WO2021219131A1 - 一种切顶留巷无煤柱开采方法 - Google Patents

一种切顶留巷无煤柱开采方法 Download PDF

Info

Publication number
WO2021219131A1
WO2021219131A1 PCT/CN2021/091478 CN2021091478W WO2021219131A1 WO 2021219131 A1 WO2021219131 A1 WO 2021219131A1 CN 2021091478 W CN2021091478 W CN 2021091478W WO 2021219131 A1 WO2021219131 A1 WO 2021219131A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
working face
along
gas drainage
mining
Prior art date
Application number
PCT/CN2021/091478
Other languages
English (en)
French (fr)
Inventor
王炯
李文飞
马资敏
于光远
Original Assignee
中国矿业大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学(北京) filed Critical 中国矿业大学(北京)
Priority to US17/922,128 priority Critical patent/US20230258083A1/en
Publication of WO2021219131A1 publication Critical patent/WO2021219131A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/18Methods of underground mining; Layouts therefor for brown or hard coal
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F1/00Ventilation of mines or tunnels; Distribution of ventilating currents
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F1/00Ventilation of mines or tunnels; Distribution of ventilating currents
    • E21F1/006Ventilation at the working face of galleries or tunnels
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F1/00Ventilation of mines or tunnels; Distribution of ventilating currents
    • E21F1/10Air doors
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F1/00Ventilation of mines or tunnels; Distribution of ventilating currents
    • E21F1/14Air partitions; Air locks
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F16/00Drainage

Definitions

  • the application relates to the technical field of coal mining, and in particular to a method for mining without coal pillars by cutting the roof and retaining the roadway.
  • the "110" construction method of self-built roadway without coal pillars is an advanced coal-pillar-free mining technology. It is one of the key technologies to maintain the sustainable development of coal resources in my country. It also solves gas and power disasters and improves coal recovery. It is an important guarantee for the realization of scientific mining by reducing the roadway excavation rate.
  • the "110" construction method coal-pillar-free mining technology refers to the directional pre-splitting blasting on the side of the roadway where the goaf will be formed after the reinforcement and support of the mining roadway, and the roof is cut according to the design position. In the coal seam of the working face, under the action of the pressure of the mine, the roof of the goaf collapses along the pre-cracked slit to form a roadway.
  • the "110" construction method does not leave the section coal pillars to increase the resource recovery rate, and at the same time, one less mining roadway is excavated for each mining face, which reduces the mine excavation rate of 10,000 tons.
  • This application provides a coal-pillar-free mining method by cutting the roof and retaining the roadway, which includes the following steps:
  • one end of the working face track is connected to the air intake roadway along the groove, and the other end is connected to the gas drainage lane through the second process lane;
  • the roof cutting and blasting of the advanced coal working face is constructed, and the blast hole is arranged in the corner line area of the mining side roadway to form a pre-splitting cut;
  • a retaining section is formed in the track along the working face and the transport along the working face.
  • the retaining section is connected to the gas drainage lane through the first and second process lanes, forming a perfect Ventilation system.
  • the gas drainage lane includes a gas drainage air intake lane, a short lane, and a gas drainage return airway that are sequentially connected, the first craft lane is connected to the gas drainage return airway, and the second The second craft lane is connected with the gas drainage air inlet lane.
  • the ventilation line of the ventilation system is:
  • Part of the inlet air along the trough of the working face transportation is diverted to the coal working face and merges with the inlet air of the working face track along the trough, and then passes through the first roof section and the first After the craft lane enters the gas drainage return airway to form return air;
  • the other part of the air intake is diverted to the second roof cutting section, and the second process lane merges with the air intake of the gas drainage intake lane, and then enters the Return air is formed in the return airway of gas drainage.
  • a first air damper is provided inside one end of the working face track that is connected to the first process lane; the working face transport channel is connected to one end of the second process lane.
  • the second adjustment damper is provided inside one end of the working face track that is connected to the first process lane; the working face transport channel is connected to one end of the second process lane.
  • roof of the roadway is reinforced and supported during the tunneling period of the working face track and the working face transportation along the groove.
  • a temporary support device and a gangue retaining device in the roadway are erected along the roadway section.
  • the above-mentioned technical solutions provided by the embodiments of this application have the following advantages: in coal and gas outburst mines, the mining of the first mining face makes full use of the existing gas drainage tunnels to meet the requirements of using the "110" construction method.
  • Roadway layout requirements and related safety measures increase the use function of the roadway and increase the reuse rate, reduce the amount of roadway engineering before production, shorten the construction period, reduce the cost, and finally retain the two lanes for the recovery of the adjacent working faces on both sides. use.
  • Figure 1 is a schematic diagram of the roadway layout during the first mining face in the coal and gas outburst seam in the prior art
  • Fig. 2 is a schematic diagram of the roadway layout of a first mining face in a coal and gas outburst coal seam provided by an embodiment of the application before mining;
  • Fig. 3 is a schematic diagram of the roadway layout of a coal and gas outburst coal seam in the first mining process provided by an embodiment of the application;
  • Fig. 4 is a schematic diagram of a ventilation line during the stoping process of a first mining face in a coal and gas outburst seam provided by an embodiment of the application;
  • Fig. 5 is a schematic diagram of a ventilation line in the first mining face of another coal and gas outburst coal seam provided by an embodiment of the application.
  • connection can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or two devices, components, or The internal communication between the components.
  • connection can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or two devices, components, or The internal communication between the components.
  • each working face is correspondingly provided with a working face transportation channel 4, a working face track channel 5, and a coal mining operation face 3.
  • the working face transportation channel 4 of each working face is connected to the air intake road 1.
  • the working face track of each working face is connected to the main return airway 2 along the groove 5, and there are also gas drainage air intake lanes 6 and gas drainage return air lanes 7 for gas drainage, and gas drainage air intake lanes 6 and
  • the gas drainage return airway 7 is connected through the short lane 10 to form a ventilation circuit.
  • coal pillars need to be left, which causes a lot of waste of resources.
  • each working face needs to excavate two roadways along the tunnel and two rock tunnels for gas extraction, causing serious mining misalignment in the mine.
  • the embodiment of the present application provides a method for mining without coal pillars by cutting the roof and leaving the roadway, specifically a mining method with two roadways reserved for the first mining face in a coal and gas outburst coal seam.
  • the miner includes the following steps:
  • Step 1 Construct gas drainage lanes and perform gas drainage and outburst elimination on the first mining face's working face transportation along the groove area and the working face track along the groove area; as shown in Figure 2, the gas drainage lanes include sequential connections Gas extraction air intake lane 6, short lane 10 and gas extraction return air lane 7 in which the gas extraction air intake lane 6 is connected with the air intake main lane 1, and the gas extraction return air lane 7 is connected to the return air main lane 2.
  • the ventilation route in the gas drainage lane is: fresh air flow ⁇ air intake main lane 1 ⁇ gas drainage air intake lane 6 ⁇ Short Alley 10 ⁇ Gas Drainage Return Air Alley 7 ⁇ Return Air Main Alley 2.
  • Step 2 After the gas drainage and outburst are completed on the two trough areas of the first mining face, as shown in Figure 2, the construction face track is along the trough 5, the working face transportation along the trough 4, the first craft lane 8 and The second craft lane 9, the construction working face track groove 5 and the working face transportation groove 4 are respectively located on both sides of the working face, wherein one end of the working face track groove 5 is connected with the air inlet lane 1, and the other end passes through the working face.
  • the first process lane 8 is connected to the gas drainage lane, one end of the working face track along the groove 5 is connected to the air intake main lane 1, and the other end is connected to the gas drainage lane through the second process lane 9 .
  • the first process lane 8 is connected with the gas drainage return airway 7, and the second process lane 9 is connected with the gas drainage air intake lane 6.
  • Step 3 In the working face track along the groove 5 and the working face transportation along the groove 4, the advanced coal mining working face 3 constructs the roof cutting seam blasting, and the blast hole is arranged in the area of the corner line of the mining side roadway to form a pre-splitting cutting seam.
  • Step 4 Mining at the working face, forming a retaining section in the working face track along the groove 5 and the working face transportation along the groove 4, and the retaining section passes through the first craft lane 8 and the second craft lane 9 and gas
  • the drainage lanes are connected to form a complete ventilation system. After the first mining working face is finished, the reserved roadway section can be used for the adjacent working face.
  • step 4 as shown in FIG. 3, during the mining process of the working face, the part of the working face track 5 located in the mined-out area forms the first roof section 11, and the working face The part of the surface transportation along the channel 4 located in the goaf forms the second roof cutting section 12, as shown in Figure 4, the ventilation lines of the ventilation system formed by each roadway are:
  • the working face transportation Part of the air intake from the trough 4 is diverted to the coal mining face 3 and merges with the air intake of the track of the working face along the trough 5, and then passes through the first roof section 11 and the first process in turn
  • the working face transports another part of the inlet air along the trench 4 and diverges to the second roof-cutting and retaining section 12, and then passes through the second process
  • the lane 9 merges with the inlet air of the gas extraction air intake lane 6 and then enters the gas extraction air return lane 7 to form return air. That is, at least the following ventilation sub-circuits will be included:
  • the ventilation of the first roof retaining section and the second cutting roof retaining section is realized. There is no need to excavate and prepare the roadway in advance for the ventilation of the retaining section, and there is no need to seal the retaining section, which reduces The labor intensity of workers; after the end of the mining, the first and second roof-retaining sections can be directly reused to speed up the progress of the road-reserving project.
  • monitoring equipment for surrounding rock changes can be installed in the retaining section of the roadway, and personnel can enter and exit at any time, which is convenient for real-time monitoring of changes in the surrounding rock of the roadway.
  • the ventilation of the roadway section allows the toxic and harmful gases in the goaf and adjacent coal seams to be discharged from the ground along with the wind flow, and no longer accumulate, reducing safety accidents such as personnel poisoning and gas explosions.
  • the first mining face is working, it is possible to make overall arrangements for the construction of the roadway section to construct the next mining face gas drainage drilling and adjacent coal seam gas treatment projects, reducing the time of gas treatment projects and solving the problem of difficult mining succession.
  • the first regulating damper is provided at one end of the working face track along the groove 5 (that is, the first roof section 11 after the mining) and the first craft lane 8 are connected. 14.
  • the working face is transported along the trough 4 (that is, the second roof-cutting and retaining section 12 after the stoping) and the second craft lane 9 is internally provided with a second regulating damper 15, which is controlled by the first regulating damper 14 to enter the second
  • the air intake of the first craft lane 8 is controlled by the second regulating damper 15 to control the air intake of the working face transportation along the channel 4 at the coal mining face 3 to the second roof cutting section 12.
  • first and second roof-cutting roadway sections are retained, they can be used for the stoping of adjacent working faces on the one hand, and on the other hand, they can be used for the construction of the next working face in the roadway-retaining section.
  • the ventilation direction needs to be adjusted according to actual needs. Therefore, the inclined lane 13 is set in the roadway layout shown in Figure 5, and the working surface is transported along the way 4.
  • One end of the working face track along the groove 5 and the gas drainage air intake lane 6 is connected with the air intake main alley 1, and the working face track along the groove 5 and the return air main alley 2 are connected by an inclined lane 13
  • the working surface track groove 5 is provided with a third air damper 16 which is located at the connection between the working surface track groove 5 and the air intake road 1 and the working surface
  • a fourth adjusting damper 17 is provided in the inclined lane 13 and the third adjusting damper 16 can be used to open or close the working surface track groove 5 and the air intake.
  • the main lane 1 is connected or closed and the air volume is adjusted, and the fourth adjusting damper can be used to open or close the connection between the working face track along the groove 5 and the return air main lane 2 or close and adjust the air volume.
  • the working surface track can be switched between the two functions of air intake and return air along the groove, so as to realize the switching of different ventilation modes. For example, as shown in Fig. 4 When the working face is shown, the working face track along the groove 5 is used for air intake. When the next working face is mined, or when the lane is reserved for gas drainage, the working face track is along the groove 5 (this working face).
  • the working face track along the trough 5 will all become the first roof retaining section) can be used for return air through the adjustment of the third adjusting damper 16 and the fourth adjusting damper 17.
  • the inclined lanes and air doors can be set in the same way in the transportation along the working face to realize the switch of air inlet and return, which will not be repeated here.
  • the first damper 14, the second damper 15, the third damper 16, and the fourth damper 17 shown in FIGS. 4 and 5 are all bidirectional damper, and electronic damper can be used to realize remote control.
  • step 3 by cutting and blasting the roof of the roadway, it is more conducive to the collapse of the rock in the mined-out area, so that the rock layer after the cut can better fill the mining space after the collapse, and make the roadway stay
  • the roof forms a short-arm beam structure in the lateral direction, which avoids the formation of a long suspended roof in the mined-out area, improves the stress of the surrounding rock along the goaf roadway, and reduces the large additional load to the roadway.
  • the roof of the roadway is reinforced and supported during the excavation period of the working face track along the groove and the working face transportation along the groove.
  • the roof of the lane retention section will be subject to the advancement of the working face and multiple disturbances during the lane retention reuse period, it is easy to produce various cracks, resulting in a reduction in the strength of the roof and affecting the stability of the lane retention section.
  • the grouting anchor cable is used to grouting into the cracked roof to improve the strength of the roof.
  • temporary support devices and gangue retaining devices in the roadway are erected along the remaining roadway section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)
  • Road Paving Structures (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

一种切顶留巷无煤柱开采方法,包括以下步骤:施工瓦斯抽采巷并对工作面运输顺槽(4)区域和工作面轨道顺槽(5)区域进行消突;施工工作面轨道顺槽(5)、工作面运输顺槽(4)、第一工艺巷(8)和第二工艺巷(9),工作面轨道顺槽(5)一端与进风大巷(1)连通,另一端通过第一工艺巷(8)连通瓦斯抽采巷,工作面运输顺槽(4)一端与进风大巷(1)连通,另一端通过第二工艺巷(9)连通瓦斯抽采巷;工作面回采形成留巷段,留巷段通过第一工艺巷(8)和第二工艺巷(9)与瓦斯抽采巷连通以形成通风系统。

Description

一种切顶留巷无煤柱开采方法
本申请要求于2020年4月30日提交中国国家知识产权局专利局、申请号为202010367096.0、发明创造名称为“一种切顶留巷无煤柱开采方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及煤炭开采技术领域,尤其涉及一种切顶留巷无煤柱开采方法。
背景技术
随着煤炭资源开采深度的不断增加,煤层的瓦斯含量和瓦斯压力不断增加,煤与瓦斯突出危险性日趋严重。针对有煤与瓦斯突出危险性的煤层,在顶(或底)板岩巷布置瓦斯抽采巷,通过施工穿层钻孔预抽煤巷条带煤层瓦斯是主要的区域防突措施之一。
切顶卸压无煤柱自成巷“110”工法是一种先进的无煤柱开采技术,是保持我国煤炭资源可持续发展的关键技术之一,亦是解决瓦斯与动力灾害、提高煤炭回收率、降低巷道掘进率、实现科学采矿的重要保障。“110”工法无煤柱开采技术是指通过对回采巷道进行补强支护后,在巷道将要形成采空区侧进行定向预裂爆破,将顶板按照设计位置进行切缝,切缝结束后随着工作面煤层的回采,在矿山压力作用下,采空区顶板沿着预裂切缝垮落形成巷帮,利用原巷道部分空间和支护自动形成新巷道,作为下一工作面的回采巷道的技术。“110”工法不留区段煤柱提高了资源回收率,同时每个回采工作面少掘进一条回采巷道,降低了煤矿万吨掘进率。
但是现有技术中,为了满足使用“110”工法保留两巷的要求,需要在开采初期掘进四条顺槽巷道,形成三个工作面,以满足巷道布置要求和相关安全措施,延长了矿井建设时间,增加了前期投资资金,按照目前的开采方法在开采初期只设计一个回采工作面难以满足使用 “110”工法保留两巷的要求。
发明内容
为了解决上述技术问题,本申请提供了如下技术方案。
本申请提供了一种切顶留巷无煤柱开采方法,其包括以下步骤:
施工瓦斯抽采巷并对所述首采工作面两侧的工作面运输顺槽区域和工作面轨道顺槽区域进行消突;
施工工作面轨道顺槽、工作面运输顺槽、第一工艺巷和第二工艺巷,所述工作面轨道顺槽一端与进风大巷连通,另一端通过所述第一工艺巷连通所述瓦斯抽采巷,所述工作面轨道顺槽一端与所述进风大巷连通,另一端通过所述第二工艺巷连通所述瓦斯抽采巷;
在所述工作面轨道顺槽和工作面运输顺槽内,超前采煤作业面施工顶板切缝爆破,炮孔布置在回采侧巷角线区域,形成预裂切缝;
工作面回采,在所述工作面轨道顺槽和所述工作面运输顺槽内形成留巷段,留巷段通过所述第一工艺巷和第二工艺巷与瓦斯抽采巷连通,形成完善的通风系统。
进一步的,所述瓦斯抽采巷包括依次连接的瓦斯抽采进风巷、短巷和瓦斯抽采回风巷,所述第一工艺巷与所述瓦斯抽采回风巷连通,所述第二工艺巷与所述瓦斯抽采进风巷连通。
进一步的,在所述工作面回采过程中,所述工作面轨道顺槽位于采空区的部分形成第一切顶留巷段,所述工作面运输顺槽位于采空区的部分形成第二切顶留巷段,所述通风系统的通风线路为:
通过所述瓦斯抽采进风巷、所述工作面运输顺槽和所述工作面轨道顺槽进风,通过所述瓦斯抽采回风巷进行回风;
所述工作面运输顺槽进风的一部分分流至所述采煤作业面后与所 述工作面轨道顺槽的进风汇合,然后依次通过所述第一切顶留巷段和所述第一工艺巷后进入所述瓦斯抽采回风巷形成回风;
所述工作面运输顺槽进风的另一部分分流至所述第二切顶留巷段后,通过所述第二工艺巷与所述瓦斯抽采进风巷的进风汇合,然后进入所述瓦斯抽采回风巷形成回风。
进一步的,所述工作面轨道顺槽与所述第一工艺巷相连通的一端内部设置有第一调节风门;所述工作面运输顺槽与所述第二工艺巷相连通的一端内部设置有第二调节风门。
进一步的,在所述工作面轨道顺槽和工作面运输顺槽掘进时期对巷道的顶板进行补强支护。
进一步的,在工作面回采过程中,沿留巷段架设巷内临时支护装置及挡矸装置。
本申请实施例提供的上述技术方案与现有技术相比具有如下优点:在煤与瓦斯突出矿井中,首采工作面的开采充分利用现有的瓦斯抽采巷,以满足使用“110”工法的巷道布置要求和相关安全措施,增加巷道的使用功能并提高复用率,降低投产前的巷道工程量,缩短建设工期,降低成本,最终保留两巷供两侧的相邻工作面开采时复用。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中煤与瓦斯突出煤层首采工作面回采过程中的巷 道布置示意图;
图2为本申请实施例提供的一种煤与瓦斯突出煤层首采工作面在回采前的巷道布置示意图;
图3为本申请实施例提供的一种煤与瓦斯突出煤层首采工作面在回采过程中的巷道布置示意图;
图4为本申请实施例提供的一种煤与瓦斯突出煤层首采工作面在回采过程中的通风线路示意图;
图5为本申请实施例提供的另一种煤与瓦斯突出煤层首采工作面在回采过程中的通风线路示意图。
图中:
1、进风大巷;2、回风大巷;3、采煤作业面;4、工作面运输顺槽;5、工作面轨道顺槽;6、瓦斯抽采进风巷;7、瓦斯抽采回风巷;8、第一工艺巷;9、第二工艺巷;10、短巷;11、第一切顶留巷段;12、第二切顶留巷段;13、斜巷;14、第一调节风门;15、第二调节风门;16、第三调节风门;17、第四调节风门。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换, 以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请中,术语“上”、“下”、“内”、“中”、“外”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本申请及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本申请中的具体含义。
此外,术语“设置”、“连接”、“固定”应做广义理解。例如,“连接”可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
如图1所示,给出了现有技术中煤与瓦斯突出矿井采用121工法开采过程中的巷道布置示意图。如图所示,每个工作面对应设置有工作面运输顺槽4、工作面轨道顺槽5和采煤作业面3,各工作面的工作面运输顺槽4连通进风大巷1,各工作面的工作面轨道顺槽5连通回风 大巷2,另外还设置有用于瓦斯抽采的瓦斯抽采进风巷6和瓦斯抽采回风巷7,瓦斯抽采进风巷6和瓦斯抽采回风巷7通过短巷10连通后形成通风回路。目前的这种结构中,需要留设煤柱,造成资源的大量浪费。而且,每个工作面都需要挖掘两个顺槽巷道,两条瓦斯抽采岩巷,造成矿井严重采掘失调。
为了充分利用先进的开采工艺,需要采用110工法进行开采,然而使用“110”工法首采面需要留两条巷道时需要掘进四条顺槽巷道,四条瓦斯抽采岩巷,形成三个工作面,以满足使用“110”工法的巷道布置要求和相关安全措施,延长了矿井建设时间,增加了前期投资资金,按照目前的开采方法在开采初期只设计一个回采工作面难以满足使用“110”工法的要求。
基于此,如图2-4所示,本申请实施例提供了一种切顶留巷无煤柱开采方法,具体为一种煤与瓦斯突出煤层首采工作面保留两巷的开采方法。该开采方包括以下步骤:
步骤1:施工瓦斯抽采巷并对所述首采工作面的工作面运输顺槽区域和工作面轨道顺槽区域进行瓦斯抽采消突;如图2所示,瓦斯抽采巷包括依次连接的瓦斯抽采进风巷6、短巷10和瓦斯抽采回风巷7,其中瓦斯抽采进风巷6与进风大巷1连通,瓦斯抽采回风巷7与回风大巷2连通,在进行首采工作面的两条顺槽区域瓦斯抽采消突的过程中,瓦斯抽采巷内的通风路线为:新鲜风流→进风大巷1→瓦斯抽采进风巷6→短巷10→瓦斯抽采回风巷7→回风大巷2。
步骤2:对首采工作面的两条顺槽区域进行瓦斯抽采消突完毕后,如图2所述,施工工作面轨道顺槽5、工作面运输顺槽4、第一工艺巷8和第二工艺巷9,施工工作面轨道顺槽5和工作面运输顺槽4分别位于工作面的两侧,其中所述工作面轨道顺槽5一端与进风大巷1连通,另一端通过所述第一工艺巷8连通所述瓦斯抽采巷,所述工作面轨道顺槽5一端与所述进风大巷1连通,另一端通过所述第二工艺巷9连 通所述瓦斯抽采巷。优选的,所述第一工艺巷8与所述瓦斯抽采回风巷7连通,所述第二工艺巷9与所述瓦斯抽采进风巷6连通。
步骤3:在所述工作面轨道顺槽5和工作面运输顺槽4内,超前采煤作业面3施工顶板切缝爆破,炮孔布置在回采侧巷角线区域,形成预裂切缝。
步骤4:工作面回采,在所述工作面轨道顺槽5和所述工作面运输顺槽4内形成留巷段,留巷段通过所述第一工艺巷8和第二工艺巷9与瓦斯抽采巷连通,形成完善的通风系统。首采工作面回采结束后可以通过保留后的留巷段用于相邻工作面的回采。
具体的,在步骤4中,如图3所示,在所述工作面回采过程中,所述工作面轨道顺槽5位于采空区的部分形成第一切顶留巷段11,所述工作面运输顺槽4位于采空区的部分形成第二切顶留巷段12,如图4所示,各巷道所形成的通风系统的通风线路为:
通过所述瓦斯抽采进风巷6、所述工作面运输顺槽4和所述工作面轨道顺槽5进风,通过所述瓦斯抽采回风巷7进行回风;所述工作面运输顺槽4进风的一部分分流至所述采煤作业面3后与所述工作面轨道顺槽5的进风汇合,然后依次通过所述第一切顶留巷段11和所述第一工艺巷8后进入所述瓦斯抽采回风巷7形成回风;所述工作面运输顺槽4进风的另一部分分流至所述第二切顶留巷段12后,通过所述第二工艺巷9与所述瓦斯抽采进风巷6的进风汇合,然后进入所述瓦斯抽采回风巷7形成回风。即至少会包括如下的通风子线路:
(1)新鲜风流→进风大巷1→工作面轨道顺槽5→第一切顶留巷段11→瓦斯抽采回风巷7→回风大巷2;
(2)新鲜风流→进风大巷1→工作面运输顺槽4→回采作业面→第一切顶留巷段11→瓦斯抽采回风巷7→回风大巷2;
(3)新鲜风流→进风大巷1→回采工作面运输顺槽4→第二切顶留巷段12→瓦斯抽采进风巷6→短巷10→瓦斯抽采回风巷7→回风大巷2;
(4)新鲜风流→进风大巷1→瓦斯抽采进风巷6→短巷10→瓦斯抽采回风巷7→回风大巷2。
上面的通风系统中,实现了第一切顶留巷段和第二切顶留巷段的通风,无需提前掘进准备巷道用于留巷段的通风,也无需将留巷段进行密闭,减少了工人劳动强度;回采结束后可以直接复用第一切顶留巷段和第二切顶留巷段,加快留巷工程进度。并且可以在留巷段进行安装围岩变化监测仪器,人员可随时进出,便于对巷道围岩变化进行实时监测。留巷段的通风使得采空区和临近煤层的有毒有害气体随着风流排出地面,不再积聚,减少了人员中毒和瓦斯爆炸等安全事故。此外,首采工作面回采的同时可统筹安排留巷段施工下个回采工作面瓦斯抽采钻孔和临近煤层瓦斯治理工程,减少瓦斯治理工程时间,解决矿井采掘接替困难的问题。
为了实现上面的通风线路,如图4所示,工作面轨道顺槽5(即回采后的第一切顶留巷段11)与第一工艺巷8相连通的一端内部设置有第一调节风门14,工作面运输顺槽4(即回采后的第二切顶留巷段12)与第二工艺巷9相连通的一端内部设置有第二调节风门15,通过第一调节风门14控制进入第一工艺巷8的进风量,通过第二调节风门15控制工作面运输顺槽4在采煤作业面3处分流至第二切顶留巷段12的进风量。
此外,第一切顶留巷段和第二切顶留巷段保留下来之后一方面可以用于相邻工作面回采时的顺槽,另一方面可统筹安排在留巷段施工下个回采工作面瓦斯抽采钻孔和临近煤层瓦斯治理工程,在留巷段复用阶段,其通风方向需要根据实际需要来调整方向,因此在图5所示 的巷道布置中设置斜巷13,工作面运输顺槽4、工作面轨道顺槽5和瓦斯抽采进风巷6的一端均与进风大巷1连通,所述工作面轨道顺槽5与所述回风大巷2之间通过斜巷13相连通,所述工作面轨道顺槽5内设置有第三调节风门16,所述第三调节风门16位于所述工作面轨道顺槽5与所述进风大巷1的连接处和所述工作面轨道顺槽5与所述斜巷13的连接处之间,斜巷13内设置有第四调节风门17,通过第三调节风门16可以用于打开或关闭工作面轨道顺槽5与进风大巷1的连通或关闭并调节风量,通过第四调节风门可以用于打开或关闭工作面轨道顺槽5与回风大巷2的连通或关闭并调节风量。通过第三调节风门16和第四调节风门17的设置,可以使得工作面轨道顺槽在进风和回风两种功能之间进行切换,以实现不同通风方式的切换,例如在回采图4所示的工作面的时候,工作面轨道顺槽5用于进风,当在回采下一工作面的过程中,或留巷用于瓦斯抽采时,工作面轨道顺槽5(本工作面回采完成后工作面轨道顺槽5会全部变为第一切顶留巷段)可以通过第三调节风门16和第四调节风门17的调节用于回风。同理,工作面运输顺槽可以采用相同的方式设置斜巷和调节风门来实现进风和回风的切换,此处不再赘述。
优选的,图4和图5中所示的第一调节风门14、第二调节风门15、第三调节风门16和第四调节风门17均为双向调节风门,可以采用电子风门实现远程控制。
在上面的实施例中,在步骤3中通过对巷道顶板切缝爆破,更加有利于采空区岩层的垮落,使切缝后的岩层垮落后能较好地充填回采空间,并且使得留巷顶板在侧向形成了短臂梁结构,避免了在采空区形成较长悬顶,改善了沿空留巷围岩应力,即减小了给留巷带来较大的附加荷载。
在一些实施例中,在所述工作面轨道顺槽和工作面运输顺槽掘进时期对巷道的顶板进行补强支护。由于留巷段顶板会受到工作面推进 以及留巷复用期间的多次扰动,容易产生各种裂隙,导致顶板强度降低,影响留巷段的稳定。优选在回采前(例如所述工作面轨道顺槽和工作面运输顺槽掘进时期)对巷道的顶板进行补强支护,包括但不限于采用恒阻锚索与注浆锚索对顶板进行补强支护。在留巷二次复用前,利用注浆锚索向产生裂隙的顶板内进行注浆,提高顶板的强度。此外,在工作面回采过程中,沿留巷段架设巷内临时支护装置及挡矸装置。
本申请中各未述及结构的对应的布置位置和连接关系,各未述及步骤的相互时序和控制参数均可参考现有技术中的同类装置和方法,各未述及结构的连接关系、操作及工作原理对于本领域的普通技术人员来说是可知的,在此不再详细描述。
本说明书中部分实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (6)

  1. 一种切顶留巷无煤柱开采方法,其特征在于,包括以下步骤:
    施工瓦斯抽采巷并对所述首采工作面两侧的工作面运输顺槽(4)区域和工作面轨道顺槽区域(5)进行消突;
    施工工作面轨道顺槽(5)、工作面运输顺槽(4)、第一工艺巷(8)和第二工艺巷(9),所述工作面轨道顺槽(5)一端与进风大巷(1)连通,另一端通过所述第一工艺巷(8)连通所述瓦斯抽采巷,所述工作面轨道顺槽(5)一端与所述进风大巷(1)连通,另一端通过所述第二工艺巷(9)连通所述瓦斯抽采巷;
    在所述工作面轨道顺槽(5)和工作面运输顺槽(4)内,超前采煤作业面(3)施工顶板切缝爆破,炮孔布置在回采侧巷角线区域,形成预裂切缝;
    工作面回采,在所述工作面轨道顺槽(5)和所述工作面运输顺槽(4)内形成留巷段,留巷段通过所述第一工艺巷(8)和第二工艺巷(9)与瓦斯抽采巷连通,形成完善的通风系统。
  2. 根据权利要求1所述的开采方法,其特征在于,所述瓦斯抽采巷包括依次连接的瓦斯抽采进风巷(6)、短巷(10)和瓦斯抽采回风巷(7),所述第一工艺巷(8)与所述瓦斯抽采回风巷(7)连通,所述第二工艺巷(9)与所述瓦斯抽采进风巷(6)连通。
  3. 根据权利要求2所述的开采方法,其特征在于,
    在所述工作面回采过程中,所述工作面轨道顺槽(5)位于采空区的部分形成第一切顶留巷段(11),所述工作面运输顺槽(4)位于采空区的部分形成第二切顶留巷段(12),所述通风系统的通风线路为:
    通过所述瓦斯抽采进风巷(6)、所述工作面运输顺槽(4)和所述工作面轨道顺槽(5)进风,通过所述瓦斯抽采回风巷(7)进行回风;
    所述工作面运输顺槽(4)进风的一部分分流至所述采煤作业面(3)后与所述工作面轨道顺槽(5)的进风汇合,然后依次通过所述第一切顶留巷段(11)和所述第一工艺巷(8)后进入所述瓦斯抽采回风巷(7)形成回风;
    所述工作面运输顺槽(4)进风的另一部分分流至所述第二切顶留巷段(12)后,通过所述第二工艺巷(9)与所述瓦斯抽采进风巷(6)的进风汇合,然后进入所述瓦斯抽采回风巷(7)形成回风。
  4. 根据权利要求1所述的开采方法,其特征在于,所述工作面轨道顺槽(5)与所述第一工艺巷(8)相连通的一端内部设置有第一调节风门(14);所述工作面运输顺槽(4)与所述第二工艺巷(9)相连通的一端内部设置有第二调节风门(15)。
  5. 根据权利要求1所述的开采方法,其特征在于,在所述工作面轨道顺槽(5)和工作面运输顺槽(4)掘进时期对巷道的顶板进行补强支护。
  6. 根据权利要求1所述的开采方法,其特征在于,在工作面回采过程中,沿留巷段架设巷内临时支护装置及挡矸装置。
PCT/CN2021/091478 2020-04-30 2021-04-30 一种切顶留巷无煤柱开采方法 WO2021219131A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/922,128 US20230258083A1 (en) 2020-04-30 2021-04-30 Mining Method Without Coal Pillars With Roof-Cutting And Roadway Retaining

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010367096.0 2020-04-30
CN202010367096.0A CN111636870B (zh) 2020-04-30 2020-04-30 一种切顶留巷无煤柱开采方法

Publications (1)

Publication Number Publication Date
WO2021219131A1 true WO2021219131A1 (zh) 2021-11-04

Family

ID=72326732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091478 WO2021219131A1 (zh) 2020-04-30 2021-04-30 一种切顶留巷无煤柱开采方法

Country Status (3)

Country Link
US (1) US20230258083A1 (zh)
CN (1) CN111636870B (zh)
WO (1) WO2021219131A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114151132A (zh) * 2021-12-10 2022-03-08 内蒙古科技大学 一种精确实测沿空留巷侧采空区自燃三带分布范围方法
CN114216786A (zh) * 2022-02-22 2022-03-22 中国矿业大学(北京) 一种切顶卸压无煤柱自成巷三维物理模型试验系统和方法
CN114352344A (zh) * 2021-12-17 2022-04-15 中煤科工集团沈阳研究院有限公司 一种煤层间巷道过地质构造影响区域瓦斯治理方法
CN116556966A (zh) * 2023-07-07 2023-08-08 山西凯嘉能源集团有限公司 一种精准消除煤巷掘进煤与瓦斯突出的巷道掘进方法
CN117167085A (zh) * 2023-08-10 2023-12-05 中国矿业大学 一种无煤柱开采留巷锚注支护方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111636870B (zh) * 2020-04-30 2021-10-08 王炯 一种切顶留巷无煤柱开采方法
CN111622795B (zh) * 2020-04-30 2021-03-30 中国矿业大学(北京) 煤与瓦斯突出矿井110工法开采的立体通风方法及系统
CN112901166B (zh) * 2021-03-29 2021-12-31 中国矿业大学 一种厚煤层水力压裂切顶沿空留巷方法
CN113738360B (zh) * 2021-09-08 2023-09-22 国家能源集团宁夏煤业有限责任公司 一种煤矿井下综采工作面开采方法
CN117145568B (zh) * 2023-10-11 2024-03-12 郑州煤电股份有限公司告成煤矿 一种底抽巷瓦斯采集设备及抽采工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1696739A1 (ru) * 1989-08-11 1991-12-07 Институт Геотехнической Механики Ан Усср Способ дегазации выработанного пространства лавы
CN105275487A (zh) * 2015-10-27 2016-01-27 何满潮 长臂开采n00工法通风系统
CN107725097A (zh) * 2017-10-31 2018-02-23 中国矿业大学(北京) 一种切顶成巷无煤柱开采瓦斯与煤自燃共治方法
CN111622795A (zh) * 2020-04-30 2020-09-04 中国矿业大学(北京) 煤与瓦斯突出矿井110工法开采的立体通风方法及系统
CN111636870A (zh) * 2020-04-30 2020-09-08 王炯 一种切顶留巷无煤柱开采方法
CN111828083A (zh) * 2020-07-31 2020-10-27 中国矿业大学(北京) 单一煤层的瓦斯抽采方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102720518B (zh) * 2012-06-18 2014-09-24 太原理工大学 一种综采放顶煤工作面u+u型通风系统
CN105178962A (zh) * 2015-06-24 2015-12-23 何满潮 长壁开采110工法
CN108194081B (zh) * 2015-06-24 2019-04-26 北京中矿创新联盟能源环境科学研究院 一种采煤作业方法
CN105221179B (zh) * 2015-10-21 2017-10-31 太原理工大学 一种高瓦斯矿井y型通风方法
CN109083674B (zh) * 2018-10-30 2019-11-12 中国矿业大学(北京) 一种适用于切顶卸压110工法开采工作面的安全洁净通风系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1696739A1 (ru) * 1989-08-11 1991-12-07 Институт Геотехнической Механики Ан Усср Способ дегазации выработанного пространства лавы
CN105275487A (zh) * 2015-10-27 2016-01-27 何满潮 长臂开采n00工法通风系统
CN107725097A (zh) * 2017-10-31 2018-02-23 中国矿业大学(北京) 一种切顶成巷无煤柱开采瓦斯与煤自燃共治方法
CN111622795A (zh) * 2020-04-30 2020-09-04 中国矿业大学(北京) 煤与瓦斯突出矿井110工法开采的立体通风方法及系统
CN111636870A (zh) * 2020-04-30 2020-09-08 王炯 一种切顶留巷无煤柱开采方法
CN111828083A (zh) * 2020-07-31 2020-10-27 中国矿业大学(北京) 单一煤层的瓦斯抽采方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114151132A (zh) * 2021-12-10 2022-03-08 内蒙古科技大学 一种精确实测沿空留巷侧采空区自燃三带分布范围方法
CN114151132B (zh) * 2021-12-10 2024-03-22 内蒙古科技大学 一种精确实测沿空留巷侧采空区自燃三带分布范围方法
CN114352344A (zh) * 2021-12-17 2022-04-15 中煤科工集团沈阳研究院有限公司 一种煤层间巷道过地质构造影响区域瓦斯治理方法
CN114352344B (zh) * 2021-12-17 2023-09-26 中煤科工集团沈阳研究院有限公司 一种煤层间巷道过地质构造影响区域瓦斯治理方法
CN114216786A (zh) * 2022-02-22 2022-03-22 中国矿业大学(北京) 一种切顶卸压无煤柱自成巷三维物理模型试验系统和方法
CN116556966A (zh) * 2023-07-07 2023-08-08 山西凯嘉能源集团有限公司 一种精准消除煤巷掘进煤与瓦斯突出的巷道掘进方法
CN116556966B (zh) * 2023-07-07 2023-09-19 山西凯嘉能源集团有限公司 一种精准消除煤巷掘进煤与瓦斯突出的巷道掘进方法
CN117167085A (zh) * 2023-08-10 2023-12-05 中国矿业大学 一种无煤柱开采留巷锚注支护方法
CN117167085B (zh) * 2023-08-10 2024-05-07 中国矿业大学 一种无煤柱开采留巷锚注支护方法

Also Published As

Publication number Publication date
CN111636870B (zh) 2021-10-08
US20230258083A1 (en) 2023-08-17
CN111636870A (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
WO2021219131A1 (zh) 一种切顶留巷无煤柱开采方法
WO2021219130A1 (zh) 煤与瓦斯突出矿井110工法开采的立体通风方法及系统
CN105221179B (zh) 一种高瓦斯矿井y型通风方法
CN105240013B (zh) 长壁开采n00工法
CN109083674B (zh) 一种适用于切顶卸压110工法开采工作面的安全洁净通风系统
CN103628877B (zh) 一种多层缓倾斜薄-中厚矿床充填采矿方法
CN111828083B (zh) 单一煤层的瓦斯抽采方法
CN109209382B (zh) 无煤柱无掘巷z型工作面回采方法
CN104088643B (zh) 一种急倾斜极近距离煤层放顶煤采煤方法
CN105298496B (zh) 设置预留工作面煤柱的全采全充采煤方法
CN103953345B (zh) 一种沿空小断面留巷开采方法
CN109252860B (zh) 一种薄煤层连采机高度机械化开采方法
WO2016074456A1 (zh) 控制覆岩裂隙与地表沉陷的掘采充平行作业的采煤方法
US11994027B2 (en) Dendritic reverse underground mining method for thin coal seam at end slope of strip mine
CN107083959A (zh) 一种沿空留巷方法
CN110410076A (zh) 一种用于老房柱采空区遗留煤柱回收的充填开采方法
CN108457652B (zh) 一种分区块段式全风压短壁连采充填方法
CN105275487B (zh) 长臂开采n00工法通风系统
WO2021031561A1 (zh) 一种煤矿井田不划分采区无掘巷无煤柱开采及施工方法
CN102425431B (zh) 一种极近距离煤层开采巷道布置方法
CN104500071A (zh) 煤层开采避开动压影响的沿空留巷方法
CN108222945A (zh) 利用主、辅分层坑道开挖特大断面地铁暗挖车站的施工方法
CN109973094B (zh) 一种矿山资源同面全采局充开采方法
CN111828005B (zh) 工作面开采方法
CN113944464B (zh) 一种边角煤全负压连采机采煤方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796563

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21796563

Country of ref document: EP

Kind code of ref document: A1