE to the UE200.
 なお、SCellとは、プライマリーセル(PCell, PSCell (Primary SCell)を含んでよい)とともに、サービングセルを構成し得る。サービングセルとは、単にUE200が接続中のセルと解釈されてもよいが、もう少し厳密には、キャリアアグリゲーション(CA)が設定されていないRRC_CONNECTEDのUEの場合、プライマリーセルを構成するサービングセルは1つだけでもよい。CAを用いて構成されたRRC_CONNECTEDのUEの場合、サービングセルは、プライマリーセルと全てのセカンダリーセルとを含む1つまたは複数のセルのセットを示すと解釈されてもよい。 Note that the SCell can form a serving cell together with the primary cell (PCell, PSCell (Primary SCell) may be included). A serving cell may simply be interpreted as a cell to which the UE200 is connected, but more strictly speaking, in the case of an RRC_CONNECTED UE with no carrier aggregation (CA) set, only one serving cell constitutes the primary cell. It may be. For RRC_CONNECTED UEs configured with CA, the serving cell may be interpreted to represent a set of one or more cells including the primary cell and all secondary cells.
 制御部270は、SCellのアクティブ/非アクティブ状態を上述した複数CCに共通に適用することができる。つまり、制御部270は、1つのDCIによって制御される複数CCを対象として、共通のSCellのアクティブ/非アクティブ状態を適用することができる。 The control unit 270 can apply the active / inactive state of the SCell to the above-mentioned multiple CCs in common. That is, the control unit 270 can apply the active / inactive state of a common SCell to a plurality of CCs controlled by one DCI.
 具体的には、制御部270は、同じグループに含まれる複数CCがSCellに関連する場合、当該複数CCについては、SCellのアクティブ/非アクティブ状態が同一、つまり、アクティブ状態或いは非アクティブ状態であると想定してよい。 Specifically, when a plurality of CCs included in the same group are related to an SCell, the control unit 270 has the same active / inactive state of the SCell, that is, an active state or an inactive state for the plurality of CCs. Can be assumed.
 また、制御部270は、当該複数CCに含まれる参照コンポーネントキャリア(reference CC)の設定状態を、再アクティブ化(reactivate)された他のコンポーネントキャリアに適用してもよい。 Further, the control unit 270 may apply the setting state of the reference component carrier (reference CC) included in the plurality of CCs to other reactivated component carriers.
 例えば、制御部270は、reference CCの設定状態(BWP及び/またはTCIに関する設定など)を、当該複数CCに含まれる他のCCに適用することができる。なお、reference CCの選定基準などについては、後述する。 For example, the control unit 270 can apply the setting state of reference CC (setting related to BWP and / or TCI, etc.) to other CCs included in the plurality of CCs. The selection criteria for reference CC will be described later.
 また、制御部270は、非アクティブ化されたSCellに関連するCCの設定状態を保持してよい。具体的には、制御部270は、当該複数CCのうち、非アクティブ化されたSCellに関連するCCの設定状態(BWP及び/またはTCIに関する設定など)を保持することができる。ここで言う「保持」とは、UE200内部または外部の記憶装置または記憶媒体に当該設定状態の情報が記憶されることを意味してよい。 Further, the control unit 270 may hold the CC setting state related to the deactivated SCell. Specifically, the control unit 270 can hold the setting state (setting related to BWP and / or TCI, etc.) of the CC related to the deactivated SCell among the plurality of CCs. The term "retention" as used herein may mean that information on the set state is stored in a storage device or storage medium inside or outside the UE 200.
 制御部270は、非アクティブ化後に再アクティブ化されたCCに対して、保持している設定状態を適用してよい。具体的には、制御部270は、CC毎に設定状態を保持してよく、再アクティブ化されるCCに対して、保持している当該CCの設定状態を適用する。 The control unit 270 may apply the held setting state to the CC that has been reactivated after being deactivated. Specifically, the control unit 270 may hold the set state for each CC, and applies the set state of the held CC to the reactivated CC.
 また、本実施形態では、上述したように、SCellを休眠状態(dormancy)または非休眠状態(non-dormancy)に設定可能である。SCell dormancy indicationは、3GPP TS38.213の10.3章、及び3GPP TS38.212の7.3.1.3.7章などにおいて規定されている。 Further, in the present embodiment, as described above, the SCell can be set to a dormant state (dormancy) or a non-dormancy state (non-dormancy). SCell dormancy indication is specified in Chapter 10.3 of 3GPP TS38.213 and Chapter 7.3.1.3.7 of 3GPP TS38.212.
 具体的には、SCelldormancy indicationは、上位レイヤ(RRC)のパラメータ(PS-RNTI, dci-Format2-6)によって、Wake-up indicationとともに指定することができる。また、DCI Format 2_6では、1つ以上のUEのDRX(Discontinuous Reception)アクティブ時間外のパワーセービングに関する情報が通知される。 Specifically, SCelldormancy indication can be specified together with Wake-up indication by the parameters (PS-RNTI, dci-Format2-6) of the upper layer (RRC). In addition, DCI Format 2_6 notifies information about power saving outside the DRX (Discontinuous Reception) active time of one or more UEs.
 SCellのdormancy状態とは、UE200がPDCCHをモニタしなくてもよい状態であり、SCellのnon-dormancy状態とは、UE200がPDCCHをモニタする状態と解釈されてもよい。 The dormancy state of the SCell may be interpreted as the state in which the UE200 does not have to monitor the PDCCH, and the non-dormancy state of the SCell may be interpreted as the state in which the UE200 monitors the PDCCH.
 制御部270は、SCellの休眠/非休眠状態を判定することができる。制御部270は、SCellの休眠状態(dormancy)/非休眠状態(non-dormancy)を上述した複数CCに共通に適用することができる。つまり、制御部270は、1つのDCIによって制御される複数CCを対象として、共通のSCellの休眠/非休眠状態を適用することができる。 The control unit 270 can determine the dormant / non-diapause state of the SCell. The control unit 270 can commonly apply the dormant state (dormancy) / non-dormancy state (non-dormancy) of the SCell to the above-mentioned plurality of CCs. That is, the control unit 270 can apply a common SCell dormant / non-diapause state to a plurality of CCs controlled by one DCI.
 具体的には、制御部270は、同じグループに含まれる複数CCがSCellに関連する場合、当該複数CCについては、SCellの休眠/非休眠状態が同一、つまり、休眠状態或いは非休眠状態であると想定してよい。 Specifically, when a plurality of CCs included in the same group are related to the SCell, the control unit 270 has the same dormant / non-diapause state of the SCell, that is, a dormant state or a non-sleeping state. Can be assumed.
 また、制御部270は、当該複数CCに含まれる参照コンポーネントキャリアの設定状態を、休眠状態から非休眠状態に復帰する他のコンポーネントキャリアに適用してもよい。 Further, the control unit 270 may apply the setting state of the reference component carrier included in the plurality of CCs to another component carrier that returns from the dormant state to the non-sleeping state.
 例えば、制御部270は、上述したSCell activation/deactivationと同様に、reference CCの設定状態(BWP及び/またはTCIに関する設定など)を、当該複数CCに含まれる他のCCに適用することができる。 For example, the control unit 270 can apply the setting state of the reference CC (settings related to BWP and / or TCI, etc.) to other CCs included in the plurality of CCs in the same manner as the above-mentioned SCell activation / deactivation.
 また、制御部270は、休眠状態に遷移するSCellに関連するCCの設定状態を保持してよい。具体的には、制御部270は、当該複数CCのうち、休眠状態に遷移するSCellに関連するCCの設定状態(BWP及び/またはTCIに関する設定など)を保持することができる。 Further, the control unit 270 may hold the CC setting state related to the SCell that transitions to the dormant state. Specifically, the control unit 270 can hold the setting state (setting related to BWP and / or TCI, etc.) of the CC related to the SCell transitioning to the dormant state among the plurality of CCs.
 制御部270は、休眠状態から非休眠状態に復帰するCCに対して、保持している設定状態を適用してよい。具体的には、制御部270は、CC毎に設定状態を保持してよく、非休眠状態に復帰するCCに対して、保持している当該CCの設定状態を適用する。 The control unit 270 may apply the held setting state to the CC that returns from the dormant state to the non-sleeping state. Specifically, the control unit 270 may hold the set state for each CC, and applies the set state of the held CC to the CC that returns to the non-dormant state.
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、DCIを用いて複数のCCを制御しつつ、SCell activation/deactivationまたはSCell dormancy indicationに適応するUE200の動作について主に説明する。
(3) Operation of the wireless communication system Next, the operation of the wireless communication system 10 will be described. Specifically, the operation of UE200 that adapts to SCell activation / deactivation or SCell dormancy indication while controlling a plurality of CCs using DCI will be mainly described.
 (3.1)前提
 無線通信システム10では、上述したように、52.6GHzを超え、71GHzまでの周波数帯(FR2x)に対応する。FR2xのような高周波数帯は、FR1, FR2と、次の観点において本質的な相違がある。
(3.1) Prerequisite The wireless communication system 10 corresponds to the frequency band (FR2x) exceeding 52.6 GHz and up to 71 GHz as described above. High frequency bands such as FR2x are essentially different from FR1 and FR2 in the following respects.
  (チャネル/電波伝搬)
   ・使用可能な帯域幅の拡大(約13GHz(57~71 GHz unlicensedの場合)
   ・見通し外(NLOS:Non-Line Of Sight)による大きなパスロスによる低い遅延スプレッド
  (デバイス(端末))
   ・波長に応じた小さいサイズのアンテナ素子(による規模の大きい(massiveな)アンテナ)
   ・アナログビームフォーミングに基づく高指向性(狭いビーム幅)
   ・パワーアンプの効率の低下(ピーク対平均電力比(PAPR)の上昇)
   ・位相雑音の増加(より高いSCS及びより短いシンボル時間の適用可能性)
 また、使用可能な帯域幅が広いほど、非常に広いCC帯域幅がサポートされていない限り、より多くのCCが設定される可能性が高くなる。上述したように、FR2のようにCCの最大帯域幅が400MHzの場合、57GHz~71GHzの周波数帯域内に最大32個のCCを配置できる。
(Channel / radio wave propagation)
-Expansion of usable bandwidth (approx. 13 GHz (for 57 to 71 GHz unlicensed))
・ Low delay spread due to large path loss due to non-line of sight (NLOS) (device (terminal))
・ Small size antenna element according to wavelength (large-scale (massive) antenna)
・ High directivity based on analog beamforming (narrow beam width)
・ Decrease in power amplifier efficiency (increase in peak-to-average power ratio (PAPR))
• Increased phase noise (higher SCS and shorter symbol time applicability)
Also, the wider the available bandwidth, the more CC is likely to be configured unless a very large CC bandwidth is supported. As mentioned above, when the maximum bandwidth of CCs is 400MHz like FR2, up to 32 CCs can be arranged in the frequency band of 57GHz to 71GHz.
 キャリアアグリゲーション(CA)では、設定できるCC数には制限がある。具体的には、3GPPのRelease-15, 16では、UE200に対して設定できるCCの最大数は、DL及びULにおいて、それぞれ16個である(3GPP 38.300の5.4.1章)。 In carrier aggregation (CA), there is a limit to the number of CCs that can be set. Specifically, in 3GPP Release-15 and 16, the maximum number of CCs that can be set for UE200 is 16 for DL and UL, respectively (Chapter 5.4.1 of 3GPP 38.300).
 一方、物理レイヤ(L1, PHY)及び媒体アクセス制御レイヤ(MAC)の設定は、CC毎に実行される。3GPPのRelease-15, 16では、1つのDCIは、1つのCCのみスケジューリングすることができるため、多数のCCをスケジューリングするためには、多数のDCIが必要となる。特に、クロスキャリア・スケジューリングでは、PDCCHの容量が逼迫する可能性がある。 On the other hand, the physical layer (L1, PHY) and medium access control layer (MAC) settings are executed for each CC. In 3GPP Release-15,16, one DCI can schedule only one CC, so a large number of DCIs are required to schedule a large number of CCs. Especially in cross-carrier scheduling, the capacity of PDCCH can be tight.
 また、1つのトランスポートブロック(TB)は、1つのCC(つまり、1つのTBを複数のCCにマッピングすることはできない)でのみ伝送可能であり、多数のCCには多数のHybrid Automatic repeat request(HARQ) Acknowledgement(ACK)ビットが必要となる。 Also, one transport block (TB) can only be transmitted by one CC (that is, one TB cannot be mapped to multiple CCs), and many CCs have many Hybrid Automatic repeat requests. (HARQ) Acknowledgement (ACK) bit is required.
 さらに、BWPスイッチングもCC毎に実行される。例えば、サービス要件(遅延など)に従って複数のCCに対してSCSを変更する必要がある場合、CC毎に個別の表示が必要となる。 Furthermore, BWP switching is also executed for each CC. For example, if it is necessary to change the SCS for multiple CCs according to service requirements (delay, etc.), a separate display is required for each CC.
 また、ビーム管理(TCI状態表示)もCC毎に実行される。具体的には、3GPP Release-16では、1つのMAC-CEが複数のCCのTCI状態を更新/アクティブ化できるが、1つのDCIは、1つのCCのTCI状態のみ、更新することができる。 In addition, beam management (TCI status display) is also executed for each CC. Specifically, in 3GPP Release-16, one MAC-CE can update / activate the TCI state of a plurality of CCs, but one DCI can update only the TCI state of one CC.
 このような制約があるが、単一の広帯域内における複数のCCのチャネル特性はそれ程相違しないと想定されるため、CC毎に個別のPHY及びMACレイヤにおける動作は、必ずしも必要でなく、効率的でもないと想定される。 Despite these restrictions, it is assumed that the channel characteristics of multiple CCs within a single broadband are not so different, so operation at the individual PHY and MAC layers for each CC is not always necessary and efficient. It is assumed that it is not.
 そこで、本実施形態では、上述したように、単一のDCIに基づいて、BWP及び/またはTCIの情報が複数CCに適用される。 Therefore, in the present embodiment, as described above, BWP and / or TCI information is applied to a plurality of CCs based on a single DCI.
 (3.2)SCell activation/deactivationへの適応
 (3.2.1)課題
 上述したように、SCellactivation/deactivationは、SCell Activation/Deactivation MAC CEによって制御できる。
(3.2) Adaptation to SCell activation / deactivation (3.2.1) Problem As described above, SCell activation / deactivation can be controlled by SCell Activation / Deactivation MAC CE.
 UE200がSCell Activation/Deactivation MAC CEを受信する前にSCellが非アクティブ化された場合、上位レイヤのパラメータであるfirstActiveDownlinkBWP-Id、及びfirstActiveUplinkBWP-Idによって示されるDL BWP及びUL BWPがアクティブ化される(3GPP TS38.321の5.9章参照)。つまり、SCellを非アクティブ状態からアクティブ状態にするためには、firstActiveDownlinkBWP-IdとfirstActiveUplinkBWP-Idとをアクティブ化する。 If the SCell is deactivated before the UE200 receives the SCell Activation / Deactivation MAC CE, the upper layer parameters firstActiveDownlinkBWP-Id and DLBWP and ULBWP indicated by the firstActiveUplinkBWP-Id will be activated ( See Chapter 5.9 of 3GPP TS38.321). That is, in order to change the SCell from the inactive state to the active state, activate firstActiveDownlinkBWP-Id and firstActiveUplinkBWP-Id.
 また、非アクティブ化の対象となるSCellに関連する全てのBWPは、SCellとともに非アクティブ化される。 Also, all BWPs related to the SCell that is the target of deactivation are deactivated together with the SCell.
 DCIに含まれるBWP indicatorのフィールドは、上位レイヤのシグナリング(BandwidthPart-Config)によって決定されてもよく、BWPindicatorによって複数CCのグループ(またはサブグループでもよい)を対象としてBWPを適用できる。 The field of BWP indicator included in DCI may be determined by signaling (BandwidthPart-Config) of the upper layer, and BWP can be applied to a group (or subgroup) of multiple CCs by BWP indicator.
 ここで、単一のDCIに基づいてスケジューリングされる複数CCの一部が非アクティブ化され、その後、再アクティブ化された場合、当該複数CCの一部に対して、どのようにBWPを適用するかが問題となる。 Here, if a part of multiple CCs scheduled based on a single DCI is deactivated and then reactivated, how to apply BWP to the part of the multiple CCs. Is a problem.
 複数CCを対象として、スケジューリング、TCI状態、BWPスイッチングまたはHARQ-ACKフィードバックなどが単一のDCIによって制御される場合、ネットワーク(具体的には、gNB)とUEとが常に同一のactive BWPで動作することが望ましい。また、このような問題は、BWPに限らず、TCIについても同様である。 For multiple CCs, when scheduling, TCI state, BWP switching or HARQ-ACK feedback, etc. are controlled by a single DCI, the network (specifically, gNB) and UE always operate in the same active BWP. It is desirable to do. Moreover, such a problem is not limited to BWP, but is the same for TCI.
 図5及び図6は、SCellactivation/deactivationに適応する場合における問題の説明図である。具体的には、図5は、内容が異なる複数のBWP(#1, 2, 3)を示し、これらのBWP(DL BWP)のうち、何れかBWP、つまり、同一のBWPが複数CCに適用される。つまり、単一のDCIによって指定されたBWPが複数CCに適用される(ここでは、firstActiveDownlinkBWP-IdがBWP#1であり、UL BWPも同様とする)。 5 and 6 are explanatory diagrams of problems in adapting to SCell activation / deactivation. Specifically, FIG. 5 shows a plurality of BWPs (# 1, 2, 3) having different contents, and one of these BWPs (DL BWPs), that is, the same BWP is applied to a plurality of CCs. Will be done. That is, the BWP specified by a single DCI is applied to multiple CCs (here, firstActiveDownlinkBWP-Id is BWP # 1 and ULBWP is the same).
 図6に示すように、単一のDCIが複数CC(#1, 2, 3)に適用されるが、CC#2がSCell activation/deactivationの対象となっており、非アクティブ化され、その後、再アクティブ化される場合、この間にBWPスイッチングが実行されると、再アクティブ化されるCC#2に適用すべきBWPが不明となる。firstActiveDownlinkBWP-Idに従えば、BWP#1となるが、この場合、複数CC(#1, 2, 3)に適用されるBWPが不一致となる。 As shown in FIG. 6, a single DCI is applied to multiple CCs (# 1, 2, 3), but CC # 2 is subject to SCell activation / deactivation, is deactivated, and then When reactivated, if BWP switching is performed during this time, it is unclear which BWP should be applied to CC # 2 to be reactivated. According to firstActiveDownlinkBWP-Id, it becomes BWP # 1, but in this case, the BWP applied to multiple CCs (# 1, 2, 3) does not match.
 以下では、DCIを用いて複数のCCを制御しつつ、SCell activation/deactivationが発生した場合でも、複数CCに適用されるBWPの不一致を回避し得る動作について説明する。 In the following, we will explain the operation that can avoid the mismatch of BWP applied to multiple CCs even if SCell activation / deactivation occurs while controlling multiple CCs using DCI.
 (3.2.2)動作例1
 (3.2.2.1)動作例1-1
 本動作例では、UE200は、SCellのアクティブ/非アクティブ状態を上述した複数CCに共通に適用することができる。
(3.2.2) Operation example 1
(3.2.2.1) Operation example 1-1
In this operation example, the UE 200 can apply the active / inactive state of the SCell to the above-mentioned plurality of CCs in common.
 上述したように、スケジューリング、TCI状態、BWPスイッチングまたはHARQ-ACKフィードバックなどが単一のDCIによって制御される場合、上位レイヤ(RRC)によって設定される複数CCのグループ(またはサブグループ)については、正常な動作を担保するべく、新たな条件が考慮される必要がある。 As mentioned above, if scheduling, TCI state, BWP switching or HARQ-ACK feedback, etc. are controlled by a single DCI, for multiple CC groups (or subgroups) configured by the upper layer (RRC). New conditions need to be considered to ensure normal operation.
 図7は、動作例1-1に係るBWPの設定状態の例を示す。図7に示すように、同一グループ(サブグループ)に属する複数CC(SCell)については、アクティブ/非アクティブ状態を共通とする。 FIG. 7 shows an example of the BWP setting state according to the operation example 1-1. As shown in FIG. 7, the active / inactive state is common for a plurality of CCs (SCells) belonging to the same group (subgroup).
 具体的には、図7に示すように、CC#1, 2, 3は、同時に、つまり、同じタイミングにおいて非アクティブ化され、同時に再アクティブ化されていよい。 Specifically, as shown in FIG. 7, CC # 1, 2, and 3 may be deactivated at the same time, that is, at the same timing, and reactivated at the same time.
 このような動作を実現するため、新たなMAC CEを定義し、SCellに属するグループを単位として、アクティブ化または非アクティブ化をUE200に指示するようにしてもよい。 In order to realize such an operation, a new MAC CE may be defined and the UE 200 may be instructed to activate or deactivate in units of groups belonging to the SCell.
 また、UE200は、既存のSCell Activation/Deactivation MAC CEとは異なるSCellのアクティブ化または非アクティブ化の指示を当該SCellが属するグループに対して受け取ることを期待しないようにしてもよい。 Further, the UE 200 may not expect the group to which the SCell belongs to receive an activation or deactivation instruction of the SCell different from the existing SCell Activation / Deactivation MAC CE.
 或いは、UE200は、SCell Activation/Deactivation MAC CEによって、グループに属する特定のSCellを対象としたSCell Activation/Deactivation MAC CEを受信した場合、上位レイヤ(RRC)のシグナリングによって当該グループに対する設定が許容されていれば、当該SCell Activation/Deactivation MAC CEは、グループ内の全てのSCell(CC)に適用されてもよい。 Alternatively, when the UE200 receives the SCell Activation / Deactivation MAC CE targeting a specific SCell belonging to the group by the SCell Activation / Deactivation MAC CE, the setting for the group is permitted by the signaling of the upper layer (RRC). If so, the SCell Activation / Deactivation MAC CE may be applied to all SCells (CCs) in the group.
 なお、この場合、SCellの非アクティブ化に用いられるsCellDeactivationTimerは、グループ毎に設定及び維持されてよい。また、本動作例は、PCell/PSCellを非アクティブ化できないため(sCellDeactivationTimerがPUCCH PCell用に構成されていないため)、PCell/PSCell(及び/またはPUCCH SCell)が含まれていないグループ(サブグループ)を対象として適用されてもよい。 In this case, the sCellDeactivationTimer used to deactivate the SCell may be set and maintained for each group. Also, in this operation example, since PCell / PSCell cannot be deactivated (because sCellDeactivationTimer is not configured for PUCCHPCell), a group (subgroup) that does not include PCell / PSCell (and / or PUCCHSCell). May be applied as a target.
 また、上述した新たなMAC CEは、既存のSCell Activation/Deactivation MAC CEと同様の構成として構わない。但し、当該新たなMAC CE用の新たなLogical Channel ID(LCID)が設定されてもよい。 In addition, the new MAC CE described above may have the same configuration as the existing SCell Activation / Deactivation MAC CE. However, a new Logical Channel ID (LCID) for the new MAC CE may be set.
 図8は、動作例1-1に係る新たなMAC CEの構成例(一部)を示す。具体的には、図8は、8グループ(C_0~C_7)が構成される例を示す。例えば、16グループの場合、MAC CEの2オクテットが利用されてよい。 FIG. 8 shows a configuration example (part) of a new MAC CE according to operation example 1-1. Specifically, FIG. 8 shows an example in which eight groups (C_0 to C_7) are configured. For example, in the case of 16 groups, 2 octets of MAC CE may be used.
 C_i(i=1~7)は、グループインデックス(i)のSCellグループのアクティブ化/非アクティブ化を示してよい。例えば、1の場合、アクティブ化することを示し、0の場合、非アクティブ化することを示してよい。なお、このように数値とアクティブ化/非アクティブ化とを固定的に紐付けず、前回の数値から変更された場合、アクティブ化または非アクティブ化を実行する(いわゆるトグル式)ようにしてもよい。 C_i (i = 1 to 7) may indicate activation / deactivation of the SCell group in the group index (i). For example, a value of 1 may indicate activation, and a value of 0 may indicate deactivation. It should be noted that the numerical value and the activation / deactivation may not be fixedly linked in this way, and activation or deactivation may be executed (so-called toggle expression) when the numerical value is changed from the previous numerical value. ..
 また、sCellDeactivationTimerはグループごとに設定及び管理されてよい。グループに属する全てのSCellについて、MAC PDUが、設定済みのULgrantによって送信する、または設定済みのDLのリソース割り当てによって受信する場合、UE200は、当該グループに関連付けられているsCellDeactivationTimerを再起動してよい。 Also, the sCellDeactivationTimer may be set and managed for each group. For all SCells belonging to a group, if the MAC PDU is sent by a configured ULgrant or received by a configured DL resource allocation, the UE200 may restart the sCellDeactivationTimer associated with that group. ..
 (3.2.2.2)動作例1-2
 本動作例では、UE200は、複数CCに含まれる参照コンポーネントキャリア(reference CC)の設定状態を、再アクティブ化された他のコンポーネントキャリアに適用することができる。
(3.2.2.2) Operation example 1-2
In this operation example, the UE 200 can apply the setting state of the reference component carrier (reference CC) included in the plurality of CCs to other reactivated component carriers.
 具体的には、グループに含まれる何れかののCCは、所定のルールに基づいて、reference CCとして予め定義され、設定されてよい。同一グループに含まれるCC(SCell)を再アクティブ化する場合、UE200は、当該グループ内のreference CCの全ての設定(BWP及び/またはTCIに関する設定など)を、再アクティブ化するCCに適用してよい。 Specifically, any CC included in the group may be predefined and set as a reference CC based on a predetermined rule. When reactivating a CC (SCell) included in the same group, the UE200 applies all the settings of the reference CC in the group (such as settings related to BWP and / or TCI) to the CC to be reactivated. good.
 図9は、動作例1-2に係るBWPの設定状態の例を示す。図9では、図6と同様に、CC#2がSCellactivation/deactivationの対象となっている。 FIG. 9 shows an example of the BWP setting state according to the operation example 1-2. In FIG. 9, CC # 2 is the target of SCell activation / deactivation, as in FIG.
 図9では、CC#1がreference CCであり、再アクティブ化された後は、CC#1の設定(BWP#3)が全てのCCに適用される。 In Fig. 9, CC # 1 is the reference CC, and after reactivation, the CC # 1 setting (BWP # 3) is applied to all CCs.
 reference CCは、PCell、PSCell、グループ内またはPUCCH Cell内において最も小さいセルインデックスを有するセル、或いは上位レイヤ(RRC)によって設定される任意のセルの中から選択されてよい。 The reference CC may be selected from PCell, PSCell, the cell with the smallest cell index in the group or PUCCH Cell, or any cell set by the upper layer (RRC).
 UE200は、DLのreference CCに適用されるDCIのみをモニタすればよく、blind decoding(BD)の低減などのため、複数CCに適用される単一のDCIが用いられ得る。 The UE200 only needs to monitor the DCI applied to the DL reference CC, and a single DCI applied to multiple CCs can be used to reduce blind decoding (BD).
 なお、DLのreference CCと、ULのreference CCとは、別個にそれぞれ設定されてよい。例えば、UE200は、PUCCH/PUSCHを介した上りリンク制御情報(UCI)を、UL reference CC上で報告してもよい。 Note that the DL reference CC and the UL reference CC may be set separately. For example, the UE 200 may report uplink control information (UCI) via PUCCH / PUSCH on UL reference CC.
 また、reference CCの設定は、PCell/PSCell/PUCCH Cellがグループに含まれるか否かに関わらず、全てのグループ(またはサブグループ)に適用されてよい。 Also, the reference CC setting may be applied to all groups (or subgroups) regardless of whether PCell / PSCell / PUCCHCell is included in the group.
 なお、reference CCの設定に代えて、上位レイヤ(RRC)が、単一のDCIによって制御される複数CCを対象として、特定のBWP及び/またはTCI状態を、参照BWP/TCI状態として、active BWP及び/またはTCI状態として設定してもよい。 Instead of setting the reference CC, the upper layer (RRC) targets multiple CCs controlled by a single DCI, and the specific BWP and / or TCI state is set as the reference BWP / TCI state, and the active BWP. And / or may be set as a TCI state.
 この場合、SCellが再アクティブ化されると、同一グループ(サブグループ)内の全てのCCには、参照BWP/TCI状態が適用されてよい。 In this case, when the SCell is reactivated, the reference BWP / TCI state may be applied to all CCs in the same group (subgroup).
 (3.2.2.3)動作例1-3
 本動作例では、UE200は、非アクティブ化されたSCellに関連するCCの設定状態を保持し、再アクティブ化されたCCに対して、保持している設定状態を適用することができる。
(3.2.2.3) Operation example 1-3
In this operation example, the UE 200 holds the CC setting state related to the deactivated SCell, and can apply the held setting state to the reactivated CC.
 具体的には、単一のDCIによって複数CCを制御する場合、UE200は、SCellが非アクティブ化されると、BWP及び/またはTCI(他の設定情報を含んでもよい)に関する設定状態をCC毎に保持することができる。 Specifically, when controlling multiple CCs with a single DCI, the UE200 will set the BWP and / or TCI (which may contain other configuration information) per CC when the SCell is deactivated. Can be held in.
 また、UE200は、非アクティブ化されたSCellが再アクティブ化されると、再アクティブ化されるSCellと関連するCCに対して、保持している当該CCの設定状態を適用してよい。具体的には、UE200は、firstActiveDownlinkBWP-IdとfirstActiveUplinkBWP-Idの設定と当該CCに対して適用する代わりに、再アクティブ化されるSCell(と関連するCC)に対して、保持(記憶)しているBWP及び/またはTCI状態(他の設定情報を含んでもよい)を適用してよい。 Further, when the deactivated SCell is reactivated, the UE 200 may apply the setting state of the CC held to the CC associated with the reactivated SCell. Specifically, the UE200 retains (remembers) the reactivated SCell (and associated CC) instead of applying the firstActiveDownlinkBWP-Id and firstActiveUplinkBWP-Id settings and the CC. The existing BWP and / or TCI state (which may include other configuration information) may be applied.
 なお、非アクティブ化されたSCellに関連するCCの設定状態を保持と、再アクティブ化されるCCに対する当該設定状態を適用とは、PCell/PSCellがグループに含まれるか否かに関わらず、全てのグループ(またはサブグループ)に適用されてよい。 Keeping the CC settings related to the deactivated SCell and applying the settings to the reactivated CC are all regardless of whether PCell / PSCell is included in the group. May be applied to a group (or subgroup) of.
 図10は、動作例1-3に係るBWPの設定状態の例を示す。図10では、図6と同様に、CC#2がSCellactivation/deactivationの対象となっている。 FIG. 10 shows an example of the BWP setting state according to the operation example 1-3. In FIG. 10, CC # 2 is the target of SCell activation / deactivation, as in FIG.
 図10では、CC#2(と関連するSCell)が非アクティブ化された時点におけるBWPの設定状態(BWP#2)がUE200によって保持される(図中の(M: #2)参照)。その後、BWPスイッチングが実行され、active BWP(activate BWPと呼ばれてもよい)がBWP#3に切り替わるが、UE200は、CC#2に適用されるBWPの設定状態もBWP#3に変更(図中の(M: #3)参照)し、保持し続けてよい。 In FIG. 10, the BWP setting state (BWP # 2) at the time when CC # 2 (and related SCell) is deactivated is held by the UE200 (see (M: # 2) in the figure). After that, BWP switching is executed and active BWP (may be called activate BWP) is switched to BWP # 3, but UE200 also changes the setting state of BWP applied to CC # 2 to BWP # 3 (Fig.) (See (M: # 3) inside) and keep holding.
 その後、CC#2(と関連するSCell)が再アクティブ化されると、UE200は、保持しているBWP#3をCC#2に適用できる。 After that, when CC # 2 (and related SCell) is reactivated, UE200 can apply the retained BWP # 3 to CC # 2.
 なお、複数CCが同時に非アクティブ化/再アクティブ化される場合、図10に示したようなCC間におけるBWP不一致は発生しない。 When multiple CCs are deactivated / reactivated at the same time, BWP mismatch between CCs as shown in FIG. 10 does not occur.
 (3.3)SCelldormancy indicationへの適応
 (3.3.1)課題
 SCellの休眠状態(dormancy)から非休眠状態(non-dormancy)への遷移が実行されると、上位レイヤ(RRC)によって設定された特定のBWPが、non-dormancyに遷移後のactive BWPとなる。
(3.3) Adaptation to SCell dormancy indication (3.3.1) Task When the transition from the dormant state (dormancy) to the non-dormancy state (non-dormancy) of the SCell is executed, it is set by the upper layer (RRC). The specific BWP that is created becomes the active BWP after transitioning to non-dormancy.
 この場合、当該SCellに関連する複数CCに適用されるBWPと、他のSCellに関連し、同一(単一)のDCIによって制御される1つまたは複数CCに適用されるBWPとが、異なり得る。このため、動作例1に係るSCellactivation/deactivationと同様に、複数CC(#1, 2, 3)に適用されるBWPが不一致となる問題は、SCellのdormancy/non-dormancy間の遷移(以下、SCell dormancy indication)にも存在する。 In this case, the BWP applied to multiple CCs associated with the SCell may differ from the BWP applied to one or more CCs associated with the other SCell and controlled by the same (single) DCI. .. Therefore, as with SCell activation / deactivation according to operation example 1, the problem that BWP applied to multiple CCs (# 1, 2, 3) does not match is the transition between dormancy / non-dormancy of SCell (hereinafter, It also exists in SCell dormancy indication).
 また、SCell activation/deactivationに伴うBWP(及びTCI)の不一致と、SCell dormancy indicationに伴うBWP(及びTCI)の不一致とは、同時に発生する可能性もある。 In addition, the BWP (and TCI) mismatch associated with SCell activation / deactivation and the BWP (and TCI) mismatch associated with SCell dormancy indication may occur at the same time.
 図11及び図12は、SCell dormancy indicationに適応する場合における問題の発生例を示す。 FIGS. 11 and 12 show an example of the occurrence of a problem when applying to SCell dormancy indication.
 図11に示すように、複数CC(#1, 2, 3)のスケジューリングまたはTCI状態を更新する場合、どのように単一のDCIによって制御するかが問題となる。 As shown in FIG. 11, when updating the scheduling or TCI status of multiple CCs (# 1, 2, 3), the problem is how to control by a single DCI.
 同一グループに属する複数CCに適用されるactive BWPは、dormancyからnon-dormancyに復帰した場合に同一でない場合がある(CC#3参照)。なお、first-non-dormant-BWP-ID-xxxは、上位レイヤ(RRC)によってUE200に通知されてよい。 The active BWP applied to multiple CCs belonging to the same group may not be the same when returning from dormancy to non-dormancy (see CC # 3). The first-non-dormant-BWP-ID-xxx may be notified to the UE 200 by the upper layer (RRC).
 また、図12に示すように、SCellactivation/deactivationと、SCell dormancy indicationとの両方が実行される場合にも、同様の問題が発生し得る。具体的には、図12では、CC#2がSCell activation/deactivationの対象となっており、CC#3がSCell dormancy indicationの対象となっている例が示されている。 Further, as shown in FIG. 12, the same problem may occur when both SCell activation / deactivation and SCell dormancy indication are executed. Specifically, FIG. 12 shows an example in which CC # 2 is the target of SCell activation / deactivation and CC # 3 is the target of SCell dormancy indication.
 (3.3.2)動作例2
 以下、SCelldormancy indicationに適応するUE200の動作例について説明する。動作例2-1~2-3は、上述した動作例1-1~1-3にそれぞれ対応するため、同様の部分については、適宜その説明を省略する。
(3.3.2) Operation example 2
An operation example of UE200 applicable to SCelldormancy indication will be described below. Since the operation examples 2-1 to 2-3 correspond to the above-mentioned operation examples 1-1 to 1-3, the description thereof will be omitted as appropriate for the same parts.
 (3.3.2.1)動作例2-1
 本動作例では、SCellの休眠/非休眠状態を上述した複数CCに共通に適用することができる。
(3.3.2.1) Operation example 2-1
In this operation example, the dormant / non-dormant state of SCell can be applied to the above-mentioned plurality of CCs in common.
 具体的には、グループ(サブグループ)に属する複数CCには、共通した(つまり、同一の)休眠状態(dormancy)及び/または非休眠状態(non-dormancy)が適用されてよい。 Specifically, a common (that is, the same) dormant state (dormancy) and / or non-dormancy state (non-dormancy) may be applied to a plurality of CCs belonging to a group (subgroup).
 SCell dormancy indicationのために設定された「SCellグループ」は、複数CCによって構成されるグループと同じであることが好ましい。従って、当該SCellグループに対しては、単一のdormancyまたはnon-dormancy状態が適用されてよい。 The "SCell group" set for the SCell dormancy indication is preferably the same as the group composed of multiple CCs. Therefore, a single dormancy or non-dormancy state may be applied to the SCell group.
 または、UE200は、SCellグループ(またはサブグループ)に対して異なるSCell dormancy indicationが通知されることを期待しないようにしてもよい。 Alternatively, the UE200 may not expect the SCell group (or subgroup) to be notified of a different SCell dormancy indication.
 或いは、UE200は、既存のDCIによって何れかのSCellに対するdormancy/non-dormancyの指示を受信した場合、上位レイヤ(RRC)のシグナリングによって当該グループに対する設定が許容されていれば、当該SCell dormancy indicationは、グループ内の全てのSCell(CC)に適用されてもよい。 Alternatively, when the UE200 receives a dormancy / non-dormancy instruction for any SCell by an existing DCI, the SCell dormancy indication is given if the setting for the group is permitted by the signaling of the upper layer (RRC). , May be applied to all SCells (CCs) in the group.
 なお、dormancy/non-dormancyは、両方同時またはnon-dormancyのみなど、何れかの状態(SCell dormancy indication)についてのみ適用してもよい。 Note that dormancy / non-dormancy may be applied only to any state (SCell dormancy indication) such as both at the same time or only non-dormancy.
 また、本動作例は、非休眠状態は、PCell/PSCell/PUCCH SCellには適用できないため、PCell/PSCell/PUCCH SCellが含まれないグループ(サブグループ)のみを対象として適用されてよい。 In addition, since this operation example cannot be applied to PCell / PSCell / PUCCH SCell in the non-diapause state, it may be applied only to the group (subgroup) that does not include PCell / PSCell / PUCCH SCell.
 図13及び図14は、動作例2-1に係るBWPの設定状態の例を示す。具体的には、図13は、複数CC間において、休眠状態(dormancy)及び非休眠状態(non-dormancy)の両方を共通とする動作例を示す。 13 and 14 show an example of the BWP setting state according to the operation example 2-1. Specifically, FIG. 13 shows an operation example in which both a dormant state (dormancy) and a non-dormancy state (non-dormancy) are common among a plurality of CCs.
 図14は、複数CC間において、非休眠状態(non-dormancy)のみを共通とする動作例を示す。図14に示すように、CC#1, 2, 3間において、dormancyに遷移するタイミングは一致していない(共通でない)が、non-dormancyに遷移(復帰)するタイミングは一致している。 FIG. 14 shows an operation example in which only the non-dormancy state is common among a plurality of CCs. As shown in FIG. 14, the timing of transition to dormancy does not match (not common) between CC # 1, 2, and 3, but the timing of transition (return) to non-dormancy does match.
 (3.3.2.2)動作例2-2
 本動作例では、UE200は、複数CCに含まれる参照コンポーネントキャリア(reference CC)の設定状態を、休眠状態から非休眠状態に復帰する他のコンポーネントキャリアに適用することができる。
(3.3.2.2) Operation example 2-2
In this operation example, the UE 200 can apply the setting state of the reference component carrier (reference CC) included in the plurality of CCs to other component carriers that return from the dormant state to the non-sleeping state.
 具体的には、グループに含まれる何れかののCCは、所定のルールに基づいて、reference CCとして予め定義され、設定されてよい。同一グループに含まれるCC(SCell)をnon-dormancy状態にする場合、UE200は、当該グループ内のreference CCの全ての設定(BWP及び/またはTCIに関する設定など)を、non-dormancy状態にするCCに適用してよい。 Specifically, any CC included in the group may be predefined and set as a reference CC based on a predetermined rule. When CCs (SCells) included in the same group are placed in the non-dormancy state, the UE200 sets all the settings of the reference CC in the group (such as settings related to BWP and / or TCI) to the non-dormancy state. May be applied to.
 図15は、動作例2-2に係るBWPの設定状態の例を示す。図15では、CC#2がSCell dormancy indicationの対象となっている。また、CC#1がreference CCであり、non-dormancy状態に復帰した後は、CC#1の設定(BWP#3)が全てのCCに適用される。 FIG. 15 shows an example of the BWP setting state according to the operation example 2-2. In FIG. 15, CC # 2 is the target of SCell dormancy indication. In addition, CC # 1 is reference CC, and after returning to the non-dormancy state, the setting of CC # 1 (BWP # 3) is applied to all CCs.
 reference CCは、動作例1と同様に、PCell、PSCell、グループ内またはPUCCH Cell内において最も小さいセルインデックスを有するセル、或いは上位レイヤ(RRC)によって設定される任意のセルの中から選択されてよい。 The reference CC may be selected from PCell, PSCell, the cell having the smallest cell index in the group or PUCCH Cell, or any cell set by the upper layer (RRC), as in operation example 1. ..
 UE200は、DLのreference CCに適用されるDCIのみをモニタすればよく、blind decoding(BD)の低減などのため、複数CCに適用される単一のDCIが用いられ得る。 The UE200 only needs to monitor the DCI applied to the DL reference CC, and a single DCI applied to multiple CCs can be used to reduce blind decoding (BD).
 なお、DLのreference CCと、ULのreference CCとは、別個にそれぞれ設定されてよい。例えば、UE200は、PUCCH/PUSCHを介した上りリンク制御情報(UCI)によって、ULreference CCを報告してもよい。 Note that the DL reference CC and the UL reference CC may be set separately. For example, the UE 200 may report ULreference CC by uplink control information (UCI) via PUCCH / PUSCH.
 また、reference CCの設定は、PCell/PSCell/PUCCH Cellがグループに含まれるか否かに関わらず、全てのグループ(またはサブグループ)に適用されてよい。 Also, the reference CC setting may be applied to all groups (or subgroups) regardless of whether PCell / PSCell / PUCCHCell is included in the group.
 なお、reference CCの設定に代えて、上位レイヤ(RRC)が、単一のDCIによって制御される複数CCを対象として、特定のBWP及び/またはTCI状態を、参照BWP/TCI状態として、active BWP及び/またはTCI状態として設定してもよい。 Instead of setting the reference CC, the upper layer (RRC) targets multiple CCs controlled by a single DCI, and the specific BWP and / or TCI state is set as the reference BWP / TCI state, and the active BWP. And / or may be set as a TCI state.
 この場合、SCellがnon-dormancy状態に復帰すると、同一グループ(サブグループ)内の全てのCCには、参照BWP/TCI状態が適用されてよい。 In this case, when the SCell returns to the non-dormancy state, the reference BWP / TCI state may be applied to all CCs in the same group (subgroup).
 (3.3.2.3)動作例2-3
 本動作例では、UE200は、休眠状態に遷移したSCellに関連するCCの設定状態を保持し、非休眠状態に復帰したCCに対して、保持している設定状態を適用することができる。
(3.3.2.3) Operation example 2-3
In this operation example, the UE 200 holds the CC setting state related to the SCell that has transitioned to the dormant state, and the held setting state can be applied to the CC that has returned to the non-sleeping state.
 具体的には、単一のDCIによって複数CCを制御する場合、UE200は、SCellがdormancyに遷移すると、BWP及び/またはTCI(他の設定情報を含んでもよい)に関する設定状態をCC毎に保持することができる。 Specifically, when controlling multiple CCs with a single DCI, the UE200 retains the configuration status for BWP and / or TCI (which may include other configuration information) for each CC when the SCell transitions to dormancy. can do.
 また、UE200は、dormancyに遷移したSCellがnon-dormancyに復帰すると、non-dormancyに復帰するSCellと関連するCCに対して、保持している当該CCの設定状態を適用してよい。具体的には、UE200は、first-non-dormant-BWP-ID-xxxの設定と当該CCに対して適用する代わりに、non-dormancyに復帰するSCell(と関連するCC)に対して、保持(記憶)しているBWP及び/またはTCI状態(他他の設定情報を含んでもよい)を適用してよい。 Further, when the SCell that has transitioned to dormancy returns to non-dormancy, the UE200 may apply the setting state of the CC held to the CC associated with the SCell that returns to non-dormancy. Specifically, the UE200 holds for the SCell (and associated CC) that returns to non-dormancy instead of applying the first-non-dormant-BWP-ID-xxx setting and the CC. The (stored) BWP and / or TCI state (which may include other configuration information) may be applied.
 なお、dormancyに遷移したSCellに関連するCCの設定状態を保持と、non-dormancyに復帰するCCに対する当該設定状態を適用とは、PCell/PSCellがグループに含まれるか否かに関わらず、全てのグループ(またはサブグループ)に適用されてよい。 Keeping the CC setting state related to the SCell that has transitioned to dormancy and applying the setting state to the CC that returns to non-dormancy are all regardless of whether PCell / PSCell is included in the group or not. May be applied to a group (or subgroup) of.
 (3.4)他の動作例
 SCell activation/deactivationに係る動作例1-1~1-3と、SCell dormancy indicationに係る動作例2-1~2-3とは、以下のように組み合わせてもよい。
(3.4) Other operation examples Even if the operation examples 1-1 to 1-3 related to SCell activation / deactivation and the operation examples 2-1 to 2-3 related to SCell dormancy indication are combined as follows. good.
  ・(動作例1-1と動作例2-1):複数CCのグループ(サブグループ)に対する共通のSCellactivation/deactivation及びSCell dormancy indicationの適用
  ・(動作例1-2と動作例2-2):SCell activation/deactivation及びSCell dormancy indicationに共通のDL/UL用reference CCの設定
  ・(動作例1-3と動作例2-3):UE200は、非アクティブ化/休眠状態時の設定状態を保持し、再アクティブ化/非休眠状態時への切り替え(復帰)時に、保持している設定状態を適用する
  ・(動作例1-1と動作例2-2):複数CCのグループ(サブグループ)に対する共通のSCellactivation/deactivationの適用、及びSCell dormancy indication向けのDL/UL用reference CCの設定
  ・(動作例1-2と動作例2-1):複数CCのグループ(サブグループ)に対する共通のSCell dormancy indicationの適用、及びSCell activation/deactivation向けのDL/UL用reference CCの設定
 なお、動作例の組み合わせは、上述した例に限定されない。
-(Operation example 1-1 and operation example 2-1): Application of common SCell activation / deactivation and SCell dormancy indication to multiple CC groups (subgroups)-(Operation example 1-2 and operation example 2-2): DL / UL reference CC settings common to SCell activation / deactivation and SCell dormancy indication ・ (Operation example 1-3 and operation example 2-3): UE200 retains the setting state during deactivation / dormancy. , Apply the held setting state when switching (returning) to the reactivation / non-diapause state ・ (Operation example 1-1 and operation example 2-2): For groups (subgroups) of multiple CCs Application of common SCell activation / deactivation and setting of reference CC for DL / UL for SCell dormancy indication ・ (Operation example 1-2 and operation example 2-1): Common SCell dormancy for multiple CC groups (subgroups) Application of indication and setting of reference CC for DL / UL for SCell activation / deactivation Note that the combination of operation examples is not limited to the above-mentioned example.
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、UE200は、SCellのアクティブ/非アクティブ状態を判定し、判定したアクティブ/非アクティブ状態を単一のDCIによって制御される複数CCに共通に適用することができる。
(4) Action / Effect According to the above-described embodiment, the following action / effect can be obtained. Specifically, the UE 200 can determine the active / inactive state of the SCell and apply the determined active / inactive state to a plurality of CCs controlled by a single DCI in common.
 UE200は、当該複数CCに含まれるreference CCの設定状態を、再アクティブ化された他のCCに適用することもできる。 The UE200 can also apply the setting state of the reference CC included in the multiple CCs to other reactivated CCs.
 UE200は、非アクティブ化されたSCellに関連するCCの設定状態を保持し、再アクティブ化された当該CCに対して、保持している設定状態を適用することもできる。 The UE200 holds the setting state of the CC related to the deactivated SCell, and can apply the held setting state to the reactivated CC.
 このため、UE200は、DCIを用いて複数CCを制御する場合でも、SCell activation/deactivationに適応できる。 Therefore, UE200 can adapt to SCell activation / deactivation even when controlling multiple CCs using DCI.
 また、UE200は、SCellの休眠/非休眠状態を判定し、判定した休眠/非休眠状態を単一のDCIによって制御される複数CCに共通に適用することができる。 In addition, the UE200 can determine the dormant / non-diapause state of the SCell and apply the determined dormant / non-diapause state to a plurality of CCs controlled by a single DCI in common.
 UE200は、当該複数CCに含まれるreference CCの設定状態を、非休眠状態に復帰する他のCCに適用することもできる。 The UE200 can also apply the setting state of the reference CC included in the plurality of CCs to other CCs that return to the non-sleeping state.
 UE200は、休眠状態に遷移するSCellに関連するCCの設定状態を保持し、非休眠状態に復帰する当該CCに対して、保持している設定状態を適用することもできる。 The UE200 holds the setting state of the CC related to the SCell that transitions to the dormant state, and can apply the held setting state to the CC that returns to the non-sleeping state.
 このため、UE200は、DCIを用いて複数CCを制御する場合でも、SCelldormancy indicationに適応できる。 Therefore, UE200 can adapt to SCelldormancy indication even when controlling multiple CCs using DCI.
 (5)その他の実施形態
 以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the embodiments have been described above, it is obvious to those skilled in the art that various modifications and improvements are possible without being limited to the description of the embodiments.
 例えば、上述した実施形態では、FR2xなどの高周波数帯の使用を前提としていたが、このような高周波数帯の使用は、必ずしも必要ない。つまり、FR1またはFR2が用いられる場合でも、上述したような単一のDCIによって示されるBWPの情報を、複数のCCに共通して適用してもよい。 For example, in the above-described embodiment, the use of a high frequency band such as FR2x was assumed, but the use of such a high frequency band is not always necessary. That is, even when FR1 or FR2 is used, the BWP information represented by a single DCI as described above may be applied to a plurality of CCs in common.
 また、複数のCCは、Primary Component Carrier(PCC)及びSecondary Component Carrier(SCC)などに区分してスケジューリングされてもよい。 Further, a plurality of CCs may be scheduled separately for Primary Component Carrier (PCC) and Secondary Component Carrier (SCC).
 また、上述した実施形態の説明に用いたブロック構成図(図4)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 Further, the block configuration diagram (FIG. 4) used in the description of the above-described embodiment shows a block for each functional unit. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't. For example, a functional block (constituent unit) for functioning transmission is called a transmitting unit or a transmitter. As described above, the method of realizing each of them is not particularly limited.
 さらに、上述したUE200は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図16は、UE200のハードウェア構成の一例を示す図である。図16に示すように、UE200は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the UE 200 described above may function as a computer that processes the wireless communication method of the present disclosure. FIG. 16 is a diagram showing an example of the hardware configuration of the UE 200. As shown in FIG. 16, the UE 200 may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 UE200の各機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the UE200 (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
 またUE200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function in the UE 200 is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory 1002 and the memory 1002. It is realized by controlling at least one of reading and writing of data in the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor:DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof. RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobile Broadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one. In addition, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station in the present disclosure may be performed by its upper node. In a network consisting of one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website that uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not it.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", "cell group" Terms such as "carrier" and "component carrier" can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 The base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the functions of the base station. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the upstream channel, the downstream channel, and the like may be read as a side channel.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
The radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be in numerology-based time units.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. The mini-slot may also be referred to as a sub-slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common RBs (common resource blocks) for a neurology in a carrier. good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, minislots and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. , Electromagnetic energy with wavelengths in the microwave and light (both visible and invisible) regions, etc., can be considered to be "connected" or "coupled" to each other.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS) and may be called a pilot (Pilot) depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with "part", "circuit", "device" and the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as "judgment" or "decision". In addition, "judgment" and "decision" mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as an amendment or modification without departing from the purpose and scope of the present disclosure, which is determined by the description of the scope of claims. Therefore, the description of the present disclosure is for the purpose of exemplary explanation and does not have any limiting meaning to the present disclosure.
 10 無線通信システム
 20 NG-RAN
 100A, 100B gNB
 UE 200
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Radio communication system 20 NG-RAN
100A, 100B gNB
UE 200
210 Radio signal transmission / reception unit 220 Amplifier unit 230 Modulation / demodulation unit 240 Control signal / reference signal processing unit 250 Coding / decoding unit 260 Data transmission / reception unit 270 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Claims (3)

  1.  ネットワークから下りリンク制御情報を受信する受信部と、
     前記下りリンク制御情報を用いて複数のコンポーネントキャリアをスケジューリングする制御部と
    を備え、
     前記制御部は、
     セカンダリーセルの休眠/非休眠状態を判定し、
     前記休眠/非休眠状態を前記複数のコンポーネントキャリアに共通に適用する端末。
    A receiver that receives downlink control information from the network,
    A control unit that schedules a plurality of component carriers using the downlink control information is provided.
    The control unit
    Determine the dormant / non-diapause state of the secondary cell and
    A terminal that commonly applies the dormant / non-diapause state to the plurality of component carriers.
  2.  ネットワークから下りリンク制御情報を受信する受信部と、
     前記下りリンク制御情報を用いて複数のコンポーネントキャリアをスケジューリングする制御部と
    を備え、
     前記制御部は、前記複数のコンポーネントキャリアに含まれる参照コンポーネントキャリアの設定状態を、休眠状態から非休眠状態に復帰する他のコンポーネントキャリアに適用する端末。
    A receiver that receives downlink control information from the network,
    A control unit that schedules a plurality of component carriers using the downlink control information is provided.
    The control unit is a terminal that applies the setting state of the reference component carrier included in the plurality of component carriers to another component carrier that returns from the dormant state to the non-sleeping state.
  3.  ネットワークから下りリンク制御情報を受信する受信部と、
     前記下りリンク制御情報を用いて複数のコンポーネントキャリアをスケジューリングする制御部と
    を備え、
     前記制御部は、
     休眠状態に遷移するセカンダリーセルに関連するコンポーネントキャリアの設定状態を保持し、
     休眠状態から非休眠状態に復帰する前記コンポーネントキャリアに対して、保持している前記設定状態を適用する端末。
    A receiver that receives downlink control information from the network,
    A control unit that schedules a plurality of component carriers using the downlink control information is provided.
    The control unit
    Holds the configuration state of the component carrier related to the secondary cell that transitions to the dormant state,
    A terminal that applies the held set state to the component carrier that returns from the dormant state to the non-sleeping state.
PCT/JP2020/018189 2020-04-28 2020-04-28 Terminal WO2021220439A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/018189 WO2021220439A1 (en) 2020-04-28 2020-04-28 Terminal
JP2022518523A JPWO2021220439A1 (en) 2020-04-28 2020-04-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018189 WO2021220439A1 (en) 2020-04-28 2020-04-28 Terminal

Publications (1)

Publication Number Publication Date
WO2021220439A1 true WO2021220439A1 (en) 2021-11-04

Family

ID=78331865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018189 WO2021220439A1 (en) 2020-04-28 2020-04-28 Terminal

Country Status (2)

Country Link
JP (1) JPWO2021220439A1 (en)
WO (1) WO2021220439A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019087770A (en) * 2017-11-01 2019-06-06 シャープ株式会社 Terminal device, base station device, and communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019087770A (en) * 2017-11-01 2019-06-06 シャープ株式会社 Terminal device, base station device, and communication method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Remaining issues on UE assistance information for power saving", 3GPP DRAFT; R2-2001330, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. 20200224 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051849638 *
NOKIA, NOKIA SHANGHAI BELL: "CR to 38.321 – Dormant Cleanup", 3GPP DRAFT; R2-2002982, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online Meeting ;20200420 - 20200430, 9 April 2020 (2020-04-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051870185 *

Also Published As

Publication number Publication date
JPWO2021220439A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
WO2021192065A1 (en) Terminal
WO2020261463A1 (en) Terminal
US20220201666A1 (en) User terminal
WO2021214920A1 (en) Terminal
WO2021214921A1 (en) Terminal
WO2021220438A1 (en) Terminal
WO2021199348A1 (en) Terminal
WO2021199200A1 (en) Terminal
WO2021220439A1 (en) Terminal
WO2021220440A1 (en) Terminal
WO2021191983A1 (en) Terminal
US20230109830A1 (en) Terminal
WO2022153505A1 (en) Terminal and radio base station
WO2021192063A1 (en) Terminal
WO2021214919A1 (en) Terminal
WO2021199347A1 (en) Terminal
WO2021199388A1 (en) Terminal
WO2021191982A1 (en) Terminal
WO2021192064A1 (en) Terminal
WO2022085201A1 (en) Terminal
WO2021199387A1 (en) Terminal
WO2021229778A1 (en) Terminal
WO2022074842A1 (en) Terminal
WO2021229777A1 (en) Terminal
WO2022079861A1 (en) Terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518523

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933647

Country of ref document: EP

Kind code of ref document: A1