WO2021218407A1 - 背光模组及液晶显示装置 - Google Patents

背光模组及液晶显示装置 Download PDF

Info

Publication number
WO2021218407A1
WO2021218407A1 PCT/CN2021/079819 CN2021079819W WO2021218407A1 WO 2021218407 A1 WO2021218407 A1 WO 2021218407A1 CN 2021079819 W CN2021079819 W CN 2021079819W WO 2021218407 A1 WO2021218407 A1 WO 2021218407A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
guide plate
light guide
light
edge
Prior art date
Application number
PCT/CN2021/079819
Other languages
English (en)
French (fr)
Inventor
董文波
王超越
张伟
李超
Original Assignee
京东方科技集团股份有限公司
合肥京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/768,411 priority Critical patent/US20240118573A1/en
Publication of WO2021218407A1 publication Critical patent/WO2021218407A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0041Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided in the bulk of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0085Means for removing heat created by the light source from the package
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0088Positioning aspects of the light guide or other optical sheets in the package

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a backlight module and a liquid crystal display device.
  • a liquid crystal display usually includes a liquid crystal display panel and a backlight module (also referred to as a backlight) that provides a backlight for the liquid crystal display panel.
  • a backlight module also referred to as a backlight
  • side-type backlight modules are lighter and thinner. Therefore, most small and medium-sized products such as mobile phones, notebook computers, and desktop computers use side-type backlight modules.
  • some large-size products, such as large-size TVs also use edge-type backlight modules.
  • an edge-type backlight module includes a light guide plate, a polarizer and a light source.
  • the light guide plate has a side surface.
  • the polarizer is arranged opposite to the side surface of the light guide plate.
  • the light source is arranged on a side of the polarizer away from the light guide plate.
  • the polarizer is configured to convert the light emitted from the light source to the light guide plate into linearly polarized light.
  • the edge-lit backlight module provided by some embodiments of the present disclosure can make the edge-lit backlight module emit polarized light by arranging a polarizer between the light guide plate and the light source.
  • the light emitted by the light source forms linearly polarized light after passing through the polarizer. Since the light guide plate is an amorphous solid, the linearly polarized light will not change its polarization characteristics when propagating inside the light guide plate.
  • the side-lit backlight module When the module is applied to a liquid crystal display device, the side-lit backlight module can provide linearly polarized light for the liquid crystal display device, so there is no need to install the first polarizer close to the backlight module in the liquid crystal display device, but only need to be far away from the backlight module
  • the analyzer can ensure the normal operation of the liquid crystal display device. In this way, the light transmittance of the liquid crystal display device can be increased, so that the viewer can see the scene behind the liquid crystal display device more clearly while seeing the image displayed on the liquid crystal display device.
  • the polarizer is fixed on the side surface of the light guide plate.
  • the edge-lit backlight module further includes a lampshade arranged on the light-emitting side of the light source.
  • the lampshade includes a transparent plate opposite to the light source, and a connecting portion connecting the transparent plate and the light source, the transparent plate includes an inner surface close to the light source and an outer surface away from the light source, the polarizer It is arranged on the inner surface or the outer surface of the transparent plate.
  • the polarizer is one of an iodine-based polarizer, a dye-based polarizer, and a metal wire grid polarizer.
  • the polarizer when the polarizer is an iodine-based polarizer or a dye-based polarizer, the polarizer is attached to the side of the light guide plate through a first adhesive layer, and the first adhesive
  • the material of the layer includes a heat-dissipating material.
  • the orthographic projection of the side surface of the light guide plate on the iodine-based polarizer is within the edge of the iodine-based polarizer, or the side surface of the light guide plate is on the orthographic projection of the dye-based polarizer. Within the edge of the dye-based polarizer.
  • the first polarizer when the polarizer is a first polarizer, the first polarizer is pasted on a side surface of the transparent plate close to or far from the light source through a second adhesive layer.
  • the material of the second adhesive layer includes a heat dissipation material.
  • the polarizer when the polarizer is a metal wire grid polarizer, the polarizer is a metal pattern layer fabricated on the side surface of the light guide plate.
  • the edge-lit backlight module further includes a lamp shade provided on the light-emitting side of the light source, and the lamp shade includes a transparent plate opposite to the light source
  • the polarizer is made on the The transparent plate is close to or away from the metal pattern layer on the surface of the light source.
  • the light guide plate includes a light guide plate body and a plurality of scattering particles dispersedly arranged in the light guide plate body, and the plurality of scattering particles are configured to scatter light.
  • the light guide plate is transparent.
  • a display device in another aspect, includes: an edge-type backlight module, a liquid crystal display panel, and an analyzer as described in any of the above embodiments.
  • the analyzer is arranged on a side of the liquid crystal display panel away from the edge-type backlight module.
  • the transmission axis of the polarizer and the transmission axis of the analyzer are perpendicular or parallel to each other.
  • FIG. 1 is a structural diagram of a transparent display device provided according to some embodiments of the present disclosure applied to a car window;
  • FIG. 2 is a structural diagram of a transparent display device provided according to some embodiments of the present disclosure applied to a window display cabinet;
  • FIG. 3 is a structural diagram of a transparent display device provided according to some embodiments of the present disclosure applied to a refrigerator door;
  • FIG. 4 is a structural diagram of a display device provided according to some embodiments of related technologies.
  • FIG. 5 is a structural diagram of a display device provided according to some embodiments of the present disclosure.
  • FIG. 6 is a structural diagram of a liquid crystal display panel provided according to some embodiments of the present disclosure.
  • FIG. 7 is a structural diagram of a backlight module provided according to some embodiments of the present disclosure.
  • FIG. 8 is a structural diagram of another backlight module according to some embodiments of the present disclosure.
  • FIG. 9A is a working principle diagram of a backlight module provided according to some embodiments of the present disclosure.
  • FIG. 9B is a working principle diagram of another backlight module provided according to some embodiments of the present disclosure.
  • 9C is a working principle diagram of still another backlight module provided according to some embodiments of the present disclosure.
  • FIG. 10 is a structural diagram of scattering particles provided according to some embodiments of the present disclosure.
  • FIG. 11 is a working principle diagram of a metal wire grid polarizer provided according to some embodiments of the present disclosure.
  • FIG. 12A is a structural diagram of a display device provided according to some embodiments of the present disclosure.
  • FIG. 12B is a structural diagram of the part in FIG. 12A provided according to some embodiments of the present disclosure.
  • FIG. 13A is a structural diagram of still another backlight module according to some embodiments of the present disclosure.
  • FIG. 13B is a structural diagram of the part in FIG. 13A provided according to some embodiments of the present disclosure.
  • FIG. 14 is a structural diagram of yet another backlight module provided according to some embodiments of the present disclosure.
  • FIG. 15 is a structural diagram of still another backlight module according to some embodiments of the present disclosure.
  • FIG. 16 is a structural diagram of still another backlight module according to some embodiments of the present disclosure.
  • FIG. 17 is a structural diagram of a part of FIG. 16 provided according to some embodiments of the present disclosure.
  • Fig. 18 is a structural diagram of a lampshade provided according to some embodiments of the present disclosure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more.
  • connection and its extensions may be used. For example, the term “connected” may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the exemplary embodiments are described herein with reference to cross-sectional views and/or plan views as idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Therefore, variations in the shape with respect to the drawings due to, for example, manufacturing technology and/or tolerances can be envisaged. Therefore, the exemplary embodiments should not be construed as being limited to the shape of the area shown herein, but include shape deviations due to, for example, manufacturing.
  • an etched area shown as a rectangle will generally have curved features. Therefore, the areas shown in the drawings are schematic in nature, and their shapes are not intended to show the actual shape of the area of the device, and are not intended to limit the scope of the exemplary embodiments.
  • the transparent display device When the transparent display device is working, it can display images (also called images or pictures) so that the viewer can see the images displayed by the transparent display device and the real scene on the side of the transparent display device away from the viewer (for example, a pendulum). Objects placed there, passers-by, etc.); when the transparent display device is in a non-working state, it is in a transparent or semi-transparent state, like a piece of glass, the viewer can see the real scene on the other side through the transparent display device.
  • transparent display devices have gradually become more widely used. For example, transparent display devices can be used in vehicle displays, window displays, shopping mall advertising, museum displays, refrigerator doors, architectural media and other occasions.
  • the transparent display device 100 may be applied to a car window.
  • part or all of the front windshield may be replaced with a transparent display device, or the transparent display device 100 may be attached to the front windshield to cover part or all of the front windshield.
  • Replacing part of the front windshield with a transparent display device means that an opening can be provided on the front windshield, and then the transparent display device 100 can be embedded in the opening.
  • FIG. 1 shows a situation in which the transparent display device 100 is embedded on the window frame of the front window of a car, so that the transparent display device 100 not only functions as a front windshield, but also can display images.
  • the dashboard information of the car and the navigation information of the map can be displayed on the front window of the car, so that the driver can view the dashboard and the map at the same time. Seeing the road ahead provides drivers with a better driving experience.
  • the transparent display device 100 can be applied to a window display cabinet (also called a display cabinet).
  • the window display cabinet includes a box body and a transparent display provided on one side of the box body.
  • the box has a certain accommodating space, which can be used to place items to be displayed.
  • the side surface of the window display cabinet provided with the transparent display device 100 can be called the display surface.
  • the item to be displayed is taken as an example of a laptop computer.
  • the display surface of the window display cabinet can display the parameters of the item to be displayed, Information such as prices and application scenarios enables viewers to have a deeper understanding of the product.
  • the article provides better ambient light; a part of it can be emitted from the display surface through the transparent display device 100, thereby increasing the brightness of the transparent display device 100.
  • an opening or groove may be provided on the refrigerator door, and the transparent display device 100 may be arranged in the opening or groove.
  • the transparent display device 100 can be The human-computer interaction interface is displayed, and the user can operate on the transparent display device through the human-computer interaction interface, and the transparent display device senses the user's operation through the touch structure.
  • the temperature and temperature adjustment image set by the user are displayed on the transparent display device.
  • the user can adjust the set temperature by pressing the temperature adjustment image.
  • the control interface of the audio player can be displayed on the transparent display device. The operation on the control interface can open the audio player to play audio, which expands the applicable scope of the transparent display device.
  • the transparent display device may be a transparent liquid crystal display device, where the liquid crystal display device includes a plurality of pixels, and each pixel may include a plurality of sub-pixels (also referred to as sub-pixels) of different colors, for example, including red (R) sub-pixels.
  • the pixels, green (G) sub-pixels and blue (B) sub-pixels may further include white (W) sub-pixels, and by controlling the gray levels of different color sub-pixels, a colorful image can be displayed.
  • the liquid crystal display device can also only support the display of black and white images (for example, it can only display the colors corresponding to 256 gray scales from black to white). At this time, each pixel of the liquid crystal display device can only contain black (B) sub Pixels.
  • the natural light emitted by the backlight module is converted into linearly polarized light after passing through the polarizer, and the linearly polarized light becomes elliptically polarized light or circularly polarized light after passing through the liquid crystal layer with optical rotation function.
  • the polarized light passes through the analyzer, and is emitted in the same direction as the transmission axis of the analyzer (that is, the direction of the vibration).
  • the degree of optical rotation of the part of the liquid crystal layer located in the sub-pixel depends on the magnitude of the electric field applied to it. As the applied electric field changes, the degree of optical rotation of linearly polarized light also changes.
  • a color filter also called a color filter film
  • a color filter film needs to be provided on the light path through which the light emitted by the backlight module passes.
  • the related art provides a transparent liquid crystal display device 200, which includes a backlight module 2, a lower polarizer 3, a liquid crystal display panel 1, and an upper polarizer 4 that are stacked. Due to the polarizing effect of the lower polarizer 3, the backlight module 2 in the liquid crystal display device 200 loses more than 50% of the light incident on the liquid crystal display panel through the lower polarizer 3, plus the liquid crystal display panel 1 and the upper polarizer. 4, the transmittance of the light emitted by the backlight module 2 in the liquid crystal display device 200 is only about 7%-9%.
  • the viewer usually wants to see the real scene behind the liquid crystal display device 200, and the light scattered by the real scene needs to pass through the entire liquid crystal display device 200. It is conceivable that compared to the backlight module 2 The transmittance of the emitted light is lower, so that the viewer cannot see the image behind the liquid crystal display device 200 through the liquid crystal display device 200, and the transparent display effect is poor.
  • the improvement of the transmittance of the liquid crystal display device 200 mainly depends on improving the transmittance of the materials of the components of the liquid crystal display device 1 (for example, the glass substrate in the liquid crystal display panel 1 and the light guide plate in the backlight module 2).
  • the transmittance of the existing materials used in the components of the liquid crystal display device 200 has almost reached the limit, and the measure of changing the transmittance of the material has a small increase in the transmittance of the liquid crystal display device 200, generally It is about 2% to 4%.
  • this measure to increase the transmittance results in a huge increase in the cost of the product, which is of poor practical application significance.
  • some embodiments of the present disclosure provide a liquid crystal display device 300, which includes an edge-lit backlight module 7, a liquid crystal display panel 8, and a liquid crystal display panel 8 arranged far away from the liquid crystal display panel.
  • the analyzer 9 on one side of the edge-type backlight module 7.
  • the orthographic projection of the display area of the liquid crystal display panel 8 on the backlight module 7 is within the edge of the light guide plate 71.
  • the side-lit backlight module 7 provides linearly polarized light for the liquid crystal display device 300.
  • the polarization direction of the linearly polarized light and the direction of the transmission axis of the analyzer 9 (also referred to as the transmission direction) are perpendicular or parallel to each other, so as to satisfy The display requirements of the liquid crystal display device 300.
  • the main structure of the liquid crystal display panel 8 includes a display substrate 81 (also referred to as an array substrate), a counter substrate 82, and a counter substrate 82 disposed between the display substrate 81 and the counter substrate 82. Between the liquid crystal layer 83.
  • the display substrate 81 includes a thin film transistor 811, a pixel electrode 812 and a common electrode 813 provided on the first substrate 810.
  • the pixel electrode 812 and the common electrode 813 can be arranged on different layers.
  • the liquid crystal display device 6 is a fringe field switching (FFS) display device or an advanced super dimensional switching (AD-SDS or ADS) display device. ) A display device.
  • FFS fringe field switching
  • AD-SDS or ADS advanced super dimensional switching
  • a first insulating layer 818 is provided between the pixel electrode 812 and the common electrode 813.
  • the common electrode 813 is provided between the thin film transistor 811 and the pixel electrode 812, as shown in FIG.
  • a second insulating layer 815 is further provided between the common electrode 813 and the thin film transistor 811.
  • the liquid crystal display device 6 is an in-plane switching (IPS) display device.
  • the pixel electrode 812 and the common electrode 813 may be arranged on the same layer.
  • the pixel electrode Both the 812 and the common electrode 813 are comb-tooth structures including a plurality of strip-shaped sub-electrodes.
  • the liquid crystal display device 6 is a twisted nematic (TN) display device.
  • the common electrode 813 is disposed on the opposite substrate 82.
  • the counter substrate 82 includes a second substrate 820 and a color filter layer 821 disposed on the second substrate 820.
  • the counter substrate 82 may also be referred to as a color film substrate (Color filter, CF for short).
  • the color filter layer 821 at least includes a plurality of filter units, and the plurality of filter units are located in a plurality of sub-pixels in a one-to-one correspondence.
  • the plurality of filter units include a first color filter unit, a second color filter unit, and a third color filter unit.
  • the first color, the second color, and the third color are three primary colors, such as red, green, and blue.
  • the opposite substrate 82 further includes a black matrix pattern 822 disposed on the second substrate 820, and the black matrix pattern 822 is used to space a plurality of filter units.
  • the color filter layer 821 may also be disposed on the first substrate 810 as a component of the array substrate 81. In this case, the black matrix pattern 822 may not be provided in the liquid crystal display device 6.
  • an edge-lit backlight module 7 including a light guide plate 71, a polarizer 72 and a light source 73.
  • the light guide plate 71 has a side surface 71 a
  • the polarizer 72 is disposed opposite to the side surface 71 a of the light guide plate 71
  • the light source 73 is disposed on the side of the polarizer 72 away from the light guide plate 71.
  • the polarizer 72 is configured to convert the light emitted by the light source 73 into linearly polarized light.
  • the light guide plate 71 includes a first bottom surface 71b and a second bottom surface 71c disposed oppositely, and a side surface 71a connecting the first bottom surface 71b and the second bottom surface 71c.
  • the first bottom surface 71b is the light-emitting surface of the light guide plate 71, that is, the surface closer to the liquid crystal display panel than the second bottom surface 71c.
  • the first bottom surface 71b may be rectangular, and at this time, the light guide plate 71 has four side surfaces 71a.
  • the edge-lit backlight module 7 shown in FIG. 7 includes a polarizer 72 and a light source 73, and the polarizer 72 is disposed opposite to one side surface 71a.
  • the edge-lit backlight module 7 shown in FIG. 8 includes two polarizers 72 and two light sources 73, and the two polarizers 72 and the two light sources 73 are respectively parallel to the two sides 71a of the light guide plate 71.
  • the arrangement of one polarizer 72 and one light source 73 can refer to FIG. 7.
  • the working principle of the light guide plate 71 is that the light incident from the side surface 71a of the light guide plate 71 is distributed in the entire light guide plate 71 by total reflection, in order to make the light incident from the side surface 71a from the first A bottom surface 71b is emitted, and the total reflection of light needs to be changed to random reflection.
  • light guide points may be arranged on the second bottom surface 71c, and the total reflection of light is changed to random reflection.
  • the light guide plate 71 shown in FIG. 9A is flat and its cross-sectional shape is rectangular; the light guide plate 71 shown in FIG. 9B is wedge-shaped and its cross-sectional shape is a right-angled trapezoid.
  • the light guide plate 71 includes a light guide plate body 711 and a plurality of scattering particles 712 dispersedly arranged in the light guide plate body 711.
  • the plurality of scattering particles 712 are configured to scatter light, so that the light The total reflection is changed to chaotic reflection.
  • the light emitted from the light source 73 in FIG. 9C is taken as an example of collimated light parallel to the light-emitting surface 71a of the light guide plate 71, and the light emitted from the light source 73 may also be divergent light with a certain divergence angle. Compared with divergent light, when the light emitted by the light source 73 is collimated light, more light passes through the polarizer 72 and enters the light guide plate 71, and the utilization rate of the light source 73 is higher.
  • the scattering particles 712 are configured to scatter light. At least part of the light incident on the surface of the scattering particle 712 passes through the scattering particle 712, deviates from its original propagation direction, and exits the light exit surface 71b of the light guide plate 71. In some embodiments, a small amount of light that has not passed through the scattering particles 712 is allowed to exit from one side 71a of the light guide plate 71 away from the light source 73 (the rightmost side 71a of the light guide plate 71 in FIG. 9C).
  • the shape of the scattering particles is a shape formed by splicing the bottom surfaces of two cones with the same shape and size.
  • the shape of the scattering particles is a regular octahedron, or a shape formed by splicing the bottom surfaces of two regular quadrangular pyramids with the same shape and size; as another example, as shown in the figure
  • the shape of the scattering particles is a quadrangular prism.
  • the cross section of the scattering particles 712 may all be rhombus.
  • the light guide plate 71 composed of the light guide plate body 711 and the scattering particles 712 has a higher utilization rate of light and a better light scattering ability.
  • the particle size of the at least one scattering particle ranges from 1 nm to 100 nm.
  • the particle size of the scattering particles is 20 nm, 35 nm, 50 nm or 75 nm.
  • the particle size of different scattering particles can be the same or different.
  • the material of the plurality of scattering particles includes one or more of metals, metal compounds, and nano-polymer materials.
  • the above-mentioned scattering particles may be added to the light guide plate 71 shown in FIG. 9A or FIG. 9B to enhance the light scattering effect.
  • the light guide plate 71 is transparent.
  • the edge-lit backlight module 7 provided by some embodiments of the present disclosure can make the edge-lit backlight module 7 emit polarized light by arranging a polarizer 72 between the light guide plate 71 and the light source 73.
  • the light emitted by the light source 73 forms linearly polarized light after passing through the polarizer 72. Since the light guide plate 71 is an amorphous solid, the linearly polarized light does not change its polarization characteristics when propagating inside the light guide plate 71.
  • the edge-lit backlight module 7 can provide linearly polarized light for the liquid crystal display device 300, so the first polarizer near the backlight module in the liquid crystal display device 300 does not need When the lower polarizer is set, only the analyzer 9 far away from the backlight module is required to ensure the normal operation of the liquid crystal display device 300. In this way, the light transmittance of the liquid crystal display device 300 can be increased, so that the viewer can see the scene behind the liquid crystal display device 300 more clearly while seeing the image displayed on the liquid crystal display device 6.
  • the polarizer 72 is one of an iodine-based polarizer, a dye-based polarizer, and a metal wire grid polarizer.
  • iodine-based polarizers or dye-based polarizers are collectively referred to as polarizers.
  • the polarizer includes a polyvinyl alcohol (Polyvinyl Alcoho, PVA) layer disposed in the middle, and a tri-cellulose acetate (TAC) layer disposed on both sides of the polyvinyl alcohol layer. And a protective layer arranged on the side of one of the cellulose triacetate layers away from the polyvinyl alcohol layer.
  • Iodine-based polarizers combine the PVA layer with iodine molecules, and are easy to obtain optical properties such as high transmittance and high degree of polarization, but have poor high temperature and high humidity resistance.
  • Dye-based polarizers absorb dichroic organic dyes on the PVA layer, and it is not easy to obtain optical properties such as high transmittance and high degree of polarization, but they have better high temperature and high humidity resistance.
  • the dye-based polarizer is a bidirectional dye-based polarizer.
  • the metal wire grid polarizer includes a plurality of metal grid bars a that are parallel to each other.
  • the direction is the x axis.
  • the light source emits light transmitted along the z-axis, dividing the light into polarized light with the electric field direction along the x-axis and polarized light with the electric field direction along the y-axis.
  • the polarized light with the electric field direction along the y-axis can excite electrons to oscillate along the y-axis, so that this part of the polarized light will be reflected; or, where the polarized light with the electric field direction along the y-axis will drive the free electrons on the metal grid a
  • the movement is converted into heat energy due to the collision, that is, this part of the energy of the polarized light is absorbed by the metal grid a.
  • the polarized light with the electric field direction along the x-axis cannot excite the electrons to oscillate along the x-axis, so that this part of the polarized light passes through the metal wire grid polarizer; or, the electric field of the polarized light with the electric field direction along the x-axis cannot drive the metal grid.
  • the movement of free electrons on a that is, the energy of this part of the polarized light will not be absorbed by the metal grid a. Therefore, the light transmitted through the metal wire grid polarizer is left with only the polarized light polarized in the x-axis direction, forming linearly polarized light.
  • the embodiment of the present disclosure does not limit the material used to make the metal wire grid polarizer.
  • it may be a simple metal such as copper or iron, or a metal alloy. .
  • the polarizer 72 is fixed on the side surface 71a of the light guide plate 71, that is, the position of the polarizer 72 and the side surface 71a of the light guide plate 71 will not move relative to each other.
  • the polarizer 72 can be directly fabricated on the side surface 71a of the light guide plate 71, for example, it can be fabricated by a patterning process; the polarizer 72 can also be adhered to the side surface 71a of the light guide plate 71.
  • the patterning process refers to a process of patterning the formed thin film to obtain a patterned layer, and includes, for example, film formation, photolithography (including glue coating, mask exposure and development), etching, and glue removal.
  • the polarizer 72 when the polarizer 72 is a polarizer 72a, as shown in FIGS. 12A and 13A, the polarizer 72 is attached to the side surface 71a of the light guide plate 71 through an adhesive layer 74.
  • the glue layer 74 may include a heat dissipation material.
  • the material of the glue layer may be mainly composed of at least one of silica gel, silicone grease, silicone grease, and the like. Since the light source 73 emits heat while emitting light, and silica gel, silicone grease, silica gel, or silicone grease has a heat dissipation effect, it can avoid the occurrence of the polarizer 72a due to high temperature when the side-type backlight module 7 works for a long time. Defects such as warpage.
  • the side surface 71a of the light guide plate 71 (the edge of the side surface 71a opposite to the polarizer 72a is within the edge of the polarizer 72a, that is, the polarizer 72a completely covers the light guide plate 71).
  • the side surface 71a of the light source 73 ensures that all the light incident on the light guide plate 71 from the light source 73 through the side surface 71a of the light guide plate 71 and the polarizer 72 is linearly polarized light.
  • the orthographic projection of the edge of the polarizer 72a on the side surface 71a of the light guide plate 71 coincides with or substantially overlaps with the edge of the side surface 71a of the light guide plate 71.
  • the side surface 71a of the light guide plate 71 includes four sides
  • the polarizer 72a includes four sides
  • each of the four sides of the side surface 71a of the light guide plate 71 is between the side of the corresponding polarizer 72a.
  • the distance d may be the same or different.
  • the length of the side surface 71a of the light guide plate 71 is usually small, so errors are more likely to occur when attaching the polarizer 72a.
  • a certain distance is set between the edge of the side surface 71a and the edge of the polarizer 72a. In this way, even if an error occurs when the polarizer 72a is attached to the edge of the side surface 71a of the light guide plate 71, it can ensure that the light source 73 passes through the light guide plate 71.
  • the light incident on the light guide plate 71 from the side surface 71a and the polarizer 72 is all linearly polarized light.
  • the distance d between the edge of the side surface 71a of the light guide plate 71 and the edge of the polarizer 72a is greater than or equal to 0.2 mm.
  • the metal wire grid polarizer 72b is a metal pattern layer fabricated on the side surface 71a of the light guide plate 71.
  • the process of making the metal pattern layer includes forming a metal thin film, and forming the metal pattern layer by patterning the metal thin film.
  • patterning the metal film refers to coating photoresist on the surface of the metal film, and exposing and developing the photoresist with a mask corresponding to the metal pattern layer, and then applying photoresist to the metal film. Perform etching to form a metal pattern layer.
  • the metal film can be formed by vacuum magnetron sputtering.
  • Vacuum magnetron sputtering is one of physical vapor deposition (Physical Vapor Deposition, PVD), and it can also be made by other methods such as vacuum evaporation or ion plating.
  • the metal thin film is not limited in the embodiments of the present disclosure.
  • the edge-lit backlight module 7 further includes a lampshade 732 that is arranged on the light-emitting side of the light source 73; as shown in Figures 15-18, the lampshade 732 includes a light source 73 The opposite transparent plate 7321 and the connecting portion 7322 connecting the transparent plate 7321 and the light source 73.
  • the transparent plate 7321 includes an inner surface i close to the light source and an outer surface o away from the light source.
  • the polarizer 72 is fixed on the inner surface of the transparent plate 7321
  • the i upper or polarizer 72 is fixed on the outer surface o of the transparent plate 7321.
  • the polarizer 72 when the polarizer 72 is a polarizer 72a, the polarizer 72a is pasted on the surface of the transparent plate 7321 near or far from the light source 73 through the second adhesive layer 75 .
  • the second adhesive layer 75 may include a heat dissipation material. Wherein, the material and function of the second adhesive layer 75 are the same as or substantially the same as the first adhesive layer 74, and will not be repeated here.
  • the edge of the transparent plate 7321 is within the edge of the polarizer 72a, that is, the polarizer 72a completely covers the transparent plate 7321, or the edge of the polarizer 72a is transparent.
  • the edges of the plate 7321 overlap, and on this basis, it is ensured that all the light incident from the light source 72 through the transparent plate 7321 to the light guide plate 71 is linearly polarized light.
  • the metal wire grid polarizer 72b when the polarizer 72 is a metal wire grid polarizer 72b, the metal wire grid polarizer 72b includes a substrate layer and a metal grid bar disposed on the substrate layer.
  • the substrate layer can be pasted on the transparent board 7321 through an adhesive layer.
  • the lampshade 732 can play a role in protecting the light source 73 and condensing light, thereby improving the utilization rate of the light emitted by the light source 73.
  • the light source 73 can be configured as an LED light bar.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种侧入式背光模组(7),涉及显示技术领域,包括导光板(71)、起偏器(72)和光源(73)。导光板(71)具有侧面(71a)。起偏器(72)与导光板(71)的侧面(71a)相对设置。光源(73)设置在起偏器(72)远离导光板(71)的一侧。其中,起偏器(72)被配置为将光源(73)向所述导光板(71)发出的光转换成线偏振光。还提供一种液晶显示装置(300),包括侧入式背光模组(7)。

Description

背光模组及液晶显示装置
本申请要求于2020年4月29日提交的、申请号为202020691717.6的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种背光模组及液晶显示装置。
背景技术
液晶显示器(Liquid Crystal Display,LCD)通常包含液晶显示面板和为液晶显示面板提供背光的背光模组(也可称为背光源)。相对于直下式背光模组,侧入式背光模组更轻薄,因此手机、笔记本电脑、台式机电脑等中小尺寸产品大都采用侧入式背光模组。此外,大尺寸产品,例如大尺寸TV(电视机)中,也有部分采用侧入式背光模组。
发明内容
一方面,提供一种侧入式背光模组。所述侧入式背光包括导光板、起偏器和光源。所述导光板具有侧面。所述起偏器与所述导光板的侧面相对设置。所述光源设置在所述起偏器远离所述导光板的一侧。
其中,所述起偏器被配置为将所述光源向所述导光板发出的光转换成线偏振光。
基于此,本公开的一些实施例提供的侧入式背光模组,通过在导光板和光源之间设置起偏器,能够使侧入式背光模组出射线偏振光。光源出射的光在经过起偏器后形成线偏振光,由于导光板为非晶态固体,因而线偏振光在导光板内部传播时并不会改变其偏振特性,因此,在将侧入式背光模组应用于液晶显示装置时,侧入式背光模组能够为液晶显示装置提供线偏振光,因而在液晶显示装置中无需设置靠近背光模组的第一偏光片,只需设置远离背光模组的检偏器,即可保证液晶显示装置的正常工作。这样一来,能够提高液晶显示装置的透光率,使观看者在看到液晶显示装置中显示的图像的同时,更清楚的看到液晶显示装置背后的景象。
在一些实施例中,所述起偏器固定在所述导光板的侧面上。
在一些实施例中,所述侧入式背光模组还包括罩设在所述光源发光侧的灯罩。所述灯罩包括与所述光源相对的透明板,以及将所述透明板与所述光源连接的连接部,所述透明板包括靠近光源的内侧表面和远离光源的外侧表面,所述起偏器设置在所述透明板的内侧表面上或者外侧表面上。
在一些实施例中,所述起偏器为碘系偏光片、染料系偏光片和金属线栅 偏振器中的一种。
在一些实施例中,在所述起偏器为碘系偏光片或染料系偏光片的情况下,所述起偏器通过第一胶层粘贴于所述导光板的侧面,所述第一胶层的材料包括散热材料。
在一些实施例中,所述导光板的侧面在所述碘系偏光片上的正投影在所述碘系偏光片的边缘以内,或者所述导光板的侧面在所述染料系偏光片的正投影在所述染料系偏光片的边缘以内。
在一些实施例中,在所述起偏器为第一偏光片的情况下,所述第一偏光片通过第二胶层粘贴在透明板靠近或远离所述光源的一侧表面上,所述第二胶层的材料包括散热材料。
在一些实施例中,在所述起偏器为金属线栅偏振器的情况下,所述起偏器为制作于所述导光板的侧面上的金属图案层。
或者,在所述侧入式背光模组还包括罩设在所述光源发光侧的灯罩,所述灯罩包括与所述光源相对的透明板的情况下,所述起偏器为制作于所述透明板靠近或远离所述光源的表面上的金属图案层。
在一些实施例中,所述导光板包括导光板本体和分散设置在所述导光板本体中的多个散射粒子,所述多个散射粒子被配置为散射光线。
在一些实施例中,所述导光板是透明的。
另一方面,提供一种显示装置。所述显示装置包括:如上述任一实施例所述的侧入式背光模组、液晶显示面板和检偏器。所述检偏器设置在所述液晶显示面板远离所述侧入式背光模组一侧。
其中,所述起偏器的透射轴与所述检偏器的透射轴互相垂直或平行。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据本公开的一些实施例提供的透明显示装置应用于汽车车窗的结构图;
图2为根据本公开的一些实施例提供的透明显示装置应用于橱窗展示柜的结构图;
图3为根据本公开的一些实施例提供的透明显示装置应用于冰箱门的结构图;
图4为根据相关技术的一些实施例提供的一种显示装置的结构图;
图5为根据本公开的一些实施例提供的显示装置的结构图;
图6为根据本公开的一些实施例提供的一种液晶显示面板的结构图;
图7为根据本公开的一些实施例提供的一种背光模组的结构图;
图8为根据本公开的一些实施例提供的另一种背光模组的结构图;
图9A为根据本公开的一些实施例提供的一种背光模组的工作原理图;
图9B为根据本公开的一些实施例提供的另一种背光模组的工作原理图;
图9C为根据本公开的一些实施例提供的再一种背光模组的工作原理图;
图10为根据本公开的一些实施例提供的散射粒子的结构图;
图11为根据本公开的一些实施例提供的金属线栅偏振器的工作原理图;
图12A为根据本公开的一些实施例提供的一种显示装置的结构图;
图12B为根据本公开的一些实施例提供的图12A中部分的结构图;
图13A为根据本公开的一些实施例提供的再一种背光模组的结构图;
图13B为根据本公开的一些实施例提供的图13A中部分的结构图;
图14为根据本公开的一些实施例提供的又一种背光模组的结构图;
图15为根据本公开的一些实施例提供的再一种背光模组的结构图;
图16为根据本公开的一些实施例提供的又一种背光模组的结构图;
图17为根据本公开的一些实施例提供的图16中部分的结构图;
图18为根据本公开的一些实施例提供的灯罩的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包 括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。
如本文所使用的那样,“约”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
透明显示装置在工作状态时,能够显示影像(也可称为图像或画面),以使观看者可以看到透明显示装置显示的影像以及透明显示装置背离观看者一侧的真实场景(例如,摆放在那里的物体、经过的路人等);透明显示装置在非工作状态时,处于透明或者半透明状态,像一块玻璃一样,观看者可以透过透明显示装置看到另一侧的真实场景。随着显示行业的发展,透明显示装置逐渐得到更广泛的应用,例如:可以将透明显示装置应用于车载显示、 橱窗展示、商场广告宣传、博物馆陈列、冰箱门、建筑媒体等场合。
在一些实施例中,如图1所示,可以将透明显示装置100应用于汽车车窗。例如可以将前挡风玻璃的部分或者全部替换为透明显示装置,也可以将透明显示装置100贴附于前挡风玻璃上,覆盖前挡风玻璃的部分或者全部。将前挡风玻璃的部分替换为透明显示装置指的是可以在前挡风玻璃上设置开口,再将透明显示装置100嵌入在开口中。图1示出了将透明显示装置100嵌入在汽车前窗的窗框上的情况,这样透明显示装置100既起到前挡风玻璃的作用,又能显示图像。当透明显示装置应用于汽车前窗时,如图1所示,可以将汽车的仪表盘的信息、地图的导航信息等显示在汽车前窗上,使驾驶者在查看仪表盘和地图的同时能够看到前方道路,为驾驶者提供更好的驾驶体验。
在另外一些实施例中,如图2所示,可以将透明显示装置100应用于橱窗展示柜(也可以称为展示柜)中,橱窗展示柜包括箱体以及设置在箱体一侧的透明显示装置100,箱体具有一定的容纳空间,可以用于放置待展示物品。该橱窗展示柜中设置有透明显示装置100的一侧表面可以称为展示面,在图2中,以待展示物品为笔记本电脑进行示例,橱窗展示柜的展示面可以显示待展示物品的参数、价格以及应用场景等信息,使观看者能够更深入地了解产品。同时,也可将箱体的至少部分内侧表面设置成白色,这样一来,散射至箱体的容纳空间的光线中的一部分可以被箱体的内侧表面反射至待展示物品上,能够为待展示物品提供更好的环境光线;还有一部分可以透过透明显示装置100从展示面射出,从而提高透明显示装置100的亮度。
在又一些实施例中,如图3所示,可以在冰箱门上设置一开口或凹槽,将透明显示装置100设置在开口或凹槽中。此外,可以将触控结构和音频播放器等中的至少一个集成在透明显示装置100中,这样一来,即便用户不打开冰箱门也可以观察到冰箱内的情况,并且,透明显示装置上可以显示人机交互界面,用户可以通过人机交互界面在透明显示装置上进行操作,透明显示装置通过触控结构感应到用户的操作。例如,将用户设定的温度和调温图像显示在透明显示装置上,用户可以通过按压调温图像调整设定的温度,另外可以将音频播放器的控制界面显示在透明显示装置上,通过在该控制界面上操作可以打开音频播放器以播放音频,扩展了透明显示装置的适用范围。
透明显示装置可以是透明的液晶显示装置,其中,液晶显示装置包括多个像素,每个像素可包括多个不同颜色的亚像素(也可称为子像素),例如,包括红色(R)亚像素、绿色(G)亚像素和蓝色(B)亚像素,还可以进一 步包括白色(W)亚像素,通过控制不同颜色亚像素的灰度,以显示丰富多彩的图像。当然,液晶显示装置也可以仅支持显示黑白画面(例如仅可显示由黑到白的256种灰度对应的颜色),此时,液晶显示装置的每个像素中可以仅包含黑色(B)亚像素。
下面,介绍液晶显示装置的显示原理。
在液晶显示装置中,背光模组出射的自然光经过起偏器之后转化为线偏振光,线偏振光经过具有旋光作用的液晶层后变为椭圆偏振光或圆偏振光,该椭圆偏振光或圆偏振光经过检偏器,与检偏器的透射轴的方向(即透振方向)相同的部分射出。其中,对于一个亚像素而言,液晶层位于该亚像素中部分的旋光程度取决于对其施加的电场的大小,随着被施加电场变化,对线偏振光旋光程度的大小也随之变化,从而该亚像素显示的灰度也发生变化。此外,若要实现彩色显示,那么在背光模组出射的光线所经的光路上,还需要设置彩色滤光片(也称为彩色滤光膜),例如彩色滤光片设置于液晶层与检偏器之间,或者设置于起偏器和液晶层之间等,使得一个像素中的不同亚像素可以发出不同颜色的光线。
如图4所示,相关技术中提供了一种透明的液晶显示装置200,包括层叠设置的背光模组2、下偏光片3、液晶显示面板1和上偏光片4。由于下偏光片3的起偏作用,导致液晶显示装置200中的背光模组2通过下偏光片3入射至液晶显示面板的光线损失在50%以上,再加上液晶显示面板1和上偏光片4的光线损失,液晶显示装置200中背光模组2所发出光线的透过率只有7%~9%左右。对于透明的液晶显示装置200而言,通常观看者希望看到液晶显示装置200背后的真实场景,而真实场景散射的光线需要经过整个液晶显示装置200,可想而知,相比于背光模组2所发出光线而言其透过率更低,从而导致观看者无法透过液晶显示装置200看清液晶显示装置200背后的影像,透明显示效果差。
在相关技术中,液晶显示装置200的透过率的提升主要依靠提升液晶显示装置1中组成部分(例如液晶显示面板1中的玻璃衬底和背光模组2中的导光板)的材料的透过率,但是现有的用于液晶显示装置200中组成部分的材料本身透过率几乎达到极限,且更改材料透过率的措施对液晶显示装置200的透过率的提升幅度较小,一般在2%~4%左右,此外,这种提升透过率的措施造成产品的成本上升巨大,实际应用意义较差。
为了解决上述问题,如图5和图12A所示,本公开的一些实施例提供了一种液晶显示装置300,包括侧入式背光模组7、液晶显示面板8和设置在液 晶显示面板8远离侧入式背光模组7一侧的检偏器9。如图12A所示,液晶显示面板8的显示区在背光模组7上的正投影在导光板71的边缘以内。
侧入式背光模组7为液晶显示装置300提供线偏振光,该线偏振光的偏振方向与检偏器9的透射轴的方向(也可称为透振方向)互相垂直或平行,以满足液晶显示装置300的显示需求。在一些实施例中,如图6所示,液晶显示面板8的主要结构包括显示用基板81(还可称为阵列基板)、对置基板82以及设置在显示用基板81和对置基板82之间的液晶层83。
在一些实施例中,如图6所示,显示用基板81包括设置于第一衬底810上的薄膜晶体管811、像素电极812和公共电极813。像素电极812和公共电极813可以设置在不同层,液晶显示装置6为边缘场切换型(Fringe Field Switching,FFS)显示装置或高级超维场开关型(Advanced-Super Dimensional Switching,AD-SDS或ADS)显示装置,在此情况下,像素电极812和公共电极813之间设置有第一绝缘层818。在公共电极813设置在薄膜晶体管811和像素电极812之间的情况下,如图6所示,公共电极813与薄膜晶体管811之间还设置有第二绝缘层815。在另一些实施例中,液晶显示装置6为共平面切换型(In-plane Switching,IPS)显示装置,示例的,像素电极812和公共电极813可以设置在同一层,在此情况下,像素电极812和公共电极813均为包括多个条状子电极的梳齿结构。
在另一些实施例中,液晶显示装置6为扭曲向列型(Twisted Nematic,TN)显示装置,在此情况下,公共电极813设置在对置基板82上。
如图6所示,对置基板82包括第二衬底820、设置于第二衬底820上的彩色滤光层821,在此情况下,对置基板82也可以称为彩膜基板(Color filter,简称CF)。彩色滤光层821至少包括多个滤光单元,多个滤光单元一一对应的位于多个亚像素中。其中,多个滤光单元包括第一颜色滤光单元、第二颜色滤光单元和第三颜色滤光单元,第一颜色、第二颜色和第三颜色为三基色,例如为红色、绿色和蓝色。对置基板82还包括设置在第二衬底820上的黑矩阵图案822,黑矩阵图案822用于将多个滤光单元间隔开。
在另一些实施例中,彩色滤光层821还可以设置在第一衬底810上,作为阵列基板81的组成部分。在这种情况下,液晶显示装置6中可以不设置黑矩阵图案822。
如图7所示,本公开的一些实施例提供了一种侧入式背光模组7,包括:导光板71、起偏器72和光源73。导光板71具有侧面71a,起偏器72与导光板71的侧面71a相对设置,光源73设置在起偏器72远离导光板71的一侧。 其中,起偏器72被配置为将光源73发出的光线转化成线偏振光。
可以理解的是,如图9A、图9B和图9B所示,导光板71包括相对设置的第一底面71b和第二底面71c,以及将第一底面71b和第二底面71c连接起来的侧面71a。其中,第一底面71b为导光板71的出光面,即相比于第二底面71c靠近液晶显示面板的表面。第一底面71b可以为矩形,此时导光板71具有4个侧面71a。
作为示例,图7示出的侧入式背光模组7中包含一个起偏器72和一个光源73,且起偏器72与一个侧面71a相对设置。图8示出的侧入式背光模组7包括两个起偏器72和两个光源73,且两个起偏器72和两个光源73分别与导光板71的互相平行的两个侧面71a对应,其中一个起偏器72和一个光源73的设置方式可以参照图7。
如图9A、图9B和图9C所示,导光板71的工作原理为从导光板71的侧面71a入射的光线通过全反射分布在整个导光板71中,为了使从侧面71a入射的光线从第一底面71b射出,需将光线的全反射改为乱反射。
在一些实施例中,参考图9A、图9B,可以在第二底面71c上设置导光点(还可称为网点),将光线的全反射改为乱反射。此外,图9A示出的导光板71是平板状,其断面形状为矩形;图9B示出的导光板71是楔形,其断面形状为直角梯形。
在另一些实施例中,参考图9C,导光板71包括导光板本体711和分散设置在导光板本体711中的多个散射粒子712,多个散射粒子712被配置为散射光线,从而可将光线的全反射改为乱反射。
可以理解的是,图9C中以从光源73出射的光为与导光板71的出光面71a平行的准直光进行示例,从光源73出射的光也可以为具有一定发散角度的发散光。相比于发散光而言,当光源73出射的光为准直光时,经过起偏器72的入射至导光板71的光线较多,光源73的利用率更高。
散射粒子712配置为散射光线。至少部分入射至散射粒子712的表面的光经过散射粒子712,偏离其原先的传播方向,从导光板71的出光面71b出射。在一些实施例中,允许少量未经过散射粒子712的光线从导光板71远离光源73的一个侧面71a(图9C中导光板71最右侧的侧面71a)射出。
本公开实施例不对散射粒子的形状进行限定,示例的,如图10中的(a)所示,散射粒子的形状为两个形状和大小均相同的圆锥将底面拼接在一起构成的形状。又示例的,如图10中的(b)所示,散射粒子的形状为正八面体,或者,两个形状和大小均相同的正四棱锥将底面拼接在一起构成的形状;又 示例的,如图10中的(c)所示,散射粒子的形状为四棱柱。其中,散射粒子712的截面均可以为菱形。由导光板本体711和散射粒子712构成的导光板71对光线的利用率更高,对光的散射能力更好。
在一些实施例中,至少一个散射粒子的粒径范围为1nm~100nm。示例的,散射粒子的粒径为20nm、35nm、50nm或者75nm。不同散射粒子的粒径可以相同,也可以不同。
在一些实施例中,多个散射粒子的材料包括金属、金属化合物和纳米高分子材料中的一种或者多种。
在一些实施例中,可在图9A或图9B示出的导光板71中增加上述散射粒子,以增强对光的散射效果。
在一些实施例中,导光板71是透明的。
基于此,本公开的一些实施例提供的侧入式背光模组7,通过在导光板71和光源73之间设置起偏器72,能够使侧入式背光模组7出射线偏振光。光源73出射的光在经过起偏器72后形成线偏振光,由于导光板71为非晶态固体,因而线偏振光在导光板71内部传播时并不会改变其偏振特性,因此,在将侧入式背光模组7应用于液晶显示装置300时,侧入式背光模组7能够为液晶显示装置300提供线偏振光,因而在液晶显示装置300中靠近背光模组的第一偏光片无需设置下偏光片,只需设置远离背光模组的检偏器9,即可保证液晶显示装置300的正常工作。这样一来,能够提高液晶显示装置300的透光率,使观看者在看到液晶显示装置6中显示的图像的同时,更清楚的看到液晶显示装置300背后的景象。
在一些实施例中,起偏器72为碘系偏光片、染料系偏光片和金属线栅偏振器中的一种。
其中,本公开实施例将碘系偏光片或者染料系偏光片统一称为偏光片。偏光片包括设置在中间的聚乙烯醇(Polyvinyl Alcoho,PVA)层,设置在聚乙烯醇层两侧的三醋酸纤维素(Tri-cellulose Acetate,TAC)层。以及设置在其中一层三醋酸纤维素层远离聚乙烯醇层一侧的保护层。碘系偏光片是将PVA层与碘分子相结合,容易获得高透过率以及高偏振度等光学特性,但是耐高温和高湿能力较差。染料系偏光片是将具有二色性的有机染料吸着在PVA层上,不容易获得高透过率以及高偏振度等光学特性,但是耐高温和高湿能力较好。示例的,染料系偏光片为二向性染料系偏光片。
金属线栅偏振器的原理为:如图11所示,金属线栅偏振器包括多个互相平行的金属栅条a,金属栅条a的延伸方向为y轴,垂直于金属栅条a的延伸 方向为x轴。光源发出沿z轴传输的光线,将光线分为电场方向沿x轴的偏振光和电场方向沿y轴的偏振光。电场方向沿y轴的偏振光能够激发电子沿y轴方向振荡,从而使这部分偏振光发生反射;或者,其中,电场方向沿y轴的偏振光的电场会驱动金属栅条a上的自由电子运动,从而因碰撞而转化为热能,即这部分偏振光的能量被金属栅条a吸收。电场方向沿x轴的偏振光不能够激发电子沿x轴方向振荡,从而使这部分偏振光穿过金属线栅偏振器;或者,其中电场方向沿x轴的偏振光的电场无法驱动金属栅条a上的自由电子运动,即这部分偏振光的能量不会被金属栅条a吸收。因此透过金属线栅偏振器的光,仅剩下沿x轴方向偏振的偏振光,形成线偏振光。
在起偏器72为金属线栅偏振器的情况下,本公开实施例不对用于制作金属线栅偏振器的材料进行限制,示例的,可以为铜或者铁等金属单质,也可以为金属合金。
在一些实施例中,如图12A~图13B所示,起偏器72固定在导光板71的侧面71a上,即起偏器72与导光板71的侧面71a的位置不会相对移动。在此基础上,可以在导光板71的侧面71a上直接制作起偏器72,例如可以采用构图工艺制作;也可以将起偏器72粘附在导光板71的侧面71a上。其中,构图工艺是指将形成的薄膜图案化以得到图案层的工艺,例如包括:成膜、光刻(包括涂胶、掩膜曝光和显影)、刻蚀、除胶等工序。
在一些实施例中,在起偏器72为偏光片72a的情况下,如图12A和图13A所示,起偏器72通过胶层74粘贴于导光板71的侧面71a。胶层74可以包括散热材料,例如,胶层的材料可以主要由硅胶、硅脂硅胶和硅脂等中的至少一种组成。由于光源73在发光的同时会有发热的现象,而硅胶、硅脂硅胶或硅脂具有散热作用,能够避免在侧入式背光模组7长时间工作的情况下,偏光片72a由于高温而发生翘曲等不良。
在一些实施例中,如图12A~图13B所示,导光板71的侧面71a(与偏光片72a相对设置的侧面71a的边缘在偏光片72a的边缘以内,即偏光片72a完全覆盖导光板71的侧面71a,保证从光源73经过导光板71的侧面71a和起偏器72入射至导光板71的光全部为线偏振光。
参考图12A和图12B,偏光片72a的边缘在导光板71的侧面71a上的正投影与导光板71的侧面71a的边缘重合或大致重合。
参考图13A和图13B,沿导光板71的侧面71a的边缘的垂直方向,导光板71的侧面71a的边缘与偏光片72a的边缘之间具有一定距离d。其中,导光板71的侧面71a包括四个侧边,偏光片72a包括四个侧边,导光板71的侧 面71a中四个侧边中的每一个侧边与对应的偏光片72a的侧边之间的距离d可以相同也可以不相同,沿导光板71的厚度方向,导光板71的侧面71a的长度通常较小,因此在贴附偏光片72a时较容易出现误差,通过在导光板71的侧面71a的边缘与偏光片72a的边缘之间设置一定距离,这样一来,即使在导光板71的侧面71a的边缘贴附偏光片72a时出现误差,也能够保证从光源73经过导光板71的侧面71a和起偏器72入射至导光板71的光全部为线偏振光。
在另一些实施例中,沿导光板71的侧面71a的边缘的垂直方向,导光板71的侧面71a的四个边缘中部分边缘与偏光片72a的边缘之间的距离d。
在一些实施例中,如图13A和图13B所示,导光板71的侧面71a的边缘与偏光片72a的边缘之间的距离d大于或等于0.2mm。
在一些实施例中,导光板71的厚度通常为2mm左右,在综合考虑了导光板71的厚度和贴附偏光片72a的可能出现的误差的情况下,将导光板71的侧面71a的边缘与第一偏光片72的边缘之间的距离d设置为大于或等于0.2mm。
在一些实施例中,在起偏器72为金属线栅偏振器72b的情况下,如图14所示,金属线栅偏振器72b为制作在导光板71的侧面71a上的金属图案层。
其中,制作金属图案层的过程包括,形成金属薄膜,通过对金属薄膜图案化形成金属图案层。在一些实施例中,对金属薄膜进行图案化是指,通过在金属薄膜的表面涂覆光刻胶,并用与金属图案层对应的掩膜板对光刻胶进行曝光、显影,再对金属薄膜进行刻蚀形成金属图案层。
可以理解的是,可以采用真空磁控溅射形成金属薄膜,真空磁控溅射为物理气相沉积(Physical Vapour Deposition,PVD)中的一种,也可以采用真空蒸镀或离子镀等其他方式制作金属薄膜,本公开中的实施例对此不做限定。
在另外一些实施例中,金属线栅偏振器72b也可以为金属线栅偏振片,此时,金属线栅偏振片通过胶层粘附在导光板71的侧面71a。
在一些实施例中,如图15和图16所示,侧入式背光模组7还包括罩设在光源73发光侧的灯罩732;如图15~图18所示,灯罩732包括与光源73相对的透明板7321,以及将透明板7321与光源73连接的连接部7322,透明板7321包括靠近光源的内侧表面i和远离光源的外侧表面o,起偏器72固定在透明板7321的内侧表面i上或起偏器72固定在透明板7321的外侧表面o上。
在一些实施例中,如图15和图16所示,在起偏器72为偏光片72a的情 况下,偏光片72a通过第二胶层75粘贴在透明板7321靠近或远离光源73的表面上。第二胶层75可以包括散热材料。其中,第二胶层75的材料和作用与第一胶层74相同或者大致相同,在此不再赘述。
在一些实施例中,在起偏器72为偏光片72a的情况下,透明板7321的边缘在偏光片72a的边缘以内,即偏光片72a完全覆盖透明板7321,或者偏光片72a的边缘和透明板7321的边缘重合,在此基础上,保证从光源72经过透明板7321入射至导光板71的光全部为线偏振光。
在一些实施例中,在起偏器72为金属线栅偏振器72b的情况下,金属线栅偏振器72b为制作在透明板7321靠近光源73一侧或远离光源73的一侧的表面上的金属图案层。其中,金属图案层的制作过程可参考前文所述,在此不再赘述。
在另外一些实施例中,在起偏器72为金属线栅偏振器72b的情况下,金属线栅偏振器72b包括基材层和设置在基材层上的金属栅条。可以将基材层通过胶层粘贴在透明板7321上。在此基础上,灯罩732可以起到保护光源73以及聚光的作用,进而可以提高对光源73出射的光线的利用率。
在一些实施例中,由于发光二极管(Light Emitting Diode,LED)具有体积小、寿命长、效率高等优点,可以将光源73配置为LED灯条。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种侧入式背光模组,包括:
    导光板,所述导光板具有侧面;
    起偏器,所述起偏器与所述导光板的侧面相对设置;
    光源,所述光源设置在所述起偏器远离所述导光板的一侧;
    其中,所述起偏器被配置为将所述光源向所述导光板发出的光转换成线偏振光。
  2. 根据权利要求1所述的侧入式背光模组,其中,所述起偏器固定在所述导光板的侧面上。
  3. 根据权利要求1所述的侧入式背光模组,其中,所述侧入式背光模组还包括:罩设在所述光源发光侧的灯罩;所述灯罩包括与所述光源相对的透明板,以及将所述透明板与所述光源连接的连接部,所述透明板包括靠近光源的内侧表面和远离光源的外侧表面,所述起偏器固定在所述透明板内侧表面上或者外侧表面上。
  4. 根据权利要求1~3中任一项所述的侧入式背光模组,其中,所述起偏器为碘系偏光片、染料系偏光片和金属线栅偏振器中的一种。
  5. 根据权利要求4所述的侧入式背光模组,其中,在所述起偏器为碘系偏光片或染料系偏光片的情况下,所述起偏器通过第一胶层粘贴于所述导光板的侧面,所述第一胶层的材料包括散热材料。
  6. 根据权利要求4或5所述的侧入式背光模组,其中,所述导光板的侧面在所述碘系偏光片的正投影在所述碘系偏光片的边缘以内,或者所述导光板的侧面在所述染料系偏光片上的正投影在所述染料系偏光片的边缘以内。
  7. 根据权利要求4所述的侧入式背光模组,其中,在所述起偏器为第一偏光片的情况下,所述第一偏光片通过第二胶层粘贴在透明板靠近或远离所述光源的一侧表面上,所述第二胶层的材料包括散热材料。
  8. 根据权利要求4所述的侧入式背光模组,其中,在所述起偏器为金属线栅偏振器的情况下,
    所述起偏器为制作于所述导光板的侧面上的金属图案层;或者,
    在所述侧入式背光模组还包括罩设在所述光源发光侧的灯罩,所述灯罩包括与所述光源相对的透明板的情况下,所述起偏器为制作于所述透明板靠近或远离所述光源的表面上的金属图案层。
  9. 根据权利要求1~8中任一项所述的侧入式背光模组,其中,所述导光板包括:
    导光板本体;
    分散设置在所述导光板本体中的多个散射粒子,所述多个散射粒子被配置为散射光线。
  10. 根据权利要求1所述的侧入式背光模组,其中,所述导光板是透明的。
  11. 一种液晶显示装置,包括:
    如权利要求1~10中任一项所述的侧入式背光模组;
    液晶显示面板;
    设置在所述液晶显示面板远离所述侧入式背光模组的一侧的检偏器;
    其中,所述起偏器的透射轴与所述检偏器偏光片的透射轴互相垂直或平行。
PCT/CN2021/079819 2020-04-29 2021-03-09 背光模组及液晶显示装置 WO2021218407A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/768,411 US20240118573A1 (en) 2020-04-29 2021-03-09 Backlight module and liquid crystal display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020691717.6U CN212181215U (zh) 2020-04-29 2020-04-29 背光模组及液晶显示装置
CN202020691717.6 2020-04-29

Publications (1)

Publication Number Publication Date
WO2021218407A1 true WO2021218407A1 (zh) 2021-11-04

Family

ID=73765085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079819 WO2021218407A1 (zh) 2020-04-29 2021-03-09 背光模组及液晶显示装置

Country Status (3)

Country Link
US (1) US20240118573A1 (zh)
CN (1) CN212181215U (zh)
WO (1) WO2021218407A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212181215U (zh) * 2020-04-29 2020-12-18 合肥京东方显示技术有限公司 背光模组及液晶显示装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19963915A1 (de) * 1999-12-31 2001-08-09 Bosch Gmbh Robert Hinterleuchtungsvorrichtung
CN1971369A (zh) * 2005-09-29 2007-05-30 卡西欧计算机株式会社 面光源和液晶显示装置
CN102087437A (zh) * 2009-12-08 2011-06-08 乐金显示有限公司 透明液晶显示设备
CN202132807U (zh) * 2011-07-14 2012-02-01 京东方科技集团股份有限公司 背光模组和液晶显示器
CN102495495A (zh) * 2011-10-28 2012-06-13 友达光电股份有限公司 具可透视性的显示装置及其使用的影像显示方法
US20120154711A1 (en) * 2010-12-20 2012-06-21 Jongsin Park Transparent liquid crystal display device
CN103968306A (zh) * 2014-05-27 2014-08-06 深圳市华星光电技术有限公司 背光模组以及液晶显示器
CN104730768A (zh) * 2015-04-09 2015-06-24 京东方科技集团股份有限公司 反射式显示装置及其显示方法
CN105425464A (zh) * 2015-12-28 2016-03-23 武汉华星光电技术有限公司 液晶显示模组
CN105974668A (zh) * 2016-07-22 2016-09-28 京东方科技集团股份有限公司 透明显示装置及其制造方法
CN106773299A (zh) * 2016-12-26 2017-05-31 深圳市华星光电技术有限公司 液晶显示器
WO2017090358A1 (ja) * 2015-11-27 2017-06-01 オムロン株式会社 表示装置
CN108227278A (zh) * 2018-01-02 2018-06-29 京东方科技集团股份有限公司 光学结构和显示装置
CN109683392A (zh) * 2018-11-30 2019-04-26 重庆秉为科技有限公司 可减少光线损耗率的反射式显示装置
CN212181215U (zh) * 2020-04-29 2020-12-18 合肥京东方显示技术有限公司 背光模组及液晶显示装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19963915A1 (de) * 1999-12-31 2001-08-09 Bosch Gmbh Robert Hinterleuchtungsvorrichtung
CN1971369A (zh) * 2005-09-29 2007-05-30 卡西欧计算机株式会社 面光源和液晶显示装置
CN102087437A (zh) * 2009-12-08 2011-06-08 乐金显示有限公司 透明液晶显示设备
US20120154711A1 (en) * 2010-12-20 2012-06-21 Jongsin Park Transparent liquid crystal display device
CN202132807U (zh) * 2011-07-14 2012-02-01 京东方科技集团股份有限公司 背光模组和液晶显示器
CN102495495A (zh) * 2011-10-28 2012-06-13 友达光电股份有限公司 具可透视性的显示装置及其使用的影像显示方法
CN103968306A (zh) * 2014-05-27 2014-08-06 深圳市华星光电技术有限公司 背光模组以及液晶显示器
CN104730768A (zh) * 2015-04-09 2015-06-24 京东方科技集团股份有限公司 反射式显示装置及其显示方法
WO2017090358A1 (ja) * 2015-11-27 2017-06-01 オムロン株式会社 表示装置
CN105425464A (zh) * 2015-12-28 2016-03-23 武汉华星光电技术有限公司 液晶显示模组
CN105974668A (zh) * 2016-07-22 2016-09-28 京东方科技集团股份有限公司 透明显示装置及其制造方法
CN106773299A (zh) * 2016-12-26 2017-05-31 深圳市华星光电技术有限公司 液晶显示器
CN108227278A (zh) * 2018-01-02 2018-06-29 京东方科技集团股份有限公司 光学结构和显示装置
CN109683392A (zh) * 2018-11-30 2019-04-26 重庆秉为科技有限公司 可减少光线损耗率的反射式显示装置
CN212181215U (zh) * 2020-04-29 2020-12-18 合肥京东方显示技术有限公司 背光模组及液晶显示装置

Also Published As

Publication number Publication date
US20240118573A1 (en) 2024-04-11
CN212181215U (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
JP4586869B2 (ja) 液晶表示装置及び電子機器
US9726926B2 (en) Display device having an anisotropic scattering member
JP2006139283A (ja) 液晶ディスプレイ及びその製造方法
US10302986B2 (en) Display device
US20120113362A1 (en) Liquid crystal display
CN107203065B (zh) 彩膜基板、显示面板及装置
KR20160088397A (ko) 헤드업 디스플레이 장치용 액정 표시 장치 및 헤드업 디스플레이 장치
US7830481B2 (en) Liquid crystal display device with retardations of optical films and liquid crystal layer
JP2008145525A (ja) 液晶装置及び電子機器
JP2008090173A (ja) 表示装置
WO2015000269A1 (zh) 一种阵列基板、液晶显示屏及显示装置
KR20060086174A (ko) 일체형 액정 표시 장치
JP2017027004A5 (zh)
KR20150000743A (ko) 표시장치 및 이의 제조방법
KR20120075877A (ko) 액정 디스플레이 패널 및 이를 포함하는 장치
US20060033859A1 (en) Liquid crystal display device
JP2011002596A (ja) 液晶表示装置
WO2021218407A1 (zh) 背光模组及液晶显示装置
JP2001318367A (ja) 表示素子
JP2007047206A (ja) 光学シート、電界制御型パネル、照明装置、液晶表示装置、および光学シートの製造方法
JP2017151260A (ja) 表示装置
JP5636201B2 (ja) 表示パネルまたは表示パネルを用いた表示装置
KR20120038863A (ko) 액정표시장치
JP2014211457A (ja) 液晶表示装置
JP2008076503A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797349

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17768411

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797349

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21797349

Country of ref document: EP

Kind code of ref document: A1