WO2021218538A1 - 用于环境调节系统的控制方法及环境调节系统 - Google Patents

用于环境调节系统的控制方法及环境调节系统 Download PDF

Info

Publication number
WO2021218538A1
WO2021218538A1 PCT/CN2021/084117 CN2021084117W WO2021218538A1 WO 2021218538 A1 WO2021218538 A1 WO 2021218538A1 CN 2021084117 W CN2021084117 W CN 2021084117W WO 2021218538 A1 WO2021218538 A1 WO 2021218538A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature detection
indoor environment
control method
environmental
Prior art date
Application number
PCT/CN2021/084117
Other languages
English (en)
French (fr)
Inventor
孙权
孙强
崔永伟
杨晓晶
丁杰兵
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2021218538A1 publication Critical patent/WO2021218538A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants

Definitions

  • the invention relates to the field of air conditioning, in particular to a control method and an environment conditioning system for an environment conditioning system.
  • the air conditioners in the prior art detect the ambient temperature of the indoor environment through a temperature sensing module fixed on the indoor unit, and further adjust the temperature of the indoor environment according to the ambient temperature.
  • the ambient temperature sensed by the fixed temperature sensing module has limitations and cannot accurately represent the actual temperature of the entire indoor environment.
  • the ambient temperature of the indoor environment after the adjustment cannot reach the target temperature desired by the user.
  • a control method and an environmental adjustment system for an environmental adjustment system that can accurately obtain the ambient temperature of the indoor environment.
  • An object of the first aspect of the present invention is to overcome at least one technical defect in the prior art and provide a control method for an environmental regulation system.
  • a further object of the first aspect of the present invention is to improve the efficiency of temperature regulation.
  • Another further object of the first aspect of the present invention is to improve the accuracy of the ambient temperature.
  • An object of the second aspect of the present invention is to provide an environmental regulation system.
  • a control method for an environmental regulation system including:
  • Step A Determine a plurality of temperature detection points in the indoor environment and the temperature weight corresponding to each of the temperature detection points;
  • Step B Obtain the detected temperatures of a plurality of the temperature detection points, and calculate the ambient temperature of the indoor environment according to the plurality of detected temperatures and corresponding temperature weights;
  • Step C Control the air conditioner in the environmental adjustment system to work according to the environmental temperature.
  • control method further includes:
  • Step D Use the temperature sensing module of the indoor unit of the air conditioner to detect its surrounding temperature
  • Step E Control the operation of the air conditioner according to the ambient temperature
  • the step D is performed at least before the step B is performed for the first time.
  • step D and step B alternately according to a first preset time and a second preset time;
  • step D is first performed.
  • the step A includes:
  • Step A1 use the aircraft in the environmental adjustment system to detect the size of the activity space of the indoor environment
  • Step A2 Construct a three-dimensional model of the activity space, and divide the three-dimensional model into a plurality of units of equal volume according to a preset size ratio comparison relationship;
  • Step A3 Determine one temperature detection point in each unit, and store the position information of each temperature detection point.
  • each vertical section of the three-dimensional model has a plurality of the units distributed along the vertical direction;
  • Each horizontal section of the three-dimensional model is respectively distributed with a plurality of the units along the depth direction and the lateral direction.
  • step A further includes:
  • Step A4 Determine the temperature weight of each temperature detection point according to the environmental information of the indoor environment and the distance information of each temperature detection point;
  • the environmental information includes at least one of outdoor temperature and daylighting rate
  • the distance information includes at least one of the distance from the indoor unit of the air conditioner, the distance from the lighting window of the indoor environment, and the distance from the entrance and exit of the indoor environment.
  • control method further includes:
  • Step F Obtain the detected temperature and corresponding weather conditions of at least one of the temperature detection points within a preset distance of the daylighting window in a preset time period;
  • Step G Determine the daylighting rate according to the change curve of the detected temperature in the preset time period and the corresponding weather conditions.
  • step A further includes:
  • Step A5 Determine the detection sequence of the multiple temperature detection points according to the location information of the multiple temperature detection points.
  • step B the aircraft in the environmental regulation system is used to sequentially obtain the detected temperatures of the multiple temperature detection points in the order of the detection.
  • control method further includes:
  • step B the temperature detection of the temperature detection point whose distance from the user is less than or equal to the preset distance threshold is abandoned.
  • an environmental regulation system including:
  • Air conditioners used to adjust the temperature of the indoor environment
  • Aircraft used to detect the temperature of the indoor environment
  • the air conditioner includes a processing module and a storage module storing a machine executable program, and the machine executable program is used to implement any of the above control methods when the machine executable program is executed by the processing module.
  • the present invention calculates the ambient temperature based on the detected temperatures of multiple temperature detection points in the indoor environment and the corresponding temperature weights, and further controls the operation of the air conditioner according to the ambient temperature, which solves the technical problem of excessively limited ambient temperature detection in the prior art.
  • the accuracy of the ambient temperature is improved, thereby realizing precise control of the air conditioner, and improving the comfort of the indoor environment.
  • the aircraft and the indoor unit of the present invention are respectively provided with a temperature sensing module, and each time the air conditioner is turned on, the air conditioner is first controlled according to the temperature detected by the temperature sensing module of the indoor unit, and then according to the aircraft detection
  • the detected temperature and the temperature detected by the indoor unit alternately control the air conditioner, which improves the efficiency of adjusting the indoor environment temperature and prolongs the service life of the aircraft.
  • an additional temperature sensing module is provided for the indoor unit to detect it at the beginning of the startup. The temperature can shorten the temperature sensing time and reduce the frequency of use of the aircraft on the basis of ensuring the precise adjustment of the indoor environment.
  • the present invention separately determines the temperature weight of each temperature detection point according to the environmental information of the indoor environment and the distance information of each temperature detection point, which not only improves the accuracy of the calculated environmental temperature, but also avoids the influence of environmental factors. Under the influence, the environment temperature adjustment rate decreases, and even the environment temperature develops in a direction deviating from the target temperature, which further improves the user comfort.
  • the present invention determines the optimal temperature detection sequence of the multiple temperature detection points based on the position information of the multiple temperature detection points when the aircraft is started for the first time, and enables the aircraft to perform detection according to the detection sequence during subsequent startup, and In the detection process, the temperature detection of the temperature detection points whose distance from the user is less than or equal to the preset distance threshold is directly skipped, which simplifies the control process and shortens the temperature detection time.
  • Fig. 1 is a schematic structural diagram of an environmental adjustment system according to an embodiment of the present invention
  • Fig. 2 is a schematic flowchart of a control method for an environmental regulation system according to an embodiment of the present invention
  • Fig. 3 is a schematic detailed flowchart of a control method for an environmental regulation system according to an embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of an environmental adjustment system 100 according to an embodiment of the present invention.
  • the environmental adjustment system 100 may include an air conditioner 110 for adjusting the temperature of the indoor environment and an aircraft 120 for detecting the temperature of the indoor environment.
  • the air conditioner 110 may be a split type air conditioner 110 that adjusts the temperature of the indoor environment through a vapor compression refrigeration system.
  • the indoor unit of the air conditioner 110 may include a cabinet, an indoor unit heat exchanger 112 and an indoor unit fan 111 disposed in the cabinet.
  • the casing can be provided with an air inlet and an air outlet.
  • the indoor unit fan 111 may be arranged downstream of the indoor unit heat exchanger 112 to encourage air to flow into the casing from the air inlet for heat exchange with the indoor unit heat exchanger 112, and blow the heat-exchanged air out through the air outlet.
  • the air conditioner 110 may include a processing module 114 and a storage module 115 storing a machine executable program.
  • the machine executable program is used to implement the control method of the present invention when the machine executable program is executed by the processing module 114.
  • the processing module 114 and the storage module 115 may be disposed in the casing.
  • the aircraft 120 may be provided with a temperature sensing module 121 and a distance sensing module 122 for detecting temperature and determining the position of the aircraft 120 in the indoor environment, respectively.
  • the air conditioner 110 and the aircraft 120 may be respectively provided with a communication module 116 and a communication module 123 for data signal transmission, so that the aircraft 120 receives control instructions from the processing module 114 and feeds back the detected data to the processing module 114.
  • the processing module 114 may be configured to determine multiple temperature detection points in the indoor environment and the temperature weight corresponding to each temperature detection point, obtain the detection temperature of the multiple temperature detection points, and determine the temperature according to the multiple detection temperatures and the corresponding temperature weight.
  • the ambient temperature of the indoor environment is calculated, and the air conditioner 110 is further controlled to work according to the ambient temperature to adjust the temperature of the indoor environment.
  • controlling the operation of the air conditioner 110 may specifically include adjusting the rotation speed of the compressor of the refrigeration system, the opening degree of the throttle valve, and the rotation speed of the indoor unit fan 111.
  • the environmental adjustment system 100 of the present invention calculates the environmental temperature based on the detected temperatures of multiple temperature detection points in the indoor environment and the corresponding temperature weights, and further controls the operation of the air conditioner 110 according to the environmental temperature, which solves the problem of environmental temperature detection in the prior art. Too limited technical problems improve the accuracy of the ambient temperature, thereby realizing precise control of the air conditioner 110, and improving the comfort of the indoor environment.
  • the processing module 114 may be further configured to use the aircraft 120 to perform size detection on the activity space of the indoor environment, construct a three-dimensional model of the activity space, and divide the three-dimensional model into multiple pieces of equal volume according to a preset size ratio comparison relationship.
  • a temperature detection point is determined in each unit, and the location information of each temperature detection point is stored to improve the accuracy of the ambient temperature.
  • the size detection can be realized by the distance sensing module 122 of the aircraft 120.
  • the activity space is the space for the aircraft 120 to move.
  • the size ratio comparison relationship can record the size range of the activity space in the vertical direction, the depth direction and the horizontal direction, and the ratio of the volume of each unit to the total volume of the activity space.
  • Each vertical section of the three-dimensional model may have multiple units distributed along the vertical direction.
  • Each horizontal section of the three-dimensional model may have multiple units distributed along the depth direction and the lateral direction to further improve the accuracy of the ambient temperature.
  • the processing module 114 may be further configured to determine the temperature weight of each temperature detection point according to the environmental information of the indoor environment and the distance information of each temperature detection point, so as to improve the accuracy of the calculated environmental temperature and avoid the influence of environmental factors. Under the influence, the environmental temperature adjustment rate decreases, and even the environmental temperature develops in a direction deviating from the target temperature.
  • the temperature weight can be re-determined in real time according to the current environmental information combined with the distance information during the operation of the aircraft 120.
  • the aircraft 120 may be provided with an image recognition module for recognizing entrances and exits of daylighting windows and indoor environments.
  • the temperature weight can increase as the difference between the outdoor temperature and the target temperature increases, the daylighting rate increases, the distance from the indoor unit increases, the distance from the lighting window of the indoor environment decreases, or the distance from the indoor environment decreases.
  • the distance between the entrance and exit increases.
  • the specific weight value can be obtained through the analytic hierarchy algorithm preset by the processing module 114.
  • the processing module 114 may be further configured to obtain the detected temperature and corresponding weather conditions of at least one temperature detection point within a preset distance of the daylighting window in a preset time period, according to the preset time period. Detect the temperature change curve and the corresponding weather conditions to determine the daylighting rate.
  • the storage module 115 may store the daylighting rate corresponding to different weather conditions and different change curves, and the processing module 114 can determine the daylighting rate through curve comparison.
  • the processing module 114 may be configured to determine the detection sequence of the multiple temperature detection points according to the location information of the multiple temperature detection points, and enable the aircraft 120 to sequentially obtain the detection temperatures of the multiple temperature detection points according to the detection sequence, so as to Simplify the control process and shorten the temperature detection time.
  • the processing module 114 may be further configured to control the aircraft 120 to directly abandon the temperature detection of the temperature detection points whose distance from the user is less than or equal to the preset distance threshold, so as to avoid collision with the user.
  • the indoor unit may be provided with a temperature sensing module 113 for detecting its surrounding temperature.
  • the processing module 114 may be configured to use the temperature sensing module 113 to detect the ambient temperature and control the air conditioner 110 to operate according to the ambient temperature, so as to ensure the comfort of the indoor environment.
  • the processing module 114 may be configured to alternately use the temperature sensing module 113 and the temperature sensing module 121 to detect the temperature according to the first preset time and the second preset time. Among them, every time the air conditioner 110 is turned on, the temperature sensing module 113 is first used to detect the temperature, so as to improve the efficiency of adjusting the indoor environment temperature and prolong the service life of the aircraft 120.
  • Fig. 2 is a schematic flowchart of a control method for the environmental regulation system 100 according to an embodiment of the present invention.
  • the control method for the environmental regulation system 100 of the present invention may include the following steps:
  • Step S202 Determine a plurality of temperature detection points in the indoor environment and a temperature weight corresponding to each temperature detection point.
  • Step S204 Obtain the detected temperatures of multiple temperature detection points, and calculate the ambient temperature of the indoor environment according to the multiple detected temperatures and corresponding temperature weights.
  • Step S206 Control the air conditioner 110 in the environmental adjustment system 100 to work according to the environmental temperature.
  • the control method of the present invention calculates the ambient temperature based on the detection temperatures of multiple temperature detection points in the indoor environment and the corresponding temperature weights, and further controls the operation of the air conditioner 110 according to the ambient temperature, which solves the excessive limitation of the detection of the ambient temperature in the prior art
  • the technical problem of this improves the accuracy of the ambient temperature, thereby realizing precise control of the air conditioner 110, and improving the comfort of the indoor environment.
  • step S202 may include the following steps:
  • each vertical section of the three-dimensional model may have multiple units distributed along the vertical direction.
  • Each horizontal section of the three-dimensional model may have multiple units distributed along the depth direction and the lateral direction to further improve the accuracy of the ambient temperature.
  • step S202 may further include the following steps:
  • the temperature weight can be re-determined in real time in step S204 based on the current environmental information combined with the distance information.
  • the environmental information may include at least one of outdoor temperature and daylighting rate.
  • the distance information may include at least one of the distance from the indoor unit, the distance from the lighting window of the indoor environment, and the distance from the entrance and exit of the indoor environment.
  • the daylighting rate can be determined by the following steps:
  • the lighting rate is determined according to the change curve of the detected temperature in the preset time period and the corresponding weather conditions, so as to improve the intelligence of the environmental regulation system 100.
  • the daylighting rate can also be manually input by the user based on experience.
  • step S202 may further include the following steps:
  • the detection sequence of the multiple temperature detection points is determined according to the location information of the multiple temperature detection points.
  • step S204 the aircraft 120 is used to sequentially obtain the detected temperatures of multiple temperature detection points in the order of detection, so as to simplify the control process and shorten the temperature detection time.
  • step S204 the temperature detection of the temperature detection point whose distance to the user is less than or equal to the preset distance threshold is directly abandoned to avoid collision with the user.
  • control method of the present invention may further include the following steps, which are executed at least before step S204 is executed for the first time:
  • the air conditioner 110 is controlled to operate according to the surrounding temperature.
  • step S204 can also be executed alternately with step S204 according to the first preset time and the second preset time after step S204 is executed for the first time.
  • step S204 every time the air conditioner 110 is turned on, the step of using the temperature sensing module 113 of the indoor unit to detect its surrounding temperature is first performed to improve the efficiency of adjusting the indoor environment temperature and prolong the service life of the aircraft 120.
  • Fig. 3 is a schematic detailed flowchart of a control method for the environmental regulation system 100 according to an embodiment of the present invention (in the present invention, "Y” means “yes”; “N” means “no”).
  • the control method for the environmental regulation system 100 of the present invention may include the following detailed steps:
  • Step S302 Use the temperature sensing module of the indoor unit of the air conditioner 110 to detect its surrounding temperature.
  • Step S304 Control the air conditioner 110 to work according to the surrounding temperature.
  • Step S306 Determine whether the running time of step S302 has reached (greater than or equal to) the first preset time. If yes, go to step S308; if no, go back to step S302.
  • Step S308 Determine whether the aircraft 120 is started for the first time for temperature detection. If yes, go to step S310; if not, go to step S320.
  • Step S310 Use the aircraft 120 in the environmental adjustment system 100 to detect the size of the activity space in the indoor environment.
  • Step S312 Construct a three-dimensional model of the activity space, and divide the three-dimensional model into multiple units of equal volume according to the preset size ratio comparison relationship.
  • Step S314 Determine a temperature detection point in each unit, and store the location information of each temperature detection point.
  • Step S316 Determine the temperature weight of each temperature detection point according to the environmental information of the indoor environment and the distance information of each temperature detection point.
  • Step S318 Determine the detection sequence of the multiple temperature detection points according to the location information of the multiple temperature detection points. Step S320 is executed.
  • Step S320 Use the aircraft 120 in the environmental adjustment system 100 to sequentially obtain the detected temperatures of the multiple temperature detection points in the order of detection, and calculate the indoor environment ambient temperature based on the multiple detected temperatures and the corresponding temperature weights.
  • Step S322 Control the air conditioner 110 in the environmental adjustment system 100 to work according to the environmental temperature.
  • Step S324 Determine whether the running time of step S320 reaches the second preset time. If yes, return to step S302; if not, return to step S320.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种用于环境调节系统的控制方法及环境调节系统。控制方法包括:确定出室内环境的多个温度检测点及每个温度检测点对应的温度权重;获取多个温度检测点的检测温度,并根据多个检测温度和对应的温度权重计算出室内环境的环境温度;根据环境温度控制环境调节系统中的空调器工作。本发明通过室内环境的多个温度检测点的检测温度及对应的温度权重计算环境温度,并进一步根据该环境温度控制空调器工作,解决了现有技术中环境温度的检测过于局限的技术问题,提高了环境温度的准确性,进而实现了对空调器的精确控制,提高了室内环境的舒适性。

Description

用于环境调节系统的控制方法及环境调节系统 技术领域
本发明涉及空气调节领域,特别是涉及一种用于环境调节系统的控制方法及环境调节系统。
背景技术
现有技术中的空调器均是通过固定在室内机上的温度感测模块来检测室内环境的环境温度,并进一步根据该环境温度对室内环境的温度进行调节。然而,由固定的温度感测模块感测到的环境温度具有局限性,并不能准确地代表整个室内环境的实际温度情况,导致调节结束的室内环境的环境温度仍不能达到用户期望的目标温度。综合考虑,在设计上需要一种可准确获得室内环境的环境温度的用于环境调节系统的控制方法及环境调节系统。
发明内容
本发明第一方面的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种用于环境调节系统的控制方法。
本发明第一方面的一个进一步的目的是要提高温度调节的效率。
本发明第一方面的另一个进一步的目的是要提高环境温度的准确性。
本发明第二方面的一个目的是要提供一种环境调节系统。
根据本发明的第一方面,提供了一种用于环境调节系统的控制方法,包括:
步骤A:确定出室内环境的多个温度检测点及每个所述温度检测点对应的温度权重;
步骤B:获取多个所述温度检测点的检测温度,并根据多个所述检测温度和对应的温度权重计算出室内环境的环境温度;
步骤C:根据所述环境温度控制所述环境调节系统中的空调器工作。
可选地,所述控制方法还包括:
步骤D:利用所述空调器的室内机的温度感测模块检测其周围温度;
步骤E:根据所述周围温度控制所述空调器工作;其中
所述步骤D至少在首次执行所述步骤B之前被执行。
可选地,在首次执行所述步骤B之后,按照第一预设时间和第二预设时 间交替执行所述步骤D和所述步骤B;其中
在每次所述空调器开机后,首先执行所述步骤D。
可选地,所述步骤A包括:
步骤A1:利用所述环境调节系统中的飞行器对所述室内环境的活动空间进行尺寸检测;
步骤A2:构建所述活动空间的三维模型,并按照预设的尺寸比例对照关系将所述三维模型分割为体积相等的多个单元;
步骤A3:在每个所述单元中确定出一个所述温度检测点,并储存每个所述温度检测点的位置信息。
可选地,所述三维模型的每个竖直截面均沿竖直方向分布有多个所述单元;且
所述三维模型的每个水平截面均沿进深方向和横向方向分别分布有多个所述单元。
可选地,所述步骤A还包括:
步骤A4:根据室内环境的环境信息、每个所述温度检测点的距离信息分别确定每个所述温度检测点的温度权重;其中
所述环境信息包括室外温度、采光率中的至少一项;
所述距离信息包括与所述空调器的室内机的距离、与室内环境的采光窗户的距离、与室内环境的进出口的距离中的至少一项。
可选地,所述控制方法还包括:
步骤F:获取位于所述采光窗户预设距离范围内的至少一个所述温度检测点在预设时间段的检测温度及对应的天气情况;
步骤G:根据所述预设时间段的检测温度的变化曲线及对应的天气情况确定出所述采光率。
可选地,所述步骤A还包括:
步骤A5:根据所述多个温度检测点的位置信息确定所述多个温度检测点的检测顺序;且
在所述步骤B中,利用所述环境调节系统中的飞行器按照所述检测顺序依次获取多个所述温度检测点的检测温度。
可选地,所述控制方法还包括:
在所述步骤B中,放弃与用户距离小于等于预设距离阈值的温度检测点 的温度检测。
根据本发明的第二方面,提供了一种环境调节系统,包括:
空调器,用于调节室内环境的温度;和
飞行器,用于检测室内环境的温度;其中
所述空调器包括处理模块和存储有机器可执行程序的存储模块,所述机器可执行程序被所述处理模块执行时用于实现以上任一所述的控制方法。
本发明通过室内环境的多个温度检测点的检测温度及对应的温度权重计算环境温度,并进一步根据该环境温度控制空调器工作,解决了现有技术中环境温度的检测过于局限的技术问题,提高了环境温度的准确性,进而实现了对空调器的精确控制,提高了室内环境的舒适性。
进一步地,本发明的飞行器和室内机分别设置有一个温度感测模块,在每次空调器开机后,首先根据室内机的温度感测模块检测到的温度对空调器进行控制,再根据飞行器检测到的温度和室内机检测到的温度交替对空调器进行控制,提高了对室内环境温度调节的效率,延长了飞行器的使用寿命。
发明人创造性地认识到,在空调器开机前室内环境的温度通常较为均匀,在飞行器设置有温度感测模块的基础上,再为室内机设置额外的温度感测模块,使其在开机初期检测温度,可在保证对室内环境的精准调节的基础上,缩短温度感测的时间,降低飞行器的使用频率。
进一步地,本发明根据室内环境的环境信息和每个温度检测点的距离信息分别确定每个温度检测点的温度权重,不仅提高了计算出的环境温度的准确性,还避免了在环境因素的影响下环境温度调节速率降低、甚至环境温度向背离目标温度的方向发展的情况发生,进一步地提高了用户舒适度。
进一步地,本发明在飞行器首次启动时,根据多个温度检测点的位置信息确定出最佳的多个温度检测点的温度检测顺序,并使飞行器在后续启动时按照该检测顺序进行检测,并在检测过程中直接跳过对与用户距离小于等于预设距离阈值的温度检测点的温度检测,简化了控制流程,缩短了温度检测的时间。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的环境调节系统的示意性结构图;
图2是根据本发明一个实施例的用于环境调节系统的控制方法的示意性流程图;
图3是根据本发明一个实施例的用于环境调节系统的控制方法的示意性详细流程图。
具体实施方式
图1是根据本发明一个实施例的环境调节系统100的示意性结构图。参见图1,环境调节系统100可包括用于调节室内环境的温度的空调器110和用于检测室内环境的温度飞行器120。
空调器110可为通过蒸汽压缩制冷系统调节室内环境的温度的分体式空调器110。
空调器110的室内机可包括机壳、设置于机壳内的室内机换热器112和室内机风机111。机壳可开设有进风口和出风口。室内机风机111可设置于室内机换热器112的下游,促使空气自进风口流入机壳与室内机换热器112进行热交换,并将换热后的空气经由出风口吹出。
空调器110可包括处理模块114和存储有机器可执行程序的存储模块115,机器可执行程序被处理模块114执行时用于实现本发明的控制方法。处理模块114和存储模块115可设置于机壳内。
飞行器120可设置有温度感测模块121和距离感测模块122,分别用于检测温度和确定飞行器120在室内环境中的位置。
空调器110和飞行器120可分别设置有通讯模块116和通讯模块123,以进行数据信号传输,使飞行器120接收到处理模块114的控制指令,并向处理模块114反馈检测到的数据。
特别地,处理模块114可配置为确定出室内环境的多个温度检测点及每个温度检测点对应的温度权重,获取多个温度检测点的检测温度并根据多个检测温度和对应的温度权重计算出室内环境的环境温度,并进一步根据环境温度控制空调器110工作,调节室内环境的温度。
在本发明中,控制空调器110工作可具体包括调节制冷系统的压缩机转速、节流阀开度以及室内机风机111的转速。
本发明的环境调节系统100通过室内环境的多个温度检测点的检测温度及对应的温度权重计算环境温度,并进一步根据该环境温度控制空调器110工作,解决了现有技术中环境温度的检测过于局限的技术问题,提高了环境温度的准确性,进而实现了对空调器110的精确控制,提高了室内环境的舒适性。
在一些实施例中,处理模块114可进一步配置为利用飞行器120对室内环境的活动空间进行尺寸检测,构建活动空间的三维模型并按照预设的尺寸比例对照关系将三维模型分割为体积相等的多个单元,在每个单元中确定出一个温度检测点,并储存每个温度检测点的位置信息,以提高环境温度准确性。
尺寸检测可通过飞行器120的距离感测模块122实现。活动空间即可供飞行器120运动的空间。尺寸比例对照关系可记录有活动空间在竖直方向、进深方向和横向方向上的尺寸范围,以及对应的每个单元的体积与活动空间的总体积的比例数值。
三维模型的每个竖直截面可均沿竖直方向分布有多个单元。三维模型的每个水平截面可均沿进深方向和横向方向分别分布有多个单元,以进一步地提高环境温度的准确性。
处理模块114可进一步配置为根据室内环境的环境信息、每个温度检测点的距离信息分别确定每个温度检测点的温度权重,以提高计算出的环境温度的准确性,并避免在环境因素的影响下环境温度调节速率降低、甚至环境温度向背离目标温度的方向发展的情况发生。温度权重可在飞行器120运行过程中根据当时的环境信息结合距离信息实时重新确定。
飞行器120可设置有图像识别模块,用于识别采光窗户、室内环境的进出口。
例如,温度权重可随着室外温度减去目标温度的差值的增大、采光率的增大、与室内机的距离的增大、与室内环境的采光窗户的距离减小、或与室内环境的进出口的距离的增大而增大。具体的权重数值可通过处理模块114预置的层次分析算法得出。
在一些进一步的实施例中,处理模块114可进一步配置为获取位于采光 窗户预设距离范围内的至少一个温度检测点在预设时间段的检测温度及对应的天气情况,根据预设时间段的检测温度的变化曲线及对应的天气情况确定出采光率。示例性地,存储模块115可存储有不同天气情况及不同变化曲线对应的采光率,处理模块114可通过曲线比对确定出采光率。
在一些实施例中,处理模块114可配置为根据多个温度检测点的位置信息确定多个温度检测点的检测顺序,并使飞行器120按照检测顺序依次获取多个温度检测点的检测温度,以简化控制流程,缩短温度检测的时间。
在飞行器120检测温度的过程中,处理模块114可进一步配置为控制飞行器120直接放弃与用户距离小于等于预设距离阈值的温度检测点的温度检测,以避免与用户发生碰撞。
在一些实施例中,室内机可设置有温度感测模块113,用于检测其的周围温度。
在飞行器120首次运行之前,处理模块114可配置为利用温度感测模块113检测周围温度并根据该周围温度控制空调器110工作,以保证室内环境的舒适性。
在一些进一步的实施例中,在飞行器120首次运行之后,处理模块114可配置为按照第一预设时间和第二预设时间交替利用温度感测模块113和温度感测模块121检测温度。其中,在每次空调器110开机后,首先利用温度感测模块113检测温度,以提高对室内环境温度调节的效率,延长飞行器120的使用寿命。
图2是根据本发明一个实施例的用于环境调节系统100的控制方法的示意性流程图。参见图2,本发明的用于环境调节系统100的控制方法可包括如下步骤:
步骤S202:确定出室内环境的多个温度检测点及每个温度检测点对应的温度权重。
步骤S204:获取多个温度检测点的检测温度,并根据多个检测温度和对应的温度权重计算出室内环境的环境温度。
步骤S206:根据环境温度控制环境调节系统100中的空调器110工作。
本发明的控制方法通过室内环境的多个温度检测点的检测温度及对应的温度权重计算环境温度,并进一步根据该环境温度控制空调器110工作,解决了现有技术中环境温度的检测过于局限的技术问题,提高了环境温度的 准确性,进而实现了对空调器110的精确控制,提高了室内环境的舒适性。
在一些实施例中,步骤S202可包括如下步骤:
利用飞行器120对室内环境的活动空间进行尺寸检测;
构建活动空间的三维模型,并按照预设的尺寸比例对照关系将三维模型分割为体积相等的多个单元;
在每个单元中确定出一个温度检测点,并储存每个温度检测点的位置信息,以提高环境温度准确性。
在一些进一步的实施例中,三维模型的每个竖直截面可均沿竖直方向分布有多个单元。三维模型的每个水平截面可均沿进深方向和横向方向分别分布有多个单元,以进一步地提高环境温度的准确性。
在一些进一步的实施例中,步骤S202还可包括如下步骤:
根据室内环境的环境信息、每个温度检测点的距离信息分别确定每个温度检测点的温度权重,以提高计算出的环境温度的准确性,并避免在环境因素的影响下环境温度调节速率降低、甚至环境温度向背离目标温度的方向发展的情况发生。
温度权重可在步骤S204中根据当时的环境信息结合距离信息实时重新确定。
环境信息可包括室外温度、采光率中的至少一项。距离信息可包括与室内机的距离、与室内环境的采光窗户的距离、与室内环境的进出口的距离中的至少一项。
在一些进一步的实施例中,采光率可由如下步骤确定:
获取位于采光窗户预设距离范围内的至少一个温度检测点在预设时间段的检测温度及对应的天气情况;
根据预设时间段的检测温度的变化曲线及对应的天气情况确定出采光率,以提高环境调节系统100的智能性。
在另一些进一步的实施例中,采光率也可由用户根据经验手动输入。
在一些进一步的实施例中,步骤S202还可包括如下步骤:
根据多个温度检测点的位置信息确定多个温度检测点的检测顺序。
在步骤S204中,利用飞行器120按照检测顺序依次获取多个温度检测点的检测温度,以简化控制流程,缩短温度检测的时间。
在步骤S204中,直接放弃与用户距离小于等于预设距离阈值的温度检 测点的温度检测,以避免与用户发生碰撞。
在一些实施例中,本发明的控制方法还可包括如下步骤,至少在首次执行步骤S204之前被执行:
利用室内机的温度感测模块113检测其周围温度;
根据周围温度控制空调器110工作。
上述两个步骤也可在首次执行步骤S204之后,按照第一预设时间和第二预设时间与步骤S204交替被执行。其中,在每次空调器110开机后,首先执行利用室内机的温度感测模块113检测其周围温度的步骤,以提高对室内环境温度调节的效率,延长飞行器120的使用寿命。
图3是根据本发明一个实施例的用于环境调节系统100的控制方法的示意性详细流程图(在本发明中,“Y”表示“是”;“N”表示“否”)。参见图3,本发明的用于环境调节系统100的控制方法可包括如下详细步骤:
步骤S302:利用空调器110的室内机的温度感测模块检测其周围温度。
步骤S304:根据周围温度控制空调器110工作。
步骤S306:判断步骤S302的运行时间是否达到(大于等于)第一预设时间。若是,执行步骤S308;若否,返回步骤S302。
步骤S308:判断飞行器120是否首次启动用于温度检测。若是,执行步骤S310;若否,执行步骤S320。
步骤S310:利用环境调节系统100中的飞行器120对室内环境的活动空间进行尺寸检测。
步骤S312:构建活动空间的三维模型,并按照预设的尺寸比例对照关系将三维模型分割为体积相等的多个单元。
步骤S314:在每个单元中确定出一个温度检测点,并储存每个温度检测点的位置信息。
步骤S316:根据室内环境的环境信息、每个温度检测点的距离信息分别确定每个温度检测点的温度权重。
步骤S318:根据多个温度检测点的位置信息确定多个温度检测点的检测顺序。执行步骤S320。
步骤S320:利用环境调节系统100中的飞行器120按照检测顺序依次获取多个温度检测点的检测温度,并根据多个检测温度和对应的温度权重计算出室内环境的环境温度。
步骤S322:根据环境温度控制环境调节系统100中的空调器110工作。
步骤S324:判断步骤S320的运行时间是否达到第二预设时间。若是,返回步骤S302;若否,返回步骤S320。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种用于环境调节系统的控制方法,包括:
    步骤A:确定出室内环境的多个温度检测点及每个所述温度检测点对应的温度权重;
    步骤B:获取多个所述温度检测点的检测温度,并根据多个所述检测温度和对应的温度权重计算出室内环境的环境温度;
    步骤C:根据所述环境温度控制所述环境调节系统中的空调器工作。
  2. 根据权利要求1所述的控制方法,还包括:
    步骤D:利用所述空调器的室内机的温度感测模块检测其周围温度;
    步骤E:根据所述周围温度控制所述空调器工作;其中
    所述步骤D至少在首次执行所述步骤B之前被执行。
  3. 根据权利要求2所述的控制方法,其中,
    在首次执行所述步骤B之后,按照第一预设时间和第二预设时间交替执行所述步骤D和所述步骤B;其中
    在每次所述空调器开机后,首先执行所述步骤D。
  4. 根据权利要求1所述的控制方法,其中,所述步骤A包括:
    步骤A1:利用所述环境调节系统中的飞行器对所述室内环境的活动空间进行尺寸检测;
    步骤A2:构建所述活动空间的三维模型,并按照预设的尺寸比例对照关系将所述三维模型分割为体积相等的多个单元;
    步骤A3:在每个所述单元中确定出一个所述温度检测点,并储存每个所述温度检测点的位置信息。
  5. 根据权利要求4所述的控制方法,其中,
    所述三维模型的每个竖直截面均沿竖直方向分布有多个所述单元;且
    所述三维模型的每个水平截面均沿进深方向和横向方向分别分布有多个所述单元。
  6. 根据权利要求4所述的控制方法,其中,所述步骤A还包括:
    步骤A4:根据室内环境的环境信息、每个所述温度检测点的距离信息分别确定每个所述温度检测点的温度权重;其中
    所述环境信息包括室外温度、采光率中的至少一项;
    所述距离信息包括与所述空调器的室内机的距离、与室内环境的采光窗户的距离、与室内环境的进出口的距离中的至少一项。
  7. 根据权利要求6所述的控制方法,还包括:
    步骤F:获取位于所述采光窗户预设距离范围内的至少一个所述温度检测点在预设时间段的检测温度及对应的天气情况;
    步骤G:根据所述预设时间段的检测温度的变化曲线及对应的天气情况确定出所述采光率。
  8. 根据权利要求1所述的控制方法,其中,所述步骤A还包括:
    步骤A5:根据所述多个温度检测点的位置信息确定所述多个温度检测点的检测顺序;且
    在所述步骤B中,利用所述环境调节系统中的飞行器按照所述检测顺序依次获取多个所述温度检测点的检测温度。
  9. 根据权利要求8所述的控制方法,还包括:
    在所述步骤B中,放弃与用户距离小于等于预设距离阈值的温度检测点的温度检测。
  10. 一种环境调节系统,包括:
    空调器,用于调节室内环境的温度;和
    飞行器,用于检测室内环境的温度;其中
    所述空调器包括处理模块和存储有机器可执行程序的存储模块,所述机器可执行程序被所述处理模块执行时用于实现根据权利要求1-9中任一所述的控制方法。
PCT/CN2021/084117 2020-06-30 2021-03-30 用于环境调节系统的控制方法及环境调节系统 WO2021218538A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010616651.9 2020-06-30
CN202010616651.9A CN113865037A (zh) 2020-06-30 2020-06-30 用于环境调节系统的控制方法及环境调节系统

Publications (1)

Publication Number Publication Date
WO2021218538A1 true WO2021218538A1 (zh) 2021-11-04

Family

ID=78373304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084117 WO2021218538A1 (zh) 2020-06-30 2021-03-30 用于环境调节系统的控制方法及环境调节系统

Country Status (2)

Country Link
CN (1) CN113865037A (zh)
WO (1) WO2021218538A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114288956A (zh) * 2021-12-31 2022-04-08 浙江中控技术股份有限公司 反应器温度控制方法、装置和计算机设备
CN114440421A (zh) * 2022-01-18 2022-05-06 上海铼锶信息技术有限公司 一种环境温度调节方法及环境温度调节系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107192572A (zh) * 2017-07-11 2017-09-22 海信科龙电器股份有限公司 空调器热舒适度性能测试系统及其测试方法
CN109945463A (zh) * 2019-04-29 2019-06-28 中铁建设集团有限公司 带有超微型无人机的人工环境控制系统及其运行方法
CN110261007A (zh) * 2019-07-11 2019-09-20 南京工业大学 一种应用无线温度传感器和无人机精确定位的数据机房局部热点探测系统及方法
CN110345614A (zh) * 2019-07-17 2019-10-18 成都泰盟软件有限公司 一种基于室内人员分布检测的温度动态控制系统及方法
CN110617671A (zh) * 2019-09-23 2019-12-27 合肥华凌股份有限公司 制冷设备的控制方法及系统、制冷设备和可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101165422A (zh) * 2007-09-28 2008-04-23 李钢 新型绿色中央空调系统节能模糊控制装置及控制方法
KR101392014B1 (ko) * 2007-10-24 2014-05-30 엘지전자 주식회사 천정형 에어컨
CN103673225B (zh) * 2013-12-10 2016-03-16 南京奥联汽车电子电器股份有限公司 一种汽车空调自动控制方法
CN107478271B (zh) * 2017-08-10 2020-09-08 哈尔滨工业大学 一种用于老年人日间照料设施适老性评价的数据采集装置
CN108344116A (zh) * 2018-02-11 2018-07-31 深圳市沃特沃德股份有限公司 室内的空气质量的调节方法及清洁机器人

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107192572A (zh) * 2017-07-11 2017-09-22 海信科龙电器股份有限公司 空调器热舒适度性能测试系统及其测试方法
CN109945463A (zh) * 2019-04-29 2019-06-28 中铁建设集团有限公司 带有超微型无人机的人工环境控制系统及其运行方法
CN110261007A (zh) * 2019-07-11 2019-09-20 南京工业大学 一种应用无线温度传感器和无人机精确定位的数据机房局部热点探测系统及方法
CN110345614A (zh) * 2019-07-17 2019-10-18 成都泰盟软件有限公司 一种基于室内人员分布检测的温度动态控制系统及方法
CN110617671A (zh) * 2019-09-23 2019-12-27 合肥华凌股份有限公司 制冷设备的控制方法及系统、制冷设备和可读存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114288956A (zh) * 2021-12-31 2022-04-08 浙江中控技术股份有限公司 反应器温度控制方法、装置和计算机设备
CN114440421A (zh) * 2022-01-18 2022-05-06 上海铼锶信息技术有限公司 一种环境温度调节方法及环境温度调节系统
CN114440421B (zh) * 2022-01-18 2023-06-16 上海铼锶信息技术有限公司 一种环境温度调节方法及环境温度调节系统

Also Published As

Publication number Publication date
CN113865037A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2021218538A1 (zh) 用于环境调节系统的控制方法及环境调节系统
CN107726550B (zh) 一种室内空气湿度推算方法及空调器
CN111706969B (zh) 空调除湿的控制方法、装置及空调器
CN112797599B (zh) 多联机电子膨胀阀开度控制方法、调节装置及空调系统
CN109405213A (zh) 空调器及其控制方法、控制装置、可读存储介质
CN111102731B (zh) 一种防凝露控制方法、装置及空调设备
CN112178784B (zh) 一种空调器除湿控制方法及除湿设备
JP2021529925A (ja) 空気調節機器の制御方法、装置及び空気調節機器
CN110701750A (zh) 运行控制方法、运行控制装置、空调器和存储介质
JP6396542B2 (ja) 空調制御装置、方法、およびプログラム
CN110726209B (zh) 空调控制方法、装置、存储介质以及处理器
CN109341015B (zh) 空调器及其控制方法、装置
CN110595004B (zh) 一种空调降噪控制方法、控制系统及空调器
CN102620380A (zh) 空调控制装置以及方法
CN105157167A (zh) 空调制冷控制方法及装置
CN110470032A (zh) 出风温度控制方法、装置、空调器及计算机可读存储介质
CN111536677A (zh) 空调回油控制方法、空调及可读存储介质
CN109323422B (zh) 空调器及其控制方法、装置
CN108592353B (zh) 用于空调系统的控制方法
CN113847682A (zh) 空调室内机的温度修正方法
CN109341014B (zh) 空调器及其控制方法、装置
CN107940546A (zh) 供水温度的控制方法及装置
CN109323410B (zh) 空调器及其控制方法、装置
CN109405212A (zh) 空调器及其控制方法、控制装置、可读存储介质
CN106052009A (zh) 变频空调频率控制方法及控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796858

Country of ref document: EP

Kind code of ref document: A1