WO2021220356A1 - Magnetic temperature regulating system - Google Patents

Magnetic temperature regulating system Download PDF

Info

Publication number
WO2021220356A1
WO2021220356A1 PCT/JP2020/018003 JP2020018003W WO2021220356A1 WO 2021220356 A1 WO2021220356 A1 WO 2021220356A1 JP 2020018003 W JP2020018003 W JP 2020018003W WO 2021220356 A1 WO2021220356 A1 WO 2021220356A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
refrigerant
heat exchanger
magnetic
bed
Prior art date
Application number
PCT/JP2020/018003
Other languages
French (fr)
Japanese (ja)
Inventor
健 篠▲崎▼
俊 殿岡
敦 小笠原
哲也 松田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/018003 priority Critical patent/WO2021220356A1/en
Priority to JP2020555533A priority patent/JP6865902B1/en
Publication of WO2021220356A1 publication Critical patent/WO2021220356A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present disclosure relates to a heat engine including a magnetic temperature control system device that utilizes the temperature characteristics of a magnetic material (magnetic heat quantity material) that generates heat by excitation and absorbs heat by degaussing.
  • a magnetic temperature control system device that utilizes the temperature characteristics of a magnetic material (magnetic heat quantity material) that generates heat by excitation and absorbs heat by degaussing.
  • a magnetic heat material magnetic heat material
  • a magnetic field modulator a pump, a refrigerant, and a heat exchanger
  • a magnetic field modulator is used.
  • a magnetic temperature control system that creates high temperature and low temperature by alternately performing the operations is known (for example, Patent Document 1).
  • the heat exchanger for heat exchange with the external air is directly connected to the bed accommodating the magnetic calorific value material.
  • a configuration in which the piping between beds is lengthened is conceivable.
  • the inside of the heat exchanger is filled with the heat-exchanged refrigerant, it is necessary to reduce the diameter of the pipe to reduce the volume of the pipe, and as a result, the pressure loss increases, so that the pump is used. It is necessary to increase the size, and as a result, there is a problem that the size of the magnetic temperature control system is increased.
  • the present disclosure has been made to solve the above-mentioned problems, and an object thereof is to obtain a magnetic temperature control system that can be miniaturized while extending the heat transport distance.
  • the magnetic temperature control system is a magnetic temperature control system that exchanges heat by using a temperature change of a refrigerant due to magnetic field modulation, and accommodates a magnetic heat quantity material that generates heat or absorbs heat by magnetic field modulation.
  • a bed that exchanges heat with the first refrigerant, a magnetic field modulator that modulates the magnetic field of the magnetic heat material contained in the bed, a first refrigerant that has undergone heat exchange in the bed, and a first refrigerant.
  • a heat storage heat exchanger that exchanges heat with a different refrigerant, and a heat dissipation heat exchanger that exchanges heat between a different refrigerant that has been heat exchanged by the heat storage heat exchanger and the outside air.
  • the first pump for circulating the first refrigerant between the bed and the heat storage heat exchanger and the first pump for circulating different refrigerants between the heat storage heat exchanger and the heat dissipation heat exchanger.
  • Controls a pump different from the pump a valve for switching the flow of the first refrigerant between the bed and the heat storage heat exchanger, a magnetic field modulator, a first pump, a pump different from the first pump, and a valve. It is equipped with a control device.
  • the 1 which shows typically the structure of the magnetic temperature control system. It is a flowchart which shows an example of the processing procedure of a control device. It is a figure (the 2) which shows typically the structure of the magnetic temperature control system. It is a figure (the 3) which shows typically the structure of the magnetic temperature control system. It is a figure (the 4) which shows typically the structure of the magnetic temperature control system. It is a figure (the 5) which shows typically the structure of the magnetic temperature control system. It is a figure (No. 6) which shows typically the structure of the magnetic temperature control system.
  • FIG. 1 is a diagram schematically showing a configuration of a magnetic temperature control system 100 according to the present embodiment.
  • the magnetic temperature control system 100 includes a magnetic field modulator 2, a bed 3, a first heat storage heat exchanger 4, a second heat storage heat exchanger 5, a first heat heat exchanger 6, and a second heat dissipation.
  • the bed 3 is provided in the vicinity of the magnetic field modulator 2.
  • the magnetic calorific value material 1 is housed inside the bed 3.
  • a magnetic material for example, gadolinium, lanthanum alloy, manganese alloy, etc.
  • a magnetic calorific effect that absorbs heat or generates heat due to fluctuations in a magnetic field applied from the outside (change in strength) is used.
  • the bed 3 includes an accommodating portion for accommodating the magnetic calorific value material 1 and a refrigerant flow path through which the first refrigerant flows.
  • the bed 3 is configured to exchange heat between the magnetic calorific value material 1 accommodated in the accommodating portion and the first refrigerant flowing through the refrigerant flow path.
  • the magnetic calorific value material 1 generates heat or absorbs heat due to fluctuations in the magnetic field applied from the outside (changes in strength).
  • the magnetic heat quantity material 1 generates heat when a magnetic field is applied from the outside, and absorbs heat when the magnetic field from the outside is removed. Since the magnetic calorific value material 1 exerts a high magnetic calorific value effect in a high efficiency temperature zone, for example, the bed is formed so that a gradient is formed in the bed 3 so that the high efficiency temperature zone gradually increases continuously or stepwise. It may be arranged in 3.
  • the bed 3 includes a first bed 3a provided between the pipe P1 and the pipe P11 and a second bed 3b provided between the pipe P3 and the pipe P13.
  • the magnetic field modulator 2 periodically increases or decreases the strength of the magnetic field applied to the magnetic heat quantity material 1.
  • the magnetic field modulator 2 periodically switches between an exciting state in which the magnetic heat material 1 is placed in a strong magnetic field and a degaussing state in which the magnetic heat material 1 is placed in a weak magnetic field or a zero magnetic field.
  • the magnetic field modulator 2 modulates the magnetic field so as to periodically repeat the exciting period in the excited state and the degaussing period in the degaussed state.
  • the magnetic field modulator 2 repeats application and removal of a magnetic field to the magnetic calorific value material 1 in synchronization with the reciprocating flow of the refrigerant described later.
  • a permanent magnet or an electromagnet can be used as the magnetic force source of the magnetic field modulator 2.
  • the magnetic field modulator 2 includes a first member 2a and a second member 2b that face each other with the bed 3 (the first bed 3a and the second bed 3b) interposed therebetween.
  • the first heat storage heat exchanger 4 is connected to the bed 3 by pipes P1 to P4 through which the first refrigerant flows.
  • the second heat storage heat exchanger 5 is connected to the bed 3 by pipes P11 to P14 through which the first refrigerant flows.
  • the first pump 11 is provided on the pipe P13.
  • the first refrigerant is the bed 3 (first bed 3a), the pipe P1, the pipe P2, the first heat storage heat exchanger 4, the pipe P4, the pipe P3, and the bed 3 (second).
  • Bed 3b), pipe P13, pipe P14, second heat storage heat exchanger 5, pipe P12, pipe P11, and bed 3 (first bed 3a) circulate in this order.
  • the bed 3, the first heat storage heat exchanger 4 and the second heat storage heat exchanger 5 form a closed loop in which the first refrigerant circulates.
  • the circulation direction of the first refrigerant may be opposite.
  • the position where the first pump 11 is provided is not limited to the pipe P13, and may be, for example, the pipe P11, the pipe P1, or the pipe P3.
  • a first valve 9 is provided at a connection portion between the pipe P3, the pipe P4, and the pipe P5.
  • the first valve 9 When the first valve 9 is open, the pipe P3 and the pipe P4 are communicated with each other.
  • the first valve 9 is closed, the pipe P3 and the pipe P4 are cut off, and the pipe P3 and the pipe P5 are communicated with each other.
  • connection portion between the pipe P11 and the pipe P12 and the connection portion between the pipe P13 and the pipe P14 are connected by the pipe P15.
  • a second valve 10 is provided at a connection portion between the pipe P13, the pipe P14, and the pipe P15. When the second valve 10 is open, the pipe P13 and the pipe P14 are communicated with each other. When the second valve 10 is closed, the pipe P13 and the pipe P14 are cut off, and the pipe P13 and the pipe P15 are communicated with each other.
  • the first refrigerant uses the bed 3, the first heat storage heat exchanger 4, and the second heat storage heat exchanger 5. Circulate the closed loop containing.
  • the first valve 9 and the second valve 10 are closed, the first refrigerant does not flow to the first heat storage heat exchanger 4 and the second heat storage heat exchanger 5, and the bed 3 (first bed). It circulates in a closed loop composed of 3a), pipes P1, P5, P3, bed 3 (second bed 3b), and pipes P13, P15, and P11.
  • the first heat dissipation heat exchanger 6 is connected to the first heat storage heat exchanger 4 by pipes P6 and P7 through which a second refrigerant different from the first refrigerant flows.
  • a second pump 12 is provided in the pipe P7. When the second pump 12 operates, the second refrigerant circulates in the order of the first heat storage heat exchanger 4, the pipe P7, the first heat dissipation heat exchanger 6, the pipe P6, and the first heat storage heat exchanger 4. do.
  • the second heat dissipation heat exchanger 7 is connected to the second heat storage heat exchanger 5 by pipes P16 and P17 through which a third refrigerant different from the first refrigerant and the second refrigerant flows.
  • a third pump 13 is provided in the pipe P17. When the third pump 13 operates, the third refrigerant circulates in the order of the second heat storage heat exchanger 5, the pipe P16, the second heat dissipation heat exchanger 7, the pipe P17, and the second heat storage heat exchanger 5. do.
  • the first refrigerant, the second refrigerant, and the third refrigerant are composed of liquid refrigerants such as antifreeze, water, and oil.
  • the first refrigerant, the second refrigerant, and the third refrigerant may have the same component or different components.
  • the first heat storage heat exchanger 4 is a first refrigerant that has exchanged heat with the magnetic calorific value material 1 by exchanging heat between the first refrigerant that has undergone heat exchange in the bed 3 and the second refrigerant. It has a function of storing heat.
  • the first heat radiating heat exchanger 6 exchanges heat between the second refrigerant whose heat has been exchanged by the first heat storage heat exchanger 4 and the first heat radiating object (surrounding outside air or object). As a result, it has a function of transferring the heat stored in the first heat storage heat exchanger 4 to the first heat dissipation target.
  • the first heat storage heat exchanger 4 is close to the bed 3 in order to store the heat transferred to the first refrigerant in the bed 3 without loss and transfer it to the first heat dissipation heat exchanger 6. It is desirable to be placed. On the other hand, it is desirable that the first heat dissipation heat exchanger 6 is arranged close to the first heat dissipation target. Therefore, the first heat dissipation heat exchanger 6 may be installed farther than the first heat storage heat exchanger 4 with respect to the bed 3.
  • the first heat storage heat exchanger 4 since the first heat storage heat exchanger 4, the pipes P6 and P7, and the first heat dissipation heat exchanger 6 form a closed loop for the second refrigerant, the first heat dissipation heat exchanger 6
  • the lengths of the pipes P6 and P7 can be adjusted according to the installation location of the pipes P6 and P7.
  • the second heat storage heat exchanger 5 is a first refrigerant that has exchanged heat with the magnetic heat quantity material 1 by exchanging heat between the first refrigerant that has undergone heat exchange in the bed 3 and the third refrigerant. It has a function of storing heat.
  • the second heat radiating heat exchanger 7 exchanges heat between the third refrigerant whose heat has been exchanged by the second heat storage heat exchanger 5 and the second heat radiating object (surrounding outside air or object). As a result, it has a function of transferring the heat stored in the second heat storage heat exchanger 5 to the second heat dissipation target.
  • the second heat storage heat exchanger 5 is close to the bed 3 in order to store the heat transferred to the first refrigerant in the bed 3 without loss and transfer it to the second heat dissipation heat exchanger 7. It is desirable to be placed. On the other hand, it is desirable that the second heat exchanger 7 for heat dissipation is arranged close to the second heat dissipation target. Therefore, the second heat dissipation heat exchanger 7 may be installed farther than the second heat storage heat exchanger 5 with respect to the bed 3.
  • the second heat radiating heat exchanger 7 since the second heat storage heat exchanger 5, the pipes P16, P17 and the second heat radiating heat exchanger 7 form a closed loop for the third refrigerant, the second heat radiating heat exchanger 7
  • the lengths of the pipes P16 and P17 can be adjusted according to the installation location of the pipe.
  • the control device 16 is electrically connected to the magnetic field modulator 2, the first valve 9, the second valve 10, the first pump 11, the second pump 12, and the third pump 13.
  • the control device 16 controls the magnetic field modulation such as the excitation timing, the excitation period, the degaussing timing, and the degaussing period of the magnetic field modulation device 2.
  • the control device 16 controls the opening and closing of the first valve 9 and the second valve 10.
  • the control device 16 controls the operation, flow rate, and refrigerant flow direction of the first pump 11, the second pump 12, and the third pump 13. That is, the control device 16 controls the operating conditions of the electrical components constituting the magnetic temperature control system 100.
  • heat storage materials are provided in the first heat storage heat exchanger 4 and the second heat storage heat exchanger 5. You may do so.
  • the first heat storage heat exchanger 4 may store hot heat
  • the second heat storage heat exchanger 5 may store cold heat
  • FIG. 2 is a flowchart showing an example of the processing procedure of the control device 16. This flowchart is repeatedly executed every time a predetermined condition is satisfied (for example, every predetermined cycle) during the operation of the magnetic temperature control system 100.
  • control device 16 operates the magnetic field modulation device 2 by supplying a drive current to the magnetic field modulation device 2, and applies a magnetic field to the magnetic calorific value material 1 in the bed 3 (step S10).
  • the magnetic heat quantity material 1 to which the magnetic field is applied generates heat, and the heat of the magnetic heat quantity material 1 is transferred to the first refrigerant in the bed 3.
  • the control device 16 closes the first valve 9. With the second valve 10 open, the first pump 11 is operated (step S12). As a result, the first refrigerant that has been heated by absorbing the heat of the magnetic heat storage material 1 is transferred to the second heat storage heat exchanger 5, and the heat of the first refrigerant is transferred to the second heat storage heat exchanger 5. 3 Transferred to the refrigerant.
  • control device 16 removes the magnetic field applied to the magnetic heat quantity material 1 in the bed 3 by stopping the drive current supplied to the magnetic field modulation device 2 and stopping the operation of the magnetic field modulation device 2 ( Step S14).
  • the magnetic calorific value material 1 absorbs the heat of the first refrigerant in the bed 3, so that the first refrigerant in the bed 3 is cooled.
  • the control device 16 operates the first pump 11 with the first valve 9 opened and the second valve 10 closed (step S16).
  • the first refrigerant absorbed and cooled by the magnetic heat quantity material 1 is transferred to the first heat storage heat exchanger 4, and the cold heat of the first refrigerant is transferred to the second refrigerant in the first heat storage heat exchanger 4. Be transmitted.
  • the heat transfer rate from the magnetic heat quantity material 1 to the first refrigerant differs depending on the combination of the magnetic heat quantity material 1 and the first refrigerant. Therefore, for example, the process of step S12 may be started earlier than the timing when the increase rate of the magnetic field by the magnetic field modulator 2 becomes zero. Similarly, for example, the process of step S16 may be started earlier than the timing at which the reduction rate of the magnetic field by the magnetic field modulator 2 becomes zero. By adjusting the control program of the control device 16, the heat exchange efficiency can be improved.
  • steps S10 to S16 When the operations of steps S10 to S16 are repeated for a plurality of cycles as one cycle of heat storage operation, cold heat is stored in the first heat storage heat exchanger 4 and hot heat is stored in the second heat storage heat exchanger 5.
  • the control device 16 determines whether or not the temperature of the first heat storage heat exchanger 4 has reached a predetermined cold heat target value (step S20). For example, the control device 16 determines the temperature of the first heat storage heat exchanger 4 when the time during which the heat storage operations in steps S10 to S16 are continuously repeated exceeds a predetermined cooling heat reference time. Is determined to have reached a predetermined thermal target value.
  • the control device 16 When the temperature of the first heat storage heat exchanger 4 has reached the cold heat target temperature (YES in step S20), the control device 16 operates the second pump 12 (step S22). As a result, the cold heat stored in the first heat storage heat exchanger 4 is transferred to the first heat dissipation heat exchanger 6 via the second refrigerant, and the cold heat of the second refrigerant is transferred to the first heat dissipation heat exchanger 6. The first heat dissipation operation that is discharged to the first heat dissipation target is performed.
  • the second refrigerant that has been heated by absorbing heat from the first heat dissipation target by heat exchange by the first heat dissipation operation is returned to the first heat storage heat exchanger 4. Therefore, the temperature of the first heat storage heat exchanger 4 rises. As a result, when the temperature of the first heat storage heat exchanger 4 does not reach the cold heat target temperature (NO in step S20) in the next and subsequent cycles, the control device 16 stops the second pump 12 (step S24). ).
  • control device 16 determines whether or not the temperature of the second heat storage heat exchanger 5 has reached a predetermined thermal target value (step S30). For example, the control device 16 determines the temperature of the second heat storage heat exchanger 5 when the time during which the heat storage operations in steps S10 to S16 are continuously repeated exceeds a predetermined heat reference time. Is determined to have reached a predetermined thermal target value.
  • the control device 16 When the temperature of the second heat storage heat exchanger 5 has reached the thermal target temperature (YES in step S30), the control device 16 operates the third pump 13 (step S22). As a result, the heat stored in the first heat storage heat exchanger 4 is transferred to the second heat dissipation heat exchanger 7 via the third refrigerant, and the heat of the third refrigerant is transferred to the second heat dissipation heat exchanger 7. The second heat dissipation operation that is discharged to the second heat dissipation target is performed.
  • the second refrigerant that has been radiated to the second heat dissipation target and cooled by heat exchange by the second heat dissipation operation is returned to the second heat storage heat exchanger 5. Therefore, the temperature of the second heat storage heat exchanger 5 drops. As a result, when the temperature of the second heat storage heat exchanger 5 does not reach the thermal target temperature (NO in step S30) in the next and subsequent cycles, the control device 16 stops the third pump 13 (step S34). ).
  • the heat dissipation operation (first and second heat dissipation operations) is performed after repeating the heat storage operation for a plurality of cycles as described above. It is not necessary to perform the heat storage operation and the heat dissipation operation continuously.
  • the magnetic temperature control system 100 includes the bed 3, the magnetic field modulator 2, the first and second heat storage heat exchangers 4 and 5, and the first and second heat dissipation heat.
  • the exchangers 6 and 7, the first pump 11, the second and third pumps 12 and 13, the first and second valves 9 and 10, and the control device 16 are provided.
  • the bed 3 accommodates a magnetic heat quantity material 1 having a magnetic heat quantity effect, and exchanges heat between the magnetic heat quantity material 1 and the first refrigerant.
  • the magnetic field modulation device 2 performs magnetic field modulation on the magnetic calorific value material 1 housed in the bed 3.
  • the first and second heat storage heat exchangers 4 and 5 exchange heat between the first refrigerant whose heat is exchanged in the bed 3 and the second and third refrigerants which are different from the first refrigerant, respectively. ..
  • the first and second heat exchangers 6 and 7 are the second and third refrigerants whose heat exchange has been performed by the first and second heat storage heat exchangers 4 and 5, and the first and second heat dissipation targets. Heat exchange with each other.
  • the first pump 11 circulates the first refrigerant between the magnetic field modulator 2 and the first and second heat storage heat exchangers 4 and 5.
  • the second and third pumps 12 and 13 circulate different refrigerants between the heat storage heat exchanger and the heat radiating heat exchanger.
  • the first and second valves 9 and 10 switch the flow of the first refrigerant between the bed 3 and the first and second heat storage heat exchangers 4 and 5.
  • the control device 16 controls the magnetic field modulator 2, the first to third pumps 11 to 13, and the first and second valves 9 and 10.
  • the heat storage heat exchangers (first and second heat storage heat exchangers 4 and 5) and the heat radiating heat exchangers (first and second heat radiating heat exchangers 6 and 7) are separate.
  • the route can be controlled separately. This makes it possible to install the heat dissipation heat exchanger 6 farther than the heat storage heat exchanger with respect to the bed 3 while arranging the heat storage heat exchanger near the bed 3. Therefore, the heat exchanger for heat dissipation can be freely installed. As a result, it is possible to obtain a magnetic temperature control system 100 that can be miniaturized while extending the heat transport distance.
  • FIG. 3 is a diagram schematically showing the configuration of the magnetic temperature control system 100A according to the second embodiment of the present disclosure.
  • the magnetic temperature control system 100A with respect to the magnetic temperature control system 100 shown in FIG. It is provided in 7 respectively. Since the other configurations of the magnetic temperature control system 100A are the same as those of the magnetic temperature control system 100 described above, the detailed description here will not be repeated.
  • blowers 61 and 71 are electrically connected by the control device 16, and the operation (ON), stop (OFF), and rotation speed are controlled by the control device 16.
  • the magnetic temperature control system 100A has the heat of the first heat dissipation heat exchanger 6 and the second heat dissipation heat exchanger 7 as compared with the above-mentioned magnetic temperature control system 100.
  • the exchange efficiency can be improved.
  • FIG. 4 is a diagram schematically showing the configuration of the magnetic temperature control system 100B according to the third embodiment of the present disclosure.
  • temperature measuring devices 30, 40, 50, 60, 70 are added to the magnetic temperature control system 100 shown in FIG. 1 described above, and the control device 16 is a condition monitoring unit 160. And the learning unit 161 are provided. Since the other configurations of the magnetic temperature control system 100B are the same as those of the magnetic temperature control system 100 described above, the detailed description here will not be repeated.
  • the temperature measuring device 30 is provided on the bed 3 and detects the temperature of the bed 3.
  • the temperature measuring device 40 is provided in the first heat storage heat exchanger 4 and detects the temperature of the first heat storage heat exchanger 4.
  • the temperature measuring device 50 is provided in the second heat storage heat exchanger 5 and detects the temperature of the second heat storage heat exchanger 5.
  • the temperature measuring device 60 is provided in the first heat radiating heat exchanger 6 and detects the temperature of the first heat radiating heat exchanger 6.
  • the temperature measuring device 70 is provided in the second heat radiating heat exchanger 7 and detects the temperature of the second heat radiating heat exchanger 7.
  • Each temperature measuring device 30, 40, 50, 60, 70 outputs the detection result to the condition monitoring unit 160.
  • the state monitoring unit 160 monitors the temperature state detected by the temperature measuring devices 30, 40, 50, 60, 70.
  • the learning unit 161 learns the correspondence between the temperature state monitored by the condition monitoring unit 160 and the operating operation of the device electrically connected by the control device 16, and desires the outside air or the object to be radiated.
  • the control conditions are automatically adjusted to reach the temperature of.
  • Other configurations are the same as those in the first embodiment.
  • the control device 16 has a condition monitoring unit 160 and a learning unit 161. Therefore, it is possible to control the operation operation of each device in consideration of the decrease in heat exchange efficiency due to the delay in control response and the heat loss in the pipes P1 to P7, P11 to P17, the first valve 9, the second valve 10, and the like. It becomes. As a result, the energy efficiency of the entire magnetic temperature control system 100B can be improved.
  • the number of temperature measuring devices is not limited to the number shown in FIG.
  • the number of temperature measuring devices may be increased.
  • the arrangement of the temperature measuring device is not limited to the arrangement shown in FIG.
  • a temperature measuring device may be installed in the outside air or an object around the first heat radiating heat exchanger 6 and the second heat radiating heat exchanger 7, and the magnetic field modulator 2 and the first valve may be installed. 9.
  • Temperature measuring devices may be installed in the second valve 10, the first pump 11, the second pump 12, and the third pump 13, respectively.
  • FIG. 5 is a diagram schematically showing the configuration of the magnetic temperature control system 100C according to the fourth embodiment of the present disclosure.
  • the magnetic temperature control system 100C has a refrigerant heat capacity in the bed 3 and a first heat storage heat exchanger 4 that are transferred by one operation of the first pump 11 to the magnetic temperature control system 100 shown in FIG.
  • the heat capacity of the refrigerant in the heat exchanger 5 is configured to be equal to the heat capacity of the refrigerant in the second heat storage heat exchanger 5.
  • Other configurations of the magnetic temperature control system 100C are the same as those of the magnetic temperature control system 100 described above.
  • the refrigerant heat capacity in the bed 3 equal to the refrigerant heat capacity in the first heat storage heat exchanger 4 and the refrigerant heat capacity in the second heat storage heat exchanger 5
  • the cold heat generated in one cycle is equalized.
  • heat exchange for the first heat storage heat exchanger 4 and the second heat storage without causing heat to stay inside the pipes P1 to P7, P11 to P17, the first valve 9, the second valve 10, etc. and causing heat loss. It becomes possible to store heat in the vessel 5.
  • the energy efficiency of the entire magnetic temperature control system can be improved.
  • FIG. 6 is a diagram schematically showing the configuration of the magnetic temperature control system 100D according to the fifth embodiment of the present disclosure.
  • the magnetic temperature control system 100D is characterized by the arrangement of the bed 3 with respect to the magnetic temperature control system 100 shown in FIG. 1 described above, particularly when the magnetic field modulator 2 is composed of an electromagnet.
  • Other configurations of the magnetic temperature control system 100D are the same as those of the magnetic temperature control system 100 described above.
  • the first member 2a and the second member 2b of the magnetic field modulator 2 are formed in a plate shape so as to face each other. Then, the first bed 3a and the second bed 3b of the bed 3 are located between the first member 2a and the second member 2b in a direction orthogonal to the arrangement direction of the first member 2a and the second member 2b. Arranged side by side. As a result, the magnetic field modulator 2 has a first bed 3a and a second bed 3b arranged side by side in the arrangement direction of the first member 2a and the second member 2b of the magnetic field modulator 2. The gap 21 can be made smaller.
  • the volume of the magnetic field modulator 2 depends on the size of the gap 21 of the magnetic field modulator 2.
  • the gap 21 of the magnetic field modulation device 2 is large, the magnetic loss increases, so that it is necessary to increase the volume of the magnetic field modulation device 2 in order to compensate for the loss.
  • the gap 21 of the magnetic field modulation device 2 is small, the magnetic loss is reduced, so that the volume of the magnetic field modulation device 2 can be reduced.
  • the magnetic field modulation device 2 is arranged while ensuring the accommodation capacity of the magnetic heat quantity material 1 in the bed 3. It is possible to prevent the size of the bed from increasing.
  • FIG. 7 is a diagram schematically showing the configuration of the magnetic temperature control system 100E according to the sixth embodiment of the present disclosure.
  • the magnetic temperature control system 100E is used as a refrigerating and air-conditioning device for the house H. That is, in the magnetic temperature control system 100E, the first heat radiating heat exchanger 6 is installed inside the house H, and the second heat radiating heat exchanger 7 is installed outside the house H. With such an arrangement, cold heat can be blown into the room of the house H, and hot heat can be exhausted to the outside of the house H. Further, by changing the timing of magnetic field modulation by the control device 16, hot heat can be blown into the room of the house H, and cold heat can be exhausted to the outside of the house H.
  • the magnetic temperature control system 100E as a refrigerating and air-conditioning device, unlike the conventional vapor-compression refrigerating and air-conditioning device, refrigerating and air-conditioning can be performed without using a vapor-compressed refrigerant, so that the global warming coefficient is low. It is possible to realize refrigeration and air conditioning equipment.
  • FIG. 7 shows an example in which the magnetic field modulator 2, the bed 3, the first heat storage heat exchanger 4 and the control device 16 are arranged indoors, and the second heat storage heat exchanger 5 is arranged outdoors.
  • the arrangement of these devices is not limited to the arrangement shown in FIG.
  • the control device 16 may be arranged outdoors, or the second heat storage heat exchanger 5 may be arranged indoors.
  • FIG. 7 shows an example in which the magnetic temperature control system 100E is installed in the house H, but the magnetic temperature control system 100E is applied to conventional steam compression type refrigerating and air-conditioning equipment such as automobiles, refrigerators, and railways (not shown). It is also possible to install it first.

Abstract

A magnetic temperature regulating system (100) comprises: a bed (3) that exchanges heat between a magnetocaloric material (1) and a first refrigerant; a magnetic field-modulating device (2) that modulates a magnetic field with respect to the bed (3); first and second heat-storage-type heat exchangers (4, 5) that exchange heat between the first refrigerant subjected to heat exchange in the bed (3), and a second or third refrigerant, respectively, that differs from the first refrigerant; first and second heat-dissipating heat exchangers (6, 7) that exchange heat between the second or third refrigerant subjected to heat exchange by the first and second heat-storage-type heat exchangers (4, 5), and first or second heat-dissipation targets, respectively; first to third pumps (11-13) that cause the first to third refrigerants to circulate, respectively; first and second valves (9, 10) that switch the flow of the first refrigerant; and a control device (16) that controls the magnetic field-modulating device (2), the first to third pumps (11-13), and the first and second valves (9, 10).

Description

磁気温調システムMagnetic temperature control system
 本開示は、励磁により発熱し消磁により吸熱する磁性体(磁気熱量材料)の温度特性を利用する磁気温調システム装置を備える熱機関に関する。 The present disclosure relates to a heat engine including a magnetic temperature control system device that utilizes the temperature characteristics of a magnetic material (magnetic heat quantity material) that generates heat by excitation and absorbs heat by degaussing.
 励磁により発熱し消磁により吸熱する磁性体(磁気熱量材料)の磁気熱量効果を空調冷熱に利用するため、磁気熱量材料と磁場変調装置とポンプと冷媒と熱交換器とを組み合わせ、磁場変調装置により励磁され発熱した磁気熱量材料と熱交換した冷媒を高温用の熱交換器に輸送する動作と、磁場変調装置により消磁され吸熱した磁気熱量材料と熱交換した冷媒を低温用の熱交換器に輸送する動作とを交互に行なうことで、高温と低温を作り出す磁気温調システムが知られている(たとえば特許文献1)。 In order to utilize the magnetic heat effect of a magnetic material (magnetic heat material) that generates heat by excitation and absorbs heat by demagnetization for air conditioning cooling, a magnetic heat material, a magnetic field modulator, a pump, a refrigerant, and a heat exchanger are combined, and a magnetic field modulator is used. The operation of transporting the refrigerant that has exchanged heat with the excited and generated magnetic heat material to the heat exchanger for high temperature, and the operation of transporting the refrigerant that has exchanged heat with the magnetic heat material demagnetized and absorbed by the magnetic field modulator to the heat exchanger for low temperature. A magnetic temperature control system that creates high temperature and low temperature by alternately performing the operations is known (for example, Patent Document 1).
特開2016-20768号公報Japanese Unexamined Patent Publication No. 2016-20768
 近年、磁気温調システムは小型化及び熱輸送距離の延伸化が望まれている。従来の磁気温調システムでは、外部空気と熱交換するための熱交換器が磁気熱量材料を収容するベッドに直結されているため、熱交換器を遠方に設置するためには、熱交換器とベッド間の配管を長くする構成が考えられる。しかしながら、このような構成では、熱交換器内が熱交換した冷媒で満たされるため配管を細径化して配管の容積を小さくする必要があり、その影響で圧力損失が増大してしまうためポンプを大型化する必要があり、結果的に磁気温調システムの大型化を招くという課題があった。 In recent years, it has been desired to reduce the size of the magnetic temperature control system and extend the heat transport distance. In the conventional magnetic temperature control system, the heat exchanger for heat exchange with the external air is directly connected to the bed accommodating the magnetic calorific value material. A configuration in which the piping between beds is lengthened is conceivable. However, in such a configuration, since the inside of the heat exchanger is filled with the heat-exchanged refrigerant, it is necessary to reduce the diameter of the pipe to reduce the volume of the pipe, and as a result, the pressure loss increases, so that the pump is used. It is necessary to increase the size, and as a result, there is a problem that the size of the magnetic temperature control system is increased.
 本開示は、上述の課題を解決するためになされたものであって、その目的は、熱輸送距離を延伸化しつつ小型化可能な磁気温調システムを得ることである。 The present disclosure has been made to solve the above-mentioned problems, and an object thereof is to obtain a magnetic temperature control system that can be miniaturized while extending the heat transport distance.
 本開示による磁気温調システムは、磁場変調による冷媒の温度変化を用いて熱交換を行なう磁気温調システムであって、磁場変調によって発熱または吸熱を行なう磁気熱量材料を収容し、磁気熱量材料と第1冷媒との間で熱交換を行なうベッドと、ベッドに収容される磁気熱量材料に対して磁場変調を行なう磁場変調装置と、ベッドで熱交換が行われた第1冷媒と、第1冷媒とは異なる冷媒との間で熱交換を行なう蓄熱用熱交換器と、蓄熱用熱交換器で熱交換が行われた異なる冷媒と、外気との間で熱交換を行なう放熱用熱交換器と、ベッドと蓄熱用熱交換器との間で第1冷媒を循環させるための第1ポンプと、蓄熱用熱交換器と放熱用熱交換器との間で異なる冷媒を循環させるための、第1ポンプとは異なるポンプと、ベッドと蓄熱用熱交換器との間の第1冷媒の流れを切り替えるためのバルブと、磁場変調装置、第1ポンプ、第1ポンプとは異なるポンプ、およびバルブを制御する制御装置とを備える。 The magnetic temperature control system according to the present disclosure is a magnetic temperature control system that exchanges heat by using a temperature change of a refrigerant due to magnetic field modulation, and accommodates a magnetic heat quantity material that generates heat or absorbs heat by magnetic field modulation. A bed that exchanges heat with the first refrigerant, a magnetic field modulator that modulates the magnetic field of the magnetic heat material contained in the bed, a first refrigerant that has undergone heat exchange in the bed, and a first refrigerant. A heat storage heat exchanger that exchanges heat with a different refrigerant, and a heat dissipation heat exchanger that exchanges heat between a different refrigerant that has been heat exchanged by the heat storage heat exchanger and the outside air. , The first pump for circulating the first refrigerant between the bed and the heat storage heat exchanger, and the first pump for circulating different refrigerants between the heat storage heat exchanger and the heat dissipation heat exchanger. Controls a pump different from the pump, a valve for switching the flow of the first refrigerant between the bed and the heat storage heat exchanger, a magnetic field modulator, a first pump, a pump different from the first pump, and a valve. It is equipped with a control device.
 本開示によれば、熱輸送距離を延伸化しつつ小型化可能な磁気温調システムを得ることができる。 According to the present disclosure, it is possible to obtain a magnetic temperature control system that can be miniaturized while extending the heat transport distance.
磁気温調システムの構成を模式的に示す図(その1)である。It is a figure (the 1) which shows typically the structure of the magnetic temperature control system. 制御装置の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure of a control device. 磁気温調システムの構成を模式的に示す図(その2)である。It is a figure (the 2) which shows typically the structure of the magnetic temperature control system. 磁気温調システムの構成を模式的に示す図(その3)である。It is a figure (the 3) which shows typically the structure of the magnetic temperature control system. 磁気温調システムの構成を模式的に示す図(その4)である。It is a figure (the 4) which shows typically the structure of the magnetic temperature control system. 磁気温調システムの構成を模式的に示す図(その5)である。It is a figure (the 5) which shows typically the structure of the magnetic temperature control system. 磁気温調システムの構成を模式的に示す図(その6)である。It is a figure (No. 6) which shows typically the structure of the magnetic temperature control system.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
 実施の形態1.
 図1は、本実施の形態による磁気温調システム100の構成を模式的に示す図である。磁気温調システム100は、磁場変調装置2と、ベッド3と、第1蓄熱用熱交換器4と、第2蓄熱用熱交換器5と、第1放熱用熱交換器6と、第2放熱用熱交換器7と、第1バルブ9と、第2バルブ10と、第1ポンプ11と、第2ポンプ12と、第3ポンプ13と、配管P1~P7,P11~P17と、制御装置16とを備える。
Embodiment 1.
FIG. 1 is a diagram schematically showing a configuration of a magnetic temperature control system 100 according to the present embodiment. The magnetic temperature control system 100 includes a magnetic field modulator 2, a bed 3, a first heat storage heat exchanger 4, a second heat storage heat exchanger 5, a first heat heat exchanger 6, and a second heat dissipation. Heat exchanger 7, first valve 9, second valve 10, first pump 11, second pump 12, third pump 13, pipes P1 to P7, P11 to P17, and control device 16. And.
 ベッド3は、磁場変調装置2の近傍に設けられる。ベッド3の内部には、磁気熱量材料1が収容される。磁気熱量材料1としては、外部から印加される磁場の変動(強弱の変化)によって吸熱したり発熱したりする磁気熱量効果を有した磁性体(たとえばガドリニウム、ランタン系合金、マンガン系合金など)を用いることができる。 The bed 3 is provided in the vicinity of the magnetic field modulator 2. The magnetic calorific value material 1 is housed inside the bed 3. As the magnetic calorific material 1, a magnetic material (for example, gadolinium, lanthanum alloy, manganese alloy, etc.) having a magnetic calorific effect that absorbs heat or generates heat due to fluctuations in a magnetic field applied from the outside (change in strength) is used. Can be used.
 ベッド3は、磁気熱量材料1を収容する収容部と、第1冷媒が流れる冷媒流路とを備える。ベッド3は、収容部に収容される磁気熱量材料1と冷媒流路を流れる第1冷媒との間の熱交換を行なうように構成される。 The bed 3 includes an accommodating portion for accommodating the magnetic calorific value material 1 and a refrigerant flow path through which the first refrigerant flows. The bed 3 is configured to exchange heat between the magnetic calorific value material 1 accommodated in the accommodating portion and the first refrigerant flowing through the refrigerant flow path.
 磁気熱量材料1は、上述したように、外部から印加される磁場の変動(強弱の変化)によって発熱したり吸熱したりする。たとえば、磁気熱量材料1は、外部から磁場が印加されると発熱し、外部からの磁場が除去されると吸熱する。磁気熱量材料1は、高効率温度帯において高い磁気熱量効果を発揮するため、たとえば、高効率温度帯が連続的または段階的に徐々に高くなるような勾配がベッド3に形成されるようにベッド3内に配置されてもよい。 As described above, the magnetic calorific value material 1 generates heat or absorbs heat due to fluctuations in the magnetic field applied from the outside (changes in strength). For example, the magnetic heat quantity material 1 generates heat when a magnetic field is applied from the outside, and absorbs heat when the magnetic field from the outside is removed. Since the magnetic calorific value material 1 exerts a high magnetic calorific value effect in a high efficiency temperature zone, for example, the bed is formed so that a gradient is formed in the bed 3 so that the high efficiency temperature zone gradually increases continuously or stepwise. It may be arranged in 3.
 なお、本実施の形態においては、ベッド3は、配管P1と配管P11との間に設けられる第1ベッド3aと、配管P3と配管P13との間に設けられる第2ベッド3bとを含む。 In the present embodiment, the bed 3 includes a first bed 3a provided between the pipe P1 and the pipe P11 and a second bed 3b provided between the pipe P3 and the pipe P13.
 磁場変調装置2は、磁気熱量材料1に印加される磁場の強さを周期的に増減させる。磁場変調装置2は、磁気熱量材料1を強い磁界内に置く励磁状態と、磁気熱量材料1を弱い磁界内またはゼロ磁界内に置く消磁状態とを周期的に切り換える。磁場変調装置2は、励磁状態とする励磁期間と、消磁状態とする消磁期間とを周期的に繰り返すように磁場を変調する。磁場変調装置2は、後述する冷媒の往復的な流れに同期して、磁気熱量材料1への磁場の印加と除去とを繰り返す。磁場変調装置2の磁力源としては、たとえば永久磁石、または電磁石を用いることができる。 The magnetic field modulator 2 periodically increases or decreases the strength of the magnetic field applied to the magnetic heat quantity material 1. The magnetic field modulator 2 periodically switches between an exciting state in which the magnetic heat material 1 is placed in a strong magnetic field and a degaussing state in which the magnetic heat material 1 is placed in a weak magnetic field or a zero magnetic field. The magnetic field modulator 2 modulates the magnetic field so as to periodically repeat the exciting period in the excited state and the degaussing period in the degaussed state. The magnetic field modulator 2 repeats application and removal of a magnetic field to the magnetic calorific value material 1 in synchronization with the reciprocating flow of the refrigerant described later. As the magnetic force source of the magnetic field modulator 2, for example, a permanent magnet or an electromagnet can be used.
 なお、本実施の形態において、磁場変調装置2は、ベッド3(第1ベッド3aおよび第2ベッド3b)を挟んで互いに対向する第1部材2aおよび第2部材2bを含む。 In the present embodiment, the magnetic field modulator 2 includes a first member 2a and a second member 2b that face each other with the bed 3 (the first bed 3a and the second bed 3b) interposed therebetween.
 第1蓄熱用熱交換器4は、第1冷媒が流通する配管P1~P4でベッド3と接続される。第2蓄熱用熱交換器5は、第1冷媒が流通する配管P11~P14でベッド3と接続される。 The first heat storage heat exchanger 4 is connected to the bed 3 by pipes P1 to P4 through which the first refrigerant flows. The second heat storage heat exchanger 5 is connected to the bed 3 by pipes P11 to P14 through which the first refrigerant flows.
 配管P13には、第1ポンプ11が設けられる。第1ポンプ11が作動することによって、第1冷媒は、ベッド3(第1ベッド3a)、配管P1、配管P2、第1蓄熱用熱交換器4、配管P4、配管P3、ベッド3(第2ベッド3b)、配管P13、配管P14、第2蓄熱用熱交換器5、配管P12、配管P11、ベッド3(第1ベッド3a)の順に循環する。このように、ベッド3、第1蓄熱用熱交換器4および第2蓄熱用熱交換器5は、第1冷媒が循環する閉ループを構成している。なお、第1冷媒の循環方向は逆であってもよい。また、第1ポンプ11が設けられる位置は、配管P13に限定されず、たとえば、配管P11であってもよいし、配管P1であってもよいし、配管P3であってもよい。 The first pump 11 is provided on the pipe P13. By operating the first pump 11, the first refrigerant is the bed 3 (first bed 3a), the pipe P1, the pipe P2, the first heat storage heat exchanger 4, the pipe P4, the pipe P3, and the bed 3 (second). Bed 3b), pipe P13, pipe P14, second heat storage heat exchanger 5, pipe P12, pipe P11, and bed 3 (first bed 3a) circulate in this order. As described above, the bed 3, the first heat storage heat exchanger 4 and the second heat storage heat exchanger 5 form a closed loop in which the first refrigerant circulates. The circulation direction of the first refrigerant may be opposite. Further, the position where the first pump 11 is provided is not limited to the pipe P13, and may be, for example, the pipe P11, the pipe P1, or the pipe P3.
 配管P1と配管P2との接続部分と、配管P3と配管P4との接続部分とは、配管P5で接続されている。配管P3と配管P4と配管P5との接続部分には、第1バルブ9が設けられる。第1バルブ9が開いているときには、配管P3と配管P4とが連通される。第1バルブ9が閉じているときには、配管P3と配管P4とが遮断され、配管P3と配管P5とが連通される。 The connection portion between the pipe P1 and the pipe P2 and the connection portion between the pipe P3 and the pipe P4 are connected by the pipe P5. A first valve 9 is provided at a connection portion between the pipe P3, the pipe P4, and the pipe P5. When the first valve 9 is open, the pipe P3 and the pipe P4 are communicated with each other. When the first valve 9 is closed, the pipe P3 and the pipe P4 are cut off, and the pipe P3 and the pipe P5 are communicated with each other.
 配管P11と配管P12との接続部分と、配管P13と配管P14との接続部分とは、配管P15で接続されている。配管P13と配管P14と配管P15との接続部分には、第2バルブ10が設けられる。第2バルブ10が開いているときには、配管P13と配管P14とが連通される。第2バルブ10が閉じているときには、配管P13と配管P14とが遮断され、配管P13と配管P15とが連通される。 The connection portion between the pipe P11 and the pipe P12 and the connection portion between the pipe P13 and the pipe P14 are connected by the pipe P15. A second valve 10 is provided at a connection portion between the pipe P13, the pipe P14, and the pipe P15. When the second valve 10 is open, the pipe P13 and the pipe P14 are communicated with each other. When the second valve 10 is closed, the pipe P13 and the pipe P14 are cut off, and the pipe P13 and the pipe P15 are communicated with each other.
 第1ポンプ11の作動中において、第1バルブ9および第2バルブ10が開いているときには、第1冷媒は、ベッド3、第1蓄熱用熱交換器4および第2蓄熱用熱交換器5を含む閉ループを循環する。一方、第1バルブ9および第2バルブ10が閉じているときには、第1冷媒は、第1蓄熱用熱交換器4および第2蓄熱用熱交換器5へは流れず、ベッド3(第1ベッド3a)、配管P1,P5,P3、ベッド3(第2ベッド3b)、配管P13,P15,P11で構成される閉ループ内を循環することになる。 When the first valve 9 and the second valve 10 are open while the first pump 11 is operating, the first refrigerant uses the bed 3, the first heat storage heat exchanger 4, and the second heat storage heat exchanger 5. Circulate the closed loop containing. On the other hand, when the first valve 9 and the second valve 10 are closed, the first refrigerant does not flow to the first heat storage heat exchanger 4 and the second heat storage heat exchanger 5, and the bed 3 (first bed). It circulates in a closed loop composed of 3a), pipes P1, P5, P3, bed 3 (second bed 3b), and pipes P13, P15, and P11.
 第1放熱用熱交換器6は、第1冷媒とは異なる第2冷媒が流通する配管P6,P7で第1蓄熱用熱交換器4と接続される。配管P7には、第2ポンプ12が設けられる。第2ポンプ12が作動することによって、第2冷媒は、第1蓄熱用熱交換器4、配管P7、第1放熱用熱交換器6、配管P6、第1蓄熱用熱交換器4の順に循環する。 The first heat dissipation heat exchanger 6 is connected to the first heat storage heat exchanger 4 by pipes P6 and P7 through which a second refrigerant different from the first refrigerant flows. A second pump 12 is provided in the pipe P7. When the second pump 12 operates, the second refrigerant circulates in the order of the first heat storage heat exchanger 4, the pipe P7, the first heat dissipation heat exchanger 6, the pipe P6, and the first heat storage heat exchanger 4. do.
 第2放熱用熱交換器7は、第1冷媒および第2冷媒とは異なる第3冷媒が流通する配管P16,P17で第2蓄熱用熱交換器5と接続される。配管P17には、第3ポンプ13が設けられる。第3ポンプ13が作動することによって、第3冷媒は、第2蓄熱用熱交換器5、配管P16、第2放熱用熱交換器7、配管P17、第2蓄熱用熱交換器5の順に循環する。 The second heat dissipation heat exchanger 7 is connected to the second heat storage heat exchanger 5 by pipes P16 and P17 through which a third refrigerant different from the first refrigerant and the second refrigerant flows. A third pump 13 is provided in the pipe P17. When the third pump 13 operates, the third refrigerant circulates in the order of the second heat storage heat exchanger 5, the pipe P16, the second heat dissipation heat exchanger 7, the pipe P17, and the second heat storage heat exchanger 5. do.
 なお、第1冷媒、第2冷媒および第3冷媒は、不凍液、水、油などの液冷媒によって構成される。なお、第1冷媒、第2冷媒および第3冷媒は、同一の成分であってもよいし、異なる成分であってもよい。 The first refrigerant, the second refrigerant, and the third refrigerant are composed of liquid refrigerants such as antifreeze, water, and oil. The first refrigerant, the second refrigerant, and the third refrigerant may have the same component or different components.
 第1蓄熱用熱交換器4は、ベッド3で熱交換が行われた第1冷媒と、第2冷媒との間の熱交換を行なうことによって、磁気熱量材料1と熱交換した第1冷媒の熱を蓄熱する機能を有する。 The first heat storage heat exchanger 4 is a first refrigerant that has exchanged heat with the magnetic calorific value material 1 by exchanging heat between the first refrigerant that has undergone heat exchange in the bed 3 and the second refrigerant. It has a function of storing heat.
 第1放熱用熱交換器6は、第1蓄熱用熱交換器4で熱交換が行なわれた第2冷媒と、第1放熱対象(周囲の外気もしくは対象物)との間の熱交換を行なうことによって、第1蓄熱用熱交換器4で蓄熱した熱を第1放熱対象へ伝達する機能を有する。 The first heat radiating heat exchanger 6 exchanges heat between the second refrigerant whose heat has been exchanged by the first heat storage heat exchanger 4 and the first heat radiating object (surrounding outside air or object). As a result, it has a function of transferring the heat stored in the first heat storage heat exchanger 4 to the first heat dissipation target.
 なお、第1蓄熱用熱交換器4は、ベッド3において第1冷媒に伝達された熱を損失することなく蓄えて第1放熱用熱交換器6に伝達するために、ベッド3に近接して配置されることが望ましい。一方で、第1放熱用熱交換器6は、第1放熱対象に近接して配置されることが望ましい。そのため、第1放熱用熱交換器6は、ベッド3に対して第1蓄熱用熱交換器4よりも遠方に設置されてもよい。 The first heat storage heat exchanger 4 is close to the bed 3 in order to store the heat transferred to the first refrigerant in the bed 3 without loss and transfer it to the first heat dissipation heat exchanger 6. It is desirable to be placed. On the other hand, it is desirable that the first heat dissipation heat exchanger 6 is arranged close to the first heat dissipation target. Therefore, the first heat dissipation heat exchanger 6 may be installed farther than the first heat storage heat exchanger 4 with respect to the bed 3.
 本実施の形態においては、第1蓄熱用熱交換器4、配管P6,P7および第1放熱用熱交換器6で第2冷媒用の閉ループが構成されるため、第1放熱用熱交換器6の設置場所に合せて配管P6,P7の長さを調整することができる。 In the present embodiment, since the first heat storage heat exchanger 4, the pipes P6 and P7, and the first heat dissipation heat exchanger 6 form a closed loop for the second refrigerant, the first heat dissipation heat exchanger 6 The lengths of the pipes P6 and P7 can be adjusted according to the installation location of the pipes P6 and P7.
 第2蓄熱用熱交換器5は、ベッド3で熱交換が行われた第1冷媒と、第3冷媒との間の熱交換を行なうことによって、磁気熱量材料1と熱交換した第1冷媒の熱を蓄熱する機能を有する。 The second heat storage heat exchanger 5 is a first refrigerant that has exchanged heat with the magnetic heat quantity material 1 by exchanging heat between the first refrigerant that has undergone heat exchange in the bed 3 and the third refrigerant. It has a function of storing heat.
 第2放熱用熱交換器7は、第2蓄熱用熱交換器5で熱交換が行なわれた第3冷媒と、第2放熱対象(周囲の外気もしくは対象物)との間の熱交換を行なうことによって、第2蓄熱用熱交換器5で蓄熱した熱を第2放熱対象へ伝達す機能を有する。 The second heat radiating heat exchanger 7 exchanges heat between the third refrigerant whose heat has been exchanged by the second heat storage heat exchanger 5 and the second heat radiating object (surrounding outside air or object). As a result, it has a function of transferring the heat stored in the second heat storage heat exchanger 5 to the second heat dissipation target.
 なお、第2蓄熱用熱交換器5は、ベッド3において第1冷媒に伝達された熱を損失することなく蓄えて第2放熱用熱交換器7に伝達するために、ベッド3に近接して配置されることが望ましい。一方で、第2放熱用熱交換器7は、第2放熱対象に近接して配置されることが望ましい。そのため、第2放熱用熱交換器7は、ベッド3に対して第2蓄熱用熱交換器5よりも遠方に設置されてもよい。 The second heat storage heat exchanger 5 is close to the bed 3 in order to store the heat transferred to the first refrigerant in the bed 3 without loss and transfer it to the second heat dissipation heat exchanger 7. It is desirable to be placed. On the other hand, it is desirable that the second heat exchanger 7 for heat dissipation is arranged close to the second heat dissipation target. Therefore, the second heat dissipation heat exchanger 7 may be installed farther than the second heat storage heat exchanger 5 with respect to the bed 3.
 本実施の形態においては、第2蓄熱用熱交換器5、配管P16,P17および第2放熱用熱交換器7で第3冷媒用の閉ループが構成されるため、第2放熱用熱交換器7の設置場所に合せて配管P16,P17の長さを調整することができる。 In the present embodiment, since the second heat storage heat exchanger 5, the pipes P16, P17 and the second heat radiating heat exchanger 7 form a closed loop for the third refrigerant, the second heat radiating heat exchanger 7 The lengths of the pipes P16 and P17 can be adjusted according to the installation location of the pipe.
 制御装置16は、磁場変調装置2、第1バルブ9、第2バルブ10、第1ポンプ11、第2ポンプ12、および第3ポンプ13と電気的に接続される。制御装置16は、磁場変調装置2の励磁のタイミング、励磁期間、消磁のタイミングおよび消磁期間などの磁場変調を制御する。制御装置16は、第1バルブ9および第2バルブ10の開閉を制御する。制御装置16は、第1ポンプ11、第2ポンプ12、第3ポンプ13の作動、流量および冷媒流れ方向を制御する。すなわち、制御装置16は、磁気温調システム100を構成している電気部品の動作条件を制御する。 The control device 16 is electrically connected to the magnetic field modulator 2, the first valve 9, the second valve 10, the first pump 11, the second pump 12, and the third pump 13. The control device 16 controls the magnetic field modulation such as the excitation timing, the excitation period, the degaussing timing, and the degaussing period of the magnetic field modulation device 2. The control device 16 controls the opening and closing of the first valve 9 and the second valve 10. The control device 16 controls the operation, flow rate, and refrigerant flow direction of the first pump 11, the second pump 12, and the third pump 13. That is, the control device 16 controls the operating conditions of the electrical components constituting the magnetic temperature control system 100.
 なお、第1蓄熱用熱交換器4および第2蓄熱用熱交換器5の蓄熱特性を向上させるために、第1蓄熱用熱交換器4および第2蓄熱用熱交換器5に蓄熱材料を設けるようにしてもよい。 In addition, in order to improve the heat storage characteristics of the first heat storage heat exchanger 4 and the second heat storage heat exchanger 5, heat storage materials are provided in the first heat storage heat exchanger 4 and the second heat storage heat exchanger 5. You may do so.
 次に、磁気温調システム100の動作を説明する。なお、以下の動作説明では、第1蓄熱用熱交換器4で冷熱(低温熱)を蓄熱し、第2蓄熱用熱交換器5で温熱(高温熱)を蓄熱する例について説明する。なお、第1蓄熱用熱交換器4で温熱を蓄熱し、第2蓄熱用熱交換器5で冷熱を蓄熱するようにしてもよい。 Next, the operation of the magnetic temperature control system 100 will be described. In the following operation description, an example in which cold heat (low temperature heat) is stored in the first heat storage heat exchanger 4 and hot heat (high temperature heat) is stored in the second heat storage heat exchanger 5 will be described. The first heat storage heat exchanger 4 may store hot heat, and the second heat storage heat exchanger 5 may store cold heat.
 図2は、制御装置16の処理手順の一例を示すフローチャートである。このフローチャートは、磁気温調システム100の運転中において、予め定められた条件が成立する毎(たとえば予め定められた周期毎)に繰り返し実行される。 FIG. 2 is a flowchart showing an example of the processing procedure of the control device 16. This flowchart is repeatedly executed every time a predetermined condition is satisfied (for example, every predetermined cycle) during the operation of the magnetic temperature control system 100.
 まず、制御装置16は、磁場変調装置2に駆動電流を供給することによって磁場変調装置2を作動させて、ベッド3内の磁気熱量材料1へ磁場を印加する(ステップS10)。磁場が印加された磁気熱量材料1は発熱し、磁気熱量材料1の熱がベッド3内の第1冷媒へ伝達される。 First, the control device 16 operates the magnetic field modulation device 2 by supplying a drive current to the magnetic field modulation device 2, and applies a magnetic field to the magnetic calorific value material 1 in the bed 3 (step S10). The magnetic heat quantity material 1 to which the magnetic field is applied generates heat, and the heat of the magnetic heat quantity material 1 is transferred to the first refrigerant in the bed 3.
 次いで、磁場変調装置2の駆動電流の増加が終了する、すなわち磁場変調装置2から磁気熱量材料1に印加される磁場の増加率がゼロになると、制御装置16は、第1バルブ9を閉じ、第2バルブ10を開いた状態で、第1ポンプ11を作動させる(ステップS12)。これにより、磁気熱量材料1の熱を吸収して昇温された第1冷媒が第2蓄熱用熱交換器5に移送され、第1冷媒の温熱が第2蓄熱用熱交換器5内の第3冷媒に伝達される。 Next, when the increase in the drive current of the magnetic field modulator 2 ends, that is, when the rate of increase of the magnetic field applied from the magnetic field modulator 2 to the magnetic heat quantity material 1 becomes zero, the control device 16 closes the first valve 9. With the second valve 10 open, the first pump 11 is operated (step S12). As a result, the first refrigerant that has been heated by absorbing the heat of the magnetic heat storage material 1 is transferred to the second heat storage heat exchanger 5, and the heat of the first refrigerant is transferred to the second heat storage heat exchanger 5. 3 Transferred to the refrigerant.
 次いで、制御装置16は、磁場変調装置2に供給される駆動電流を停止して磁場変調装置2の作動を停止することによって、ベッド3内の磁気熱量材料1に印加される磁場を除去する(ステップS14)。これにより、磁気熱量材料1はベッド3内の第1冷媒の熱を吸熱するため、ベッド3内の第1冷媒が冷却される。 Next, the control device 16 removes the magnetic field applied to the magnetic heat quantity material 1 in the bed 3 by stopping the drive current supplied to the magnetic field modulation device 2 and stopping the operation of the magnetic field modulation device 2 ( Step S14). As a result, the magnetic calorific value material 1 absorbs the heat of the first refrigerant in the bed 3, so that the first refrigerant in the bed 3 is cooled.
 次いで、磁場変調装置2による磁場の減少率がゼロになると、制御装置16は、第1バルブ9を開き、第2バルブ10を閉じた状態で、第1ポンプ11を動作させる(ステップS16)。これにより、磁気熱量材料1に吸熱されて冷却された第1冷媒が第1蓄熱用熱交換器4に移送され、第1冷媒の冷熱が第1蓄熱用熱交換器4内の第2冷媒に伝達される。 Next, when the reduction rate of the magnetic field by the magnetic field modulation device 2 becomes zero, the control device 16 operates the first pump 11 with the first valve 9 opened and the second valve 10 closed (step S16). As a result, the first refrigerant absorbed and cooled by the magnetic heat quantity material 1 is transferred to the first heat storage heat exchanger 4, and the cold heat of the first refrigerant is transferred to the second refrigerant in the first heat storage heat exchanger 4. Be transmitted.
 なお、磁気熱量材料1から第1冷媒への熱伝達速度は磁気熱量材料1と第1冷媒との組合せによって異なる。そのため、たとえば、磁場変調装置2による磁場の増加率がゼロになるタイミングよりも早くステップS12の処理を開始するようにしてもよい。同様に、たとえば、磁場変調装置2による磁場の減少率がゼロになるタイミングよりも早く、ステップS16の処理を開始するようにしてもよい。制御装置16の制御プログラムを調整することで、熱交換効率を向上させることができる。 The heat transfer rate from the magnetic heat quantity material 1 to the first refrigerant differs depending on the combination of the magnetic heat quantity material 1 and the first refrigerant. Therefore, for example, the process of step S12 may be started earlier than the timing when the increase rate of the magnetic field by the magnetic field modulator 2 becomes zero. Similarly, for example, the process of step S16 may be started earlier than the timing at which the reduction rate of the magnetic field by the magnetic field modulator 2 becomes zero. By adjusting the control program of the control device 16, the heat exchange efficiency can be improved.
 ステップS10~S16の動作を1サイクルの蓄熱動作として複数サイクル繰り返されると、第1蓄熱用熱交換器4には冷熱が蓄熱され、第2蓄熱用熱交換器5には温熱が蓄熱される。 When the operations of steps S10 to S16 are repeated for a plurality of cycles as one cycle of heat storage operation, cold heat is stored in the first heat storage heat exchanger 4 and hot heat is stored in the second heat storage heat exchanger 5.
 次いで、制御装置16は、第1蓄熱用熱交換器4の温度が予め定められた冷熱目標値に到達しているか否かを判定する(ステップS20)。たとえば、制御装置16は、上述のステップS10~S16の蓄熱動作が継続的に繰り返されている時間が予め定められた冷熱基準時間を超えている場合に、第1蓄熱用熱交換器4の温度が予め定められた冷熱目標値に到達していると判定する。 Next, the control device 16 determines whether or not the temperature of the first heat storage heat exchanger 4 has reached a predetermined cold heat target value (step S20). For example, the control device 16 determines the temperature of the first heat storage heat exchanger 4 when the time during which the heat storage operations in steps S10 to S16 are continuously repeated exceeds a predetermined cooling heat reference time. Is determined to have reached a predetermined thermal target value.
 第1蓄熱用熱交換器4の温度が冷熱目標温度に到達していると(ステップS20においてYES)、制御装置16は、第2ポンプ12を動作させる(ステップS22)。これにより、第1蓄熱用熱交換器4に蓄熱された冷熱が第2冷媒を介して第1放熱用熱交換器6に移送され、第1放熱用熱交換器6において第2冷媒の冷熱が第1放熱対象に放出される第1放熱動作が行なわれる。 When the temperature of the first heat storage heat exchanger 4 has reached the cold heat target temperature (YES in step S20), the control device 16 operates the second pump 12 (step S22). As a result, the cold heat stored in the first heat storage heat exchanger 4 is transferred to the first heat dissipation heat exchanger 6 via the second refrigerant, and the cold heat of the second refrigerant is transferred to the first heat dissipation heat exchanger 6. The first heat dissipation operation that is discharged to the first heat dissipation target is performed.
 第1放熱動作による熱交換によって第1放熱対象から吸熱して昇温された第2冷媒は、第1蓄熱用熱交換器4に戻される。このため、第1蓄熱用熱交換器4の温度が上昇する。これにより、次回以降のサイクルにおいて、第1蓄熱用熱交換器4の温度が冷熱目標温度に到達しなくなると(ステップS20においてNO)、制御装置16は、第2ポンプ12を停止する(ステップS24)。 The second refrigerant that has been heated by absorbing heat from the first heat dissipation target by heat exchange by the first heat dissipation operation is returned to the first heat storage heat exchanger 4. Therefore, the temperature of the first heat storage heat exchanger 4 rises. As a result, when the temperature of the first heat storage heat exchanger 4 does not reach the cold heat target temperature (NO in step S20) in the next and subsequent cycles, the control device 16 stops the second pump 12 (step S24). ).
 次いで、制御装置16は、第2蓄熱用熱交換器5の温度が予め定められた温熱目標値に到達しているか否かを判定する(ステップS30)。たとえば、制御装置16は、上述のステップS10~S16の蓄熱動作が継続的に繰り返されている時間が予め定められた温熱基準時間を超えている場合に、第2蓄熱用熱交換器5の温度が予め定められた温熱目標値に到達していると判定する。 Next, the control device 16 determines whether or not the temperature of the second heat storage heat exchanger 5 has reached a predetermined thermal target value (step S30). For example, the control device 16 determines the temperature of the second heat storage heat exchanger 5 when the time during which the heat storage operations in steps S10 to S16 are continuously repeated exceeds a predetermined heat reference time. Is determined to have reached a predetermined thermal target value.
 第2蓄熱用熱交換器5の温度が温熱目標温度に到達していると(ステップS30においてYES)、制御装置16は、第3ポンプ13を動作させる(ステップS22)。これにより、第1蓄熱用熱交換器4に蓄熱された温熱が第3冷媒を介して第2放熱用熱交換器7に移送され、第2放熱用熱交換器7において第3冷媒の温熱が第2放熱対象に放出される第2放熱動作が行なわれる。 When the temperature of the second heat storage heat exchanger 5 has reached the thermal target temperature (YES in step S30), the control device 16 operates the third pump 13 (step S22). As a result, the heat stored in the first heat storage heat exchanger 4 is transferred to the second heat dissipation heat exchanger 7 via the third refrigerant, and the heat of the third refrigerant is transferred to the second heat dissipation heat exchanger 7. The second heat dissipation operation that is discharged to the second heat dissipation target is performed.
 第2放熱動作による熱交換によって第2放熱対象に放熱して降温された第2冷媒は、第2蓄熱用熱交換器5に戻される。このため、第2蓄熱用熱交換器5の温度が低下する。これにより、次回以降のサイクルにおいて、第2蓄熱用熱交換器5の温度が温熱目標温度に到達しなくなると(ステップS30においてNO)、制御装置16は、第3ポンプ13を停止する(ステップS34)。 The second refrigerant that has been radiated to the second heat dissipation target and cooled by heat exchange by the second heat dissipation operation is returned to the second heat storage heat exchanger 5. Therefore, the temperature of the second heat storage heat exchanger 5 drops. As a result, when the temperature of the second heat storage heat exchanger 5 does not reach the thermal target temperature (NO in step S30) in the next and subsequent cycles, the control device 16 stops the third pump 13 (step S34). ).
 なお、1サイクルの蓄熱動作で磁気熱量材料1が所望の熱量を発生させることができる場合には、上述のように蓄熱動作を複数サイクル繰り返した後に放熱動作(第1,第2放熱動作)を行なう必要はなく、蓄熱操作と放熱動作とを連続的に行なうことができる。 If the magnetic heat storage material 1 can generate a desired amount of heat in one cycle of heat storage operation, the heat dissipation operation (first and second heat dissipation operations) is performed after repeating the heat storage operation for a plurality of cycles as described above. It is not necessary to perform the heat storage operation and the heat dissipation operation continuously.
 以上のように、本実施の形態による磁気温調システム100は、ベッド3と、磁場変調装置2と、第1、第2蓄熱用熱交換器4,5と、第1、第2放熱用熱交換器6,7と、第1ポンプ11と、第2、第3ポンプ12,13と、第1、第2バルブ9,10と、制御装置16とを備える。ベッド3は、磁気熱量効果を有する磁気熱量材料1を収容し、磁気熱量材料1と第1冷媒との間で熱交換を行なう。磁場変調装置2は、ベッド3に収容される磁気熱量材料1に対して磁場変調を行なう。第1、第2蓄熱用熱交換器4,5は、ベッド3で熱交換が行われた第1冷媒と、第1冷媒とは異なる第2、第3冷媒との間で熱交換をそれぞれ行なう。第1、第2放熱用熱交換器6,7は、第1、第2蓄熱用熱交換器4,5で熱交換が行われた第2,第3冷媒と、第1、第2放熱対象との間で熱交換をそれぞれ行なう。第1ポンプ11は、磁場変調装置2と第1、第2蓄熱用熱交換器4,5との間で第1冷媒を循環させる。第2、第3ポンプ12,13は、蓄熱用熱交換器と放熱用熱交換器との間で異なる冷媒を循環させる。第1、第2バルブ9,10は、ベッド3と第1、第2蓄熱用熱交換器4,5との間の第1冷媒の流れを切り替える。制御装置16は、磁場変調装置2、第1~第3ポンプ11~13、および第1、第2バルブ9,10を制御する。 As described above, the magnetic temperature control system 100 according to the present embodiment includes the bed 3, the magnetic field modulator 2, the first and second heat storage heat exchangers 4 and 5, and the first and second heat dissipation heat. The exchangers 6 and 7, the first pump 11, the second and third pumps 12 and 13, the first and second valves 9 and 10, and the control device 16 are provided. The bed 3 accommodates a magnetic heat quantity material 1 having a magnetic heat quantity effect, and exchanges heat between the magnetic heat quantity material 1 and the first refrigerant. The magnetic field modulation device 2 performs magnetic field modulation on the magnetic calorific value material 1 housed in the bed 3. The first and second heat storage heat exchangers 4 and 5 exchange heat between the first refrigerant whose heat is exchanged in the bed 3 and the second and third refrigerants which are different from the first refrigerant, respectively. .. The first and second heat exchangers 6 and 7 are the second and third refrigerants whose heat exchange has been performed by the first and second heat storage heat exchangers 4 and 5, and the first and second heat dissipation targets. Heat exchange with each other. The first pump 11 circulates the first refrigerant between the magnetic field modulator 2 and the first and second heat storage heat exchangers 4 and 5. The second and third pumps 12 and 13 circulate different refrigerants between the heat storage heat exchanger and the heat radiating heat exchanger. The first and second valves 9 and 10 switch the flow of the first refrigerant between the bed 3 and the first and second heat storage heat exchangers 4 and 5. The control device 16 controls the magnetic field modulator 2, the first to third pumps 11 to 13, and the first and second valves 9 and 10.
 上記構成によれば、蓄熱用熱交換器(第1、第2蓄熱用熱交換器4,5)と放熱用熱交換器(第1、第2放熱用熱交換器6,7)とが別々に設けられ、さらに、ベッド3と蓄熱用熱交換器との間を循環する第1冷媒と、蓄熱用熱交換器と放熱用熱交換器との間を循環する第2、第3冷媒の冷媒経路とを別々に制御することができる。これにより、蓄熱用熱交換器をベッド3の近傍に配置しつつ、放熱用熱交換器6をベッド3に対して蓄熱用熱交換器よりも遠方に設置することが可能となる。そのため、放熱用熱交換器を自由に設置することができるようになる。その結果、熱輸送距離を延伸化しつつ小型化可能な磁気温調システム100を得ることができる。 According to the above configuration, the heat storage heat exchangers (first and second heat storage heat exchangers 4 and 5) and the heat radiating heat exchangers (first and second heat radiating heat exchangers 6 and 7) are separate. The first refrigerant that circulates between the bed 3 and the heat storage heat exchanger, and the second and third refrigerants that circulate between the heat storage heat exchanger and the heat radiating heat exchanger. The route can be controlled separately. This makes it possible to install the heat dissipation heat exchanger 6 farther than the heat storage heat exchanger with respect to the bed 3 while arranging the heat storage heat exchanger near the bed 3. Therefore, the heat exchanger for heat dissipation can be freely installed. As a result, it is possible to obtain a magnetic temperature control system 100 that can be miniaturized while extending the heat transport distance.
 実施の形態2.
 図3は、本開示の実施の形態2による磁気温調システム100Aの構成を模式的に示す図である。磁気温調システム100Aは、上述の図1に示す磁気温調システム100に対して、制御装置16で制御可能な送風機61,71を第1放熱用熱交換器6および第2放熱用熱交換器7にそれぞれ設けたものである。磁気温調システム100Aのその他の構成は、上述の磁気温調システム100と同じであるため、ここでの詳細な説明は繰返さない。
Embodiment 2.
FIG. 3 is a diagram schematically showing the configuration of the magnetic temperature control system 100A according to the second embodiment of the present disclosure. In the magnetic temperature control system 100A, with respect to the magnetic temperature control system 100 shown in FIG. It is provided in 7 respectively. Since the other configurations of the magnetic temperature control system 100A are the same as those of the magnetic temperature control system 100 described above, the detailed description here will not be repeated.
 送風機61,71は、制御装置16によって電気的に接続されており、制御装置16により作動(ON)、停止(OFF)および回転数が制御される。 The blowers 61 and 71 are electrically connected by the control device 16, and the operation (ON), stop (OFF), and rotation speed are controlled by the control device 16.
 磁気温調システム100Aは、このような送風機61,71を有することにより、上述の磁気温調システム100と比較して、第1放熱用熱交換器6および第2放熱用熱交換器7の熱交換効率を向上させることができる。 By having such blowers 61 and 71, the magnetic temperature control system 100A has the heat of the first heat dissipation heat exchanger 6 and the second heat dissipation heat exchanger 7 as compared with the above-mentioned magnetic temperature control system 100. The exchange efficiency can be improved.
 実施の形態3.
 図4は、本開示の実施の形態3による磁気温調システム100Bの構成を模式的に示す図である。磁気温調システム100Bは、上述の図1に示す磁気温調システム100に対して、温度測定装置30,40,50,60,70が追加されている点、および制御装置16が状態監視部160と学習部161とを備える点が異なる。磁気温調システム100Bのその他の構成は、上述の磁気温調システム100と同じであるため、ここでの詳細な説明は繰返さない。
Embodiment 3.
FIG. 4 is a diagram schematically showing the configuration of the magnetic temperature control system 100B according to the third embodiment of the present disclosure. In the magnetic temperature control system 100B, temperature measuring devices 30, 40, 50, 60, 70 are added to the magnetic temperature control system 100 shown in FIG. 1 described above, and the control device 16 is a condition monitoring unit 160. And the learning unit 161 are provided. Since the other configurations of the magnetic temperature control system 100B are the same as those of the magnetic temperature control system 100 described above, the detailed description here will not be repeated.
 温度測定装置30は、ベッド3に設けられ、ベッド3の温度を検出する。温度測定装置40は、第1蓄熱用熱交換器4に設けられ、第1蓄熱用熱交換器4の温度を検出する。温度測定装置50は、第2蓄熱用熱交換器5に設けられ、第2蓄熱用熱交換器5の温度を検出する。温度測定装置60は、第1放熱用熱交換器6に設けられ、第1放熱用熱交換器6の温度を検出する。温度測定装置70は、第2放熱用熱交換器7に設けられ、第2放熱用熱交換器7の温度を検出する。各温度測定装置30,40,50,60,70は、検出結果を状態監視部160に出力する。 The temperature measuring device 30 is provided on the bed 3 and detects the temperature of the bed 3. The temperature measuring device 40 is provided in the first heat storage heat exchanger 4 and detects the temperature of the first heat storage heat exchanger 4. The temperature measuring device 50 is provided in the second heat storage heat exchanger 5 and detects the temperature of the second heat storage heat exchanger 5. The temperature measuring device 60 is provided in the first heat radiating heat exchanger 6 and detects the temperature of the first heat radiating heat exchanger 6. The temperature measuring device 70 is provided in the second heat radiating heat exchanger 7 and detects the temperature of the second heat radiating heat exchanger 7. Each temperature measuring device 30, 40, 50, 60, 70 outputs the detection result to the condition monitoring unit 160.
 状態監視部160は、温度測定装置30,40,50,60,70によって検出された温度状態を監視する。学習部161は、状態監視部160で監視している温度状態と制御装置16によって電気的に接続されている機器の運転動作との対応関係を学習し、放熱対象となる外気または対象物が所望の温度になるよう制御条件を自動で調整する。その他の構成は、実施の形態1と同じである。 The state monitoring unit 160 monitors the temperature state detected by the temperature measuring devices 30, 40, 50, 60, 70. The learning unit 161 learns the correspondence between the temperature state monitored by the condition monitoring unit 160 and the operating operation of the device electrically connected by the control device 16, and desires the outside air or the object to be radiated. The control conditions are automatically adjusted to reach the temperature of. Other configurations are the same as those in the first embodiment.
 このように、磁気温調システム100Bにおいては、制御装置16が状態監視部160と学習部161とを有する。そのため、制御応答遅れによる熱交換効率の低下および配管P1~P7,P11~P17、第1バルブ9、第2バルブ10等での熱損失を考慮して各機器の運転動作を制御することが可能となる。その結果、磁気温調システム100B全体のエネルギー効率を向上させることができる。 As described above, in the magnetic temperature control system 100B, the control device 16 has a condition monitoring unit 160 and a learning unit 161. Therefore, it is possible to control the operation operation of each device in consideration of the decrease in heat exchange efficiency due to the delay in control response and the heat loss in the pipes P1 to P7, P11 to P17, the first valve 9, the second valve 10, and the like. It becomes. As a result, the energy efficiency of the entire magnetic temperature control system 100B can be improved.
 なお、温度測定装置の数は図4に示す数に限定されない。たとえば、温度測定装置の数を増やしてもよい。また、温度測定装置の配置も図4に示す配置に限定されない。たとえば、必要であれば、第1放熱用熱交換器6および第2放熱用熱交換器7の周辺の外気あるいは対象物に温度測定装置を設置してもよく、磁場変調装置2、第1バルブ9、第2バルブ10、第1ポンプ11、第2ポンプ12、第3ポンプ13にそれぞれ温度測定装置を設置してもよい。 The number of temperature measuring devices is not limited to the number shown in FIG. For example, the number of temperature measuring devices may be increased. Further, the arrangement of the temperature measuring device is not limited to the arrangement shown in FIG. For example, if necessary, a temperature measuring device may be installed in the outside air or an object around the first heat radiating heat exchanger 6 and the second heat radiating heat exchanger 7, and the magnetic field modulator 2 and the first valve may be installed. 9. Temperature measuring devices may be installed in the second valve 10, the first pump 11, the second pump 12, and the third pump 13, respectively.
 実施の形態4.
 図5は、本開示の実施の形態4による磁気温調システム100Cの構成を模式的に示す図である。磁気温調システム100Cは、上述の図1に示す磁気温調システム100に対して、第1ポンプ11の1回の動作で移送されるベッド3内の冷媒熱容量と第1蓄熱用熱交換器4内の冷媒熱容量と第2蓄熱用熱交換器5内の冷媒熱容量とが同等になるように構成される。磁気温調システム100Cのその他の構成は、上述の磁気温調システム100と同じである。
Embodiment 4.
FIG. 5 is a diagram schematically showing the configuration of the magnetic temperature control system 100C according to the fourth embodiment of the present disclosure. The magnetic temperature control system 100C has a refrigerant heat capacity in the bed 3 and a first heat storage heat exchanger 4 that are transferred by one operation of the first pump 11 to the magnetic temperature control system 100 shown in FIG. The heat capacity of the refrigerant in the heat exchanger 5 is configured to be equal to the heat capacity of the refrigerant in the second heat storage heat exchanger 5. Other configurations of the magnetic temperature control system 100C are the same as those of the magnetic temperature control system 100 described above.
 このように、ベッド3内の冷媒熱容量と第1蓄熱用熱交換器4内の冷媒熱容量と第2蓄熱用熱交換器5内の冷媒熱容量とを同等にすることで、1サイクルで発生した冷熱および温熱を、配管P1~P7,P11~P17、第1バルブ9、第2バルブ10等の内部で滞留して熱損失させることなく、第1蓄熱用熱交換器4および第2蓄熱用熱交換器5に蓄熱することが可能となる。その結果、磁気温調システム全体のエネルギー効率を向上させることができる。 In this way, by making the refrigerant heat capacity in the bed 3 equal to the refrigerant heat capacity in the first heat storage heat exchanger 4 and the refrigerant heat capacity in the second heat storage heat exchanger 5, the cold heat generated in one cycle is equalized. And heat exchange for the first heat storage heat exchanger 4 and the second heat storage without causing heat to stay inside the pipes P1 to P7, P11 to P17, the first valve 9, the second valve 10, etc. and causing heat loss. It becomes possible to store heat in the vessel 5. As a result, the energy efficiency of the entire magnetic temperature control system can be improved.
 実施の形態5.
 図6は、本開示の実施の形態5による磁気温調システム100Dの構成を模式的に示す図である。磁気温調システム100Dは、上述の図1に示す磁気温調システム100に対して、特に磁場変調装置2が電磁石で構成されているときに、ベッド3の配置に特徴を有する。磁気温調システム100Dのその他の構成は、上述の磁気温調システム100と同じである。
Embodiment 5.
FIG. 6 is a diagram schematically showing the configuration of the magnetic temperature control system 100D according to the fifth embodiment of the present disclosure. The magnetic temperature control system 100D is characterized by the arrangement of the bed 3 with respect to the magnetic temperature control system 100 shown in FIG. 1 described above, particularly when the magnetic field modulator 2 is composed of an electromagnet. Other configurations of the magnetic temperature control system 100D are the same as those of the magnetic temperature control system 100 described above.
 磁気温調システム100Dにおいては、図6に示す通り、磁場変調装置2の第1部材2aと第2部材2bとが、互いに対向するように板状に形成される。そして、ベッド3の第1ベッド3aと第2ベッド3bとが、第1部材2aと第2部材2bとの間に、第1部材2aと第2部材2bとの配列方向とは直交する方向に並べて配列される。これにより、ベッド3の第1ベッド3aと第2ベッド3bとが磁場変調装置2の第1部材2aと第2部材2bとの配列方向に並べて配置される場合に比べて、磁場変調装置2の間隙21をより小さくすることが可能となる。 In the magnetic temperature control system 100D, as shown in FIG. 6, the first member 2a and the second member 2b of the magnetic field modulator 2 are formed in a plate shape so as to face each other. Then, the first bed 3a and the second bed 3b of the bed 3 are located between the first member 2a and the second member 2b in a direction orthogonal to the arrangement direction of the first member 2a and the second member 2b. Arranged side by side. As a result, the magnetic field modulator 2 has a first bed 3a and a second bed 3b arranged side by side in the arrangement direction of the first member 2a and the second member 2b of the magnetic field modulator 2. The gap 21 can be made smaller.
 磁場変調装置2が電磁石で構成される場合、磁場変調装置2の体積は、磁場変調装置2の間隙21の大きさに依存している。磁場変調装置2の間隙21が大きい場合には、磁気損失が増加するため、損失を補うために磁場変調装置2の体積を大型化する必要がある。しかし、磁場変調装置2の間隙21が小さい場合には、磁気損失が低減するため、磁場変調装置2の体積を小型化することができる。 When the magnetic field modulator 2 is composed of an electromagnet, the volume of the magnetic field modulator 2 depends on the size of the gap 21 of the magnetic field modulator 2. When the gap 21 of the magnetic field modulation device 2 is large, the magnetic loss increases, so that it is necessary to increase the volume of the magnetic field modulation device 2 in order to compensate for the loss. However, when the gap 21 of the magnetic field modulation device 2 is small, the magnetic loss is reduced, so that the volume of the magnetic field modulation device 2 can be reduced.
 本実施の形態5では、磁場変調装置2の間隙21が小さくなるようにベッド3を多段化して配置しているため、ベッド3における磁気熱量材料1の収容量を確保しつつ、磁場変調装置2の大型化を防止することができる。 In the fifth embodiment, since the beds 3 are arranged in multiple stages so that the gap 21 of the magnetic field modulation device 2 becomes small, the magnetic field modulation device 2 is arranged while ensuring the accommodation capacity of the magnetic heat quantity material 1 in the bed 3. It is possible to prevent the size of the bed from increasing.
 実施の形態6.
 図7は、本開示の実施の形態6による磁気温調システム100Eの構成を模式的に示す図である。磁気温調システム100Eは、家屋H用の冷凍空調機器として利用される。すなわち、磁気温調システム100Eにおいては、第1放熱用熱交換器6が家屋Hの室内に設置され、第2放熱用熱交換器7が家屋Hの室外に設置される。このような配置により、家屋Hの室内に冷熱を送風し、家屋Hの室外に温熱を廃熱することができる。また、制御装置16によって磁場変調のタイミング等を変更することによって、家屋Hの室内に温熱を送風し、家屋Hの室外に冷熱を廃熱することもできる。
Embodiment 6.
FIG. 7 is a diagram schematically showing the configuration of the magnetic temperature control system 100E according to the sixth embodiment of the present disclosure. The magnetic temperature control system 100E is used as a refrigerating and air-conditioning device for the house H. That is, in the magnetic temperature control system 100E, the first heat radiating heat exchanger 6 is installed inside the house H, and the second heat radiating heat exchanger 7 is installed outside the house H. With such an arrangement, cold heat can be blown into the room of the house H, and hot heat can be exhausted to the outside of the house H. Further, by changing the timing of magnetic field modulation by the control device 16, hot heat can be blown into the room of the house H, and cold heat can be exhausted to the outside of the house H.
 このように、磁気温調システム100Eを冷凍空調機器として利用することで、従来の蒸気圧縮式の冷凍空調機器と異なり、蒸気圧縮冷媒を用いることなく冷凍空調ができるため、地球温暖化係数の低い冷凍空調機器を実現することが可能となる。 In this way, by using the magnetic temperature control system 100E as a refrigerating and air-conditioning device, unlike the conventional vapor-compression refrigerating and air-conditioning device, refrigerating and air-conditioning can be performed without using a vapor-compressed refrigerant, so that the global warming coefficient is low. It is possible to realize refrigeration and air conditioning equipment.
 なお、図7には磁場変調装置2、ベッド3、第1蓄熱用熱交換器4、および制御装置16を室内に配置し、第2蓄熱用熱交換器5を室外に配置する例が示されるが、これらの機器の配置は図7に示される配置に限定されない。たとえば、制御装置16を室外に配置してもよいし、第2蓄熱用熱交換器5を室内に配置してもよい。 Note that FIG. 7 shows an example in which the magnetic field modulator 2, the bed 3, the first heat storage heat exchanger 4 and the control device 16 are arranged indoors, and the second heat storage heat exchanger 5 is arranged outdoors. However, the arrangement of these devices is not limited to the arrangement shown in FIG. For example, the control device 16 may be arranged outdoors, or the second heat storage heat exchanger 5 may be arranged indoors.
 また、図7には磁気温調システム100Eを家屋Hに設置する例が示されるが、磁気温調システム100Eをたとえば図示しない自動車、冷蔵庫、鉄道などの従来の蒸気圧縮式の冷凍空調機器の適用先に設置することも可能である。 Further, FIG. 7 shows an example in which the magnetic temperature control system 100E is installed in the house H, but the magnetic temperature control system 100E is applied to conventional steam compression type refrigerating and air-conditioning equipment such as automobiles, refrigerators, and railways (not shown). It is also possible to install it first.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1 磁気熱量材料、2 磁場変調装置、2a 第1部材、2b 第2部材、3 ベッド、3a 第1ベッド、3b 第2ベッド、4 第1蓄熱用熱交換器、5 第2蓄熱用熱交換器、6 第1放熱用熱交換器、7 第2放熱用熱交換器、9 第1バルブ、10 第2バルブ、11 第1ポンプ、12 第2ポンプ、13 第3ポンプ、16 制御装置、30,40,50,60,70 温度測定装置、61,71 送風機、100,100A,100B,100C,100D,100E 磁気温調システム、160 状態監視部、161 学習部、P1~P7,P11~P17 配管。 1 Magnetic heat quantity material, 2 Magnetic field modulator, 2a 1st member, 2b 2nd member, 3 bed, 3a 1st bed, 3b 2nd bed, 4 1st heat storage heat exchanger, 5 2nd heat storage heat exchanger , 6 1st heat exchanger for heat dissipation, 7 2nd heat exchanger for heat dissipation, 9 1st valve, 10 2nd valve, 11 1st pump, 12 2nd pump, 13 3rd pump, 16 control device, 30, 40, 50, 60, 70 temperature measuring device, 61, 71 blower, 100, 100A, 100B, 100C, 100D, 100E magnetic temperature control system, 160 state monitoring unit, 161 learning unit, P1 to P7, P11 to P17 piping.

Claims (7)

  1.  磁場変調による冷媒の温度変化を用いて熱交換を行なう磁気温調システムであって、
     前記磁場変調によって発熱または吸熱を行なう磁気熱量材料を収容し、前記磁気熱量材料と第1冷媒との間で熱交換を行なうベッドと、
     前記ベッドに収容される前記磁気熱量材料に対して前記磁場変調を行なう磁場変調装置と、
     前記ベッドで熱交換が行われた前記第1冷媒と、前記第1冷媒とは異なる冷媒との間で熱交換を行なう蓄熱用熱交換器と、
     前記蓄熱用熱交換器で熱交換が行われた前記異なる冷媒と、放熱対象との間で熱交換を行なう放熱用熱交換器と、
     前記ベッドと前記蓄熱用熱交換器との間で前記第1冷媒を循環させるための第1ポンプと、
     前記蓄熱用熱交換器と前記放熱用熱交換器との間で前記異なる冷媒を循環させるための、前記第1ポンプとは異なるポンプと、
     前記ベッドと前記蓄熱用熱交換器との間の前記第1冷媒の流れを切り替えるためのバルブと、
     前記磁場変調装置、前記第1ポンプ、前記第1ポンプとは異なるポンプ、および前記バルブを制御する制御装置とを備える、磁気温調システム。
    A magnetic temperature control system that exchanges heat using changes in the temperature of the refrigerant due to magnetic field modulation.
    A bed that accommodates a magnetic calorific value material that generates heat or absorbs heat by magnetic field modulation and exchanges heat between the magnetic calorific value material and the first refrigerant.
    A magnetic field modulation device that performs the magnetic field modulation on the magnetic calorific value material housed in the bed, and
    A heat storage heat exchanger that exchanges heat between the first refrigerant in which heat is exchanged in the bed and a refrigerant different from the first refrigerant.
    A heat radiating heat exchanger that exchanges heat between the different refrigerants that have undergone heat exchange in the heat storage heat exchanger and the heat radiating target.
    A first pump for circulating the first refrigerant between the bed and the heat storage heat exchanger, and
    A pump different from the first pump for circulating the different refrigerant between the heat storage heat exchanger and the heat radiating heat exchanger.
    A valve for switching the flow of the first refrigerant between the bed and the heat storage heat exchanger, and
    A magnetic temperature control system including the magnetic field modulator, the first pump, a pump different from the first pump, and a control device for controlling the valve.
  2.  前記放熱用熱交換器には、前記制御装置によって制御される送風機が設けられる、請求項1に記載の磁気温調システム。 The magnetic temperature control system according to claim 1, wherein the heat exchanger for heat dissipation is provided with a blower controlled by the control device.
  3.  前記ベッドの温度を検出する第1温度測定装置と、
     前記放熱用熱交換器の温度を検出する第2温度測定装置と、
     前記蓄熱用熱交換器の温度を検出する第3温度測定装置とをさらに備え、
     前記制御装置は、
      前記第1温度測定装置、前記第2温度測定装置および前記第3温度測定装置によって検出された温度状態を監視する状態監視部と、
      前記状態監視部で監視している温度状態と、前記磁場変調装置、前記第1ポンプ、前記第1ポンプとは異なるポンプ、および前記バルブの運転動作との対応関係を学習する学習部とを備える、請求項1または2に記載の磁気温調システム。
    A first temperature measuring device that detects the temperature of the bed, and
    A second temperature measuring device that detects the temperature of the heat exchanger for heat dissipation, and
    A third temperature measuring device for detecting the temperature of the heat storage heat exchanger is further provided.
    The control device is
    A condition monitoring unit that monitors the temperature state detected by the first temperature measuring device, the second temperature measuring device, and the third temperature measuring device.
    It includes a learning unit that learns the correspondence between the temperature state monitored by the condition monitoring unit, the magnetic field modulator, the first pump, a pump different from the first pump, and the operating operation of the valve. , The magnetic temperature control system according to claim 1 or 2.
  4.  前記蓄熱用熱交換器の冷媒熱容量は、前記ベッド内の冷媒熱容量と同等である、請求項1~3のいずれか1項に記載の磁気温調システム。 The magnetic temperature control system according to any one of claims 1 to 3, wherein the refrigerant heat capacity of the heat storage heat exchanger is equivalent to the refrigerant heat capacity in the bed.
  5.  前記磁場変調装置は、前記ベッドを挟んで互いに対向する第1部材および第2部材を含み、
     前記ベッドは、前記磁場変調装置の前記第1部材と前記第2部材との間に、前記第1部材と前記第2部材との配列方向とは直交する方向に多段化されて設けられる、請求項1~4のいずれか1項に記載の磁気温調システム。
    The magnetic field modulator includes a first member and a second member facing each other across the bed.
    The bed is provided between the first member and the second member of the magnetic field modulator in a multi-stage manner in a direction orthogonal to the arrangement direction of the first member and the second member. Item 4. The magnetic temperature control system according to any one of Items 1 to 4.
  6.  冷凍空調機器の内部に組み込まれ、冷熱および温熱を供給する、請求項1~5のいずれか1項に記載の磁気温調システム。 The magnetic temperature control system according to any one of claims 1 to 5, which is incorporated inside a refrigerating and air-conditioning device and supplies cold heat and hot heat.
  7.  前記蓄熱用熱交換器は、
      前記ベッドで熱交換が行われた前記第1冷媒と、前記第1冷媒とは異なる第2冷媒との間で熱交換を行なう第1蓄熱用熱交換器と、
      前記ベッドで熱交換が行われた前記第1冷媒と、前記第1冷媒とは異なる第3冷媒との間で熱交換を行なう第2蓄熱用熱交換器とを含み、
     前記放熱用熱交換器は、
      前記第1蓄熱用熱交換器で熱交換が行なわれた前記第2冷媒と、第1放熱対象との間で熱交換を行なう第1放熱用熱交換器と、
      前記第2蓄熱用熱交換器で熱交換が行なわれた前記第3冷媒と、第2放熱対象との間で熱交換を行なう第2放熱用熱交換器とを含み、
     前記第1ポンプとは異なるポンプは、
      前記第1蓄熱用熱交換器と前記第1放熱用熱交換器との間で前記第2冷媒を循環させるための第2ポンプと、
      前記第2蓄熱用熱交換器と前記第2放熱用熱交換器との間で前記第3冷媒を循環させるための第3ポンプとを含み、
     前記バルブは、
      前記ベッドと前記第1蓄熱用熱交換器との間の前記第1冷媒の流れを切り替えるための第1バルブと、
      前記ベッドと前記第2蓄熱用熱交換器との間の前記第2冷媒の流れを切り替えるための第2バルブとを含む、請求項1~6のいずれか1項に記載の磁気温調システム。
    The heat storage heat exchanger is
    A first heat storage heat exchanger that exchanges heat between the first refrigerant that has undergone heat exchange in the bed and a second refrigerant that is different from the first refrigerant.
    A second heat storage heat exchanger that exchanges heat between the first refrigerant that has undergone heat exchange in the bed and a third refrigerant that is different from the first refrigerant.
    The heat exchanger for heat dissipation is
    The second heat-dissipating heat exchanger that exchanges heat between the second refrigerant that has undergone heat exchange in the first heat storage heat exchanger and the first heat-dissipating object, and the first heat-dissipating heat exchanger.
    The third refrigerant, which has undergone heat exchange in the second heat storage heat exchanger, and a second heat radiating heat exchanger, which exchanges heat between the second heat dissipation target, are included.
    The pump different from the first pump is
    A second pump for circulating the second refrigerant between the first heat storage heat exchanger and the first heat dissipation heat exchanger.
    A third pump for circulating the third refrigerant between the second heat storage heat exchanger and the second heat dissipation heat exchanger is included.
    The valve
    A first valve for switching the flow of the first refrigerant between the bed and the first heat storage heat exchanger.
    The magnetic temperature control system according to any one of claims 1 to 6, further comprising a second valve for switching the flow of the second refrigerant between the bed and the second heat storage heat exchanger.
PCT/JP2020/018003 2020-04-27 2020-04-27 Magnetic temperature regulating system WO2021220356A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/018003 WO2021220356A1 (en) 2020-04-27 2020-04-27 Magnetic temperature regulating system
JP2020555533A JP6865902B1 (en) 2020-04-27 2020-04-27 Magnetic temperature control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018003 WO2021220356A1 (en) 2020-04-27 2020-04-27 Magnetic temperature regulating system

Publications (1)

Publication Number Publication Date
WO2021220356A1 true WO2021220356A1 (en) 2021-11-04

Family

ID=75638872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018003 WO2021220356A1 (en) 2020-04-27 2020-04-27 Magnetic temperature regulating system

Country Status (2)

Country Link
JP (1) JP6865902B1 (en)
WO (1) WO2021220356A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114502899B (en) 2019-09-30 2023-08-29 大金工业株式会社 Solid Cooling Module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543022A (en) * 2006-07-10 2009-12-03 ダエウ・エレクトロニクス・コーポレーション Reciprocating magnetic refrigerator
WO2012056585A1 (en) * 2010-10-29 2012-05-03 株式会社 東芝 Heat exchanger and magnetic refrigeration system
JP2016053445A (en) * 2014-09-03 2016-04-14 株式会社デンソー Thermal apparatus
JP2020034237A (en) * 2018-08-30 2020-03-05 株式会社デンソー Thermomagnetic cycle device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2959602B1 (en) * 2010-04-28 2013-11-15 Cooltech Applications METHOD FOR GENERATING A THERMAL FLOW AND MAGNETOCALORIC THERMAL GENERATOR
JP6344103B2 (en) * 2014-07-14 2018-06-20 株式会社デンソー Thermomagnetic cycle equipment
JP7111968B2 (en) * 2018-09-11 2022-08-03 ダイキン工業株式会社 magnetic refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543022A (en) * 2006-07-10 2009-12-03 ダエウ・エレクトロニクス・コーポレーション Reciprocating magnetic refrigerator
WO2012056585A1 (en) * 2010-10-29 2012-05-03 株式会社 東芝 Heat exchanger and magnetic refrigeration system
JP2016053445A (en) * 2014-09-03 2016-04-14 株式会社デンソー Thermal apparatus
JP2020034237A (en) * 2018-08-30 2020-03-05 株式会社デンソー Thermomagnetic cycle device

Also Published As

Publication number Publication date
JPWO2021220356A1 (en) 2021-11-04
JP6865902B1 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
WO2015093233A1 (en) Defrost system for refrigeration device and cooling unit
WO2012172613A1 (en) Air conditioner
JP2008128628A (en) Refrigerating device
JP2009300007A (en) Temperature control device
WO2021220356A1 (en) Magnetic temperature regulating system
US20220214091A1 (en) Solid-state refrigeration device
JP6632718B2 (en) Hybrid vapor compression / thermoelectric heat transfer system
JP6004734B2 (en) Transportation refrigeration equipment
KR20200031359A (en) Refrigerating system for loading box of refrigerator truck
CN113272599B (en) Fan rotating speed control method for thermal heat pump system
JP2019095085A (en) Air conditioning system and system control method
JP2010032167A (en) Refrigerating device
EP3290827A1 (en) Defrosting without reversing refrigerant cycle
JP6717210B2 (en) Magnetocaloric heat pump system
JP5843630B2 (en) Cooling system
JPH10311614A (en) Heat storage type cooling device
JP2003072362A (en) Adsorption type refrigerator
JP6505781B2 (en) Magnetic heat pump equipment
KR101170849B1 (en) Air conditioner for vehicle using thermal energy saving system
JP2006349333A (en) Air-and water-cooled hybrid heat pump, and air-conditioning system
JP2022150260A (en) Solid refrigeration device
JP2006138496A (en) Refrigerating system and automatic vending machine
JP2023079334A (en) refrigerator
JPH11173689A (en) Heat storage type cooling device
JP2005147582A (en) Air conditioner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020555533

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934001

Country of ref document: EP

Kind code of ref document: A1