WO2021219015A1 - 机器人底盘及机器人 - Google Patents

机器人底盘及机器人 Download PDF

Info

Publication number
WO2021219015A1
WO2021219015A1 PCT/CN2021/090619 CN2021090619W WO2021219015A1 WO 2021219015 A1 WO2021219015 A1 WO 2021219015A1 CN 2021090619 W CN2021090619 W CN 2021090619W WO 2021219015 A1 WO2021219015 A1 WO 2021219015A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
universal wheel
robot chassis
seat
robot
Prior art date
Application number
PCT/CN2021/090619
Other languages
English (en)
French (fr)
Inventor
王辉
Original Assignee
京东数科海益信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东数科海益信息科技有限公司 filed Critical 京东数科海益信息科技有限公司
Publication of WO2021219015A1 publication Critical patent/WO2021219015A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D61/00Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
    • B62D61/02Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern with two road wheels in tandem on the longitudinal centre line of the vehicle

Definitions

  • the present disclosure relates to the technical field of intelligent robots, in particular, to robot chassis and robots.
  • the present disclosure relates to a robot chassis, which includes a main body, a drive assembly and a universal wheel assembly.
  • the drive assembly and the universal wheel assembly are mounted on the main body.
  • the drive assembly includes a drive wheel, the drive wheel and the universal wheel assembly.
  • the wheel assembly is supported on the main body at the bottom;
  • the driving wheel is supported by the main body through a first shock-absorbing mechanism
  • the universal wheel assembly is supported on the main body through a second shock-absorbing mechanism.
  • it further includes a suspension beam fixing frame, the suspension beam fixing frame is assembled to the main body, one end of the first damping mechanism is connected to the suspension beam fixing frame, and the other end of the first damping mechanism is connected
  • the first damping mechanism can ensure that the driving wheel is elastically deformed following the ground conditions during the moving process, thereby avoiding the hanging phenomenon of the driving wheel.
  • the drive assembly includes a fixed base and a power mechanism connected to the drive wheel shaft, the power mechanism is assembled on the fixed base, and the power mechanism provides power for the drive wheels.
  • both ends of the first damping mechanism are rotatably connected to the fixing seat and the suspension beam fixing frame, which can further increase the flexibility of the overall structure and prevent the overall structure from shaking from side to side.
  • the elastic resilience of the structure also avoids hardware damage caused by rigid connections to a certain extent.
  • the fixing seat includes two cantilever arms and corresponding connecting seats respectively located on both sides of the power mechanism, one end of the cantilever is assembled to the fixing seat, and the other end of the cantilever is connected through the connecting seat.
  • the seat is rotatably connected to the main body.
  • the first damping mechanism When the driving wheel is affected by external factors, the first damping mechanism is compressed and deformed, and the fixed seat will be raised or lowered simultaneously with the first damping mechanism, and the cantilever Due to the lifting or lowering of the fixed seat, the rotation of the connecting seat is caused, on the one hand, the overall flexibility is improved, and on the other hand, it can weaken the amplitude of the entire robot equipment due to external factors such as the environment, and at the same time give a rigid The restoring force in turn stops the amplitude.
  • the connecting seat is a shaft seat structure
  • the cantilever has a pin shaft penetrating into the shaft seat to facilitate assembly, installation and rotation of the cantilever.
  • the universal wheel assembly includes a universal wheel and a mounting plate, and the universal wheel is movably connected to the main body through the mounting plate, which can ensure the movement of the universal wheel at multiple angles. Steering; and in order to better ensure the stability of some robots with a higher center of gravity during the movement, the installation position of the universal wheel assembly is farther from the center of gravity of the robot chassis than the driving wheel, during the movement ,
  • the universal wheel assembly and the driving wheel form an angle, that is, the driving wheel and a plurality of universal wheels can form a stable polygonal structure, which can further improve the reliability of the movement of the robot with a higher center of gravity on uneven ground.
  • the second damping mechanism is arranged between the universal wheel and the main body, and the second damping mechanism ensures that the universal wheel is affected by external forces, such as uneven ground.
  • the ground undulates without hanging in the air, thereby ensuring the stability of the overall structure, and each universal wheel has an independent second damping mechanism, which is equivalent to the damping effect that each universal wheel is independent of each other and does not affect each other.
  • the shock absorption is realized from different positions of the first support plate, so as to avoid the occurrence of a certain universal wheel hanging in the air.
  • the mounting plate includes an upper plate and a plurality of guide posts, the upper plate is fixedly connected to the universal seat of the universal wheel through the guide posts, and the upper plate is connected to the universal wheel.
  • the seat is spaced a certain distance apart, the universal wheel assembly is movably assembled to the main body through the guide column, when the second shock-absorbing mechanism is elastically deformed, the gap between the upper plate and the universal seat.
  • the distance can be reduced to a certain extent, reducing the fluctuation of the main body caused by the deformation of the first damping mechanism, and improving the stability of the overall chassis and the structure of the robot equipment.
  • An elastic space for deformation can also reduce the overall vibration amplitude to a certain extent, so that the overall chassis and robot equipment can return to a normal and stable working state as soon as possible.
  • the guide column includes a bolt barrel and a bolt
  • the bolt barrel includes a stopper and a sleeve
  • the sleeve has an internal threaded hole, and the bolt passes through the internal threaded hole and the The bolt barrel is screwed and fixed.
  • the first damping mechanism includes elastic supports respectively provided on both sides of the shaft of the driving wheel.
  • the main body includes a first support plate and a second support plate, a plurality of connecting posts are fixedly connected between the first support plate and the second support plate, and the connecting posts are located at the On the periphery of the second support plate, a functional space is reserved between the first support plate and the second support plate, which is convenient for researchers to integrate more functional parts in this space, such as control components, power supplies and electrical connections Lines, etc., have better function expansion space.
  • the upper plate and the universal seat are respectively assembled on both sides of the first support plate, and are movably assembled on the first support plate through a plurality of the guide posts, and the The movable assembly of the guide column can distinguish, adjust and control the fluctuation of the universal wheel due to the second shock absorption mechanism.
  • one end of the second shock absorbing mechanism is connected to the first support plate, and the other end of the second shock absorbing mechanism is connected to the universal seat.
  • the drive assembly includes a first drive assembly and a second drive assembly, and the first drive assembly and the second drive assembly each include a fixed seat and a drive wheel, and both are configured There is the first damping mechanism and the suspension beam fixing frame matched with it.
  • the present disclosure also relates to a robot including the robot chassis described above.
  • the advantages and positive summary effects of the robot chassis and the robot of the present disclosure are: in the present disclosure, the first shock-absorbing mechanism and the second shock-absorbing mechanism can be subjected to external forces. It has the characteristics of elastic deformation, and can directly respond to various robot chassis or the range of robot use in a variety of ground environments, reducing the problem of dangling driving wheels and universal wheels during the movement.
  • the overall performance is more stable and the reliability is higher, that is, it solves the increase in the number of follow-up wheels and stable operation in the existing technology.
  • Fig. 1 shows a schematic diagram of a three-dimensional structure of a robot chassis according to an exemplary embodiment.
  • Fig. 2 shows a schematic structural diagram of a driving wheel set of a robot chassis according to an exemplary embodiment.
  • Fig. 3 shows a schematic structural diagram of a universal wheel assembly of a robot chassis according to an exemplary embodiment.
  • Fig. 4 shows a front structural schematic diagram of a robot chassis according to an exemplary embodiment.
  • Fig. 5 shows a schematic diagram of a bottom structure of a robot chassis according to an exemplary embodiment.
  • Fig. 6 shows a schematic diagram of a three-dimensional structure of a robot according to an exemplary embodiment.
  • Robot chassis 1. Main body; 101. First support plate; 102. Second support plate; 2. Drive assembly; 201. First drive assembly; 202. Second drive assembly; 3. Connecting column; 4. Ten thousand Direction wheel assembly; 5. The first shock absorbing mechanism; 6. The second shock absorbing mechanism; 7. The suspension beam fixing frame; 8. The fixing seat; 801. The cantilever; 802. The connecting seat; 9. The driving wheel; 10. The power mechanism; 11. Universal wheel; 12. Mounting plate; 121, sleeve; 122, stopper; 123, upper plate; 110, universal seat, 13, control component; 131 signal collector; 14, robot.
  • the embodiment of the present disclosure is to solve the problem that the driving wheel or the follower wheel of the robot chassis in the prior art is on uneven ground, and the wheel is prone to hanging, which causes the overall structure to tilt.
  • the center of gravity of the robot supported by the chassis is relatively high, It may cause the robot equipment to tip over and cause damage to the robot equipment hardware.
  • Fig. 1 shows a three-dimensional structural diagram of a robot chassis 0 according to an exemplary embodiment.
  • the robot chassis 0 disclosed in an embodiment of the present disclosure mainly includes a main body 1, a drive assembly 2 and a universal wheel assembly 4.
  • the drive assembly 2 and The universal wheel assembly 4 is mounted on the main body 1, the driving assembly 2 includes a driving wheel 9, and the driving wheel 9 and the universal wheel assembly 4 are supported on the main body 1 at the bottom; and in the present disclosure
  • the driving wheel 9 can be set to one or more, and the universal wheel assembly 4 can also be set to one or more, so that the driving wheel 9 and the universal wheel assembly 4 can automatically adapt to the unevenness of the ground and have self-adjustment.
  • the driving wheel 9 is supported on the main body 1 through the first damping mechanism 5
  • the universal wheel assembly 4 is supported on the main body 1 through the second damping mechanism 6, and the The first damping mechanism 5 and the second damping mechanism 6 greatly avoid the suspension of the driving wheel 9 and the universal wheel assembly 4 during the movement process.
  • the universal wheel assembly 4 and the driving Component 2 is independent, can better adapt to the ground conditions, respectively make adjustments to the undulations of the ground on which they are located, and always ensure that each is in close contact with the ground.
  • Fig. 4 shows a schematic structural diagram of a front view of a robot chassis 0 according to an exemplary embodiment.
  • Fig. 5 shows a schematic view of the bottom structure of the robot chassis 0 according to an exemplary embodiment.
  • the robot chassis 0 mainly includes a main body 1, a driving assembly 2 and a universal wheel assembly 4.
  • the driving assembly 2 and the universal wheel assembly 4 are mounted on the main body 1, and the driving assembly 2 includes a driving wheel 9.
  • the driving wheel 9 and the universal wheel assembly 4 are supported on the main body 1 at the bottom; the driving wheel 9 is supported on the main body 1 through the first shock-absorbing mechanism 5; and the universal wheel assembly 4 is supported by the second
  • the damping mechanism 6 is supported by the main body 1.
  • the suspension beam fixing frame 7 for receiving between the driving assembly 2 and the main body 1,
  • the suspension beam fixing frame 7 is assembled to the main body 1, one end of the first damping mechanism 5 is connected to the suspension beam fixing frame 7, and the other end of the first damping mechanism 5 is connected to the driving wheel 9, so
  • the first damping mechanism 5 can ensure that the driving wheel 9 is elastically deformed following the ground conditions during the movement process, thereby avoiding the hanging phenomenon of the driving wheel 9.
  • the suspension beam fixing frame 7 It can be better connected to the main body 1 to facilitate the connection of the first damping mechanism 5.
  • the suspension beam fixing frame 7 can be arranged in a bow-shaped structure.
  • the specific structure of the suspension beam fixing frame 7 is not limited to a specific form.
  • the drive assembly 2 mainly includes a fixed seat 8 and a power mechanism 10 connected with the drive wheel 9 in a shaft transmission.
  • the power mechanism 10 is assembled on the fixed seat 8, and the power mechanism 10 provides power to the driving wheel 9.
  • the power mechanism 10 may be a motor integrated with a reducer and a driving device, which is connected to the driving wheel 9 through a transmission shaft or the like, and the driving wheel 9 is connected to the shaft of the motor.
  • the two ends of the first damping mechanism 5 are respectively rotatably connected with the fixing base 8 and the suspension beam fixing frame 7, which can further increase the flexibility of the overall structure and prevent the overall structure from shaking from side to side.
  • the elastic recovery ability of the overall structure also avoids the hardware damage caused by the rigid connection to a certain extent.
  • the fixing base 8 includes two cantilevers 801 and corresponding connecting bases 802 respectively located on both sides of the power mechanism 10, one end of the cantilever 801 is assembled to the fixing base 8, and the cantilever 801 The other end is rotatably connected to the main body 1 through the connecting seat 802.
  • the driving wheel 9 is affected by external factors, the first damping mechanism 55 is compressed and deformed, and the fixed seat 8 will be accompanied by the first damping mechanism.
  • the damping mechanism 5 is raised or lowered at the same time, that is, the fixed seat 8 will also fluctuate with the flatness of the ground, and the cantilever 801 will also be raised or lowered due to the fluctuation of the fixed seat 8, and the cantilever 801 It will rotate correspondingly at the connecting seat 802 connected to it. On the one hand, it improves the overall flexibility. On the other hand, it can weaken the amplitude of the entire robot equipment due to external factors such as the environment, that is, at the same time, it gives a rigid restoring force to make the amplitude. stop.
  • the connecting seat 802 is a shaft seat structure including a bearing, a rotating shaft, and a bearing connecting seat 802.
  • the bearing is assembled on the bearing connecting seat 802, and the rotating shaft passes through
  • the bearing is fixed on the bearing seat, and the cantilever 801 has a pin shaft that penetrates into the shaft seat, which can further facilitate the assembly, installation and rotation of the cantilever 801.
  • Those skilled in the art can provide the cantilever 801 with an insertion hole through The insertion hole is movably connected to the rotating shaft.
  • those skilled in the art can also use other connection methods in the prior art to achieve the purpose of movably connecting the cantilever 801 and the connecting seat 802. There are no specific restrictions in the disclosure.
  • the universal wheel assembly 4 includes a universal wheel 11 and a mounting plate 12.
  • the universal wheel 11 is movably connected to the main body 1 through the mounting plate 12, which can ensure the movement and steering of the universal wheel 11 at multiple angles.
  • the bottom view structural schematic diagram of the robot chassis 0 of the embodiment of the present disclosure is shown.
  • the installation position of the universal wheel assembly 4 is the same It is farther from the center of gravity of the robot chassis 0 than the driving wheel 9.
  • the universal wheel assembly 4 forms an angle with the driving wheel 9, that is, the driving wheel 9 can be connected to multiple universal wheels 11 A stable polygonal structure is formed between them, which can further improve the reliability of the movement of the robot with a higher center of gravity on uneven ground.
  • the second damping mechanism 6 is arranged between the universal wheel 11 and the main body 1.
  • the second damping mechanism 6 ensures that under the influence of external forces, such as uneven ground and other environmental influences,
  • the universal wheel 11 undulates with the ground without being suspended, thereby ensuring the stability of the overall structure, and each universal wheel 11 has an independent second damping mechanism 6, which is equivalent to each universal wheel 11 having mutual independence
  • the damping effect does not affect each other, and the damping is achieved from different positions of the first support plate 101, so as to avoid the occurrence of a certain universal wheel 11 hanging in the air.
  • the mounting plate 12 includes an upper plate 123 and a plurality of guide posts, the upper plate 123 is fixedly connected to the universal seat 110 of the universal wheel 11 through the guide posts, and the upper plate 123 and the universal seat 110 are separated by a certain distance.
  • the universal wheel assembly 4 is movably assembled to the main body 1 through the guide post.
  • the second damping mechanism 6 is elastically deformed, the upper The distance between the plate 123 and the universal seat 110 can to a certain extent reduce the fluctuation of the main body 1 caused by the deformation of the first damping mechanism 5, and improve the stability of the overall chassis and the structure of the robot equipment.
  • the arrangement also gives the universal wheel 11 an elastic space for deformation by the second shock absorption mechanism 6, and can also reduce the overall vibration amplitude to a certain extent, so that the overall chassis and the robot equipment can return to a normal and stable working state as soon as possible.
  • the guide post includes a bolt barrel and a bolt (not shown in the figure), the bolt barrel includes a stop 122 and a sleeve 121, and the sleeve 121 has an internal threaded hole, so The bolt is screwed and fixed to the bolt barrel through the internal threaded hole.
  • the guide post can also be fixedly connected to the universal seat 110 by using a pin to enter and exit the sleeve 121, that is, those skilled in the art can understand
  • the universal seat 110 is fixedly connected to the upper plate 123 through a guide post, that is, the universal seat 110 and the guide post can realize multi-angle rotation, That is, the guide column structure of the present disclosure can facilitate the rotation of the universal seat 110 without restricting the angle of its rotation.
  • the first damping mechanism 5 includes elastic supports respectively arranged on both sides of the shaft of the driving wheel 9.
  • elastic supports respectively arranged on both sides of the shaft of the driving wheel 9.
  • the elastic member can be a shock absorber, a spring, or an elastic piece.
  • the number and type of the damping mechanism 5 are not specifically limited.
  • the main body 1 includes a first supporting plate 101 and a second supporting plate 102, and a plurality of connecting posts 3 are fixedly connected between the first supporting plate 101 and the second supporting plate 102,
  • the connecting column 3 is assembled on the periphery of the second supporting plate 102, and an integrated functional space is reserved between the first supporting plate 101 and the second supporting plate 102 supported by the connecting column 3, It is convenient for researchers to integrate more functional parts in this space, such as the control assembly 13, power supply and its electrical connection lines, etc., to provide a better function expansion space, such as the first support plate 101 and the second support plate 102.
  • a control component 13 is provided in the reserved space between the two.
  • the control component 13 includes a signal collector 131 and a controller.
  • the signal collector 131 can be set as a laser radar signal collector to draw the movement trajectory for the movement of the robot chassis 0, the controller and the signal collector
  • the controller 131 is electrically connected and connected to the power source to form a complete control system, so as to prevent the control system from being outside of the robot chassis structure, resulting in structural complexity and low integration.
  • the technical personnel should be able to understand that this The disclosed reserved space is not limited to the structure in the example, and other control components can also be integrated to realize the control of the robot chassis 0.
  • the upper plate 123 and the universal seat 110 are respectively assembled on both sides of the first support plate 101, and are movably assembled on the first support plate through a plurality of the guide posts 101.
  • the movable assembly of the guide post can distinguish, adjust and control the fluctuation of the universal wheel 11 due to the unevenness of the ground.
  • one end of the second damping mechanism 6 is connected to the first support plate 101, the other end of the second damping mechanism 6 is connected to the universal seat 110, and the second damping mechanism 6 is connected to the universal seat 110 at the other end.
  • the vibration mechanism 6 can apply pressure to the first support plate 101 and the universal seat 110, thereby driving the guide post to move upward relative to the first support plate 101, and then the upper plate 123 will also have an upward displacement relative to the first support plate 101, and at the same time, the first support plate 101 exerts a restoring force on the universal seat 110 by means of the guide post, so that the universal wheel 11 can resume normal and stable operation. state.
  • the driving component 2 includes a first driving component 201 and a second driving component 202, and both of the first driving component 201 and the second driving component 202 include one fixing seat 8 and one
  • the driving wheel 9 is equipped with the first damping mechanism 5 and the suspension beam fixing frame 7, and the first driving assembly 201 and the second driving assembly 202 are configured with corresponding power
  • the mechanism 10, that is, the first drive assembly 201 and the second drive assembly 202 can act independently of each other to better avoid the floating phenomenon of the respective drive wheels 9. That is to say, the two driving wheels 9 in the embodiments of the present disclosure are not a common coaxial driving structure, but are fixed to independent elastic suspensions, and can be kept in contact with the ground separately to ensure that the driving force is output. stability.
  • each driving wheel 9 is equipped with its own power mechanism, and there is no need to configure the linkage, transmission, and differential transmission mechanisms between the two wheels. In this way, the mechanism can be simplified and the occurrence of failures can be reduced.
  • FIG. 6 shows a schematic diagram of the three-dimensional structure of the robot 14 according to an exemplary embodiment.
  • the disclosed robot 14 includes the robot chassis 0 in the above embodiment, and the robot 14 may be a machine room inspection robot or the like.
  • the advantages and positive summary effects of the robot chassis 0 and the robot 14 of the present disclosure are: in the present disclosure, the first damping mechanism 5 and the second damping mechanism 6 are provided It has the characteristics of elastic deformation under the action of external force, and can directly respond to the range of use of various robot chassis 0 or robot 14 in a variety of ground environments, reducing the problem of driving wheel 9 and universal wheel 11 hanging in the process of movement At the same time, combined with the cantilever fixed frame 7, the cantilever 801 and the mounting plate 12 to improve the stability of the entire chassis and the robot equipment and the flexibility of the motion process, the overall performance is more stable and the reliability is higher, that is, the number of follow-up wheels in the prior art is solved. Increase the contradiction between operational stability.
  • the robot chassis 0 and the robot 14 have uneven ground when they are moving, and the uneven places are one of the driving wheels 9 and one of the universal wheels 11, wherein the driving wheels 9 will be opposed to the first due to uneven ground.
  • the damping mechanism 5 generates squeezing, and the first damping mechanism 5 drives the fixing base 8 to produce an upward relative displacement.
  • the cantilever 801 rotates relative to the connecting base 802 to relieve a part of the amplitude.
  • the suspension beam fixing frame 7 is because the first damping mechanism 5 generates an upward pressure on the first support plate 101, and the first support plate 101 exerts a reaction force to further alleviate a part of the amplitude of the driving wheel 9, thereby making During this process, the driving wheel 9 can maintain force contact with the ground to achieve the purpose of not hanging in the air; for the universal wheel 11 and the driving wheel 9 have the same or similar force conditions, the special point is that the The universal wheel 11 exerts force on the first support plate 101 of the universal base 110 through the second damping mechanism, and the guide post, the upper plate 123 and the first support plate 101 alleviate the amplitude, thereby ensuring the The purpose of the universal wheel 11 being in force contact with the ground without being suspended.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Manipulator (AREA)

Abstract

机器人底盘(0)及机器人(14),机器人底盘(0)包括主体(1)、驱动组件(2)及万向轮组件(4),驱动组件(2)以及万向轮组件(4)安装于主体(1),驱动组件(2)包括驱动轮(9),驱动轮(9)以及万向轮组件(4)在底部支撑于主体(1),驱动轮(9)通过第一减震机构(5)支撑于主体(1),并且万向轮组件(4)通过第二减震机构(6)支撑于主体(1)。

Description

机器人底盘及机器人
相关申请的引用
本公开要求于2020年4月29日向中华人民共和国国家知识产权局提交的申请号为202020695968.1、名称为“一种机器人底盘及机器人”的实用新型专利申请的全部权益,并通过引用的方式将其全部内容并入本文。
领域
本公开涉及智能机器人技术领域,具体而言,涉及机器人底盘及机器人。
背景
随着人类社会的发展,人工智能机器人也在迅速发展,机器人在功能机性能上有很大提高,为适应不同情境使用需求,机器人的体积大小各有不同,为了方便适应在不同环境中机器人的移动问题,机器人底盘的研发也在日益创新中。
现有机器人底盘大多采用驱动轮及随动轮结合移动方式,其中有设驱动机构连接两个驱动轮并连接一个随动轮的三轮结构,这种三轮结构虽结构简单,不会出现驱动轮悬空的现象,但是这种结构的稳定性较差,只适合重心较低的机器人,在当重心较高的机器人使用这种结构的底盘时,遇到外加力量容易倾倒,造成不可避免的损失,为改善这种情况,研究人员增加了随动轮的数量,而这种只是单纯增加随动轮数量的底盘结构,在不平整地面移动时,会导致部分驱动轮或随动轮出现悬空的状况,因此,对地面平整度要求相对较高。
概述
在概述中引入了一系列简化形式的概念,这将在详述中进一步详细说明。本公开概述并不意味着要试图限定出所要求保护的 技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
本公开涉及机器人底盘,包括主体、驱动组件及万向轮组件,所述驱动组件以及所述万向轮组件安装于所述主体,所述驱动组件包括驱动轮,所述驱动轮以及所述万向轮组件在底部支撑于所述主体;
所述驱动轮通过第一减震机构支撑于所述主体;并且
所述万向轮组件通过第二减震机构支撑于所述主体。
在某些实施方案中,还包括悬梁固定架,所述悬梁固定架装配于所述主体,所述第一减震机构一端连接于所述悬梁固定架,所述第一减震机构另一端连接于所述驱动轮,所述第一减震机构可保证在驱动轮在移动过程中,跟随地面状况产生弹性变形,进而避免驱动轮的悬空现象。
在某些实施方案中,所述驱动组件包括固定座以及与所述驱动轮轴连接的动力机构,所述动力机构装配于所述固定座上,所述动力机构为所述驱动轮提供动力。
在某些实施方案中,所述第一减震机构两端分别与所述固定座及悬梁固定架可转动地连接,在可进一步整体结构的柔性,可避免整体结构收到左右晃动时,整体结构的弹性恢复能力,也在一定程度上避免因为刚性连接带来的硬件损毁的问题。
在某些实施方案中,所述固定座包括分别位于动力机构两侧的两个悬臂及对应的连接座,所述悬臂的一端装配于所述固定座,所述悬臂的另一端通过所述连接座可转动地连接于所述主体,当受外界因素影响驱动轮移动过程中导致第一减震机构压缩出现形变时,而固定座会伴随第一减震机构同时升高或降低,所述悬臂会因固定座的提升或降低,在于其连接的连接座处产生转动,一方面提高整体柔性,在另一方面又可以削弱因环境等外界因素给整个机器人设备带来振幅,同时给予一个刚性的恢复力进而使振幅停止。
在某些实施方案中,所述连接座为轴座结构,所述悬臂具有 穿入至轴座的销轴,方便悬臂的装配安装及转动。
在某些实施方案中,所述万向轮组件包括万向轮及安装板,所述万向轮通过所述安装板活动连接所述主体,可保证所述万向轮在多个角度的移动转向;并且为更好地保证一些重心较高的机器人在移动过程中的稳定性,所述万向轮组件的安装位置相比所述驱动轮远离所述机器人底盘的重心位置,在移动过程中,万向轮组件与所述驱动轮形成夹角,即所述驱动轮可与多个万向轮之间形成稳定的多边形结构,可进一步提高重心较高的机器人在不平整地面的运动的可靠性,所述第二减震机构设置于所述万向轮与所述主体之间,所述第二减震机构在受到外力影响,比如地面不平整等环境影响的情况下,保证万向轮随地面起伏而不发生悬空,进而确保整体结构的稳定性,且每个万向轮都具有独立的第二减震机构,相当于每个万向轮都相互独立互不影响的减震效果,从处于第一支撑板不同位置分别实现减震,避免出现某个万向轮出现悬空。
在某些实施方案中,所述安装板包括上板以及多个导向柱,所述上板通过导向柱与所述万向轮的万向座固定连接,且所述上板与所述万向座之间间隔一定距离,所述万向轮组件通过所述导向柱活动地装配于所述主体,当第二减震机构产生弹性形变时,所述上板与所述万向座之间的距离可在一定程度上,减少主体因为第一减震机构形变导致的起伏,提高整体底盘及机器人设备的结构的稳定性,而导向柱的设置也给予所述万向轮由第二减震机构形变的一个弹性空间,同时也可在一定程度上减少整体的震动幅度,使整体底盘及机器人设备尽快回至正常稳定的工作状态。
在某些实施方案中,所述导向柱包括螺栓筒与螺栓,所述螺栓筒包括挡头与套筒,所述套筒内具有内螺纹孔,所述螺栓通过所述内螺纹孔与所述螺栓筒螺接固定。
在某些实施方案中,所述第一减震机构包括分别设置于所述驱动轮的轴两侧的弹性支撑件。
在某些实施方案中,所述主体包括第一支撑板及第二支撑板, 所述第一支撑板与所述第二支撑板之间固定连接有多个连接柱,所述连接柱位于所述第二支撑板的周边,所述第一支撑板及第二支撑板之间预留出功能空间,方便研究人员在此空间内集成更多的功能件,比如控制组件、电源及其电连接线等,有更好的功能拓展空间。
在某些实施方案中,所述上板与所述万向座分别装配于所述第一支撑板两侧,通过多个所述导向柱可活动地装配于所述第一支撑板,所述导向柱的活动装配可分辨调解并控制万向轮因第二减震机构的起伏。
在某些实施方案中,所述第二减震机构一端连接于所述第一支撑板,所述第二减震机构另一端连接于所述万向座。
在某些实施方案中,所述驱动组件包括第一驱动组件及第二驱动组件,所述第一驱动组件及第二驱动组件均包括一个所述固定座以及一个所述驱动轮,且均配置有与之配套的所述第一减震机构以及所述悬梁固定架。
本公开还涉及机器人,所述机器人包括上述的机器人底盘。
由上述技术方案及对相应技术特征技术效果的描述可知,本公开的机器人底盘及机器人的优点和积极概述效果在于:本公开中通过设置第一减震机构及第二减震机构受外力作用可产生弹性变形的特点,并可直接应对各种不同的机器人底盘或机器人在多种地面环境使用的范围,降低驱动轮及万向轮在移动过程中出现悬空的问题。
同时结合悬梁固定架、悬臂及安装板等结构提高整个底盘及机器人设备稳定性和运动过程的柔性,整体性能更加稳定,可靠性更高,即解决现有技术中对随动轮数量增加与运行稳定性之间的矛盾。
附图的简要说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据一示例性实施方式的机器人底盘立体结构示意图。
图2示出了根据一示例性实施方式的机器人底盘驱动轮组结构示意图。
图3示出了根据一示例性实施方式的机器人底盘万向轮组件结构示意图。
图4示出了根据一示例性实施方式的机器人底盘的正视结构示意图。
图5示出了根据一示例性实施方式的机器人底盘仰视结构示意图。
图6示出了根据一示例性实施方式的机器人立体结构示意图。
其中,附图标记说明如下:
0、机器人底盘;1、主体;101、第一支撑板;102、第二支撑板;2、驱动组件;201、第一驱动组件;202、第二驱动组件;3、连接柱;4、万向轮组件;5、第一减震机构;6、第二减震机构;7、悬梁固定架;8、固定座;801、悬臂;802、连接座;9、驱动轮;10、动力机构;11、万向轮;12、安装板;121、套筒;122、挡头;123、上板;110、万向座,13、控制组件;131信号采集器;14、机器人。
详述
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他 实施例,都属于本公开保护的范围。
本公开实施例为了解决现有技术中机器人底盘的驱动轮或随动轮在不平整地面,易出现轮子悬空的现象,这就导致整体结构发生倾斜,当底盘承托的机器人重心相对较高时,可能会导致机器人设备的倾倒,造成机器人设备硬件的损坏的问题。提出了可以解决上述问题的机器人底盘技术方案,如下结合附图对本公开实施例进行示例性介绍:
图1示出了根据一示例性实施方式的机器人底盘0立体结构示意图,本公开实施例公开的机器人底盘0,主要包括主体1、驱动组件2及万向轮组件4,所述驱动组件2以及所述万向轮组件4安装于所述主体1,所述驱动组件2包括驱动轮9,所述驱动轮9以及所述万向轮组件4在底部支撑于所述主体1;并且本公开中驱动轮9可设为一个或多个,所述万向轮组件4也可设置为一个或多个,为使驱动轮9及万向轮组件4可自动适应地面凹凸情况,并能有自我调解的效果,在本公开中所述驱动轮9通过第一减震机构5支撑于所述主体1,所述万向轮组件4通过第二减震机构6支撑于所述主体1,通过所述第一减震机构5及第二减震机构6极大的避免所述驱动轮9及万向轮组件4在移动过程出现的悬浮情况,在移动过程中,万向轮组件4与所述驱动组件2是各自独立的,可更好地适应地面情况,分别对所处地面的起伏做出调解,始终保证各自与地面紧密接触。
图4示出了根据一示例性实施方式的机器人底盘0正视结构示意图。图5示出了根据一示例性实施方式的机器人底盘0仰视结构示意图。机器人底盘0主要包括主体1、驱动组件2及万向轮组件4,所述驱动组件2以及所述万向轮组件4安装于所述主体1,所述驱动组件2包括驱动轮9,所述驱动轮9以及所述万向轮组件4在底部支撑于所述主体1;所述驱动轮9通过第一减震机构5支撑于所述主体1;并且所述万向轮组件4通过第二减震机构6支撑于所述主体1。
结合图2示出的根据一示例性实施方式的机器人底盘驱动轮9 组结构示意图,在本公开的实施例中,还包括用于承接于驱动组件2与主体1之间的悬梁固定架7,所述悬梁固定架7装配于所述主体1,所述第一减震机构5一端连接于所述悬梁固定架7,所述第一减震机构5另一端连接于所述驱动轮9,所述第一减震机构5可保证在驱动轮9在移动过程中,跟随地面状况产生弹性变形,进而避免驱动轮9的悬空现象,此外本领域技术人员将会认识到,为了保证悬梁固定架7可更好地连接于主体1,方便第一减震机构5的连接,为使第一减震机构5有一定的弹性空间,所述悬梁固定架7可设置为弓型结构,而本公开对悬梁固定架7的具体结构并不限定具体形式。
在某些实施方案中,所述驱动组件2主要包括固定座8以及与所述驱动轮9轴传动连接的动力机构10,所述动力机构10装配于所述固定座8上,所述动力机构10为所述驱动轮9提供动力,所述动力机构10可以为一体配置有减速机与驱动装置的电动机,与所述驱动轮9通过传动轴等进行配合连接,驱动轮9与电动机的轴连接方式属于本领域常用技术手段,在本公开并不做具体限定。
在某些实施方案中,所述第一减震机构5两端分别与所述固定座8及悬梁固定架7可转动地连接,在可进一步整体结构的柔性,可避免整体结构收到左右晃动时,整体结构的弹性恢复能力,也在一定程度上避免因为刚性连接带来的硬件损毁的问题。
在某些实施方案中,所述固定座8包括分别位于动力机构10两侧的两个悬臂801及对应的连接座802,所述悬臂801的一端装配于所述固定座8,所述悬臂801的另一端通过所述连接座802可转动地连接于所述主体1,当受外界因素影响驱动轮9移动过程中导致第一减震机构55压缩出现形变时,而固定座8会伴随第一减震机构5同时升高或降低,即所述固定座8也会与随地面的平整度有一定的起伏,而所述悬臂801也会因固定座8的起伏而提升或降低,而悬臂801会在与其连接的连接座802处相应产生转动,一方面提高整体柔性,在另一方面又可以削弱因环境等外界因素 给整个机器人设备带来振幅,即同时给予一个刚性的恢复力进而使振幅停止。
在某些实施方案中,所述连接座802为轴座结构,所述轴座结构包括在轴承、转轴及轴承连接座802,所述轴承装配设置于所述轴承连接座802,所述转轴通过所述轴承固定在所述轴承座上,所述悬臂801具有穿入至轴座的销轴,可进一步方便悬臂801的装配安装及转动,本领域技术人员可将悬臂801设置有插入孔,通过所述插入孔与所述转轴活动连接,当然具体的连接方式,本领域技术人员还可采用其他现有技术中连接方式,以达到实现悬臂801与所述连接座802的活动连接的目的,本公开中并不做具体的限定。
参考说明书附图3示出的本公开实施方式的机器人底盘万向轮组件4结构示意图,在本公开的实施例中,所述万向轮组件4包括万向轮11及安装板12,所述万向轮11通过所述安装板12活动连接所述主体1,可保证所述万向轮11在多个角度的移动转向。
参考说明书附图5示出的本公开实施方式的机器人底盘0仰视结构示意图,为更好地保证一些重心较高的机器人在移动过程中的稳定性,所述万向轮组件4的安装位置相比所述驱动轮9远离所述机器人底盘0的重心位置,在移动过程中,万向轮组件4与所述驱动轮9形成夹角,即所述驱动轮9可与多个万向轮11之间形成稳定的多边形结构,可进一步提高重心较高的机器人在不平整地面的运动的可靠性。
而所述第二减震机构6设置于所述万向轮11与所述主体1之间,所述第二减震机构6在受到外力影响,比如地面不平整等环境影响的情况下,保证万向轮11随地面起伏而不发生悬空,进而确保整体结构的稳定性,且每个万向轮11都具有独立的第二减震机构6,相当于每个万向轮11都具有相互独立互不影响的减震效果,且从处于第一支撑板101不同位置分别实现减震,避免出现某个万向轮11出现悬空。
在某些实施方案中,所述安装板12包括上板123以及多个导 向柱,所述上板123通过导向柱与所述万向轮11的万向座110固定连接,且所述上板123与所述万向座110之间间隔一定距离,所述万向轮组件4通过所述导向柱活动地装配于所述主体1,当第二减震机构6产生弹性形变时,所述上板123与所述万向座110之间的距离可在一定程度上,减少主体1因为第一减震机构5形变导致的起伏,提高整体底盘及机器人设备的结构的稳定性,而导向柱的设置也给予所述万向轮11由第二减震机构6形变的一个弹性空间,同时也可在一定程度上减少整体的震动幅度,使整体底盘及机器人设备尽快回至正常稳定的工作状态。
在某些实施方案中,所述导向柱包括螺栓筒与螺栓(未在图中示出),所述螺栓筒包括挡头122与套筒121,所述套筒121内具有内螺纹孔,所述螺栓通过所述内螺纹孔与所述螺栓筒螺接固定,此外所述导向柱还可采用销钉出入所述套筒121中与所述万向座110固定连接,即本领域技术人员可以理解的是,在本公开中由于万向座110与所述是通过导向柱与所述上板123固定连接的,即所述万向座110与所述导向柱之间可实现多角度的转动,即本公开的导向柱结构可方便万向座110的转动,且不限制其转动的角度。
在某些实施方案中,所述第一减震机构5包括分别设置于所述驱动轮9的轴两侧的弹性支撑件,本领域技术人员可对称地选择不同位置设置多个弹性支撑件,如可相对所述动力机构10的驱动轮9的轴两侧对称设置两个第一减震机构5,而所述弹性件可以为减震器、弹簧或弹片等,本公开中并不对第一减震机构5的设置数量及种类并不做具体限定。
在某些实施方案中,所述主体1包括第一支撑板101及第二支撑板102,所述第一支撑板101与所述第二支撑板102之间固定连接有多个连接柱3,所述连接柱3装配于所述第二支撑板102的周边,由所述连接柱3支撑起的所述第一支撑板101及第二支撑板102之间会预留拓展出集成功能空间,方便研究人员在此空间内集成更多的功能件,比如控制组件13、电源及其电连接线等, 提供更好的功能拓展空间,如可在第一支撑板101及第二支撑板102之间的预留空间设置控制组件13,控制组件13包括信号采集器131及控制器,信号采集器131可设置为激光雷达信号采集器,为机器人底盘0的移动绘制行动轨迹,控制器与信号采集器131电连接并在连接电源上,形成一个完整的控制系统,而避免控制系统处于所述机器人底盘结构之外,造成结构的复杂化、集成度低等情况,所属技术人员应当能够理解,本公开的预留空间并不局限示例中的结构,还可集成其他控制组件以实现对机器人底盘0的控制。
在某些实施方案中,所述上板123与所述万向座110分别装配于所述第一支撑板101两侧,通过多个所述导向柱可活动地装配于所述第一支撑板101,所述导向柱的活动装配可分辨调解并控制万向轮11因地面凹凸产生起伏。
在某些实施方案中,所述第二减震机构6一端连接于所述第一支撑板101,所述第二减震机构6另一端连接于所述万向座110,所述第二减震机构6产生压缩后,可对所述第一支撑板101及所述万向座110施加压力,进而带动所述导向柱相对所述第一支撑板101产生向上的位移,进而所述上板123也会相对第一支撑板101产生向上的位移,而同时所述第一支撑板101借助所述导向柱施加给所述万向座110一个恢复力,促使万向轮11恢复正常平稳的运行状态。
在某些实施方案中,所述驱动组件2包括第一驱动组件201及第二驱动组件202,所述第一驱动组件201及第二驱动组件202均包括一个所述固定座8以及一个所述驱动轮9,且均配置有与之配套的所述第一减震机构5以及所述悬梁固定架7,所述第一驱动组件201与所述第二驱动组件202均配置与之对应的动力机构10,即,所述第一驱动组件201及所述第二驱动组件202可互相独立作用更好地避免各自驱动轮9出现悬空现象。也就是说,本公开实施例中的两个驱动轮9之间并非常用的同轴驱动结构,而是分别固定于相互独立的弹性悬架,可以各自单独保持与地面接触, 保证驱动力输出的稳定性。且各个驱动轮9均配置有各自的动力机构,而不需要再配置两轮间的联动、传动以及差速等传动机构,如此还可以精简机构,从而减少故障发生。
图6示出了根据一示例性实施方式的机器人14立体结构示意图。公开的机器人14包括上述实施例中的机器人底盘0,机器人14可以是机房巡检机器人等。
由上述技术方案及对相应技术特征技术效果的描述可知,本公开的机器人底盘0及机器人14的优点和积极概述效果在于:本公开中通过设置第一减震机构5及第二减震机构6受外力作用可产生弹性变形的特点,并可直接应对各种不同的机器人底盘0或机器人14在多种地面环境使用的范围,降低驱动轮9及万向轮11在移动过程中出现悬空的问题,同时结合悬梁固定架7、悬臂801及安装板12等结构提高整个底盘及机器人设备稳定性和运动过程的柔性,整体性能更加稳定、可靠性更高,即解决现有技术中对随动轮数量增加与运行稳定性之间的矛盾。
下面结合具体使用情景对公开的机器人底盘0及机器人14技术方案做简要说明:
机器人底盘0及机器人14在移动行进中地面不平整,且所述不平整的地方为其中一个驱动轮9及一个万向轮11,其中所述驱动轮9会因为地面不平整对所述第一减震机构5产生挤压,而所述第一减震机构5带动所述固定座8产生向上的相对位移,同时,所述悬臂801相对所述连接座802产生转动进而缓解一部分振幅,而所述悬梁固定架7因为第一减震机构5对第一支撑板101产生一个向上的压力,而所述第一支撑板101又施加一个反作用力进一步缓解所述驱动轮9的一部分振幅,进而使得这个过程中所述驱动轮9可以与地面保持受力接触,实现不悬空的目的;对于所述万向轮11与所述驱动轮9有相同及类似的受力情况,特殊点在于,所述万向轮11通过所述第二减震机构对所述万向座110机第一支撑板101施加力,而导向柱与所述上板123及第一支撑板101缓解振幅,进而保证所述万向轮11与地面的受力接触而不悬空的 目的。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 机器人底盘,包括主体、驱动组件及万向轮组件,其中,
    所述驱动组件以及所述万向轮组件安装于所述主体,所述驱动组件包括驱动轮,所述驱动轮以及所述万向轮组件在底部支撑于所述主体;
    所述驱动轮通过第一减震机构支撑于所述主体;并且所述万向轮组件通过第二减震机构支撑于所述主体。
  2. 如权利要求1所述的机器人底盘,其还包括悬梁固定架,所述悬梁固定架装配于所述主体,所述第一减震机构一端连接于所述悬梁固定架,所述第一减震机构另一端连接于所述驱动轮。
  3. 如权利要求2所述的机器人底盘,其中,所述驱动组件包括固定座以及与所述驱动轮轴连接的动力机构,所述动力机构装配于所述固定座上;并且所述第一减震机构两端分别与所述固定座及悬梁固定架可转动地连接。
  4. 如权利要求3所述的机器人底盘,其中,所述固定座包括分别位于动力机构两侧的两个悬臂及对应的连接座,所述悬臂的一端装配于所述固定座,所述悬臂的另一端通过所述连接座可转动地连接于所述主体。
  5. 如权利要求4所述的机器人底盘,其中,所述连接座为轴座结构,所述悬臂具有穿入至轴座的销轴。
  6. 如权利要求1至5中任一权利要求所述的机器人底盘,其中,所述万向轮组件包括万向轮及安装板,所述万向轮通过所述安装板活动连接所述主体;所述万向轮组件的安装位置相比所述驱动轮远离所述机器人底盘的重心位置;并且所述第二减震机构设置于所述万向轮与所述主体之间。
  7. 如权利要求6所述的机器人底盘,其中,所述安装板包括上板以及多个导向柱,所述上板通过导向柱与所述万向轮的万向座固定连接,且所述上板与所述万向座之间间隔一定距离,所述万向轮组件通过所述导向柱活动地装配于所述主体。
  8. 如权利要求7所述的机器人底盘,其中,所述导向柱包括螺栓筒与螺栓,所述螺栓筒包括挡头与套筒,所述套筒内具有内螺纹孔,所述螺栓通过所述内螺纹孔与所述螺栓筒螺接固定。
  9. 如权利要求1至8中任一权利要求所述的机器人底盘,其中,所述第一减震机构包括分别设置于所述驱动轮轴的两侧的弹性支撑件。
  10. 如权利要求7或8所述的机器人底盘,其中,所述主体包括第一支撑板及第二支撑板,所述第一支撑板与所述第二支撑板之间固定连接有多个连接柱,所述连接柱位于所述第二支撑板的周边。
  11. 如权利要求10所述的机器人底盘,其中,所述上板与所述万向座分别装配于所述第一支撑板两侧,通过多个所述导向柱可活动地装配于所述第一支撑板。
  12. 如权利要求10或11所述的机器人底盘,其中,所述第二减震机构一端连接于所述第一支撑板,所述第二减震机构另一端连接于所述万向座。
  13. 如权利要求3至5中任一权利要求所述的机器人底盘,其中,所述驱动组件包括第一驱动组件及第二驱动组件,所述第一驱动组件及第二驱动组件均包括一个所述固定座以及一个所述驱 动轮,且均配置有与之配套的所述第一减震机构以及所述悬梁固定架。
  14. 机器人,其包括权利要求1至13中任一权利要求所述的机器人底盘。
PCT/CN2021/090619 2020-04-29 2021-04-28 机器人底盘及机器人 WO2021219015A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020695968.1 2020-04-29
CN202020695968.1U CN212399661U (zh) 2020-04-29 2020-04-29 一种机器人底盘及机器人

Publications (1)

Publication Number Publication Date
WO2021219015A1 true WO2021219015A1 (zh) 2021-11-04

Family

ID=74300934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090619 WO2021219015A1 (zh) 2020-04-29 2021-04-28 机器人底盘及机器人

Country Status (2)

Country Link
CN (1) CN212399661U (zh)
WO (1) WO2021219015A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114102551A (zh) * 2021-12-02 2022-03-01 中通服咨询设计研究院有限公司 一种应用5g传输通信巡检机器人的定位装置和方法
CN114475855A (zh) * 2022-02-10 2022-05-13 宁波华运智能科技有限公司 一种agv底盘
CN116039313A (zh) * 2023-03-29 2023-05-02 哈尔滨学院 一种月球机器人底盘
CN117901952A (zh) * 2024-03-19 2024-04-19 宁波舜宇贝尔机器人有限公司 一种柔性agv用底盘结构

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212399661U (zh) * 2020-04-29 2021-01-26 北京海益同展信息科技有限公司 一种机器人底盘及机器人
CN113090863B (zh) * 2021-04-02 2023-01-06 郑州铁路职业技术学院 一种管道爬行检测机器人
CN113386828A (zh) * 2021-06-18 2021-09-14 南京涵铭置智能科技有限公司 一种稳定搬运机器人及其搬运方法
CN113753132A (zh) * 2021-07-20 2021-12-07 深兰科技(上海)有限公司 底盘和机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206703863U (zh) * 2017-03-31 2017-12-05 杭州艾米机器人有限公司 机器人底盘和机器人
WO2018047117A1 (en) * 2016-09-09 2018-03-15 Dematic Corp. Free ranging automated guided vehicle and operational system
CN109591913A (zh) * 2019-01-24 2019-04-09 北京海益同展信息科技有限公司 机器人底盘和机器人
CN210212568U (zh) * 2019-07-09 2020-03-31 上海云绅智能科技有限公司 机器人底盘、机器人底盘悬挂装置、万向轮悬挂机构
CN212399661U (zh) * 2020-04-29 2021-01-26 北京海益同展信息科技有限公司 一种机器人底盘及机器人

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047117A1 (en) * 2016-09-09 2018-03-15 Dematic Corp. Free ranging automated guided vehicle and operational system
CN206703863U (zh) * 2017-03-31 2017-12-05 杭州艾米机器人有限公司 机器人底盘和机器人
CN109591913A (zh) * 2019-01-24 2019-04-09 北京海益同展信息科技有限公司 机器人底盘和机器人
CN210212568U (zh) * 2019-07-09 2020-03-31 上海云绅智能科技有限公司 机器人底盘、机器人底盘悬挂装置、万向轮悬挂机构
CN212399661U (zh) * 2020-04-29 2021-01-26 北京海益同展信息科技有限公司 一种机器人底盘及机器人

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114102551A (zh) * 2021-12-02 2022-03-01 中通服咨询设计研究院有限公司 一种应用5g传输通信巡检机器人的定位装置和方法
CN114475855A (zh) * 2022-02-10 2022-05-13 宁波华运智能科技有限公司 一种agv底盘
CN114475855B (zh) * 2022-02-10 2023-11-10 宁波华运智能科技有限公司 一种agv底盘
CN116039313A (zh) * 2023-03-29 2023-05-02 哈尔滨学院 一种月球机器人底盘
CN116039313B (zh) * 2023-03-29 2023-10-13 哈尔滨学院 一种月球机器人底盘
CN117901952A (zh) * 2024-03-19 2024-04-19 宁波舜宇贝尔机器人有限公司 一种柔性agv用底盘结构
CN117901952B (zh) * 2024-03-19 2024-06-11 宁波舜宇贝尔机器人有限公司 一种柔性agv用底盘结构

Also Published As

Publication number Publication date
CN212399661U (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2021219015A1 (zh) 机器人底盘及机器人
WO2020151537A1 (zh) 机器人底盘和机器人
CN205394539U (zh) 机械臂及机器人
CN108313268B (zh) 一种轻型飞机副翼操纵系统
WO2021212912A1 (zh) 全向移动设备
WO2022041665A1 (zh) 具有换向传动悬架的底盘及机器人
CN111267569A (zh) 基于机械连杆机构的自适应悬挂底盘系统
CN112208673A (zh) 一种全向运动机器人
CN210851933U (zh) 机器人底盘悬挂系统及机器人
CN215149032U (zh) 一种悬架系统及机器人
CN210680308U (zh) 一种悬挂系统及其组成的机器人
WO2022041666A1 (zh) 独立摆臂式悬架的底盘及机器人
WO2022143632A1 (zh) 移动机器人及其行走机构
CN102922507A (zh) 二自由度调平装置
CN214164670U (zh) 一种移动机器人底盘悬挂驱动模组
CN214689852U (zh) 一种行走系统具有切换功能的机器人底盘
CN214724353U (zh) 一种内置力矩平衡装置的工业机器人
CN212318646U (zh) 减振装置及机器人
CN113442165A (zh) 一种内置力矩平衡装置的工业机器人
CN210526699U (zh) 机器人行走机构
CN210307811U (zh) 动力装置及具有此动力装置的机器人
CN218054779U (zh) 一种轮式机器人底盘使用的平行四连杆侧置独立悬挂系统
CN110834682A (zh) 一种内摩擦式全向移动球形机器人
CN114056088A (zh) 一种兼具独立转向和独立驱动功能的底盘总成
CN217778810U (zh) 一种机器人四足运动底盘

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21795971

Country of ref document: EP

Kind code of ref document: A1