WO2021199347A1 - Terminal - Google Patents
Terminal Download PDFInfo
- Publication number
- WO2021199347A1 WO2021199347A1 PCT/JP2020/014942 JP2020014942W WO2021199347A1 WO 2021199347 A1 WO2021199347 A1 WO 2021199347A1 JP 2020014942 W JP2020014942 W JP 2020014942W WO 2021199347 A1 WO2021199347 A1 WO 2021199347A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coreset
- ccs
- transmission
- transmitted
- control
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the present disclosure relates to a terminal that executes wireless communication, particularly a terminal that executes wireless communication using a plurality of component carriers.
- the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
- 5G New Radio
- NG Next Generation
- Release 15 and Release 16 (NR) of 3GPP specify the operation of multiple frequency ranges, specifically, bands including FR1 (410MHz to 7.125GHz) and FR2 (24.25GHz to 52.6GHz). ..
- Non-Patent Document 1 studies are underway on NR that supports up to 71 GHz beyond 52.6 GHz.
- 5G Evolution or 6G aims to support frequency bands above 71GHz.
- Carrier Aggregation stipulates the number of CCs that can be set. For example, in 3GPP Release 15 and Release 16, the maximum number of CCs that can be set for a terminal (User Equipment, UE) is 16 for downlink (DL) and uplink (UL), respectively.
- the physical layer and medium access control layer (MAC) settings are executed for each CC.
- CORESET control resource sets
- PDCCH Physical Downlink Control Channel
- the following disclosure is made in view of such a situation, and provides a terminal capable of assuming more efficient control resource set setting when a plurality of component carriers (CC) are set. With the goal.
- CC component carriers
- One aspect of the present disclosure is a receiving unit (radio signal transmitting / receiving unit 210) that receives a control resource set including a first region and a second region from a network, and the first region is transmitted via a first component carrier.
- a terminal including a control unit (control unit 270) that assumes divided transmission in which the second region is transmitted via the second component carrier.
- One aspect of the present disclosure is a receiving unit (radio signal transmitting / receiving unit 210) that receives a downlink control channel from the network, and a transmitting unit that transmits the uplink data channel to the network based on the preparation time after receiving the downlink control channel.
- Radio signal transmission / reception unit 210) and a control unit (control unit 270) that assumes a longer preparation time than in the case of a different frequency band different from the frequency band including one or more frequency ranges. It is a terminal (UE200) equipped with.
- FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
- FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10.
- FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
- FIG. 4 is a functional block configuration diagram of the UE 200.
- FIG. 5 is a diagram showing an example of a communication sequence relating to CORESET.
- FIG. 6 is a diagram showing an example of allocation of CORESET according to the operation example 1-1 to the frequency domain and the time domain.
- FIG. 7 is a diagram showing an example of allocation of CORESET to the frequency domain and the time domain according to the operation example 1-2.
- FIG. 8 is a diagram showing an example (No.
- FIG. 9 is a diagram showing an example (No. 2) of allocation of CORESET to the frequency domain and the time domain according to the operation example 1-3.
- FIG. 10 is a diagram showing an example of the hardware configuration of the UE 200.
- FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
- the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200)).
- NR 5G New Radio
- NG-RAN20 Next Generation-Radio Access Network
- UE200 terminal 200
- the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
- NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B).
- gNB100A radio base station 100A
- gNB100B radio base station 100B
- the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
- the NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G.
- NG-RAN20 and 5GC may be simply expressed as "network”.
- GNB100A and gNB100B are radio base stations that comply with 5G, and execute wireless communication according to UE200 and 5G.
- the gNB100A, gNB100B and UE200 are Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) that generate more directional beam BM by controlling radio signals transmitted from multiple antenna elements. ) Can be bundled and used for carrier aggregation (CA), and dual connectivity (DC) for simultaneous communication between the UE and each of the two NG-RAN Nodes.
- Massive MIMO Multiple-Input Multiple-Output
- CC component carriers
- CA carrier aggregation
- DC dual connectivity
- the wireless communication system 10 supports a plurality of frequency ranges (FR).
- FIG. 2 shows the frequency range used in the wireless communication system 10.
- the wireless communication system 10 corresponds to FR1 and FR2.
- the frequency bands of each FR are as follows.
- FR1 410 MHz to 7.125 GHz
- FR2 24.25 GHz to 52.6 GHz
- SCS Sub-Carrier Spacing
- BW bandwidth
- FR2 has a higher frequency than FR1, and SCS of 60 or 120kHz (240kHz may be included) is used, and a bandwidth (BW) of 50 to 400MHz may be used.
- SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
- the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 supports a frequency band exceeding 52.6 GHz and up to 71 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
- Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
- DFT- Discrete Fourier Transform-Spread
- SCS Sub-Carrier Spacing
- FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
- one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
- the SCS is not limited to the interval (frequency) shown in FIG. For example, 480kHz, 960kHz and the like may be used.
- the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols).
- the number of slots per subframe may vary from SCS to SCS.
- the time direction (t) shown in FIG. 3 may be referred to as a time domain, a symbol period, a symbol time, or the like.
- the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a bandwidth part (BWP), or the like.
- BWP may be interpreted as a continuous set of PRBs (Physical Resource Blocks) selected from a continuous subset of common resource blocks for a given numerology on a given carrier.
- PRBs Physical Resource Blocks
- the BWP information (bandwidth, frequency position, subcarrier spacing (SCS)) that the UE200 should use for wireless communication can be set in the UE200 using signaling from the upper layer (eg, the radio resource control layer (RRC)).
- RRC radio resource control layer
- a different BWP may be set for each UE200 (terminal).
- the BWP is an upper layer signaling or a lower layer, specifically, a physical layer (L1) signaling (downlink control information (DCI: Downlink Control) described later). Information)) may be changed by).
- the wireless communication system 10 may support a large number of CCs for CA in order to achieve higher throughput. For example, if the maximum bandwidth of CCs is 400MHz, FR2x, specifically, up to 32 CCs can be placed in the frequency band of 57GHz to 71GHz. The maximum number of CCs to be set may exceed 32 or may be less than that.
- DCI may include the following information.
- DCI schedules downlink data channel (eg PDSCH (Physical Downlink Shared Channel)) or uplink data channel (eg PUSCH (Physical Uplink Shared Channel)). It can also be a set of information that can be done.
- PDSCH Physical Downlink Shared Channel
- PUSCH Physical Uplink Shared Channel
- Such a DCI may be specifically referred to as a scheduling DCI.
- DCI can be transmitted via the downlink control channel, specifically, PDCCH (Physical Downlink Control Channel).
- PDCCH Physical Downlink Control Channel
- the DL radio resources used for PDCCH transmission can be specified by control resource sets (CORESET). That is, CORESET may be interpreted as a set of physical resources (specifically, a specific region on the DL resource grid) and parameters used to transmit PDCCH (including DCI).
- UE200 can assume the specific area to which CORESET is assigned based on the search space, specifically the timing and period pointed out by the common search space (CSS).
- CSS common search space
- CORESET may include the following parameters.
- -Resource element The smallest unit of the resource grid consisting of one subcarrier in the frequency domain and one OFDM symbol in the time domain-Resource element group (REG): One resource block (12 resource elements in the frequency domain) ) And one OFDM symbol in the time domain-REG bundle: Consists of multiple REGs.
- the bundle size can be specified by the parameter'L', which can be determined by the Radio Resource Control Layer (RRC) parameter (reg-bundle-size).
- RRC Radio Resource Control Layer
- Control channel element Consists of multiple REGs.
- the number of REGs (REG bundles) included in the CCE may be variable.
- ⁇ Aggregation Level Indicates the number of CCEs assigned to PDCCH. In 3GPP Release-15, 16, 1, 2, 4, 8, 16 are specified, but in the wireless communication system 10, a larger value may be used as described later.
- 3GPP Release-15 16 defines the PUSCH preparation time, which indicates the timeline between the PDCCH including the scheduling DCI and the PUSCH scheduled by the scheduling DCI.
- a larger value may be used as the preparation time.
- FIG. 4 is a functional block configuration diagram of the UE 200.
- the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
- the wireless signal transmitter / receiver 210 transmits / receives a wireless signal according to NR.
- the radio signal transmitter / receiver 210 corresponds to Massive MIMO, a CA that bundles a plurality of CCs, and a DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
- the radio signal transmission / reception unit 210 receives the downlink control channel from the network (gNB100A or gNB100B, the same applies hereinafter).
- the wireless signal transmission / reception unit 210 constitutes a reception unit.
- the wireless signal transmitter / receiver 210 receives the PDCCH.
- the PDCCH may be transmitted across a plurality of CCs, as will be described later.
- CORESET control resource set
- PDCCH is transmitted in the control resource set (CORESET) as described above.
- CORESET may also be transmitted across a plurality of CCs, that is, divided into a plurality of CCs.
- CORESET may be divided into at least two regions, specifically, a first region and a second region.
- the wireless signal transmission / reception unit 210 can receive CORESET including the first region and the second region from the network.
- CORESET may be divided into three or more regions and transmitted in two or more CCs.
- the wireless signal transmitter / receiver 210 receives the downlink data channel from the network. Specifically, the radio signal transmission / reception unit 210 receives the PDSCH.
- the wireless signal transmitter / receiver 210 transmits an uplink data channel to the network. Specifically, the radio signal transmission / reception unit 210 transmits the PUSCH. In the present embodiment, the wireless signal transmission / reception unit 210 constitutes a transmission unit.
- the wireless signal transmitter / receiver 210 can transmit the PUSCH based on the PUSCH preparation time indicating the timeline between the PDCCH and the PUSCH.
- the radio signal transmission / reception unit 210 can transmit the PUSCH within a time corresponding to the number of symbols specified by the PUSCH preparation time according to the control by the control unit 270.
- the amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like.
- the amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
- the modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100A, etc.).
- Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) may be applied to the modulation / demodulation unit 230. Further, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
- the control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
- control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100A via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB100A via a predetermined control channel.
- a predetermined control channel for example, control signals of the radio resource control layer (RRC).
- RRC radio resource control layer
- the control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
- RS reference signal
- DMRS Demodulation Reference Signal
- PTRS Phase Tracking Reference Signal
- DMRS is a known reference signal (pilot signal) between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation.
- PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
- the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), PositioningReferenceSignal (PRS) for position information, and the like. ..
- CSI-RS ChannelStateInformation-ReferenceSignal
- SRS SoundingReferenceSignal
- PRS PositioningReferenceSignal
- control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel, Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI)), and Physical. Broadcast Channel (PBCH) etc. are included.
- PDCCH Physical Downlink Control Channel
- PUCCH Physical Uplink Control Channel
- RACH Random Access Channel
- RA-RNTI Random Access Radio Network Temporary Identifier
- DCI Downlink Control Information
- PBCH Broadcast Channel
- Data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
- Data means data transmitted over a data channel.
- the data channel may be read as a shared channel.
- the coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100A, etc.).
- the coding / decoding unit 250 divides the data output from the data transmitting / receiving unit 260 into a predetermined size, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
- the data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU).
- the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a wireless link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble.
- the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
- the control unit 270 controls each functional block constituting the UE 200.
- the control unit 270 executes control regarding the downlink control channel (PDCCH).
- PDCH downlink control channel
- control unit 270 executes control regarding the control resource set (CORESET) to which the PDCCH is transmitted.
- CORESET control resource set
- the CORESET can be transmitted across a plurality of CCs and may be divided into at least two regions, specifically, a first region and a second region. ..
- the first region is transmitted via the first component carrier (for example, CC # 0, see FIG. 6 and the like), and the second region is transmitted via the second component carrier (for example, CC # 1). It may be assumed that it will be performed (hereinafter referred to as divided transmission).
- CORESET may be divided into three or more regions and transmitted in two or more (that is, three or more) CCs. Further, the CC to which CORESET is divided and transmitted may basically be assumed to be continuous, but may be non-contiguous.
- control unit 270 can also assume that the first region and the second region of CORESET are divided into a plurality of CCs and transmitted, and are further assigned to different positions in the time domain.
- the first region may be set to CC # 0
- the second region may be set to CC # 1
- the time domain that is, a different symbol (OFDM symbol) may be assigned.
- the first region and the second region may be continuous or discontinuous in the time domain (symbol).
- control unit 270 may assume that the aggregation level (AL) of the control channel element (CCE) constituting the CORESET is higher in the case of the divided transmission of CORESET than in the case of the divided transmission of CORESET.
- A aggregation level
- control unit 270 may assume that the number of resource element groups (REGs) included in the CCE (which may be the number of REG bundles) is larger in the case of CORESET split transmission than in the case where CORESET is not split transmission. good.
- REGs resource element groups
- the CCE can contain up to 6 REG bundles, but may include a larger number, eg 12 REG bundles. Also, when high frequency bands such as FR2x are used, the CCE may contain a larger number of REGs or may contain a larger number of REGs as the size of the BWP increases.
- control unit 270 may assume that the CORESET is divided and transmitted. In this case, the control unit 270 sets the parameters of the upper layer regarding CORESET or the common search space (CSS) to the divided transmission. It may be assumed that it applies to multiple groups of CCs used in.
- CCS common search space
- CORESET and CSS can be set for each DLBWP, but in this embodiment, they are set for each group of a plurality of CCs used for divided transmission of CORESET. You can.
- the parameters of the upper layer (RRC, etc.) related to CORESET and CSS may be set not for each CC specified in 3GPP Release-15, 16 but for each group of the plurality of CCs.
- control unit 270 is in the case of a high frequency band such as FR2x, that is, a different frequency band different from the frequency band including one or more frequency ranges (FR1, FR2), than in the case of the frequency band.
- FR2x a high frequency band
- a long PUSCH preparation time may be assumed.
- control unit 270 may set the PUSCH preparation time applied to the PUSCH scheduled by the scheduling DCI longer than in the case of FR1 and FR2.
- the control unit 270 assumes a PUSCH preparation time longer than that in the frequency band. May be good. For example, in the case of a large SCS such as 240 kHz, the control unit 270 may lengthen the PUSCH preparation time. A specific setting example of PUSCH preparation time will be described later.
- control unit 270 may assume a PDSCH decoding time longer in the case of the different frequency band than in the case of the frequency band including FR1 and FR2.
- the PUSCH preparation time (PUSCH preparation time N 2 ) and the PDSCH decoding time (PDSCH decoding time N 1 ) are specified in 3GPP TS38.214.
- the prerequisite wireless communication system 10 supports the frequency band (FR2x) exceeding 52.6 GHz and up to 71 GHz.
- High frequency bands such as FR2x are essentially different from FR1 and FR2 in the following respects.
- CA carrier aggregation
- the maximum number of CCs that can be set for UE200 is 16 for DL and UL, respectively (Chapter 5.4.1 of 3GPP 38.300).
- the physical layer (L1, PHY) and medium access control layer (MAC) settings are executed for each CC.
- L1, PHY physical layer
- MAC medium access control layer
- one transport block can only be transmitted by one CC (that is, one TB cannot be mapped to multiple CCs), and many CCs have many Hybrid Automatic repeat requests. (HARQ) Acknowledgement (ACK) bit is required.
- HARQ Hybrid Automatic repeat requests.
- ACK Acknowledgement
- TCI status display is also executed for each CC.
- TCI Transmission Configuration Indication
- one MAC-CE can update / activate the TCI status of multiple CCs, but one DCI can update only the TCI status of one CC.
- CORESET setting for resource allocation such as PDCCH- (Operation example 2): New CORESET configuration Improvement of aggregation level (AL) of control channel element (CCE), and between CCE and REG bundle Coarsing the particle size may be included.
- A aggregation level
- CCE control channel element
- FIG. 5 shows an example of a communication sequence related to CORESET. Here, it is assumed that UE200 has set up multiple CCs to execute CA.
- the network transmits PDCCH (CORESET) toward UE200 (S10).
- CORESET Remaining Minimum System Information (RMSI) CORESET.
- RMSI Remaining Minimum System Information
- RBs resource blocks
- UE200 Based on the determined RB and symbol, UE200 provides a monitoring opportunity (MO) for the downlink control channel (PDCCH: Physical Downlink Control Channel), specifically, Type 0 PDCCH for system information block (SIB) decoding.
- UE200 then sets the required data channels, specifically PUSCH and PDSCH (S20).
- UE200 executes a random access (RA) procedure, etc., using the set channel, etc., and establishes a connection with the network (S30).
- RA random access
- Operation example 1 This operation example relates to CORESET resource allocation. Specifically, in this operation example, CORESET may be set across a plurality of CCs.
- FIG. 6 shows an example of allocation of CORESET according to the operation example 1-1 to the frequency domain and the time domain.
- CORESET may be set across a plurality of CCs (CC # 0 and CC # 1), that is, may be transmitted in a divided manner.
- the number of CCs set across one CORESET is not limited to 2, and may be 3 or more.
- the CC may be continuous or non-contiguous in the frequency domain.
- CORESET is assigned in one CC (frequency domain), but in the case of option 1, CORESET is assigned to CC # 0 and CC # in the same time domain (symbol or slot). It is assigned to 1 more than once.
- the CORESET area assigned to CC # 0 may be referred to as a first area
- the CORESET area assigned to CC # 1 may be referred to as a second area.
- the parameter related to CORESET in the RRC layer specifically, the bit size of frequencyDomainResources may be the number of a plurality of CCs included in the group for divided transmission of CORESET ⁇ 45.
- CORESET is duplicated in CC # 0 and CC # 1, but is not duplicated in CC # 0 and CC # 1 in the same time domain. That is, CORESET can be duplicated in CC # 0 and CC # 1 only in the time domain.
- Option 2 is not appropriate when frequency division multiplexing (FDM) is not used.
- the parameter related to CORESET in the RRC layer takes the value of 1..maxCoReSetDuration when applied for each grouped CC
- maxCoReSetDurationForGroup is the number of CORESET period (CORESETduration). It may be the maximum value of.
- the duration may indicate the value of 1..maxCoReSetDuration for each CC.
- CORESET is assigned as multiple CCs in both the frequency domain and the time domain.
- CORESET is duplicated in CC # 0 and CC # 1 in the same time domain, and is duplicated in CC # 0 and CC # 1 in the same time domain. Be done.
- the bit size of frequencyDomainResources may be the number of multiple CCs included in the group for split transmission of CORESET ⁇ 45, and the duration is 1..maxCoReSetDurationForGroup, that is, the CC. It may be set for the including group.
- FIG. 7 shows an example of allocating CORESET to the frequency domain and the time domain according to the operation example 1-2.
- the UE 200 may assume the following levels of overlap.
- FIG. 8 shows an example (No. 1) of allocation of CORESET to the frequency domain and the time domain according to the operation example 1-3.
- UE200 may assume the allocation of the REG bundle as follows.
- mappings localized to UE200 may be supported.
- the frequency diversity is high in Alt. 1 and the simplicity of CORESET (RE) allocation is high in Alt. 2.
- FIG. 9 shows an example (No. 2) of allocation of CORESET to the frequency domain and the time domain according to the operation example 1-3.
- the UE 200 may assume the allocation of the REG bundle as follows.
- Operation example 2 This operation example relates to a new CORESET configuration. Specifically, in this operation example, when CORESET is transmitted separately via multiple CCs, the aggregation level (AL) of the control channel element (CCE) is set higher than 3GPP Release-15, 16. .. Further, in this operation example, when CORESET is transmitted separately via a plurality of CCs, the number of resource element groups (REGs) (may be the number of REG bundles) included in the CCE is larger than the case where CORESET is not transmitted separately. Is also set a lot.
- REGs resource element groups
- the AL of CCE can be set to 1, 2, 4, 8, 16 in GPP Release-15, 16, but a larger value, for example, 32, 64, etc. may be set.
- UE200 may assume such AL when CORESET is transmitted separately via multiple CCs.
- the following fields may be added to the RRC layer parameter nrofCandidate.
- high AL is suitable for multiplexing methods other than FDM (time division multiplexing (TDM), spatial division multiplexing (SDM)) in which all bandwidth is allocated to a specific UE.
- FDM time division multiplexing
- SDM spatial division multiplexing
- UE200 may make the following assumptions regarding AL.
- UE200 may further make the following assumptions.
- the AL to be set is predetermined and fixed.
- UE200 may be assumed to monitor PDCCH transmitted via grouped CCs.
- the AL of CCE may be assumed to be 16 (or other AL may be assumed).
- AL is set by the parameters of the upper layer.
- BD Blind Decoding
- the UE200 may assume 1, 2, 4, 8, 16 as the AL of CCE, similar to 3GPP Release-15, 16. The UE 200 may also assume a high AL, such as 32, if it is supported.
- the CCE may consist of more REGs than 3GPP Release-15,16.
- the CCE can include 6 REG bundles, but if a high frequency band such as FR2x is used, it may be composed of k ⁇ 6 REGs.
- k may be determined according to any of the following.
- ⁇ (Alt. 1): k is set by the parameters of the upper layer.
- k realizes scaling for the RRC layer parameter, CCE-REG-MappingType.
- ⁇ (Alt. 2): k is determined according to the BWP size.
- Table 1 shows an example of k according to the BWP size.
- the size of k may also increase. That is, the larger the BWP size, the more REG bundles (REGs) may be included in the CCE.
- REGs REG bundles
- the size of the REG bundle may be increased to 12, etc.
- the size of such a large REG bundle may be set by the parameters of the upper layer.
- reg-BundleSize may be set as follows.
- Operation example 3 This operation example relates to mutual cooperation between CORESET and the search space. Specifically, in this operation example, when CORESET is transmitted separately via a plurality of CCs, the relationship between CORESET and the common search space (CSS) is changed.
- CCS common search space
- CORESET and search space set are set for each DLBWP. Assuming that CORESET is scheduled across multiple CCs, the settings may be reviewed as follows.
- the number of CORESETs for the grouped CCs may be expressed as "x". x may be different from the existing parameter “P” (see 3GPP TS38.213 Section 10.1), which indicates the number of CORESETs per cell.
- the CORESET index may or may not be contiguous with P. That is, the grouped CORESET index for CC and the CORESET index per cell may be serial numbers or different numbers may be assigned.
- the number of grouped search spaces for CC may be expressed as "y". y may be different from the existing parameter “S” (see 3GPP TS38.213 Chapter 10.1), which indicates the number of sync signals (SS) per cell.
- the search space index may or may not be contiguous with S.
- SS may only be associated with CORESET for grouped CCs.
- the parameters may include the monitoring cycle, monitoring offset, number of PDCCH candidates, and monitorable DCI format.
- PUSCH preparation time N 2 may be changed.
- a value exceeding 36, for example, 48 may be set.
- a larger value may be set as PUSCH preparation time N 2.
- PUSCH preparation time N 2 (PUSCH timing capability 2) shown in Table 3 may not be supported for large SCSs, as in 3GPP Releases-15 and 16.
- PUSCH preparation time N 2 (PUSCH timing capability 1, 2) is described in 3GPP TS38.214, Chapter 6.4.
- PUSCH timing capability 2 PUSCH timing capability 2
- the change in the processing time related to PDCCH as described above may be applied to the decoding time of PDSCH.
- the PDSCH decoding time N 1 shown in Table 4 may be changed.
- a value exceeding 20 may be set for m2, and a value exceeding 24 may be set for m3.
- the following action / effect can be obtained.
- the first region of CORESET is transmitted via the first component carrier (for example, CC # 0, see FIG. 6 and the like), and the second region of CORESET is transmitted via the second component carrier (for example, CC). It can be assumed that the divided transmission is transmitted via # 1).
- the UE200 can assume a more efficient CORESET setting, especially when the usable frequency band is expanded and more CCs are set. As a result, efficient CORESET transmission using a plurality of CCs can be realized.
- the UE 200 may assume that the aggregation level (AL) of the control channel element (CCE) constituting the CORESET is higher in the case of the CORESET divided transmission than in the case where the CORESET is not divided and transmitted.
- A aggregation level
- CCE control channel element
- the UE 200 assumes that the number of resource element groups (REGs) (may be the number of REG bundles) included in the CCE is larger in the case of CORESET divided transmission than in the case where CORESET is not divided and transmitted. You may.
- REGs resource element groups
- the UE 200 may assume that the parameters of the upper layer regarding CORESET or common search space (CSS) are applied to a group of a plurality of CCs used for the divided transmission. Therefore, the parameter can be applied to a plurality of CCs included in the group at once, and efficient CORESET or CSS settings can be realized.
- CORESET common search space
- the first region and the second region of CORESET are divided into a plurality of CCs and transmitted, and are further assigned to different positions in the time domain.
- CORESET can be divided and transmitted even in the time domain, and more efficient CORESET transmission using a plurality of CCs can be realized.
- the UE 200 is PUSCH longer in the case of a high frequency band such as FR2x, that is, a different frequency band different from the frequency band including one or more frequency ranges (FR1, FR2), than in the case of the frequency band. You may assume preparation time.
- the UE200 can assume an appropriate uplink data channel (PUSCH) preparation time even when using a high frequency band such as FR2x.
- PUSCH uplink data channel
- the UE200 when the subcarrier interval (SCS) used for PUSCH transmission is larger than that in the frequency band including FR1 and FR2, the UE200 assumes a PUSCH preparation time longer than that in the frequency band. You may. Therefore, the UE 200 can assume an appropriate preparation time according to the SCS even when the different frequency band is used, and can more reliably realize UL communication via PUSCH.
- SCS subcarrier interval
- the UE 200 may assume a PDSCH decoding time longer in the case of the different frequency band than in the case of the frequency band including FR1 and FR2. Therefore, the UE 200 can assume an appropriate PDSCH decoding time even when the different frequency band is used, and can more reliably realize DL communication via the PDSCH.
- a high frequency band such as FR2x
- at least one of the above-mentioned operation examples is applied to another frequency range, for example, a frequency band between FR1 and FR2. It doesn't matter if it is done.
- FR2x may be divided into a frequency range of 70 GHz or less and a frequency range of 70 GHz or more, and any of the above-mentioned operation examples is partially applied to the frequency range of 70 GHz or more and the frequency range of 70 GHz or less. May be applied to.
- each functional block is realized by any combination of at least one of hardware and software.
- the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
- the functional block may be realized by combining the software with the one device or the plurality of devices.
- Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
- a functional block that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
- transmitting unit transmitting unit
- transmitter transmitter
- FIG. 10 is a diagram showing an example of the hardware configuration of the UE 200.
- the UE 200 may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
- the word “device” can be read as a circuit, device, unit, etc.
- the hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
- Each functional block of UE200 (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
- each function in the UE 200 is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory 1002 and the memory 1002. It is realized by controlling at least one of reading and writing of data in the storage 1003.
- predetermined software program
- Processor 1001 operates, for example, an operating system to control the entire computer.
- the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
- CPU central processing unit
- the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
- a program program code
- a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
- the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
- Processor 1001 may be implemented by one or more chips.
- the program may be transmitted from the network via a telecommunication line.
- the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
- the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
- the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
- Storage 1003 may be referred to as auxiliary storage.
- the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
- the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
- FDD frequency division duplex
- TDD time division duplex
- the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
- the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
- the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
- the hardware may implement some or all of each functional block.
- processor 1001 may be implemented using at least one of these hardware.
- information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof.
- DCI Downlink Control Information
- UCI Uplink Control Information
- RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
- LTE LongTermEvolution
- LTE-A LTE-Advanced
- SUPER3G IMT-Advanced
- 4G 4th generation mobile communication system
- 5G 5th generation mobile communication system
- FutureRadioAccess FAA
- NewRadio NR
- W-CDMA registered trademark
- GSM registered trademark
- CDMA2000 Code Division Multiple Access 2000
- UMB UltraMobile Broadband
- IEEE802.11 Wi-Fi (registered trademark)
- IEEE802.16 WiMAX®
- IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them.
- a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
- the specific operation performed by the base station in the present disclosure may be performed by its upper node.
- various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
- S-GW network node
- the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
- Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
- Input / output may be performed via a plurality of network nodes.
- the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
- the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
- the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
- Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
- Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted.
- software, instructions, information, etc. may be transmitted and received via a transmission medium.
- a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
- wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
- wireless technology infrared, microwave, etc.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
- a channel and a symbol may be a signal (signaling).
- the signal may be a message.
- the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
- system and “network” used in this disclosure are used interchangeably.
- the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
- the radio resource may be one indicated by an index.
- Base Station BS
- Wireless Base Station Wireless Base Station
- NodeB NodeB
- eNodeB eNodeB
- gNodeB gNodeB
- Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
- the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
- a base station subsystem eg, a small indoor base station (Remote Radio)
- Communication services can also be provided by Head: RRH).
- cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
- MS mobile station
- UE user equipment
- terminal terminal
- Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
- At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
- the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
- at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
- at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
- IoT Internet of Things
- the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
- communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
- D2D Device-to-Device
- V2X Vehicle-to-Everything
- Each aspect / embodiment of the present disclosure may be applied to the configuration.
- the mobile station may have the functions of the base station.
- words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
- the upstream channel, the downstream channel, and the like may be read as a side channel.
- the mobile station in the present disclosure may be read as a base station.
- the base station may have the functions of the mobile station.
- the radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
- the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
- the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
- Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception.
- SCS SubCarrier Spacing
- TTI transmission time interval
- At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
- the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be in numerology-based time units.
- OFDM Orthogonal Frequency Division Multiplexing
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot.
- PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
- the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
- the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
- the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
- one subframe may be referred to as a transmission time interval (TTI)
- TTI transmission time interval
- TTI transmission time interval
- TTI transmission time interval
- TTI transmission time interval
- TTI transmission time interval
- TTI transmission time interval
- TTI slot or one minislot
- at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
- the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
- TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
- a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
- the definition of TTI is not limited to this.
- the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
- the time interval for example, the number of symbols
- the transport block, code block, code word, etc. may be shorter than the TTI.
- one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
- TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
- the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
- the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
- the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
- the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
- the number of subcarriers contained in the RB may be determined based on numerology.
- the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
- Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
- One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
- Physical RB Physical RB: PRB
- SCG sub-carrier Group
- REG resource element group
- PRB pair an RB pair, and the like. May be called.
- the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
- RE resource elements
- 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
- Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common RBs (common resource blocks) for a neurology in a carrier. good.
- the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
- BWP for UL
- DL BWP BWP for DL
- One or more BWPs may be set in one carrier for the UE.
- At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
- “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
- the above-mentioned structures such as wireless frames, subframes, slots, minislots and symbols are merely examples.
- the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, and included in RB.
- the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
- connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
- the connection or connection between the elements may be physical, logical, or a combination thereof.
- connection may be read as "access”.
- the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain.
- Electromagnetic energy with wavelengths in the microwave and light (both visible and invisible) regions, etc. can be considered to be “connected” or “coupled” to each other.
- the reference signal can also be abbreviated as Reference Signal (RS) and may be called a pilot (Pilot) depending on the applicable standard.
- RS Reference Signal
- Pilot pilot
- references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
- determining and “determining” used in this disclosure may include a wide variety of actions.
- “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
- judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
- Accessing (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
- judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
- the term "A and B are different” may mean “A and B are different from each other”.
- the term may mean that "A and B are different from C”.
- Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
- Radio communication system 20 NG-RAN 100A, 100B gNB UE 200 210 Radio signal transmission / reception unit 220 Amplifier unit 230 Modulation / demodulation unit 240 Control signal / reference signal processing unit 250 Coding / decoding unit 260 Data transmission / reception unit 270 Control unit BM beam 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 bus
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Mechanical Pencils And Projecting And Retracting Systems Therefor, And Multi-System Writing Instruments (AREA)
- Handcart (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
This terminal is assumed to perform division transmission in which a first region of a CORESET is transmitted over a first component carrier, and a second region of the CORESET is transmitted over a second component carrier.
Description
本開示は、無線通信を実行する端末、特に、複数のコンポーネントキャリアを用いて無線通信を実行する端末に関する。
The present disclosure relates to a terminal that executes wireless communication, particularly a terminal that executes wireless communication using a plurality of component carriers.
3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。
The 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
3GPPのRelease 15及びRelease 16(NR)では、複数の周波数レンジ、具体的には、FR1(410 MHz~7.125 GHz)及びFR2(24.25 GHz~52.6 GHz)を含む帯域の動作が仕様化されている。
Release 15 and Release 16 (NR) of 3GPP specify the operation of multiple frequency ranges, specifically, bands including FR1 (410MHz to 7.125GHz) and FR2 (24.25GHz to 52.6GHz). ..
また、52.6GHzを超え、71GHzまでをサポートするNRについても検討が進められている(非特許文献1)。さらに、Beyond 5G、5G Evolution或いは6G(Release-18以降)は、71GHzを超える周波数帯域もサポートすることを目標としている。
In addition, studies are underway on NR that supports up to 71 GHz beyond 52.6 GHz (Non-Patent Document 1). In addition, Beyond 5G, 5G Evolution or 6G (Release-18 or later) aims to support frequency bands above 71GHz.
上述したように、使用可能な周波数帯域が拡張されると、より多くのコンポーネントキャリア(CC)が設定される可能性が高まると想定される。
As mentioned above, it is expected that the possibility that more component carriers (CC) will be set will increase as the usable frequency band is expanded.
キャリアアグリゲーション(CA)では、設定できるCC数が規定されている。例えば、3GPPのRelease 15及びRelease 16では、端末(User Equipment, UE)に対して設定できるCCの最大数は、下りリンク(DL)及び上りリンク(UL)において、それぞれ16個である。
Carrier Aggregation (CA) stipulates the number of CCs that can be set. For example, in 3GPP Release 15 and Release 16, the maximum number of CCs that can be set for a terminal (User Equipment, UE) is 16 for downlink (DL) and uplink (UL), respectively.
一方、物理レイヤ及び媒体アクセス制御レイヤ(MAC)の設定は、CC毎に実行される。
On the other hand, the physical layer and medium access control layer (MAC) settings are executed for each CC.
このような状況を考慮すると、下り制御チャネル(PDCCH:Physical Downlink Control Channel)を送信するために用いられる制御リソースセット(CORESET:control resource sets)の設定には改善の余地がある。
Considering this situation, there is room for improvement in the setting of control resource sets (CORESET: control resource sets) used to transmit the downlink control channel (PDCCH: Physical Downlink Control Channel).
そこで、以下の開示は、このような状況に鑑みてなされたものであり、複数のコンポーネントキャリア(CC)が設定される場合において、より効率的な制御リソースセットの設定を想定し得る端末の提供を目的とする。
Therefore, the following disclosure is made in view of such a situation, and provides a terminal capable of assuming more efficient control resource set setting when a plurality of component carriers (CC) are set. With the goal.
本開示の一態様は、第1領域と第2領域とを含む制御リソースセットをネットワークから受信する受信部(無線信号送受信部210)と、前記第1領域が第1コンポーネントキャリアを介して送信され、前記第2領域が第2コンポーネントキャリアを介して送信される分割送信を想定する制御部(制御部270)とを備える端末(UE200)である。
One aspect of the present disclosure is a receiving unit (radio signal transmitting / receiving unit 210) that receives a control resource set including a first region and a second region from a network, and the first region is transmitted via a first component carrier. A terminal (UE200) including a control unit (control unit 270) that assumes divided transmission in which the second region is transmitted via the second component carrier.
本開示の一態様は、ネットワークから下り制御チャネルを受信する受信部(無線信号送受信部210)と、前記下り制御チャネルを受信後、準備時間に基づいて上りデータチャネルを前記ネットワークに送信する送信部(無線信号送受信部210)と、一つまたは複数の周波数レンジを含む周波数帯域と異なる異周波数帯域の場合、前記周波数帯域の場合よりも長い前記準備時間を想定する制御部(制御部270)とを備える端末(UE200)である。
One aspect of the present disclosure is a receiving unit (radio signal transmitting / receiving unit 210) that receives a downlink control channel from the network, and a transmitting unit that transmits the uplink data channel to the network based on the preparation time after receiving the downlink control channel. (Radio signal transmission / reception unit 210) and a control unit (control unit 270) that assumes a longer preparation time than in the case of a different frequency band different from the frequency band including one or more frequency ranges. It is a terminal (UE200) equipped with.
以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
(1)無線通信システムの全体概略構成
図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE200)を含む。 (1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of thewireless communication system 10 according to the present embodiment. The wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200)).
図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE200)を含む。 (1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the
なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。
Note that the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
NG-RAN20は、無線基地局100A(以下、gNB100A)及び無線基地局100B(以下、gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。
NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B). The specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。
The NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G. In addition, NG-RAN20 and 5GC may be simply expressed as "network".
gNB100A及びgNB100Bは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。
GNB100A and gNB100B are radio base stations that comply with 5G, and execute wireless communication according to UE200 and 5G. The gNB100A, gNB100B and UE200 are Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) that generate more directional beam BM by controlling radio signals transmitted from multiple antenna elements. ) Can be bundled and used for carrier aggregation (CA), and dual connectivity (DC) for simultaneous communication between the UE and each of the two NG-RAN Nodes.
また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。
In addition, the wireless communication system 10 supports a plurality of frequency ranges (FR). FIG. 2 shows the frequency range used in the wireless communication system 10.
図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。
As shown in FIG. 2, the wireless communication system 10 corresponds to FR1 and FR2. The frequency bands of each FR are as follows.
・FR1:410 MHz~7.125 GHz
・FR2:24.25 GHz~52.6 GHz
FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。 ・ FR1: 410 MHz to 7.125 GHz
・ FR2: 24.25 GHz to 52.6 GHz
In FR1, Sub-Carrier Spacing (SCS) of 15, 30 or 60kHz is used, and a bandwidth (BW) of 5 to 100MHz may be used. FR2 has a higher frequency than FR1, and SCS of 60 or 120kHz (240kHz may be included) is used, and a bandwidth (BW) of 50 to 400MHz may be used.
・FR2:24.25 GHz~52.6 GHz
FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。 ・ FR1: 410 MHz to 7.125 GHz
・ FR2: 24.25 GHz to 52.6 GHz
In FR1, Sub-Carrier Spacing (SCS) of 15, 30 or 60kHz is used, and a bandwidth (BW) of 5 to 100MHz may be used. FR2 has a higher frequency than FR1, and SCS of 60 or 120kHz (240kHz may be included) is used, and a bandwidth (BW) of 50 to 400MHz may be used.
なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。
SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
さらに、無線通信システム10は、FR2の周波数帯域よりも高周波数帯域にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、71GHzまでの周波数帯域に対応する。このような高周波数帯域は、便宜上「FR2x」と呼ばれてもよい。
Furthermore, the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 supports a frequency band exceeding 52.6 GHz and up to 71 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
このような問題を解決するため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。
To solve this problem, when using a band exceeding 52.6 GHz, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-) with a larger Sub-Carrier Spacing (SCS) S-OFDM) may be applied.
図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。
FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。
As shown in FIG. 3, one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). The SCS is not limited to the interval (frequency) shown in FIG. For example, 480kHz, 960kHz and the like may be used.
また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。
Further, the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols). In addition, the number of slots per subframe may vary from SCS to SCS.
なお、図3に示す時間方向(t)は、時間領域、シンボル期間またはシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP:Bandwidth part)などと呼ばれてもよい。
The time direction (t) shown in FIG. 3 may be referred to as a time domain, a symbol period, a symbol time, or the like. Further, the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a bandwidth part (BWP), or the like.
BWPは、所与のキャリア上における所与のnumerologyに対する共通リソースブロックの連続サブセットから選択される、PRB(Physical Resource Block)の連続セットと解釈されてもよい。
BWP may be interpreted as a continuous set of PRBs (Physical Resource Blocks) selected from a continuous subset of common resource blocks for a given numerology on a given carrier.
UE200が無線通信に用いるべきBWP情報(帯域幅、周波数位置、サブキャリア間隔 (SCS))は、上位レイヤ(例えば、無線リソース制御レイヤ(RRC)のシグナリングを用いてUE200に設定することができる。UE200(端末)毎に異なるBWPが設定されてもよい。BWPは、上位レイヤのシグナリング、または下位レイヤ、具体的には、物理レイヤ(L1)シグナリング(後述する下りリンク制御情報(DCI:Downlink Control Information))など)によって変更されてもよい。
The BWP information (bandwidth, frequency position, subcarrier spacing (SCS)) that the UE200 should use for wireless communication can be set in the UE200 using signaling from the upper layer (eg, the radio resource control layer (RRC)). A different BWP may be set for each UE200 (terminal). The BWP is an upper layer signaling or a lower layer, specifically, a physical layer (L1) signaling (downlink control information (DCI: Downlink Control) described later). Information)) may be changed by).
無線通信システム10では、より高いスループットを達成するため、CA用の多数のCCがサポートされてよい。例えば、CCの最大帯域幅が400MHzの場合、FR2x、具体的には、57GHz~71GHzの周波数帯域内に最大32個のCCを配置できる。なお、設定されるCCの最大数は、32個を超えても構わないし、それ以下の数でもよい。
The wireless communication system 10 may support a large number of CCs for CA in order to achieve higher throughput. For example, if the maximum bandwidth of CCs is 400MHz, FR2x, specifically, up to 32 CCs can be placed in the frequency band of 57GHz to 71GHz. The maximum number of CCs to be set may exceed 32 or may be less than that.
また、DCIには、次のような情報が含まれてもよい。
In addition, DCI may include the following information.
(i)上りリンク(UL)のリソース割り当て(永続的または非永続的)
(ii)UE200に送信される下りリンク(DL)データの説明
DCIは、下りデータチャネル(例えば、PDSCH(Physical Downlink Shared Channel))または上りデータチャネル(例えば、PUSCH(Physical Uplink Shared Channel))をスケジュールすることができる情報のセットである場合もある。このようなDCIは、特にスケジューリングDCIと呼ばれてもよい。 (I) Uplink (UL) resource allocation (persistent or non-persistent)
(Ii) Description of downlink (DL) data transmitted to UE200 DCI schedules downlink data channel (eg PDSCH (Physical Downlink Shared Channel)) or uplink data channel (eg PUSCH (Physical Uplink Shared Channel)). It can also be a set of information that can be done. Such a DCI may be specifically referred to as a scheduling DCI.
(ii)UE200に送信される下りリンク(DL)データの説明
DCIは、下りデータチャネル(例えば、PDSCH(Physical Downlink Shared Channel))または上りデータチャネル(例えば、PUSCH(Physical Uplink Shared Channel))をスケジュールすることができる情報のセットである場合もある。このようなDCIは、特にスケジューリングDCIと呼ばれてもよい。 (I) Uplink (UL) resource allocation (persistent or non-persistent)
(Ii) Description of downlink (DL) data transmitted to UE200 DCI schedules downlink data channel (eg PDSCH (Physical Downlink Shared Channel)) or uplink data channel (eg PUSCH (Physical Uplink Shared Channel)). It can also be a set of information that can be done. Such a DCI may be specifically referred to as a scheduling DCI.
DCIは、下り制御チャネル、具体的には、PDCCH(Physical Downlink Control Channel)によって送信できる。また、PDCCHの送信に用いられるDLの無線リソースは、制御リソースセット(CORESET:control resource sets)によって指定することができる。つまり、CORESETは、PDCCH(DCIを含む)を伝送するために用いられる物理リソース(具体的には、DLリソースグリッド上の特定の領域)及びパラメータのセットであると解釈されてよい。
DCI can be transmitted via the downlink control channel, specifically, PDCCH (Physical Downlink Control Channel). In addition, the DL radio resources used for PDCCH transmission can be specified by control resource sets (CORESET). That is, CORESET may be interpreted as a set of physical resources (specifically, a specific region on the DL resource grid) and parameters used to transmit PDCCH (including DCI).
UE200は、サーチスペース、具体的には、共通サーチスペース(CSS)によって指摘されるタイミング及び周期に基づいて、CORESETが割り当てられている当該特定の領域を想定できる。
UE200 can assume the specific area to which CORESET is assigned based on the search space, specifically the timing and period pointed out by the common search space (CSS).
また、CORESETには、以下のパラメータが含まれてよい。
In addition, CORESET may include the following parameters.
・リソース要素(RE):周波数領域では1つのサブキャリア、時間領域では1つのOFDMシンボルによって構成されるリソースグリッドの最小単位
・リソース要素グループ(REG):1つのリソースブロック(周波数領域における12リソース要素)と、時間領域における1つのOFDMシンボルとによって構成される
・REGバンドル:複数のREGによって構成される。バンドルサイズは、パラメータ'L'によって指定でき、Lは、無線リソース制御レイヤ(RRC)パラメータ(reg-bundle-size)によって決定できる。 -Resource element (RE): The smallest unit of the resource grid consisting of one subcarrier in the frequency domain and one OFDM symbol in the time domain-Resource element group (REG): One resource block (12 resource elements in the frequency domain) ) And one OFDM symbol in the time domain-REG bundle: Consists of multiple REGs. The bundle size can be specified by the parameter'L', which can be determined by the Radio Resource Control Layer (RRC) parameter (reg-bundle-size).
・リソース要素グループ(REG):1つのリソースブロック(周波数領域における12リソース要素)と、時間領域における1つのOFDMシンボルとによって構成される
・REGバンドル:複数のREGによって構成される。バンドルサイズは、パラメータ'L'によって指定でき、Lは、無線リソース制御レイヤ(RRC)パラメータ(reg-bundle-size)によって決定できる。 -Resource element (RE): The smallest unit of the resource grid consisting of one subcarrier in the frequency domain and one OFDM symbol in the time domain-Resource element group (REG): One resource block (12 resource elements in the frequency domain) ) And one OFDM symbol in the time domain-REG bundle: Consists of multiple REGs. The bundle size can be specified by the parameter'L', which can be determined by the Radio Resource Control Layer (RRC) parameter (reg-bundle-size).
・制御チャネル要素(CCE):複数のREGによって構成される。CCEに含まれるREG(REGバンドル)の数は可変でよい。
・ Control channel element (CCE): Consists of multiple REGs. The number of REGs (REG bundles) included in the CCE may be variable.
・集約レベル(AL:Aggregation Level):PDCCHに割り当てられているCCEの数を示す。3GPP Release-15, 16では、1, 2, 4, 8, 16が規定されているが、無線通信システム10では、後述するように、さらに大きな値が用いられてよい。
・ Aggregation Level (AL): Indicates the number of CCEs assigned to PDCCH. In 3GPP Release-15, 16, 1, 2, 4, 8, 16 are specified, but in the wireless communication system 10, a larger value may be used as described later.
また、3GPP Release-15, 16では、スケジューリングDCIを含むPDCCHと、当該スケジューリングDCIによってスケジューリングされるPUSCHとのタイムラインを示すPUSCH preparation time(準備時間)が規定される。無線通信システム10では、後述するように、当該準備時間として、さらに大きな値が用いられてよい。
In addition, 3GPP Release-15, 16 defines the PUSCH preparation time, which indicates the timeline between the PDCCH including the scheduling DCI and the PUSCH scheduled by the scheduling DCI. In the wireless communication system 10, as will be described later, a larger value may be used as the preparation time.
(2)無線通信システムの機能ブロック構成
次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。 (2) Functional block configuration of the wireless communication system Next, the functional block configuration of thewireless communication system 10 will be described. Specifically, the functional block configuration of UE200 will be described.
次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。 (2) Functional block configuration of the wireless communication system Next, the functional block configuration of the
図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。
FIG. 4 is a functional block configuration diagram of the UE 200. As shown in FIG. 4, the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。
The wireless signal transmitter / receiver 210 transmits / receives a wireless signal according to NR. The radio signal transmitter / receiver 210 corresponds to Massive MIMO, a CA that bundles a plurality of CCs, and a DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
本実施形態では、無線信号送受信部210は、ネットワーク(gNB100AまたはgNB100B、以下同)から下り制御チャネルを受信する。本実施形態において、無線信号送受信部210は、受信部を構成する。
In the present embodiment, the radio signal transmission / reception unit 210 receives the downlink control channel from the network (gNB100A or gNB100B, the same applies hereinafter). In the present embodiment, the wireless signal transmission / reception unit 210 constitutes a reception unit.
具体的には、無線信号送受信部210は、PDCCHを受信する。当該PDCCHは、後述するように、複数のCCに跨がって送信されてもよい。
Specifically, the wireless signal transmitter / receiver 210 receives the PDCCH. The PDCCH may be transmitted across a plurality of CCs, as will be described later.
PDCCHは、上述したように制御リソースセット(CORESET)内において伝送される。本実施形態では、CORESETも、複数のCCに跨がって、つまり、複数のCCに分かれて伝送されてよい。
PDCCH is transmitted in the control resource set (CORESET) as described above. In the present embodiment, CORESET may also be transmitted across a plurality of CCs, that is, divided into a plurality of CCs.
具体的には、CORESETは、少なくとも2つの領域、具体的には、第1領域と第2領域とに分割されてよい。
Specifically, CORESET may be divided into at least two regions, specifically, a first region and a second region.
つまり、無線信号送受信部210は、第1領域と第2領域とを含むCORESETをネットワークから受信することができる。なお、CORESETは、3つ以上の領域に分割され、2以上のCCに分かれて伝送されてもよい。
That is, the wireless signal transmission / reception unit 210 can receive CORESET including the first region and the second region from the network. CORESET may be divided into three or more regions and transmitted in two or more CCs.
また、無線信号送受信部210は、ネットワークから下りデータチャネルを受信する。具体的には、無線信号送受信部210は、PDSCHを受信する。
In addition, the wireless signal transmitter / receiver 210 receives the downlink data channel from the network. Specifically, the radio signal transmission / reception unit 210 receives the PDSCH.
さらに、無線信号送受信部210は、上りデータチャネルをネットワークに送信する。具体的には、無線信号送受信部210は、PUSCHを送信する。本実施形態において、無線信号送受信部210は、送信部を構成する。
Furthermore, the wireless signal transmitter / receiver 210 transmits an uplink data channel to the network. Specifically, the radio signal transmission / reception unit 210 transmits the PUSCH. In the present embodiment, the wireless signal transmission / reception unit 210 constitutes a transmission unit.
特に、無線信号送受信部210は、PDCCHを受信後、PDCCHとPUSCHとのタイムラインを示すPUSCH preparation time(準備時間)に基づいてPUSCHを送信することができる。
In particular, after receiving the PDCCH, the wireless signal transmitter / receiver 210 can transmit the PUSCH based on the PUSCH preparation time indicating the timeline between the PDCCH and the PUSCH.
具体的には、無線信号送受信部210は、制御部270による制御に従って、PUSCH preparation timeによって規定されるシンボル数に相当する時間内にPUSCHを送信することができる。
Specifically, the radio signal transmission / reception unit 210 can transmit the PUSCH within a time corresponding to the number of symbols specified by the PUSCH preparation time according to the control by the control unit 270.
アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。
The amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like. The amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
変復調部230は、所定の通信先(gNB100Aなど)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。
The modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100A, etc.). Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) may be applied to the modulation / demodulation unit 230. Further, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。
The control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
具体的には、制御信号・参照信号処理部240は、gNB100Aから所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100Aに向けて、所定の制御チャネルを介して各種の制御信号を送信する。
Specifically, the control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100A via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB100A via a predetermined control channel.
制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。
The control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。
DMRS is a known reference signal (pilot signal) between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation. PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)などが含まれてもよい。
In addition to DMRS and PTRS, the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), PositioningReferenceSignal (PRS) for position information, and the like. ..
また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。
In addition, the channel includes a control channel and a data channel. Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel, Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI)), and Physical. Broadcast Channel (PBCH) etc. are included.
データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。
Data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data means data transmitted over a data channel. The data channel may be read as a shared channel.
符号化/復号部250は、所定の通信先(gNB100Aなど)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。
The coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100A, etc.).
具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。
Specifically, the coding / decoding unit 250 divides the data output from the data transmitting / receiving unit 260 into a predetermined size, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、ハイブリッドARQ(Hybrid automatic repeat request)に基づいて、データの誤り訂正及び再送制御を実行する。
The data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a wireless link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble. Further, the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
制御部270は、UE200を構成する各機能ブロックを制御する。特に、本実施形態では、制御部270は、下り制御チャネル(PDCCH)に関する制御を実行する。
The control unit 270 controls each functional block constituting the UE 200. In particular, in the present embodiment, the control unit 270 executes control regarding the downlink control channel (PDCCH).
具体的には、制御部270は、PDCCHが伝送される制御リソースセット(CORESET)に関する制御を実行する。
Specifically, the control unit 270 executes control regarding the control resource set (CORESET) to which the PDCCH is transmitted.
上述したように、本実施形態では、CORESETは、複数のCCに跨がって送信することができ、少なくとも2つの領域、具体的には、第1領域と第2領域とに分割されてよい。制御部270は、第1領域が第1コンポーネントキャリア(例えば、CC#0、図6など参照)を介して送信され、第2領域が第2コンポーネントキャリア(例えば、CC#1)を介して送信されること(以下、分割送信という)を想定してよい。
As described above, in the present embodiment, the CORESET can be transmitted across a plurality of CCs and may be divided into at least two regions, specifically, a first region and a second region. .. In the control unit 270, the first region is transmitted via the first component carrier (for example, CC # 0, see FIG. 6 and the like), and the second region is transmitted via the second component carrier (for example, CC # 1). It may be assumed that it will be performed (hereinafter referred to as divided transmission).
なお、上述したように、CORESETは、3つ以上の領域に分割され、2以上(つまり、3以上でもよい)のCCに分かれて伝送されてもよい。また、CORESETが分割送信されるCCは、基本的には連続(contiguous)を想定してよいが、非連続(non-contiguous)でもよい。
As described above, CORESET may be divided into three or more regions and transmitted in two or more (that is, three or more) CCs. Further, the CC to which CORESET is divided and transmitted may basically be assumed to be continuous, but may be non-contiguous.
さらに、制御部270は、CORESETの第1領域と第2領域とが、複数のCCに分かれて伝送されつつ、さらに時間領域において異なる位置に割り当てられると想定することもできる。例えば、第1領域がCC#0に設定され、第2領域がCC#1に設定されるとともに、時間領域、つまり、異なるシンボル(OFDMシンボル)に割り当てられてもよい。第1領域と第2領域とは、時間領域(シンボル)において連続していてもよいし、非連続でもよい。
Further, the control unit 270 can also assume that the first region and the second region of CORESET are divided into a plurality of CCs and transmitted, and are further assigned to different positions in the time domain. For example, the first region may be set to CC # 0, the second region may be set to CC # 1, and the time domain, that is, a different symbol (OFDM symbol) may be assigned. The first region and the second region may be continuous or discontinuous in the time domain (symbol).
また、制御部270は、CORESETの分割送信の場合、当該CORESETを構成する制御チャネル要素(CCE)の集約レベル(AL)を、CORESETが分割送信されない場合よりも高いと想定してよい。
Further, the control unit 270 may assume that the aggregation level (AL) of the control channel element (CCE) constituting the CORESET is higher in the case of the divided transmission of CORESET than in the case of the divided transmission of CORESET.
3GPP Release-15, 16では、1, 2, 4, 8, 16のALが設定可能だが、より大きい値、例えば、32, 64などのALが設定されてよい。
In 3GPP Release-15, 16, AL of 1, 2, 4, 8, 16 can be set, but a larger value, for example, AL of 32, 64, etc. may be set.
さらに、制御部270は、CORESETの分割送信の場合、CCEに含まれるリソース要素グループ(REG)の数(REGバンドルの数でもよい)が、CORESETが分割送信されない場合よりも多いと想定してもよい。
Further, the control unit 270 may assume that the number of resource element groups (REGs) included in the CCE (which may be the number of REG bundles) is larger in the case of CORESET split transmission than in the case where CORESET is not split transmission. good.
3GPP Release-15, 16では、CCEは、最大6個のREGバンドルを含むことができるが、より大きい数、例えば、12個のREGバンドルを含んでよい。また、FR2xなどの高周波数帯域が用いられる場合、CCEは、より大きい数のREGを含んでもよいし、BWPのサイズが大きくなるに連れて、より大きい数のREGを含んでもよい。
In 3GPP Release-15,16, the CCE can contain up to 6 REG bundles, but may include a larger number, eg 12 REG bundles. Also, when high frequency bands such as FR2x are used, the CCE may contain a larger number of REGs or may contain a larger number of REGs as the size of the BWP increases.
上述したように、制御部270は、CORESETの分割送信されることを想定してよいが、この場合、制御部270は、CORESETまたは共通サーチスペース(CSS)に関する上位レイヤのパラメータが、当該分割送信に用いられる複数のCCのグループに対して適用されると想定してもよい。
As described above, the control unit 270 may assume that the CORESET is divided and transmitted. In this case, the control unit 270 sets the parameters of the upper layer regarding CORESET or the common search space (CSS) to the divided transmission. It may be assumed that it applies to multiple groups of CCs used in.
具体的には、3GPP Release-15, 16では、CORESET及びCSSは、DL BWP毎に設定することができるが、本実施形態では、CORESETの分割送信に用いられる複数のCCのグループ毎に設定されてよい。
Specifically, in 3GPP Release-15, 16, CORESET and CSS can be set for each DLBWP, but in this embodiment, they are set for each group of a plurality of CCs used for divided transmission of CORESET. You can.
なお、CORESET及びCSSに関する上位レイヤ(RRCなど)のパラメータは、3GPP Release-15, 16において規定されるCC毎ではなく、当該複数のCCのグループ毎に設定されてもよい。
Note that the parameters of the upper layer (RRC, etc.) related to CORESET and CSS may be set not for each CC specified in 3GPP Release-15, 16 but for each group of the plurality of CCs.
本実施形態では、制御部270は、FR2xなどの高周波数帯域、つまり、一つまたは複数の周波数レンジ(FR1, FR2)を含む周波数帯域と異なる異周波数帯域の場合、当該周波数帯域の場合よりも長いPUSCH preparation time(準備時間)を想定してよい。
In the present embodiment, the control unit 270 is in the case of a high frequency band such as FR2x, that is, a different frequency band different from the frequency band including one or more frequency ranges (FR1, FR2), than in the case of the frequency band. A long PUSCH preparation time may be assumed.
具体的には、制御部270は、高周波数帯域の場合、スケジューリングDCIによってスケジューリングされるPUSCHに適用されるPUSCH preparation timeを、FR1, FR2の場合よりも長くしてもよい。
Specifically, in the high frequency band, the control unit 270 may set the PUSCH preparation time applied to the PUSCH scheduled by the scheduling DCI longer than in the case of FR1 and FR2.
また、制御部270は、PUSCHの送信に用いられるサブキャリアの間隔(SCS)がFR1, FR2を含む周波数帯域の場合よりも大きい場合、当該周波数帯域の場合よりも長いPUSCH preparation timeを想定してもよい。例えば、制御部270は、240kHzのような大きいSCSの場合、当該PUSCH preparation timeを長くしてもよい。なお、PUSCH preparation timeの具体的な設定例については、さらに後述する。
Further, when the subcarrier interval (SCS) used for PUSCH transmission is larger than that in the frequency band including FR1 and FR2, the control unit 270 assumes a PUSCH preparation time longer than that in the frequency band. May be good. For example, in the case of a large SCS such as 240 kHz, the control unit 270 may lengthen the PUSCH preparation time. A specific setting example of PUSCH preparation time will be described later.
さらに、制御部270は、当該異周波数帯域の場合、FR1, FR2を含む周波数帯域の場合よりも長いPDSCHの復号時間を想定してもよい。
Further, the control unit 270 may assume a PDSCH decoding time longer in the case of the different frequency band than in the case of the frequency band including FR1 and FR2.
なお、PUSCHの準備時間(PUSCH preparation time N2)及びPDSCHの復号時間(PDSCH decoding time N1)は、3GPP TS38.214において規定されている。
The PUSCH preparation time (PUSCH preparation time N 2 ) and the PDSCH decoding time (PDSCH decoding time N 1 ) are specified in 3GPP TS38.214.
(3)無線通信システムの動作
次に、無線通信システム10の動作について説明する。具体的には、複数のコンポーネントキャリア(CC)を用いた下り制御チャネル(PDCCH)のリソース設定に関する動作について説明する。 (3) Operation of the wireless communication system Next, the operation of thewireless communication system 10 will be described. Specifically, the operation related to the resource setting of the downlink control channel (PDCCH) using a plurality of component carriers (CC) will be described.
次に、無線通信システム10の動作について説明する。具体的には、複数のコンポーネントキャリア(CC)を用いた下り制御チャネル(PDCCH)のリソース設定に関する動作について説明する。 (3) Operation of the wireless communication system Next, the operation of the
(3.1)前提
無線通信システム10では、上述したように、52.6GHzを超え、71GHzまでの周波数帯域(FR2x)に対応する。FR2xのような高周波数帯域は、FR1, FR2と、次の観点において本質的な相違がある。 (3.1) As described above, the prerequisitewireless communication system 10 supports the frequency band (FR2x) exceeding 52.6 GHz and up to 71 GHz. High frequency bands such as FR2x are essentially different from FR1 and FR2 in the following respects.
無線通信システム10では、上述したように、52.6GHzを超え、71GHzまでの周波数帯域(FR2x)に対応する。FR2xのような高周波数帯域は、FR1, FR2と、次の観点において本質的な相違がある。 (3.1) As described above, the prerequisite
(チャネル/電波伝搬)
・使用可能な帯域幅の拡大(約13GHz(57~71 GHz unlicensedの場合)
・見通し外(NLOS:Non-Line Of Sight)による大きなパスロスによる低い遅延スプレッド
(デバイス(端末))
・波長に応じた小さいサイズのアンテナ素子(による規模の大きい(massiveな)アンテナ)
・アナログビームフォーミングに基づく高指向性(狭いビーム幅)
・パワーアンプの効率の低下(ピーク対平均電力比(PAPR)の上昇)
・位相雑音の増加(より高いSCS及びより短いシンボル時間の適用可能性)
また、使用可能な帯域幅が広いほど、非常に広いCC帯域幅がサポートされていない限り、より多くのCCが設定される可能性が高くなる。上述したように、FR2のようにCCの最大帯域幅が400MHzの場合、57GHz~71GHzの周波数帯域内に最大32個のCCを配置できる。 (Channel / radio wave propagation)
-Expansion of usable bandwidth (approx. 13 GHz (for 57 to 71 GHz unlicensed))
・ Low delay spread due to large path loss due to non-line of sight (NLOS) (device (terminal))
・ Small size antenna element according to wavelength (large-scale (massive) antenna)
・ High directivity based on analog beamforming (narrow beam width)
・ Decrease in power amplifier efficiency (increase in peak-to-average power ratio (PAPR))
• Increased phase noise (higher SCS and shorter symbol time applicability)
Also, the wider the available bandwidth, the more CC is likely to be configured unless a very large CC bandwidth is supported. As mentioned above, when the maximum bandwidth of CCs is 400MHz like FR2, up to 32 CCs can be arranged in the frequency band of 57GHz to 71GHz.
・使用可能な帯域幅の拡大(約13GHz(57~71 GHz unlicensedの場合)
・見通し外(NLOS:Non-Line Of Sight)による大きなパスロスによる低い遅延スプレッド
(デバイス(端末))
・波長に応じた小さいサイズのアンテナ素子(による規模の大きい(massiveな)アンテナ)
・アナログビームフォーミングに基づく高指向性(狭いビーム幅)
・パワーアンプの効率の低下(ピーク対平均電力比(PAPR)の上昇)
・位相雑音の増加(より高いSCS及びより短いシンボル時間の適用可能性)
また、使用可能な帯域幅が広いほど、非常に広いCC帯域幅がサポートされていない限り、より多くのCCが設定される可能性が高くなる。上述したように、FR2のようにCCの最大帯域幅が400MHzの場合、57GHz~71GHzの周波数帯域内に最大32個のCCを配置できる。 (Channel / radio wave propagation)
-Expansion of usable bandwidth (approx. 13 GHz (for 57 to 71 GHz unlicensed))
・ Low delay spread due to large path loss due to non-line of sight (NLOS) (device (terminal))
・ Small size antenna element according to wavelength (large-scale (massive) antenna)
・ High directivity based on analog beamforming (narrow beam width)
・ Decrease in power amplifier efficiency (increase in peak-to-average power ratio (PAPR))
• Increased phase noise (higher SCS and shorter symbol time applicability)
Also, the wider the available bandwidth, the more CC is likely to be configured unless a very large CC bandwidth is supported. As mentioned above, when the maximum bandwidth of CCs is 400MHz like FR2, up to 32 CCs can be arranged in the frequency band of 57GHz to 71GHz.
キャリアアグリゲーション(CA)では、設定できるCC数には制限がある。具体的には、3GPPのRelease-15, 16では、UE200に対して設定できるCCの最大数は、DL及びULにおいて、それぞれ16個である(3GPP 38.300の5.4.1章)。
In carrier aggregation (CA), there is a limit to the number of CCs that can be set. Specifically, in 3GPP Release-15 and 16, the maximum number of CCs that can be set for UE200 is 16 for DL and UL, respectively (Chapter 5.4.1 of 3GPP 38.300).
一方、物理レイヤ(L1, PHY)及び媒体アクセス制御レイヤ(MAC)の設定は、CC毎に実行される。3GPPのRelease-15, 16では、一つのDCIは、一つのCCのみスケジューリングすることができるため、多数のCCをスケジューリングするためには、多数のDCIが必要となる。このため、PDCCHの容量が逼迫する可能性がある。
On the other hand, the physical layer (L1, PHY) and medium access control layer (MAC) settings are executed for each CC. In 3GPP Release-15,16, one DCI can schedule only one CC, so a large number of DCIs are required to schedule a large number of CCs. Therefore, the capacity of PDCCH may be tight.
また、1つのトランスポートブロック(TB)は、1つのCC(つまり、1つのTBを複数のCCにマッピングすることはできない)でのみ伝送可能であり、多数のCCには多数のHybrid Automatic repeat request(HARQ) Acknowledgement(ACK)ビットが必要となる。
Also, one transport block (TB) can only be transmitted by one CC (that is, one TB cannot be mapped to multiple CCs), and many CCs have many Hybrid Automatic repeat requests. (HARQ) Acknowledgement (ACK) bit is required.
さらに、ビーム管理(Transmission Configuration Indication(TCI)状態表示)もCC毎に実行される。具体的には、3GPP Release-16では、一つのMAC-CEが複数のCCのTCI状態を更新/アクティブ化できるが、一つのDCIは、一つのCCのTCI状態のみ、更新することができる。
Furthermore, beam management (Transmission Configuration Indication (TCI) status display) is also executed for each CC. Specifically, in 3GPP Release-16, one MAC-CE can update / activate the TCI status of multiple CCs, but one DCI can update only the TCI status of one CC.
このような制約があるが、単一の広帯域内における複数のCCのチャネル特性はそれ程相違しないと想定されるため、CC毎に個別のPHY及びMACレイヤにおける動作は、必ずしも必要でなく、効率的でもないと想定される。
Despite these restrictions, it is assumed that the channel characteristics of multiple CCs within a single broadband are not so different, so it is not always necessary and efficient to operate in individual PHY and MAC layers for each CC. It is assumed that it is not.
以下では、このような前提を考慮しつつ、複数のコンポーネントキャリア(CC)が設定される場合において、より効率的なCORESETの設定に関する動作について説明する。具体的には、複数のCCを介した柔軟性の高いPDCCHのスケジューリング(例えば、複数のCCを介した1つのトランスポートブロック(TB)の伝送)を実現し得る動作について説明する。
In the following, while considering such a premise, the operation related to more efficient CORESET setting when multiple component carriers (CC) are set will be described. Specifically, an operation that can realize highly flexible PDCCH scheduling via a plurality of CCs (for example, transmission of one transport block (TB) via a plurality of CCs) will be described.
(3.2)動作概要
複数のCCを介した柔軟性の高いPDCCHのスケジューリングを実現する動作として、以下の動作例について説明する。 (3.2) Outline of operation The following operation example will be described as an operation for realizing highly flexible PDCCH scheduling via a plurality of CCs.
複数のCCを介した柔軟性の高いPDCCHのスケジューリングを実現する動作として、以下の動作例について説明する。 (3.2) Outline of operation The following operation example will be described as an operation for realizing highly flexible PDCCH scheduling via a plurality of CCs.
・(動作例1):PDCCHなどのリソース割り当て用のCORESET設定
・(動作例2):新たなCORESETの構成
制御チャネル要素(CCE)の集約レベル(AL)の向上、及びCCEとREGバンドルとの粒度を粗くすることが含まれてよい。 -(Operation example 1): CORESET setting for resource allocation such as PDCCH- (Operation example 2): New CORESET configuration Improvement of aggregation level (AL) of control channel element (CCE), and between CCE and REG bundle Coarsing the particle size may be included.
・(動作例2):新たなCORESETの構成
制御チャネル要素(CCE)の集約レベル(AL)の向上、及びCCEとREGバンドルとの粒度を粗くすることが含まれてよい。 -(Operation example 1): CORESET setting for resource allocation such as PDCCH- (Operation example 2): New CORESET configuration Improvement of aggregation level (AL) of control channel element (CCE), and between CCE and REG bundle Coarsing the particle size may be included.
・(動作例3):CORESETとサーチスペースとの相互連携
・(動作例4):PUSCH preparation time(及びPDSCH decoding time)の変更
図5は、CORESETに関する通信シーケンスの一例を示す。ここでは、UE200が、CAを実行するために複数のCCを設定しているものとする。 -(Operation example 3): Mutual cooperation between CORESET and search space- (Operation example 4): Change of PUSCH preparation time (and PDSCH decoding time) FIG. 5 shows an example of a communication sequence related to CORESET. Here, it is assumed that UE200 has set up multiple CCs to execute CA.
・(動作例4):PUSCH preparation time(及びPDSCH decoding time)の変更
図5は、CORESETに関する通信シーケンスの一例を示す。ここでは、UE200が、CAを実行するために複数のCCを設定しているものとする。 -(Operation example 3): Mutual cooperation between CORESET and search space- (Operation example 4): Change of PUSCH preparation time (and PDSCH decoding time) FIG. 5 shows an example of a communication sequence related to CORESET. Here, it is assumed that UE200 has set up multiple CCs to execute CA.
図5に示すように、ネットワークは、PDCCH(CORESET)をUE200に向けて送信する(S10)。具体的には、UE200は、Type0-PDCCH CSS(Common Search Space:共通サーチスペース) set用のCORESETが存在すると決定した場合、当該CORESET(Remaining Minimum System Information (RMSI) CORESETと呼ばれてもよい)用の幾つかの連続したリソースブロック(RB)及びシンボルを決定する。UE200は、決定したRB及びシンボルに基づいて、下り制御チャネル(PDCCH:Physical Downlink Control Channel)、具体的には、システム情報ブロック(SIB)復号化のためのType 0 PDCCHのモニタリング機会(MO)を設定する。
As shown in FIG. 5, the network transmits PDCCH (CORESET) toward UE200 (S10). Specifically, if it is determined that a CORESET for Type0-PDCCH CSS (Common Search Space) set exists, the UE200 may be called the CORESET (Remaining Minimum System Information (RMSI) CORESET). Determine some contiguous resource blocks (RBs) and symbols for. Based on the determined RB and symbol, UE200 provides a monitoring opportunity (MO) for the downlink control channel (PDCCH: Physical Downlink Control Channel), specifically, Type 0 PDCCH for system information block (SIB) decoding. Set.
UE200は、次いで必要なデータチャネル、具体的には、PUSCH及びPDSCHを設定する(S20)。
UE200 then sets the required data channels, specifically PUSCH and PDSCH (S20).
UE200は、設定された当該チャネルなどを用いて、ランダムアクセス(RA)手順などを実行し、ネットワークとの接続を確立する(S30)。
UE200 executes a random access (RA) procedure, etc., using the set channel, etc., and establishes a connection with the network (S30).
(3.3)動作例1
本動作例は、CORESETのリソース割り当てに関する。具体的には、本動作例では、複数のCCに跨がってCORESETが設定されてよい。 (3.3) Operation example 1
This operation example relates to CORESET resource allocation. Specifically, in this operation example, CORESET may be set across a plurality of CCs.
本動作例は、CORESETのリソース割り当てに関する。具体的には、本動作例では、複数のCCに跨がってCORESETが設定されてよい。 (3.3) Operation example 1
This operation example relates to CORESET resource allocation. Specifically, in this operation example, CORESET may be set across a plurality of CCs.
(3.3.1)動作例1-1
図6は、動作例1-1に係るCORESETの周波数領域及び時間領域への割り当て例を示す。図6に示すように、CORESETは、複数のCC(CC#0及びCC#1)に跨がって設定、つまり分割送信されてよい。なお、1つのCORESETが跨がって設定されるCCの数は、2に限定されず、3以上でも構わない。また、当該CCは、周波数領域において連続(contiguous)していてもよいし、非連続(non-contiguous)でもよい。 (3.3.1) Operation example 1-1
FIG. 6 shows an example of allocation of CORESET according to the operation example 1-1 to the frequency domain and the time domain. As shown in FIG. 6, CORESET may be set across a plurality of CCs (CC # 0 and CC # 1), that is, may be transmitted in a divided manner. The number of CCs set across one CORESET is not limited to 2, and may be 3 or more. Further, the CC may be continuous or non-contiguous in the frequency domain.
図6は、動作例1-1に係るCORESETの周波数領域及び時間領域への割り当て例を示す。図6に示すように、CORESETは、複数のCC(CC#0及びCC#1)に跨がって設定、つまり分割送信されてよい。なお、1つのCORESETが跨がって設定されるCCの数は、2に限定されず、3以上でも構わない。また、当該CCは、周波数領域において連続(contiguous)していてもよいし、非連続(non-contiguous)でもよい。 (3.3.1) Operation example 1-1
FIG. 6 shows an example of allocation of CORESET according to the operation example 1-1 to the frequency domain and the time domain. As shown in FIG. 6, CORESET may be set across a plurality of CCs (
さらに、図6に示すように、以下のような割り当てオプションを適用し得る。
Furthermore, as shown in FIG. 6, the following allocation options can be applied.
・(オプション1):周波数領域においてのみ、CORESETが複数CCにして割り当てられる。
(Option 1): CORESET is assigned as multiple CCs only in the frequency domain.
3GPP Release-15などの場合、CORESETは、1つのCC(周波数領域)内に割り当てられるが、オプション1の場合、CORESETは、同一の時間領域(シンボルまたはスロット)内において、CC#0及びCC#1に重複して割り当てられる。なお、上述したように、CC#0に割り当てられるCORESETの領域を第1領域、CC#1に割り当てられるCORESETの領域を第2領域と呼んでもよい。
In the case of 3GPP Release-15 etc., CORESET is assigned in one CC (frequency domain), but in the case of option 1, CORESET is assigned to CC # 0 and CC # in the same time domain (symbol or slot). It is assigned to 1 more than once. As described above, the CORESET area assigned to CC # 0 may be referred to as a first area, and the CORESET area assigned to CC # 1 may be referred to as a second area.
また、この場合、RRCレイヤにおけるCORESETに関するパラメータ、具体的には、frequencyDomainResourcesのビットサイズは、CORESETの分割送信用のグループに含まれる複数のCCの数×45としてよい。
In this case, the parameter related to CORESET in the RRC layer, specifically, the bit size of frequencyDomainResources may be the number of a plurality of CCs included in the group for divided transmission of CORESET × 45.
・(オプション2):時間領域においてのみ、CORESETが複数CCに重複して割り当てられる。
(Option 2): CORESET is duplicated in multiple CCs only in the time domain.
図6に示すように、CORESETは、CC#0及びCC#1に重複して割り当てられるが、同一の時間領域において、CC#0及びCC#1に重複して割り当てられていない。つまり、時間領域においてのみ、CORESETがCC#0及びCC#1に重複して割り当てることができる。
As shown in FIG. 6, CORESET is duplicated in CC # 0 and CC # 1, but is not duplicated in CC # 0 and CC # 1 in the same time domain. That is, CORESET can be duplicated in CC # 0 and CC # 1 only in the time domain.
なお、オプション2は、周波数分割多重(FDM)が用いられない場合には適切ではない。
Option 2 is not appropriate when frequency division multiplexing (FDM) is not used.
また、この場合、RRCレイヤにおけるCORESETに関するパラメータ、具体的には、durationは、グループ化されたCC毎に適用される場合、1..maxCoReSetDurationの値を採り、maxCoReSetDurationForGroupがCORESET期間(CORESET duration)数の最大値としてよい。或いは、durationは、CC毎に1..maxCoReSetDurationの値を示すようにしてもよい。
In this case, the parameter related to CORESET in the RRC layer, specifically, duration takes the value of 1..maxCoReSetDuration when applied for each grouped CC, and maxCoReSetDurationForGroup is the number of CORESET period (CORESETduration). It may be the maximum value of. Alternatively, the duration may indicate the value of 1..maxCoReSetDuration for each CC.
・(オプション3):周波数領域及び時間領域の両方において、CORESETが複数CCにして割り当てられる。
(Option 3): CORESET is assigned as multiple CCs in both the frequency domain and the time domain.
図6に示すように、CORESETは、同一の時間領域内において、CC#0及びCC#1に重複して割り当てられるとともに、同一の時間領域において、CC#0及びCC#1に重複して割り当てられる。
As shown in FIG. 6, CORESET is duplicated in CC # 0 and CC # 1 in the same time domain, and is duplicated in CC # 0 and CC # 1 in the same time domain. Be done.
また、この場合、オプション1と同様に、frequencyDomainResourcesのビットサイズは、CORESETの分割送信用のグループに含まれる複数のCCの数×45としてよく、durationは、1..maxCoReSetDurationForGroup、つまり、当該CCを含むグループ用として設定されてよい。
Further, in this case, as in option 1, the bit size of frequencyDomainResources may be the number of multiple CCs included in the group for split transmission of CORESET × 45, and the duration is 1..maxCoReSetDurationForGroup, that is, the CC. It may be set for the including group.
(3.3.2)動作例1-2
図7は、動作例1-2に係るCORESETの周波数領域及び時間領域への割り当て例を示す。図7に示すように、CORESETが複数のCCに重複して割り当てられる場合、UE200は、以下のような重複のレベルを想定してよい。 (3.3.2) Operation example 1-2
FIG. 7 shows an example of allocating CORESET to the frequency domain and the time domain according to the operation example 1-2. As shown in FIG. 7, when CORESET is allocated to a plurality of CCs in duplicate, theUE 200 may assume the following levels of overlap.
図7は、動作例1-2に係るCORESETの周波数領域及び時間領域への割り当て例を示す。図7に示すように、CORESETが複数のCCに重複して割り当てられる場合、UE200は、以下のような重複のレベルを想定してよい。 (3.3.2) Operation example 1-2
FIG. 7 shows an example of allocating CORESET to the frequency domain and the time domain according to the operation example 1-2. As shown in FIG. 7, when CORESET is allocated to a plurality of CCs in duplicate, the
・(Alt. 1):REレベル
・(Alt. 2):REGレベル
・(Alt. 3):REGバンドルレベル(インターリーブマッピングに適する)
・(Alt. 4):CCEレベル(PDCCHモニタリングに適する)
また、図7に示すように、CORESET(RE)の割り当ての柔軟性は、Alt. 1が最も高い。一方、CORESET(RE)の割り当てのシンプル度は、Alt. 4が最も高い。 ・ (Alt. 1): RE level ・ (Alt. 2): REG level ・ (Alt. 3): REG bundle level (suitable for interleave mapping)
・ (Alt. 4): CCE level (suitable for PDCCH monitoring)
Further, as shown in FIG. 7, the flexibility of CORESET (RE) allocation is highest in Alt.1. On the other hand, Alt. 4 has the highest degree of simplicity of CORESET (RE) allocation.
・(Alt. 2):REGレベル
・(Alt. 3):REGバンドルレベル(インターリーブマッピングに適する)
・(Alt. 4):CCEレベル(PDCCHモニタリングに適する)
また、図7に示すように、CORESET(RE)の割り当ての柔軟性は、Alt. 1が最も高い。一方、CORESET(RE)の割り当てのシンプル度は、Alt. 4が最も高い。 ・ (Alt. 1): RE level ・ (Alt. 2): REG level ・ (Alt. 3): REG bundle level (suitable for interleave mapping)
・ (Alt. 4): CCE level (suitable for PDCCH monitoring)
Further, as shown in FIG. 7, the flexibility of CORESET (RE) allocation is highest in Alt.1. On the other hand, Alt. 4 has the highest degree of simplicity of CORESET (RE) allocation.
(3.3.3)動作例1-3
図8は、動作例1-3に係るCORESETの周波数領域及び時間領域への割り当て例(その1)を示す。図8に示すように、CORESETが複数のCCに重複して割り当てられる場合、UE200は、以下のようREGバンドルの割り当てを想定してよい。 (3.3.3) Operation example 1-3
FIG. 8 shows an example (No. 1) of allocation of CORESET to the frequency domain and the time domain according to the operation example 1-3. As shown in FIG. 8, when CORESET is allocated to a plurality of CCs in duplicate, UE200 may assume the allocation of the REG bundle as follows.
図8は、動作例1-3に係るCORESETの周波数領域及び時間領域への割り当て例(その1)を示す。図8に示すように、CORESETが複数のCCに重複して割り当てられる場合、UE200は、以下のようREGバンドルの割り当てを想定してよい。 (3.3.3) Operation example 1-3
FIG. 8 shows an example (No. 1) of allocation of CORESET to the frequency domain and the time domain according to the operation example 1-3. As shown in FIG. 8, when CORESET is allocated to a plurality of CCs in duplicate, UE200 may assume the allocation of the REG bundle as follows.
・(Alt. 1):CORESETを構成するREGバンドルは、CC#0とCC#1との間においてインターリーブ(周波数領域への非連続割り当て)される。図8では、REGバンドル#1とREGバンドル#2とがインターリーブされている。
(Alt. 1): The REG bundles that make up CORESET are interleaved (discontinuously assigned to the frequency domain) between CC # 0 and CC # 1. In FIG. 8, REG bundle # 1 and REG bundle # 2 are interleaved.
この場合、さらに、以下のような動作が実行されてもよい。
In this case, the following operations may be further executed.
・(Alt. 1-1):全CCに共通のRRCパラメータを用いてインターリーブの有効または無効をUE200に対して通知する。
(Alt. 1-1): Notifies UE200 of the validity or invalidity of interleaving using the RRC parameter common to all CCs.
・(Alt. 1-2):各CCに対して別個のRRCパラメータを用いて、何れかまたは全ての当該パラメータが「インターリーブ」に設定されている場合、UE200に対してインターリーブを有効と通知する。
-(Alt. 1-2): Use a separate RRC parameter for each CC to notify UE200 that interleaving is enabled if any or all of those parameters are set to "interleave". ..
・(Alt. 2):CORESETを構成するREGバンドルは、CC#0とCC#1との間においてインターリーブできない。
・ (Alt. 2): The REG bundle that makes up CORESET cannot be interleaved between CC # 0 and CC # 1.
この場合、UE200にローカライズされたマッピング(周波数領域への連続割り当て)のみがサポートされてよい。
In this case, only mappings localized to UE200 (continuous allocation to the frequency domain) may be supported.
また、図8に示すように、周波数ダイバシティは、Alt. 1が高く、CORESET(RE)の割り当てのシンプル度は、Alt. 2が高い。
Also, as shown in FIG. 8, the frequency diversity is high in Alt. 1 and the simplicity of CORESET (RE) allocation is high in Alt. 2.
・(Alt. 3):CORESETを構成するREGバンドルは、各CC内においてインターリーブされる。
・ (Alt. 3): The REG bundles that make up CORESET are interleaved within each CC.
図9は、動作例1-3に係るCORESETの周波数領域及び時間領域への割り当て例(その2)を示す。図9に示すように、CORESETを構成するREGバンドルは、各CC内においてインターリーブされる場合、UE200は、以下のようREGバンドルの割り当てを想定してよい。
FIG. 9 shows an example (No. 2) of allocation of CORESET to the frequency domain and the time domain according to the operation example 1-3. As shown in FIG. 9, when the REG bundles constituting CORESET are interleaved within each CC, the UE 200 may assume the allocation of the REG bundle as follows.
・(Alt. 3-1):全CCに共通のRRCパラメータを用いてインターリーブの有効または無効をUE200に対して通知する。
(Alt. 3-1): Notifies UE200 of the validity or invalidity of interleaving using the RRC parameter common to all CCs.
・(Alt. 3-2):各CCに対して別個のRRCパラメータを用いて、当該パラメータが「インターリーブ」に設定されている場合、UE200に対してインターリーブを有効と通知する。
(Alt. 3-2): Use a separate RRC parameter for each CC, and notify UE200 that interleaving is valid when the parameter is set to "interleave".
図9に示すように、CC#0及びCC#1では、インターリーブが有効(cce-REG-MappingType
=‘interleaved’)となっているが、CC#2では、インターリーブが無効(cce-REG-MappingType
=‘nonInterleaved’)となっている。このため、Alt. 3-2の場合、CC#2では、REGバンドル#6~#8はインターリーブされずにそのままの順序で割り当てられている。 As shown in FIG. 9, interleaving is enabled inCC # 0 and CC # 1 (cce-REG-MappingType).
='interleaved'), but inCC # 2, interleaving is disabled (cce-REG-MappingType)
='nonInterleaved'). Therefore, in the case of Alt. 3-2, inCC # 2, REG bundles # 6 to # 8 are assigned in the same order without interleaving.
=‘interleaved’)となっているが、CC#2では、インターリーブが無効(cce-REG-MappingType
=‘nonInterleaved’)となっている。このため、Alt. 3-2の場合、CC#2では、REGバンドル#6~#8はインターリーブされずにそのままの順序で割り当てられている。 As shown in FIG. 9, interleaving is enabled in
='interleaved'), but in
='nonInterleaved'). Therefore, in the case of Alt. 3-2, in
(3.4)動作例2
本動作例は、新たなCORESETの構成に関する。具体的には、本動作例では、CORESETが複数のCCを介して分割送信される場合、制御チャネル要素(CCE)の集約レベル(AL)が、3GPP Release-15, 16よりも高く設定される。また、本動作例では、CORESETが複数のCCを介して分割送信される場合、CCEに含まれるリソース要素グループ(REG)の数(REGバンドルの数でもよい)が、CORESETが分割送信されない場合よりも多く設定される。 (3.4) Operation example 2
This operation example relates to a new CORESET configuration. Specifically, in this operation example, when CORESET is transmitted separately via multiple CCs, the aggregation level (AL) of the control channel element (CCE) is set higher than 3GPP Release-15, 16. .. Further, in this operation example, when CORESET is transmitted separately via a plurality of CCs, the number of resource element groups (REGs) (may be the number of REG bundles) included in the CCE is larger than the case where CORESET is not transmitted separately. Is also set a lot.
本動作例は、新たなCORESETの構成に関する。具体的には、本動作例では、CORESETが複数のCCを介して分割送信される場合、制御チャネル要素(CCE)の集約レベル(AL)が、3GPP Release-15, 16よりも高く設定される。また、本動作例では、CORESETが複数のCCを介して分割送信される場合、CCEに含まれるリソース要素グループ(REG)の数(REGバンドルの数でもよい)が、CORESETが分割送信されない場合よりも多く設定される。 (3.4) Operation example 2
This operation example relates to a new CORESET configuration. Specifically, in this operation example, when CORESET is transmitted separately via multiple CCs, the aggregation level (AL) of the control channel element (CCE) is set higher than 3GPP Release-15, 16. .. Further, in this operation example, when CORESET is transmitted separately via a plurality of CCs, the number of resource element groups (REGs) (may be the number of REG bundles) included in the CCE is larger than the case where CORESET is not transmitted separately. Is also set a lot.
具体的には、CCEのALは、GPP Release-15, 16では、1, 2, 4, 8, 16が設定可能だが、より大きい値、例えば、32, 64などが設定されてよい。
Specifically, the AL of CCE can be set to 1, 2, 4, 8, 16 in GPP Release-15, 16, but a larger value, for example, 32, 64, etc. may be set.
UE200は、CORESETが複数のCCを介して分割送信される場合、このようなALを想定してよい。
UE200 may assume such AL when CORESET is transmitted separately via multiple CCs.
例えば、RRCレイヤのパラメータ、nrofCandidateには、以下のようなフィールドが追加されてよい。
For example, the following fields may be added to the RRC layer parameter nrofCandidate.
・aggregationLevel32 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8}
特に、全ての帯域幅が、特定のUEに割り当てられるようなFDM以外の多重化方式(時分割多重(TDM)、空間分割多重(SDM))の場合には、高いALが適している。 ・ AggregationLevel32 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8}
In particular, high AL is suitable for multiplexing methods other than FDM (time division multiplexing (TDM), spatial division multiplexing (SDM)) in which all bandwidth is allocated to a specific UE.
特に、全ての帯域幅が、特定のUEに割り当てられるようなFDM以外の多重化方式(時分割多重(TDM)、空間分割多重(SDM))の場合には、高いALが適している。 ・ AggregationLevel32 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8}
In particular, high AL is suitable for multiplexing methods other than FDM (time division multiplexing (TDM), spatial division multiplexing (SDM)) in which all bandwidth is allocated to a specific UE.
また、CORESETが複数のCCを介して分割送信される場合、UE200は、ALに関して以下のような想定をしてもよい。
Also, when CORESET is transmitted separately via multiple CCs, UE200 may make the following assumptions regarding AL.
・(Alt. 1):同期信号(SS)に対して、何れか1つのALのみが設定される。
・ (Alt. 1): Only one of the ALs is set for the synchronization signal (SS).
この場合、UE200は、さらに以下のような想定をしてもよい。
In this case, UE200 may further make the following assumptions.
・(Alt. 1-1):設定されるALは、予め規定され固定である。
(Alt. 1-1): The AL to be set is predetermined and fixed.
例えば、UE200は、グループ化されたCCを介して送信されるPDCCHを監視することを想定してよい。この場合、CCEのALは、16と想定してよい(或いは他のALを想定してもよい)。
For example, UE200 may be assumed to monitor PDCCH transmitted via grouped CCs. In this case, the AL of CCE may be assumed to be 16 (or other AL may be assumed).
・(Alt. 1-2):上位レイヤのパラメータによってALが設定される。
(Alt. 1-2): AL is set by the parameters of the upper layer.
この場合、Blind Decoding(BD)の複雑性を低減でき、高いALは、全ての帯域幅が特定のUEに割り当てられるようなFDM以外の多重化方式に適している。
In this case, the complexity of Blind Decoding (BD) can be reduced, and the high AL is suitable for multiplexing methods other than FDM in which all bandwidth is allocated to a specific UE.
・(Alt. 2):特に制限しない。
・ (Alt. 2): No particular restrictions.
UE200は、3GPP Release-15, 16と同様に、CCEのALとして、1, 2, 4, 8, 16を想定してよい。また、UE200は、32のような高いALがサポートされている場合には、当該高いALを想定してもよい。
UE200 may assume 1, 2, 4, 8, 16 as the AL of CCE, similar to 3GPP Release-15, 16. The UE 200 may also assume a high AL, such as 32, if it is supported.
さらに、CCEは、3GPP Release-15, 16よりも多くのREGによって構成されてもよい。3GPP Release-15, 16では、CCEは、6個のREGバンドルを含むことができるが、FR2xなどの高周波数帯域が用いられる場合、k・6 REGsによって構成されてもよい。
Furthermore, the CCE may consist of more REGs than 3GPP Release-15,16. In 3GPP Release-15,16, the CCE can include 6 REG bundles, but if a high frequency band such as FR2x is used, it may be composed of k · 6 REGs.
ここで、「k」は、以下の何れかに従って決定されてもよい。
Here, "k" may be determined according to any of the following.
・(Alt. 1):kは、上位レイヤのパラメータによって設定される。
・ (Alt. 1): k is set by the parameters of the upper layer.
具体的には、kは、RRCレイヤのパラメータ、CCE-REG-MappingTypeに対するスケーリングを実現する。
Specifically, k realizes scaling for the RRC layer parameter, CCE-REG-MappingType.
・(Alt. 2):kは、BWPサイズに応じて決定される。
・ (Alt. 2): k is determined according to the BWP size.
表1は、BWPサイズに応じたkの一例を示す。
Table 1 shows an example of k according to the BWP size.
表1に示すように、BWPサイズが大きくなるに連れて、kのサイズも大きくしてよい。つまり、BWPサイズが大きくなるほど、CCEに含まれるREGバンドル(REG)の数が増えてもよい。
As shown in Table 1, as the BWP size increases, the size of k may also increase. That is, the larger the BWP size, the more REG bundles (REGs) may be included in the CCE.
また、REGバンドルのサイズは、12などまで増大しても構わない。このような大きなREGバンドルのサイズは、上位レイヤのパラメータによって設定されてもよい。
Also, the size of the REG bundle may be increased to 12, etc. The size of such a large REG bundle may be set by the parameters of the upper layer.
例えば、reg-BundleSizeは、次のように設定されてもよい。
For example, reg-BundleSize may be set as follows.
・reg-BundleSize ENUMERATED {n2, n3, n6, n12}
(3.5)動作例3
本動作例は、CORESETとサーチスペースとの相互連携に関する。具体的には、本動作例では、CORESETが複数のCCを介して分割送信される場合、CORESETと共通サーチスペース(CSS)との関係が変更される。 ・ Reg-BundleSize ENUMERATED {n2, n3, n6, n12}
(3.5) Operation example 3
This operation example relates to mutual cooperation between CORESET and the search space. Specifically, in this operation example, when CORESET is transmitted separately via a plurality of CCs, the relationship between CORESET and the common search space (CSS) is changed.
(3.5)動作例3
本動作例は、CORESETとサーチスペースとの相互連携に関する。具体的には、本動作例では、CORESETが複数のCCを介して分割送信される場合、CORESETと共通サーチスペース(CSS)との関係が変更される。 ・ Reg-BundleSize ENUMERATED {n2, n3, n6, n12}
(3.5) Operation example 3
This operation example relates to mutual cooperation between CORESET and the search space. Specifically, in this operation example, when CORESET is transmitted separately via a plurality of CCs, the relationship between CORESET and the common search space (CSS) is changed.
3GPP Release-15, 16では、CORESET及びサーチスペースセットは、DL BWP毎に設定される。CORESETが複数のCCに跨がってスケジューリングされることを想定し、当該設定が、以下のように見直されてよい。
In 3GPP Release-15,16, CORESET and search space set are set for each DLBWP. Assuming that CORESET is scheduled across multiple CCs, the settings may be reviewed as follows.
・(Alt. 1):CORESET及びサーチスペースに関する上位レイヤパラメータは、既存のCC毎のパラメータから独立して、グループ化されたCCに対して設定される。
(Alt. 1): The upper layer parameters related to CORESET and search space are set for the grouped CCs independently of the existing parameters for each CC.
この場合、グループ化されたCC用のCORESETの数は、「x」として表現されてもよい。xは、セル当たりのCORESETの数を示す既存のパラメータ「P」(3GPP TS38.213 10.1章参照)とは異なっていてよい。CORESETのインデックスは、Pと連続していてもよいし、連続していなくてもよい。つまり、グループ化されたCC用のCORESETのインデックスと、セル当たりCORESETのインデックスとは、連番でもよいし、別の番号が割り当てられてもよい。
In this case, the number of CORESETs for the grouped CCs may be expressed as "x". x may be different from the existing parameter “P” (see 3GPP TS38.213 Section 10.1), which indicates the number of CORESETs per cell. The CORESET index may or may not be contiguous with P. That is, the grouped CORESET index for CC and the CORESET index per cell may be serial numbers or different numbers may be assigned.
また、グループ化されたCC用のサーチスペースの数は、「y」として表現されてもよい。yは、セル当たりの同期信号(SS)の数を示す既存のパラメータ「S」(3GPP TS38.213 10.1章参照)とは異なっていてもよい。サーチスペースのインデックスは、Sと連続していてもよいし、連続していなくてもよい。さらに、SSは、グループ化されたCC用のCORESETにのみ関連付けられてもよい。
Also, the number of grouped search spaces for CC may be expressed as "y". y may be different from the existing parameter “S” (see 3GPP TS38.213 Chapter 10.1), which indicates the number of sync signals (SS) per cell. The search space index may or may not be contiguous with S. In addition, SS may only be associated with CORESET for grouped CCs.
・(Alt. 2):3GPP Release-15, 16と同様に、CORESET及びサーチスペースに関する上位レイヤパラメータは、DL BWP毎に設定される。
・ (Alt. 2): Similar to 3GPP Release-15, 16, the upper layer parameters related to CORESET and search space are set for each DL BWP.
この場合、複数のCCに跨がってスケジューリングされるCORESETに関連付けられるサーチスペースセットは、同一のパラメータを有していることが望ましい。当該パラメータ(3GPP TS38.213 10.1章参照)には、モニタリング周期、モニタリングオフセット、PDCCH候補の数、モニタリング可能なDCIフォーマットが含まれてよい。
In this case, it is desirable that the search space set associated with CORESET scheduled across multiple CCs has the same parameters. The parameters (see 3GPP TS38.213, Section 10.1) may include the monitoring cycle, monitoring offset, number of PDCCH candidates, and monitorable DCI format.
(3.6)動作例4
本動作例は、PUSCH preparation time(及びPDSCH decoding time)の変更に関する。3GPP Release-15, 16では、PDCCHに関する処理時間として、PDCCHとPUSCHとのタイムラインを示すPUSCH preparation time N2(PUSCH timing capability 1)として、表2に示す10, 12, 23, 36(μ=0, 1, 2, 3)が規定されている。 (3.6) Operation example 4
This operation example relates to changing the PUSCH preparation time (and PDSCH decoding time). In 3GPP Release-15, 16, the processing time for PDCCH is 10, 12, 23, 36 (μ =) shown in Table 2 as PUSCH preparation time N 2 (PUSCH timing capability 1), which shows the timeline between PDCCH and PUSCH. 0, 1, 2, 3) are specified.
本動作例は、PUSCH preparation time(及びPDSCH decoding time)の変更に関する。3GPP Release-15, 16では、PDCCHに関する処理時間として、PDCCHとPUSCHとのタイムラインを示すPUSCH preparation time N2(PUSCH timing capability 1)として、表2に示す10, 12, 23, 36(μ=0, 1, 2, 3)が規定されている。 (3.6) Operation example 4
This operation example relates to changing the PUSCH preparation time (and PDSCH decoding time). In 3GPP Release-15, 16, the processing time for PDCCH is 10, 12, 23, 36 (μ =) shown in Table 2 as PUSCH preparation time N 2 (PUSCH timing capability 1), which shows the timeline between PDCCH and PUSCH. 0, 1, 2, 3) are specified.
一方、本動作例では、FR2xなどの高周波数帯域を含む異周波数帯域が用いられる場合、PUSCH preparation time N2が変更されてよい。例えば、FR2xなどの高周波数帯域用として、表2に示すような「m1」(μ=n1)が追加されてもよい。m1は、36を超える値、例えば、48などが設定されてもよい。
On the other hand, in this operation example, when a different frequency band including a high frequency band such as FR2x is used, PUSCH preparation time N 2 may be changed. For example, “m1” (μ = n1) as shown in Table 2 may be added for a high frequency band such as FR2x. For m1, a value exceeding 36, for example, 48 may be set.
また、240kHzなど、大きいSCSが用いられる場合、PUSCH preparation time N2として、より大きな値が設定されてもよい。
Further, when a large SCS such as 240 kHz is used, a larger value may be set as PUSCH preparation time N 2.
なお、表3に示すPUSCH preparation time N2(PUSCH timing capability 2)は、3GPP Release-15, 16と同様に、大きいSCSの場合にはサポートされなくてもよい。PUSCH preparation time N2(PUSCH timing capability 1, 2)は、3GPP TS38.214 6.4章に記載されている。
Note that PUSCH preparation time N 2 (PUSCH timing capability 2) shown in Table 3 may not be supported for large SCSs, as in 3GPP Releases-15 and 16. PUSCH preparation time N 2 (PUSCH timing capability 1, 2) is described in 3GPP TS38.214, Chapter 6.4.
さらに、PUSCH preparation time N2(PUSCH timing capability 2)を拡張し、60kHzのSCSにおいて適用される周波数帯域の制限をなくし、11よりも大きなPUSCH preparation time N2を用いて120kHzのSCSをサポートしてもよい。
Moreover, to extend the PUSCH preparation time N 2 (PUSCH timing capability 2), eliminates the restriction of the frequency bands applied in the SCS of 60 kHz, supports SCS of 120kHz with large PUSCH preparation time N 2 than 11 May be good.
また、上述したようなPDCCHに関する処理時間の変更は、PDSCHの復号時間にも適用されてよい。具体的には、FR2xなどの高周波数帯域を含む異周波数帯域が用いられる場合、表4に示すPDSCH decoding time N1が変更されてもよい。
Further, the change in the processing time related to PDCCH as described above may be applied to the decoding time of PDSCH. Specifically, when a different frequency band including a high frequency band such as FR2x is used, the PDSCH decoding time N 1 shown in Table 4 may be changed.
例えば、FR2xなどの高周波数帯域用として、表4に示すような「m2」(dmrs-AdditionalPosition = pos0), 「m3」(dmrs-AdditionalPosition ≠ pos0)(μ=n2)が追加されてもよい。m2は、20を超える値、m3は、24を超える値が設定されてよい。
For example, for high frequency bands such as FR2x, "m2" (dmrs-AdditionalPosition = pos0) and "m3" (dmrs-AdditionalPosition ≠ pos0) (μ = n2) as shown in Table 4 may be added. A value exceeding 20 may be set for m2, and a value exceeding 24 may be set for m3.
(4)作用・効果
上述した実施形態によれば、以下の作用効果が得られる。具体的には、UE200は、CORESETの第1領域が第1コンポーネントキャリア(例えば、CC#0、図6など参照)を介して送信され、CORESETの第2領域が第2コンポーネントキャリア(例えば、CC#1)を介して送信される分割送信を想定することができる。 (4) Action / Effect According to the above-described embodiment, the following action / effect can be obtained. Specifically, in theUE 200, the first region of CORESET is transmitted via the first component carrier (for example, CC # 0, see FIG. 6 and the like), and the second region of CORESET is transmitted via the second component carrier (for example, CC). It can be assumed that the divided transmission is transmitted via # 1).
上述した実施形態によれば、以下の作用効果が得られる。具体的には、UE200は、CORESETの第1領域が第1コンポーネントキャリア(例えば、CC#0、図6など参照)を介して送信され、CORESETの第2領域が第2コンポーネントキャリア(例えば、CC#1)を介して送信される分割送信を想定することができる。 (4) Action / Effect According to the above-described embodiment, the following action / effect can be obtained. Specifically, in the
このため、特に、使用可能な周波数帯域が拡張され、より多くのCCが設定される場合において、UE200は、より効率的なCORESETの設定を想定し得る。これにより、複数のCCを用いた効率的なCORESETの伝送を実現し得る。
Therefore, the UE200 can assume a more efficient CORESET setting, especially when the usable frequency band is expanded and more CCs are set. As a result, efficient CORESET transmission using a plurality of CCs can be realized.
本実施形態では、UE200は、CORESETの分割送信の場合、当該CORESETを構成する制御チャネル要素(CCE)の集約レベル(AL)を、CORESETが分割送信されない場合よりも高いと想定してよい。
In the present embodiment, the UE 200 may assume that the aggregation level (AL) of the control channel element (CCE) constituting the CORESET is higher in the case of the CORESET divided transmission than in the case where the CORESET is not divided and transmitted.
また、本実施形態では、UE200は、CORESETの分割送信の場合、CCEに含まれるリソース要素グループ(REG)の数(REGバンドルの数でもよい)が、CORESETが分割送信されない場合よりも多いと想定してもよい。
Further, in the present embodiment, the UE 200 assumes that the number of resource element groups (REGs) (may be the number of REG bundles) included in the CCE is larger in the case of CORESET divided transmission than in the case where CORESET is not divided and transmitted. You may.
これにより、複数のCCを用いた効率的なCORESETの伝送を実現し得る。
This makes it possible to realize efficient CORESET transmission using multiple CCs.
本実施形態では、UE200は、CORESETまたは共通サーチスペース(CSS)に関する上位レイヤのパラメータが、当該分割送信に用いられる複数のCCのグループに対して適用されると想定してもよい。このため、当該パラメータを当該グループに含まれる複数のCCに対して一括して適用でき、効率的なCORESETまたはCSSに関する設定を実現し得る。
In the present embodiment, the UE 200 may assume that the parameters of the upper layer regarding CORESET or common search space (CSS) are applied to a group of a plurality of CCs used for the divided transmission. Therefore, the parameter can be applied to a plurality of CCs included in the group at once, and efficient CORESET or CSS settings can be realized.
本実施形態では、UE200は、CORESETの第1領域と第2領域とが、複数のCCに分かれて伝送されつつ、さらに時間領域において異なる位置に割り当てられると想定することもできる。これにより、時間領域においてもCORESETの分割送信が可能となり、複数のCCを用いたさらに効率的なCORESETの伝送を実現し得る。
In the present embodiment, in the UE 200, it can be assumed that the first region and the second region of CORESET are divided into a plurality of CCs and transmitted, and are further assigned to different positions in the time domain. As a result, CORESET can be divided and transmitted even in the time domain, and more efficient CORESET transmission using a plurality of CCs can be realized.
本実施形態では、UE200は、FR2xなどの高周波数帯域、つまり、一つまたは複数の周波数レンジ(FR1, FR2)を含む周波数帯域と異なる異周波数帯域の場合、当該周波数帯域の場合よりも長いPUSCH preparation time(準備時間)を想定してよい。
In the present embodiment, the UE 200 is PUSCH longer in the case of a high frequency band such as FR2x, that is, a different frequency band different from the frequency band including one or more frequency ranges (FR1, FR2), than in the case of the frequency band. You may assume preparation time.
このため、UE200は、FR2xなどの高周波数帯域を用いる場合でも、適切な上りデータチャネル(PUSCH)の準備時間を想定し得る。これにより、当該異周波数帯域を用いる場合でも、より確実にPUSCHを介したUL通信を実現し得る。
Therefore, the UE200 can assume an appropriate uplink data channel (PUSCH) preparation time even when using a high frequency band such as FR2x. As a result, UL communication via PUSCH can be realized more reliably even when the different frequency band is used.
本実施形態では、UE200は、PUSCHの送信に用いられるサブキャリアの間隔(SCS)がFR1, FR2を含む周波数帯域の場合よりも大きい場合、当該周波数帯域の場合よりも長いPUSCH preparation timeを想定してもよい。このため、UE200は、当該異周波数帯域を用いる場合でも、SCSに応じた適切な準備時間を想定でき、より確実にPUSCHを介したUL通信を実現し得る。
In the present embodiment, when the subcarrier interval (SCS) used for PUSCH transmission is larger than that in the frequency band including FR1 and FR2, the UE200 assumes a PUSCH preparation time longer than that in the frequency band. You may. Therefore, the UE 200 can assume an appropriate preparation time according to the SCS even when the different frequency band is used, and can more reliably realize UL communication via PUSCH.
本実施形態では、UE200は、当該異周波数帯域の場合、FR1, FR2を含む周波数帯域の場合よりも長いPDSCHの復号時間を想定してもよい。このため、UE200は、当該異周波数帯域を用いる場合でも、た適切なPDSCHの復号時間を想定でき、より確実にPDSCHを介したDL通信を実現し得る。
In the present embodiment, the UE 200 may assume a PDSCH decoding time longer in the case of the different frequency band than in the case of the frequency band including FR1 and FR2. Therefore, the UE 200 can assume an appropriate PDSCH decoding time even when the different frequency band is used, and can more reliably realize DL communication via the PDSCH.
(5)その他の実施形態
以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。 (5) Other Embodiments Although the embodiments have been described above, it is obvious to those skilled in the art that various modifications and improvements are possible without being limited to the description of the embodiments.
以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。 (5) Other Embodiments Although the embodiments have been described above, it is obvious to those skilled in the art that various modifications and improvements are possible without being limited to the description of the embodiments.
例えば、上述した実施形態では、FR2xなどの高周波数帯域の使用を前提としていたが、上述した動作例の少なくとも何れかは、他の周波数レンジ、例えば、FR1とFR2との間の周波数帯域に適用されても構わない。
For example, in the above-described embodiment, it is assumed that a high frequency band such as FR2x is used, but at least one of the above-mentioned operation examples is applied to another frequency range, for example, a frequency band between FR1 and FR2. It doesn't matter if it is done.
さらに、FR2xは、70GHz以下の周波数レンジと、70GHz以上の周波数レンジとに区分されてもよく、70GHz以上の周波数レンジと、70GHz以下の周波数レンジに対して上述した動作例の何れかが部分的に適用されてもよい。
Further, FR2x may be divided into a frequency range of 70 GHz or less and a frequency range of 70 GHz or more, and any of the above-mentioned operation examples is partially applied to the frequency range of 70 GHz or more and the frequency range of 70 GHz or less. May be applied to.
また、上述した実施形態の説明に用いたブロック構成図(図4)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
Further, the block configuration diagram (FIG. 4) used in the description of the above-described embodiment shows a block for each functional unit. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。
Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't. For example, a functional block (constituent unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter). As described above, the method of realizing each of them is not particularly limited.
さらに、上述したUE200は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、UE200のハードウェア構成の一例を示す図である。図10に示すように、UE200は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
Further, the UE 200 described above may function as a computer that processes the wireless communication method of the present disclosure. FIG. 10 is a diagram showing an example of the hardware configuration of the UE 200. As shown in FIG. 10, the UE 200 may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
UE200の各機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。
Each functional block of UE200 (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
またUE200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
In addition, each function in the UE 200 is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory 1002 and the memory 1002. It is realized by controlling at least one of reading and writing of data in the storage 1003.
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
The memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
The storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
Further, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
Further, the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof. RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobile Broadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one. In addition, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
In some cases, the specific operation performed by the base station in the present disclosure may be performed by its upper node. In a network consisting of one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
The determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
Software, whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted.
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。
The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
Note that the terms explained in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
The terms "system" and "network" used in this disclosure are used interchangeably.
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not it.
本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", "cell group" Terms such as "carrier" and "component carrier" can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
The base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。
The term "cell" or "sector" refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
In the present disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the functions of the base station. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the upstream channel, the downstream channel, and the like may be read as a side channel.
同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
The radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
The radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
The numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be in numerology-based time units.
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。
The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
When one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。
Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
Further, the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common RBs (common resource blocks) for a neurology in a carrier. good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。
BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
The above-mentioned structures such as wireless frames, subframes, slots, minislots and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, and included in RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。
The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. , Electromagnetic energy with wavelengths in the microwave and light (both visible and invisible) regions, etc., can be considered to be "connected" or "coupled" to each other.
参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
The reference signal can also be abbreviated as Reference Signal (RS) and may be called a pilot (Pilot) depending on the applicable standard.
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
The "means" in the configuration of each of the above devices may be replaced with "part", "circuit", "device" and the like.
本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
Any reference to elements using designations such as "first", "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are plural.
本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as "judgment" or "decision". In addition, "judgment" and "decision" mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as an amendment or modification without departing from the purpose and scope of the present disclosure, which is determined by the description of the scope of claims. Therefore, the description of the present disclosure is for the purpose of exemplary explanation and does not have any limiting meaning to the present disclosure.
10 無線通信システム
20 NG-RAN
100A, 100B gNB
UE 200
210 無線信号送受信部
220 アンプ部
230 変復調部
240 制御信号・参照信号処理部
250 符号化/復号部
260 データ送受信部
270 制御部
BM ビーム
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
1007 バス
10Radio communication system 20 NG-RAN
100A, 100B gNB
UE 200
210 Radio signal transmission /reception unit 220 Amplifier unit 230 Modulation / demodulation unit 240 Control signal / reference signal processing unit 250 Coding / decoding unit 260 Data transmission / reception unit 270 Control unit BM beam 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 bus
20 NG-RAN
100A, 100B gNB
UE 200
210 無線信号送受信部
220 アンプ部
230 変復調部
240 制御信号・参照信号処理部
250 符号化/復号部
260 データ送受信部
270 制御部
BM ビーム
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
1007 バス
10
100A, 100B gNB
210 Radio signal transmission /
Claims (5)
- 第1領域と第2領域とを含む制御リソースセットをネットワークから受信する受信部と、
前記第1領域が第1コンポーネントキャリアを介して送信され、前記第2領域が第2コンポーネントキャリアを介して送信される分割送信を想定する制御部と
を備える端末。 A receiver that receives a control resource set including the first area and the second area from the network,
A terminal including a control unit that assumes split transmission in which the first region is transmitted via the first component carrier and the second region is transmitted via the second component carrier. - 前記制御部は、前記分割送信の場合、前記制御リソースセットを構成する制御チャネル要素の集約レベルを、前記制御リソースセットが分割送信されない場合よりも高いと想定する請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit assumes that in the case of the divided transmission, the aggregation level of the control channel elements constituting the control resource set is higher than in the case where the control resource set is not divided and transmitted.
- 前記制御部は、前記分割送信の場合、前記制御チャネル要素に含まれるリソース要素グループの数が、前記制御リソースセットが分割送信されない場合よりも多いと想定する請求項2に記載の端末。 The terminal according to claim 2, wherein the control unit assumes that the number of resource element groups included in the control channel element is larger in the case of the divided transmission than in the case where the control resource set is not divided and transmitted.
- 前記制御部は、前記制御リソースセットまたはサーチスペースに関する上位レイヤのパラメータが複数のコンポーネントキャリアのグループに対して適用されると想定する請求項1乃至3の何れか一項に記載の端末。 The terminal according to any one of claims 1 to 3, wherein the control unit assumes that the parameters of the upper layer related to the control resource set or the search space are applied to a group of a plurality of component carriers.
- 前記制御部は、前記第1領域と前記第2領域とが時間領域において異なる位置に割り当てられると想定する請求項1乃至4の何れか一項に記載の端末。
The terminal according to any one of claims 1 to 4, wherein the control unit assumes that the first region and the second region are assigned to different positions in the time domain.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/014942 WO2021199347A1 (en) | 2020-03-31 | 2020-03-31 | Terminal |
CN202080099243.9A CN115336357A (en) | 2020-03-31 | 2020-03-31 | Terminal device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/014942 WO2021199347A1 (en) | 2020-03-31 | 2020-03-31 | Terminal |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021199347A1 true WO2021199347A1 (en) | 2021-10-07 |
Family
ID=77928052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/014942 WO2021199347A1 (en) | 2020-03-31 | 2020-03-31 | Terminal |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115336357A (en) |
WO (1) | WO2021199347A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200022121A1 (en) * | 2017-03-24 | 2020-01-16 | Huawei Technologies Co., Ltd. | Data Transmission Method, Terminal Device, and Base Station System |
-
2020
- 2020-03-31 WO PCT/JP2020/014942 patent/WO2021199347A1/en active Application Filing
- 2020-03-31 CN CN202080099243.9A patent/CN115336357A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200022121A1 (en) * | 2017-03-24 | 2020-01-16 | Huawei Technologies Co., Ltd. | Data Transmission Method, Terminal Device, and Base Station System |
Non-Patent Citations (1)
Title |
---|
VIVO: "Remaining issues on search space design", 3GPP DRAFT; R1-1715629_REMAINING ISSUES ON SEARCH SPACE DESIGN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nagoya, Japan; 20170918 - 20170921, 12 September 2017 (2017-09-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051329423 * |
Also Published As
Publication number | Publication date |
---|---|
CN115336357A (en) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021005663A1 (en) | Terminal | |
WO2021192065A1 (en) | Terminal | |
WO2021214921A1 (en) | Terminal | |
WO2021214920A1 (en) | Terminal | |
WO2021171594A1 (en) | Terminal | |
WO2021009817A1 (en) | Terminal | |
WO2021199348A1 (en) | Terminal | |
WO2022137559A1 (en) | Terminal and wireless communication method | |
WO2021199200A1 (en) | Terminal | |
WO2021199347A1 (en) | Terminal | |
WO2021220440A1 (en) | Terminal | |
WO2022153505A1 (en) | Terminal and radio base station | |
WO2021191983A1 (en) | Terminal | |
WO2021192063A1 (en) | Terminal | |
WO2022074842A1 (en) | Terminal | |
WO2021191984A1 (en) | Terminal | |
WO2021214919A1 (en) | Terminal | |
WO2022137570A1 (en) | Terminal, base station, and wireless communication method | |
WO2021199388A1 (en) | Terminal | |
WO2022137569A1 (en) | Terminal, base station, and wireless communication method | |
WO2022029972A1 (en) | Terminal | |
WO2022249721A1 (en) | Terminal, wireless communication system, and wireless communication method | |
WO2022029981A1 (en) | Terminal | |
WO2022153509A1 (en) | Terminal, base station, and radio communication method | |
WO2021199387A1 (en) | Terminal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20928393 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20928393 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |