WO2021218855A1 - 下行接收触发方法、终端和网络侧设备 - Google Patents

下行接收触发方法、终端和网络侧设备 Download PDF

Info

Publication number
WO2021218855A1
WO2021218855A1 PCT/CN2021/089617 CN2021089617W WO2021218855A1 WO 2021218855 A1 WO2021218855 A1 WO 2021218855A1 CN 2021089617 W CN2021089617 W CN 2021089617W WO 2021218855 A1 WO2021218855 A1 WO 2021218855A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
downlink reception
uplink signal
terminal
reception
Prior art date
Application number
PCT/CN2021/089617
Other languages
English (en)
French (fr)
Inventor
李东儒
吴昱民
潘学明
孙晓东
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21796539.1A priority Critical patent/EP4145914A4/en
Priority to KR1020227028745A priority patent/KR20220131296A/ko
Priority to JP2022549768A priority patent/JP7445777B2/ja
Publication of WO2021218855A1 publication Critical patent/WO2021218855A1/zh
Priority to US17/975,592 priority patent/US20230051346A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication technology, and in particular to a method for triggering downlink reception, a terminal and a network side device.
  • the usual transmission method is a scheduling-based transmission method.
  • the terminal first obtains the downlink receiving time-frequency domain resources allocated by the network-side device for itself by monitoring the Physical Downlink Control Channel (PDCCH). After that, downlink reception is performed on the corresponding resources.
  • PDCCH Physical Downlink Control Channel
  • XR Extended Reality
  • XR refers to a combination of real and virtual environments and human-computer interaction generated by computer technology and wearable devices.
  • the data resources required by the user can be predicted based on the user's actions.
  • the terminal has poor flexibility and low efficiency for downlink reception according to the dynamic scheduling of the network-side equipment, and cannot meet the service requirements of the XR terminal well and is suitable for the XR service model.
  • the embodiments of the present invention provide a downlink reception triggering method, a terminal, and a network side device, so as to solve the problem of poor flexibility and low efficiency of downlink reception in the prior art that the terminal performs downlink reception according to the dynamic scheduling of the network side device.
  • the present invention is implemented as follows:
  • an embodiment of the present invention provides a downlink reception triggering method, which is applied to a terminal, and the method includes:
  • the first uplink signal is used to trigger a first downlink reception
  • the association relationship between the first uplink signal and the first downlink reception includes a first association relationship
  • the first The association relationship is an association relationship between the first uplink signal and the first downlink reception in the frequency domain.
  • an embodiment of the present invention provides a downlink reception triggering method, which is applied to a network side device, and the method includes:
  • the first uplink signal is used to trigger a first downlink reception
  • the association relationship between the first uplink signal and the first downlink reception includes a first association relationship
  • the first The association relationship is an association relationship between the first uplink signal and the first downlink reception in the frequency domain.
  • an embodiment of the present invention provides a terminal, including:
  • the first sending module is configured to send a first uplink signal, the first uplink signal is used to trigger a first downlink reception, and the association relationship between the first uplink signal and the first downlink reception includes a first Association relationship, the first association relationship is an association relationship between the first uplink signal and the first downlink reception in the frequency domain.
  • an embodiment of the present invention provides a network side device, including:
  • the first receiving module is configured to receive a first uplink signal, the first uplink signal is used to trigger a first downlink reception, and the association relationship between the first uplink signal and the first downlink reception includes a first Association relationship, the first association relationship is an association relationship between the first uplink signal and the first downlink reception in the frequency domain.
  • an embodiment of the present invention provides a terminal, including: a memory, a processor, and instructions or programs stored on the memory and capable of running on the processor, and the instructions or programs are executed by the processor.
  • the steps in the downlink reception triggering method provided in the first aspect of the embodiments of the present invention are implemented during execution.
  • an embodiment of the present invention provides a network-side device, including: a memory, a processor, and instructions or programs stored on the memory and capable of running on the processor, and the instructions or programs are When executed by the processor, the steps in the downlink reception triggering method provided in the second aspect of the embodiment of the present invention are implemented.
  • an embodiment of the present invention provides a readable storage medium with an instruction or program stored on the readable storage medium.
  • the instruction or program is executed by a processor, the downlink provided by the first aspect of the embodiment of the present invention is implemented. Receive the steps in the trigger method.
  • an embodiment of the present invention provides a readable storage medium with an instruction or program stored on the readable storage medium.
  • the instruction or program is executed by a processor, the downlink provided by the second aspect of the embodiment of the present invention is implemented. Receive the steps in the trigger method.
  • an embodiment of the present invention provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement the chip as in the first aspect The described downlink reception trigger method.
  • an embodiment of the present invention provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement the second aspect The described downlink reception trigger method.
  • an embodiment of the present application provides a computer program product, wherein the program product is stored in a nonvolatile storage medium, and the program product is executed by at least one processor to implement the embodiments of the present invention Steps in the method for triggering downlink reception provided by the first aspect or the second aspect.
  • the terminal can trigger the corresponding downlink reception by sending an uplink signal. In this way, not only can the resource consumption of the terminal be saved, which is conducive to energy saving of the terminal, but also the flexibility and efficiency of the downlink reception of the terminal can be improved.
  • the embodiments of the present invention are applicable to but not limited to XR application scenarios. When the embodiments of the present invention are applicable to XR application scenarios, they can better meet the service requirements of XR terminals and better meet the requirements of XR users.
  • Figure 1 is a structural diagram of a network system provided by an embodiment of the present invention.
  • Figure 2 is a schematic diagram of a DRX cycle provided by an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for triggering downlink reception according to an embodiment of the present invention
  • FIG. 12 is a flowchart of another method for triggering downlink reception according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a terminal provided by an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a network side device according to an embodiment of the present invention.
  • 15 is a schematic diagram of the hardware structure of a terminal provided by an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of the hardware structure of a network side device provided by an embodiment of the present invention.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present invention should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the wireless communication system may be a 5G system, or an evolved Long Term Evolution (eLTE) system, or a subsequent evolved communication system.
  • eLTE evolved Long Term Evolution
  • Figure 1 is a structural diagram of a network system provided by an embodiment of the present invention. As shown in Figure 1, it includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile communication device, such as a mobile phone or a tablet computer. (Tablet Personal Computer), Laptop Computer, Personal Digital Assistant (PDA), Mobile Internet Device (MID) or Wearable Device (Wearable Device), etc., need to be explained
  • PDA Personal Digital Assistant
  • MID Mobile Internet Device
  • Wearable Device Wearable Device
  • the above-mentioned network side device 12 may be a 5G network side device (for example: gNB, 5G NR NB), or may be a 4G network side device (for example: eNB), or may be a 3G network side device (for example: NB), or subsequent evolution
  • 5G network side device for example: gNB, 5G NR NB
  • 4G network side device for example: eNB
  • 3G network side device for example: NB
  • the network side equipment in the communication system, etc. it should be noted that the specific type of the network side equipment 12 is not limited in the embodiment of the present invention.
  • XR refers to all real and virtual combined environments and human-computer interactions produced by computer technology and wearable devices. It includes Augmented Reality (AR), Mediated Reality (MR), and Virtual Reality (Virtual Reality). , VR) and other representative forms, and the interpolation area between them.
  • AR Augmented Reality
  • MR Mediated Reality
  • VR Virtual Reality
  • the level of the virtual world ranges from partial sensory input to fully immersive virtual reality.
  • a key aspect of XR is the expansion of human experience, especially experiences related to presence (represented by VR) and cognitive acquisition (represented by AR).
  • XR In the application scenario of XR, users can obtain information from new perspectives by turning their heads and other actions in the virtual reality experience. At this time, the XR user's head-turning action can be notified to the network side device by sending an uplink signal through the terminal, and the network side device will schedule the required downlink data for the XR user for use after receiving the uplink signal.
  • the DRX cycle is composed of "On Duration” and "DRX timing (Opportunity for DRX)": During the "On Duration” time, the terminal monitors and receives PDCCH; in “Opportunity for DRX” During the time, the terminal does not monitor the PDCCH to save power consumption. If the newly transmitted PDCCH is received within onduration, an inactivity timer (inactivity timer) will be started or restarted to extend the duration of the terminal monitoring the PDCCH.
  • inactivity timer inactivity timer
  • timer involved in this application can also be called “timer”, that is, the meaning of “timer” involved in this application is the same as that expressed by “timer” The meaning is the same or similar.
  • the system can configure a short DRX cycle (short DRX cycle) or a long DRX cycle (long DRX cycle) for the terminal according to different business scenarios. If both the short cycle and the long cycle are configured at the same time, you can switch between the two long and short cycles in some way.
  • the embodiment of the present invention provides a method for triggering downlink reception by an uplink signal, that is, the method for triggering downlink reception provided by the embodiment of the present invention.
  • Fig. 3 is a flowchart of a method for triggering downlink reception according to an embodiment of the present invention. As shown in Fig. 3, the downlink receiving trigger method is applied to the terminal, and the method includes the following steps:
  • Step 201 Send a first uplink signal, the first uplink signal is used to trigger a first downlink reception, the association relationship between the first uplink signal and the first downlink reception includes a first association relationship, so The first association relationship is an association relationship between the first uplink signal and the first downlink reception in the frequency domain.
  • the terminal can directly trigger the first downlink reception by sending the first uplink signal, and does not need to go through processes such as configuring the first downlink reception by the network side device. Therefore, the first uplink signal is sent to trigger the first downlink reception.
  • a downlink reception is different from the existing downlink scheduling and downlink reception methods.
  • Triggering the first downlink reception by sending the first uplink signal is different from the existing scheduling-based transmission mode to trigger the downlink reception.
  • the terminal obtains the downlink receiving time-frequency domain resources allocated by the network side device for itself by monitoring the PDCCH, and then the terminal performs downlink reception on the corresponding resource.
  • the terminal triggers the first downlink reception by sending the first uplink signal.
  • the configuration parameters such as the time-frequency domain resources received by the first downlink and the duration of the first downlink reception can be configured in advance by the network side device or carried by the first uplink signal, and the downlink can be triggered without the scheduling process. take over. Therefore, by sending the first uplink signal to trigger the first downlink reception, the flexibility and efficiency of downlink reception can be improved.
  • the first uplink signal is used to trigger the first downlink reception, and it can be understood that there is an association relationship between the first uplink signal and the first downlink reception.
  • the association relationship between the first uplink signal and the first downlink reception includes a first association relationship
  • the first association relationship is an association relationship between the first uplink signal and the first downlink reception in the frequency domain.
  • the association relationship between the first uplink signal and the first downlink reception in the frequency domain can be understood as an association relationship between the first uplink signal and the first downlink reception in the frequency domain configuration parameter.
  • the terminal may monitor or receive the first downlink reception according to the association relationship on the frequency domain configuration parameters.
  • the first downlink reception is explicitly configured through the resource configuration parameters carried in the first uplink signal, and the network side device sends the first downlink reception according to the configuration parameters indicated by the received first uplink signal. take over. For example, after sending the first uplink signal, the terminal monitors the first downlink reception in a discontinuous reception manner.
  • the first downlink reception may include multiple types of downlink reception.
  • the resource configuration parameter corresponding to the first downlink reception is different from the downlink reception resource configuration parameter configured by the network side device according to the uplink signal such as RACH or BFR sent by the terminal.
  • the association relationship between the first uplink signal and the first downlink reception may also include a second association relationship, and the second association relationship is the association between the first uplink signal and the first downlink reception in the time domain. relation.
  • the association relationship between the first uplink signal and the first downlink reception may include the first association relationship, and may also include the first association relationship and the second association relationship, that is, the first uplink signal and the first downlink reception
  • the association relationship between the line reception can be an association relationship in the frequency domain, or an association relationship in the time-frequency domain.
  • the association relationship between the first uplink signal and the first downlink reception in the time-frequency domain can be understood as an association relationship between the first uplink signal and the first downlink reception in the time-frequency domain configuration parameters, and the terminal is sending the first After the uplink signal, the first downlink reception can be monitored or received according to the association relationship on the time-frequency domain configuration parameters.
  • the association relationship between the first uplink signal and the first downlink reception can be established in advance.
  • the association relationship between the first uplink signal and the first downlink reception can be configured in advance through the network side device, or it can be pre-arranged through an agreement The association relationship between the first uplink signal and the first downlink reception.
  • the first uplink signal is used to trigger the first downlink reception. It can be understood that the first uplink signal is used to activate the first downlink reception.
  • the uplink signal has an associated first downlink reception. More specifically, the first uplink signal is used to activate the first downlink reception under the corresponding resource configuration parameter.
  • association relationship between the first uplink signal and the first downlink reception involved in the embodiment of the present invention does not clearly define whether it is an association relationship in the frequency domain (that is, the first association relationship) or In the case of an association relationship in the time-frequency domain (that is, the first association relationship + the second association relationship), it can be applied to any type of association relationship.
  • the first downlink reception may include one or more (including two) downlink receptions.
  • each downlink reception may correspond to a type of downlink reception.
  • the downlink reception may correspond to one type of downlink reception, or may not correspond to a specific type.
  • the first downlink reception may include at least one of downlink scheduling information reception, downlink signal reception, downlink data information reception, and downlink channel monitoring.
  • the type of the first downlink reception may include at least one of downlink scheduling information, downlink signals, downlink data transmission information, and downlink channel monitoring.
  • the downlink scheduling information may be, for example, the PDCCH
  • the DCI in the PDCCH may be scrambled by a specific wireless network temporary identifier, such as the Cell Radio Network Temporary Identifier (C-RNTI) or configurable scheduling RNTI ( Configured Scheduling RNTI, CS-RNTI).
  • C-RNTI Cell Radio Network Temporary Identifier
  • CS-RNTI Configured Scheduling RNTI
  • the DCI format of the PDCCH may be, for example, DCI 1-1, DCI 0-1, DCI 0-0, DCI 1-0, DCI 1-2, DCI 0-2, and so on.
  • the downlink signal can be, for example, Channel State Information Reference Signal (CSI-RS), CSI Interference Measurement (CSI Intereference Measurement, CSI-IM), Reference Signal (Time Reference Signals, TRS), and Phase Tracking Reference Signal (Phase-tracking reference signal, PTRS), positioning reference signal (Positioning Reference Signals, PRS), synchronization signal block (Synchronization Signal and PBCH block, SSB), etc.
  • the downlink data transmission information may be, for example, Semi-Persistent Scheduling (SPS) physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) reception.
  • SPS Semi-Persistent Scheduling
  • the downlink channel monitoring may be, for example, non-scheduled PDCCH, group common PDCCH (group common PDCCH), and so on. Other downlink channels or downlink signals are not excluded.
  • the type of the first uplink signal may include at least one of the type of the uplink channel and the type of signaling or signal carried on the uplink channel.
  • the type of the uplink channel may be Physical Uplink Control Channel (PUCCH), PUSCH (for example, PUSCH of Configured Uplink Grant), and Physical Random Access Channel (PRACH) (for example, , Msg1, MsgA PRACH, MsgA PUSCH, Msg3).
  • the periodicity of the above uplink channel can be periodic, aperiodic, or semi-continuous.
  • the signaling type or signal type carried on the uplink channel can be uplink control information (Uplink Control Information, UCI), scheduling request (SR), channel state information (Channel State Information, CSI), hybrid automatic repeat request ( Hybrid Automatic Repeat reQuest (HARQ), Media Access Control (MAC) CE, Channel Sounding Reference Signal (Sounding Reference Signal, SRS), etc.
  • UCI Uplink Control Information
  • SR scheduling request
  • CSI Channel state information
  • HARQ Hybrid Automatic Repeat reQuest
  • MAC Media Access Control
  • SRS Sounding Reference Signal
  • the first uplink signal can be used to trigger the first downlink reception through an implicit indication, or the first uplink signal can be used to trigger the first downlink reception through an explicit indication.
  • the association relationship between the first uplink signal and the first downlink reception is configured by a network side device or agreed upon by a protocol.
  • the first association relationship may be configured by the network side device or agreed upon by a protocol.
  • the association relationship between the first uplink signal and the first downlink reception includes a first association relationship and a second association relationship
  • both the first association relationship and the second association relationship can be configured or configured by the network side device. Agreement stipulated.
  • the method further includes:
  • the frequency range where the first uplink signal is located the type of the first uplink signal, the logical channel where the first uplink signal is located, and the service priority of the first uplink signal, trigger and The first downlink reception associated with the first uplink signal.
  • different downlink receptions can be associated with different uplink signal frequency ranges, different downlink receptions can be associated with different uplink signal types, or different downlink receptions can be associated with different uplink signal service types. For reception, different downlink receptions can also be associated with the logical channels where different uplink signals are located.
  • the frequency range where the first uplink signal is located may include a frequency band (band), a bandwidth part (BWP), and a frequency (FR) range.
  • band frequency band
  • BWP bandwidth part
  • FR frequency
  • the logical channel 1 sent on the uplink BWP1 is associated with the downlink reception 1 on the downlink BWP1, so as long as the terminal sends the uplink signal corresponding to the logical channel 1 on the BWP1, the downlink reception 1 of the BWP1 is implicitly activated.
  • the first uplink signal is the uplink signal corresponding to logical channel 1 sent on BWP1
  • the first downlink reception is the downlink reception 1 of BWP1.
  • the above is an implementation manner in which the first uplink signal triggers the first downlink reception by means of implicit indication.
  • the first uplink signal includes first indication information, and the first indication information is used to trigger the first downlink reception.
  • the above-mentioned first indication information may include the identifier of the first downlink reception, may also include the frequency domain configuration parameters (or time-frequency domain configuration parameters) of the first downlink reception, and may also include the identifier and frequency domain of the first downlink reception.
  • Configuration parameters (or time-frequency domain configuration parameters).
  • the terminal may send uplink control signaling (such as MAC CE, UCI, etc.), and the uplink control signaling may explicitly indicate the first downlink reception triggered or activated by the uplink control signaling.
  • the first downlink reception triggered by the first indication information may be pre-configured by the network side device, or may be pre-arranged by a protocol.
  • the first downlink reception triggered by the first indication information may be configured through RRC.
  • the first downlink reception triggered by the first indication information may include one or more downlink receptions, or the first indication information may trigger multiple first downlink receptions.
  • the first indication information is used to trigger M downlink receptions out of N downlink receptions, and the N downlink receptions are configured by a network side device or agreed upon by a protocol, and the first downlink reception includes the M downlink receptions.
  • the N and M are both integers greater than or equal to 1.
  • RRC configures N downlink receptions
  • the first uplink signal contains first indication information
  • the first indication information is used to trigger or activate M downlink receptions among the N downlink receptions.
  • These M downlink receptions are the above-mentioned first uplink receptions.
  • One downlink reception, or the M downlink receptions are respectively M above-mentioned first downlink receptions.
  • the method further includes:
  • DCI Downlink Control Information
  • the K downlink receptions among the M downlink receptions are triggered by the first DCI, the first downlink reception includes the K downlink receptions, and the K is an integer greater than or equal to 1.
  • RRC configures N downlink receptions
  • the first uplink signal includes first indication information
  • the first indication information is used to trigger or activate M downlink receptions among the N downlink receptions.
  • the DCI is received to dynamically trigger or activate K downlink receptions among the M downlink receptions.
  • the above is an implementation manner in which the first uplink signal triggers the first downlink reception through an explicit indication.
  • the frequency domain configuration parameters (or time-frequency domain configuration parameters) received by the first downlink are configured by a network side device or agreed upon by a protocol.
  • the first downlink received frequency domain configuration parameter includes at least one of the following:
  • the first timer for the first downlink reception, during the operation of the first timer, the BWP where the first downlink reception is located does not change;
  • Control resource set (CORESET);
  • VRB Virtual resource block
  • PRB physical resource block
  • Frequency domain resource allocation type including type0 and type1;
  • the number of transmitting antennas or transmitting channels is the number of transmitting antennas or transmitting channels.
  • Multi Input Multiple Output, MIMO Multiple Input Multiple Output
  • Downlink component carriers activated at the same time
  • MTRP Multiple Transmit Receive Point
  • PRG Precoding Resource Block Group
  • the frequency domain position of the first downlink reception is indicated by a bitmap; or,
  • the frequency domain position of the first downlink reception is indicated by the frequency domain start position and the continuous frequency domain length.
  • the frequency domain resource indication method of the PDCCH is type0
  • the resource block group (RBG) where the PDSCH is located can be indicated based on the form of a bitmap; for another example, suppose the frequency domain resource indication method of the PDCCH is Type1 can indicate the frequency domain position and the continuous frequency domain length of the PDSCH based on the form of start+length.
  • the frequency domain position information received by the first downlink may also be obtained according to the first uplink signal.
  • the frequency domain duration corresponding to the first downlink reception may be configured by the above-mentioned first timer. During the operation of the first timer, the BWP where the first downlink reception is located remains unchanged.
  • the first timer is started after a random access (Random Access Channel, RACH) process ends; or,
  • the first timer is started after the terminal receives the confirmation message from the network side device.
  • the terminal may start the first timer after the RACH process ends, or may start the first timer after receiving the confirmation message from the network side device.
  • the confirmation message of the network side device may be Msg4 and MsgB (both are PDCCH scrambled by C-RNTI).
  • the method further includes:
  • the terminal sends a second uplink signal, and the second uplink signal is used to trigger a second downlink reception, then after the first downlink reception is sent After the second uplink signal, start or restart the first timer; or,
  • the terminal If the terminal receives the first message sent by the network side device, it starts or restarts the first timer, and the first message includes a BWP switching instruction.
  • the terminal may restart the first timer. If the terminal receives the BWP switching instruction sent by the network side device, the terminal may also restart the first timer.
  • the method further includes at least one of the following:
  • the terminal can stop the timer. If the terminal receives an instruction to stop the timer sent by the network side device, the terminal can also stop the timer.
  • the method further includes:
  • the terminal when the timer expires, can either switch or change the BWP where the first downlink reception is located to a specific BWP, or deactivate the BWP where the first downlink reception is located.
  • the first BWP may be a dormant BWP, a non-dormant BWP, a default BWP, a first active BWP or any BWP.
  • BWP inactivity timer can also be stopped, so as to avoid the BWP inactivity timer from timeout and return the terminal to the default BWP.
  • the method further includes:
  • the terminal can trigger or activate or change the uplink frequency configuration corresponding to the downlink reception of a certain frequency configuration, that is, the frequency domain change of the downlink reception can adversely affect the frequency domain of the uplink signal. For example, assuming that the first uplink signal triggers switching to the downlink BWP1 for the first downlink reception, the terminal can also switch to the uplink BWP1 accordingly.
  • the terminal may change the frequency domain information for downlink reception according to the instruction.
  • the frequency domain information change may be, for example, a BWP handover.
  • the method further includes:
  • the terminal may send indication information on the changed uplink frequency domain configuration, and the indication information is used to notify the network side device that the frequency has been changed. For example, after the terminal sends an uplink signal on a certain uplink frequency band to indicate downlink reception of a certain frequency domain configuration, the terminal then triggers the RACH process.
  • the second indication information here may be the same indication information as the aforementioned first indication information. It can also be different instructions.
  • the time domain configuration parameter received by the first downlink includes at least one of the following:
  • the first cycle parameter received by the first downlink where the first cycle parameter includes at least one of a first cycle length, an activation time length of the first cycle, and an activation time start position offset of the first cycle .
  • the time domain start time of the first downlink reception is any one of the following:
  • Reference time where the reference time is the end time of the time domain resource where the first uplink signal is located
  • the first time where the first time is: a time at a first time interval from the reference time;
  • the start time of the first available downlink time domain resource after the first time is the start time of the first available downlink time domain resource after the first time
  • the start time of the first available downlink time domain resource after the second timer expires.
  • the time domain start time of the first downlink reception may be the end time of the time domain resource where the first uplink signal is located, that is, the terminal may start the first downlink reception immediately after the first uplink signal is sent.
  • the time domain start time of the first downlink reception may also be the first time, and the time interval between the first time and the end time of the time domain resource where the first uplink signal is located is the first time interval, that is, the terminal
  • the first downlink reception may be started after a first time interval after the first uplink signal is sent, and the first time interval may be configured by the network side device or agreed upon by a protocol. Further, the network side device may configure multiple first time interval parameters, and the terminal may carry an indication about the first time interval in the first uplink signal.
  • the first time interval may be equal to the time interval K1 between PDSCH and its HARQ-ACK feedback, and the value set of K1 is pre-configured by the network side device; or the first time interval may be equal to the transmission beam failure recovery request (BFRQ) and the time interval between receiving the beam failure recovery response (BFRR); or the first time interval may be equal to the time interval between sending the RACH and receiving the RAR response.
  • BFRQ transmission beam failure recovery request
  • BFRR beam failure recovery response
  • the time domain start time of the first downlink reception may also be the start time of the first available downlink time domain resource after the end time of the time domain resource where the first uplink signal is located, that is, the terminal may be in the first After the uplink signal is sent, the first available downlink time domain resource starts to perform the first downlink reception, and the downlink time domain resource may be a downlink subframe (DL subframe), DL slot, DL slot including CORESET, and so on.
  • DL subframe downlink subframe
  • DL slot DL slot including CORESET
  • the time domain start time of the first downlink reception may also be the time domain resource start time after the second timer expires, and the second timer is triggered at the end time of the time domain resource where the first uplink signal is located, that is, After sending the first uplink signal, the terminal immediately triggers the second timer, and starts the first downlink reception after the second timer expires.
  • the time domain start time of the first downlink reception may also be the start time of the first available downlink time domain resource after the first time.
  • the first available downlink time domain resource after a time interval starts to perform the first downlink reception.
  • the time domain start time of the first downlink reception may also be the start time of the first available downlink time domain resource after the second timer expires, that is, immediately after the terminal sends the first uplink signal
  • the second timer is triggered, and the first downlink reception is started on the first available downlink time domain resource after the second timer expires.
  • the value of the above-mentioned first time interval may be that the terminal can report the size of the first time interval according to its capabilities, or the protocol may stipulate the size of the first time interval according to different subcarrier space (SCS) levels, or the terminal The first time interval can be reported, and the value of the first time interval is not specifically limited.
  • SCS subcarrier space
  • the first uplink signal may also include the location information of the start time (for example, given an offset), and determine the first download according to the start time information.
  • the start time of the line reception in the time domain may also include the location information of the start time (for example, given an offset), and determine the first download according to the start time information.
  • the duration of the first downlink reception includes any one of the first duration and the third timer duration.
  • the first duration may be used to indicate the duration of the first downlink reception, and the first duration may be configured by the network side device or agreed by a protocol.
  • the duration of the first downlink reception may also be indicated by the duration of a third timer, and the third timer may be configured by the network side device or agreed upon by a protocol.
  • the time domain monitoring manner of the first downlink reception includes any one of the following:
  • the first downlink reception is monitored during the activation time of each first cycle within the duration of the first downlink reception.
  • the terminal can monitor the first downlink reception within the duration of the first downlink reception, or in other words, the terminal can not monitor the first downlink reception within the duration of the first downlink reception.
  • the first downlink reception is performed intermittently. For example, if the duration of the first downlink reception is the first duration, the terminal may monitor the first downlink reception within the first duration. For another example, if the duration of the first downlink reception is the third timer duration, the terminal can monitor the first downlink reception during the third timer duration, or in other words, the terminal can be uninterrupted during the third timer duration
  • the first downlink reception is performed locally. After the third timer expires, the terminal can exit the first downlink reception triggered by the first uplink signal. If the terminal receives downlink scheduling information and/or downlink data transmission information within the third timer duration, the terminal can Restart the third timer.
  • the terminal may also monitor the first downlink reception in a discontinuous reception manner, that is, monitor the first downlink reception in a periodic time domain listening manner.
  • the terminal may monitor the first downlink reception during the activation time of each first cycle.
  • the first cycle includes the activation time and the inactivation time, and the terminal only needs to receive or monitor the first downlink reception during the activation time, and does not need to receive or monitor the first downlink reception during the inactivation time.
  • the discontinuous reception given in this embodiment can further realize energy saving of the terminal, and is a preferred first downlink reception time-domain monitoring method.
  • the first cycle may be a long DRX cycle or a short DRX cycle. If the first cycle is configured as a DRX cycle, the related timer and parameters of the DRX cycle can be further applied to downlink reception. For example, the DRX-inactivity timer (DRX-inactivity timer) in the DRX cycle.
  • DRX-inactivity timer DRX-inactivity timer
  • the terminal may monitor the first downlink reception during the activation time of each first cycle within the duration of the first downlink reception.
  • the monitoring manner is: the terminal can monitor the first downlink within the first duration of the first downlink reception within the activation time of each first period.
  • the first uplink signal may also be used to carry the foregoing first downlink reception duration configuration.
  • the method further includes:
  • the terminal for the situation that the terminal periodically receives the first downlink, it refers to the time-domain monitoring mode of discontinuous reception. If the terminal does not receive the downlink scheduling and/or downlink within the active time of L consecutive cycles Data, the terminal can exit the first downlink reception, or in other words, the terminal can exit the first downlink reception triggered by the first uplink signal.
  • the terminal monitors the first downlink reception during the activation time of each first cycle. If the terminal does not receive 2 downlink receptions of the first downlink reception within the activation time of the first cycle for 3 consecutive times, it stops listening. The first downlink reception. For another example, the terminal monitors the first downlink reception within the active time of each first cycle within the duration of the first downlink reception, if the terminal monitors the first downlink reception within 3 times of the duration of the first downlink reception If one downlink reception in the first downlink reception is not received within the activation time of the first cycle, the monitoring of the first downlink reception is stopped.
  • This embodiment can realize energy saving of the terminal.
  • the activation time of the first period is indicated by a bitmap method.
  • the activation time of the first cycle mentioned above can also be indicated by the duration.
  • “11000” means the first cycle, where each bit represents 2ms, then the length of the entire first cycle is 10ms, and the first 2 bits with 1 indicate the activation time of the first cycle and the length of the activation time is 4ms , The last 3 bits represent the inactive time of the first cycle, and the length is 6ms.
  • the time domain configuration parameter of the first downlink reception includes at least one of the following:
  • Radio Network Tempory Identity (RNTI)
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • the above-mentioned PDCCH-related time interval may include K0, K1, K2, and K0, K1, K2 are all based on a slot.
  • K0 is the time interval between the slot where DCI (or PDCCH corresponding to DCI) is located and the slot where the scheduled PDSCH is located
  • K2 is the slot where DCI (or PDCCH corresponding to DCI) is located and where the scheduled PUSCH is located
  • K1 is the time interval between the slot where the PDSCH is located and the slot where the HARQ-ACK feedback is located, that is, it is offset by several slots.
  • the PDSCH processing delay refers to the time interval from when the PDSCH is received by the PDCCH to the ready to send the HARQ-ACK feedback corresponding to the PDSCH when the PDSCH is scheduled by the PDCCH.
  • the processing delay of PDSCH is different from K1, which determines the slot on which HARQ-ACK feedback is performed.
  • the processing delay of the PDSCH means that the terminal needs to process the delay after receiving the PDSCH to be ready to feed back HARQ.
  • K1 must be greater than or equal to the processing delay of the PDSCH.
  • the PUSCH preparation delay means that after receiving the PDCCH, the terminal needs a period of time to prepare for transmission of the PUSCH scheduled by the PDCCH.
  • the preparation delay of PUSCH is different from K2, which determines the slot on which PUSCH transmission is performed.
  • the preparation delay of the PUSCH means that after the terminal finishes receiving the PDCCH, it needs to prepare the delay to be ready to send the PUSCH. In other words, K2 must be greater than or equal to the processing delay of PUSCH.
  • any one or more or all of the time domain configuration parameters received in the first downlink can be configured with other time domain configuration parameters through network side configuration or agreement agreement, for example: the first downlink
  • Any one or more or all of the received time domain configuration parameters can be combined with any one or more of the first downlink received time domain start time, time domain monitoring mode, duration, and first cycle parameters Or configure them all together.
  • any one or more or all of the above-mentioned first downlink received time domain configuration parameters may be carried by the first uplink signal together with other time domain configuration parameters.
  • the terminal, the specific Media Access Control (MAC) entity of the terminal, the specific service type of the terminal, or the specific frequency range of the terminal are configured with the first uplink signal A mechanism for triggering the first downlink reception.
  • MAC Media Access Control
  • the mechanism for triggering the first downlink reception by the first uplink signal may be configured for use by a specific terminal, or may be configured for use by a specific MAC entity (such as the MAC entity of SCG, MAC entity of MCG), and It can be configured only for a specific service type (such as a specific logical channel (such as logical channel 1)), or only for a specific frequency range (such as cell 1, BWP1).
  • the frequency domain range may be BWP or serving cell or component carrier.
  • it can also be configured for each service type, and the association relationship between the uplink signal and the downlink reception of each service type refers to the relevant configuration parameters of the mechanism by which the first uplink signal triggers the first downlink reception Can be the same or different.
  • the association relationship between the uplink signal and the downlink reception of each BWP refers to that the relevant configuration parameters of the mechanism by which the first uplink signal triggers the first downlink reception can be the same Or different.
  • the mechanism for triggering the first downlink reception by the first uplink signal can be flexibly configured according to specific requirements, which can improve the flexibility of the downlink reception of the terminal.
  • the method further includes:
  • the network-side device can configure a stop mechanism for the first downlink reception triggered by the first uplink signal. For example, the network-side device configures a stop command (such as MAC CE command, DCI) to stop the terminal currently being Any one or more downlink receptions or all downlink receptions in the first downlink reception performed. After receiving the first message sent by the network side device, the terminal may stop any one or more downlink receptions or all downlink receptions in the first downlink reception according to the instruction of the third message.
  • a stop command such as MAC CE command, DCI
  • the terminal can stop the downlink reception triggered by the uplink signal according to the instruction of the network side device, which is beneficial to improving the working performance and efficiency of the communication system.
  • the method further includes:
  • the network-side device can configure a dual-cycle switching mechanism for the first downlink reception triggered by the first uplink signal.
  • the dual-cycle switching mechanism is similar to the short DRX cycle and the long DRX cycle. cycle) Switching mechanism.
  • the network side device may issue a switching command (such as MAC CE command, DCI) to instruct the terminal to switch the period of discontinuous reception of the first downlink reception.
  • a switching command such as MAC CE command, DCI
  • the terminal may switch the cycle of the first downlink reception from the first cycle to the second cycle according to the instruction of the fourth message. In this way, the flexibility of the first downlink reception can be improved, and the performance of the communication system can be improved.
  • the method further includes:
  • the terminal if within the duration of the first downlink reception triggered by the first uplink signal (that is, the first downlink reception has not ended), the terminal sends another uplink signal (that is, the second uplink signal) for The second downlink reception is triggered.
  • the downlink reception time configuration may include any of the following.
  • the terminal performs downlink reception triggered by multiple uplink signals in parallel, or in other words, the terminal performs parallel monitoring on the first downlink reception and the second downlink reception.
  • Each uplink signal triggers a listening configuration for downlink reception.
  • each uplink signal triggers a new timer, and the terminal needs to meet the listening configuration for downlink reception triggered by any uplink signal.
  • the terminal only performs downlink reception triggered by a certain uplink signal, or in other words, the terminal may only maintain a listening configuration for a certain downlink reception.
  • the terminal can stop the currently ongoing downlink reception, and start to perform a new downlink reception on the monitoring configuration of the new downlink reception.
  • every time the terminal sends a new uplink signal it still continues the currently ongoing downlink reception.
  • the Methods when the first downlink reception and the second downlink reception are performed in parallel, if one or more resource conflicts occur between the first downlink reception and the second downlink reception, the Methods also include:
  • the logical channel where they are located, and the service priority, the data received from the first downlink and the second In the downlink reception, the downlink reception to be performed is determined.
  • the resource conflict includes at least one of a time domain resource conflict and a frequency domain resource conflict.
  • the method further includes:
  • Receive the downlink signal that conflicts with the first downlink reception in the second downlink reception and give up receiving the downlink signal that conflicts with the second downlink reception in the first downlink reception; or,
  • Receive the downlink signal that conflicts with the second downlink reception in the first downlink reception and give up receiving the downlink signal that conflicts with the first downlink reception in the second downlink reception; or,
  • the received downlink signal According to at least one of the type, logical channel, and service priority of the first uplink signal, and at least one of the type, logical channel, and service priority of the second uplink signal, Among the downlink signals in which the first downlink reception conflicts with the second downlink reception, determine the received downlink signal.
  • the terminal may preferentially receive the downlink signal of the downlink reception triggered later, and give up receiving the downlink signal of the downlink reception triggered earlier; the terminal may also have priority Receive the downlink signal that is triggered earlier, and give up receiving the downlink signal that is triggered later; the terminal can also determine the desired signal according to at least one of the type of the uplink signal, the logical channel where it is located, and the service priority. The received downlink signal, or the downlink signal that you want to give up.
  • the resource conflict may be only a time domain resource conflict, or only a frequency domain resource conflict, or a time-frequency domain resource conflict at the same time.
  • Resource conflict refers to the partial or full overlap of time-frequency domain resources where two or more downlink receivers are located.
  • the uplink signal triggers a change in the frequency domain information received in the downlink
  • the frequency domain configuration parameters and time domain configuration parameters of the downlink reception are both explicitly indicated by the uplink signal.
  • the network side device configures that the frequency domain information received in the downlink triggered by the scheduling request SR is the change of the BWP.
  • the network side device After receiving the SR1, the network side device sends a confirmation message, such as DCI, to the terminal.
  • the network-side device configures BWP1 as the default BWP (default BWP) corresponding to the frequency domain configuration duration timer (timer) that triggers the change of the frequency domain information received in the downlink by the uplink signal.
  • the terminal After receiving the confirmation message, the terminal switches the current downlink BWP to BWP2 to perform the downlink reception process.
  • the frequency domain configuration duration timer for downlink reception is similar to the BWP-inactivity timer. When the timer expires, the terminal can return to the default BWP for normal downlink reception.
  • Example 2 As shown in Figure 5, the network side device is configured with an uplink and downlink frequency domain association relationship.
  • the terminal triggers the downlink reception by sending the uplink SR1 and the BWP change indication of the downlink reception, for example, changes the downlink BWP to BWP2, and the uplink BWP can also be changed to BWP2 accordingly.
  • the terminal can send a confirmation change message on the uplink BWP2, and the message can be a RACH to notify the network side device to change the downlink BWP to BWP2. Then proceed to the downlink receiving process triggered by the SR1.
  • the terminal can also send a confirmation change message on the changed BWP, that is, the terminal can perform the above confirmation process.
  • the terminal can stop the downlink reception triggered by the current SR1 and the corresponding frequency domain configuration duration timer.
  • the terminal can switch to the downlink BWP1 for a new downlink reception process, and can restart the frequency domain configuration duration timer, until the timer expires, the terminal can return to the default BWP for the original downlink Receiving process.
  • the time domain configuration information of the downlink receiving process can be determined according to the following three specific embodiments.
  • the network side device pre-configures the association relationship between the uplink signal and the downlink reception, and completes the process of triggering the downlink reception by the uplink signal through an implicit instruction.
  • the uplink signal triggers the configuration of the downlink receiving mechanism for each logical channel.
  • the uplink signal is triggered by the PUSCH of Configurable Scheduling (CG).
  • CG Configurable Scheduling
  • the time domain monitoring mode of downlink reception adopts the discontinuous reception mode of short DRX cycle.
  • the first timer at the start time of the network configuration related downlink reception is the waiting monitoring timer and the downlink
  • the duration of the reception the length of the delay budget; the waiting monitoring timer and the retransmission timer configured by the DRX and related to the HARQ process in the DRX can be used at the same time; the agreement stipulates that a MAC CE comand is currently triggered by the uplink signal Of all ongoing downstream receptions.
  • the network side device pre-configures the association relationship between the uplink signal and the downlink reception. For example, logical channel 1 is mapped to the PUSCH of CG1 and is associated with downlink reception 1 and downlink 2; logical channel 2 is mapped to the PUSCH of CG2 and associated with downlink reception 3.
  • the configuration information corresponding to downlink reception 1 and downlink reception 2 is basically the same: the same downlink reception time domain start time, downlink reception monitoring configuration (using a short DRX cycle, a set of downlink reception waiting and monitoring timer and duration delay budget). Among them, the two types of downlink reception are different, and downlink reception 1 is a semi-continuous SPS PDSCH reception. Downlink reception 2 is DCI format 1-2 and 0-2 scrambled by C-RNTI.
  • the duration of the downlink reception timer (valid duration) is set to delay budget, and the current uplink CG will stop immediately after expiration.
  • Downlink reception related waiting and monitoring timer, duration, downlink DRX-HARQ round trip delay timer (DRX-HARQ-RTT-TimerDL) and downlink DRX retransmission timer (DRX-RetransmissionTimerDL) in DRX can coexist.
  • the terminal is configured with a long DRX cycle before receiving the downlink reception triggered by the uplink signal.
  • the terminal After the terminal sends the PUSCH of the uplink CG1, it immediately triggers the "waiting listening timer". After the timer expires, it immediately starts the short DRX cycle to perform downlink scheduling (downlink reception 2) and SPS downlink data reception (downlink reception 1).
  • the downlink reception of CG1 uses configurations related to the short DRX cycle: for example, X duration timer (DRX-ondurationtimer DR) and DRX-inactivity timer (DRX-inactivitytimer).
  • the configuration information corresponding to the downlink reception 3 is periodic CSI-RS.
  • the downlink reception is performed within the activation time of each period: the activation time position and duration are indicated by the bitmap in units of two slots" 11000" means that the first 4 slots are active time, and the last 6 slots are inactive time.
  • the terminal was originally configured with a long DRX cycle.
  • the terminal sends the uplink CG1 PUSCH (data of logical channel 1) and/or CG2 PUSCH (data of logical channel 2) to the network side device, combined with the relevant configuration in this solution, gives a typical example of the downlink receiving solution triggered by the uplink signal:
  • Example 1 As shown in Figure 6, only one CG1 PUSCH triggers the downlink reception process, that is, a single CG1 PUSCH triggers the configuration of downlink reception.
  • the dashed arrow indicates downlink reception 1: SPS PDSCH reception; the solid arrow indicates downlink reception 2: PDCCH scheduling.
  • Example 2 As shown in Figure 7, if within the duration of the downlink reception triggered by the uplink CG1 (that is, before the end of the downlink reception), another uplink CG2 is sent, and then the downlink reception triggered by multiple uplink signals is selected Parallel monitoring configuration method; the network side device configures MAC CE signaling (MAC CE command) to stop the currently ongoing downlink reception. That is, multiple CG PUSCHs overlap, multiple sets of downlink reception configurations need to be met, and MAC CE commands are configured.
  • MAC CE signaling MAC CE command
  • the dashed arrow indicates downlink reception 1: SPS PDSCH reception; the solid arrow indicates downlink reception 2: PDCCH scheduling; the dotted arrow indicates downlink reception 3: CSI-RS.
  • Example 3 As shown in Figure 8, if during the duration of the downlink reception triggered by the uplink CG1 signal (that is, before the end of the downlink reception), another uplink CG2 is sent, then only the downlink triggered by an uplink signal is selected.
  • the network side device is not configured with MAC CE command signaling. That is, multiple CG PUSCHs overlap, stop the previous downlink reception, start a new downlink reception, and do not configure the MAC CE command.
  • the dashed arrow indicates downlink reception 1: SPS PDSCH reception; the solid arrow indicates downlink reception 2: PDCCH scheduling; the dotted arrow indicates downlink reception 3: CSI-RS.
  • the terminal is not configured with a DRX mechanism before receiving the downlink reception triggered by the uplink signal.
  • the terminal sends the MAC CE to the network side device, and the MAC CE carries the activated downlink receiving ID.
  • Example 1 As shown in Figure 9, RRC is equipped with 5 downlink receivers, and the 5 uplink receivers are numbered.
  • the terminal sends the uplink control signaling MAC CE to explicitly activate one of the downlink receptions: downlink reception 2.
  • Example 2 As shown in Figure 10, RRC is equipped with 5 downlink receivers, and the 5 uplink receivers are numbered.
  • the terminal sends the uplink control signaling MAC CE to explicitly activate 3 downlink receptions: downlink reception 2, 3, and 4.
  • the DCI is used to dynamically indicate the activation of 1 downlink reception among the 3 downlink receptions: downlink reception 2.
  • the configuration information of the downlink reception 2 is: the downlink reception type is a group common PDCCH (group common PDCCH) scrambled by C-RNTI, a set of downlink reception waiting and monitoring N and a duration timer (timer).
  • This embodiment focuses on a method for triggering downlink reception by an uplink signal: the downlink reception is triggered by uplink signaling UCI and the downlink reception is separately configured, and the uplink signal triggers the downlink reception mechanism to be configured to a specific BWP1.
  • the terminal is configured with a long DRX cycle before receiving the downlink reception triggered by the uplink signal.
  • the terminal sends the uplink signaling UCI on BWP1, and explicitly carries the configuration information of the downlink reception triggered by it in the UCI: the time domain start time of the downlink reception, the listening configuration of the downlink reception, the duration of the downlink reception, and the downlink The type of reception.
  • the time domain start time of downlink reception is: the first DL slot including CORESET after UCI starts.
  • the listening configuration for downlink reception is: short DRX cycle, cycle is 2ms, and offset is 0.
  • the type of downlink reception is periodic PTRS.
  • the duration of downlink reception is 10ms.
  • the uplink signal triggers downlink reception of a certain frequency domain configuration.
  • the uplink signal triggers the downlink reception of a certain frequency domain configuration, which is similar to the embodiment in which the uplink triggers the downlink reception of a certain time domain configuration.
  • the difference is that the frequency domain information of the downlink reception is configured. To avoid repetition, I won’t repeat it.
  • the terminal can trigger the corresponding downlink reception by sending an uplink signal. In this way, not only can the resource consumption of the terminal be saved, which is conducive to energy saving of the terminal, but also the flexibility and efficiency of the downlink reception of the terminal can be improved.
  • the embodiments of the present invention are applicable to but not limited to XR application scenarios. When the embodiments of the present invention are applicable to XR application scenarios, they can better meet the service requirements of XR terminals and better meet the requirements of XR users.
  • FIG. 12 is a flowchart of a method for triggering downlink reception according to an embodiment of the present invention. As shown in FIG. 12, the downlink receiving trigger method is applied to the network side device, and the method includes the following steps:
  • Step 301 Receive a first uplink signal sent by a terminal, where the first uplink signal is used to trigger a first downlink reception, and the association relationship between the first uplink signal and the first downlink reception includes a first association Relationship, the first association relationship is an association relationship between the first uplink signal and the first downlink reception in the frequency domain.
  • association relationship is agreed upon by the network side device configuration or protocol.
  • the first uplink signal includes first indication information, and the first indication information is used to trigger M first downlink receptions out of N downlink receptions, and the N downlink receptions are performed by the network
  • the side device configuration or agreement stipulates that the N and M are both integers greater than or equal to 1.
  • the first indication information includes at least one of an identifier of the first downlink reception and a frequency domain configuration parameter of the first downlink reception.
  • the frequency domain configuration parameters received in the first downlink are configured by a network side device or agreed upon by a protocol.
  • the first downlink received frequency domain configuration parameter includes at least one of the following:
  • the first timer for the first downlink reception, during the operation of the first timer, the BWP where the first downlink reception is located does not change;
  • Virtual resource block VRB to physical resource block PRB resource mapping mode
  • the number of transmitting antennas or transmitting channels is the number of transmitting antennas or transmitting channels.
  • Downlink component carriers activated at the same time
  • the antenna port of the physical downlink shared channel PDSCH The antenna port of the physical downlink shared channel PDSCH;
  • Precoding resource block group PRG size Precoding resource block group PRG size.
  • the frequency domain position of the first downlink reception is indicated by a bitmap; or,
  • the frequency domain position of the first downlink reception is indicated by the frequency domain start position and the continuous frequency domain length.
  • the first timer is started after the random access RACH procedure ends; or,
  • the first timer is started after the terminal receives the confirmation message from the network side device.
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • the association relationship further includes a second association relationship, and the second association relationship is an association relationship between the first uplink signal and the first downlink reception in the time domain.
  • the association relationship is configured to at least one of a specific terminal, a specific media access control MAC entity, a specific service type, and a specific frequency range.
  • the type of the first uplink signal includes at least one of a type of an uplink channel and a type of a signal carried on the uplink channel.
  • the first downlink reception includes at least one of downlink scheduling information reception, downlink signal reception, downlink data information reception, and downlink channel monitoring.
  • the method further includes:
  • the embodiment of the present invention is used as an embodiment of the network side device corresponding to the foregoing embodiment.
  • the relevant description of the foregoing embodiment and can achieve the same beneficial effects. In order to avoid repetitive description, this I won't repeat it here.
  • FIG. 13 is a structural diagram of a terminal provided by an embodiment of the present invention. As shown in FIG. 13, the terminal 400 includes:
  • the first sending module 401 is configured to send a first uplink signal, the first uplink signal is used to trigger a first downlink reception, and the association relationship between the first uplink signal and the first downlink reception includes a first uplink signal.
  • An association relationship where the first association relationship is an association relationship between the first uplink signal and the first downlink reception in the frequency domain.
  • association relationship is agreed upon by the network side device configuration or protocol.
  • the terminal 400 further includes:
  • the first trigger module is configured to select the first uplink signal according to the frequency range of the first uplink signal, the type of the first uplink signal, the logical channel where the first uplink signal is located, and the service priority of the first uplink signal At least one item of triggering the first downlink reception associated with the first uplink signal.
  • the first uplink signal includes first indication information, and the first indication information is used to trigger M first downlink receptions out of N downlink receptions, and the N downlink receptions are configured by the network side device Or the agreement stipulates that the N and M are both integers greater than or equal to 1.
  • the terminal 400 further includes:
  • the first receiving module is configured to receive the first downlink control information DCI after sending the first uplink signal;
  • the second triggering module is configured to trigger K first downlink receptions out of the M first downlink receptions through the first DCI, where K is an integer greater than or equal to 1.
  • the first indication information includes at least one of an identifier of the first downlink reception and a frequency domain configuration parameter of the first downlink reception.
  • the frequency domain configuration parameters received in the first downlink are configured by a network side device or agreed upon by a protocol.
  • the first downlink received frequency domain configuration parameter includes at least one of the following:
  • the first timer for the first downlink reception, during the operation of the first timer, the BWP where the first downlink reception is located does not change;
  • Virtual resource block VRB to physical resource block PRB resource mapping mode
  • the number of transmitting antennas or transmitting channels is the number of transmitting antennas or transmitting channels.
  • Downlink component carriers activated at the same time
  • the antenna port of the physical downlink shared channel PDSCH The antenna port of the physical downlink shared channel PDSCH;
  • Precoding resource block group PRG size Precoding resource block group PRG size.
  • the frequency domain position of the first downlink reception is indicated by a bitmap; or,
  • the frequency domain position of the first downlink reception is indicated by the frequency domain start position and the continuous frequency domain length.
  • the first timer is started after the random access RACH procedure ends; or,
  • the first timer is started after the terminal receives the confirmation message from the network side device.
  • the terminal 400 further includes:
  • the first activation module is configured to, if the terminal sends a second uplink signal during the operation period of the first timer of the first downlink reception, the second uplink signal is used to trigger the second downlink reception, Then, after sending the second uplink signal, start or restart the first timer; or,
  • the second start module is configured to start or restart the first timer if the terminal receives the first message sent by the network side device, and the first message includes a BWP switching instruction.
  • the terminal 400 further includes a stop module, and the stop module is used for at least one of the following:
  • the terminal 400 further includes:
  • the first switching module is configured to switch the BWP where the first downlink reception is located to the first BWP; or,
  • the deactivation module is used to deactivate the BWP where the first downlink reception is located.
  • the terminal 400 further includes:
  • the second switching module is configured to switch the BWP where the first uplink signal is located to the uplink BWP corresponding to the BWP after the first downlink reception is switched.
  • the terminal 400 further includes:
  • the second sending module is configured to send second indication information to the network side device on the BWP after the first uplink signal is switched, and the second indication information is used to indicate that the uplink BWP has been switched.
  • the association relationship further includes a second association relationship, and the second association relationship is an association relationship between the first uplink signal and the first downlink reception in the time domain.
  • the association relationship is configured to at least one of a specific terminal, a specific media access control MAC entity, a specific service type, and a specific frequency range.
  • the type of the first uplink signal includes at least one of a type of an uplink channel and a type of a signal carried on the uplink channel.
  • the first downlink reception includes at least one of downlink scheduling information reception, downlink signal reception, downlink data information reception, and downlink channel monitoring.
  • the terminal 400 further includes:
  • the second receiving module is configured to receive a third message sent by the network side device, where the third message is used to instruct the terminal to stop receiving at least one downlink reception in the first downlink reception.
  • the terminal 400 further includes:
  • the first downlink receiving module is configured to perform the first downlink reception and the second downlink reception in parallel; or,
  • the second downlink receiving module is configured to perform only the second downlink reception.
  • the terminal 400 when the first downlink reception and the second downlink reception are performed in parallel, if one or more resource conflicts occur between the first downlink reception and the second downlink reception, the terminal 400 also includes:
  • the third downlink receiving module is configured to perform the second downlink reception on the conflicting resources, and abandon the first downlink reception; or,
  • the fourth downlink receiving module is configured to perform the first downlink reception on the conflicting resources and abandon the second downlink reception; or,
  • the determining module is configured to, on conflicting resources, receive from the first downlink according to at least one of the type of the first uplink signal and the second uplink signal, the logical channel where it is located, and the service priority And determining the downlink reception to be performed in the second downlink reception.
  • the first downlink reception includes multiple downlink receptions, and each downlink reception corresponds to a type of downlink reception.
  • the foregoing terminal 400 in the embodiment of the present invention may be a terminal of any implementation manner in the method embodiment, and any implementation manner of the terminal in the method embodiment may be implemented by the foregoing terminal 400 in the embodiment of the present invention, and To achieve the same beneficial effect, in order to avoid repetition, it will not be repeated here.
  • FIG. 12 is a structural diagram of a network side device provided by an embodiment of the present invention. As shown in FIG. 12, the network side device 500 includes:
  • the first receiving module 501 is configured to receive a first uplink signal sent by a terminal, the first uplink signal is used to trigger a first downlink reception, and the association between the first uplink signal and the first downlink reception
  • the relationship includes a first association relationship, and the first association relationship is an association relationship between the first uplink signal and the first downlink reception in the frequency domain.
  • association relationship is agreed upon by the network side device configuration or protocol.
  • the first uplink signal includes first indication information, and the first indication information is used to trigger M first downlink receptions out of N downlink receptions, and the N downlink receptions are performed by the network
  • the side device configuration or agreement stipulates that the N and M are both integers greater than or equal to 1.
  • the first indication information includes at least one of an identifier of the first downlink reception and a frequency domain configuration parameter of the first downlink reception.
  • the frequency domain configuration parameters received in the first downlink are configured by the network side device or negotiated by agreement.
  • the first downlink received frequency domain configuration parameter includes at least one of the following:
  • the first timer for the first downlink reception, during the operation of the first timer, the BWP where the first downlink reception is located does not change;
  • Virtual resource block VRB to physical resource block PRB resource mapping mode
  • the number of transmitting antennas or transmitting channels is the number of transmitting antennas or transmitting channels.
  • Downlink component carriers activated at the same time
  • the antenna port of the physical downlink shared channel PDSCH The antenna port of the physical downlink shared channel PDSCH;
  • Precoding resource block group PRG size Precoding resource block group PRG size.
  • the frequency domain position of the first downlink reception is indicated by a bitmap; or,
  • the frequency domain position of the first downlink reception is indicated by the frequency domain start position and the continuous frequency domain length.
  • the first timer is started after the random access RACH procedure ends; or,
  • the first timer is started after the terminal receives the confirmation message from the network side device.
  • the network side device 500 further includes:
  • the first sending module is configured to send a first message to the terminal, where the first message includes a BWP switching instruction.
  • the network side device 500 further includes:
  • the second sending module is configured to send a second message to the terminal, where the second message is used to instruct to stop the first timer.
  • the network side device 500 further includes:
  • the second receiving module is configured to receive second indication information sent by the terminal, where the second indication information is used to indicate that the uplink BWP has been switched.
  • the association relationship further includes a second association relationship, and the second association relationship is an association relationship between the first uplink signal and the first downlink reception in the time domain.
  • the association relationship is configured to at least one of a specific terminal, a specific media access control MAC entity, a specific service type, and a specific frequency range.
  • the type of the first uplink signal includes at least one of a type of an uplink channel and a type of a signal carried on the uplink channel.
  • the first downlink reception includes at least one of downlink scheduling information reception, downlink signal reception, downlink data information reception, and downlink channel monitoring.
  • the network side device 500 further includes:
  • the third sending module is configured to send a third message to the terminal, where the third message is used to instruct the terminal to stop receiving at least one downlink reception in the first downlink reception.
  • the above-mentioned network-side device 500 in the embodiment of the present invention may be a network-side device in any implementation manner in the method embodiment, and any implementation manner of the network-side device in the method embodiment may be modified by the above-mentioned network-side device in the embodiment of the present invention. It is implemented by the network side device 500 and achieves the same beneficial effects. To avoid repetition, details are not repeated here.
  • the terminal 900 includes but is not limited to: a radio frequency unit 901, a network module 902, an audio output unit 903, an input unit 904, a sensor 905, a display unit 906, User input unit 907, interface unit 908, memory 909, processor 910, power supply 911 and other components.
  • a radio frequency unit 901 includes but is not limited to: a radio frequency unit 901, a network module 902, an audio output unit 903, an input unit 904, a sensor 905, a display unit 906, User input unit 907, interface unit 908, memory 909, processor 910, power supply 911 and other components.
  • the terminal structure shown in FIG. 14 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal, a wearable device, and a pedometer.
  • the radio frequency unit 901 is used for:
  • the first uplink signal is used to trigger a first downlink reception
  • the association relationship between the first uplink signal and the first downlink reception includes a first association relationship
  • the first The association relationship is an association relationship between the first uplink signal and the first downlink reception in the frequency domain.
  • association relationship is agreed upon by the network side device configuration or protocol.
  • the radio frequency unit 901 or the processor 910 is further used for:
  • the frequency range where the first uplink signal is located the type of the first uplink signal, the logical channel where the first uplink signal is located, and the service priority of the first uplink signal, trigger and The first downlink reception associated with the first uplink signal.
  • the first uplink signal includes first indication information, and the first indication information is used to trigger M first downlink receptions out of N downlink receptions, and the N downlink receptions are configured by the network side device Or the agreement stipulates that the N and M are both integers greater than or equal to 1.
  • the radio frequency unit 901 is also used to:
  • the radio frequency unit 901 or the processor 910 is also used for:
  • K first downlink receptions among the M first downlink receptions are triggered by the first DCI, where K is an integer greater than or equal to 1.
  • the first indication information includes at least one of an identifier of the first downlink reception and a frequency domain configuration parameter of the first downlink reception.
  • the frequency domain configuration parameters received in the first downlink are configured by a network side device or agreed upon by a protocol.
  • the first downlink received frequency domain configuration parameter includes at least one of the following:
  • the first timer for the first downlink reception, during the operation of the first timer, the BWP where the first downlink reception is located does not change;
  • Virtual resource block VRB to physical resource block PRB resource mapping mode
  • the number of transmitting antennas or transmitting channels is the number of transmitting antennas or transmitting channels.
  • Downlink component carriers activated at the same time
  • the antenna port of the physical downlink shared channel PDSCH The antenna port of the physical downlink shared channel PDSCH;
  • Precoding resource block group PRG size Precoding resource block group PRG size.
  • the frequency domain position of the first downlink reception is indicated by a bitmap; or,
  • the frequency domain position of the first downlink reception is indicated by the frequency domain start position and the continuous frequency domain length.
  • the first timer is started after the random access RACH procedure ends; or,
  • the first timer is started after the terminal receives the confirmation message from the network side device.
  • the radio frequency unit 901 or the processor 910 is further used for:
  • the terminal sends a second uplink signal, and the second uplink signal is used to trigger a second downlink reception, then after the first downlink reception is sent After the second uplink signal, start or restart the first timer; or,
  • the terminal If the terminal receives the first message sent by the network side device, it starts or restarts the first timer, and the first message includes a BWP switching instruction.
  • the radio frequency unit 901 or the processor 910 is also used for at least one of the following:
  • the radio frequency unit 901 or the processor 910 is further configured to:
  • the radio frequency unit 901 or the processor 910 is further used for:
  • the radio frequency unit 901 is also used for:
  • the association relationship further includes a second association relationship, and the second association relationship is an association relationship between the first uplink signal and the first downlink reception in the time domain.
  • the association relationship is configured to at least one of a specific terminal, a specific media access control MAC entity, a specific service type, and a specific frequency range.
  • the type of the first uplink signal includes at least one of a type of an uplink channel and a type of a signal carried on the uplink channel.
  • the first downlink reception includes at least one of downlink scheduling information reception, downlink signal reception, downlink data information reception, and downlink channel monitoring.
  • the radio frequency unit 901 is also used for:
  • the radio frequency unit 901 is further configured to:
  • the radio frequency unit 901 or the processor 910 is further configured to:
  • the logical channel where they are located, and the service priority, the data received from the first downlink and the second In the downlink reception, the downlink reception to be performed is determined.
  • the first downlink reception includes multiple downlink receptions, and each downlink reception corresponds to a type of downlink reception.
  • the above-mentioned terminal 900 in this embodiment may be a terminal in any implementation manner in the method embodiment in the embodiment of the present invention, and any implementation manner of the terminal in the method embodiment in the embodiment of the present invention can be used in this embodiment.
  • the above-mentioned terminal 900 realizes and achieves the same beneficial effects, which will not be repeated here.
  • the radio frequency unit 901 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving the downlink data from the base station, it is processed by the processor 910; Uplink data is sent to the base station.
  • the radio frequency unit 901 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 901 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 902, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 903 can convert the audio data received by the radio frequency unit 901 or the network module 902 or stored in the memory 909 into an audio signal and output it as sound. Moreover, the audio output unit 903 may also provide audio output related to a specific function performed by the terminal 900 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 903 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 904 is used to receive audio or video signals.
  • the input unit 904 may include a graphics processing unit (GPU) 9041 and a microphone 9042.
  • the graphics processor 9041 is configured to provide an image of a still picture or video obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 906.
  • the image frames processed by the graphics processor 9041 may be stored in the memory 909 (or other storage medium) or sent via the radio frequency unit 901 or the network module 902.
  • the microphone 9042 can receive sound and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 901 for output in the case of a telephone call mode.
  • the terminal 900 also includes at least one sensor 905, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 9061 according to the brightness of the ambient light.
  • the proximity sensor can turn off the display panel 9061 and the backlight when the terminal 900 is moved to the ear. .
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal gestures (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 905 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 906 is used to display information input by the user or information provided to the user.
  • the display unit 906 may include a display panel 9061, and the display panel 9061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 907 may be used to receive input numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 907 includes a touch panel 9071 and other input devices 9072.
  • the touch panel 9071 also called a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 9071 or near the touch panel 9071. operate).
  • the touch panel 9071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 910, the command sent by the processor 910 is received and executed.
  • the touch panel 9071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 907 may also include other input devices 9072.
  • other input devices 9072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 9071 can cover the display panel 9071.
  • the touch panel 9071 detects a touch operation on or near it, it transmits it to the processor 910 to determine the type of the touch event, and then the processor 910 determines the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 9061.
  • the touch panel 9071 and the display panel 9061 are used as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 9071 and the display panel 9061 can be integrated. Realize the input and output functions of the terminal, the specifics are not limited here.
  • the interface unit 908 is an interface for connecting an external device and the terminal 900.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 908 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 900 or may be used to communicate between the terminal 900 and the external device. Transfer data between.
  • the memory 909 can be used to store software programs and various data.
  • the memory 909 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 909 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 910 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. Various functions and processing data to monitor the terminal as a whole.
  • the processor 910 may include one or more processing units; preferably, the processor 910 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc., the modem
  • the processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 910.
  • the terminal 900 may also include a power source 911 (such as a battery) for supplying power to various components.
  • a power source 911 such as a battery
  • the power source 911 may be logically connected to the processor 910 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. Function.
  • terminal 900 includes some functional modules that are not shown, which will not be repeated here.
  • the embodiment of the present invention also provides a terminal, including a processor 910, a memory 909, an instruction or program stored in the memory 909 and running on the processor 910, and the instruction or program is executed by the processor 910
  • a terminal including a processor 910, a memory 909, an instruction or program stored in the memory 909 and running on the processor 910, and the instruction or program is executed by the processor 910
  • the above-mentioned terminal 900 in this embodiment may be a terminal in any implementation manner in the method embodiment in the embodiment of the present invention, and any implementation manner of the terminal in the method embodiment in the embodiment of the present invention can be used in this embodiment.
  • the above-mentioned terminal 900 realizes and achieves the same beneficial effects, which will not be repeated here.
  • FIG. 15 is a structural diagram of a network side device according to an embodiment of the present invention.
  • the network side device 700 includes: a processor 701, a transceiver 702, a memory 703, and a bus interface, where:
  • the transceiver 702 is used for:
  • the first uplink signal is used to trigger a first downlink reception
  • the association relationship between the first uplink signal and the first downlink reception includes a first association relationship
  • the first association relationship is an association relationship between the first uplink signal and the first downlink reception in the frequency domain.
  • association relationship is agreed upon by the network side device configuration or protocol.
  • the first uplink signal includes first indication information, and the first indication information is used to trigger M first downlink receptions out of N downlink receptions, and the N downlink receptions are performed by the network
  • the side device configuration or agreement stipulates that the N and M are both integers greater than or equal to 1.
  • the first indication information includes at least one of an identifier of the first downlink reception and a frequency domain configuration parameter of the first downlink reception.
  • the frequency domain configuration parameters received in the first downlink are configured by the network side device or negotiated by agreement.
  • the first downlink received frequency domain configuration parameter includes at least one of the following:
  • the first timer for the first downlink reception, during the operation of the first timer, the BWP where the first downlink reception is located does not change;
  • Virtual resource block VRB to physical resource block PRB resource mapping mode
  • the number of transmitting antennas or transmitting channels is the number of transmitting antennas or transmitting channels.
  • Downlink component carriers activated at the same time
  • the antenna port of the physical downlink shared channel PDSCH The antenna port of the physical downlink shared channel PDSCH;
  • Precoding resource block group PRG size Precoding resource block group PRG size.
  • the frequency domain position of the first downlink reception is indicated by a bitmap; or,
  • the frequency domain position of the first downlink reception is indicated by the frequency domain start position and the continuous frequency domain length.
  • the first timer is started after the random access RACH procedure ends; or,
  • the first timer is started after the terminal receives the confirmation message from the network side device.
  • the transceiver 702 is also used for:
  • the transceiver 702 is also used for:
  • the transceiver 702 is also used for:
  • the association relationship further includes a second association relationship, and the second association relationship is an association relationship between the first uplink signal and the first downlink reception in the time domain.
  • the association relationship is configured to at least one of a specific terminal, a specific media access control MAC entity, a specific service type, and a specific frequency range.
  • the type of the first uplink signal includes at least one of a type of an uplink channel and a type of a signal carried on the uplink channel.
  • the first downlink reception includes at least one of downlink scheduling information reception, downlink signal reception, downlink data information reception, and downlink channel monitoring.
  • the transceiver 702 is also used for:
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 701 and various circuits of the memory represented by the memory 703 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 702 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 703 can store data used by the processor 701 when performing operations.
  • the above-mentioned network-side device 700 in this embodiment may be a network-side device in any implementation manner in the method embodiment of the present invention, and any implementation manner of the network-side device in the method embodiment in the embodiment of the present invention is It can be implemented by the above-mentioned network-side device 700 in this embodiment and achieve the same beneficial effect, which will not be repeated here.
  • the embodiment of the present invention also provides a readable storage medium with instructions or programs stored on the readable storage medium.
  • the instructions or programs are executed by a processor, each process of the above-mentioned embodiment corresponding to the terminal or the network side is implemented, and can be To achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
  • the readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the embodiment of the present invention further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled with the processor, and the processor is used to run a program or an instruction to implement the above embodiment of the downlink receiving trigger method
  • the chip includes a processor and a communication interface
  • the communication interface is coupled with the processor
  • the processor is used to run a program or an instruction to implement the above embodiment of the downlink receiving trigger method
  • the chip mentioned in the embodiment of the present invention may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present invention.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Emergency Alarm Devices (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Liquid Developers In Electrophotography (AREA)

Abstract

本发明提供一种下行接收触发方法、终端和网络侧设备,其中终端侧方法包括:发送第一上行信号,所述第一上行信号用于触发第一下行接收。本发明中,终端可通过发送上行信号来触发相应的下行接收,这样,不仅能够节省终端的资源消耗,有利于终端节能,还能够提高终端下行接收的灵活度与高效性。本发明可适用于但不限于XR应用场景,当本发明适用于XR应用场景时,能够更好地满足XR终端的业务需求,更好地满足XR用户的需求。

Description

下行接收触发方法、终端和网络侧设备
相关申请的交叉引用
本申请主张在2020年4月30日在中国提交的中国专利申请No.202010368256.3的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,尤其涉及一种下行接收触发方法、终端和网络侧设备。
背景技术
在移动通信系统中,惯用的传输方式为基于调度的传输方式,例如终端首先通过监听物理下行控制信道(Physical Downlink Control Channel,PDCCH)获取网络侧设备为自己分配的下行接收的时频域资源,之后,在相应资源上进行下行接收。
在实际的应用场景中,基于调度的传输并不一定是最高效的。以扩展现实(Extended reality,XR)为例,XR是指由计算机技术和可穿戴设备产生的真实与虚拟的组合环境和人机交互。在XR应用场景中,可以根据用户的动作预测出用户所需数据资源。但终端根据网络侧设备动态调度来进行下行接收的灵活性较差且效率较低,无法较好地满足XR终端的业务需求并适用于XR业务模型。
发明内容
本发明实施例提供一种下行接收触发方法、终端和网络侧设备,以解决现有技术中终端根据网络侧设备动态调度来进行下行接收的灵活性较差且效率较低的问题。
为了解决上述问题,本发明是这样实现的:
第一方面,本发明实施例提供一种下行接收触发方法,应用于终端,所述方法包括:
发送第一上行信号,所述第一上行信号用于触发第一下行接收,所述第一上行信号与所述第一下行接收之间的关联关系包括第一关联关系,所述第一关联关系为所述第一上行信号与所述第一下行接收在频域上的关联关系。
第二方面,本发明实施例提供一种下行接收触发方法,应用于网络侧设备,所述方法包括:
接收第一上行信号,所述第一上行信号用于触发第一下行接收,所述第一上行信号与所述第一下行接收之间的关联关系包括第一关联关系,所述第一关联关系为所述第一上行信号与所述第一下行接收在频域上的关联关系。
第三方面,本发明实施例提供一种终端,包括:
第一发送模块,用于发送第一上行信号,所述第一上行信号用于触发第一下行接收,所述第一上行信号与所述第一下行接收之间的关联关系包括第一关联关系,所述第一关联关系为所述第一上行信号与所述第一下行接收在频域上的关联关系。
第四方面,本发明实施例提供一种网络侧设备,包括:
第一接收模块,用于接收第一上行信号,所述第一上行信号用于触发第一下行接收,所述第一上行信号与所述第一下行接收之间的关联关系包括第一关联关系,所述第一关联关系为所述第一上行信号与所述第一下行接收在频域上的关联关系。
第五方面,本发明实施例提供一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的指令或程序,所述指令或程序被所述处理器执行时实现本发明实施例第一方面提供的下行接收触发方法中的步骤。
第六方面,本发明实施例提供一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的指令或程序,所述指令或程序被所述处理器执行时实现本发明实施例第二方面提供的下行接收触发方法中的步骤。
第七方面,本发明实施例提供一种可读存储介质,所述可读存储介质上存储有指令或程序,所述指令或程序被处理器执行时实现本发明实施例第一方面提供的下行接收触发方法中的步骤。
第八方面,本发明实施例提供一种可读存储介质,所述可读存储介质上存储有指令或程序,所述指令或程序被处理器执行时实现本发明实施例第二方面提供的下行接收触发方法中的步骤。
第九方面,本发明实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的下行接收触发方法。
第十方面,本发明实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第二方面所述的下行接收触发方法。
第十一方面,本申请实施例提供了一种计算机程序产品,其中,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现本发明实施例第一方面或第二方面提供的下行接收触发方法中的步骤。
本发明实施例中,终端可通过发送上行信号来触发相应的下行接收,这样,不仅能够节省终端的资源消耗,有利于终端节能,还能够提高终端下行接收的灵活度与高效性。本发明实施例可适用于但不限于XR应用场景,当本发明实施例适用于XR应用场景时,能够更好地满足XR终端的业务需求,更好地满足XR用户的需求。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的网络系统的结构图;
图2是本发明实施例提供的DRX周期的示意图;
图3是本发明实施例提供的一种下行接收触发方法的流程图;
图4至图11是本发明实施例提供的示例图;
图12是本发明实施例提供的另一种下行接收触发方法的流程图;
图13是本发明实施例提供的终端的结构示意图;
图14是本发明实施例提供的网络侧设备的结构示意图;
图15是本发明实施例提供的终端的硬件结构示意图;
图16是本发明实施例提供的网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。类似地,A和B中的至少一个,表示包含单独A,单独B,以及A和B都存在三种情况。
在本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本发明的实施例。本发明提供的实施例可以应用于无线通信系统中。该无线通信系统可以为5G系统,或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统,或者后续演进通信系统。
图1是本发明实施例提供的一种网络系统的结构图,如图1所示,包括终端11、网络侧设备12,其中,终端11可以是移动通信设备,例如:可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等,需要说明的 是,在本发明实施例中并不限定终端11的具体类型。上述网络侧设备12可以是5G网络侧设备(例如:gNB、5G NR NB),或者可以是4G网络侧设备(例如:eNB),或者可以是3G网络侧设备(例如:NB),或者后续演进通信系统中的网络侧设备,等等,需要说明的是,在本发明实施例中并不限定网络侧设备12的具体类型。
为了更恰当地理解本发明实施例的技术方案,在对本发明实施例的技术方案进行说明之前,先大体介绍本发明实施例的相关技术。
一、XR业务
XR是指由计算机技术和可穿戴设备产生的所有真实与虚拟的组合环境和人机交互,它包括增强现实(Augmented Reality,AR)、介导现实(Mediated Reality,MR)、虚拟现实(Virtual Reality,VR)等代表性形式,以及它们之间的插值区域。虚拟世界的级别从部分感官输入到完全沉浸式虚拟现实。XR的一个关键方面是人类经验的扩展,尤其是与存在感(以VR为代表)和认知习得(以AR为代表)相关的经验。
在XR的应用场景中,用户在虚拟现实体验中可以通过转头等动作来获取新视野角度的信息。这时XR用户的转头动作可以通过终端发送一个上行信号告知网络侧设备,网络侧设备在接收到上行信号后,会为该XR用户调度所需的下行数据以供使用。
对于XR(不排除NR light)应用场景,会存在由上行信号来触发某种下行接收的过程。现有技术中尚未支持这种由上行信号触发下行接收的机制,这使得终端的资源消耗较大,且终端进行下行接收的灵活性较差,无法较好地满足XR终端的业务需求,从而无法较好地满足XR用户的业务需求。
二、CDRX(无线资源控制(Radio Resource Control,RRC)连接态的非连续接收(Discontinuous Reception,DRX))
如图2所示,DRX周期由“持续时间(On Duration)”和“DRX时机(Opportunity for DRX)”组成:在“On Duration”的时间内,终端监听并接收PDCCH;在“Opportunity for DRX”时间内,终端不监听PDCCH,以节省功耗。如果在onduration内接收到了新传PDCCH,那么会启动或重启非激活计时器(inactivity timer)来延长终端监听PDCCH的时长。
需要说明的是,本申请中所涉及的“计时器”,又可称为“定时器”,也就是说,本申请中所涉及的“计时器”所表达的含义与“定时器”所表达的含义相同或相似。
系统可以根据不同的业务场景,给终端分别配置短DRX周期(short DRX cycle)或者长DRX周期(long DRX cycle)。如果同时配置了短周期和长周期,则可通过某种方式来进行两种长短周期间的切换。
鉴于此,本发明实施例提供由上行信号触发下行接收的方法,即本发明实施例提供的下行接收触发方法。
图3是本发明实施例提供的下行接收触发方法的流程图。如图3所示,下行接收触发方法,应用于终端,该方法包括以下步骤:
步骤201:发送第一上行信号,所述第一上行信号用于触发第一下行接收,所述第一上行信号与所述第一下行接收之间的关联关系包括第一关联关系,所述第一关联关系为所述第一上行信号与所述第一下行接收在频域上的关联关系。
本发明实施例中,终端可通过发送第一上行信号直接触发第一下行接收,而不需要通过诸如网络侧设备配置第一下行接收等过程,因此,通过发送第一上行信号来触发第一下行接收,不同于现有的下行调度与下行接收方式。
通过发送第一上行信号来触发第一下行接收,不同于现有的基于调度的传输方式来触发下行接收。在现有的调度传输方式中,例如,终端通过监听PDCCH获取网络侧设备为自己分配的下行接收的时频域资源,之后,终端在相应的资源上进行下行接收。而本发明实施例中,终端通过发送第一上行信号触发第一下行接收。第一下行接收的时频域资源以及该第一下行接收的持续时间等配置参数可通过网络侧设备提前配置好或者通过该第一上行信号来携带,而不通过调度过程即可触发下行接收。因此,通过发送第一上行信号来触发第一下行接收,可以提高下行接收的灵活度与高效性。
第一上行信号用于触发第一下行接收,可以理解为,第一上行信号与第一下行接收之间存在着关联关系。
本发明实施例中,第一上行信号与第一下行接收之间的关联关系包括第一关联关系,第一关联关系为第一上行信号与第一下行接收在频域上的关联 关系。
第一上行信号与第一下行接收在频域上的关联关系,可以理解为第一上行信号与第一下行接收之间存在频域配置参数上的关联关系。终端在发送第一上行信号之后,可以根据频域配置参数上的关联关系,监听或接收第一下行接收。
在一种实施例中,通过第一上行信号中携带的资源配置参数来显式配置第一下行接收,网络侧设备根据接收到的第一上行信号所指示的配置参数来发送第一下行接收。例如,终端发送第一上行信号后,以不连续接收的方式来监听第一下行接收。此外,第一下行接收可以包含多种下行接收。换言之,第一下行接收对应的资源配置参数不同于由网络侧设备根据终端发送的RACH或BFR等上行信号而配置的下行接收资源配置参数。
本发明实施例中,第一上行信号与第一下行接收之间的关联关系还可以包括第二关联关系,第二关联关系为第一上行信号与第一下行接收在时域上的关联关系。这样,第一上行信号与第一下行接收之间的关联关系既可以包括第一关联关系,也可以包括第一关联关系和第二关联关系,也就是说,第一上行信号与第一下行接收之间的关联关系既可以是频域上的关联关系,也可以是时频域上的关联关系。第一上行信号与第一下行接收在时频域上的关联关系,可以理解为第一上行信号与第一下行接收之间存在时频域配置参数上的关联关系,终端在发送第一上行信号之后,可以根据时频域配置参数上的关联关系,监听或接收第一下行接收。
第一上行信号与第一下行接收之间的关联关系可以预先建立,例如,可预先通过网络侧设备配置第一上行信号与第一下行接收之间的关联关系,也可预先通过协议约定第一上行信号与第一下行接收之间的关联关系。
在预先建立了第一上行信号与第一下行接收之间的关联关系的基础上,第一上行信号用于触发第一下行接收,可以理解为,第一上行信号用于激活与第一上行信号具有关联关系的第一下行接收,更具体的,第一上行信号用于激活相应资源配置参数下的第一下行接收。
需要说明的是,本发明实施例所涉及的“第一上行信号与第一下行接收之间的关联关系”,在没有明确地限定是频域上的关联关系(即第一关联关系) 还是时频域上的关联关系(即第一关联关系+第二关联关系)的情况下,均可以适用于任一种关联关系。
第一下行接收可包含一个或多个(包括两个)下行接收,在第一下行接收包含多个下行接收时,每个下行接收可对应一种下行接收类型。在第一下行接收包含一个下行接收时,该下行接收既可以对应一种下行接收类型,也可以不对应某种具体的类型。
所述第一下行接收可以包括下行调度信息接收、下行信号接收、下行数据信息接收和下行信道监听中的至少一项。
也就是说,第一下行接收的类型可包括下行调度信息、下行信号、下行数据发送信息和下行信道监听中的至少一项。其中,下行调度信息可以是例如PDCCH,该PDCCH中的DCI可以由特定的无线网络临时标识来加扰,如小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)或可配置调度RNTI(Configured Scheduling RNTI,CS-RNTI)。该PDCCH的DCI format可以是,例如DCI 1-1、DCI 0-1、DCI 0-0、DCI 1-0、DCI 1-2、DCI 0-2等。下行信号可以是,例如信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、CSI干扰测量(CSI Intereference Measurement,CSI-IM)、参考信号(Time Reference Signals,TRS)、相位跟踪参考信号(Phase-tracking reference signal,PTRS)、定位参考信号(Positioning Reference Signals,PRS)、同步信号块(Synchronization Signal and PBCH block,SSB)等。下行数据发送信息可以是,例如半静态调度(Semi-Persistent Scheduling,SPS)的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)接收。下行信道监听可以是,例如非调度的PDCCH、组公共PDCCH(group common PDCCH)等。不排除其他的下行信道或下行信号。
第一上行信号的类型可包括上行信道的类型和上行信道上承载的信令或信号类型中的至少一项。其中,上行信道的类型可以是物理上行控制信道(Physical Uplink Control Channel,PUCCH)、PUSCH(例如,配置的上行授权Configured Grant的PUSCH)、物理随机接入信道(Physical Random Access Channel,PRACH)(例如,Msg1、MsgA PRACH、MsgA PUSCH、Msg3)。上述上行信道的周期性可以是周期、非周期、半持续。上行信道上承载的信 令类型或信号类型可以是上行控制信息(Uplink Control Information,UCI)、调度请求(scheduling request,SR)、信道状态信息(Channel State Information,CSI)、混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)、媒体接入控制(Media Access Control,MAC)CE、信道探测参考信号(Sounding Reference Signal,SRS)等。不排除其他的上行信道或上行信号。
本发明实施例中,既可通过隐式指示的方式,由第一上行信号来触发第一下行接收,也可通过显式指示的方式,由第一上行信号来触发第一下行接收。
以下针对隐式指示的方式进行说明。
可选的,所述第一上行信号与所述第一下行接收之间的关联关系由网络侧设备配置或协议约定。
其中,在第一上行信号与第一下行接收之间的关联关系包括第一关联关系的情况下,所述第一关联关系可由网络侧设备配置或协议约定。在第一上行信号与第一下行接收之间的关联关系包括第一关联关系和第二关联关系的情况下,所述第一关联关系和所述第二关联关系均可由网络侧设备配置或协议约定。
可选的,所述方法还包括:
根据所述第一上行信号所在的频率范围、所述第一上行信号的类型、所述第一上行信号所在的逻辑信道和所述第一上行信号的业务优先级中的至少一项,触发与所述第一上行信号相关联的所述第一下行接收。
该实施方式中,可以通过不同的上行信号频率范围来关联不同的下行接收,也可以通过不同的上行信号类型来关联不同的下行接收,也可以通过不同的上行信号的业务类型来关联不同的下行接收,还可以通过不同的上行信号所在的逻辑信道来关联不同的下行接收。
其中,第一上行信号所在的频率范围可以是包括频带(band)、带宽部分(bandwidth Part,BWP)、频率(FR)范围。
例如,在上行BWP1上发送的逻辑信道1关联下行BWP1上的下行接收1,那么只要终端在BWP1上发送逻辑信道1对应的上行信号,就隐式激活BWP1的下行接收1。在该示例中,第一上行信号即为在BWP1上发送逻辑 信道1对应的上行信号,第一下行接收即为BWP1的下行接收1。
以上为通过隐式指示的方式,由第一上行信号来触发第一下行接收的实施方式。
以下针对显式指示的方式进行说明。
可选的,所述第一上行信号中包含第一指示信息,所述第一指示信息用于触发所述第一下行接收。
上述第一指示信息可以包含第一下行接收的标识,也可以包含第一下行接收的频域配置参数(或时频域配置参数),还可以包含第一下行接收的标识和频域配置参数(或时频域配置参数)。例如,终端可以发送上行控制信令(如MAC CE、UCI等),该上行控制信令中可显式地指示该上行控制信令所触发或激活的第一下行接收。
第一指示信息触发的第一下行接收可以预先由网络侧设备配置,也可以预先由协议约定。例如,第一指示信息触发的第一下行接收可以通过RRC配置。第一指示信息触发的第一下行接收可包括一个或多个下行接收,或者第一指示信息可以触发多个第一下行接收。
可选的,所述第一指示信息用于触发N个下行接收中的M个下行接收,所述N个下行接收由网络侧设备配置或协议约定,所述第一下行接收包括所述M个下行接收,所述N和M均为大于或等于1的整数。
例如,RRC配置了N个下行接收,第一上行信号中包含第一指示信息,第一指示信息用于触发或激活N个下行接收中的M个下行接收,这M个下行接收即为上述第一下行接收,或者这M个下行接收分别为M个上述第一下行接收。
可选的,若所述M大于1,则所述方法还包括:
在发送所述第一上行信号后,接收第一下行控制信息(Downlink Control Information,DCI);
通过所述第一DCI触发所述M个下行接收中的K个下行接收,所述第一下行接收包括所述K个下行接收,所述K为大于或等于1的整数。
例如,RRC配置了N个下行接收,第一上行信号中包含第一指示信息,第一指示信息用于触发或激活N个下行接收中的M个下行接收。在下行接收 中,再通过接收DCI来动态触发或激活M个下行接收中的K个下行接收。
以上为通过显式指示的方式,由第一上行信号来触发第一下行接收的实施方式。
可选的,所述第一下行接收的频域配置参数(或时频域配置参数)由网络侧设备配置或协议约定。
以下针对第一下行接收的频域配置参数的相关实施方式进行说明。
可选的,所述第一下行接收的频域配置参数包括以下至少一项:
所述第一下行接收的频域位置;
所述第一下行接收的第一计时器,在所述第一计时器的运行期间,所述第一下行接收所在的BWP不变;
载波;
BWP;
控制资源集(control resource set,CORESET);
搜索空间组;
搜索空间;
参数集;
BWP的带宽大小;
虚拟资源块(Virtual resource block,VRB)到物理资源块(physical resource block,PRB)资源映射方式;
PRB捆绑大小;
频域资源分配类型,包括type0和type1;
发射天线或发射通道的数量;
下行多输入多输出(Multi Input Multi Output,MIMO)层数;
同时激活的下行分量载波;
支持的最大下行传输速率;
PDCCH的准共址(Quasi co-located,QCLed)类型D(Type D);
PDCCH的天线端口;
PDSCH的天线端口;
多个传输接收点(Multiple Transmit receive point,MTRP)传输;
预编码资源块组(Precoding Resource block Group,PRG)大小。
可选的,所述第一下行接收的频域位置通过比特图指示;或者,
所述第一下行接收的频域位置通过频域起始位置和持续的频域长度指示。
例如,假设PDCCH的频域资源指示方法为type0,可以基于比特图(bitmap)的形式来指示PDSCH所在的资源块组(Resource block group,RBG);又例如,假设PDCCH的频域资源指示方法为type1,可以基于start+length的形式来指示PDSCH所在的频域位置及持续的频域长度。
此外,还可以根据第一上行信号获得第一下行接收的频域位置信息。
本发明实施例中,第一下行接收对应的频域持续时间可以通过上述第一计时器来配置,在第一计时器的运行期间,第一下行接收所在的BWP不变。
以下针对第一计时器的相关实施方式进行说明。
可选的,所述第一计时器在随机接入(Random Access Channel,RACH)过程结束后启动;或者,
所述第一计时器在所述终端收到所述网络侧设备的确认消息后启动。
该实施方式中,终端可以在RACH过程结束后启动第一计时器,也可以在收到网络侧设备的确认消息后启动第一计时器。
其中,对于RACH过程,网络侧设备的确认消息可以是Msg4、MsgB(两者是通过C-RNTI加扰的PDCCH)。
可选的,所述方法还包括:
若在所述第一下行接收的第一计时器的运行期间内,所述终端发送了第二上行信号,所述第二上行信号用于触发第二下行接收,则在发送完所述第二上行信号后,启动或重启所述第一计时器;或者,
若所述终端接收到网络侧设备发送的第一消息,则启动或重启所述第一计时器,所述第一消息包含BWP切换指示。
该实施方式中,如果在某个频域配置的下行接收过程中,又有其他上行信号触发新的频域配置的下行接收,则终端可以重启该第一计时器。如果终端接收到网络侧设备发送的BWP切换指示,则终端也可以重启该第一计时器。
可选的,所述方法还包括以下至少一项:
若所述终端通过第三上行信号触发第三下行接收,则在所述第三下行接收生效之后,停止所述第一计时器;
若接收到网络侧设备发送的第二消息,且所述第二消息用于指示停止所述第一计时器,则停止所述第一计时器。
该实施方式中,如果终端在另一上行信号触发新的下行接收生效后,则终端可以停止该计时器。如果终端收到网络侧设备发送的停止计时器的指示,则终端也可以停止该计时器。
可选的,若所述第一计时器超时,所述方法还包括:
将所述第一下行接收所在的BWP切换至第一BWP;或者,
将所述第一下行接收所在的BWP去激活。
该实施方式中,在计时器超时的情况下,终端既可以将第一下行接收所在的BWP切换或变更至某个特定的BWP,也可以将第一下行接收所在的BWP去激活。第一BWP可以是休眠(dormant)BWP,非休眠(non-dormant)BWP,默认(default)BWP,第一激活(first active)BWP或任意一个BWP。
此外,终端在变更频率范围的时候,还可以将之前运行的BWP去激活计时器(BWP inactivity timer)停止,以避免该BWP inactivity timer超时,将终端退回到默认BWP。
可选的,所述方法还包括:
将所述第一上行信号所在的BWP切换至与所述第一下行接收切换后的BWP相对应的上行BWP。
该实施方式中,终端可以触发或激活或变更某一频率配置的下行接收对应的上行频率配置,也就是说,下行接收的频域变更可以反作用于上行信号的频域。例如,假设第一上行信号触发切换到下行BWP1上进行第一下行接收,那么终端也可以相应的切换到上行BWP1上。
此外,终端可以在接收到网络侧设备发送的确认消息后,再根据指示进行下行接收的频域信息变更,频域信息变更例如可以是BWP切换。
可选的,所述方法还包括:
在所述第一上行信号变更后的BWP上向网络侧设备发送第二指示信息,所述第二指示信息用于指示所述第一上行信号所在的BWP发生了切换。
该实施方式中,终端可以在变更后的上行频域配置上发送指示信息,该指示信息用于通知网络侧设备,其发生了频率变更。如,终端在某一个上行频段上发送了上行信号指示某一频域配置的下行接收后,终端再触发RACH过程,这里的第二指示信息可以是与前述的第一指示信息为同一指示信息,也可以为不同的指示信息。
如前所述,在第一上行信号与第一下行接收之间的关联关系还包括第二关联关系的情况下,第一下行接收的时域配置参数也可以由网络侧设备配置或由协议约定。以下针对第一下行接收的时域配置参数的相关实施方式进行说明。
可选的,所述第一下行接收的时域配置参数包括以下至少一项:
所述第一下行接收的时域起始时刻;
所述第一下行接收的时域监听方式;
所述第一下行接收的持续时间;
所述第一下行接收的第一周期参数,所述第一周期参数包括第一周期长度、第一周期的激活时间长度和第一周期的激活时间起始位置偏移量中的至少一项。
可选的,所述第一下行接收的时域起始时刻为以下任一项:
参考时刻,所述参考时刻为所述第一上行信号所在时域资源的结束时刻;
第一时刻,所述第一时刻为:与所述参考时刻间隔第一时间间隔的时刻;
所述参考时刻之后的第一个可用的下行时域资源的起始时刻;
第二计时器超时后的时域资源起始时刻,所述第二计时器在所述参考时刻启动;
所述第一时刻之后的第一个可用的下行时域资源的起始时刻;
所述第二计时器超时后的第一个可用的下行时域资源的起始时刻。
其中,第一下行接收的时域起始时刻可以为第一上行信号所在时域资源的结束时刻,也就是说,终端可以在第一上行信号发送后立即开始进行第一下行接收。
第一下行接收的时域起始时刻也可以为第一时刻,该第一时刻与第一上行信号所在时域资源的结束时刻之间的时间间隔为第一时间间隔,也就是说, 终端可以在第一上行信号发送后间隔第一时间间隔后开始进行第一下行接收,第一时间间隔可以由网络侧设备配置或协议约定。进一步的,网络侧设备可以配置多个第一时间间隔参数,终端可在第一上行信号中携带一个关于第一时间间隔的指示。例如,所述第一时间间隔可以等于PDSCH与其HARQ-ACK反馈的时间间隔K1,该K1的取值集合是网络侧设备预先配置好的;或所述第一时间间隔可以等于发送波束失败恢复请求(BFRQ)与接收到波束失败恢复响应(BFRR)之间的时间间隔;或所述第一时间间隔可以等于发送RACH与接收到RAR响应之间的时间间隔。
第一下行接收的时域起始时刻也可以为第一上行信号所在时域资源的结束时刻之后的第一个可用的下行时域资源的起始时刻,也就是说,终端可以在第一上行信号发送之后的第一个可用的下行时域资源开始进行第一下行接收,下行时域资源可以是下行子帧(DL subframe)、DL slot、包含CORESET的DL slot等。
第一下行接收的时域起始时刻也可以为第二计时器超时后的时域资源起始时刻,该第二计时器触发于第一上行信号所在时域资源的结束时刻,也就是说,终端在发送第一上行信号之后,立即触发第二计时器,并在该第二计时器超时后开始进行第一下行接收。
第一下行接收的时域起始时刻也可以为上述第一时刻之后的第一个可用的下行时域资源的起始时刻,也就是说,终端可以在第一上行信号发送之后,在第一时间间隔后的的第一个可用的下行时域资源开始进行第一下行接收。
第一下行接收的时域起始时刻也可以为上述第二计时器超时后的第一个可用的下行时域资源的起始时刻,也就是说,终端在发送第一上行信号之后,立即触发第二计时器,并在该第二计时器超时后的第一个可以的下行时域资源开始进行第一下行接收。
上述第一时间间隔的取值,可以是终端可以根据能力上报第一时间间隔大小,或者,协议可以根据不同子载波间隔(subcarrier space,SCS)等级约定第一时间间隔的大小,又或者,终端可以上报第一时间间隔,对第一时间间隔的取值具体不做限定。
此外,除了上述的时域起始时刻之外,还可以在第一上行信号中包含起 始时刻的位置信息(如,给定一个偏移量offset),根据起始时刻信息来确定第一下行接收的时域起始时刻。
可选的,所述第一下行接收的持续时间包括第一时长和第三计时器时长中的任一项。
该实施方式中,可以通过第一时长来表示第一下行接收的持续时间,第一时长可由网络侧设备配置或由协议约定。也可以通过第三计时器时长来表示第一下行接收的持续时间,该第三计时器可由网络侧设备配置或协议约定。
可选的,所述第一下行接收的时域监听方式包括以下任一项:
在所述第一下行接收的持续时间内监听所述第一下行接收;
在每个所述第一周期的激活时间内监听所述第一下行接收;
在所述第一下行接收的持续时间内的每个所述第一周期的激活时间内监听所述第一下行接收。
其中,如果配置了第一下行接收的持续时间,则终端可以在第一下行接收的持续时间内监听第一下行接收,或者说,终端可以在第一下行接收的持续时间内不间断地进行第一下行接收。例如,如果第一下行接收的持续时间为第一时长,则终端可以在第一时长内监听第一下行接收。又例如,如果第一下行接收的持续时间为第三计时器时长,则终端可以在第三计时器时长内监听第一下行接收,或者说,终端可以在第三计时器时长内不间断地进行第一下行接收。在第三计时器到期后,终端可以退出由第一上行信号触发的第一下行接收,如果终端在第三计时器时长内收到下行调度信息和/或下行数据发送信息,则终端可以重启该第三计时器。
终端还可以采用非连续接收的方式来监听第一下行接收,即采用周期性的时域监听方式监听第一下行接收。例如,终端可以在每个第一周期的激活时间内监听第一下行接收。第一周期包括了激活时间和非激活时间,终端只需要在激活时间内接收或监听第一下行接收,而不需要在非激活时间内接收或监听第一下行接收。本实施例中给出的非连续接收可进一步实现终端节能,为优选的第一下行接收的时域监听方式。所述第一周期可以是长DRX周期或短DRX周期。若配置所述第一周期为DRX周期,则DRX周期的相关timer及参数可进一步应用到下行接收当中。例如,DRX周期中的DRX非激活计 时器(DRX-inactivitytimer)。
上述两种时域监听方式还可以结合,例如,终端可以在第一下行接收的持续时间内的每个第一周期的激活时间内监听第一下行接收。该方式中,若第一下行接收的持续时间为第一时长,则所述监听方式为:终端可以在第一下行接收的第一时长内的每个第一周期的激活时间内监听第一下行接收;若第一下行接收的持续时间为第三计时器时长,则所述监听方式为:终端可以在第一下行接收的第三计时器运行期间内的每个第一周期的激活时间内监听第一下行接收。进一步的,当第一下行接收的持续时间结束后,终端可以不再采用该周期性的下行接收方式。
此外,还可以通过第一上行信号携带上述第一下行接收的持续时间配置。
可选的,所述方法还包括:
若连续L个所述第一周期的激活时间内未接收到所述第一下行接收中的Q个下行接收,则停止监听所述第一下行接收,其中,1≤Q≤L,所述L、Q均为大于或等于1的整数。
该实施方式中,针对终端周期性地第一下行接收的情况,指的是采用非连续接收的时域监听方式,如果终端连续L个周期的激活时间内未接收到下行调度和/或下行数据,则终端可退出该第一下行接收,或者说,终端可退出该第一上行信号触发的第一下行接收。
例如,终端在每个第一周期的激活时间内监听第一下行接收,如果终端连续3个第一周期的激活时间内未接收到第一下行接收中的2个下行接收,则停止监听第一下行接收。又例如,终端在第一下行接收的持续时间内的每个所述第一周期的激活时间内监听所述第一下行接收,如果终端在第一下行接收的持续时间内的3个第一周期的激活时间内未接收到第一下行接收中的1个下行接收,则停止监听第一下行接收。
该实施方式能够实现终端节能。
可选的,所述第一周期的激活时间通过比特图的方法来指示。
对于上述的第一周期的激活时间,也可以通过持续时间指示。
例如,“11000”,表示第一周期,其中每个比特代表2ms,则整个第一周期的长度为10ms,且前2个为1的比特表示第一周期的激活时间及激活时间 的长度为4ms,后3个比特表示第一周期的非激活时间,长度为6ms。
可选的,若所述第一下行接收中包含PDCCH的接收,则所述第一下行接收的时域配置参数包括以下至少一项:
PDCCH的盲检测参数;
PDCCH的监听周期;
PDCCH的监听偏移量;
PDCCH的监听持续时间;
CORESET;
搜索空间组;
搜索空间;
DCI格式;
无线网络临时标识(Radio Network Tempory Identity,RNTI);
PDCCH与所述PDCCH调度的PDSCH之间的时间间隔;
PDSCH与所述PDSCH的混合自动重传请求应答(Hybrid automatic repeat request acknowledgement,HARQ-ACK)反馈之间的时间间隔;
PDCCH与所述PDCCH调度的PUSCH之间的时间间隔;
PDSCH的处理时延;
PUSCH的准备时延。
其中,上述PDCCH相关的时间间隔可以包括K0、K1、K2,K0、K1、K2都是以时隙(slot)为单位的。其中,K0是DCI(或者DCI所对应的PDCCH)所在的slot与其所调度的PDSCH所在的slot之间的时间间隔,K2是DCI(或者DCI所对应的PDCCH)所在的slot与其所调度的PUSCH所在的slot之间的时间间隔。例如,K0=0表示PDCCH与其调度的PDSCH在一个slot内。K1是PDSCH所在的slot与其HARQ-ACK反馈所在的slot之间的时间间隔,就是偏移了几个slot。
PDSCH的处理时延指的是PDCCH调度PDSCH,从接收完PDSCH到准备好发送该PDSCH对应的HARQ-ACK反馈的时间间隔。PDSCH的处理时延跟K1不一样,K1是确定了在哪个slot上进行HARQ-ACK反馈。但PDSCH的处理时延是指终端接收完PDSCH后,还需要处理时延才能准备好反馈 HARQ。也就是说,K1必须大于等于PDSCH的处理时延。
PUSCH的准备时延指的是接收完PDCCH后,终端需要一段时间间隔来准备该PDCCH调度的PUSCH的发送。PUSCH的准备时延与K2不一样,K2是确定了在哪个slot上进行PUSCH发送。但PUSCH的准备时延是指终端接收完PDCCH后,还需要准备时延才能准备好发送PUSCH。也就是说,K2必须大于等于PUSCH的处理时延。
需要说明的是,上述第一下行接收的时域配置参数中的任意一项或多项或全部可以与其他的时域配置参数一起通过网络侧配置或协议约定,例如:上述第一下行接收的时域配置参数中的任意一项或多项或全部可以与第一下行接收的时域起始时刻、时域监听方式、持续时间、第一周期参数中的任意一项或多项或全部一起配置。此外,上述第一下行接收的时域配置参数中的任意一项或多项或全部可以与其他的时域配置参数一起被通过第一上行信号携带。
可选的,所述终端、所述终端的特定媒体接入控制(Media Access Control,MAC)实体、所述终端的特定业务类型或所述终端的特定频率范围配置有由所述第一上行信号触发所述第一下行接收的机制。
或者说,由所述第一上行信号触发所述第一下行接收的机制可配置给特定终端使用,也可以配置给特定的MAC实体(如SCG的MAC实体、MCG的MAC实体)使用,还可以仅配置给特定的业务类型(如特定的逻辑信道(如逻辑信道1))使用,还可以仅配置给特定的频率范围(如小区1、BWP1)使用。所述频域范围可以是BWP或服务小区或分量载波。此外,还可以配置给每个业务类型,每个业务类型的所述上行信号与下行接收之间的关联关系,指的是第一上行信号触发所述第一下行接收的机制的相关配置参数可以相同或不同。还可以配置给终端的所有BWP使用,每个BWP的所述上行信号与下行接收之间的关联关系,指的是第一上行信号触发所述第一下行接收的机制的相关配置参数可以相同或不同。
该实施方式中,可以根据具体的需求,将第一上行信号触发第一下行接收的机制进行灵活的配置,能够提高终端下行接收的灵活度。
可选的,所述方法还包括:
接收网络侧设备发送的第三消息,所述第三消息用于指示所述终端停止接收所述第一下行接收中的至少一个下行接收。
该实施方式中,网络侧设备可配置由第一上行信号触发的第一下行接收的停止机制,例如,网络侧设备配置一个停止命令(如MAC CE command、DCI),用于停止终端当前正在进行的第一下行接收中的任意一个或多个下行接收或全部的下行接收。终端在接收到网络侧设备发送的第一消息后,可根据第三消息的指示,停止第一下行接收中的任意一个或多个下行接收或全部的下行接收。
该实施方式中,终端能够根据网络侧设备的指示停止由上行信号触发的下行接收,有利于提高通信系统的工作性能和效率。
可选的,所述方法还包括:
接收网络侧设备发送的第四消息,所述第四消息用于指示所述终端将所述第一上行接收的接收周期由所述第一周期切换至第二周期;所述第二周期与所述第一周期在周期长度、周期的激活时间长度和周期的激活时间起始位置偏移量中的至少一项上不同。
该实施方式中,网络侧设备可配置由第一上行信号触发的第一下行接收的双周期切换机制,该双周期切换机制类似于短DRX周期(short DRX cycle)和长DRX周期(long DRX cycle)切换机制。例如,网络侧设备可以下发一个切换命令(如MAC CE command、DCI),用于指示终端对第一下行接收的非连续接收的周期进行切换。
终端在接收到网络侧设备发送的第四消息后,可根据第四消息的指示,将第一下行接收的周期由第一周期切换至第二周期。这样,能够提高第一下行接收的灵活性,并有利于提高通信系统的性能。
可选的,若在所述第一下行接收的持续时间内,所述终端发送了第二上行信号,所述第二上行信号用于触发第二下行接收,所述方法还包括:
并行进行所述第一下行接收和所述第二下行接收;或者,
仅进行所述第二下行接收。
该实施方式中,若在第一上行信号触发的第一下行接收的持续时间内(即第一下行接收未结束),终端又发送了另一上行信号(即第二上行信号)用于 触发第二下行接收,对于这种情况下的下行接收时间配置可包括以下任意一种。
其一,终端并行进行多个上行信号触发的下行接收,或者说,终端对第一下行接收和第二下行接收进行并行监听。每次上行信号都会触发一个下行接收的监听配置,例如,每次上行信号都会触发新的计时器,终端需要满足任意一个上行信号所触发的下行接收的监听配置。
其二,终端仅进行某一个上行信号触发的下行接收,或者说,终端可仅维护某一个下行接收的监听配置。终端每发送新的上行信号,可以停止当前正在进行的下行接收,并开始在新的下行接收的监听配置上进行新的下行接收。当然,也不排除终端每发送新的上行信号,仍然继续当前正在进行的下行接收。
可选的,在并行进行所述第一下行接收和所述第二下行接收的情况下,若所述第一下行接收与所述第二下行接收发生一个或多个资源冲突,所述方法还包括:
在冲突的资源上,进行所述第二下行接收,并放弃所述第一下行接收;或者,
在冲突的资源上,进行所述第一下行接收,并放弃所述第二下行接收;或者,
在冲突的资源上,根据所述第一上行信号和所述第二上行信号的类型、所在的逻辑信道、业务优先级中的至少一项,从所述第一下行接收和所述第二下行接收中确定所要进行的下行接收。
其中,所述资源冲突包括时域资源冲突和频域资源冲突中的至少一项。
该实施方式还可以采用如下表达:
在并行进行所述第一下行接收和所述第二下行接收的情况下,若所述第一下行接收与所述第二下行接收发生一个或多个资源冲突,所述方法还包括:
接收所述第二下行接收中与所述第一下行接收相冲突的下行信号,并放弃接收所述第一下行接收中与所述第二下行接收相冲突的下行信号;或者,
接收所述第一下行接收中与所述第二下行接收相冲突的下行信号,并放弃接收所述第二下行接收中与所述第一下行接收相冲突的下行信号;或者,
根据所述第一上行信号的类型、所在的逻辑信道、业务优先级中的至少一项,以及所述第二上行信号的类型、所在的逻辑信道、业务优先级中的至少一项,从所述第一下行接收与所述第二下行接收相冲突的下行信号中,确定接收的下行信号。
该实施方式中,当两个下行接收发生一个或多个资源冲突时,终端可以优先接收较晚触发的下行接收的下行信号,并放弃接收较早触发的下行接收的下行信号;终端也可以优先接收较早触发的下行接收的下行信号,并放弃接收较晚触发的下行接收的下行信号;终端还可以根据上行信号的类型、所在的逻辑信道、业务优先级中的至少一项,确定想要接收的下行信号,或者确定想要放弃接收的下行信号。
该实施方式中,资源冲突可以是仅时域资源冲突,也可以是仅频域资源冲突,还可以是时频域资源同时冲突。资源冲突指两个或多个下行接收所在的时频域资源存在部分的重叠或全部重叠。
需要说明的是,本发明实施例中的多种可选的实施方式,彼此可以相互结合实现,也可以单独实现,对此本发明实施例不作限定。
为了更好地理解本发明实施例的技术方案,以下提供两个具体的实施例。
实施例一
该实施例中,上行信号触发下行接收的频域信息变更,该下行接收的频域配置参数和时域配置参数均由该上行信号显式指示。网络侧设备配置由调度请求SR触发下行接收的频域信息为BWP的变更。
示例1:如图4所示,SR1中携带下行接收的BWP ID=2指示以及下行接收时域配置参数指示。
网络侧设备在接收到该SR1后,给终端发送确认消息,如DCI。网络侧设备配置BWP1为上行信号触发下行接收的频域信息变更的频域配置持续时间计时器(timer)对应的默认BWP(default BWP)。终端收到该确认消息后,将当前下行BWP切换到BWP2上,进行下行接收过程。下行接收的频域配置持续时间timer类似于BWP非激活计时器(BWP-inactivity timer),当timer到期后,终端可退回到默认BWP上进行正常的下行接收。
示例2:如图5所示,网络侧设备配置了上下行频域的关联关系。
终端通过发送上行SR1触发下行接收以及该下行接收的BWP变更指示,例如,变更下行BWP到BWP2上,该上行BWP也可以随之变更到BWP2上。终端可在上行BWP2上发送确认变更消息,该消息可以为RACH,来通知网络侧设备下行BWP变更到BWP2上。然后进行该SR1所触发的下行接收过程。
如果在该下行接收过程中,终端又通过上行SR2触发了另一下行接收及BWP变更指示,同样的,终端也可以在变更的BWP上发送确认变更消息,即,终端可以进行上述确认过程。在确认过程后,终端可以停止当前的SR1触发的下行接收及其对应的频域配置持续时间timer。当SR2触发的下行接收生效后,终端可以切换到下行BWP1上进行新的下行接收过程,并可以重启频域配置持续时间timer,直到timer到期后,终端可退回到默认BWP上进行原来的下行接收过程。
该实施例中,对于下行接收过程的时域配置信息,可以根据以下的三个具体的实施例来确定。
实施例a
如图6至图8所示,该实施例中,网络侧设备预先配置上行信号与下行接收之间的关联关系,通过隐式指示完成由上行信号触发下行接收的过程。上行信号触发下行接收机制配置给每个逻辑信道。上行信号为可配置调度(CG)的PUSCH触发,下行接收的时域监听方式采用短DRX周期的非连续接收方式,网络配置相关下行接收的起始时刻的第一定时器为等待监听timer与下行接收的持续时间=延迟预算(delay budget)的长度;该套等待监听timer与DRX配置的与DRX中HARQ过程相关的重传timer可同时使用;协议约定一个MAC CE comand强制停止当前由上行信号触发的所有进行中的下行接收。
网络侧设备预先配置好上行信号与下行接收之间的关联关系。如,逻辑信道1映射到CG1的PUSCH上,并关联下行接收1和下行接收2;逻辑信道2映射到CG2的PUSCH上,并关联下行接收3。
下行接收1和下行接收2对应的配置信息基本相同:相同的下行接收时域起始时刻,下行接收监听配置(采用短DRX周期,一套下行接收等待监听 timer与持续时间delay budget)。其中,两者的下行接收类型不同,下行接收1为一个半持续的SPS PDSCH的接收。下行接收2为通过C-RNTI加扰的DCI format 1-2和0-2。
其中,等待监听timer来确定下行接收的时域起始时刻。下行接收的持续时间timer(有效时长)设置为delay budget,到期后立刻停止由本次上行CG。下行接收相关等待监听timer、持续时间、DRX中的下行DRX-HARQ往返时延计时器(DRX-HARQ-RTT-TimerDL)和下行DRX重传计时器(DRX-RetransmissionTimerDL)可共存。
本实施例中,在未收到上行信号触发的下行接收之前,终端就被配置有长DRX周期。
终端发送上行CG1的PUSCH后,立即触发“等待监听计时器”,该计时器到期后,立即启动短DRX周期,进行下行调度(下行接收2)和SPS下行数据的接收(下行接收1)。本实施例中CG1的下行接收使用短DRX周期相关的配置:例如X持续计时器(DRX-ondurationtimer DR)和DRX非激活计时器(DRX-inactivitytimer)等。
下行接收3对应的配置信息为周期性的CSI-RS。与下行接收1和下行接收2相同的一套下行接收等待监听timer与持续时间delay budget。此外,按照配置的监听周期(该周期是新定义的周期配置,非DRX周期)在每个周期的激活时间内进行下行接收:以两个slot为单位通过比特图指示激活时间位置及持续长度“11000”,表示前4个slot为激活时间,后6个slot为非激活时间。
终端原本被配置了长DRX周期。终端发送上行CG1 PUSCH(逻辑信道1的数据)和/或CG2 PUSCH(逻辑信道2的数据)给网络侧设备,结合本方案中相关配置,给出由上行信号触发下行接收方案的典型示例:
示例1:如图6所示,只有一个CG1 PUSCH触发下行接收过程,即单独的CG1 PUSCH触发下行接收的配置。
图6中,虚线箭头表示下行接收1:SPS PDSCH接收;实线箭头表示下行接收2:PDCCH调度。
示例2:如图7所示,若在上行CG1触发的下行接收的持续时间内(即 本次下行接收未结束前),又发送另一个上行CG2,此时选用多个上行信号触发的下行接收监听配置并行的方法;网络侧设备配置MAC CE信令(MAC CE command)来停止当前正在进行的下行接收。即,多个CG PUSCH重叠,多套下行接收的配置都需要满足,且配置了MAC CE command。
图7中,虚线箭头表示下行接收1:SPS PDSCH接收;实线箭头表示下行接收2:PDCCH调度;点划线箭头表示下行接收3:CSI-RS。
示例3:如图8所示,若在上行CG1信号触发的下行接收的持续时间内(即本次下行接收未结束前),又发送另一个上行CG2,此时仅选用一个上行信号触发的下行接收监听配置的方法,网络侧设备未配置MAC CE command信令。即,多个CG PUSCH重叠,停止上一个下行接收,开启新的下行接收,不配置MAC CE command。
图8中,虚线箭头表示下行接收1:SPS PDSCH接收;实线箭头表示下行接收2:PDCCH调度;点划线箭头表示下行接收3:CSI-RS。
实施例b
本实施例中终端在接收到上行信号触发的下行接收之前未被配置DRX机制。终端发送MAC CE给网络侧设备,在MAC CE中携带所激活的下行接收的ID。
示例1:如图9所示,RRC配5个下行接收,并将5个上行接收进行编号。终端发送上行控制信令MAC CE显式激活其中1个下行接收:下行接收2。
示例2:如图10所示,RRC配5个下行接收,并将5个上行接收进行编号。终端发送上行控制信令MAC CE显式激活其中3个下行接收:下行接收2、3、4。在启动下行接收后,再通过DCI来动态指示激活3个下行接收中的1个下行接收:下行接收2。
其中,下行接收2的配置信息为:下行接收类型为C-RNTI加扰的组公共PDCCH(group common PDCCH),一套下行接收等待监听N与持续时间计时器(timer)。终端发送上行SR结束后,在N个符号(symbol)或N ms或N个slot之后,开启持续时间timer并开始下行调度的接收。如果N的单位为symbol或slot,N的取值与SCS的配置有关。本例中设定N=5ms。持续 时间timer内收到下行调度PDCCH后重启该timer,该timer到期后,退出本次下行接收。
实施例c
该实施例重点给出上行信号触发下行接收的方法:通过上行信令UCI触发并单独配置下行接收,该上行信号触发下行接收机制配置给特定BWP1。
本实施例中终端在接收到上行信号触发的下行接收之前被配置了长DRX周期。终端在BWP1上发送上行信令UCI,并在UCI中显式的携带其所触发的下行接收的配置信息:下行接收的时域起始时刻,下行接收的监听配置,下行接收的持续时间,下行接收的类型。
如图11所示,下行接收的时域起始时刻为:UCI之后的第一个包含CORESET的DL slot开始。下行接收的监听配置为:短DRX周期,周期为2ms,偏移为0。下行接收的类型为周期性的PTRS。下行接收的持续时间为10ms。
实施例二
该实施例中,上行信号触发某种频域配置的下行接收。
上行信号触发某种频域配置的下行接收,与上行触发某种时域配置的下行接收的实施例类似,其不同点在于配置的是下行接收的频域信息。为避免重复,对此不作赘述。
以上的实施例仅为示例性说明,并不对本发明实施例进行限定。
本发明实施例中,终端可通过发送上行信号来触发相应的下行接收,这样,不仅能够节省终端的资源消耗,有利于终端节能,还能够提高终端下行接收的灵活度与高效性。本发明实施例可适用于但不限于XR应用场景,当本发明实施例适用于XR应用场景时,能够更好地满足XR终端的业务需求,更好地满足XR用户的需求。
图12是本发明实施例提供的下行接收触发方法的流程图。如图12所示,下行接收触发方法,应用于网络侧设备,该方法包括以下步骤:
步骤301:接收终端发送的第一上行信号,所述第一上行信号用于触发第一下行接收,所述第一上行信号与所述第一下行接收之间的关联关系包括第一关联关系,所述第一关联关系为所述第一上行信号与所述第一下行接收在 频域上的关联关系。
可选的,所述关联关系由所述网络侧设备配置或协议约定。
可选的,所述第一上行信号中包括第一指示信息,所述第一指示信息用于触发N个下行接收中的M个第一下行接收,所述N个下行接收由所述网络侧设备配置或协议约定,所述N和M均为大于或等于1的整数。
可选的,所述第一指示信息包含所述第一下行接收的标识和所述第一下行接收的频域配置参数的至少一项。
可选的,所述第一下行接收的频域配置参数由网络侧设备配置或协议约定。
可选的,所述第一下行接收的频域配置参数包括以下至少一项:
所述第一下行接收的频域位置;
所述第一下行接收的第一计时器,在所述第一计时器的运行期间,所述第一下行接收所在的BWP不变;
载波;
带宽部分BWP;
控制资源集CORESET;
搜索空间组;
搜索空间;
参数集;
BWP的带宽大小;
虚拟资源块VRB到物理资源块PRB资源映射方式;
PRB捆绑大小;
频域资源分配类型;
发射天线或发射通道的数量;
下行多输入多输出MIMO层数;
同时激活的下行分量载波;
支持的最大下行传输速率;
物理下行控制信道PDCCH的准共址类型D;
PDCCH的天线端口;
物理下行共享信道PDSCH的天线端口;
多个传输接收点MTRP传输;
预编码资源块组PRG大小。
可选的,所述第一下行接收的频域位置通过比特图指示;或者,
所述第一下行接收的频域位置通过频域起始位置和持续的频域长度指示。
可选的,所述第一计时器在随机接入RACH过程结束后启动;或者,
所述第一计时器在所述终端收到所述网络侧设备的确认消息后启动。
可选的,所述方法还包括:
向所述终端发送第一消息,所述第一消息包含BWP切换指示。
可选的,所述方法还包括:
向所述终端发送第二消息,所述第二消息用于指示停止所述第一计时器。
可选的,所述方法还包括:
接收所述终端发送的第二指示信息,所述第二指示信息用于指示上行BWP发生了切换。
可选的,所述关联关系还包括第二关联关系,所述第二关联关系为所述第一上行信号与所述第一下行接收在时域上的关联关系。
可选的,所述关联关系配置给特定终端、特定媒体接入控制MAC实体、特定业务类型和特定频率范围中的至少一项。
可选的,所述第一上行信号的类型包括上行信道的类型和上行信道上承载的信号类型中的至少一项。
可选的,所述第一下行接收包括下行调度信息接收、下行信号接收、下行数据信息接收和下行信道监听中的至少一项。
可选的,所述方法还包括:
向所述终端发送第三消息,所述第三消息用于指示所述终端停止接收所述第一下行接收中的至少一个下行接收。
需要说明的是,本发明实施例作为前述实施例对应的网络侧设备的实施例,其具体的实施方式可以参见前述实施例的相关说明,并能够达到相同的有益效果,为了避免重复说明,此处不再赘述。
图13是本发明实施例提供的一种终端的结构图,如图13所示,终端400 包括:
第一发送模块401,用于发送第一上行信号,所述第一上行信号用于触发第一下行接收,所述第一上行信号与所述第一下行接收之间的关联关系包括第一关联关系,所述第一关联关系为所述第一上行信号与所述第一下行接收在频域上的关联关系。
可选的,所述关联关系由网络侧设备配置或协议约定。
可选的,终端400还包括:
第一触发模块,用于根据所述第一上行信号所在的频率范围、所述第一上行信号的类型、所述第一上行信号所在的逻辑信道和所述第一上行信号的业务优先级中的至少一项,触发与所述第一上行信号相关联的所述第一下行接收。
可选的,所述第一上行信号包括第一指示信息,所述第一指示信息用于触发N个下行接收中的M个第一下行接收,所述N个下行接收由网络侧设备配置或协议约定,所述N和M均为大于或等于1的整数。
可选的,若所述M大于1,则终端400还包括:
第一接收模块,用于在发送所述第一上行信号后,接收第一下行控制信息DCI;
第二触发模块,用于通过所述第一DCI触发所述M个第一下行接收中的K个第一下行接收,所述K为大于或等于1的整数。
可选的,所述第一指示信息包含所述第一下行接收的标识和所述第一下行接收的频域配置参数的至少一项。
可选的,所述第一下行接收的频域配置参数由网络侧设备配置或协议约定。
可选的,所述第一下行接收的频域配置参数包括以下至少一项:
所述第一下行接收的频域位置;
所述第一下行接收的第一计时器,在所述第一计时器的运行期间,所述第一下行接收所在的BWP不变;
载波;
带宽部分BWP;
控制资源集CORESET;
搜索空间组;
搜索空间;
参数集;
BWP的带宽大小;
虚拟资源块VRB到物理资源块PRB资源映射方式;
PRB捆绑大小;
频域资源分配类型;
发射天线或发射通道的数量;
下行多输入多输出MIMO层数;
同时激活的下行分量载波;
支持的最大下行传输速率;
物理下行控制信道PDCCH的准共址类型D;
PDCCH的天线端口;
物理下行共享信道PDSCH的天线端口;
多个传输接收点MTRP传输;
预编码资源块组PRG大小。
可选的,所述第一下行接收的频域位置通过比特图指示;或者,
所述第一下行接收的频域位置通过频域起始位置和持续的频域长度指示。
可选的,所述第一计时器在随机接入RACH过程结束后启动;或者,
所述第一计时器在所述终端收到所述网络侧设备的确认消息后启动。
可选的,终端400还包括:
第一启动模块,用于若在所述第一下行接收的第一计时器的运行期间内,所述终端发送了第二上行信号,所述第二上行信号用于触发第二下行接收,则在发送完所述第二上行信号后,启动或重启所述第一计时器;或者,
第二启动模块,用于若所述终端接收到网络侧设备发送的第一消息,则启动或重启所述第一计时器,所述第一消息包含BWP切换指示。
可选的,终端400还包括停止模块,所述停止模块用于以下至少一项:
若所述终端通过第三上行信号触发第三下行接收,则在所述第三下行接 收生效之后,停止所述第一计时器;
若接收到网络侧设备发送的第二消息,且所述第二消息用于指示停止所述第一计时器,则停止所述第一计时器。
可选的,若所述第一计时器超时,终端400还包括:
第一切换模块,用于将所述第一下行接收所在的BWP切换至第一BWP;或者,
去激活模块,用于将所述第一下行接收所在的BWP去激活。
可选的,终端400还包括:
第二切换模块,用于将所述第一上行信号所在的BWP切换至与所述第一下行接收切换后的BWP相对应的上行BWP。
可选的,终端400还包括:
第二发送模块,用于在所述第一上行信号切换后的BWP上向网络侧设备发送第二指示信息,所述第二指示信息用于指示上行BWP发生了切换。
可选的,所述关联关系还包括第二关联关系,所述第二关联关系为所述第一上行信号与所述第一下行接收在时域上的关联关系。
可选的,所述关联关系配置给特定终端、特定媒体接入控制MAC实体、特定业务类型和特定频率范围中的至少一项。
可选的,所述第一上行信号的类型包括上行信道的类型和上行信道上承载的信号类型中的至少一项。
可选的,所述第一下行接收包括下行调度信息接收、下行信号接收、下行数据信息接收和下行信道监听中的至少一项。
可选的,终端400还包括:
第二接收模块,用于接收网络侧设备发送的第三消息,所述第三消息用于指示所述终端停止接收所述第一下行接收中的至少一个下行接收。
可选的,若在所述第一下行接收的持续时间内,所述终端发送了第二上行信号,所述第二上行信号用于触发第二下行接收,终端400还包括:
第一下行接收模块,用于并行进行所述第一下行接收和所述第二下行接收;或者,
第二下行接收模块,用于仅进行所述第二下行接收。
可选的,在并行进行所述第一下行接收和所述第二下行接收的情况下,若所述第一下行接收与所述第二下行接收发生一个或多个资源冲突,终端400还包括:
第三下行接收模块,用于在冲突的资源上,进行所述第二下行接收,并放弃所述第一下行接收;或者,
第四下行接收模块,用于在冲突的资源上,进行所述第一下行接收,并放弃所述第二下行接收;或者,
确定模块,用于在冲突的资源上,根据所述第一上行信号和所述第二上行信号的类型、所在的逻辑信道、业务优先级中的至少一项,从所述第一下行接收和所述第二下行接收中确定所要进行的下行接收。
可选的,所述第一下行接收包含多个下行接收,每个下行接收对应一种下行接收类型。
需要说明的是,本发明实施例中上述终端400可以是方法实施例中任意实施方式的终端,方法实施例中终端的任意实施方式都可以被本发明实施例中的上述终端400所实现,并达到相同的有益效果,为避免重复,此处不再赘述。
图12是本发明实施例提供的一种网络侧设备的结构图,如图12所示,网络侧设备500包括:
第一接收模块501,用于接收终端发送的第一上行信号,所述第一上行信号用于触发第一下行接收,所述第一上行信号与所述第一下行接收之间的关联关系包括第一关联关系,所述第一关联关系为所述第一上行信号与所述第一下行接收在频域上的关联关系。
可选的,所述关联关系由所述网络侧设备配置或协议约定。
可选的,所述第一上行信号中包括第一指示信息,所述第一指示信息用于触发N个下行接收中的M个第一下行接收,所述N个下行接收由所述网络侧设备配置或协议约定,所述N和M均为大于或等于1的整数。
可选的,所述第一指示信息包含所述第一下行接收的标识和所述第一下行接收的频域配置参数的至少一项。
可选的,所述第一下行接收的频域配置参数由网络侧设备配置或协议约 定。
可选的,所述第一下行接收的频域配置参数包括以下至少一项:
所述第一下行接收的频域位置;
所述第一下行接收的第一计时器,在所述第一计时器的运行期间,所述第一下行接收所在的BWP不变;
载波;
带宽部分BWP;
控制资源集CORESET;
搜索空间组;
搜索空间;
参数集;
BWP的带宽大小;
虚拟资源块VRB到物理资源块PRB资源映射方式;
PRB捆绑大小;
频域资源分配类型;
发射天线或发射通道的数量;
下行多输入多输出MIMO层数;
同时激活的下行分量载波;
支持的最大下行传输速率;
物理下行控制信道PDCCH的准共址类型D;
PDCCH的天线端口;
物理下行共享信道PDSCH的天线端口;
多个传输接收点MTRP传输;
预编码资源块组PRG大小。
可选的,所述第一下行接收的频域位置通过比特图指示;或者,
所述第一下行接收的频域位置通过频域起始位置和持续的频域长度指示。
可选的,所述第一计时器在随机接入RACH过程结束后启动;或者,
所述第一计时器在所述终端收到所述网络侧设备的确认消息后启动。
可选的,网络侧设备500还包括:
第一发送模块,用于向所述终端发送第一消息,所述第一消息包含BWP切换指示。
可选的,网络侧设备500还包括:
第二发送模块,用于向所述终端发送第二消息,所述第二消息用于指示停止所述第一计时器。
可选的,网络侧设备500还包括:
第二接收模块,用于接收所述终端发送的第二指示信息,所述第二指示信息用于指示上行BWP发生了切换。
可选的,所述关联关系还包括第二关联关系,所述第二关联关系为所述第一上行信号与所述第一下行接收在时域上的关联关系。
可选的,所述关联关系配置给特定终端、特定媒体接入控制MAC实体、特定业务类型和特定频率范围中的至少一项。
可选的,所述第一上行信号的类型包括上行信道的类型和上行信道上承载的信号类型中的至少一项。
可选的,所述第一下行接收包括下行调度信息接收、下行信号接收、下行数据信息接收和下行信道监听中的至少一项。
可选的,网络侧设备500还包括:
第三发送模块,用于向所述终端发送第三消息,所述第三消息用于指示所述终端停止接收所述第一下行接收中的至少一个下行接收。
需要说明的是,本发明实施例中上述网络侧设备500可以是方法实施例中任意实施方式的网络侧设备,方法实施例中网络侧设备的任意实施方式都可以被本发明实施例中的上述网络侧设备500所实现,并达到相同的有益效果,为避免重复,此处不再赘述。
图14为实现本发明各个实施例的一种终端的硬件结构示意图,该终端900包括但不限于:射频单元901、网络模块902、音频输出单元903、输入单元904、传感器905、显示单元906、用户输入单元907、接口单元908、存储器909、处理器910、以及电源911等部件。本领域技术人员可以理解,图14中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终 端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元901用于:
发送第一上行信号,所述第一上行信号用于触发第一下行接收,所述第一上行信号与所述第一下行接收之间的关联关系包括第一关联关系,所述第一关联关系为所述第一上行信号与所述第一下行接收在频域上的关联关系。
可选的,所述关联关系由网络侧设备配置或协议约定。
可选的,射频单元901或处理器910还用于:
根据所述第一上行信号所在的频率范围、所述第一上行信号的类型、所述第一上行信号所在的逻辑信道和所述第一上行信号的业务优先级中的至少一项,触发与所述第一上行信号相关联的所述第一下行接收。
可选的,所述第一上行信号包括第一指示信息,所述第一指示信息用于触发N个下行接收中的M个第一下行接收,所述N个下行接收由网络侧设备配置或协议约定,所述N和M均为大于或等于1的整数。
可选的,若所述M大于1,射频单元901还用于:
在发送所述第一上行信号后,接收第一下行控制信息DCI;
射频单元901或处理器910还用于:
通过所述第一DCI触发所述M个第一下行接收中的K个第一下行接收,所述K为大于或等于1的整数。
可选的,所述第一指示信息包含所述第一下行接收的标识和所述第一下行接收的频域配置参数的至少一项。
可选的,所述第一下行接收的频域配置参数由网络侧设备配置或协议约定。
可选的,所述第一下行接收的频域配置参数包括以下至少一项:
所述第一下行接收的频域位置;
所述第一下行接收的第一计时器,在所述第一计时器的运行期间,所述第一下行接收所在的BWP不变;
载波;
带宽部分BWP;
控制资源集CORESET;
搜索空间组;
搜索空间;
参数集;
BWP的带宽大小;
虚拟资源块VRB到物理资源块PRB资源映射方式;
PRB捆绑大小;
频域资源分配类型;
发射天线或发射通道的数量;
下行多输入多输出MIMO层数;
同时激活的下行分量载波;
支持的最大下行传输速率;
物理下行控制信道PDCCH的准共址类型D;
PDCCH的天线端口;
物理下行共享信道PDSCH的天线端口;
多个传输接收点MTRP传输;
预编码资源块组PRG大小。
可选的,所述第一下行接收的频域位置通过比特图指示;或者,
所述第一下行接收的频域位置通过频域起始位置和持续的频域长度指示。
可选的,所述第一计时器在随机接入RACH过程结束后启动;或者,
所述第一计时器在所述终端收到所述网络侧设备的确认消息后启动。
可选的,射频单元901或处理器910还用于:
若在所述第一下行接收的第一计时器的运行期间内,所述终端发送了第二上行信号,所述第二上行信号用于触发第二下行接收,则在发送完所述第二上行信号后,启动或重启所述第一计时器;或者,
若所述终端接收到网络侧设备发送的第一消息,则启动或重启所述第一计时器,所述第一消息包含BWP切换指示。
可选的,射频单元901或处理器910还用于以下至少一项:
若所述终端通过第三上行信号触发第三下行接收,则在所述第三下行接收生效之后,停止所述第一计时器;
若接收到网络侧设备发送的第二消息,且所述第二消息用于指示停止所述第一计时器,则停止所述第一计时器。
可选的,若所述第一计时器超时,射频单元901或处理器910还用于:
将所述第一下行接收所在的BWP切换至第一BWP;或者,
将所述第一下行接收所在的BWP去激活。
可选的,射频单元901或处理器910还用于:
将所述第一上行信号所在的BWP切换至与所述第一下行接收切换后的BWP相对应的上行BWP。
可选的,射频单元901还用于:
在所述第一上行信号切换后的BWP上向网络侧设备发送第二指示信息,所述第二指示信息用于指示上行BWP发生了切换。
可选的,所述关联关系还包括第二关联关系,所述第二关联关系为所述第一上行信号与所述第一下行接收在时域上的关联关系。
可选的,所述关联关系配置给特定终端、特定媒体接入控制MAC实体、特定业务类型和特定频率范围中的至少一项。
可选的,所述第一上行信号的类型包括上行信道的类型和上行信道上承载的信号类型中的至少一项。
可选的,所述第一下行接收包括下行调度信息接收、下行信号接收、下行数据信息接收和下行信道监听中的至少一项。
可选的,射频单元901还用于:
接收网络侧设备发送的第三消息,所述第三消息用于指示所述终端停止接收所述第一下行接收中的至少一个下行接收。
可选的,若在所述第一下行接收的持续时间内,所述终端发送了第二上行信号,所述第二上行信号用于触发第二下行接收,则射频单元901还用于:
并行进行所述第一下行接收和所述第二下行接收;或者,
仅进行所述第二下行接收。
可选的,在并行进行所述第一下行接收和所述第二下行接收的情况下, 若所述第一下行接收与所述第二下行接收发生一个或多个资源冲突,所述资源冲突包括时域资源冲突和频域资源冲突中的至少一项,则射频单元901或处理器910还用于:
在冲突的资源上,进行所述第二下行接收,并放弃所述第一下行接收;或者,
在冲突的资源上,进行所述第一下行接收,并放弃所述第二下行接收;或者,
在冲突的资源上,根据所述第一上行信号和所述第二上行信号的类型、所在的逻辑信道、业务优先级中的至少一项,从所述第一下行接收和所述第二下行接收中确定所要进行的下行接收。
可选的,所述第一下行接收包含多个下行接收,每个下行接收对应一种下行接收类型。
需要说明的是,本实施例中上述终端900可以是本发明实施例中方法实施例中任意实施方式的终端,本发明实施例中方法实施例中终端的任意实施方式都可以被本实施例中的上述终端900所实现,以及达到相同的有益效果,此处不再赘述。
应理解的是,本发明实施例中,射频单元901可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器910处理;另外,将上行的数据发送给基站。通常,射频单元901包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元901还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块902为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元903可以将射频单元901或网络模块902接收的或者在存储器909中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元903还可以提供与终端900执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元903包括扬声器、蜂鸣器以及受话器等。
输入单元904用于接收音频或视频信号。输入单元904可以包括图形处 理器(Graphics Processing Unit,GPU)9041和麦克风9042,图形处理器9041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元906上。经图形处理器9041处理后的图像帧可以存储在存储器909(或其它存储介质)中或者经由射频单元901或网络模块902进行发送。麦克风9042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元901发送到移动通信基站的格式输出。
终端900还包括至少一种传感器905,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板9061的亮度,接近传感器可在终端900移动到耳边时,关闭显示面板9061以及背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器905还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元906用于显示由用户输入的信息或提供给用户的信息。显示单元906可包括显示面板9061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板9061。
用户输入单元907可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元907包括触控面板9071以及其他输入设备9072。触控面板9071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板9071上或在触控面板9071附近的操作)。触控面板9071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送 给处理器910,接收处理器910发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板9071。除了触控面板9071,用户输入单元907还可以包括其他输入设备9072。具体地,其他输入设备9072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板9071可覆盖在显示面板9071上,当触控面板9071检测到在其上或附近的触摸操作后,传送给处理器910以确定触摸事件的类型,随后处理器910根据触摸事件的类型在显示面板9061上提供相应的视觉输出。虽然在图14中,触控面板9071与显示面板9061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板9071与显示面板9061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元908为外部装置与终端900连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元908可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端900内的一个或多个元件或者可以用于在终端900和外部装置之间传输数据。
存储器909可用于存储软件程序以及各种数据。存储器909可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器909可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器910是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器909内的软件程序以及模块,以及调用存储在存储器909内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器910可包括一个或多个处理单元;优选的,处理器910可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系 统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器910中。
终端900还可以包括给各个部件供电的电源911(比如电池),优选的,电源911可以通过电源管理系统与处理器910逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端900包括一些未示出的功能模块,在此不再赘述。
优选的,本发明实施例还提供一种终端,包括处理器910,存储器909,存储在存储器909上并可在所述处理器910上运行的指令或程序,该指令或程序被处理器910执行时实现上述下行接收触发方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本实施例中上述终端900可以是本发明实施例中方法实施例中任意实施方式的终端,本发明实施例中方法实施例中终端的任意实施方式都可以被本实施例中的上述终端900所实现,以及达到相同的有益效果,此处不再赘述。
图15是本发明实施例提供的一种网络侧设备的结构图。如图15所示,网络侧设备700包括:处理器701、收发机702、存储器703和总线接口,其中:
收发机702用于:
接收终端发送的第一上行信号,所述第一上行信号用于触发第一下行接收,所述第一上行信号与所述第一下行接收之间的关联关系包括第一关联关系,所述第一关联关系为所述第一上行信号与所述第一下行接收在频域上的关联关系。
可选的,所述关联关系由所述网络侧设备配置或协议约定。
可选的,所述第一上行信号中包括第一指示信息,所述第一指示信息用于触发N个下行接收中的M个第一下行接收,所述N个下行接收由所述网络侧设备配置或协议约定,所述N和M均为大于或等于1的整数。
可选的,所述第一指示信息包含所述第一下行接收的标识和所述第一下行接收的频域配置参数的至少一项。
可选的,所述第一下行接收的频域配置参数由网络侧设备配置或协议约 定。
可选的,所述第一下行接收的频域配置参数包括以下至少一项:
所述第一下行接收的频域位置;
所述第一下行接收的第一计时器,在所述第一计时器的运行期间,所述第一下行接收所在的BWP不变;
载波;
带宽部分BWP;
控制资源集CORESET;
搜索空间组;
搜索空间;
参数集;
BWP的带宽大小;
虚拟资源块VRB到物理资源块PRB资源映射方式;
PRB捆绑大小;
频域资源分配类型;
发射天线或发射通道的数量;
下行多输入多输出MIMO层数;
同时激活的下行分量载波;
支持的最大下行传输速率;
物理下行控制信道PDCCH的准共址类型D;
PDCCH的天线端口;
物理下行共享信道PDSCH的天线端口;
多个传输接收点MTRP传输;
预编码资源块组PRG大小。
可选的,所述第一下行接收的频域位置通过比特图指示;或者,
所述第一下行接收的频域位置通过频域起始位置和持续的频域长度指示。
可选的,所述第一计时器在随机接入RACH过程结束后启动;或者,
所述第一计时器在所述终端收到所述网络侧设备的确认消息后启动。
可选的,收发机702还用于:
向所述终端发送第一消息,所述第一消息包含BWP切换指示。
可选的,收发机702还用于:
向所述终端发送第二消息,所述第二消息用于指示停止所述第一计时器。
可选的,收发机702还用于:
接收所述终端发送的第二指示信息,所述第二指示信息用于指示上行BWP发生了切换。
可选的,所述关联关系还包括第二关联关系,所述第二关联关系为所述第一上行信号与所述第一下行接收在时域上的关联关系。
可选的,所述关联关系配置给特定终端、特定媒体接入控制MAC实体、特定业务类型和特定频率范围中的至少一项。
可选的,所述第一上行信号的类型包括上行信道的类型和上行信道上承载的信号类型中的至少一项。
可选的,所述第一下行接收包括下行调度信息接收、下行信号接收、下行数据信息接收和下行信道监听中的至少一项。
可选的,收发机702还用于:
向所述终端发送第三消息,所述第三消息用于指示所述终端停止接收所述第一下行接收中的至少一个下行接收。
在图15中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器703代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机702可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器701负责管理总线架构和通常的处理,存储器703可以存储处理器701在执行操作时所使用的数据。
需要说明的是,本实施例中上述网络侧设备700可以是本发明实施例中方法实施例中任意实施方式的网络侧设备,本发明实施例中方法实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备700所实现,以及达到相同的有益效果,此处不再赘述。
本发明实施例还提供一种可读存储介质,可读存储介质上存储有指令或程序,该指令或程序被处理器执行时实现上述对应于终端或者网络侧的实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本发明实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述下行接收触发方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本发明实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (42)

  1. 一种下行接收触发方法,应用于终端,其中,所述方法包括:
    发送第一上行信号,所述第一上行信号用于触发第一下行接收,所述第一上行信号与所述第一下行接收之间的关联关系包括第一关联关系,所述第一关联关系为所述第一上行信号与所述第一下行接收在频域上的关联关系。
  2. 根据权利要求1所述的方法,其中,所述关联关系由网络侧设备配置或协议约定。
  3. 根据权利要求2所述的方法,还包括:
    根据所述第一上行信号所在的频率范围、所述第一上行信号的类型、所述第一上行信号所在的逻辑信道和所述第一上行信号的业务优先级中的至少一项,触发与所述第一上行信号相关联的所述第一下行接收。
  4. 根据权利要求1所述的方法,其中,所述第一上行信号包括第一指示信息,所述第一指示信息用于触发N个下行接收中的M个第一下行接收,所述N个下行接收由网络侧设备配置或协议约定,所述N和M均为大于或等于1的整数。
  5. 根据权利要求4所述的方法,其中,若所述M大于1,则所述方法还包括:
    在发送所述第一上行信号后,接收第一下行控制信息DCI;
    通过所述第一DCI触发所述M个第一下行接收中的K个第一下行接收,所述K为大于或等于1的整数。
  6. 根据权利要求2所述的方法,其中,所述第一指示信息包含所述第一下行接收的标识和所述第一下行接收的频域配置参数的至少一项。
  7. 根据权利要求1所述的方法,其中,所述第一下行接收的频域配置参数由网络侧设备配置或协议约定。
  8. 根据权利要求6或7所述的方法,其中,所述第一下行接收的频域配置参数包括以下至少一项:
    所述第一下行接收的频域位置;
    所述第一下行接收的第一计时器,在所述第一计时器的运行期间,所述 第一下行接收所在的BWP不变;
    载波;
    带宽部分BWP;
    控制资源集CORESET;
    搜索空间组;
    搜索空间;
    参数集;
    BWP的带宽大小;
    虚拟资源块VRB到物理资源块PRB资源映射方式;
    PRB捆绑大小;
    频域资源分配类型;
    发射天线或发射通道的数量;
    下行多输入多输出MIMO层数;
    同时激活的下行分量载波;
    支持的最大下行传输速率;
    物理下行控制信道PDCCH的准共址类型D;
    PDCCH的天线端口;
    物理下行共享信道PDSCH的天线端口;
    多个传输接收点MTRP传输;
    预编码资源块组PRG大小。
  9. 根据权利要求8所述的方法,其中,所述第一下行接收的频域位置通过比特图指示;或者,
    所述第一下行接收的频域位置通过频域起始位置和持续的频域长度指示。
  10. 根据权利要求8所述的方法,其中,所述第一计时器在随机接入RACH过程结束后启动;或者,
    所述第一计时器在所述终端收到所述网络侧设备的确认消息后启动。
  11. 根据权利要求8所述的方法,还包括:
    若在所述第一下行接收的第一计时器的运行期间内,所述终端发送了第二上行信号,所述第二上行信号用于触发第二下行接收,则在发送完所述第 二上行信号后,启动或重启所述第一计时器;或者,
    若所述终端接收到网络侧设备发送的第一消息,则启动或重启所述第一计时器,所述第一消息包含BWP切换指示。
  12. 根据权利要求8所述的方法,还包括以下至少一项:
    若所述终端通过第三上行信号触发第三下行接收,则在所述第三下行接收生效之后,停止所述第一计时器;
    若接收到网络侧设备发送的第二消息,且所述第二消息用于指示停止所述第一计时器,则停止所述第一计时器。
  13. 根据权利要求8所述的方法,其中,若所述第一计时器超时,所述方法还包括:
    将所述第一下行接收所在的BWP切换至第一BWP;或者,
    将所述第一下行接收所在的BWP去激活。
  14. 根据权利要求1或13所述的方法,还包括:
    将所述第一上行信号所在的BWP切换至与所述第一下行接收切换后的BWP相对应的上行BWP。
  15. 根据权利要求14所述的方法,还包括:
    在所述第一上行信号切换后的BWP上向网络侧设备发送第二指示信息,所述第二指示信息用于指示上行BWP发生了切换。
  16. 根据权利要求1至6任一项所述的方法,其中,所述关联关系还包括第二关联关系,所述第二关联关系为所述第一上行信号与所述第一下行接收在时域上的关联关系。
  17. 根据权利要求1所述的方法,其中,所述关联关系配置给特定终端、特定媒体接入控制MAC实体、特定业务类型和特定频率范围中的至少一项。
  18. 根据权利要求1或3所述的方法,其中,所述第一上行信号的类型包括上行信道的类型和上行信道上承载的信号类型中的至少一项。
  19. 根据权利要求1所述的方法,其中,所述第一下行接收包括下行调度信息接收、下行信号接收、下行数据信息接收和下行信道监听中的至少一项。
  20. 根据权利要求1所述的方法,还包括:
    接收网络侧设备发送的第三消息,所述第三消息用于指示所述终端停止接收所述第一下行接收中的至少一个下行接收。
  21. 根据权利要求1所述的方法,其中,若在所述第一下行接收的持续时间内,所述终端发送了第二上行信号,所述第二上行信号用于触发第二下行接收,所述方法还包括:
    并行进行所述第一下行接收和所述第二下行接收;或者,
    仅进行所述第二下行接收。
  22. 根据权利要求21所述的方法,其中,在并行进行所述第一下行接收和所述第二下行接收的情况下,若所述第一下行接收与所述第二下行接收发生一个或多个资源冲突,所述方法还包括:
    在冲突的资源上,进行所述第二下行接收,并放弃所述第一下行接收;或者,
    在冲突的资源上,进行所述第一下行接收,并放弃所述第二下行接收;或者,
    在冲突的资源上,根据所述第一上行信号和所述第二上行信号的类型、所在的逻辑信道、业务优先级中的至少一项,从所述第一下行接收和所述第二下行接收中确定所要进行的下行接收。
  23. 一种下行接收触发方法,应用于网络侧设备,其中,所述方法包括:
    接收终端发送的第一上行信号,所述第一上行信号用于触发第一下行接收,所述第一上行信号与所述第一下行接收之间的关联关系包括第一关联关系,所述第一关联关系为所述第一上行信号与所述第一下行接收在频域上的关联关系。
  24. 根据权利要求23所述的方法,其中,所述关联关系由所述网络侧设备配置或协议约定。
  25. 根据权利要求23所述的方法,其中,所述第一上行信号中包括第一指示信息,所述第一指示信息用于触发N个下行接收中的M个第一下行接收,所述N个下行接收由所述网络侧设备配置或协议约定,所述N和M均为大于或等于1的整数。
  26. 根据权利要求23至25任一项所述的方法,其中,所述关联关系还 包括第二关联关系,所述第二关联关系为所述第一上行信号与所述第一下行接收在时域上的关联关系。
  27. 根据权利要求23所述的方法,还包括:
    向所述终端发送第三消息,所述第三消息用于指示所述终端停止接收所述第一下行接收中的至少一个下行接收。
  28. 一种终端,包括:
    第一发送模块,用于发送第一上行信号,所述第一上行信号用于触发第一下行接收,所述第一上行信号与所述第一下行接收之间的关联关系包括第一关联关系,所述第一关联关系为所述第一上行信号与所述第一下行接收在频域上的关联关系。
  29. 根据权利要求28所述的终端,其中,所述关联关系由网络侧设备配置或协议约定。
  30. 根据权利要求28所述的终端,其中,所述第一上行信号包括第一指示信息,所述第一指示信息用于触发N个下行接收中的M个第一下行接收,所述N个下行接收由网络侧设备配置或协议约定,所述N和M均为大于或等于1的整数。
  31. 根据权利要求28至30中任一项所述的终端,其中,所述关联关系还包括第二关联关系,所述第二关联关系为所述第一上行信号与所述第一下行接收在时域上的关联关系。
  32. 一种网络侧设备,包括:
    第一接收模块,用于接收终端发送的第一上行信号,所述第一上行信号用于触发第一下行接收,所述第一上行信号与所述第一下行接收之间的关联关系包括第一关联关系,所述第一关联关系为所述第一上行信号与所述第一下行接收在频域上的关联关系。
  33. 根据权利要求32所述的网络侧设备,其中,所述关联关系由所述网络侧设备配置或协议约定。
  34. 根据权利要求32所述的网络侧设备,其中,所述第一上行信号中包括第一指示信息,所述第一指示信息用于触发N个下行接收中的M个第一下行接收,所述N个下行接收由所述网络侧设备配置或协议约定,所述N和M 均为大于或等于1的整数。
  35. 根据权利要求32至34中任一项所述的网络侧设备,其中,所述关联关系还包括第二关联关系,所述第二关联关系为所述第一上行信号与所述第一下行接收在时域上的关联关系。
  36. 一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的指令或程序,其中,所述指令或程序被所述处理器执行时实现如权利要求1至22中任一项所述的下行接收触发方法中的步骤。
  37. 一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的指令或程序,其中,所述指令或程序被所述处理器执行时实现如权利要求23至27中任一项所述的下行接收触发方法中的步骤。
  38. 一种可读存储介质,其中,所述可读存储介质上存储有指令或程序,所述指令或程序被处理器执行时实现如权利要求1至22中任一项所述的下行接收触发方法中的步骤;或实现如权利要求23至27中任一项所述的下行接收触发方法中的步骤。
  39. 一种芯片,包括:处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至22中任一项所述的下行接收触发方法中的步骤;或实现如权利要求23至27中任一项所述的下行接收触发方法中的步骤。
  40. 一种计算机程序产品,其中,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1至22中任一项所述的下行接收触发方法中的步骤;或实现如权利要求23至27中任一项所述的下行接收触发方法中的步骤。
  41. 一种终端,所述终端被配置为用于执行如权利要求1至22中任一项所述的下行接收触发方法。
  42. 一种网络侧设备,所述网络侧设备被配置为用于执行如权利要求23至27中任一项所述的下行接收触发方法。
PCT/CN2021/089617 2020-04-30 2021-04-25 下行接收触发方法、终端和网络侧设备 WO2021218855A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21796539.1A EP4145914A4 (en) 2020-04-30 2021-04-25 DOWNLINK RECEPTION TRIGGERING METHOD, AND NETWORK SIDE TERMINAL AND DEVICE
KR1020227028745A KR20220131296A (ko) 2020-04-30 2021-04-25 다운링크 수신 트리거링 방법, 단말기 및 네트워크측 기기
JP2022549768A JP7445777B2 (ja) 2020-04-30 2021-04-25 ダウンリンク受信トリガ方法、端末、ネットワーク側機器及び可読記憶媒体
US17/975,592 US20230051346A1 (en) 2020-04-30 2022-10-27 Downlink reception triggering method, terminal, and network side device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010368256.3A CN113596964B (zh) 2020-04-30 2020-04-30 下行接收触发方法、终端和网络侧设备
CN202010368256.3 2020-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/975,592 Continuation US20230051346A1 (en) 2020-04-30 2022-10-27 Downlink reception triggering method, terminal, and network side device

Publications (1)

Publication Number Publication Date
WO2021218855A1 true WO2021218855A1 (zh) 2021-11-04

Family

ID=78237694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089617 WO2021218855A1 (zh) 2020-04-30 2021-04-25 下行接收触发方法、终端和网络侧设备

Country Status (6)

Country Link
US (1) US20230051346A1 (zh)
EP (1) EP4145914A4 (zh)
JP (1) JP7445777B2 (zh)
KR (1) KR20220131296A (zh)
CN (1) CN113596964B (zh)
WO (1) WO2021218855A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023230743A1 (en) * 2022-05-30 2023-12-07 Qualcomm Incorporated Pose data invalidation in a wireless communication system
CN117859377A (zh) * 2022-08-09 2024-04-09 北京小米移动软件有限公司 Drx周期配置方法及装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873707A (zh) * 2009-04-24 2010-10-27 大唐移动通信设备有限公司 下行数据调度方法及系统
WO2018053766A1 (zh) * 2016-09-22 2018-03-29 广东欧珀移动通信有限公司 通信方法、终端设备和网络设备
WO2018053765A1 (zh) * 2016-09-22 2018-03-29 广东欧珀移动通信有限公司 通信方法和通信装置
CN110912663A (zh) * 2018-09-15 2020-03-24 华为技术有限公司 一种通信方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212765B (zh) * 2006-12-29 2011-05-18 大唐移动通信设备有限公司 一种资源调度方法及系统
US20100130219A1 (en) * 2008-11-25 2010-05-27 Interdigital Patent Holdings, Inc. Method and apparatus for utilizing a plurality of uplink carriers and a plurality of downlink carriers
EP3308587B1 (en) * 2015-06-11 2019-08-07 Telefonaktiebolaget LM Ericsson (publ) Enabling time-overlapping communication using csma/ca and ofdma
CN107734684B (zh) * 2016-08-12 2023-06-30 华为技术有限公司 一种系统信息发送方法及装置
JP2019062533A (ja) 2017-09-22 2019-04-18 華碩電腦股▲ふん▼有限公司 無線通信システムにおける帯域幅部分ミスアライメントを防ぐ方法及び装置
CN110012549B (zh) * 2018-01-04 2020-09-22 维沃移动通信有限公司 一种信息传输方法、终端及网络设备
EP3866376B1 (en) * 2018-01-09 2022-09-07 Beijing Xiaomi Mobile Software Co., Ltd. Physical and mac layer processes in a wireless device
US10834777B2 (en) * 2018-01-11 2020-11-10 Ofinnon, LLC Discontinuous reception and CSI

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873707A (zh) * 2009-04-24 2010-10-27 大唐移动通信设备有限公司 下行数据调度方法及系统
WO2018053766A1 (zh) * 2016-09-22 2018-03-29 广东欧珀移动通信有限公司 通信方法、终端设备和网络设备
WO2018053765A1 (zh) * 2016-09-22 2018-03-29 广东欧珀移动通信有限公司 通信方法和通信装置
CN110912663A (zh) * 2018-09-15 2020-03-24 华为技术有限公司 一种通信方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4145914A4 *

Also Published As

Publication number Publication date
EP4145914A4 (en) 2023-10-25
JP2023515461A (ja) 2023-04-13
CN113596964A (zh) 2021-11-02
KR20220131296A (ko) 2022-09-27
US20230051346A1 (en) 2023-02-16
CN113596964B (zh) 2023-03-14
EP4145914A1 (en) 2023-03-08
JP7445777B2 (ja) 2024-03-07

Similar Documents

Publication Publication Date Title
JP7285959B2 (ja) チャネルモニタリング方法、端末及びネットワーク機器
WO2019128578A1 (zh) 控制信道监听方法、监听指示方法、终端及网络设备
WO2019154269A1 (zh) 信息检测方法、信息传输方法、终端及网络设备
CN113543290B (zh) 节能模式的指示方法、终端及网络侧设备
WO2021129507A1 (zh) 唤醒信号配置方法、唤醒信号处理方法及相关设备
US20230051346A1 (en) Downlink reception triggering method, terminal, and network side device
US20230048312A1 (en) Downlink reception triggering method, terminal, and network-side device
WO2021129508A1 (zh) 唤醒信号处理方法、唤醒信号配置方法及相关设备
CN111050422B (zh) 一种非连续接收的控制方法及终端
US20220377779A1 (en) Scheduling method, terminal, and network side device
JP2023502946A (ja) セカンダリセルScell休止指示処理方法、端末及びネットワーク機器
WO2021180197A1 (zh) 传输配置方法及电子设备
EP3780458A1 (en) Uplink transmission method and terminal
WO2019154066A1 (zh) 下行信道的接收方法、发送方法、终端和基站
WO2021213265A1 (zh) 节能模式切换方法、终端及网络侧设备
CN112543082B (zh) 监听方法、发送方法、终端及网络侧设备
WO2021036649A1 (zh) 模式切换方法、终端和网络设备
CN113498088B (zh) 资源确定方法及终端
WO2023011286A1 (zh) 反馈方法、相关设备及可读存储介质
WO2021057900A1 (zh) 上行传输方法、资源配置方法、终端和网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022549768

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227028745

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021796539

Country of ref document: EP

Effective date: 20221130