WO2021218906A1 - 燃料电池及配流装置 - Google Patents

燃料电池及配流装置 Download PDF

Info

Publication number
WO2021218906A1
WO2021218906A1 PCT/CN2021/089862 CN2021089862W WO2021218906A1 WO 2021218906 A1 WO2021218906 A1 WO 2021218906A1 CN 2021089862 W CN2021089862 W CN 2021089862W WO 2021218906 A1 WO2021218906 A1 WO 2021218906A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
manifolds
end plate
plate
fuel cell
Prior art date
Application number
PCT/CN2021/089862
Other languages
English (en)
French (fr)
Inventor
方谋
Original Assignee
北京朔景新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京朔景新能源科技有限公司 filed Critical 北京朔景新能源科技有限公司
Publication of WO2021218906A1 publication Critical patent/WO2021218906A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell, and more specifically, to a fuel cell and a flow distribution device.
  • a fuel cell is a power generation device that uses fuels such as methanol or hydrogen to electrochemically react with oxidizing gas on the catalyst layer of the membrane electrode assembly to obtain electrical energy.
  • the fuel cell includes, for example, an electrolyte membrane, and catalyst layers, diffusion layers, and bipolar plates on both sides of the electrolyte membrane.
  • the fuel fluid is transferred to the surface of the membrane electrode assembly through the flow channel of the anode flow field of the bipolar plate.
  • the transfer process inside the membrane electrode assembly is that the fuel fluid diffuses through the diffusion layer to the anode catalyst layer, and is Under the action of the layer catalyst, electrons are released to form cations. Electrons are transferred from the catalyst surface to the bipolar plate via the diffusion layer, from the bipolar plate to the external circuit, from the external circuit to the cathode bipolar plate, from the cathode bipolar plate to the diffusion layer, and from the diffusion layer to the cathode Catalyst layer; cations are transferred to the cathode side catalyst layer through the electrolyte membrane.
  • the oxidizing gas is combined with the electrons transferred from the anode on the cathode catalyst layer to form anions, and the anions combine with the cations migrated through the electrolyte membrane to form water, thereby forming a complete electronic circuit and an ion circuit.
  • the electrolyte membrane has the functions of ion channels and barriers to gases and electrons.
  • the fuel fluid includes gaseous hydrogen, or liquid methanol or methanol solution and other fuels composed of fluids.
  • the oxidizing gas can be air or pure oxygen
  • the cooling medium can be liquid or gas.
  • the reaction product produced by the fuel cell reaction process is water with zero emissions. There is no need for mechanical transmission during the reaction process, and the chemical energy in the fuel is directly converted into electrical energy. There is basically no noise pollution. Therefore, the fuel cell as a power generation device has high power generation efficiency. And the advantages of green environmental protection.
  • end plates are used to press and fix the stacked multiple repeating components together to form a cell stack.
  • the flow distribution device is used in the cell stack to provide fuel fluid, oxidizing gas and cooling medium to multiple repeating components.
  • the use of a large number of repeated components in the battery stack poses a huge challenge to the assembly and sealing of the battery stack, the uniformity of the cooling medium and the distribution of the reactants. Since the working environment of the end plate in the fuel cell is different from the reaction environment of the membrane electrode assembly, it seriously affects the consistency of the cell stack, resulting in the degradation of performance and life.
  • the object of the present invention is to provide a fuel cell and a flow distribution device, in which the end plate is also used as a component of the flow distribution device and the manifold structure design in the flow distribution device is improved to improve the uniformity of the reactant distribution of the fuel cell and improve Water and heat management to improve the high-current discharge performance and power density of the fuel cell. Used in electric vehicles, it can improve the vehicle's power performance, fuel efficiency and cruising range.
  • a flow distribution device for a fuel cell including: a first end plate; and a first pair of manifolds, a second pair of manifolds, and a first pair of manifolds formed in the first end plate.
  • Three pairs of manifolds, the first pair of manifolds, the second pair of manifolds, and the third pair of manifolds respectively include a main channel extending transversely and having side open ends, and a plurality of sub-channels extending longitudinally and having top open ends Channel, wherein the main channel of the first pair of manifolds and the main channel of the third pair of manifolds are located on the upper level of the first end plate, and the main channel of the second pair of manifolds is located on the first On the lower level of one end plate, the first pair of manifolds, the second pair of manifolds, and the third pair of manifolds are respectively used for distributing fuel fluid, oxidizing gas and cooling medium.
  • the plurality of sub-channels of the first pair of manifolds are periodically connected to the corresponding main channels, and the plurality of sub-channels of the third pair of manifolds are periodically connected to the corresponding main channels.
  • the plurality of sub-channels of the second pair of manifolds are connected to the top of the main channel of the second pair of manifolds.
  • the size of the top opening end of the plurality of sub-channels of the first pair of manifolds is larger than the cross-sectional size of the main channel of the first pair of manifolds, and the plurality of sub-channels of the second pair of manifolds
  • the size of the top open end of the channel is smaller than the cross-sectional size of the main channel of the second pair of manifolds, and the size of the top open end of the plurality of sub-channels of the third pair of manifolds is larger than that of the third pair of manifolds.
  • the cross-sectional size of the main channel is smaller than the cross-sectional size of the main channel of the second pair of manifolds, and the size of the top open end of the plurality of sub-channels of the third pair of manifolds is larger than that of the third pair of manifolds.
  • the cross-sectional size of the main channel of the second pair of manifolds is 2-20 times the cross-sectional size of the main channel of the first pair of manifolds
  • the cross-sectional size of the main channel of the third pair of manifolds is The cross-sectional size of the main channel of the first pair of manifolds is 2-8 times.
  • the top open ends of the first pair of manifolds, the second pair of manifolds, and the third pair of manifolds are distributed on the surface of the end plate to form at least one distribution unit.
  • the at least one distribution unit includes 1-15 distribution units.
  • the at least one distribution unit respectively includes a first group of the first pair of manifolds, the third pair of manifolds, and the second pair of manifolds arranged in sequence on one side of the surface of the end plate
  • the open ends of the first group of tops respectively flow out the fuel fluid, the cooling medium and the oxidizing gas
  • the open ends of the second group of tops respectively flow into the oxidizing gas, the cooling medium and the fuel fluid.
  • the respective main channels of the first pair of manifolds and the third pair of manifolds respectively have a substantially rectangular cross-sectional shape, and the main channels of the second pair of manifolds have a convex cross-sectional shape.
  • the respective main channels of the first pair of manifolds, the second pair of manifolds, and the third pair of manifolds respectively have a substantially rectangular cross section.
  • a fuel cell including: a repeating part, the repeating part including a bipolar plate and a membrane electrode assembly sandwiched between the bipolar plates, formed on the side portion of the repeating part
  • the fuel fluid channel, the oxidizing gas channel, and the cooling medium channel extending in the stacking direction; and the above-mentioned flow distribution device, wherein the first pair of manifolds, the second pair of manifolds, and the third pair of the flow distribution device
  • the pair of manifolds respectively communicate with the fuel fluid channel, the oxidizing gas channel and the cooling medium channel of the repeating component.
  • the positions and shapes of the top open ends of the first pair of manifolds, the second pair of manifolds, and the third pair of manifolds in the distribution device are the same as those of the fuel fluid passage of the repeating component
  • the position and cross-sectional shape of the oxidizing gas channel and the cooling medium channel are approximately the same.
  • it further includes: a first current collector and a first insulating plate sequentially stacked on the first surface of the repeating part; a second current collector and a second insulating plate sequentially stacked on the second surface of the repeating part Plate; and a second end plate, the first end plate and the second end plate clamp the repeating part, and the first current collector, the second current collector, the first insulation Plate and the second insulating plate, wherein the first insulating plate is sandwiched between the first end plate and the first current collector, and the second insulating plate is sandwiched between the second end plate And the second current collector, the fuel fluid channel, the oxidizing gas channel and the cooling medium channel pass through the first current collector and the first insulating plate along the stacking direction.
  • the top open ends of the first pair of manifolds, the second pair of manifolds, and the third pair of manifolds in the distribution device form at least one distribution unit, and all of the distribution devices in the distribution device form at least one distribution unit.
  • the at least one distribution unit supplies fuel fluid, oxidizing gas, and cooling medium to corresponding power generating units in the repeating components, respectively.
  • a first tension plate and a second tension plate which are located on opposite sides of the fuel cell, and respectively include a lower flange and an upper flange, wherein the first tension plate and the second tension plate
  • the lower flanges respectively contact the bottom surface edges of the first end plate
  • the upper flanges of the first tension plate and the second tension plate respectively contact the top surface edges of the second end plate, thereby adopting the lower flange Apply pressure to the bottom surface of the first end plate, and use the upper flange to apply pressure to the top surface of the second end plate to provide clamping between the first end plate and the second end plate force.
  • the upper flanges of the first tension plate and the second tension plate further include a plurality of screw holes, and bolts passing through the plurality of screw holes are used to apply additional pressure to the top surface of the second end plate.
  • the side wall of the first end plate is formed with a plurality of first bosses extending laterally
  • the side wall of the second end plate is formed with a plurality of second bosses extending laterally through the The plurality of bolts of the plurality of screw holes of the plurality of first bosses and the plurality of second bosses fix the first end plate and the second end plate to provide the first end plate and the second end plate The clamping force between the end plates.
  • it further includes: a first interface board and a second interface board, which are located on opposite end surfaces of the first end plate, and respectively include a plurality of interfaces for connecting a plurality of external pipelines, wherein the first interface
  • the inner open ends of the plurality of interfaces in the plate and the second interface plate are connected to those of the first pair of manifolds, the second pair of manifolds, and the third pair of manifolds in the distribution device
  • the multiple side open ends are respectively aligned to achieve communication with each other.
  • a two-layer six-channel manifold structure is adopted.
  • the third pair of manifolds is located on the upper layer and is adjacent to the first pair of manifolds on the upper layer and the second pair of manifolds on the lower layer. It can maximize the cooling capacity of the cooling medium to the end plates and the reactants flowing in the end plates, so that the temperature gradient of the end plates is smaller, the temperature consistency is better, the fuel cell operating environment is more stable, and better water heat is achieved manage. Further, in the distribution device, not only the connection position of the main channel and the sub-channel is improved, but also the top opening end size of the sub-channel is optimized to form a straight channel.
  • the internal channel of the device smoothly distributes the fuel fluid and the oxidizing gas to the fuel fluid channel and the oxidizing gas channel of the repetitive parts of the fuel cell, thereby improving the uniformity of the distribution of reactants, thereby improving the discharge performance.
  • the first end plate not only serves as a component of the flow distribution device, but also serves as a component of the clamping device.
  • the tension plate is not only used as a side protection component of the fuel cell, but also serves as a clamping device.
  • the upper and lower flanges of the tension plate are used to apply pressure to the first end plate and the second end plate to fix the internal stacked layers of the fuel cell.
  • the bipolar plates in the repeating parts have the functions of dispersing reactants, heat dissipation, conduction, and supporting structure. Therefore, the fuel cell according to the embodiment of the present invention can reduce the number of parts of the fuel cell. Due to the reduction in the number of components of the fuel cell and the optimization of the structural design, the fuel cell of this embodiment can reduce the height dimension and the lateral dimension of the fuel cell, which is conducive to the miniaturization of the fuel cell and the improvement of reliability.
  • the fuel cell according to the embodiment of the present invention adopts a modular design, and the number of cells of the battery can be flexibly adjusted according to actual power requirements, so that the design, processing and manufacturing are simpler and more efficient.
  • the structural design the high-current continuous discharge capability of the fuel cell stack is effectively improved, and the rated power and volumetric power density of the fuel cell stack are improved, thereby greatly reducing the production cost of the fuel cell stack.
  • FIG. 1 and 2 respectively show a three-dimensional schematic diagram of the disassembled state and the assembled state of the fuel cell according to the first embodiment of the present invention.
  • 3 and 4 respectively show a three-dimensional structural diagram of a fuel cell in a disassembled state and an assembled state according to a second embodiment of the present invention.
  • 5 and 6 respectively show a three-dimensional structural view and a top view of a flow distribution device according to a third embodiment of the present invention.
  • 7a and 7b respectively show a cross-sectional view and a cross-sectional view taken along the line AA in FIG. 6.
  • 8a and 8b respectively show a cross-sectional view and a cross-sectional view taken along the line BB in FIG. 6.
  • Fig. 9 shows a side view of a flow distribution device according to a fourth embodiment of the present invention viewed from an end surface.
  • 10a and 10b respectively show three-dimensional schematic diagrams of interface boards connected to two end faces of the flow distribution device shown in FIG. 9.
  • Fig. 11 shows the discharge curves of the fuel cell according to the first embodiment of the present invention under different reactant metering ratios.
  • the fuel cell 100 includes a first end plate 110 and a second end plate 120 opposite to each other.
  • a first insulating plate 131, a first current collector 132, a repeat part 133, and a second current collector are sequentially stacked between the two.
  • the first end plate 110 also serves as a flow distribution device for distributing fuel fluid, oxidizing gas, and cooling medium to the bipolar plate in the repeating part 133.
  • the repeating part 133 includes a bipolar plate and a membrane electrode assembly sandwiched between the bipolar plates.
  • the bipolar plate includes an anode electrode plate and a cathode electrode plate, and a cooling layer sandwiched between the anode electrode plate and the cathode electrode plate.
  • the fuel cell stack includes, for example, a plurality of repetitive parts 133 stacked together and electrically connected to each other to increase the output voltage.
  • the membrane electrode assembly includes an electrolyte membrane, an anode catalyst layer and an anode diffusion layer sequentially stacked on the first surface (fuel fluid side) of the electrolyte membrane, and a cathode catalyst stacked sequentially on the second surface (oxidizing gas side) of the electrolyte membrane Layer, cathode diffusion layer.
  • the membrane electrode assembly has a substantially rectangular shape, and a fuel fluid channel, an oxidizing gas channel, and a cooling medium channel extending in the stacking direction are formed on the sides of the rectangle.
  • the first surface of the anode plate is opposite to the anode diffusion layer of the membrane electrode assembly, a flow field connected to the fuel fluid channel and extending laterally is formed on the first surface, and a second surface opposite to the first surface is formed on the second surface.
  • the first surface of the cathode plate is opposite to the cathode diffusion layer of the membrane electrode assembly.
  • a flow field connected to the oxidizing gas channel and extending laterally is formed on the first surface, and a flow field is formed on the second surface opposite to the first surface.
  • the electrolyte membrane is a selectively permeable membrane that transports protons and has the function of insulating electrons.
  • Electrolyte membranes are roughly classified into fluorine-based electrolyte membranes and hydrocarbon-based electrolyte membranes by the types of ion exchange resins that are constituent materials. Among them, the fluorine-based electrolyte membrane has a C—F bond (C—F bonding), so it is excellent in heat resistance or chemical stability.
  • a perfluorosulfonic acid membrane known under the trade name of Nafion registered trademark, DuPont Co., Ltd.
  • the anode catalyst layer contains an electrode catalyst supporting a catalyst component and a polymer.
  • the electrode catalyst has a function of promoting a reaction (hydrogen-oxygen reaction) that dissociates hydrogen into protons and electrons.
  • the electrode catalyst has, for example, a structure in which a catalytic component such as platinum is supported on the surface of a conductive carrier made of carbon or the like.
  • the cathode catalyst layer contains an electrode catalyst supporting a catalyst component and a polymer.
  • the electrode catalyst has a function of promoting a reaction (oxygen reduction reaction) that generates water from protons, electrons, and oxygen.
  • the electrode catalyst has, for example, a structure in which a catalytic component such as platinum is supported on the surface of a conductive carrier made of carbon or the like.
  • the anode diffusion layer and the cathode diffusion layer are respectively composed of porous loose conductive materials, such as porous carbon paper materials.
  • the anode diffusion layer and the cathode diffusion layer respectively uniformly diffuse the fuel fluid and oxidizing gas from the flow channel of the flow field to the two parts of the electrolyte membrane catalytic layer. On the side surface, the fuel fluid and the oxidizing gas are brought into contact with the anode catalyst layer and the cathode catalyst layer, respectively.
  • the first surface of the anode plate is in contact with the anode diffusion layer of the membrane electrode assembly, a flow field channel connected to the fuel fluid channel and extending laterally is formed in the first surface, and a second surface opposite to the first surface is formed in the second surface.
  • the flow field channel of the anode plate conveys the fuel fluid to the first surface of the membrane electrode assembly.
  • the first surface of the cathode plate is in contact with the cathode diffusion layer of the membrane electrode assembly, and a flow field connected to the oxidizing gas channel and extending laterally is formed on the first surface, and a flow field is formed on the second surface opposite to the first surface.
  • the flow field channel of the cathode plate transmits the oxidizing gas to the second surface of the membrane electrode assembly.
  • the fuel fluid On the anode side of the membrane electrode assembly, the fuel fluid generates cations and electrons through an electrochemical reaction on the anode catalyst layer of the membrane electrode assembly.
  • the cations migrate through the electrolyte membrane to the cathode side catalyst layer, and the electrons are conducted to the anode plate through the anode diffusion layer.
  • the oxidizing gas combines with the electrons transferred from the anode on the cathode catalyst layer to form an anion ,
  • the anions combine with the cations that migrate through the electrolyte membrane to produce water, thereby forming a current loop.
  • the first current collector 132 and the anode plate of the repeating part 133 are in contact with each other, and both are composed of conductive materials, thereby forming a conductive path on the anode side.
  • the second current collector 134 and the cathode plate of the repeating part 133 are in contact with each other, and both are composed of conductive materials, thereby forming a conductive path on the cathode side.
  • the first current collector 132 and the second current collector 134 can be made of highly conductive materials such as copper plate and aluminum.
  • the anode plate and the cathode plate of the repeating component 133 have the functions of a reactant flow field device, a heat dissipation plate, a conductive, and a supporting structure, so that the structure of the fuel cell can be simplified and the volume of the fuel cell can be reduced.
  • the first insulating plate 131 is located between the first current collector 132 and the first end plate 110, and the second insulating plate 135 is located between the second current collector 134 and the second end plate 120, thereby combining the repeated components and the current collector.
  • the first end plate 110 and the second end plate 120 are isolated from each other.
  • the plurality of repeating components are stacked between the first current collector 132 and the second current collector 134.
  • the side portions of the first insulating plate 131 and the first current collector 132 are respectively formed with a plurality of openings, which are aligned with the plurality of openings of the side portion of the repeating part 133, and jointly form a fuel fluid channel, an oxidizing gas channel and a cooling medium channel. .
  • the fuel cell 100 further includes two tension plates 140 forming a clamping device with the first end plate 110 and the second end plate 120.
  • Two tension plates 140 are located on opposite sides of the fuel cell 100, and include a lower flange 141 and an upper flange 142, respectively.
  • the lower flange 141 of the tension plate 140 is in contact with the edge of the bottom surface of the first end plate 110, and the upper flange 142 is in contact with the edge of the top surface of the second end plate 120, thereby forming a clamping device.
  • the first end plate and the second end plate apply pressure to fix the first insulating plate 131, the first current collector 132, the repeating part 133, the second current collector 134, and the second insulating plate 135 together.
  • the upper flange 142 of the tension plate 140 has a plurality of screw holes 143, and bolts passing through the plurality of screw holes 143 are used to apply additional pressure to the surface of the second end plate 120.
  • a sealing gasket is provided between the stacked layers, so as to form a seal of the stacked layers while fixing the stacked layers.
  • the first end plate 110 also serves as a flow distribution device.
  • a first pair of manifolds for providing inflow and outflow channels for fuel fluid, a second pair of manifolds for providing inflow and outflow channels for oxidizing gas, and a second pair of manifolds for providing inflow and outflow channels for cooling medium are formed in the first end plate.
  • the third pair of manifolds out of the channel is formed in the first end plate.
  • the top open ends of the first pair of manifolds in the first end plate 110 are aligned with the fuel fluid channels in the membrane electrode assembly in the repeating part 133
  • the top open ends of the second pair of manifolds in the first end plate 110 are aligned with the oxidizing gas channels in the membrane electrode assembly in the repeating part 133
  • the top open ends of the third pair of manifolds in the first end plate 110 are aligned with The cooling medium channels in the membrane electrode assembly in the repeating part 133 are aligned.
  • the end surface of the first end plate 110 forms side open ends of the first pair of manifolds, the second pair of manifolds, and the third pair of manifolds.
  • the fuel cell 100 is further connected to two interface plates 150 connected to the end surface of the first end plate 110.
  • the two interface boards 150 respectively include a plurality of pipeline interfaces for connecting a plurality of external pipelines.
  • the open ends of the plurality of pipeline ports in the interface plate 150 are aligned with the open ends of the first pair of manifolds, the second pair of manifolds, and the third pair of manifolds in the first end plate 110 to achieve communication with each other.
  • the first end plate 110 not only serves as a component of the flow distribution device, but also serves as a component of the clamping device.
  • the tension plate 140 is not only used as a side protection component of the fuel cell 100, but also serves as a clamping device.
  • the components of the device use the upper and lower flanges of the tension plate to apply pressure to the first end plate 110 and the second end plate 120 to fix the internal stacked layers of the fuel cell 100, which plays a role of fastening.
  • the bipolar plate of the repeating component 133 also functions as a reactant flow field device, a heat dissipation plate, a conductive, and a supporting structure.
  • the fuel cell 100 according to the first embodiment can reduce the number of components in the fuel cell 100. Due to the reduction in the number of components of the fuel cell 100 and the optimization of the structural design, the fuel cell 100 of this embodiment can reduce the height dimension and the lateral dimension of the fuel cell 100, which is conducive to the miniaturization of the fuel cell 100 and the improvement of reliability.
  • the inventor further optimized the manifold structure of the distribution device to further improve the high-current continuous discharge capability of the fuel cell 100 and increase the power density of the cell stack.
  • the fuel cell 200 includes a first end plate 210 and a second end plate 220 opposite to each other.
  • a first insulating plate 131, a first current collector 132, a repeat part 133, and a second current collector are sequentially stacked between the two.
  • the first end plate 210 doubles as a flow distribution device for distributing fuel fluid, oxidizing gas, and cooling medium to the membrane electrode assembly in the repeating part 133.
  • the first insulating plate 131, the first current collector 132, the repeat part 133, the second current collector 134, and the second insulating plate 135 in the fuel cell 200 according to the second embodiment are the same as those of the first embodiment.
  • the corresponding components in the fuel cell 100 of the example have the same structure, and therefore, the detailed description is omitted.
  • the first end plate 210 and the second end plate 220 of the fuel cell 200 form a clamping device.
  • a laterally extending boss 211 is formed on the side wall of the first end plate 210, and a plurality of screw holes 212 penetrate the boss 211.
  • a laterally extending boss 221 is formed on the side wall of the second end plate 220, and a plurality of screw holes 222 penetrate the boss 221.
  • the multiple screw holes 212 in the first end plate 210 and the multiple screw holes 222 in the second end plate 220 are opposite to each other, and bolts 224 passing through the multiple screw holes 212 and 222 are used to fix the first end plate 210 and the second end plate 210.
  • the end plate 220 provides a clamping force between the first end plate 210 and the second end plate 220.
  • the clamping device fixes the first insulating plate 131, the first current collector 132, the repeat part 133, the second current collector 134, and the second insulating plate 135 together.
  • a sealing gasket is provided between the stacked layers, so as to form a seal of the stacked layers while fixing the stacked layers.
  • the first end plate 210 also serves as a flow distribution device.
  • a first pair of manifolds for providing inflow and outflow channels for fuel fluid, a second pair of manifolds for providing inflow and outflow channels for oxidizing gas, and a second pair of manifolds for providing inflow and outflow channels for cooling medium are formed in the first end plate.
  • the third pair of manifolds out of the channel is formed in the first end plate.
  • the top open ends of the first pair of manifolds in the first end plate 210 are aligned with the fuel fluid channels in the membrane electrode assembly in the repeating part 133
  • the top open ends of the second pair of manifolds in the first end plate 210 are aligned with the oxidizing gas channels in the membrane electrode assembly in the repeating part 133
  • the top open ends of the third pair of manifolds in the first end plate 210 are aligned with The cooling medium channels in the membrane electrode assembly in the repeating part 133 are aligned.
  • the end surface of the first end plate 210 is formed with side open ends of the first pair of manifolds, the second pair of manifolds, and the third pair of manifolds.
  • the fuel cell 200 is further connected to two interface plates 150 connected to the end surface of the first end plate 210.
  • the two interface boards 150 respectively include a plurality of pipeline interfaces for connecting a plurality of external pipelines.
  • the inner open ends of the plurality of pipeline ports in the interface plate 150 are aligned with the open ends of the first pair of manifolds, the second pair of manifolds, and the third pair of manifolds in the first end plate 210, so as to achieve communication with each other .
  • the first end plate 210 not only serves as a component of the flow distribution device, but also serves as a component of the clamping device, and the first end plate 210 and the second end plate 220 also serve as components of the clamping device.
  • the first end plate 210 and the second end plate 220 are used to apply pressure to fix the internal stacked layers of the fuel cell 200.
  • the bipolar plate of the repeating component 133 also functions as a reactant flow field device, a heat dissipation plate, a conductive, and a supporting structure. Therefore, the fuel cell 200 according to the second embodiment can omit the tension plate, thereby further reducing the number of components in the fuel cell 200.
  • the fuel cell 200 of this embodiment can reduce the height and lateral dimensions of the fuel cell 200, which is beneficial to the miniaturization of the fuel cell 200 and the improvement of reliability.
  • the inventors further optimized the design of the manifold structure of the flow distribution device to further improve the performance of the fuel cell 200.
  • FIG. 5 and 6 respectively show a three-dimensional structural view and a top view of a flow distribution device according to a third embodiment of the present invention.
  • Figures 7a and 7b respectively show a cross-sectional view and a cross-sectional view taken along the line AA in Figure 6;
  • Figures 8a and 8b show a cross-sectional view and a cross-sectional view taken along the line BB of Figure 6 respectively.
  • the entire first end plate 110 also serves as the flow distribution device 300.
  • the main body of the second end plate 210 is used as the flow distribution device 300.
  • the distribution device 300 is used to uniformly supply the reactants and cooling medium provided by the external pipeline to the repeating components.
  • the flow distribution device 300 includes an end plate 301 having a substantially rectangular parallelepiped shape.
  • a plurality of manifolds are formed inside the end plate 301, including a first pair of manifolds 310 for providing inflow and outflow channels for fuel fluid, a second pair of manifolds 320 for providing inflow and outflow channels for oxidizing gas, and A third pair of manifolds 330 for providing inflow and outflow channels for the cooling medium.
  • the top open ends of the first pair of manifolds 310 in the end plate 301 are aligned with the fuel fluid passages of the repeating part 133, and the top open ends of the second pair of manifolds 320 in the end plate 301 are aligned with the top open ends of the repeating part 133.
  • the oxidizing gas passages of the part 133 are aligned, and the top open ends of the third pair of manifolds 330 in the end plate 301 are aligned with the cooling medium passages of the repeating part 133.
  • the side open ends of the first pair of manifolds 310 in the end plate 301 are aligned with the fuel fluid pipeline interfaces in the interface plate, and the second pair of manifolds 320 in the end plate 301 The side open ends are aligned with the oxidizing gas pipeline interface in the interface board, and the side open ends of the third pair of manifolds 330 in the end plate 301 are aligned with the cooling medium pipeline interface in the interface board.
  • Each of the first pair of manifolds 310 includes a main channel 311 that extends laterally (ie, perpendicular to the stacking direction of the fuel cell) and has a side open end, and extends longitudinally (ie, along the stacking direction of the fuel cell) and A plurality of sub-channels 312 with top open ends. Inside the end plate 301, the main channel 311 communicates with a plurality of sub-channels 312.
  • Each manifold in the second pair of manifolds 320 includes a main channel 321 extending transversely and having side open ends, and a plurality of sub-channels 322 extending longitudinally and having top open ends. The passage 322 communicates.
  • Each of the third pair of manifolds 330 includes a main channel 331 extending transversely and having side open ends, and a plurality of sub-channels 332 extending longitudinally and having top open ends. Inside the end plate 301, the main channel 331 and the plurality of sub-channels The passage 332 communicates.
  • the main passages of the first pair of manifolds 310, the second pair of manifolds 320, and the third pair of manifolds 330 respectively have cross-sectional shapes similar to rectangular cross-sections, and the cross-sectional dimensions are different from each other.
  • the cross-sectional size of the main channel 321 of the second pair of manifolds 320 is, for example, 2-20 times the cross-sectional size of the main channel 311 of the first pair of manifolds 310
  • the cross-sectional size of the main channel 331 of the third pair of manifolds 330 is, for example, the The cross-sectional size of the main channel 311 of the pair of manifolds 310 is 2-8 times.
  • the main channels of the first pair of manifolds 310, the second pair of manifolds 320, and the third pair of manifolds 330 are distributed in two levels. As shown in the figure, in the upper level, the two main channels 311 of the first pair of manifolds 310 and the two main channels 331 of the third pair of manifolds 330 are arranged side by side, and the two main channels of the first pair of manifolds 310 are arranged side by side. The channels 311 are distributed outside the two main channels 331 of the third pair of manifolds 330. In the lower level, the two main channels 321 of the second pair of manifolds 320 are arranged side by side.
  • the top opening ends of the first pair of manifolds 310, the second pair of manifolds 320, and the third pair of manifolds 330 are distributed on the surface of the end plate 301.
  • the outflow channels of the first pair of manifolds 310, the third pair of manifolds 330, and the second pair of manifolds 320 are arranged in sequence.
  • the inflow channels of the second pair of manifolds 320, the third pair of manifolds 330, and the first pair of manifolds 310 (ie, flow from the repeating part 133 to the first current collector 132, and then It flows to the first insulating plate 131, and finally flows to the top open ends of the flow distribution device 300).
  • the top open ends of the outflow channels and the top open ends of the inflow channels of the first pair of manifolds 310, the third pair of manifolds 330, and the second pair of manifolds 320 form a distribution unit for supplying reactants and cooling to the repeating part 133 medium.
  • the positions and shapes of the top open ends of the first pair of manifolds 310, the second pair of manifolds 320, and the third pair of manifolds 330 are approximately the same as the positions and cross-sectional shapes of the reactant channels and the cooling medium channels in the repeating part.
  • 1-15 repeating units can be included in the repeating component, and the distribution device 300 includes a corresponding number of distribution units.
  • the multiple sub-channels 312 of the first pair of manifolds 310 are periodically connected to the main channel 311 along the extending direction of the main channel 311, so as to realize the communication between the multiple sub-channels 312 and the main channel 311.
  • the multiple sub-channels 332 of the third pair of manifolds 330 are periodically connected to the main channel 331 along the extending direction of the main channel 331, so as to realize the communication between the multiple sub-channels 332 and the main channel 331.
  • the connection positions of the sub-channels of the second pair of manifolds 320 and the main channel are all located at the top of the main channel.
  • the size of the top opening end of each of the first pair of manifolds 310, the second pair of manifolds 320, and the third pair of manifolds 330 may be greater than, equal to, or smaller than the cross-sectional size of the main channel.
  • the size of the top opening end of the first pair of manifolds 310 and the third pair of manifolds 330 is larger than the cross-sectional size of the main channel, and the size of the top opening end of the second pair of manifolds 320 is smaller than the cross-sectional size of the main channel.
  • the pipe 310 and the third pair of manifolds 330 adopting manifolds with large open ends can reduce the resistance of the fuel fluid and the cooling medium to adapt to pressure changes, thereby improving the stability of the fuel cell.
  • a two-layer six-channel manifold structure is adopted.
  • the third pair of manifolds 330 are located on the upper layer and are connected to the first pair of manifolds 310 on the upper layer and the second pair of manifolds 320 on the lower layer. Adjacent, so as to maximize the cooling capacity of the cooling medium to the end plate, so that the temperature gradient of the end plate is smaller, the temperature consistency is better, the fuel cell operating environment is more stable, and better water and heat management is realized.
  • the distribution device 300 not only the connection position of the main channel and the sub-channel is improved, but also the top opening end size of the sub-channel is optimized to form a straight channel, which is not only easy to process the internal channel of the distribution device, but also can pass through
  • the internal channel of the flow distribution device smoothly distributes the fuel fluid and the oxidizing gas to the fuel fluid channel and the oxidizing gas channel of the bipolar plate, improving the uniformity of the distribution of reactants and improving the discharge performance.
  • Fig. 9 shows a side view of a flow distribution device according to a fourth embodiment of the present invention viewed from an end surface.
  • 10a and 10b respectively show three-dimensional schematic diagrams of interface boards connected to two end faces of the flow distribution device shown in FIG. 9.
  • the distribution device 400 is used to uniformly supply the reactants and cooling medium provided by the external pipeline to the repeating components.
  • the flow distribution device 400 includes an end plate 401 having a substantially rectangular parallelepiped shape.
  • a plurality of manifolds are formed inside the end plate 401, including a first pair of manifolds 410 for providing inflow and outflow channels for fuel fluid, a second pair of manifolds 420 for providing inflow and outflow channels for oxidizing gas, and A third pair of manifolds 430 for providing inflow and outflow channels for the cooling medium.
  • the main channels of the first pair of manifolds 410 and the third pair of manifolds 430 have, for example, a rectangular cross-sectional shape, respectively, and the main channels of the second pair of manifolds 420 have, for example, a convex cross-sectional shape.
  • the main channel cross-sectional dimensions of the pair of manifolds 410, the second pair of manifolds 420, and the third pair of manifolds 430 are different from each other.
  • the cross-sectional size of the main channel 421 of the second pair of manifolds 420 is, for example, 2-20 times the cross-sectional size of the main channel 411 of the first pair of manifolds 410, and the cross-sectional size of the main channel 431 of the third pair of manifolds 430 is, for example, the The cross-sectional size of the main channel 411 of the pair of manifolds 410 is 2-8 times.
  • the interface boards 250 and 350 are respectively connected to the opposite end surfaces of the end plate 401.
  • the interface plate 250 includes an interface 251 for connecting external pipes for inflow and outflow of fuel fluid.
  • the interface 251 of the interface plate 250 and the open ends of the first pair of manifolds in the end plate 401 are aligned with each other, thereby achieving communication with each other.
  • the interface board 350 includes an interface 351 for connecting external pipelines for inflow and outflow of oxidizing gas, and an interface 352 for connecting external pipelines for inflow and outflow of the cooling medium.
  • the interface 351 of the interface board 350 and the end plate The opening ends of the second pair of manifolds in 401 are aligned with each other, and the opening ends of the interface 352 and the third pair of manifolds in the end plate 401 are aligned with each other, so as to achieve communication with each other.
  • the cross-sectional shape of the main channel of the second pair of manifolds 420 is designed to be convex to enlarge the cross-sectional size of the main channel of the second pair of manifolds 420, thereby further improving the supply of oxidizing gas. Improve the discharge performance of the fuel cell.
  • the external pipeline interface is provided at both ends of the end plate of the flow distribution device, which is beneficial to the miniaturization of the fuel cell and the improvement of compatibility, that is, the fuel cell can be adapted to external pipelines of different sizes.
  • Fig. 11 shows the discharge curves of the fuel cell according to the first embodiment of the present invention under different reactant metering ratios. From the actual measurement data shown in the figure, it can be drawn:
  • the cell voltage reaches 0.628 ⁇ 0.641V at a discharge current density of 2.0A/cm 2 and the discharge current density reaches 2.5A/cm 2, the cell voltage of 0.598 ⁇ 0.612V; discharge current density of 3.0A cm 2 hour /, the cell voltage is still 0.567 ⁇ 0.587V.
  • the high-current discharge performance of the fuel cell stack has been greatly improved.
  • the fuel cell according to the above-mentioned embodiments of the present invention can be applied to an electric vehicle. Due to the high power density of the fuel cell and good high-current discharge performance, the power performance, fuel utilization efficiency and cruising range of the vehicle can be improved.
  • the fuel cell 100 includes a first end plate 110 and a second end plate 120 opposite to each other, and the first insulating plate 131, the first current collector 132, and the repeated components are sequentially stacked between the two. (repeat part) 133, a second current collector 134, and a second insulating plate 135.
  • the cell stack of the fuel cell 100 includes, for example, a plurality of repetitive parts 133 stacked together and electrically connected to each other to increase the output voltage.
  • the bipolar plate in the repeating part 133 of the fuel cell can double as a current collector, and the gasket in the repeating part 133 can double as an insulating plate, so that the first insulating plate 131 and the first current collector can be omitted. 132. At least one of the second current collector 134 and the second insulating plate 135, thereby further reducing the number of components in the fuel cell 100. Due to the reduction in the number of components of the fuel cell 100 and the optimization of the structural design, the fuel cell 100 of this embodiment can reduce the height dimension and the lateral dimension of the fuel cell 100, which is beneficial to the miniaturization of the fuel cell 100 and further improves the power density.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本申请公开了燃料电池及配流装置。该配流装置包括在第一端板中形成的第一对歧管、第二对歧管和第三对歧管,第一对歧管、第二对歧管和第三对歧管分别包括横向延伸且具有侧开口端的主通道,以及纵向延伸且具有顶开口端的多个子通道,其中,第一对歧管的主通道和第三对歧管的主通道位于第一端板的上部层面,第二对歧管的主通道位于第一端板的下部层面,第一对歧管、第二对歧管和第三对歧管分别用于分配燃料流体、氧化气体和冷却介质。该燃料电池通过改进配流装置中的歧管结构设计,可以提高燃料电池的反应物分配均匀性并改善水热管理,从而提高燃料电池的大电流放电性能和功率密度。在电动车辆中可以提高车辆的动力性能、燃料利用效率和续航里程。

Description

燃料电池及配流装置
本申请要求了申请日为2020年4月28日、申请号为2020103497149、名称为“燃料电池及配流装置”的中国发明申请的优先权,并且通过参照上述中国发明申请的全部说明书、权利要求、附图和摘要的方式,将其引用于本申请。
技术领域
本发明涉及燃料电池,更具体地,涉及燃料电池及配流装置。
背景技术
燃料电池是通过甲醇或氢等燃料在膜电极组件的催化剂层与氧化气体发生电化学反应,获取电能的发电装置。燃料电池例如包括电解质膜以及位于电解质膜两侧表面的催化剂层、扩散层以及双极板。
在燃料电池工作期间,燃料流体通过双极板的阳极流场的流道被传递到膜电极组件表面,在膜电极组件内部的传递过程为燃料流体通过扩散层扩散到阳极催化层,并在催化剂层催化剂的作用下,放出电子形成阳离子。电子从催化剂表面经由扩散层传递到双极板,再从双极板传递到外部电路,再从外部电路传送到阴极双极板,从阴极双极板传递到扩散层,从扩散层传送至阴极催化剂层;阳离子则经由电解质膜传递到阴极侧催化剂层。氧化气体在阴极催化剂层上与从阳极传递过来的电子结合形成形成阴离子,阴离子与经由电解质膜迁移过来的阳离子结合生成水,从而形成完整的电子回路和离子回路。电解质膜兼有离子通道和阻挡气体以及电子的作用。
燃料流体包括气态的氢气,或者液态的甲醇或者甲醇溶液等燃料组成的流体。氧化气体可以是空气也可以是纯氧,冷却介质可以是液体也可以是气体。
燃料电池反应过程产生的反应产物为水,零排放,在反应过程中无 需机械传动,直接把燃料中的化学能转化成电能,基本上没有噪音污染,因此,燃料电池作为发电装置具有发电效率高和绿色环保的优点。为了进一步提高燃料电池的输出功率和输出电压,在实际产品中,采用端板将堆叠的多个重复部件压紧固定在一起形成电池堆。在电池堆中采用配流装置向多个重复部件提供燃料流体、氧化气体和冷却介质。在电池堆中使用数量众多的重复部件,对电池堆的装配密封、冷却介质和反应物的分布均匀性形成了巨大的挑战。由于燃料电池中端板的工作环境与膜电极组件的反应环境不同,严重影响了电池堆的一致性,从而导致性能和寿命的衰减。
为提高燃料电池的可靠性、稳定性以及延长使用寿命,需要进一步改善燃料电池的结构设计,改善反应物的分布均匀性,提高燃料电池的水热管理能力,以减小燃料电池内部的温度梯度。
发明内容
鉴于上述问题,本发明的目的是提供燃料电池及配流装置,其中,将端板兼用作配流装置的部件并且改进配流装置中的歧管结构设计,以提高燃料电池的反应物分配均匀性并改善水热管理,从而提高燃料电池的大电流放电性能和功率密度。用于电动车辆中,则可提高车辆的动力性能、燃料利用效率和续航里程。
根据本发明的第一方面,提供一种用于燃料电池的配流装置,包括:第一端板;以及在所述第一端板中形成的第一对歧管、第二对歧管和第三对歧管,所述第一对歧管、所述第二对歧管和所述第三对歧管分别包括横向延伸且具有侧开口端的主通道,以及纵向延伸且具有顶开口端的多个子通道,其中,所述第一对歧管的主通道和所述第三对歧管的主通道位于所述第一端板的上部层面,所述第二对歧管的主通道位于所述第一端板的下部层面,所述第一对歧管、所述第二对歧管和所述第三对歧管分别用于分配燃料流体、氧化气体和冷却介质。
优选地,所述第一对歧管的所述多个子通道周期性地连接相应的主通道,所述第三对歧管的所述多个子通道周期性地连接相应的主通道。
优选地,所述第二对歧管的所述多个子通道在所述第二对歧管的主通道的顶部与之连接。
优选地,所述第一对歧管的所述多个子通道的顶开口端尺寸大于所述第一对歧管的所述主通道的截面尺寸,所述第二对歧管的所述多个子通道的顶开口端尺寸小于所述第二对歧管的所述主通道的截面尺寸,所述第三对歧管的所述多个子通道的顶开口端尺寸大于所述第三对歧管的所述主通道的截面尺寸。
优选地,所述第二对歧管的主通道的截面尺寸为所述第一对歧管的主通道的截面尺寸的2-20倍,所述第三对歧管的主通道的截面尺寸为所述第一对歧管的主通道的截面尺寸的2-8倍。
优选地,所述第一对歧管、所述第二对歧管和所述第三对歧管的顶开口端分布于所述端板的表面上以形成至少一个分配单元。
优选地,所述至少一个分配单元包括1-15个分配单元。
优选地,所述至少一个分配单元分别包括在所述端板的表面一侧依次排列的所述第一对歧管、所述第三对歧管和所述第二对歧管的第一组顶开口端,以及在所述端板的表面另一侧依次排列的所述第二对歧管、所述第三对歧管和所述第一对歧管的第二组顶开口端,所述第一组顶开口端分别流出所述燃料流体、所述冷却介质和所述氧化气体,所述第二组顶开口端分别流入所述氧化气体、所述冷却介质和所述燃料流体。
优选地,所述第一对歧管和所述第三对歧管各自的主通道分别具有大致矩形的截面形状,所述第二对歧管的主通道具有凸字形的截面形状。
优选地,所述第一对歧管、所述第二对歧管和所述第三对歧管各自的主通道分别具有大致矩形的截面。
根据本发明的第二方面,提供一种燃料电池,包括:重复部件,所述重复部件包括双极板以及夹在双极板之间的膜电极组件,在所述重复部件的侧边部分形成沿堆叠方向延伸的燃料流体通道、氧化气体通道和冷却介质通道;以及上述的配流装置,其中,所述配流装置的所述第一对歧管、所述第二对歧管和所述第三对歧管分别与所述重复部件的燃料流体通道、氧化气体通道和冷却介质通道彼此连通。
优选地,所述配流装置中的所述第一对歧管、所述第二对歧管和所述第三对歧管的顶开口端的位置和形状与所述重复部件的所述燃料流体通道、所述氧化气体通道和所述冷却介质通道的位置和截面形状大致相同。
优选地,还包括:在所述重复部件的第一表面依次堆叠的第一电流集流体和第一绝缘板;在所述重复部件的第二表面依次堆叠的第二电流集流体和第二绝缘板;以及第二端板,所述第一端板和所述第二端板夹持所述重复部件、以及所述第一电流集流体、所述第二电流集流体、所述第一绝缘板、所述第二绝缘板,其中,所述第一绝缘板夹在所述第一端板和所述第一电流集流体之间,所述第二绝缘板夹在所述第二端板和所述第二电流集流体之间,所述燃料流体通道、所述氧化气体通道和所述冷却介质通道沿着堆叠方向穿过所述第一集流体和所述第一绝缘板。
优选地,所述配流装置中的所述第一对歧管、所述第二对歧管和所述第三对歧管各自的顶开口端形成至少一个分配单元,所述配流装置中的所述至少一个分配单元分别向所述重复部件中的相应发电单元供给燃料流体、氧化气体和冷却介质。
优选地,还包括:第一张力板和第二张力板,位于所述燃料电池的相对侧面,并且分别包括下凸缘和上凸缘,其中,所述第一张力板和第二张力板的下凸缘分别与所述第一端板的底面边缘接触,第一张力板和第二张力板的上凸缘分别与所述第二端板的顶面边缘接触,从而采用所述下凸缘向所述第一端板的底面施加压力,以及采用所述上凸缘向所述第二端板的顶面施加压力,以提供所述第一端板和第二端板之间的夹持力。
优选地,所述第一张力板和第二张力板的上凸缘还包括多个螺孔,采用穿过所述多个螺孔的螺栓向所述第二端板的顶面施加附加压力。
优选地,所述第一端板的侧壁形成有横向延伸的多个第一凸台,所述第二端板的侧壁形成有横向延伸的多个第二凸台,采用穿过所述多个第一凸台和所述多个第二凸台的多个螺孔的多个螺栓固定所述第一端板和所述第二端板,以提供所述第一端板和第二端板之间的夹持力。
优选地,还包括:第一接口板和第二接口板,位于所述第一端板的相对端面,并且分别包括用于连接多个外部管路的多个接口,其中,所述第一接口板和所述第二接口板中的所述多个接口的内开口端与所述配流装置中的所述第一对歧管、所述第二对歧管和所述第三对歧管的多个侧开口端分别对齐以实现彼此连通。
根据本发明实施例的配流装置,采用两层六通道的歧管结构,第三对歧管位于上层层面,并且与上部层面的第一对歧管和下部层面第二对歧管相邻,从而可以最大化冷却介质对端板以及端板内流动的反应物的冷却能力,使得端板的温度变化梯度更小,温度一致性更好,燃料电池运行环境更稳定,实现了更好的水热管理。进一步地,在配流装置中,不仅改进了主通道与子通道的连接位置,而且对子通道的顶开口端尺寸进行优化设计以形成直通道,不仅容易加工配流装置的内部通道,而且可以经由配流装置的内部通道将燃料流体和氧化气体顺畅地分配至燃料电池重复部件的燃料流体通道和氧化气体通道中,提高反应物分布均匀性,从而提高放电性能。
进一步地,根据本发明实施例的燃料电池,第一端板不仅作为配流装置的部件,而且兼用作夹持装置的部件,张力板不仅用于燃料电池的侧面保护部件,而且兼用作夹持装置的部件,利用张力板的上下凸缘向第一端板和第二端板施加压力以固定燃料电池的内部堆叠层。此外,重复部件中的双极板兼有分散反应物、散热、导电、支撑结构的作用。因此,根据本发明实施例的燃料电池可以减少燃料电池的部件数量。由于燃料电池的部件数量减少以及结构设计优化,该实施例的燃料电池可以减小燃料电池的高度尺寸和横向尺寸,有利于燃料电池的小型化以及提高可靠性。
进一步地,根据本发明实施例的燃料电池,采用模块化设计,可以根据实际功率需求,灵活地调整电池的单元数量,使设计和加工制造更加简单高效。通过结构设计,有效的提升了燃料电池堆的大电流持续放电能力,提升了燃料电池堆的额定功率和体积功率密度,从而大幅度的降低了燃料电池堆的生产成本。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其他目的、特征和优点将更为清楚。
图1和2分别示出根据本发明第一实施例的燃料电池的分解状态和组装状态的立体结构示意图。
图3和4分别示出根据本发明第二实施例的燃料电池的分解状态和组装状态的立体结构示意图。
图5和6分别示出根据本发明第三实施例的配流装置的立体结构图和俯视图。
图7a和7b分别示出沿图6中线AA截取的剖面图和剖视图。
图8a和8b分别示出沿图6中线BB截取的剖面图和剖视图。
图9示出根据本发明第四实施例的配流装置从端面观察的侧视图。
图10a和10b分别示出在图9所示的配流装置两个端面连接的接口板的立体示意图。
图11示出根据本发明第一实施例的燃料电池在不同反应物计量比下的放电曲线。
附图标记
100 燃料电池
110 第一端板
120 第二端板
140 张力板
150 接口板
131 第一绝缘板
132 第一电流集流体
133 重复部件
134 第二电流集流体
135 第二绝缘板
141 下凸缘
142 上凸缘
200 燃料电池
210 第一端板
220 第二端板
211 凸台
212 螺孔
221 凸台
222 螺孔
224 螺栓
300 配流装置
301 端板
310 第一对歧管
320 第二对歧管
330 第三对歧管
311 第一对歧管的主通道
312 第一对歧管的子通道
321 第二对歧管的主通道
322 第二对歧管的子通道
331 第三对歧管的主通道
332 第三对歧管的子通道
400 配流装置
401 端板
410 第一对歧管
420 第二对歧管
430 第三对歧管
411 第一对歧管的主通道
412 第一对歧管的子通道
421 第二对歧管的主通道
422 第二对歧管的子通道
431 第三对歧管的主通道
432 第三对歧管的子通道
250 接口板
350 接口板
251 与第一对歧管连通的接口
351 与第二对歧管连通的接口
352 与第三对歧管连通的接口
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以通过不同的形式来实现,并不限于本文所描述的实施例。相反的,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
下面,参照附图对本发明进行详细说明。
<第一实施例>
图1和2分别示出根据本发明第一实施例的燃料电池的分解状态和组装状态的立体结构示意图。燃料电池100包括彼此相对的第一端板110和第二端板120,在二者之间依次堆叠第一绝缘板131、第一电流集流体132、重复部件(repeat part)133、第二电流集流体134、第二绝缘板135。如下文所述,第一端板110兼用作配流装置,用于向重复部件133中的双极板分配燃料流体、氧化气体和冷却介质。
重复部件133包括双极板(bipolar plate)以及夹在双极板之间的膜电极组件。双极板包括阳极极板和阴极极板以及夹在阳极极板和阴极极板中间的冷却层。燃料电池的电池堆例如包括堆叠在一起且彼此电连接的 多个重复部件133以提高输出电压。
膜电极组件包括电解质膜,以及在电解质膜的第一表面(燃料流体侧)上依次堆叠的阳极催化剂层、阳极扩散层,在电解质膜的第二表面(氧化气体侧)上依次堆叠的阴极催化剂层、阴极扩散层。膜电极组件大致为矩形形状,在矩形的侧边部分形成沿堆叠方向延伸的燃料流体通道、氧化气体通道和冷却介质通道。阳极极板的第一表面与膜电极组件的阳极扩散层相对,在第一表面中形成有与燃料流体通道连接且横向延伸的流场,在与第一表面彼此相对的第二表面中形成有与冷却介质通道连接且横向延伸的流场。阴极极板的第一表面与膜电极组件的阴极扩散层相对,在第一表面中形成有与氧化气体通道连接且横向延伸的流场,在与第一表面彼此相对的第二表面中形成有与冷却介质通道连接且横向延伸的流场。
电解质膜是输送质子且具有使电子绝缘的功能的一种选择性渗透膜。电解质膜通过构成材料即离子交换树脂的种类,大体分为氟系电解质膜和烃系电解质膜。其中,氟系电解质膜因为具有C-F键(C-F结合),所以耐热性或化学稳定性优异。例如,作为电解质膜,广泛使用以Nafion(注册商标,杜邦有限公司)的商品名得知的全氟磺酸膜。
阳极催化剂层含有担载有催化剂成分的电极催化剂及聚合物。电极催化剂具有促进将氢解离成质子及电子的反应(氢氧反应)的功能。电极催化剂例如具有在由碳等构成的导电性载体的表面担载有铂等催化剂成分的构造。
阴极催化剂层含有担载有催化剂成分的电极催化剂及聚合物。电极催化剂具有促进由质子和电子和氧生成水的反应(氧还原反应)的功能。电极催化剂例如具有在由碳等构成的导电性载体的表面担载有铂等催化剂成分的构造。
阳极扩散层和阴极扩散层分别由多孔疏松导电材料组成,例如多孔碳纸材料,阳极扩散层和阴极扩散层分别将燃料流体和氧化气体从流场的流道中均匀扩散到电解质膜催化层的两侧表面上,使燃料流体和氧化 气体分别与阳极催化剂层和阴极催化剂层接触。
阳极极板的第一表面与膜电极组件的阳极扩散层接触,在第一表面中形成与燃料流体通道连接且横向延伸的流场流道,在与第一表面彼此相对的第二表面中形成有与冷却介质通道连接且横向延伸的流场流道。阳极极板的流场流道将燃料流体传送至膜电极组件的第一表面。阴极极板的第一表面与膜电极组件的阴极扩散层接触,在第一表面中形成与氧化气体通道连接且横向延伸的流场,在与第一表面彼此相对的第二表面中形成有与冷却介质通道连接且横向延伸的流场。阴极极板的流场流道将氧化气体传送至膜电极组件的第二表面。
在膜电极组件的阳极侧,燃料流体在膜电极组件的阳极催化剂层上通过电化学反应产生阳离子和电子,阳离子经由电解质膜迁移至阴极侧催化剂层,电子则经由阳极扩散层传导至阳极极板,然后经由外部电路从阳极侧传送至阴极侧,之后电子经由阴极极板传导至阴极扩散层,然后传导至阴极催化剂层,氧化气体在阴极催化剂层上与从阳极传递过来的电子结合形成形成阴离子,阴离子又与经由电解质膜迁移过来的阳离子结合生成水,从而形成电流回路。
第一电流集流体132与重复部件133的阳极极板彼此接触,二者均由导电材料组成,从而形成阳极侧的导电路径。第二电流集流体134与重复部件133的阴极极板彼此接触,二者均由导电材料组成,从而形成阴极侧的导电路径。第一电流集流体132和第二电流集流体134,可使用紫铜板、铝等导电性强的材料制成。在该实施例中,重复部件133的阳极极板和阴极极板兼有反应物流场装置、散热板、导电、支撑结构的作用,从而可以生产简化燃料电池的结构且减小燃料电池的体积。
第一绝缘板131位于第一电流集流体132和第一端板110之间,第二绝缘板135位于第二电流集流体134和第二端板120之间,从而将重复部件和电流集流体与第一端板110和第二端板120彼此隔离。在燃料电池100包括多个重复部件的情形下,多个重复部件堆叠在第一电流集流体132和第二电流集流体134之间。第一绝缘板131和第一电流集流体132的侧边部分分 别形成有多个开口,与重复部件133的侧边部分的多个开口对齐,共同形成燃料流体通道、氧化气体通道和冷却介质通道。
燃料电池100进一步包括与第一端板110和第二端板120形成夹持装置的两个张力板140。两个张力板140位于燃料电池100的相对侧面,分别包括下凸缘141和上凸缘142。张力板140的下凸缘141与第一端板110的底面边缘接触,上凸缘142与第二端板120的顶面边缘接触,从而形成夹持装置,利用张力板140的上下凸缘向第一端板和第二端板施加压力,将第一绝缘板131、第一电流集流体132、重复部件133、第二电流集流体134、第二绝缘板135固定在一起。优选地,张力板140的上凸缘142具有多个螺孔143,采用穿过多个螺孔143的螺栓向第二端板120的表面施加附加的压力。优选地,在堆叠的各层之间设置密封垫,从而在固定堆叠各层的同时形成堆叠各层的密封。
在该实施例中,第一端板110兼用作配流装置。在第一端板中形成用于提供燃料流体的流入和流出通道的第一对歧管、用于提供氧化气体的流入和流出通道的第二对歧管、以及用于提供冷却介质的流入和流出通道的第三对歧管。在第一端板110和第二端板120固定在一起的情形下,第一端板110中的第一对歧管的顶开口端与重复部件133中的膜电极组件中的燃料流体通道对齐,第一端板110中的第二对歧管的顶开口端与重复部件133中的膜电极组件中的氧化气体通道对齐,第一端板110中的第三对歧管的顶开口端与重复部件133中的膜电极组件中的冷却介质通道对齐。第一端板110的端面上形成第一对歧管、第二对歧管和第三对歧管的侧开口端。
燃料电池100进一步与第一端板110的端面连接的两个接口板150。两个接口板150分别包括用于连接多个外部管路的多个管路接口。接口板150中的多个管路接口的开口端与第一端板110中的第一对歧管、第二对歧管和第三对歧管的开口端彼此对齐,从而实现彼此的连通。
根据第一实施例的燃料电池100,第一端板110不仅作为配流装置的部件,而且兼用作夹持装置的部件,张力板140不仅用于燃料电池100的 侧面保护部件,而且兼用作夹持装置的部件,利用张力板的上下凸缘向第一端板110和第二端板120施加压力以固定燃料电池100的内部堆叠层,起到紧固作用。此外,重复部件133的双极板兼有反应物流场装置、散热板、导电、支撑结构的作用。因此,根据第一实施例的燃料电池100可以减少燃料电池100中的部件数量。由于燃料电池100的部件数量减少以及结构设计优化,该实施例的燃料电池100可以减小燃料电池100的高度尺寸和横向尺寸,有利于燃料电池100的小型化以及提高可靠性。
如下文所述,本发明人进一步对配流装置的歧管结构进行了优化设计,以进一步提高燃料电池100的大电流持续放电能力,提升电池堆的功率密度。
<第二实施例>
图3和4分别示出根据本发明第二实施例的燃料电池的分解状态和组装状态的立体结构示意图。燃料电池200包括彼此相对的第一端板210和第二端板220,在二者之间依次堆叠第一绝缘板131、第一电流集流体132、重复部件(repeat part)133、第二电流集流体134、第二绝缘板135。如下文所述,第一端板210兼用作配流装置,用于向重复部件133中的膜电极组件分配燃料流体、氧化气体和冷却介质。
根据第二实施例的燃料电池200中的第一绝缘板131、第一电流集流体132、重复部件(repeat part)133、第二电流集流体134、第二绝缘板135,均与第一实施例的燃料电池100中的相应部件结构相同,因此,不再详述。
燃料电池200的第一端板210和第二端板220形成夹持装置。第一端板210的侧壁形成有横向延伸的凸台211,多个螺孔212贯穿凸台211。第二端板220的侧壁形成有横向延伸的凸台221,多个螺孔222贯穿凸台221。第一端板210中的多个螺孔212与第二端板220中的多个螺孔222彼此相对,采用穿过多个螺孔212和222的螺栓224固定第一端板210和第二端板220,提供第一端板210和第二端板220之间的夹持力。该夹持装置将第一绝缘 板131、第一电流集流体132、重复部件(repeat part)133、第二电流集流体134、第二绝缘板135固定在一起。优选地,在堆叠的各层之间设置密封垫,从而在固定堆叠各层的同时形成堆叠各层的密封。
在该实施例中,第一端板210兼用作配流装置。在第一端板中形成用于提供燃料流体的流入和流出通道的第一对歧管、用于提供氧化气体的流入和流出通道的第二对歧管、以及用于提供冷却介质的流入和流出通道的第三对歧管。在第一端板210和第二端板220固定在一起的情形下,第一端板210中的第一对歧管的顶开口端与重复部件133中的膜电极组件中的燃料流体通道对齐,第一端板210中的第二对歧管的顶开口端与重复部件133中的膜电极组件中的氧化气体通道对齐,第一端板210中的第三对歧管的顶开口端与重复部件133中的膜电极组件中的冷却介质通道对齐。第一端板210的端面上形成第一对歧管、第二对歧管和第三对歧管的侧开口端。
燃料电池200进一步与第一端板210的端面连接的两个接口板150。两个接口板150分别包括用于连接多个外部管路的多个管路接口。接口板150中的多个管路接口的内开口端与第一端板210中的第一对歧管、第二对歧管和第三对歧管的开口端彼此对齐,从而实现彼此的连通。
根据第二实施例的燃料电池200,第一端板210不仅作为配流装置的部件,而且兼用作夹持装置的部件,第一端板210和第二端板220兼用作夹持装置的部件,利用第一端板210和第二端板220施加压力以固定燃料电池200的内部堆叠层。此外,重复部件133的双极板兼有反应物流场装置、散热板、导电、支撑结构的作用。因此,根据第二实施例的燃料电池200可以省去张力板,从而进一步减少燃料电池200中的部件数量。由于燃料电池200的部件数量减少以及结构设计优化,该实施例的燃料电池200可以减小燃料电池200的高度尺寸和横向尺寸,有利于燃料电池200的小型化以及提高可靠性。如下文所述,本发明人进一步对配流装置的歧管结构进行了优化设计,以进一步提高燃料电池200的性能。
<第三实施例>
图5和6分别示出根据本发明第三实施例的配流装置的立体结构图和俯视图。图7a和7b分别示出沿图6中线AA截取的剖面图和剖视图;图8a和8b分别示出沿图6中线BB截取的剖面图和剖视图。在图1所示的第一实施例中,第一端板110整体兼用作配流装置300。在图2所示的第二实施例中,第二端板210的主体用作配流装置300。
配流装置300用于将外部管路提供的反应物和冷却介质均匀地供给重复部件。配流装置300包括大致长方体形状的端板301。在端板301的内部形成多个歧管,包括用于提供燃料流体的流入和流出通道的第一对歧管310、用于提供氧化气体的流入和流出通道的第二对歧管320、以及用于提供冷却介质的流入和流出通道的第三对歧管330。在燃料电池的组装状态中,端板301中的第一对歧管310的顶开口端与重复部件133的燃料流体通道对齐,端板301中的第二对歧管320的顶开口端与重复部件133的氧化气体通道对齐,端板301中的第三对歧管330的顶开口端与重复部件133的冷却介质通道对齐。进一步地,在燃料电池的组装状态中,端板301中的第一对歧管310的侧开口端与接口板中的燃料流体管路接口对齐,端板301中的第二对歧管320的侧开口端与接口板中的氧化气体管路接口对齐,端板301中的第三对歧管330的侧开口端与接口板中的冷却介质管路接口对齐。
第一对歧管310中的每个歧管包括横向延伸(即,垂直于燃料电池的堆叠方向)且具有侧开口端的主通道311,以及纵向延伸(即,沿着燃料电池的堆叠方向)且具有顶开口端的多个子通道312。在端板301的内部,主通道311与多个子通道312连通。第二对歧管320中的每个歧管包括横向延伸且具有侧开口端的主通道321,以及纵向延伸且具有顶开口端的多个子通道322,在端板301的内部,主通道321与多个子通道322连通。第三对歧管330中的每个歧管包括横向延伸且具有侧开口端的主通道331,以及纵向延伸且具有顶开口端的多个子通道332,在端板301的内部,主通道331与多个子通道332连通。
在配流装置300中,第一对歧管310、第二对歧管320和第三对歧管330的主通道例如分别具有类似矩形截面的截面形状,且截面尺寸彼此不同。第二对歧管320的主通道321的截面尺寸例如是第一对歧管310的主通道311的截面尺寸的2-20倍,第三对歧管330的主通道331的截面尺寸例如是第一对歧管310的主通道311的截面尺寸的2-8倍。
进一步地,第一对歧管310、第二对歧管320和第三对歧管330的主通道分布在两个层面中。如图所示,在上部层面中,第一对歧管310的两个主通道311与第三对歧管330的两个主通道331并排排列,并且,第一对歧管310的两个主通道311分布于第三对歧管330的两个主通道331的外侧。在下部层面中,第二对歧管320的两个主通道321并排排列。
进一步地,第一对歧管310、第二对歧管320和第三对歧管330的顶开口端分布于端板301的表面上。在端板301的表面的一侧,第一对歧管310、第三对歧管330和第二对歧管320的流出通道(即,从配流装置300流向第一绝缘板131、第一电流集流体132及重复部件133)的顶开口端依次排列。在端板301的表面的另一侧,第二对歧管320、第三对歧管330和第一对歧管310的流入通道(即,从重复部件133流向第一电流集流体132、再流向第一绝缘板131,最后流向配流装置300)的顶开口端依次排列。第一对歧管310、第三对歧管330和第二对歧管320的流出通道的顶开口端和流入通道的顶开口端形成一个分配单元,用于向重复部件133供给反应物和冷却介质。因此,第一对歧管310、第二对歧管320和第三对歧管330的顶开口端的位置和形状与重复部件中的反应物通道和冷却介质通道的位置和截面形状大致相同。根据燃料电池的功率需求,在重复部件中可以包含1-15个重复单元,配流装置300中包含相应数量的分配单元。
第一对歧管310的多个子通道312沿着主通道311的延伸方向周期性地连接主通道311,从而实现多个子通道312与主通道311之间的连通。第三对歧管330的多个子通道332沿着主通道331的延伸方向周期性地连接主通道331,从而实现多个子通道332与主通道331之间的连通。第二对歧管320的子通道与主通道的连接位置均位于主通道的顶部。
第一对歧管310、第二对歧管320和第三对歧管330各自的顶开口端尺寸可以大于、等于或小于主通道的截面尺寸。优选地,第一对歧管310和第三对歧管330的顶开口端尺寸大于主通道的截面尺寸,第二对歧管320的顶开口端尺寸小于主通道的截面尺寸,第一对歧管310和第三对歧管330采用大开口端的歧管可以减小燃料流体和冷却介质的阻力以适应压力变化,从而提高燃料电池的稳定性。
根据第三实施例的配流装置300,采用两层六通道的歧管结构,第三对歧管330位于上层层面,并且与上部层面的第一对歧管310和下部层面第二对歧管320相邻,从而可以最大化冷却介质对端板的冷却能力,使得端板的温度变化梯度更小,温度一致性更好,燃料电池运行环境更稳定,实现了更好的水热管理。进一步地,在配流装置300中,不仅改进了主通道与子通道的连接位置,而且对子通道的顶开口端尺寸进行优化设计以形成直通道,不仅容易加工配流装置的内部通道,而且可以经由配流装置的内部通道将燃料流体和氧化气体顺畅地分配至双极板的燃料流体通道和氧化气体通道中,提高反应物分布均匀性从而提高放电性能。
<第四实施例>
图9示出根据本发明第四实施例的配流装置从端面观察的侧视图。图10a和10b分别示出在图9所示的配流装置两个端面连接的接口板的立体示意图。
配流装置400用于将外部管路提供的反应物和冷却介质均匀地供给重复部件。配流装置400包括大致长方体形状的端板401。在端板401的内部形成多个歧管,包括用于提供燃料流体的流入和流出通道的第一对歧管410、用于提供氧化气体的流入和流出通道的第二对歧管420、以及用于提供冷却介质的流入和流出通道的第三对歧管430。
在配流装置400中,第一对歧管410和第三对歧管430的主通道例如分别具有矩形截面的截面形状,第二对歧管420的主通道例如具有凸字形的截面形状,且第一对歧管410、第二对歧管420和第三对歧管430的主通道 截面尺寸彼此不同。第二对歧管420的主通道421的截面尺寸例如是第一对歧管410的主通道411的截面尺寸的2-20倍,第三对歧管430的主通道431的截面尺寸例如是第一对歧管410的主通道411的截面尺寸的2-8倍。
接口板250和350分别连接在端板401的相对端面上。接口板250包括用于连接用于流入和流出燃料流体的外部管路的接口251。接口板250的接口251与端板401中的第一对歧管的开口端彼此对齐,从而实现彼此的连通。接口板350包括用于连接用于流入和流出氧化气体的外部管路的接口351,以及用于连接用于流入和流出冷却介质的外部管路的接口352,接口板350的接口351与端板401中的第二对歧管的开口端彼此对齐,接口352与端板401中的第三对歧管的开口端彼此对齐,从而实现彼此的连通。
根据第四实施例的配流装置将第二对歧管420的主通道的截面形状设计为凸字形,以扩大第二对歧管420的主通道的截面尺寸,从而进一步改善氧化气体的供给,以提高燃料电池的放电性能。进一步地,在配流装置的端板两端设置外部管路的接口,有利于燃料电池的小型化和改善兼容性,即燃料电池可以适配不同尺寸的外部管路。
图11示出根据本发明第一实施例的燃料电池在不同反应物计量比下的放电曲线。从图中所示的实际测量数据可以得出:
1)在反应物计量比发生变化时,燃料电池放电性能变化较小,说明反应物进出口通道可以很好地实现反应物的均匀分配。
2)通过实际测试,在活性面积超过两百平方厘米的燃料电池堆上,电池在2.0A/cm 2的放电电流密度下,单电池电压达到0.628~0.641V;放电电流密度达2.5A/cm 2时,单电池电压0.598~0.612V;放电电流密度达3.0A/cm 2时,单电池电压仍有0.567~0.587V。燃料电池堆的大电流放电性能得到很大改善。
根据本发明的上述实施例的燃料电池可以应用于电动车辆中,由于燃料电池功率密度高、大电流放电性能好,可提高车辆的动力性能、燃料利用效率和续航里程。
在上述的实施例中,描述了燃料电池100包括彼此相对的第一端板110和第二端板120,在二者之间依次堆叠第一绝缘板131、第一电流集流体132、重复部件(repeat part)133、第二电流集流体134、第二绝缘板135。燃料电池100的电池堆例如包括堆叠在一起且彼此电连接的多个重复部件133以提高输出电压。在替代的实施例中,燃料电池的重复部件133中的双极板可以兼作集流体,重复部件133中的密封垫可以兼作绝缘板,从而可以省去第一绝缘板131、第一电流集流体132、第二电流集流体134、第二绝缘板135中的至少一个,从而进一步减少燃料电池100中的部件数量。由于燃料电池100的部件数量减少以及结构设计优化,该实施例的燃料电池100可以减小燃料电池100的高度尺寸和横向尺寸,有利于燃料电池100的小型化并进一步提升功率密度。
应当说明的是,在本发明的描述中,所含术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
最后应说明的是:显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施例的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施例予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (18)

  1. 一种用于燃料电池的配流装置,包括:
    第一端板;以及
    在所述第一端板中形成的第一对歧管、第二对歧管和第三对歧管,所述第一对歧管、所述第二对歧管和所述第三对歧管分别包括横向延伸且具有侧开口端的主通道,以及纵向延伸且具有顶开口端的多个子通道,
    其中,所述第一对歧管的主通道和所述第三对歧管的主通道位于所述第一端板的上部层面,所述第二对歧管的主通道位于所述第一端板的下部层面,所述第一对歧管、所述第二对歧管和所述第三对歧管分别用于分配燃料流体、氧化气体和冷却介质。
  2. 根据权利要求1所述的配流装置,其中,所述第一对歧管的所述多个子通道周期性地连接相应的主通道,所述第三对歧管的所述多个子通道周期性地连接相应的主通道。
  3. 根据权利要求1所述的配流装置,其中,所述第二对歧管的所述多个子通道在所述第二对歧管的主通道的顶部与之连接。
  4. 根据权利要求1所述的配流装置,其中,所述第一对歧管的所述多个子通道的顶开口端尺寸大于所述第一对歧管的所述主通道的截面尺寸,所述第二对歧管的所述多个子通道的顶开口端尺寸小于所述第二对歧管的所述主通道的截面尺寸,所述第三对歧管的所述多个子通道的顶开口端尺寸大于所述第三对歧管的所述主通道的截面尺寸。
  5. 根据权利要求1所述的配流装置,其中,所述第二对歧管的主通道的截面尺寸为所述第一对歧管的主通道的截面尺寸的2-20倍,所述第三对歧管的主通道的截面尺寸为所述第一对歧管的主通道的截面尺寸的2-8倍。
  6. 根据权利要求1所述的配流装置,其中,所述第一对歧管、所述第二对歧管和所述第三对歧管的顶开口端分布于所述端板的表面上以形成至少一个分配单元。
  7. 根据权利要求6所述的配流装置,其中,所述至少一个分配单元包括1-15个分配单元。
  8. 根据权利要求6所述的配流装置,其中,所述至少一个分配单元分别包括在所述端板的表面一侧依次排列的所述第一对歧管、所述第三对歧管和所述第二对歧管的第一组顶开口端,以及在所述端板的表面另一侧依次排列的所述第二对歧管、所述第三对歧管和所述第一对歧管的第二组顶开口端,所述第一组顶开口端分别流出所述燃料流体、所述冷却介质和所述氧化气体,所述第二组顶开口端分别流入所述氧化气体、所述冷却介质和所述燃料流体。
  9. 根据权利要求1所述的配流装置,其中,所述第一对歧管和所述第三对歧管各自的主通道分别具有大致矩形的截面形状,所述第二对歧管的主通道具有凸字形的截面形状。
  10. 根据权利要求1所述的配流装置,其中,所述第一对歧管、所述第二对歧管和所述第三对歧管各自的主通道分别具有大致矩形的截面。
  11. 一种燃料电池,包括:
    重复部件,所述重复部件包括阳极极板、阴极极板以及夹在二者之间的膜电极组件,在所述重复部件的侧边部分形成沿堆叠方向延伸的燃料流体通道、氧化气体通道和冷却介质通道;以及
    根据权利要求1至10中任一项所述的配流装置,
    其中,所述配流装置的所述第一对歧管、所述第二对歧管和所述第三对歧管分别与所述重复部件的燃料流体通道、氧化气体通道和冷却介质通道彼此连通。
  12. 根据权利要求11所述的燃料电池,其中,所述配流装置中的所述第一对歧管、所述第二对歧管和所述第三对歧管的顶开口端的位置和形状与所述重复部件的所述燃料流体通道、所述氧化气体通道和所述冷却介质通道的位置和截面形状大致相同。
  13. 根据权利要求11所述的燃料电池,还包括:
    在所述重复部件的第一表面依次堆叠的第一电流集流体和第一绝缘 板;
    在所述重复部件的第二表面依次堆叠的第二电流集流体和第二绝缘板;以及
    第二端板,所述第一端板和所述第二端板夹持所述重复部件、以及所述第一电流集流体、所述第二电流集流体、所述第一绝缘板、所述第二绝缘板,
    其中,所述第一绝缘板夹在所述第一端板和所述第一电流集流体之间,所述第二绝缘板夹在所述第二端板和所述第二电流集流体之间,所述燃料流体通道、所述氧化气体通道和所述冷却介质通道沿着堆叠方向穿过所述第一电流集流体和所述第一绝缘板。
  14. 根据权利要求13所述的燃料电池,其中,所述配流装置中的所述第一对歧管、所述第二对歧管和所述第三对歧管各自的顶开口端形成至少一个分配单元,所述配流装置中的所述至少一个分配单元分别向所述重复部件中的相应发电单元供给燃料流体、氧化气体和冷却介质。
  15. 根据权利要求13所述的燃料电池,还包括:
    第一张力板和第二张力板,位于所述燃料电池的相对侧面,并且分别包括下凸缘和上凸缘,
    其中,所述第一张力板和第二张力板的下凸缘分别与所述第一端板的底面边缘接触,第一张力板和第二张力板的上凸缘分别与所述第二端板的顶面边缘接触,从而采用所述下凸缘向所述第一端板的底面施加压力,以及采用所述上凸缘向所述第二端板的顶面施加压力,以提供所述第一端板和第二端板之间的夹持力。
  16. 根据权利要求15所述的燃料电池,其中,所述第一张力板和第二张力板的上凸缘还包括多个螺孔,采用穿过所述多个螺孔的螺栓向所述第二端板的顶面施加附加压力。
  17. 根据权利要求13所述的燃料电池,其中,所述第一端板的侧壁形成有横向延伸的多个第一凸台,所述第二端板的侧壁形成有横向延伸的多个第二凸台,采用穿过所述多个第一凸台和所述多个第二凸台的多 个螺孔的多个螺栓固定所述第一端板和所述第二端板,以提供所述第一端板和第二端板之间的夹持力。
  18. 根据权利要求13所述的燃料电池,还包括:
    第一接口板和第二接口板,位于所述第一端板的相对端面,并且分别包括用于连接多个外部管路的多个接口,
    其中,所述第一接口板和所述第二接口板中的所述多个接口的内开口端与所述配流装置中的所述第一对歧管、所述第二对歧管和所述第三对歧管的多个侧开口端分别对齐以实现彼此连通。
PCT/CN2021/089862 2020-04-28 2021-04-26 燃料电池及配流装置 WO2021218906A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010349714.9 2020-04-28
CN202010349714.9A CN111244496B (zh) 2020-04-28 2020-04-28 燃料电池及配流装置

Publications (1)

Publication Number Publication Date
WO2021218906A1 true WO2021218906A1 (zh) 2021-11-04

Family

ID=70871628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089862 WO2021218906A1 (zh) 2020-04-28 2021-04-26 燃料电池及配流装置

Country Status (2)

Country Link
CN (1) CN111244496B (zh)
WO (1) WO2021218906A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744235A (zh) * 2022-03-25 2022-07-12 东风汽车集团股份有限公司 燃料电池模块、燃料电池系统、燃料电池动力系统及车辆

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244496B (zh) * 2020-04-28 2020-08-14 北京朔景新能源科技有限公司 燃料电池及配流装置
CN112615023A (zh) * 2020-12-16 2021-04-06 北方特种能源集团有限公司西安庆华公司 一种可调式燃料电池电池堆端板
CN112903790B (zh) * 2021-05-08 2021-07-30 国家电投集团氢能科技发展有限公司 膜电极参数测量夹具
CN114464837B (zh) * 2021-10-08 2024-01-16 东风汽车集团股份有限公司 一种燃料电池系统以及装配工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228542A (ja) * 2004-02-12 2005-08-25 Honda Motor Co Ltd 燃料電池
CN101027806A (zh) * 2004-09-24 2007-08-29 丰田自动车株式会社 单格电池、单格电池的制造方法、燃料电池、燃料电池的制造方法
CN105027343A (zh) * 2013-03-08 2015-11-04 日产自动车株式会社 燃料电池、燃料电池的配流装置及具备燃料电池的车辆
CN108417875A (zh) * 2018-02-09 2018-08-17 广东国鸿氢能科技有限公司 分配歧管和燃料电池电堆组
CN111244496A (zh) * 2020-04-28 2020-06-05 北京朔景新能源科技有限公司 燃料电池及配流装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110281193A1 (en) * 2006-09-22 2011-11-17 Energyor Technologies Inc. Fuel cell fluid distribution system
JP5354026B2 (ja) * 2011-07-12 2013-11-27 トヨタ自動車株式会社 燃料電池システム
CN110233278A (zh) * 2019-07-17 2019-09-13 新源动力股份有限公司 一种燃料电池电堆模块流体分配结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228542A (ja) * 2004-02-12 2005-08-25 Honda Motor Co Ltd 燃料電池
CN101027806A (zh) * 2004-09-24 2007-08-29 丰田自动车株式会社 单格电池、单格电池的制造方法、燃料电池、燃料电池的制造方法
CN105027343A (zh) * 2013-03-08 2015-11-04 日产自动车株式会社 燃料电池、燃料电池的配流装置及具备燃料电池的车辆
CN108417875A (zh) * 2018-02-09 2018-08-17 广东国鸿氢能科技有限公司 分配歧管和燃料电池电堆组
CN111244496A (zh) * 2020-04-28 2020-06-05 北京朔景新能源科技有限公司 燃料电池及配流装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744235A (zh) * 2022-03-25 2022-07-12 东风汽车集团股份有限公司 燃料电池模块、燃料电池系统、燃料电池动力系统及车辆
CN114744235B (zh) * 2022-03-25 2024-04-09 东风汽车集团股份有限公司 燃料电池模块、燃料电池系统、燃料电池动力系统及车辆

Also Published As

Publication number Publication date
CN111244496A (zh) 2020-06-05
CN111244496B (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
WO2021218906A1 (zh) 燃料电池及配流装置
US11784326B2 (en) Fuel cell, bipolar plate and bipolar plate assembly for fuel cell
US8367270B2 (en) Flow field plate arrangement for a fuel cell
US5858569A (en) Low cost fuel cell stack design
CN109904484B (zh) 一种燃料电池双极板结构及燃料电池
US20050153184A1 (en) Bipolar plate with cross-linked channels
CN108172857B (zh) 一种支持高电流密度放电的燃料电池电堆流场板
US10396332B2 (en) Bus bar assembly for an electrochemical cell stack
US10756357B2 (en) Bipolar plate with coolant flow channel
CN100454624C (zh) 燃料电池系统及其所使用的单元电池和双极板
CN211929619U (zh) 燃料电池的双极板
CN214254475U (zh) 燃料电池及用于燃料电池的重复部件
CN212392280U (zh) 一种燃料电池
CN115020738B (zh) 一种单极板、双极板及电堆
CN1385917A (zh) 一种改进型燃料电池
CN211929634U (zh) 用于燃料电池的接口板
CN1198352C (zh) 一种燃料电池
US20230231152A1 (en) Proton Exchange Membrane Fuel Cell and Preparation Method Therefor, and Proton Exchange Membrane Fuel Cell Stack
CN211929633U (zh) 用于燃料电池的张力板
CN115579484B (zh) 燃料电池以及用于燃料电池的极板
CN111326763A (zh) 一种类蜂巢形流场的金属双极板
CN211045597U (zh) 双极板以及燃料电池
CN214203745U (zh) 一种燃料电池双极板
US20230327142A1 (en) Separator for fuel cell and fuel cell stack
US20240128480A1 (en) Separator for fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796319

Country of ref document: EP

Kind code of ref document: A1