WO2021220176A1 - Procédé de fabrication d'une électrode poreuse, et batterie contenant une telle électrode - Google Patents

Procédé de fabrication d'une électrode poreuse, et batterie contenant une telle électrode Download PDF

Info

Publication number
WO2021220176A1
WO2021220176A1 PCT/IB2021/053499 IB2021053499W WO2021220176A1 WO 2021220176 A1 WO2021220176 A1 WO 2021220176A1 IB 2021053499 W IB2021053499 W IB 2021053499W WO 2021220176 A1 WO2021220176 A1 WO 2021220176A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
substrate
porous
coating
Prior art date
Application number
PCT/IB2021/053499
Other languages
English (en)
Inventor
Fabien Gaben
Original Assignee
Hfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hfg filed Critical Hfg
Priority to CA3175605A priority Critical patent/CA3175605A1/fr
Priority to JP2022565752A priority patent/JP2023524425A/ja
Priority to EP21722302.3A priority patent/EP4143901A1/fr
Priority to CN202180045771.0A priority patent/CN115997297A/zh
Priority to US17/997,156 priority patent/US20230085658A1/en
Priority to KR1020227041817A priority patent/KR20230004824A/ko
Publication of WO2021220176A1 publication Critical patent/WO2021220176A1/fr
Priority to IL297454A priority patent/IL297454A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2036Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0414Methods of deposition of the material by screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0457Electrochemical coating; Electrochemical impregnation from dispersions or suspensions; Electrophoresis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/1315Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/13915Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/56Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

Procédé de fabrication d'un dispositif électrochimique sélectionné dans le groupe formé par: les batteries à ions de lithium d'une capacité supérieure à 1 mAh, les condensateurs, les super-condensateurs, les résistances, les inductances, les transistors, les cellules photovoltaïques, les piles à combustible, mettant en œuvre un procédé de fabrication d'une électrode poreuse comprenant une couche poreuse déposée sur un substrat, ladite couche présentant une porosité comprise entre 20 % et 60 % en volume et des pores de diamètre moyen inférieur à 50 nm, ledit procédé de fabrication de ladite électrode poreuse étant caractérisé en ce que : (a) on approvisionne un substrat et une suspension colloïdale comprenant des agrégats ou des agglomérats de nanoparticules primaires monodisperses d'un matériau actif d'électrode, de diamètre primaire moyen D50 compris entre 2 et 60 nm, lesdits agrégats ou agglomérats présentant un diamètre moyen D50 compris entre 50 nm et 300 nm, (b) on dépose sur ledit substrat une couche à partir de ladite suspension colloïdale, par une technique sélectionnée dans le groupe formé par : l'électrophorèse, les procédés d'impression, une technique d'enduction; (c) on sèche ladite couche et on la consolide, par pressage et/ou chauffage, pour obtenir une couche mésoporeuse, (d) on dépose, sur et à l'intérieur des pores de ladite couche, un revêtement d'un matériau conducteur électronique, ou mettant en œuvre une électrode poreuse susceptible d'être obtenue par ledit procédé de fabrication d'une électrode poreuse.

Description

PROCEDE DE FABRICATION D’UNE ELECTRODE POREUSE, ET BATTERIE CONTENANT UNE TELLE ELECTRODE
Domaine technique de l’invention
L’invention concerne le domaine de l’électrochimie, et plus particulièrement les systèmes électrochimiques. Elle concerne plus précisément les électrodes utilisables dans des dispositifs électrochimiques tels que les batteries à haute puissance (notamment des batteries à ions de lithium) d’une capacité supérieure à 1 mAh, les batteries à ions de sodium, les batteries lithium - air, les piles à combustible, et les cellules photovoltaïques. L’invention s’applique aux électrodes négatives et aux électrodes positives. Elle porte sur des électrodes poreuses qui peuvent être imprégnées d’un électrolyte solide sans phase liquide, ou d’un électrolyte liquide.
L’invention concerne également un procédé de préparation d’une telle électrode poreuse qui met en œuvre des nanoparticules d’un matériau d’électrode, et les électrodes ainsi obtenues. L’invention concerne également un procédé de fabrication d‘un dispositif électrochimique comprenant au moins une de ces électrodes, et les dispositifs ainsi obtenus ; ces dispositifs sont en particulier des batteries à ions de lithium.
Etat de la technique
La batterie idéale pour l’alimentation des dispositifs électriques autonomes (tels que : téléphones et ordinateurs portables, outils portatifs, capteurs autonomes) ou bien pour la traction des véhicules électriques présenterait une durée de vie élevée, serait capable de stocker à la fois de grandes quantités d’énergie et de puissance, et ne présenterait pas de risque de surchauffe voire d’explosion.
Actuellement ces dispositifs électriques sont alimentés essentiellement par des batteries à ions de lithium, qui présentent la meilleure densité d’énergie parmi les différentes technologies de stockage proposées. Il existe différentes architectures et compositions chimiques d’électrodes permettant de réaliser ces batteries. Les procédés de fabrication des batteries à ions de lithium sont présentés dans de nombreux articles et brevets ; un état des lieux est donné dans l’ouvrage « Advances in Lithium-Ion Batteries » (ed. W. van Schalkwijk et B. Scrosati), paru en 2002 (Kluever Academie / Plénum Publishers).
Les électrodes des batteries à ions de lithium peuvent être fabriquées à l’aide de techniques de revêtement, notamment par enduction au rouleau (en anglais « roll coating »), enduction à la racle (en anglais « doctor blade »), coulage en bande (en anglais « tape casting »), enduction à travers une filière en forme de fente (en anglais « slot-die »). Avec ces procédés on dépose sur la surface d’un substrat une encre constituée de particules de matériaux actifs se présentant sous la forme de poudre ; les particules constituant cette poudre présentent une taille moyenne des particules qui se situe typiquement entre 5 pm et 15 pm de diamètre. Ces techniques permettent de réaliser des couches d’une épaisseur comprise entre environ 50 pm et environ 400 pm. La puissance et l’énergie de la batterie peuvent être modulées en adaptant l’épaisseur et la porosité des couches, et la taille des particules actives qui les constituent.
Les encres (ou pâtes) déposées pour former les électrodes contiennent des particules de matériaux actifs, mais également des liants (organiques), de la poudre de carbone permettant d’assurer le contact électrique entre les particules, et des solvants qui sont évaporés lors de l’étape de séchage des électrodes. Pour améliorer la qualité des contacts électriques entre les particules et pour compacter les couches déposées, une étape de calandrage est réalisée sur les électrodes. Après cette étape de compression, les particules actives des électrodes occupent environ 50 % à 70 % du volume du dépôt, ce qui signifie qu’il reste généralement 30 % à 50 % de porosités entre les particules.
Pour optimiser au mieux la densité d’énergie volumique des batteries à ions de lithium produites avec des procédés de fabrication conventionnels, il peut être extrêmement utile de réduire la porosité des électrodes ; ainsi on accroît la quantité de matière active par unité de volume d’électrode. Cela peut être réalisé de plusieurs manières.
A l’extrême, on peut utiliser des couches totalement denses, dépourvues de porosité ; ainsi la densité d’énergie volumique de l’électrode est maximale. De telles couches denses peuvent être réalisées à l’aide de techniques de dépôt sous vide, par exemple par dépôt physique par phase vapeur (abrégé PVD, « Physical Vapor Déposition »). Cependant, puisque ces couches dépourvues de pores (couches dites « entièrement solides ») ne peuvent pas contenir un électrolyte liquide pour faciliter le transport ionique, ni de charges conductrices électroniques (« conductive filler ») pour faciliter le transport des charges électriques, leur épaisseur dans une batterie doit rester limitée à quelques micromètres, car autrement elles deviendraient trop résistives. Ces techniques de dépôt sont utilisées pour la fabrication de microbatteries.
On peut aussi chercher à optimiser les techniques d’encrage classiques pour augmenter la densité des couches obtenues après calandrage. Il a été montré qu’en optimisant la distribution en taille des particules déposées on peut atteindre une densité de la couche de 70 % (voir la publication de J. Ma et L.C. Lim, « Effect of particle size distribution of sintering of agglomerate-free submicron alumina powder compacts », parue en 2002 dans J. Europ. Ceramic Soc. 22 (13), p. 2197-2208). On peut estimer qu’une électrode ayant 30 % de porosité, contenant des charges conductrices et imprégnée d’un électrolyte conducteur des ions lithium, aurait une densité d’énergie volumique supérieure d’environ 35% par rapport à la même électrode à 50 % de porosité constituée de particules monodisperses en taille. Par ailleurs, du fait de l’imprégnation par des phases fortement conductrices en ions et l’ajout de conducteurs électroniques, l’épaisseur de ces électrodes peut être très largement augmentée en comparaison de ce qu’il est possible de faire avec les techniques de dépôt sous vide, qui conduisent à des couches compactes mais plus résistives. Cet accroissement de l’épaisseur des électrodes augmente la densité d’énergie des cellules batteries ainsi obtenues.
Cependant, bien que permettant d’accroitre la densité d’énergie des électrodes, une telle distribution en taille des particules de matériau actif n’est pas sans poser de problèmes. Des particules de tailles différentes dans une électrode auront des capacités différentes. Sous l’effet de courants de charge et/ou de décharge identiques elles seront localement plus ou moins chargées et/ou déchargées en fonction de leur taille. Lorsque la batterie ne sera plus sollicitée en courant, les états de charge locaux entre particules seront à nouveau équilibrés, mais pendant les phases transitoires, les déséquilibres locaux peuvent conduire à solliciter localement des particules en dehors de leurs plages de tension stables. Ces déséquilibres d’états de charge locaux seront d’autant plus prononcés que la densité de courant sera importante Ces déséquilibres induisent par conséquent une perte de performance en cyclage, un risque de sécurité et une limitation de la puissance de la cellule batterie. Il en va de même lorsque les électrodes ont une porosité inhomogène, à-savoir distribuée en taille ; cette inhomogénéité contribue à rendre le mouillage des pores des électrodes plus difficile.
Ces effets de la distribution en tailles des particules de matériaux actifs sur les relations courant/tension des électrodes ont été étudiés par simulation numérique dans la publication « A study on the Effect of Porosity and Particle Size Distribution on Li-lon Battery Performance » par S. T. Taleghani et al., parue en 2017 dans la revue J . Electrochem. Soc. 164 (11), p. E3179-E3189).
Selon l’état de la technique, on utilise avec les techniques d’encrage des électrodes mentionnées ci-dessus des particules de matériau actif d’une taille typiquement comprise entre 5 pm et 15 pm. Le contact entre chacune des particules est essentiellement ponctuel, et les particules sont liées entre-elles par un liant organique qui est dans la plupart du temps du polyfluorure de vinylidène (abrégé PVDF).
Des couches d’électrode mésoporeuses sans liant pour batteries à ions de lithium peuvent être déposées par électrophorèse ; cela est connu de WO 2019/215407 (l-TEN). Elles peuvent être imprégnées d’un électrolyte liquide, mais leur résistivité électrique demeure assez élevée. Les électrolytes liquides utilisés pour l’imprégnation des électrodes poreuses sont constitués de solvants aprotiques dans lesquels des sels de lithium ont été dissous. Ils sont très inflammables et peuvent donner lieu à des combustions violentes des cellules batteries, surtout lorsque les matériaux actifs de cathodes sont sollicités dans des plages de tensions situées en dehors de leur plage de tension de stabilité, ou lorsque des points chauds apparaissent localement dans la cellule.
Pour trouver une solution à ces problèmes de sécurité inhérents à la structure des cellules de batteries aux ions de lithium, on peut travailler selon trois axes.
Selon un premier axe, on peut remplacer les électrolytes à base de solvants organiques par des liquides ioniques, qui sont extrêmement stables en température. Cependant, les liquides ioniques ne mouillent pas les surfaces de matériaux organiques, et la présence de PVDF et autres liants organiques dans les électrodes de batteries aux ions de lithium conventionnelles empêche le mouillage des électrodes par ce type d’électrolyte ; la performance des électrodes s’en trouve affectée. Des séparateurs céramiques ont été développés pour résoudre ce problème au niveau de la jonction électrolytique entre électrodes, mais, il n’en demeure pas moins que la présence de liants organiques dans les électrodes continue de poser des problèmes pour l’utilisation des électrolytes à base de liquides ioniques.
Selon un deuxième axe, on peut chercher à homogénéiser les tailles de particules, afin d’éviter des déséquilibres locaux d’états de charge qui peuvent conduire lors de décharges intensives à solliciter localement des matériaux actifs en dehors de leurs plages de tension de fonctionnement conventionnelles. Cette optimisation se ferait alors au détriment de la densité d’énergie de la cellule.
Selon un troisième axe, on peut chercher à homogénéiser la distribution et répartition en charges conductrices (habituellement du noir de carbone) dans l’électrode, afin d’éviter d’avoir localement des zones plus résistives électriquement qui pourraient conduire à la formation d’un point chaud pendant le fonctionnement en puissance de la batterie. S’agissant plus particulièrement des procédés de fabrication des électrodes de batteries suivant l’état de la technique, leur coût de fabrication dépend en partie de la nature des solvants et des encres utilisées. Outre le coût intrinsèque des matériaux actifs, le coût de fabrication des électrodes provient essentiellement de la complexité des encres mises en œuvre (liants, solvants, noir de carbone). Le principal solvant utilisés pour la réalisation des électrodes de batteries à ions de lithium est le N-méthyl-2-pyrrolidone (abrégé NMP). Le NMP est un excellent solvant pour dissoudre le PVDF qui agit comme liant dans la formulation des encres. Le séchage du NMP contenu dans les électrodes revêt un réel enjeu économique. La température d’ébullition élevée du NMP couplée à sa très faible tension de vapeur rend son séchage difficile à réaliser en milieu industriel. Les vapeurs de solvants doivent être collectées et retraitées. Par ailleurs, pour garantir une meilleure adhérence des électrodes sur les substrats la température de séchage du NMP ne doit pas être trop élevée, ce qui tend à accroître une nouvelle fois le temps de séchage et son coût ; cela est décrit dans la publication “Technical and économie analysis of solvent-based lithium-ion electrode drying with water and NMP" par D.L. Wood & al., parue dans la revue Drying Technology, vol. 36, n°2 (2018).
D’autres solvants moins coûteux peuvent être utilisés pour réaliser des encres, notamment l’eau et l’éthanol. Cependant leur tension de surface est plus grande que celle du NMP et ils mouillent donc moins bien la surface des collecteurs de courant métalliques. De plus, les particules ont tendance à s’agglomérer dans l’eau, surtout les nanoparticules de noir de carbone. Ces agglomérations conduisent à une distribution hétérogène des composants entrant dans la composition de l’électrode (liants, noir de carbone...). De plus, que ce soit avec l’eau ou l’éthanol, des traces d’eau peuvent rester adsorbées à la surface des particules de matériaux actifs, même après séchage.
Enfin, outre les problématiques liées à la formulation des encres pour obtenir une électrode performante à bas coût de fabrication, il faut garder à l’esprit que le rapport entre la densité d’énergie et la densité de puissance des électrodes peut être ajusté en fonction de la taille de particules de matériaux actifs, et indirectement de la porosité des couches d’électrodes et de leur épaisseur. L’article de J. Newman (« Optimization of Porosity and Thickness of a Battery Electrode by Means of A Reaction-Zone Mode! », J. Electrochem. Soc., 142 (1), p. 97-101 (1995)) démontre les effets respectifs des épaisseurs des électrodes et de leur porosité sur leur régime de décharge (puissance) et densité d’énergie.
Le problème que la présente invention cherche à résoudre est de proposer une nouvelle électrode pour batterie à ions de lithium dotée d’une très forte densité d’énergie couplée à une très forte densité de puissance, qui présente une excellente durée de vie en cyclage ainsi qu’une sécurité accrue.
Objets de l’invention
Pour résoudre plus particulièrement ces problèmes de sécurité inhérents à la structure des cellules de batteries à ions de lithium conventionnelles, les inventeurs ont suivi trois lignes directrices : Selon une première ligne directrice, on remplace les électrolytes à base de solvants organiques par des mélanges de solvants organiques et de liquides ioniques ou par des liquides ioniques, qui sont extrêmement stables en température. Cependant, les liquides ioniques ne mouillent pas sur les surfaces de matériaux organiques et la présence de PVDF et autres liants organiques dans les électrodes de batteries conventionnelles empêche le mouillage des électrodes par ce type d’électrolyte, et la performance des électrodes s’en trouve affectée. Des séparateurs céramiques ont été développés pour résoudre ce problème au niveau de la jonction électrolytique entre électrodes, mais, il n’en demeure pas moins que la présence de liants organiques dans les électrodes continue de poser des problèmes pour l’utilisation des électrolytes à base de liquides ioniques.
Selon une deuxième ligne directrice, on cherche à homogénéiser les tailles de particules, afin d’éviter des déséquilibres locaux d’états de charge qui peuvent conduire lors de décharges intensives à solliciter localement des matériaux actifs en dehors de leurs plages de tension de fonctionnement conventionnelles.
Selon une troisième ligne directrice, on cherche à homogénéiser la distribution et répartition en additifs conducteurs (en anglais « conductive fillers » ; seul le noir de carbone est utilisé en pratique) dans l’électrode, afin d’éviter d’avoir localement des zones plus résistives électriquement qui pourraient conduire à la formation d’un point chaud pendant le fonctionnement en puissance de la batterie.
Selon l’invention, le problème est résolu par une électrode pour batterie à ions de lithium qui est totalement céramique, mésoporeuse dépourvu de liants organiques, et dont la porosité est comprise entre 50 % et 25%, et dont la taille des canaux et pores est homogène afin d’assurer un parfait équilibrage dynamique de la cellule.
Cette structure mésoporeuse entièrement solide, sans composants organiques, est obtenue par la déposition, sur un substrat, d’agglomérats et/ou agrégats de nanoparticules de matériaux actifs. Les tailles des particules primaires constituant ces agglomérats et/ou agrégats sont de l’ordre du nanomètre ou dizaine de nanomètres, et les agglomérats et/ou agrégats contiennent au moins quatre particules primaires.
Ledit substrat peut être, dans un premier mode de réalisation, un substrat capable d’agir comme collecteur de courant électrique, ou être, dans un deuxième mode de réalisation, un substrat intermédiaire, temporaire qui sera explicité plus en détail ci-après.
Le fait d’utiliser des agglomérats de quelques dizaines voire centaines de nanomètres de diamètres plutôt que des particules primaires, non agglomérées avec chacune une taille de l’ordre du nanomètre ou de la dizaine de nanomètre permet d’accroitre les épaisseurs de dépôt. Les agglomérats doivent avoir une taille inférieure à 300 nm. Le frittage des agglomérats de taille supérieure à 500 nm ne permettrait pas d’obtenir un film continu mésoporeux. Dans ce cas, il est observé deux tailles de porosité différente dans le dépôt, à savoir une porosité entre agglomérats et une porosité à l’intérieur des agglomérats.
En effet, on observe que lors du séchage des dépôts de nanoparticules sur un substrat capable d’agir comme collecteur de courant électrique, des fissures apparaissent dans la couche. On constate que l’apparition de ces fissures dépend essentiellement de la taille des particules, de la compacité du dépôt et de son épaisseur. Cette épaisseur limite de fissuration est définie par la relation suivante : hmax= 0,41 [(GM0rcpR3)/2Y] où hmax désigne l’épaisseur critique, G le module de cisaillement des nanoparticules, M le nombre de coordination, 0rc la fraction volumique de nanoparticules, R le rayon des particules et g la tension interfaciale entre le solvant et l’air.
Il s’ensuit que l’utilisation d’agglomérats, mésoporeux, constitués de nanoparticules primaires au moins dix fois plus petites que la taille de l’agglomérat, permet d’accroitre considérablement l’épaisseur limite de fissuration des couches. De la même manière, il est possible d’ajouter quelques pourcents d’un solvant à plus faible tension de surface (tel que l’alcool isopropylique (abrégé IPA)) dans l’eau ou l’éthanol afin d’améliorer la mouillabilité et l’adhérence du dépôt, et pour réduire le risque de fissuration. Afin d’accroître les épaisseurs de dépôt tout en limitant voire en supprimant l’apparition de fissures, il est possible d’ajouter des liants, des dispersants. Ces additifs et solvants organiques peuvent être éliminés par un traitement thermique sous air, tel que par déliantage, lors d’un traitement de frittage ou lors d’un traitement thermique réalisé préalablement au traitement de frittage.
Par ailleurs, pour la même taille de particules primaires, il est possible durant leur synthèse par précipitation de modifier la taille des agglomérats en modulant la quantité de ligands (par exemple le poly vinyl pyrrolidone, abrégé PVP) dans le réacteur de synthèse. Ainsi, on peut réaliser une encre contenant des agglomérats très dispersés en taille ou ayant deux populations en taille complémentaires, de manière à maximiser la compacité du dépôt d’agglomérats. Contrairement au frittage de nanoparticules non agglomérées, les conditions de frittages entre les agglomérats de tailles différentes ne seront pas modifiées. Ce sont les nanoparticules primaires, qui constituent les agglomérats qui vont se souder. Ces nanoparticules primaires ont des tailles identiques quelle que soit la taille de l’agglomérat. La distribution en taille des agglomérats permettra d’améliorer la compacité des dépôts et de multiplier les points de contact entre nanoparticules, mais ne modifiera pas la température de consolidation. Cependant, les agglomérats doivent rester petits pour pouvoir former lors du traitement thermique de la couche un film continu mésoporeux. Si les agglomérats sont trop gros cela gêne leur frittage et on observe la formation de deux porosités distinctes dans la couche : une porosité entre agglomérats et une porosité à l’intérieur des agglomérats. Après frittage partiel, on obtient une couche poreuse, de préférence mésoporeuse, ou une plaque, sans noir de carbone, ni liants organiques, dans lequel toutes les nanoparticules sont soudées entre elles (par le phénomène de necking, connu par ailleurs) pour former un réseau continu mésoporeux caractérisé par une porosité unimodale. La couche poreuse, de préférence mésoporeuse ainsi obtenue est entièrement solide et céramique. Il n’y a plus de risques de pertes de contact électrique entre les particules de matériaux actifs pendant le cyclage ce qui est de nature à améliorer les performances en cyclage de la batterie. Par ailleurs, après frittage, la couche poreuse, de préférence mésoporeuse, est parfaitement adhérente sur le substrat métallique sur lequel elle a été déposée ou transférée (dans le cas d’un dépôt initial sur un substrat intermédiaire).
Les traitements thermiques réalisés à haute température pour fritter les nanoparticules entre elles permettent de sécher parfaitement l’électrode et d’éliminer toutes les traces d’eau ou de solvants ou d’autres additifs organiques (stabilisants, liants) adsorbées à la surface des particules de matériau actif. Le traitement thermique à haute température (frittage) peut être précédé d’un traitement thermique à température plus basse (déliantage) pour sécher l’électrode posée ou déposée et pour éliminer les traces d’eau ou de solvants ou d’autres additifs organiques (stabilisants, liants) adsorbées à la surface des particules de matériau actif ; ce déliantage peut être effectué en atmosphère oxydante.
En fonction des temps et température de frittage, il est possible d’ajuster la porosité de l’électrode finale. En fonction des besoins en densité d’énergie, cette dernière peut être ajustée dans une plage comprise entre 50 % et 25% de porosité.
Dans tous les cas, la densité de puissance des électrodes ainsi obtenues reste extrêmement élevée du fait de la mésoporosité. Par ailleurs, indépendamment de la taille des mésopores dans la matière active (sachant qu’après le frittage la notion de nanoparticule ne s’applique plus au matériau qui présente alors une structure tridimensionnelle avec un réseau de canaux et de mésopores), l’équilibrage dynamique de la cellule reste parfait, ce qui contribue à maximiser les densités puissance et durées de vie de la cellule batterie.
L’électrode selon l’invention présente une haute surface spécifique, qui réduit la résistance ionique de l’électrode. Cependant, pour que cette électrode délivre un maximum de puissance, encore faut-il qu’elle possède une très bonne conductivité électronique pour éviter les pertes ohmiques dans la batterie. Cette amélioration de la conductivité électronique de la cellule sera d’autant plus critique que l’épaisseur de l’électrode sera importante. Par ailleurs, cette conductivité électronique doit être parfaitement homogène dans toute l’électrode afin d’éviter la formation locale de points chauds.
Selon l’invention, on dépose, sur et à l’intérieur des pores de la couche poreuse, un revêtement d’un matériau conducteur électronique. Ce matériau conducteur électronique peut être déposé par la technique de dépôt de couches atomiques (abrégé ALD, Atomic Layer Déposition) ou à partir d’un précurseur liquide. Ledit matériau conducteur électronique peut être du carbone.
Pour déposer une couche de carbone à partir d’un précurseur liquide, la couche mésoporeuse peut être immergée dans une solution riche d’un précurseur de carbone (par exemple une solution d’un glucide tel que la saccharose). Ensuite l’électrode est séchée et soumise à un traitement thermique sous azote à une température suffisante pour pyroliser le précurseur de carbone. Ainsi se forme un revêtement très mince de carbone sur toute la surface interne de l’électrode, parfaitement répartie. Ce revêtement confère à l’électrode une bonne conduction électronique, quelle que soit son épaisseur. On note que ce traitement est possible après frittage car électrode est entièrement solide, sans résidus organiques, et résiste aux cycles thermiques imposés par les différents traitements thermiques.
Un premier objet de l’invention est un procédé de fabrication d’un dispositif électrochimique sélectionné dans le groupe formé par : les batteries à ions de lithium d’une capacité supérieure à 1 mAh, les batteries à ions de sodium, les batteries lithium - air, les cellules photovoltaïques, les piles à combustible, ledit procédé mettant en œuvre un procédé de fabrication d’une électrode poreuse, ladite électrode comprenant une couche poreuse déposée sur un substrat, ladite couche étant exempte de liant, présentant une porosité comprise entre 20 % et 60% en volume, de préférence entre 25 % et 50 %, et des pores de diamètre moyen inférieur à 50 nm, ledit procédé de fabrication étant caractérisé en ce que :
(a)on approvisionne un substrat et une suspension colloïdale ou une pâte comprenant des agrégats ou des agglomérats de nanoparticules primaires monodisperses d’au moins un matériau actif d’électrode P, de diamètre primaire moyen D50 compris entre environ 2 nm et environ 150 nm, de préférence entre environ 2 nm et 100 nm, préférentiellement entre 2 nm et environ 60 nm et encore plus préférentiellement entre 2 nm et 50 nm, lesdits agrégats ou agglomérats présentant un diamètre moyen D50 compris entre 50 nm et 300 nm et de préférence entre 100 nm à 200 nm, (b) on dépose sur au moins une face dudit substrat une couche par un procédé sélectionné dans le groupe formé par l’électrophorèse, un procédé d’impression, notamment le procédé d’impression par jet d’encre ou l’impression flexographique, et un procédé d’enduction, notamment l’enduction à la racle, l’enduction au rouleau, l’enduction au rideau, l’enduction à travers une filière en forme de fente ou l’enduction par trempage, à partir de ladite suspension colloïdale ou pâte approvisionnée à l’étape (a),
(c)on sèche ladite couche obtenue à l’étape (b), le cas échéant avant ou après avoir séparée ladite couche de son substrat intermédiaire, puis, optionnellement on traite thermiquement, de préférence sous atmosphère oxydante, la dite couche séchée, et on la consolide, par pressage et/ou chauffage, pour obtenir couche poreuse, de préférence mésoporeuse,
(d)on dépose, sur et à l’intérieur des pores de la couche poreuse, un revêtement d’un matériau conducteur électronique, sachant que ledit substrat peut être un substrat capable d’agir comme collecteur de courant électrique, ou un substrat intermédiaire.
Avantageusement, après l’étape d) l’électrode obtenue peut être revêtue d’une couche conductrice ionique afin d’améliorer la durée de vie des batteries et leur performance. La couche conductrice ionique peut être du Lii ,3Alo,3Tii ,7(R04)3, du nafion, du U3BO3, du PEO, ou encore un mélange de PEO et d’une phase porteuse d’ions de lithium, telle que des sels de lithium.
A l’étape (b) le dépôt peut se faire une ou sur les deux faces du substrat.
Avantageusement, lorsque ledit substrat est un substrat intermédiaire, ladite couche est séparée à l’étape (c) dudit substrat intermédiaire, pour former, après consolidation, une plaque poreuse. Cette étape de séparation peut être réalisée avant ou après le séchage de la couche obtenue à l’étape b).
Avantageusement, lorsque ledit substrat est un substrat intermédiaire, après l’étape c) et avant l’étape d), on approvisionne une feuille électriquement conductrice, recouverte sur au moins une face, respectivement sur ses deux faces, d’une couche mince de colle conductrice ou d’une couche mince de nanoparticules d’au moins un matériau actif d’électrode P, puis on colle au moins une plaque poreuse sur une face, de préférence sur chacune des faces, de la feuille électriquement conductrice, de manière à obtenir une couche poreuse, de préférence mésoporeuse sur un substrat capable d’agir comme collecteur de courant. Avantageusement, lorsque ladite suspension colloïdale ou pâte approvisionnée à l’étape (a) comprend des additifs organiques, tels que des ligands, stabilisants, liants ou solvants organiques résiduels, on traite thermiquement, de préférence sous atmosphère oxydante, ladite couche séchée à l’étape c). Ce traitement thermique, permettant le déliantage, peut être réalisé en même temps que la consolidation (frittage) lorsqu’elle est effectuée sous atmosphère oxydante ou avant l’étape de consolidation de la couche séchée à l’étape c).
Dans un premier mode de réalisation, ledit substrat est un substrat capable d’agir comme collecteur de courant électrique. Sa nature chimique doit être compatible avec la température du traitement thermique de l’étape (c) du procédé de fabrication de l’électrode poreuse (traitements thermiques de déliantage et/ou de frittage) ; en particulier, il ne doit pas fondre ou former une couche d’oxyde qui présenterait une résistance électrique trop importante, ou réagir avec les matériaux d’électrode. De manière avantageuse, on choisit un substrat métallique, qui peut notamment être en tungstène, molybdène, chrome, titane, tantale, acier inoxydable, ou un alliage de deux ou plusieurs de ces matériaux. De tels substrats métalliques sont assez onéreux et peuvent fortement augmenter le coût de la batterie. On peut aussi revêtir ce substrat métallique d’un oxyde conducteur ou semi-conducteur avant le dépôt de la couche de matériau P. L’épaisseur de la couche après l’étape (c) est avantageusement comprise entre environ 1 pm et environ 300 pm, de préférence entre 1 pm et 150 pm, plus préférentiellement entre 10 pm et 50 pm, voire entre 10 pm et 30 pm. Lorsque le substrat employé est un substrat capable d’agir comme collecteur de courant électrique, l’épaisseur de la couche après l’étape (c) est limitée afin d’éviter tout problème de fissuration.
Dans un deuxième mode de réalisation, ledit substrat est un substrat intermédiaire, temporaire, tel qu’un substrat souple, qui peut être un film de polymère. Dans ce deuxième mode de réalisation, l’étape de dépôt se fait, avantageusement, sur une face dudit substrat intermédiaire afin de faciliter la séparation ultérieure de la couche de son substrat. Dans ce deuxième mode de réalisation, on peut séparer la couche de son substrat après séchage, de préférence avant de la chauffer, mais au plus tard à la fin de l’étape (c). L’épaisseur de la couche après l’étape (c) est avantageusement inférieure ou égale à 5 mm, avantageusement comprise entre environ 1 pm et environ 500 pm. L’épaisseur de la couche après l’étape (c) est avantageusement inférieure à 300 pm, de préférence, comprise entre environ 5 pm et environ 300 pm, préférentiellement entre 5 pm et 150 pm. Avantageusement, ladite couche poreuse obtenue à l’issue de l’étape (c) présente une surface spécifique comprise entre 10 m2/g et 500 m2/g. Son épaisseur est avantageusement comprise entre 1 et 500 pm, de préférence comprise entre 4 pm et 400 pm, et plus préférentiellement comprise entre 1 pm et 150 pm.
La distribution de taille des particules primaires du matériau actif P est de préférence étroite. De manière préférée, lesdits agglomérats comprennent de préférence au moins trois particules primaires. La distribution de taille desdits agglomérats est de préférence polydisperse. Dans un mode de réalisation, la distribution de la taille des agglomérats est bimodale, c’est-à-dire qu’elle présente deux pics de distribution de taille, ces deux tailles étant appelées D1 et D2 où D1 > D2 ; le rapport D2/D1 peut être compris par exemple entre 3 et 7 et de préférence entre 4 et 6 ; cela évite la formation de grosses cavités et assure une bonne compacité de la couche mésoporeuse.
La suspension de nanoparticules peut être réalisée dans l’eau ou dans l’éthanol, ou dans un mélange d’eau et d’éthanol, ou encore dans un mélange d’éthanol et d’alcool isopropylique (avec moins de 3 % d’alcool isopropylique). Elle ne contient pas de noir de carbone.
Pour utiliser les techniques d’enduction, telles que l’enduction au rouleau, l’enduction au rideau, l’enduction à travers une filière en forme de fente ou l’enduction par trempage, la suspension utilisée est avantageusement caractérisée par un extrait sec d’au moins 15 % et de préférence d’au moins 50%.
Le dépôt dudit revêtement de matériau conducteur électronique peut être effectué par la technique de dépôt de couches atomiques ALD, ou par immersion de la couche dans une phase liquide comportant un précurseur dudit matériau conducteur électronique, suivie par la transformation dudit précurseur en matériau conducteur électronique.
Ledit précurseur est avantageusement un composé riche en carbone, tels qu’un glucide, de préférence un polysaccharide, et ladite transformation en matériau conducteur électronique est dans ce cas effectuée par pyrolyse, de préférence sous atmosphère inerte (par exemple azote). Ledit matériau conducteur électronique peut être le carbone. Il peut être déposé notamment par ALD ou par immersion dans une phase liquide comportant un précurseur du carbone.
Dans ledit deuxième mode de réalisation, le procédé de fabrication de l’électrode poreuse pour batterie utilise un substrat intermédiaire en polymère (tel que le PET) et conduit à une bande dit « bande à cru ». Cette bande à cru est ensuite séparée de son substrat ; elle forme alors des plaques ou feuilles (on utilise ici par la suite le terme « plaque », quelle que soit son épaisseur). Après découpe, ces plaques peuvent être séparées de leur substrat intermédiaire. Ces plaques sont ensuite calcinées afin d’éliminer les constituants organiques. Ces plaques sont ensuite frittées afin de consolider les nanoparticules jusqu’à l’obtention d’une structure céramique mésoporeuse avec une porosité comprise entre 25 et 50%. Ladite plaque poreuse obtenue à l’étape (c) présente une épaisseur avantageusement inférieure ou égale à 5 mm, de préférence comprise entre environ 1 pm et environ 500 pm. L’épaisseur de la couche après l’étape (c) est avantageusement inférieure à 300 pm, de préférence, comprise entre environ 5 pm et environ 300 pm, préférentiellement entre 5 pm et 150 pm. Un revêtement d’un matériau conducteur électronique est, ensuite, déposé sur et à l’intérieur des pores de la couche poreuse ou de la plaque poreuse, de préférence mésoporeuse, comme cela vient d’être décrit.
Dans ce deuxième mode de réalisation on approvisionne également une feuille électriquement conductrice, recouverte sur ses deux faces d’une couche mince intermédiaire de nanoparticules de préférence identiques à celles constituants la plaque d’électrode ou recouverte sur ses deux faces d’une couche mince de colle conductrice. Lesdites couches minces présentent, de préférence, une épaisseur inférieure à 1 pm. Cette feuille peut être un feuillard métallique ou une feuille de graphite.
Cette feuille électriquement conductrice est ensuite intercalée entre deux plaques d’électrodes poreuses obtenues précédemment, respectivement entre deux plaques poreuses obtenues après l’étape c). L’ensemble est ensuite thermopressé de manière à ce que ladite couche mince intermédiaire de nanoparticules se transforme par frittage et vienne consolider l’ensemble électrode / substrat / électrode, respectivement l’ensemble plaque poreuse / substrat / plaque poreuse pour obtenir un sous-ensemble rigide et monobloc. Lors de ce frittage la liaison entre la couche d’électrode, respectivement la plaque poreuse, et la couche intermédiaire s’établit par diffusion d’atomes ; ce phénomène est connu sous le terme anglais « diffusion bonding ». Cet assemblage se fait avec deux plaques d’électrodes, respectivement deux plaques poreuses, de même polarité (typiquement entre deux anodes ou entre deux cathodes), et la feuille métallique entre ces deux plaques d’électrodes, respectivement deux plaques poreuses, de même polarité établit entre elles une connexion en parallèle.
Un des avantages du deuxième mode de réalisation est qu’il permet d’utiliser des substrats peu coûteux comme les feuillards d’aluminium, les feuillards en cuivre ou en graphite. En effet, ces feuillards ne résisteraient pas aux traitements thermiques de consolidation des couches déposées ; le fait de les coller sur les plaques d’électrodes après leur traitement thermique permet aussi d’éviter leur oxydation. Selon une autre variante du deuxième mode de réalisation, lorsqu’un ensemble plaque poreuse / substrat / plaque poreuse est obtenu, le revêtement d’un matériau conducteur électronique peut, ensuite, avantageusement être déposé sur et à l’intérieur des pores des plaques poreuses, de préférence mésoporeuses, de l’ensemble plaque poreuse / substrat / plaque poreuse, comme cela a été décrit précédemment, notamment lorsque les plaques poreuses employées sont épaisses.
Le dépôt dudit revêtement de matériau conducteur électronique peut être effectué par la technique de dépôt de couches atomiques ALD, ou par immersion de la couche poreuse dans une phase liquide comportant un précurseur dudit matériau conducteur électronique, suivie par la transformation dudit précurseur en matériau conducteur électronique.
Cet assemblage par « diffusion bonding » peut être réalisé séparément comme cela vient d’être décrit, et les sous-ensembles électrode / substrat / électrode ainsi obtenus peuvent être utilisés pour fabriquer une batterie. Cet assemblage par diffusion bonding peut aussi être réalisé par empilement et thermopressage de l’ensemble de la structure de la batterie ; dans ce cas on assemble un empilement multicouche comprenant une première couche d’anode poreuse, son substrat métallique, une deuxième couche d’anode poreuse, une couche d’électrolyte solide, une première couche de cathode, son substrat métallique, une deuxième couche de cathode, une nouvelle couche d’électrolyte solide, et ainsi de suite.
Plus précisément, on peut soit coller des plaques d’électrodes, céramiques mésoporeuses sur les deux faces d’un substrat métallique (on retrouve alors la même configuration que celle issue des dépôts sur les deux faces d’un substrat métallique).
Ce sous-ensemble électrode/substrat/électrode peut être obtenu par collage des plaques d’électrodes sur une feuille électriquement conductrice capable d’agir ultérieurement comme collecteur de courant électrique, ou par dépôt puis frittage de couches sur un substrat capable d’agir comme collecteur de courant électrique, notamment un substrat métallique.
Quel que soit le mode de réalisation du sous-ensemble électrode/substrat/électrode, sur ce dernier on vient ensuite déposer le film d’électrolyte (séparateur).
Les découpes nécessaires pour réaliser une batterie à plusieurs cellules élémentaires peuvent être réalisées avant le dépôt sur chaque sous-ensemble électrode/substrat/électrode, d’un film d’électrolyte (séparateur), puis on empile les sous- ensembles (typiquement en mode « tête bêche ») et on réalise la thermocompression pour souder les électrodes entre elles au niveau du film d’électrolyte (séparateur). La soudure par thermocompression se fait à une température relativement basse, ce qui est possible grâce à la très faible taille des nanoparticules. De ce fait on n’observe pas d’oxydation des couches métalliques du substrat.
Dans d’autres modes de réalisation de l’assemblage, qui seront décrit ci-dessous, on utilise une colle conductrice (chargée en graphite) ou un dépôt de type sol-gel chargé en particules conductrices, ou encore des feuillards métalliques, de préférence à bas point de fusion (par exemple l’aluminium) ; lors du traitement thermomécanique (thermopressage) le feuillard métallique peut se déformer par fluage et venir faire cette soudure entre les plaques.
Si l’électrode doit être utilisée dans une batterie, on choisit de préférence un matériau actif P qui est dimensionnellement stable lors des cycles de charge et décharge. Il peut être en particulier être sélectionné dans le groupe formé par : o les oxydes LiMn2C>4, Lii+xMn2-xC>4 avec O < x < 0,15, UC0O2, LiNiC>2, LiMni.sNio.sCL, LiMni,5Nio,5-xXxC>4 où X est sélectionné parmi Al, Fe, Cr, Co, Rh, Nd, autres terres rares tels que Sc, Y, Lu, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, et où 0 < x < 0,1, LiMn2-xMx04 avec M = Er, Dy, Gd, Tb, Yb, Al, Y, Ni, Co, Ti, Sn, As, Mg ou un mélange de ces composés et où 0 < x < 0,4, LiFe02, LiMni/3Nii/3Coi/302, LiNi0.8Co0.15AI0.05O2, LiAlxMn2-x04 avec 0 £ x < 0,15, UNii/xCoi/yMni/z02 avec x+y+z =10 ; o LixMy02 où 0.6£y£0.85; 0£x+y£2; et M est choisi parmi Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Sn, and Sb ou un mélange de ces éléments ;
Li1.20Nbo.20Mno.60O2 ; o Lii+xNbyMezAp02 où Me est au moins un métal de transition choisi parmi : Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Te, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Rf, Db, Sg, Bh, Hs et Mt, et où 0.6<x<1 ; 0<y<0.5; 0.25£z<1; avec A ¹ Me et A ¹ Nb, et 0£p£0.2 ; o LixNby-aNaMz-bPb02-cFc où 1.2<x£1.75; 0£y<0.55; 0.1<z<1; 0£a<0.5; 0£b<1; 0£c<0.8; et où M, N, et P sont chacun au moins un des éléments choisi dans le groupe constitué par Ti, Ta, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Zr, Y, Mo, Ru, Rh, et Sb ; o Li1.25Nbo.25Mno.50O2 ; Li1.3Nbo.3Mno.40O2 ; Li1.3Nbo.3Feo.40O2 ; Li1.3Nbo.43Nio.27O2 ;
Li1.3Nb0.43Co0.27O2 ; Li1.4Nbo.2Mno.53O2 ; o LixNio.2Mno.6Oy où 0.00£x£1.52; 1.07£y<2.4 ; Li1.2Nio.2Mno.6O2 ; o LiNixCoyMni-x-y02 où 0 £ x et y £ 0.5 ; LiNixCezCoyMni-x-y02 où 0 £ x et y £ 0.5 et 0
£ z ; o les phosphates LiFeP04, LiMnPCU, LiCoPCU, LiNiP04, Li3V2(P04)3 ; Li2MP04F avec M = Fe, Co, Ni ou un mélange de ces différents éléments, LiMP04F avec M = V, Fe, T ou un mélange de ces différents éléments ; les phosphates de formule LiMM’P04, avec M et M’ (M ¹ M’) sélectionnés parmi Fe, Mn, Ni, Co, V tels que le LiFexCoi-xP04 et où 0 < x < 1 ; o les oxyfluorures de type Feo,9Coo,iOF ; LiMS04F avec M = Fe, Co, Ni, Mn, Zn, Mg ; o toutes les formes lithiées des chalcogénides suivants : V2Os, V303, TiS2, les oxysulfures de titane (TiOySzavec z=2-y et 0,3£y£1), les oxysulfures de tungstène (WOySz avec 0.6<y<3 et 0.1<z<2), CuS, CuS2, de préférence LixV205 avec 0 <x£2, ϋcn3Od avec 0 < x £ 1,7, LixTiS2 avec 0 < x £ 1 , les oxysulfures de titane et de lithium LixTiOySz avec z=2-y, 0,3£y£1 et 0 < x £ 1 , LixWOySz avec z=2-y, 0,3£y£1 et 0 < x £ 1 , LixCuS avec 0 < x £ 1 , LixCuS2 avec 0 < x £ 1.
Une couche poreuse selon l’invention, réalisée avec l’un de ces matériaux, peut assurer la fonction de cathode dans une batterie, et notamment dans une batterie aux ions de lithium.
Ledit matériau P peut aussi être sélectionné dans le groupe formé par : o Li4TisOi2, Li4TÎ5-xMxOi2 avec M = V, Zr, Hf, Nb, Ta et 0 £ x £ 0,25. o les oxydes de niobium et les oxydes mixtes de niobium avec le titane, le germanium, le cérium ou le tungstène, et de préférence dans le groupe formé par : o Nb2C>5±5, N b 1 sVV 16qq3±d , NbieWsOssie avec 0 £ x < 1 et 0 £ d £ 2, LiNb03, o TiNb2C>7±5, LiwTiNb2C>7 avec w³0, Tii-xM1 xNb2-yM2 yC>7±5 ou LiwTii-xM1 xNb2-yM2 yC>7±5 dans lesquels M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn, M1 et M2 pouvant être identiques ou différents l’un de l’autre, et dans lequel 0 £ w £ 5 et 0 £ x £ 1 et 0 £ y £ 2 et 0 £ d £ 0,3 ; o LaxTii-2xNb2+xC>7 où 0<x<0.5 ; o MxTii-2xNb2+xC>7±6
dans lequel M est un élément dont le degré d'oxydation est +III, plus particulièrement M est au moins un des éléments choisi dans le groupe constitué de Fe, Ga, Mo, Al, B, et où 0<x£0.20 et -0.3£ d £0.3 ; Gao.ioTio.8oNb2.ioC>7 ; Feo.ioTio.8oNb2.io07 ; o MxTi2-2xNbio+x029±6
dans lequel M est un élément dont le degré d'oxydation est +III, plus particulièrement M est au moins un des éléments choisi dans le groupe constitué de Fe, Ga, Mo, Al, B, et où 0<x£0.40 et -0.3£ d £0.3 ; o Tii-xM1 xNb2-yM2yC>7-zM3 z ou LiwTii-xM1 xNb2-yM2y07-zM3 zdans lesquels o M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn, o M1 et M2 pouvant être identiques ou différents l’un de l’autre, o M3 est au moins un halogène, o et dans lesquels 0 £ w £ 5 et 0 £ x £ 1 et 0 £ y £ 2 et z £ 0,3 ; o TiNb2C>7-zM3 z ou LiwTiNb2C>7-zM3 z dans lesquels M3 est au moins un halogène, de préférence choisi parmi F, Cl, Br, I ou un mélange de ceux-ci, et 0 < z £ 0,3 ; o Tii-xGexNb2-yM1y07±z , LiwTii-xGexNb2-yM1y07±z , Tii-xCexNb2-yM1y07±z , LiwTii-xCexNb2- yM1 y07±zdans lesquels
M1 est au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn ;
Figure imgf000019_0001
xCexNb2-yM1y07-zM2 z , dans lesquels
M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs, Ce et Sn,
M1 et M2 pouvant être identiques ou différents l’un de l’autre,
et dans lesquels 0 £ w £ 5 et 0 £ x £ 1 et 0 £ y £ 2 et z £ 0,3 ; o Ti02 ; o LiSiTON.
Les nanoparticules utilisées dans la présente invention peuvent avoir une structure de type cœur-coquille (appelé « core-shell » en anglais), et dans ce cas ledit matériau P forme le cœur. La coquille peut être un matériau diélectrique conducteur ionique ou non. Une couche poreuse selon l’invention, réalisée avec l’un de ces matériaux, peut assurer la fonction d’électrode négative dans une batterie, et notamment dans une batterie aux ions de lithium. Pour utilisation comme électrode négative dans une batterie à ions de lithium, on utilise avantageusement un matériau d’électrode négative qui présente un potentiel d’insertion du lithium supérieur à 1 V ; cela permet une recharge très rapide de la batterie.
L’électrode négative peut être en titanate et/ou oxydes mixtes de titane. De manière préférée, les électrodes sont imprégnées par un liquide ionique contenant un sel de lithium. Lorsque ledit liquide ionique comporte des atomes de soufre, le substrat capable d’agir comme collecteur de courant électrique, est, de préférence un métal noble. Une telle batterie présente l’avantage de pouvoir fonctionner à température élevée.
Un autre objet de la présente invention est une électrode poreuse susceptible d’être obtenue par le procédé de fabrication d’une électrode poreuse selon l’invention. Cette électrode poreuse est exempte de liant. Sa porosité est de préférence comprise entre 20 % et 60 % en volume, et le diamètre moyen de ses pores est inférieur à 50 nm. Elle peut être destinée à agir comme électrode positive ou comme électrode négative dans un dispositif électrochimique.
Une électrode selon l’invention permet de réaliser une batterie à ions de lithium qui présente à la fois une forte densité d’énergie et une haute densité de puissance. Cette performance est la résultante d’une porosité limitée (ce qui accroît la densité d’énergie), d’une surface spécifique très élevée (qui est favorisée par la très faible taille des particules primaires de l’électrode, et qui conduit à l’accroissement de la surface d’échange, ce qui diminue la résistance ionique), de l’absence de liant organique (le liant pouvant localement masquer l’accès du lithium à la surface des matériaux actifs). Selon une caractéristique essentielle de l’invention, on dépose, sur et à l’intérieur des pores de la couche poreuse, un revêtement d’un matériau conducteur électronique. Ce revêtement diminue la résistance série de la batterie.
Encore un autre objet de l’invention est l’utilisation d’un procédé de fabrication d’électrodes poreuses selon l’invention pour la fabrication d’un dispositif électrochimique sélectionné dans le groupe formé par : les batteries à ions de lithium d’une capacité supérieure à 1 mAh, les batteries ions de sodium, les batteries lithium - air, les cellules photovoltaïques, les piles à combustible.
Encore un autre objet de l’invention est un procédé de fabrication d’un dispositif électrochimique sélectionné dans le groupe formé par : les batteries à ions de lithium d’une capacité supérieure à 1 mAh, les batteries à ions de sodium, les batteries lithium - air, les cellules photovoltaïques, les piles à combustible, ledit procédé mettant en œuvre le procédé de fabrication d’une électrode poreuse selon l’invention, ou mettant en œuvre une électrode poreuse selon l’invention. Ledit dispositif électrochimique est avantageusement une batterie à ions de lithium d’une capacité supérieure à 1 mAh. En particulier, ce procédé de fabrication d’une électrode poreuse peut être mis en œuvre pour fabriquer une électrode positive, et/ou pour fabriquer une électrode négative. Ce procédé de fabrication d’une batterie peut comprendre une étape dans laquelle ladite électrode poreuse est imprégnée par un électrolyte, de préférence une phase porteuse d’ions de lithium sélectionnée dans le groupe formé par : o un électrolyte composé d’au moins un solvant aprotique et d’au moins un sel de lithium ; o un électrolyte composé d’au moins un liquide ionique et d’au moins sel de lithium ; o un mélange d’au moins un solvant aprotique et d’au moins un liquide ionique (ou d’au moins un polyliquide ionique) et d’au moins un sel de lithium ; o un polymère rendu conducteur ionique par l’ajout d’au moins un sel de lithium ; et o un polymère rendu conducteur ionique par l’ajout d’un électrolyte liquide, soit dans la phase polymère, soit dans la structure mésoporeuse.
Un dernier objet de l’invention est un dispositif électrochimique sélectionné dans le groupe formé par : les batteries à ions de lithium d’une capacité supérieure à 1 mAh, les batteries à ions de sodium, les batteries lithium - air, les cellules photovoltaïques, les piles à combustible, susceptible d’être obtenu par le procédé de fabrication selon l’invention. Comme mentionné ci-dessus, une électrode selon l’invention permet de réaliser une batterie à ions de lithium qui présente à la fois une forte densité d’énergie et une haute densité de puissance. Une telle batterie est également très fiable. Il n’y a plus de risque de perte de contact électrique entre les particules, ce qui leur confère une excellente durée de vie en cyclage. Par ailleurs, le courant est parfaitement distribué dans l’électrode, ce qui résulte de l’homogénéité de la taille des pores et de l’épaisseur locale de matériau actif, qui engendrent une grande homogénéité de la conductivité électrique.
Figures
Les figures 1 à 6 illustrent différents aspects et de modes de réalisation de l’invention, sans pour autant limiter sa portée.
[Fig. 1] montre un diffractogramme de nanoparticules primaires utilisées pour dans la suspension avant la formation des agglomérats.
[Fig. 2] montre un cliché obtenu par microscopie électronique à transmission de nanoparticules primaires du même échantillon que celui de la figure 1.
[Fig. 3] illustre de manière schématique des nanoparticules traitement thermique.
[Fig. 4] illustre de manière schématique des nanoparticules après traitement thermique, illustrant le phénomène du « necking ».
[Fig. 5] montre l’évolution de la capacité relative d’une batterie selon l’invention en fonction du nombre de cycles de charge et de décharge.
[Fig. 6] montre une courbe de recharge de la même batterie : la courbe A correspond à l’état de charge (échelle de droite), la courbe B correspond au courant absorbé (échelle de gauche). Description détaillée
1. Définitions
Dans le cadre du présent document, la taille d’une particule est définie par sa plus grande dimension. Par « nanoparticule », on entend toute particule ou objet de taille nanométrique présentant au moins une de ses dimensions inférieure ou égale à 100 nm. Par « liquide ionique » on entend tout sel liquide, apte à transporter de l’électricité, se différenciant de l’ensemble des sels fondus par une température de fusion inférieure à 100°C. Certains de ces sels restent liquides à température ambiante et ne se solidifient pas, même à très basse température. De tels sels sont appelés « liquides ioniques à température ambiante ».
Par matériaux « mésoporeux », on entend tout solide qui présente au sein de sa structure des pores dites « mésopores » possédant une taille intermédiaire entre celle des micropores (largeur inférieure à 2 nm) et celle des macropores (largeur supérieure à 50 nm), à savoir une taille comprise entre 2 nm et 50 nm. Cette terminologie correspond à celle adoptée par IUPAC (International Union for Pure and Applied Chemistry), qui fait référence pour l’homme du métier. On n’utilise donc ici pas le terme « nanopore », même si les mésopores telles que définies ci-dessus présentent des dimensions nanométriques au sens de la définition des nanoparticules, sachant les pores de taille inférieure à celle des mésopores sont appelées par l’homme du métier des « micropores ».
Une présentation des concepts de porosité (et de la terminologie qui vient d’être exposée ci-dessus) est donnée dans l’article « Texture des matériaux pulvérulents ou poreux » par F. Rouquerol et al. paru dans la collection « Techniques de l’Ingénieur », traité Analyse et Caractérisation, fascicule P 1050 ; cet article décrit également les techniques de caractérisation de la porosité, notamment la méthode BET.
Au sens de la présente invention, on entend par « électrode mésoporeuse » ou « couche mésoporeuse » une électrode, respectivement une couche qui présente des mésopores. Comme cela sera expliqué ci-dessous, dans ces électrodes ou couches les mésopores contribuent de manière significative au volume poreux total ; cet état de fait est traduit par l’expression « électrode ou couche mésoporeuse de porosité mésoporeuse supérieure à X % en volume » utilisée dans la description ci-dessous.
Le terme « agrégat » signifie, selon les définitions de l’IUPAC un assemblage faiblement lié de particules primaires. En l’occurrence, ces particules primaires sont des nanoparticules présentant un diamètre qui peut être déterminé par microscopie électronique à transmission. Un agrégat de nanoparticules primaires agrégées peut normalement être détruit (i.e. réduit à des nanoparticules primaires) en suspension dans une phase liquide sous l’effet d’ultrasons, selon une technique connue de l’homme du métier.
Le terme « agglomérat » signifie, selon les définitions de l’IUPAC un assemblage fortement lié de particules primaires ou d’agrégats.
2. Préparation des suspensions de nanoparticules Le procédé de préparation des électrodes poreuses selon l’invention part d’une suspension de nanoparticules. Il est préférable de ne pas préparer ces suspensions de nanoparticules à partir de nanopoudres sèches. On peut les préparer par broyage de poudres ou nanopoudres en phase liquide, et/ou à l’aide d’un traitement aux ultrasons pour désagglomérer les nanoparticules.
Dans un autre mode de réalisation de l’invention les nanoparticules sont préparées en suspension directement par précipitation. La synthèse de nanoparticules par précipitation permet d’obtenir des nanoparticules primaires de taille très homogène avec une distribution de taille unimodale i.e. très resserrée et monodisperse, de bonne cristallinité et pureté. L’utilisation de ces nanoparticules de taille très homogène et de distribution étroite permet d’obtenir après dépôt une structure poreuse de porosité contrôlée et ouverte. La structure poreuse obtenue après dépôt de ces nanoparticules présente peu, de préférence ne présente pas de pores fermés.
Dans un mode de réalisation encore plus préféré de l’invention les nanoparticules sont préparées directement à leur taille primaire par synthèse hydrothermale ou solvothermale ; cette technique permet d’obtenir des nanoparticules avec une distribution de taille très étroite, appelées « nanoparticules monodisperses ». La taille de ces nanopoudres / nanoparticules non agrégées ou non agglomérées est appelée la taille primaire. Elle est typiquement comprise entre 2 nm et 150 nm. Elle est avantageusement comprise entre 10 nm et 50 nm, de préférence entre 10 nm et 30 nm ; cela favorise lors des étapes de procédé ultérieures la formation d’un réseau mésoporeux interconnecté à conduction électronique et ionique, grâce au phénomène de « necking ».
Dans un mode de réalisation avantageux, la suspension de nanoparticules monodisperses peut être réalisée en présence de ligands ou de stabilisants organiques de manière à éviter l’agrégation, voire l’agglomération des nanoparticules. Des liants peuvent également être ajoutés dans la suspension de nanoparticules afin d’améliorer l’adhérence du dépôt sur le substrat avant consolidation, et ainsi faciliter la réalisation de dépôts ou de bandes à cru, notamment de dépôts épais sans fissures. En effet, dans le cadre de la présente invention, il s’avère préférable de partir d’une suspension de particules primaires non agglomérées, au sein de laquelle l’agglomération est ensuite induite ou provoquée, plutôt que de laisser l’agglomération des particules primaires se faire spontanément au stade de la préparation de la suspension.
Cette suspension de nanoparticules monodisperses peut être purifiée pour enlever tous les ions potentiellement gênants. En fonction du degré de purification elle peut ensuite être traitée spécialement pour former des agrégats ou des agglomérats d’une dimension contrôlée. Plus précisément, la formation d’agrégats ou d’agglomérats peut résulter de la déstabilisation de la suspension provoquée notamment par des ions, par l’accroissement de l’extrait sec de la suspension, par changement du solvant de la suspension, par l’ajout d’agent de déstabilisation. Si la suspension a été totalement purifiée elle est stable, et on ajoute des ions pour la déstabiliser, typiquement sous la forme d’un sel ; ces ions sont de préférence des ions de lithium (ajoutés de préférence sous la forme de LiOH).
Si la suspension n’a pas été totalement purifiée la formation des agrégats ou des agglomérats peut se faire toute seule de manière spontanée ou par vieillissement. Cette manière de procéder est plus simple car elle implique moins d’étapes de purification, mais il est plus difficile de contrôler la taille des agrégats ou des agglomérats. Un des aspects essentiels pour la fabrication d’électrodes selon l’invention consiste à bien maîtriser la taille des particules primaires de matériaux d’électrode et leur degré d’agrégation ou d’agglomération.
Si la stabilisation de la suspension de nanoparticules intervient après la formation d’agglomérats, ces derniers resteront sous forme d’agglomérats ; la suspension obtenue pourra être utilisée pour faire des dépôts mésoporeux.
C’est cette suspension d’agrégats ou d’agglomérats de nanoparticules qui est ensuite utilisée pour déposer par électrophorèse, par le procédé d’impression par jet d’encre ci- après « ink-jet », par impression flexographique, par enduction par raclage ci-après « doctor blade », par enduction au rouleau, par enduction au rideau, par enduction par extrusion à travers une filière en forme de fente, ou par enduction par trempage les couches d’électrode poreuses, de préférence mésoporeuses, selon l’invention.
Selon les constatations de la demanderesse, avec un diamètre moyen des agrégats ou des agglomérats de nanoparticules compris entre 80 nm et 300 nm (de préférence entre 100 nm à 200 nm) on obtient, lors des étapes de procédé ultérieures, une couche mésoporeuse présentant un diamètre moyen des mésopores compris entre 2 nm et 50 nm.
Selon l’invention, la couche d’électrode poreuse peut être déposée par le procédé d’impression par jet d’encre (appelé « ink-jet » en anglais) ou par un procédé d’enduction, et notamment par le procédé d’enduction par trempage (appelé « dip-coating » en anglais), , par enduction au rouleau (appelé « roll coating » en anglais), par enduction au rideau (appelé « curtain coating » en anglais), par enduction à travers une filière en forme de fente (appelée « slot-die » en anglais), ou encore par raclage (appelé « doctor blade » en anglais), et ce à partir d’une suspension assez concentrée comprenant des agrégats ou des agglomérats de nanoparticules du matériau actif P.
On peut également déposer la couche d’électrode poreuse par électrophorèse, mais on utilise alors avantageusement une suspension moins concentrée contenant des agglomérats de nanoparticules du matériau actif P.
Les procédés de dépôt d’agrégats ou d’agglomérats de nanoparticules par voie électrophorétique, par le procédé d’enduction par trempage, par jet d’encre, par enduction au rouleau, par enduction au rideau, par enduction à traverse une filière en forme de fente ou par raclage sont des procédés simples, sûrs, facile à mettre en œuvre, à industrialiser et permettant d’obtenir une couche poreuse finale homogène. Le dépôt par voie électrophorétique permet de déposer des couches de manière uniforme sur de larges surfaces avec des vitesses de dépôt élevées. Les techniques d’enduction, notamment celles mentionnées ci-dessus, permettent de simplifier la gestion des bains par rapport aux techniques de dépôt par voie électrophorétique car la suspension ne s’appauvrit pas en particules au cours du dépôt. Le dépôt par impression par jet d’encre permet de faire des dépôts localisés.
Des couches poreuses en couche épaisse peuvent être réalisées en une seule étape par enduction au rouleau, par enduction au rideau, par enduction à travers une fente (appelée « slot die coating » en anglais), ou par raclage (i.e. à la racle).
On note que les suspensions colloïdales dans l’eau et/ou l’éthanol et/ou IPA et leurs mélanges sont plus fluides que celles obtenues dans le NMP. Il est ainsi possible d’accroitre l’extrait sec de la suspension en agglomérats de nanoparticules. Ces agglomérats ont de préférence des tailles inférieures ou égales à 200 nm et sont de tailles polydisperses, voir avec deux populations en tailles différentes.
Par rapport à l’état de la technique, la formulation des encres et pâtes pour la réalisation des électrodes est simplifiée. Il n’y a plus de risques de formation d’agglomérats de noirs de carbone dans la suspension en augmentant d’extrait sec.
3. Dépôt des couches et leur consolidation D’une manière générale, on dépose une couche d’une suspension de nanoparticules sur un substrat, par toute technique appropriée, et en particulier par un procédé sélectionné dans le groupe formé par : l’électrophorèse, un procédé d’impression et de préférence l’impression par jet d’encre ou l’impression flexographique, un procédé d’enduction et de préférence à la racle, au rouleau, au rideau, par trempage, ou à travers une filière en forme de fente. La suspension se présente typiquement sous la forme d’une encre, c’est- à-dire d’un liquide assez fluide, mais peut aussi avoir une consistance pâteuse. La technique de dépôt et la conduite du procédé de dépôt doit être compatible avec la viscosité de la suspension, et vice versa.
La couche déposée sera ensuite séchée. La couche est ensuite consolidée pour obtenir la structure mésoporeuse céramique recherchée. Cette consolidation sera décrite ci- dessous. Elle peut être réalisée par un traitement thermique, par un traitement thermique précédé d’un traitement mécanique, et éventuellement par un traitement thermomécanique, typiquement une thermocompression. Au cours de ce traitement thermomécanique ou thermique la couche d’électrode sera débarrassée de tout constituant et résidu organique (tel que la phase liquide de la suspension des nanoparticules et d’éventuels produits tensioactifs) : elle devient une couche inorganique (céramique). La consolidation d’une plaque est de préférence effectuée après sa séparation de son substrat intermédiaire, car ce dernier risquerait d’être dégradé lors de ce traitement.
Le dépôt des couches, leur séchage et leur consolidation sont susceptibles de soulever certains problèmes qui seront discutés maintenant. Ces problèmes sont liés en partie au fait que lors de la consolidation des couches il se produit un retreint qui génère des contraintes internes.
3.1. Substrat capable d’aqir comme collecteur de courant Selon un premier mode de réalisation, on dépose les couches d’électrodes chacune sur un substrat capable d’agir comme collecteur de courant électrique. On peut déposer sur une face ou sur ses deux faces des couches comportant la suspension de nanoparticules ou d’agglomérats de nanoparticules, par les techniques de dépôt indiquées ci-dessus. Le substrat servant de collecteur de courant au sein des batteries employant des électrodes poreuses selon l’invention peut être métallique, par exemple un feuillard métallique (i.e. une feuille de métal laminée). Le substrat est de préférence choisi parmi des feuillards en tungstène, molybdène, chrome, titane, tantale, acier inoxydable, ou un alliage de deux ou plusieurs de ces matériaux. Les substrats moins nobles comme le cuivre ou le nickel peuvent recevoir un revêtement conducteur et protecteur de l’oxydation.
La feuille métallique peut être revêtue d’une couche de métal noble, notamment choisi parmi l’or, le platine, le palladium, le titane ou des alliages contenant majoritairement au moins un ou plusieurs de ces métaux, ou d’une couche de matériau conducteur de type ITO (qui a l’avantage d’agir également comme barrière de diffusion). D’une manière générale, ce substrat capable d’agir comme collecteur de courant électrique doit résister aux conditions de traitement thermique de la couche déposée, et aux conditions de fonctionnement au sein de la cellule batterie. A ce titre, le cuivre et le nickel conviennent en contact avec le matériau de cathode ; ils risquent de s’oxyder à l’anode.
En ce qui concerne le dépôt des couches, on peut utiliser le procédé d’électrophorèse (surtout dans l’eau). Dans ce cas particulier, le substrat est soumis à une polarisation électrochimique qui conduit soit à son oxydation soit à sa dissolution dans la suspension de nanoparticules. Dans ce cas, seuls les substrats ne présentant pas de phénomènes d’anodisation et/ou de corrosion peuvent être utilisés. C’est notamment le cas de l’acier inoxydable et des métaux nobles.
Lorsque le dépôt des nanoparticules et/ou agglomérats est réalisé par l’une des autres techniques citées ci-dessous (telles que enduction, impression) alors il est possible d’élargir le choix des substrats. Ce choix se fera alors plutôt en fonction de la stabilité du métal au potentiel de fonctionnement des électrodes qui lui sont associées et au contact des électrolytes. Cependant, en fonction de la voie de synthèse utilisée pour la réalisation des nanoparticules, des traitements thermiques plus ou moins agressifs doivent être réalisés pour la consolidation et l’éventuelle recristallisation des nanopoudres : cet aspect sera approfondi dans la section 5 ci-dessous.
Dans tous les cas, un traitement thermique de consolidation est nécessaire pour obtenir ces électrodes mésoporeuses. Il est fondamental que le substrat capable d’agir comme collecteur de courant électrique puisse résister à ces traitements thermiques sans s’oxyder. Aussi plusieurs stratégies peuvent être employées.
Lorsque les nanopoudres déposées sur le substrat par encrage sont amorphes et/ou avec de nombreux défauts ponctuels, il est nécessaire de réaliser un traitement thermique qui outre la consolidation permettra également de recristalliser le matériau dans la bonne phase cristalline avec la bonne stœchiométrie. Pour cela, il est généralement nécessaire de réaliser des traitements thermiques à des températures situées entre 500 et 700°C. Le substrat devra alors résister à ce type de traitement thermique, et il est nécessaire d’utiliser des matériaux résistant à ces traitements haute température. Des feuillards en acier inoxydable, en titane, molybdène, tungstène, tantale, chrome, ainsi que leurs alliages peuvent être utilisés par exemple.
Lorsque les nanopoudres et/ou agglomérats sont cristallisés, obtenus par synthèse hydrothermale ou solvothermale avec la bonne phase et structure cristalline, alors il est possible d’utiliser des traitements thermiques de consolidation sous atmosphère contrôlée, ce qui permettra d’utiliser des substrats moins nobles comme le nickel, le cuivre, l’aluminium, et du fait de la très faible taille des particules primaires obtenues par synthèse hydrothermale, il est également possible de réduire la température et/ou la durée du traitement thermique de consolidation à des valeurs proches de 350 - 500°C, ce qui permet également d’élargir le choix des substrats. Toutefois, ces substrats moins nobles doivent, résister au traitement thermique permettant d’éliminer les additifs organiques éventuellement contenus dans la suspension de nanoparticules employée tels que des ligands, stabilisants, liants ou solvants organiques résiduels (déliantage), ce traitement thermique étant avantageusement réalisé sous atmosphère oxydante.
Il est également possible que des synthèses pseudo-hydrothermales donnent des nanoparticules amorphes qui auront besoin d’être recristallisées par la suite.
Ces substrats capables d’agir comme collecteur de courant électrique peuvent éventuellement être recouverts d’un film mince d’oxyde conducteur. Cet oxyde pouvant avoir la même composition que l’électrode. Ces films minces peuvent être réalisés par sol-gel. Cette interface à base d’oxyde permet de limiter la corrosion du substrat et assure une meilleure base d’accroche pour l’électrode avec le substrat.
En ce qui concerne les conditions de fonctionnement au sein de la cellule batterie, on note tout d’abord que dans les batteries employant des électrodes poreuses selon l’invention, les électrolytes liquides qui viennent imprégner l’électrode poreuse sont en contact direct avec le substrat capable d’agir comme collecteur de courant. Cependant, lorsque ces électrolytes sont en contact avec les substrats capable d’agir comme collecteur de courant, i.e. les substrats métalliques et polarisés à des potentiels très anodiques pour la cathode et très cathodique pour l’anode, ces électrolytes sont susceptibles d’induire une dissolution du collecteur de courant. Ces réactions parasites peuvent dégrader la durée de vie de la batterie et accélérer son autodécharge. Pour éviter cela, des substrats capables d’agir comme collecteur de courant tel que des collecteurs de courant en aluminium sont utilisés à la cathode, dans toutes les batteries à ions de lithium. L’aluminium a cette particularité de s’anodiser aux potentiels très anodiques, et la couche d’oxyde ainsi formée à sa surface le protège de la dissolution. Cependant l’aluminium présente une température de fusion proche de 600°C et ne peut être utilisé pour la fabrication de batteries selon l’invention, si les traitements de consolidation des électrodes risquent de faire fondre le collecteur de courant.
Ainsi, pour éviter les réactions parasites pouvant dégrader la durée de vie de la batterie et accélérer son autodécharge, un feuillard de titane est avantageusement utilisé comme collecteur de courant à la cathode. Lors du fonctionnement de la batterie, le feuillard en titane va, comme l’aluminium, s’anodiser et sa couche d’oxyde va empêcher les éventuelles réactions parasites de dissolution du titane au contact de l’électrolyte liquide. De plus, comme le titane présente un point de fusion beaucoup plus élevé que l’aluminium, des électrodes entièrement solides selon l’invention, peuvent être réalisées directement sur ce type de feuillard.
L’emploi de ces matériaux massifs, notamment de feuillards en titane, en cuivre ou en nickel, permet également de protéger les bords de découpe des électrodes de batteries des phénomènes de corrosion.
L’acier inoxydable peut également être employé comme collecteur de courant, notamment lorsqu’il contient du titane ou de l’aluminium comme élément d’alliage, ou lorsqu’il présente en surface une fine couche d’oxyde protecteur.
D’autres substrats servant de collecteur de courant peuvent être utilisés tels que des feuillards métalliques moins nobles recouverts d’un revêtement protecteur, permettant d’éviter l’éventuelle dissolution de ces feuillards induite par la présence d’électrolytes à leur contact.
Ces feuillards métalliques moins nobles peuvent être des feuillards en Cuivre, en Nickel ou des feuillards d’alliages métalliques tels que des feuillards en acier inoxydable, des feuillards d’alliage Fe-Ni, d’alliage Be-Ni-Cr, d’alliage Ni-Cr ou d’alliage Ni-Ti.
Le revêtement pouvant être utilisé pour protéger les substrats servant de collecteurs de courant peut être de différentes natures. Il peut être : une couche mince obtenue par procédé sol-gel du même matériau que celui de l’électrode. L’absence de porosité dans ce film permet d’éviter les contacts entre l’électrolyte et le collecteur de courant métallique ; une couche mince obtenue par dépôt sous vide, notamment par dépôt physique en phase vapeur (abrégé PVD, en anglais Physical Vapor Déposition) ou par dépôt chimique en phase vapeur (abrégé CVD, enanglais Chemical Vapor Déposition), du même matériau que celui de l’électrode ; une couche mince métallique, dense, sans défaut, telle qu’une couche mince métallique d’or, de titane, de platine, de palladium, de tungstène ou de molybdène. Ces métaux peuvent être utilisés pour protéger les collecteurs de courant car ils ont de bonnes propriétés de conduction et peuvent résister aux traitements thermiques lors du procédé subséquent de fabrication des électrodes. Cette couche peut notamment être réalisée par électrochimie, PVD, CVD, évaporation, ALD ; une couche mince de carbone tel que du carbone diamant, graphique, déposé par ALD, PVD, CVD ou par encrage d’une solution sol-gel permettant d’obtenir après traitement thermique une phase inorganique dopée en carbone pour la rendre conductrice, une couche d’oxydes conducteurs ou semi-conducteurs, telle qu’une couche d’ITO (oxyde d’indium-étain) uniquement déposée sur le substrat cathodique car les oxydes se réduisent aux faibles potentiels ; une couche de nitrures conducteurs telle qu’une couche de TiN uniquement déposée sur le substrat cathodique car les nitrures insèrent le lithium aux faibles potentiels.
Le revêtement pouvant être utilisé pour protéger les substrats servant de collecteurs de courant doit être conducteur électronique pour ne pas nuire au fonctionnement de l’électrode déposée ultérieurement sur ce revêtement, en la rendant trop résistive.
D’une manière générale, pour ne pas impacter trop lourdement le fonctionnement des cellules batteries, les courants de dissolution max mesurés sur les substrats pouvant agir comme collecteur de courant, aux potentiels de fonctionnement des électrodes, exprimés en pA/cm2, doivent être 1000 fois inférieurs aux capacités surfaciques des électrodes exprimées en pAh/cm2. Lorsque l’on cherche à augmenter l’épaisseur des électrodes, on observe que le retreint généré par la consolidation peut conduire soit à la fissuration des couches, soit à une contrainte de cisaillement au niveau de l’interface entre le substrat (qui est de dimension fixe) et l’électrode céramique. Lorsque cette contrainte de cisaillement dépasse un seuil, la couche se décroche de son substrat.
Pour éviter ce phénomène, on préfère réaliser l’accroissement de l’épaisseur des électrodes par une succession d’opération de dépôt - frittage. Cette première variante du premier mode de réalisation du dépôt des couches donne un bon résultat, mais est peu productif. Alternativement, dans une deuxième variante, on dépose des couches d’une épaisseur plus importante, sur les deux faces d’un substrat perforé. Les perforations doivent avoir un diamètre suffisant pour que les deux couches du recto et du verso soient en contact au niveau des perforations. Ainsi, lors de la consolidation, les nanoparticules et/ou agglomérats de nanoparticules de matériau d’électrode en contact à travers les perforations dans le substrat se soudent, formant un point d’accroche (point de soudure entre les dépôts des deux faces). Cela limite la perte d’adhérence des couches sur le substrat pendant les étapes de consolidation.
Pour éviter ce phénomène, i.e. afin d’accroître les épaisseurs de dépôt tout en limitant voire en supprimant l’apparition de fissures, il est possible d’ajouter des liants, des dispersants. Ces additifs et solvants organiques peuvent être éliminés par un traitement thermique, de préférence sous atmosphère oxydante, tel que par déliantage, lors d’un traitement de frittage ou lors d’un traitement thermique réalisé préalablement au traitement de frittage.
3.2 Substrat intermédiaire
Selon un deuxième mode de réalisation, on ne dépose pas les couches d’électrode sur un substrat capable d’agir comme collecteur de courant électrique, mais sur un substrat intermédiaire, temporaire. En particulier, on peut déposer, à partir de suspensions plus concentrées en nanoparticules et/ou agglomérats de nanoparticules (i.e. moins fluides, de préférence pâteuses), des couches assez épaisses (appelées « green sheet » en anglais). On dépose ces couches épaisses par exemple par un procédé d’enduction, de préférence à la racle (technique connue en anglais sous le terme « doctor blade » ou « tape casting ») ou à travers une filière en forme de fente (en anglais « slot-die »). Ledit substrat intermédiaire peut être une feuille polymère, par exemple du poly(téréphtalate d'éthylène), abrégé PET. Lors du séchage, ces couches ne se fissurent pas, notamment lorsque le séchage intervient après la séparation de la couche obtenue à l’étape (b) de son substrat intermédiaire. Pour la consolidation par traitement thermique (et de préférence déjà pour leur séchage) elles peuvent être détachées de leur substrat ; on obtient ainsi des plaques après découpe d’électrodes dites « crues » qui après traitement thermique de calcination et frittage partiel donneront des plaques céramiques mésoporeuses et autoportées.
On réalise ensuite un empilement de trois couches, à savoir deux plaques d’électrodes de même polarité séparées par une feuille électriquement conductrice capable d’agir comme collecteur de courant électrique, telle qu’une feuille métallique ou une feuille de graphite. Cet empilement est ensuite assemblé par un traitement thermomécanique, comprenant un pressage et un traitement thermique, de préférence réalisés simultanément. Dans une variante, pour faciliter le collage entre les plaques de céramique et la feuille métallique, l’interface peut être revêtue d’une couche permettant un collage conducteur électronique. Cette couche peut être une couche sol-gel (de préférence de type permettant à obtenir après traitement thermique la composition chimique des électrodes) possiblement chargée de particules d’un matériau conducteur électronique, qui fera une soudure céramique entre l’électrode mésoporeuse et la feuille métallique. Cette couche peut également être constituée d’une couche mince de nanoparticules d’électrode non frittés, ou d’une couche mince d’une colle conductrice (chargée de particules de graphite par exemple), ou encore une couche métallique d’un métal à bas point de fusion.
Lorsque ladite feuille électriquement conductrice est métallique, elle est de préférence une feuille laminée, i.e. obtenue par laminage. Le laminage peut éventuellement être suivi par un recuit final, qui peut être un recuit d’adoucissement (total ou partiel) ou de recristallisation, selon la terminologie de la métallurgie. On peut aussi utiliser une feuille déposée par voie électrochimique, par exemple une feuille de cuivre électrodéposée ou une feuille de nickel électrodéposée.
En tous les cas, on obtient une électrode céramique, sans liant organique, mésoporeuse, située de part et d’autre d’un substrat métallique servant comme collecteur de courant électronique.
4. Dépôt des couches de matériau actif P D’une manière générale et comme cela a déjà été mentionné, les électrodes selon l’invention peuvent être fabriquées à partir de suspensions de nanoparticules, à l’aide de techniques de revêtement connues. Ces techniques utilisables sont le coulage en bande et les techniques d’enduction, telles que l’enduction au rouleau, l’enduction à la racle, l’enduction à travers une filière en forme de fente, l’enduction au rideau, l’enduction au rouleau. On peut également utiliser le trempage.
Pour toutes ces techniques, il est avantageux que l’extrait sec de la suspension soit supérieur à 20 %, et de préférence supérieur à 40 % ; cela diminue le risque de fissuration au séchage.
On peut également utiliser des techniques d’impression, telles que les techniques flexographique, l’impression par jet d’encre.
On peut également utiliser l’électrophorèse.
Dans un premier mode de réalisation, le procédé selon l’invention utilise avantageusement l’électrophorèse de suspensions de nanoparticules comme technique de dépôt des couches d’électrode poreuse, de préférence mésoporeuse. Le procédé de dépôt de couches d’électrodes à partir d’une suspension de nanoparticules est connu en tant que tel (voir par exemple EP 2 774 194 B1). Le substrat peut être métallique, par exemple une feuille métallique. Le substrat servant de collecteur de courant au sein des batteries employant des électrodes poreuses selon l’invention est de préférence choisi parmi des feuillards en titane, en cuivre, en acier inoxydable ou en molybdène.
Comme substrat on peut par exemple utiliser une feuille d’acier inoxydable d’une épaisseur de 5 pm. La feuille métallique peut être revêtue d’une couche de métal noble, notamment choisi parmi l’or, le platine, le palladium, le titane ou des alliages contenant majoritairement au moins un ou plusieurs de ces métaux, ou d’une couche de matériau conducteur de type ITO (qui a l’avantage d’agir également comme barrière de diffusion). Dans un mode de réalisation particulier on dépose sur la couche de métal une couche, de préférence une couche mince, d’un matériau d’électrode ; ce dépôt doit être très mince (typiquement quelques dizaines de nanomètres, et plus généralement compris entre 10 nm et 100 nm). Il peut être réalisé par un procédé sol-gel. On peut utiliser par exemple du LiMn204 pour une cathode poreuse de LiMn204.
Pour que l’électrophorèse puisse avoir lieu, on pose une contre-électrode dans la suspension et on applique une tension entre le substrat conducteur et ladite contre- électrode.
Dans un mode de réalisation avantageux, le dépôt électrophorétique des agrégats ou des agglomérats de nanoparticules est effectué par électrodéposition galvanostatique en mode pulsé ; on applique des impulsions de courant à haute fréquence, cela évite la formation de bulles à la surface des électrodes et les variations du champ électrique dans la suspension pendant le dépôt. L’épaisseur de la couche d’électrode ainsi déposée par électrophorèse, de préférence par électrodéposition galvanostatique en mode pulsé est avantageusement inférieure à 10 pm, de préférence inférieure à 8 pm, et se situe encore plus préférentiellement entre 1 pm et 6 pm.
Pour déposer des couches assez épaisses par électrophorèse on peut ajouter des nanoparticules de noir de carbone dans la suspension afin d’améliorer la conduction électronique du dépôt avant consolidation. Ces nanoparticules de noir de carbone s’élimineront par oxydation pendant le traitement thermique de consolidation.
Dans un autre mode de réalisation on peut déposer des agrégats ou des agglomérats de nanoparticules par le procédé d’enduction par trempage, et ce, quel que soit la nature chimique des nanoparticules employées. Ce procédé de dépôt est préféré lorsque les nanoparticules employées sont peu ou pas chargées électriquement. Afin d’obtenir une couche d’une épaisseur désirée, l’étape de dépôt par trempage des agrégats ou des agglomérats de nanoparticules suivie de l’étape de séchage de la couche obtenue sont répétées autant que nécessaire.
Afin d’accroitre l’épaisseur des couches exemptes de fissures, il est avantageux d’utiliser dans la suspension colloïdale ou la pâte déposée, au moins un additif organique tel que des ligands, des stabilisants, des épaississants, des liants ou des solvants organiques résiduels. Bien que cette succession d’étapes d’enduction par trempage / séchage soit chronophage, le procédé de dépôt par trempage est un procédé simple, sûr, facile à mettre en œuvre, à industrialiser et permettant d’obtenir une couche finale homogène et compacte.
5. Traitement de consolidation des couches déposées
Les couches déposées doivent être séchées ; le séchage ne doit pas induire la formation de fissures. Pour cette raison il est préféré de l’effectuer dans des conditions d’humidité et de température contrôlées ou d’utiliser, pour réaliser la couche poreuse, des suspensions colloïdales et/ou des pâtes comprenant, outre des agrégats ou des agglomérats de nanoparticules primaires monodisperses, d’au moins un matériau actif d’électrode P selon l’invention, des additifs organiques tels que des ligands, des stabilisants, des épaississants, des liants ou solvants organiques résiduels.
Les couches séchées peuvent être consolidées par une étape de pressage et/ou de chauffage (traitement thermique). Dans un mode de réalisation très avantageux de l’invention ce traitement conduit à une coalescence partielle des nanoparticules primaires dans les agrégats, ou les agglomérats, et entre agrégats ou agglomérats voisins ; ce phénomène est appelé « necking » ou « neck formation ». Il est caractérisé par la coalescence partielle de deux particules en contact, qui restent séparées mais reliées par un col (retreint) ; cela est illustré de manière schématique sur les figures 3 et 4. Les ions de lithium et les électrons sont mobiles au sein de ces cols et peuvent diffuser d’une particule à l’autre sans rencontrer des joints de grains. Les nanoparticules (figure 3) sont soudées entre elles pour assurer la conduction des électrons d’une particule à l’autre (figure 4). Ainsi se forme à partir des nanoparticules primaires un film mésoporeux continu formant un réseau tridimensionnel à forte mobilité ionique et à conduction électronique ; ce réseau comporte des pores interconnectés, de préférence des mésopores.
La température nécessaire pour obtenir du « necking » dépend du matériau ; compte tenu du caractère diffusif du phénomène qui conduit au necking, la durée du traitement dépend de la température. Ce procédé peut être appelé un frittage ; selon sa durée et sa température on obtient une coalescence (necking) plus ou moins prononcée, qui se répercute sur la porosité. Il est ainsi possible de descendre à 30% (ou même à 25 %) de porosité tout en conservant une taille de canal parfaitement homogène.
Le traitement thermique peut également servir à éliminer les additifs organiques éventuellement contenus dans la suspension de nanoparticules employée tels que des ligands, stabilisants, liants ou solvants organiques résiduels. Selon une autre variante, un traitement thermique additionnel, sous atmosphère oxydante, peut être réalisé pour éliminer ces additifs organiques éventuellement contenus dans la suspension de nanoparticules employée. Ce traitement thermique additionnel est avantageusement réalisé sur la couche poreuse séparée de son substrat intermédiaire, lorsqu’un tel substrat est utilisé. Ce traitement thermique additionnel est avantageusement réalisé avant le traitement de consolidation de l’étape c) permettant d’obtenir une couche poreuse, de préférence mésoporeuse. 6. Dépôt du revêtement de matériau conducteur électronique
Selon une caractéristique essentielle de la présente invention, on dépose, sur et à l’intérieur des pores de ladite couche poreuse, un revêtement d’un matériau conducteur électronique.
En effet, comme expliqué ci-dessus, le procédé selon l’invention, qui fait intervenir obligatoirement une étape de dépôt de nanoparticules agglomérés de matériau d’électrode (matière active), fait que les nanoparticules se « soudent » naturellement entre elles pour générer, après consolidation tel qu’un recuit, une structure poreuse, rigide, tridimensionnelle, sans liant organique ; cette couche poreuse, de préférence mésoporeuse, est parfaitement bien adaptée à l’application d’un traitement de surface, par voie gazeuse ou liquide, qui rentre dans la profondeur de la structure poreuse ouverte de la couche.
De manière très avantageuse ce dépôt est réalisé par une technique permettant un revêtement enrobant (appelé aussi « dépôt conforme »), i.e. un dépôt qui reproduit fidèlement la topographie atomique du substrat sur lequel il est appliqué, et qui rentre profondément dans le réseau de porosité ouverte de la couche. Ledit matériau conducteur électronique peut être du carbone.
Les techniques de ALD (Atomic Layer Déposition) ou de CSD (Chemical Solution Déposition), connues en tant que telles, peuvent convenir. Elles peuvent être mises en œuvre sur les couches poreuses après fabrication, avant le dépôt des particules de séparateur et avant l’assemblage de la cellule. La technique de dépôt par ALD se fait couche par couche, par un procédé cyclique, et permet de réaliser un revêtement enrobant qui reproduit fidèlement la topographie du substrat ; le revêtement tapisse la totalité de la surface des électrodes. Ce revêtement enrobant présente typiquement une épaisseur comprise entre 1 nm et 5 nm.
Le dépôt par ALD est réalisé à une température typiquement comprise entre 100 °C et 300 °C. Il est important que les couches soient exemptes de matières organiques : elles ne doivent pas comporter de liant organique, les éventuels résidus de ligands stabilisants utilisés pour stabiliser la suspension doivent avoir été éliminés par purification de la suspension et/ou lors du traitement thermique de la couche après séchage. En effet, à la température du dépôt ALD, les matériaux organiques formant le liant organique (par exemple les polymères contenus dans les électrodes réalisées par tape casting d’encre) risquent de se décomposer et vont polluer le réacteur ALD. Par ailleurs, la présence de polymères résiduels au contact des particules de matière active d’électrode peut empêcher le revêtement ALD d’enrober la totalité des surfaces de particules, ce qui nuit à son efficacité.
La technique de dépôt par CSD permet également de réaliser un revêtement enrobant avec un précurseur du matériau conducteur électronique qui reproduit fidèlement la topographie du substrat ; il tapisse la totalité de la surface des électrodes. Ce revêtement enrobant présente typiquement une épaisseur inférieure à 5 nm, de préférence comprise entre 1 nm et 5 nm. Il doit ensuite être transformé en matériau conducteur électronique. Dans le cas d’un précurseur de carbone cela sera fait par pyrolyse, de préférence sous gaz inerte (tel quel l’azote).
Dans cette variante de dépôt d’une nanocouche de matériau conducteur électronique, il est préférable que le diamètre D5o des particules primaires de matériau d’électrode soit d’au moins 10 nm afin d’éviter que la couche conductrice ne bouche la porosité ouverte de la couche d’électrode.
7. Electrolyte
L’électrolyte ne fait pas partie de la présente invention, mais il est utile de le mentionner ici car il est nécessaire pour former la cellule batterie. L’électrode selon l’invention ne contient pas de composés organiques. Cette absence de composés organiques couplée à une structure mésoporeuse favorise le mouillage par un électrolyte conducteur des ions lithium. Cet électrolyte pouvant alors indifféremment être sélectionne dans le groupe formé par : un électrolyte composé de solvants aprotiques et de sels de lithium, un électrolyte composé de liquides ioniques ou polyliquides ioniques et de sels de lithium, un mélange de solvants aprotiques et de liquides ioniques ou polyliquides ioniques et de sels de lithium, un polymère rendu conducteur ionique contenant des sels de lithium, un polymère conducteur ionique.
Lesdits liquides ioniques peuvent être des sels fondus à température ambiante (ces produits sont connus sous la désignation RTIL, Room Température Ionie Liquid), ou des liquides ioniques qui sont solides à la température ambiante. Ces liquides ioniques solides à la température ambiante doivent être chauffés pour les liquéfier pour imprégner les électrodes ; ils se solidifient dans l’électrode. Ledit polymère conducteur ionique peut être fondu pour être mélangé au sel de lithium et cette phase fondue peut ensuite être imprégnée dans la mésoporosité de l’électrode.
De même, ledit polymère peut être un liquide à la température ambiante, ou bien un solide, qui est alors chauffé pour le rendre liquide en vue de son imprégnation dans l’électrode mésoporeuse. 8. Exemples de modes de réalisation avantageux
D’une manière générale, lorsque la batterie à ions de lithium doit fonctionner à haute température, on utilise avantageusement comme matériau P pour la cathode un des matériaux énumérés ci-dessus parmi ceux qui ne contient pas de manganèse, tel que le LiFePCU ou UC0PO4. L’anode est dans ce cas avantageusement un titanate, un oxyde mixte de titane et de niobium ou un dérivé d’un oxyde mixte de titane et de niobium, et la cellule est imprégnée par un liquide ionique comportant un sel de lithium. Si ledit liquide ionique comporte des atomes de soufre on préfère que le substrat soit un métal noble. Pour permettre à l’homme du métier d’exécuter le procédé selon l’invention, nous donnons ici quelques modes de réalisation et d’exemple d’électrodes selon l’invention. Dans un premier mode de réalisation avantageux on fabrique une anode mésoporeuse selon l’invention pour une batterie à ions de lithium avec une suspension de matériau P qui est du mTi50i2 ou du LLTis-xMxO^ avec M = V, Zr, Hf, Nb, Ta. La figure 1 montre un diffractogramme aux rayons X typique de la nanopoudre de LUTisO^ utilisé dans la suspension, la figure 2 montre un cliché obtenu par microscopie électronique à transmission de ces nanoparticules primaires.
Ce matériau est déposé sur un substrat métallique, traité thermiquement (fritté) et recouvert d’une couche d’un matériau conducteur électronique d’une épaisseur de quelques nanométres ; cette couche est appelée ici « nanocoating ». Ce nanocoating est de préférence du carbone. Ce nanocoating de carbone peut être réalisé par imprégnation avec une phase liquide riche en carbone, qui est ensuite pyrolysée sous azote, ou bien par dépôt ALD. Ces anodes insèrent le lithium à un potentiel de 1,55 V, sont très puissantes et permettent d’effectuer des recharges ultra-rapides.
Dans un deuxième mode de réalisation avantageux on fabrique une anode mésoporeuse selon l’invention pour une batterie à ions de lithium avec un matériau P qui est du Til\lb2C>7 ou du LiwTii-xM1 xNb2-yM2yC>7 , dans lequel M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn. M1 et M2 pouvant être identiques ou différents l’un de l’autre, et dans lequel 0 £ w £ 5, 0 £ x £ 1, 0 £ y £ 2. Cette couche est déposée sur un substrat métallique, frittée et recouverte d’un nanocoating conducteur électronique, qui est avantageusement du carbone, déposé comme décrite en relation avec le mode de réalisation précédent. Ces anodes sont très puissantes et permettent d’effectuer des recharges rapides. Dans un troisième mode de réalisation avantageux on fabrique une anode mésoporeuse selon l’invention pour une batterie à ions de lithium avec un matériau P qui est du Nb20s±5 ou du NbisWi6093±5 ou du Nbi6Ws055±5 avec 0 £ x < 1 et 0 £ d £ 2, ou du LaxTii-2xNb2+x07 où 0<x<0.5 ; ou du Tii-xGexNb2-yM1 yC>7±z Ou du LiwTii-xGexNb2-yM1 y07±z ou du Tii-xCexNb2- yM1 y07±zou du LiwTii-xCexNb2-yM1 y07±z dans lesquels M1 est au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn et où 0 £ w £ 5 et 0 £ x £ 1 et 0 £ y £ 2 et z £ 0,3 ; ou du Tii-xGexNb2-yM1y07-zM2 z ou du LiwTii-xGexNb2-yM1y07-zM2 z ou du Tii-xCexNb2-yM1 y07- z M2 z ou du LiwTii-xCexNb2-yM1 y07-zM2 z dans lesquels M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs, Ce et Sn, et où M1 et M2 pouvant être identiques ou différents l’un de l’autre, et dans lesquels 0 £ w £ 5 et 0 £ x £ 1 et 0 £ y £ 2 et z £ 0,3. Cette couche est déposée sur un substrat métallique, frittée et recouverte d’un nanocoating conducteur électronique, qui est avantageusement du carbone, déposé comme décrite en relation avec le mode de réalisation précédent. Ces anodes sont très puissantes et permettent d’effectuer des recharges rapides.
Dans un quatrième mode de réalisation on fabrique une anode mésoporeuse selon l’invention pour une batterie à ions de lithium avec un matériau P qui est du TiNb207-zM3 z ou du LiwTii-xM1 xNb2-yM2y07-zM3 z dans lequel M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn. M1 et M2 peuvent être identiques ou différents l’un de l’autre. La relation 0 £ w £ 5, 0 £ x £ 1 , 0 £ y £ 2 s’applique. M3 est au moins un halogène et z £ 0,3. Comme décrit en relation avec le deuxième mode de réalisation, cette couche est déposée sur un substrat métallique, frittée et recouverte d’un nanocoating, qui peut être du carbone, déposé comme décrit ci-dessus. Ces anodes sont très puissantes et sont capables de recharges rapides.
Dans un cinquième mode de réalisation on fabrique une anode mésoporeuse selon l’invention pour une batterie à ions de lithium avec un matériau P qui est du T1O2 ou du LiSiTON ; la fabrication se fait comme décrit en relation avec les autres modes de réalisation. Ces électrodes sont très puissantes et sont capables de recharges rapides. Dans un sixième exemple de réalisation on fabrique une cathode mésoporeuse selon l’invention pour une batterie à ions de lithium avec un matériau P qui est du LiMn204 ; ces nanoparticules peuvent être obtenues par synthèse hydrothermale en utilisant les procédures décrites dans l’article « One pot hydrothermal synthesis and electrochemical charactérisation of Lii+xMn2-y04 spinel structured compounds », paru dans la revue Energy Environ. Soi., 3, p. 1339-1346. Dans cette synthèse, une faible quantité de PVP a été ajoutée afin d’ajuster la taille et la forme des agglomérats obtenus. Ces derniers sont de forme sphérique et d’environ 150 nm de diamètres, constitués de particules primaires d’une taille comprise entre 10 nm et 20 nm. Après centrifugation et lavage, on a ajouté dans la suspension aqueuse environ 10 à 15 % en masse de PVP 360k et l’eau a été évaporée jusqu’à obtenir un extrait sec de 10%. L’encre ainsi obtenue a été appliquée sur une feuille d’acier inoxydable puis séchée afin d’obtenir une couche d’environ 10 microns. Cette séquence peut être répétée plusieurs fois afin d’augmenter l’épaisseur du dépôt. Le dépôt ainsi obtenu a été recuit pendant 1 heure à 600°C sous air afin de consolider les agglomérats de nanoparticules entre eux.
Cette couche mésoporeuse a ensuite été imprégnée d'une solution de saccharose, puis recuite à 400°C sous azote pour obtenir une couche de carbone conductrice électroniquement sur la totalité de la surface mésoporeuse de l’électrode ; l’épaisseur de cette couche de carbone était de quelques nanomètres. On a ensuite déposé sur cette cathode mésoporeuse la couche d’électrolyte, en l’occurrence du U3PO4, et on a imprégné l’ensemble avec un mélange de PEO et de 1-lithio-2-(trifluoromethyl)-1H- imidazole-4,5-dicarbonitrile (connu sous le sigle LiTDI, n° CAS : 761441-54-7) fondu.
Dans un septième exemple de réalisation on a fabriqué une batterie selon l’invention formée par :
- Une anode mésoporeuse (50 % de porosité) comprenant du LUTisO^ et du T1O2,
- Une cathode mésoporeuse (50% de porosité) comprenant du LiMn204,
- Un séparateur électrolytique mésoporeux (50 % de porosité) comprenant du U3PO4. Les substrats des électrodes étaient en acier inoxydable 316L. Le liquide ionique d’imprégnation était un mélange de 1-butyl-1-méthylpyrrolidinium bis(trifluorométhane sulfonyl)imide (abrégé Pyr14TFSI) et lithium bis(fluorosulfonyl)imide (abrégé LiTFSI) à 0,7 M.
La figure 5 montre l’évolution de la capacité relative d’une batterie selon l’invention en fonction du nombre de cycles de charge et de décharge ; chaque décharge a été réalisée à une profondeur de 100% de la capacité de la batterie. On observe qu’il n’y a aucune perte de la capacité relative de la batterie ; la batterie selon l’invention présente une excellente durée de vie en termes de cycles de charge - décharge. Cela présente un avantage important pour des batteries d’une capacité supérieure à 1 mAh qui alimentent des dispositifs dans lesquels lesdites batteries subissent une décharge profonde fréquente, tels que des outils à main électriques ou des véhicules électriques.
La figure 6 montre une courbe de recharge de cette batterie. On voit qu’on peut recharger 80 % de la capacité de la batterie en un peu moins de 5 minutes ; cette capacité de recharge rapide présente un énorme intérêt applicatif, en particulier pour les batteries Li- ion d’une capacité supérieure à 1 mAh qui alimentent des dispositifs autonomes tels que des outils à main électriques ou des véhicules électriques.

Claims

REVENDICATIONS
1. Procédé de fabrication d’un dispositif électrochimique sélectionné dans le groupe formé par : les batteries à ions de lithium d’une capacité supérieure à 1 mAh, les batteries à ions de sodium, les batteries lithium - air, les cellules photovoltaïques, les piles à combustible, mettant en œuvre un procédé de fabrication d’une électrode poreuse comprenant une couche poreuse déposée sur un substrat, ladite couche étant exempte de liant, présentant une porosité comprise entre 20 % et 60% en volume, de préférence entre 25 % et 50 %, et des pores de diamètre moyen inférieur à 50 nm, ledit procédé de fabrication de ladite électrode poreuse étant caractérisé en ce que :
(a) on approvisionne un substrat et une suspension colloïdale ou une pâte comprenant des agrégats ou des agglomérats de nanoparticules primaires monodisperses d’au moins un matériau actif d’électrode P, de diamètre primaire moyen D50 compris entre 2 nm et 150 nm, de préférence entre 2 nm et 100 nm, et plus préférentiellement compris entre 2 nm et 60 nm, lesdits agrégats ou agglomérats présentant un diamètre moyen D50 compris entre 50 nm et 300 nm, et de préférence entre 100 nm à 200 nm,
(b) on dépose sur au moins une face dudit substrat une couche à partir de ladite suspension colloïdale ou pâte approvisionnée à l’étape (a), par un procédé sélectionné dans le groupe formé par : l’électrophorèse, les procédés d’impression et de préférence l’impression par jet d’encre et l’impression flexographique, une technique d’enduction et de préférence l’enduction à la racle, l’enduction au rouleau, l’enduction au rideau, l’enduction par trempage, l’enduction à travers une filière en forme de fente ;
(c) on sèche ladite couche obtenue à l’étape (b), le cas échéant, avant ou après avoir séparée ladite couche de son substrat intermédiaire, puis, optionnellement on traite thermiquement, de préférence sous atmosphère oxydante, la dite couche séchée, et on la consolide, par pressage et/ou chauffage, pour obtenir une couche poreuse, de préférence mésoporeuse,
(d) on dépose, sur et à l’intérieur des pores de ladite couche poreuse, un revêtement d’un matériau conducteur électronique, ou mettant en œuvre une électrode poreuse susceptible d’être obtenue par ledit procédé de fabrication d’une électrode poreuse, sachant que ledit substrat peut être un substrat capable d’agir comme collecteur de courant électrique, ou un substrat intermédiaire.
2. Procédé selon la revendication 1, caractérisé en ce que ladite couche poreuse présente une surface spécifique comprise entre 10 m2/g et 500 m2/g.
3. Procédé selon l’une quelconque des revendications 1 à 2, dans lequel ladite couche poreuse obtenue à l’étape (c) présente une épaisseur comprise entre 4 pm et 400 pm.
4. Procédé selon l’une quelconque des revendications 1 à 3, caractérisé en ce que lorsque ledit substrat est un substrat intermédiaire, ladite couche est séparée à l’étape (c) avant ou après son séchage dudit substrat intermédiaire, pour former une plaque poreuse.
5. Procédé, caractérisé en ce que lorsque ladite suspension colloïdale ou pâte approvisionnée à l’étape (a) comprend des additifs organiques, tels que des ligands, stabilisants, liants ou solvants organiques résiduels, on traite thermiquement, de préférence sous atmosphère oxydante, ladite couche séchée à l’étape c) selon l’une quelconque des revendications 1 à 3, ou ladite plaque poreuse selon la revendication 4.
6. Procédé selon l’une quelconque des revendications 1 à 5, caractérisé en ce que ledit matériau conducteur électronique est le carbone.
7. Procédé selon l’une quelconque des revendications 1 à 6, caractérisé en ce que le dépôt dudit revêtement de matériau conducteur électronique est effectué par la technique de dépôt de couches atomiques ALD, ou par immersion de la couche poreuse dans une phase liquide comportant un précurseur dudit matériau conducteur électronique, suivie par la transformation dudit précurseur en matériau conducteur électronique.
8. Procédé selon la revendication 7, caractérisé en ce que ledit précurseur est un composé riche en carbone, tels qu’un glucide, et en ce que ladite transformation en matériau conducteur électronique est une pyrolyse, de préférence sous atmosphère inerte.
9. Procédé selon l’une quelconque des revendications 1 à 8, dans lequel ledit matériau P est sélectionné dans le groupe formé par : o les oxydes LiMn2C>4, Lii+xMn2-xC>4 avecO < x < 0,15, UC0O2, LiNiC>2, LiMni.sNio.sCU, LiMni,5Nio,5-xXxC>4 où X est sélectionné parmi Al, Fe, Cr, Co, Rh, Nd, autres terres rares tels que Sc, Y, Lu, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, et où 0 < x < 0,1, LiMn2-xMx04 avec M = Er, Dy, Gd, Tb, Yb, Al, Y, Ni, Co, Ti, Sn, As, Mg ou un mélange de ces éléments et où 0 < x < 0,4, LiFe02, LiMni/3Nii/3Coi/302, LiNi0.8Co0.15AI0.05O2, LiAlxMn2-x04 avec 0 £ x < 0,15, UNii/xCoi/yMni/z02 avec x+y+z =10 ; o LixMyC>2 où 0.6£y£0.85; 0£x+y£2; et M est choisi parmi Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Sn, and Sb ou un mélange de ces éléments ;
Li1.20Nbo.20Mno.60O2 ; o Lii+xNbyMezAp02 où Me est au moins un métal de transition choisi parmi : Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Te, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Rf, Db, Sg, Bh, Hs et Mt, et où 0.6<x<1 ; 0<y<0.5; 0.25£z<1; avec A ¹ Me et A ¹ Nb, et 0£p£0.2 ; o LixNby-aNaMz-bPb02-cFc où 1.2<x£1.75; 0£y<0.55; 0.1<z<1; 0£a<0.5; 0£b<1; 0£c<0.8; et où M, N, et P sont chacun au moins un des éléments choisi dans le groupe constitué par Ti, Ta, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Zr, Y, Mo, Ru, Rh, et Sb ; o Li1.25Nbo.25Mno.50O2 ; Li1.3Nbo.3Mno.40O2 ; Li1.3Nbo.3Feo.40O2 ; Li1.3Nbo.43Nio.27O2 ;
Li1.3Nb0.43Co0.27O2 ; Li1.4Nbo.2Mno.53O2 ; o LixNio.2Mno.6Oy où 0.00£x£1.52; 1.07£y<2.4 ; Li1.2Nio.2Mno.6O2 ; o LiNixCoyMni-x-y02 où 0 £ x et y £ 0.5 ; LiNixCezCOyMni-x-y02 où 0 £ x et y £ 0.5 et 0 £ z ; o les phosphates LiFeP04, LiMnP04, UC0PO4, LiNiP04, Li3V2(P04)3 , Li2MP04F avec M = Fe, Co, Ni ou un mélange de ces différents éléments, L1MPO4F avec M = V, Fe, T ou un mélange de ces différents éléments; les phosphates de formule LiMM’P04, avec M et M’ (M ¹ M’) sélectionnés parmi Fe, Mn, Ni, Co, V tels que le UFexCoi-xP04et où 0 < x < 1 ; o Feo,9Coo,iOF ; L1MSO4F avec M = Fe, Co, Ni, Mn, Zn, Mg ;toutes les formes lithiées des chalcogénides suivants : V2O5, V3O8, T1S2, les oxysulfures de titane (TiOySzavec z=2-y et 0,3£y£1), les oxysulfures de tungstène (WOySz avec 0.6<y<3 et 0.1<z<2), CuS, CuS2, de préférence L^Osavec 0 < x £ 2, LLVsOs avec 0 < x £ 1,7, LixTiS2 avec 0 < x £ 1, les oxysulfures de titane et de lithium LixTiOySz avec z=2-y, 0,3£y£1 et 0 < x £ 1, LixWOySz avec z=2-y, 0,3£y£1 et 0 < x £ 1, LixCuS avec 0 < x £ 1 , LixCuS2 avec 0 < x £ 1.
10. Procédé selon l’une quelconque des revendications 1 à 8, dans lequel ledit matériau P est sélectionné dans le groupe formé par : o U4T15O12, Li4Ti5-xMxOi2 avec M = V, Zr, Hf, Nb, Ta et 0 £ x £ 0,25 ; o les oxydes de niobium et les oxydes mixtes de niobium avec le titane, le germanium, le cérium ou le tungstène, et de préférence dans le groupe formé par : o Nb205±s, N b 1 eVV 16qq3±d , NbieWsOssie avec 0 £ x < 1 et 0 £ d £ 2, LiNbOs, o TiNb207±5, LiwTiNb207 avec w³0, Tii-xM1 xNb2-yM2y07±5 ou LiwTii-xM1 xNb2-yM2y07±5 dans lesquels M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn, M1 et M2 pouvant être identiques ou différents l’un de l’autre, et dans lequel 0£w£5et0£x£ 1 et0£y£2et0£ô£ 0,3; LaxTii-2xNb2+xC>7 où 0<x<0.5 ; MxTi1.2xNb2+x07±ô
dans lequel M est un élément dont le degré d'oxydation est +III, plus particulièrement M est au moins un des éléments choisi dans le groupe constitué de Fe, Ga, Mo, Al, B, et où 0<x£0.20 et -0.3£ d £0.3 ; Ga0.10Ti0.80Nb2.10O7 ; Fe0.10Ti0.80Nb2.10O7 ; MxTl2-2xNbl0+xO29±6
dans lequel M est un élément dont le degré d'oxydation est +III, plus particulièrement M est au moins un des éléments choisi dans le groupe constitué de Fe, Ga, Mo, Al, B, et où 0<x£0.40 et -0.3£ d £0.3 ; Tii-xM1 xNb2-yM2y07-zM3 z ou LiwTii-xM1 xNb2-yM2y07-zM3 zdans lesquels o M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn, o M1 et M2 pouvant être identiques ou différents l’un de l’autre, o M3 est au moins un halogène, o et dans lesquels 0£w£5et0£x£1 et0£y£2etz£0,3; TiNb207-zM3 z ou LiwTiNb207-zM3 z dans lesquels M3 est au moins un halogène, de préférence choisi parmi F, Cl, Br, I ou un mélange de ceux-ci, et 0 < z £ 0,3 ; Tii-xGexNb2-yM1 y07±z, LiwTii-xGexNb2-yM1y07±z , Tii-xCexNb2-yM1y07±z, LiwTii-xCexNb2- yM1 y07±zdans lesquels
M1 est au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs et Sn ;
0£w£5et0£x£1 et0£y£2etz£0,3; Tii.xGexNb2-yM1y07-zM2z , LiwTii.xGexNb2-yM1y07-zM2z, Tii.xCexNb2-yM1y07-zM2z, LiwTii. xCexNb2-yM1y07-zM2 z , dans lesquels
M1 et M2 sont chacun au moins un élément choisi dans le groupe constitué de Nb, V, Ta, Fe, Co, Ti, Bi, Sb, As, P, Cr, Mo, W, B, Na, Mg, Ca, Ba, Pb, Al, Zr, Si, Sr, K, Cs, Ce et Sn,
M1 et M2 pouvant être identiques ou différents l’un de l’autre,
et dans lesquels 0£w£5et0£x£ 1 et0£y£2etz£0,3; o Ti02 ; o LiSiTON.
11. Procédé de fabrication d’une batterie à ions de lithium d’une capacité supérieure à 1 mAh selon l’une quelconque des revendications 1 à 10, caractérisé en ce que ladite électrode poreuse présente une porosité comprise entre 20 % et 60% en volume, exempte de liant, comprenant des pores de diamètre moyen inférieur à 50 nm.
12. Procédé selon la revendication 9 ou 11, dans lequel on met en œuvre ledit procédé de fabrication d’une électrode poreuse pour fabriquer une cathode.
13. Procédé selon la revendication 10 ou 11, dans lequel on met en œuvre ledit procédé de fabrication d’une électrode poreuse pour fabriquer une anode.
14. Procédé selon l’une quelconque des revendications 1 à 13, dans lequel ladite électrode poreuse est imprégnée par un électrolyte, de préférence une phase porteuse d’ions de lithium sélectionnée dans le groupe formé par : o un électrolyte composé d’au moins un solvant aprotique et d’au moins un sel de lithium ; o un électrolyte composé d’au moins un liquide ionique ou polyliquide ionique et d’au moins sel de lithium ; o un mélange d’au moins un solvant aprotique et d’au moins un liquide ionique ou d’au moins un polyliquide ionique et d’au moins un sel de lithium ; o un polymère rendu conducteur ionique par l’ajout d’au moins un sel de lithium ; et o un polymère rendu conducteur ionique par l’ajout d’un électrolyte liquide, soit dans la phase polymère, soit dans la structure mésoporeuse.
15. Batterie à ions de lithium avec une capacité supérieure à 1 mAh, susceptible d’être obtenue par le procédé selon l’une quelconque des revendications 1 à 14.
16. Dispositif électrochimique, sélectionné dans le groupe forme par les batteries à ions de sodium, les batteries lithium - air, les piles à combustible et les cellules photovoltaïques, susceptible d’être obtenue par le procédé selon l’une quelconque des revendications 1 à 14.
PCT/IB2021/053499 2020-04-28 2021-04-28 Procédé de fabrication d'une électrode poreuse, et batterie contenant une telle électrode WO2021220176A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3175605A CA3175605A1 (fr) 2020-04-28 2021-04-28 Procede de fabrication d'une electrode poreuse, et batterie contenant une telle electrode
JP2022565752A JP2023524425A (ja) 2020-04-28 2021-04-28 多孔性電極を製造する方法、及びそうした電極を含む電池
EP21722302.3A EP4143901A1 (fr) 2020-04-28 2021-04-28 Procédé de fabrication d'une électrode poreuse, et batterie contenant une telle électrode
CN202180045771.0A CN115997297A (zh) 2020-04-28 2021-04-28 用于制造多孔电极的方法和包含这种电极的电池
US17/997,156 US20230085658A1 (en) 2020-04-28 2021-04-28 Method for manufacturing a porous electrode, and battery containing such an electrode
KR1020227041817A KR20230004824A (ko) 2020-04-28 2021-04-28 다공성 전극을 제조하기 위한 방법 및 그러한 전극을 포함하는 배터리
IL297454A IL297454A (en) 2020-04-28 2022-10-19 A method for producing a porous electrode and a battery containing such an electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2004188A FR3109669B1 (fr) 2020-04-28 2020-04-28 Procede de fabrication d’une electrode poreuse, et batterie contenant une telle electrode
FR2004188 2020-04-28

Publications (1)

Publication Number Publication Date
WO2021220176A1 true WO2021220176A1 (fr) 2021-11-04

Family

ID=72266401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/053499 WO2021220176A1 (fr) 2020-04-28 2021-04-28 Procédé de fabrication d'une électrode poreuse, et batterie contenant une telle électrode

Country Status (9)

Country Link
US (1) US20230085658A1 (fr)
EP (1) EP4143901A1 (fr)
JP (1) JP2023524425A (fr)
KR (1) KR20230004824A (fr)
CN (1) CN115997297A (fr)
CA (1) CA3175605A1 (fr)
FR (1) FR3109669B1 (fr)
IL (1) IL297454A (fr)
WO (1) WO2021220176A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023275779A1 (fr) * 2021-06-30 2023-01-05 I-Ten Batterie a ions de lithium a tres forte densite de puissance et bas cout
FR3124895A1 (fr) * 2021-06-30 2023-01-06 Hfg Batterie a ions de lithium a forte densite de puissance et bas cout

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117117134B (zh) * 2023-09-08 2024-03-26 国钠能源科技(河北)有限公司 基于原子层沉积的钠离子电池正极材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982084A1 (fr) * 2011-11-02 2013-05-03 Fabien Gaben Procede de fabrication d'electrodes de batteries entierement solides
FR3014425A1 (fr) * 2013-12-05 2015-06-12 Centre Nat Rech Scient Materiau carbone composite comprenant des particules d'un compose susceptible de former un alliage avec le lithium, son utilisation et sa preparation
FR3080862A1 (fr) * 2018-05-07 2019-11-08 I-Ten Procede de fabrication d'anodes pour batteries a ions de lithium
FR3080945A1 (fr) * 2018-05-07 2019-11-08 I-Ten Electrolytes mesoporeux pour dispositifs electrochimiques en couches minces
WO2019215407A1 (fr) 2018-05-07 2019-11-14 I-Ten Electrodes poreuses pour dispositifs electrochimiques

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982084A1 (fr) * 2011-11-02 2013-05-03 Fabien Gaben Procede de fabrication d'electrodes de batteries entierement solides
EP2774194B1 (fr) 2011-11-02 2017-05-03 I-Ten Procede de fabrication d'electrodes de batteries entierement solides
FR3014425A1 (fr) * 2013-12-05 2015-06-12 Centre Nat Rech Scient Materiau carbone composite comprenant des particules d'un compose susceptible de former un alliage avec le lithium, son utilisation et sa preparation
FR3080862A1 (fr) * 2018-05-07 2019-11-08 I-Ten Procede de fabrication d'anodes pour batteries a ions de lithium
FR3080945A1 (fr) * 2018-05-07 2019-11-08 I-Ten Electrolytes mesoporeux pour dispositifs electrochimiques en couches minces
WO2019215407A1 (fr) 2018-05-07 2019-11-14 I-Ten Electrodes poreuses pour dispositifs electrochimiques

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"One pot hydrothermal synthesis and electrochemical charactérisation of Li Mn O spinel structured compounds", ENERGY ENVIRON. SCI., vol. 3, pages 1339 - 1346
CAS, no. 761441-54-7
D.L. WOOD: "Technical and economic analysis of solvent-based lithium-ion electrode drying with water and NMP", DRYING TECHNOLOGY, vol. 36, no. 2, 2018
F. ROUQUEROL ET AL.: "Texture des matériaux pulvérulents ou poreux", TECHNIQUES DE L'INGÉNIEUR, pages 1050
J. MAL.C. LIM: "Effect of particie size distribution of sintering of agglomerate-free submicron alumina powder compacts", J. EUROP. CERAMIC SOC., vol. 22, no. 13, 2002, pages 2197 - 2208
J. NEWMAN: "Optimization of Porosity and Thickness of a Battery Electrode by Means of A Reaction-Zone Mode!", J. ELECTROCHEM. SOC., vol. 142, no. 1, 1995, pages 97 - 101
LI J ET AL: "Highly dispersed Pt nanoparticle catalyst prepared by atomic layer deposition", APPLIED CATALYSIS B: ENVIRONMENTAL, ELSEVIER, AMSTERDAM, NL, vol. 97, no. 1-2, 9 June 2010 (2010-06-09), pages 220 - 226, XP027057416, ISSN: 0926-3373, [retrieved on 20100414] *
S.T. TALEGHANI ET AL.: "A study on the Effect of Porosity and Particle Size Distribution on Li-lon Battery Performance", J . ELECTROCHEM. SOC., vol. 164, no. 11, 2017, pages E3179 - E3189

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023275779A1 (fr) * 2021-06-30 2023-01-05 I-Ten Batterie a ions de lithium a tres forte densite de puissance et bas cout
FR3124895A1 (fr) * 2021-06-30 2023-01-06 Hfg Batterie a ions de lithium a forte densite de puissance et bas cout

Also Published As

Publication number Publication date
IL297454A (en) 2022-12-01
FR3109669B1 (fr) 2022-10-14
FR3109669A1 (fr) 2021-10-29
EP4143901A1 (fr) 2023-03-08
CA3175605A1 (fr) 2021-11-04
US20230085658A1 (en) 2023-03-23
CN115997297A (zh) 2023-04-21
JP2023524425A (ja) 2023-06-12
KR20230004824A (ko) 2023-01-06

Similar Documents

Publication Publication Date Title
EP3766115B1 (fr) Electrodes poreuses pour dispositifs electrochimiques
WO2019215411A1 (fr) Céramique poreuse pour electrolytes utilisée dans des dispositifs electro-chimiques en couches minces
WO2021220176A1 (fr) Procédé de fabrication d&#39;une électrode poreuse, et batterie contenant une telle électrode
EP4143900A1 (fr) Procédé de fabrication d&#39;un ensemble électrode poreuse et séparateur, un ensemble électrode poreuse et séparateur, et microbatterie contenant un tel ensemble
EP4143899A1 (fr) Procédé de fabrication d&#39;une électrode poreuse, et microbatterie contenant une telle électrode
WO2021220177A1 (fr) Procédé de fabrication d&#39;un ensemble électrode poreuse et séparateur, un ensemble électrode poreuse et séparateur, et dispositif électrochimique contenant un tel ensemble
CA3206652A1 (fr) Procede de fabrication d&#39;une anode poreuse pour batterie secondaire a ions de lithium, anode ainsi obtenue, et batterie comprenant cette anode
CA3206650A1 (fr) Procede de fabrication d&#39;une anode poreuse pour batterie secondaire a ions de lithium, anode ainsi obtenue, et microbatterie comprenant cette anode
EP4364213A1 (fr) Batterie a ions de lithium a tres forte densite de puissance et bas cout
WO2023139429A1 (fr) Procede de fabrication d&#39;une electrode poreuse, et batterie contenant une telle electrode
FR3131450A1 (fr) Procede de fabrication d’une electrode poreuse, et batterie contenant une telle electrode
FR3131449A1 (fr) Procede de fabrication d’une electrode poreuse, et microbatterie contenant une telle electrode
CA3182818A1 (fr) Anode de forte densite d&#39;energie et de puissance pour batteries et methode de sa fabrication
CA3182743A1 (fr) Anode de forte densite d&#39;energie et de puissance pour batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21722302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3175605

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022565752

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227041817

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021722302

Country of ref document: EP

Effective date: 20221128