WO2021218397A1 - 用于实现业务连续性的方法及相关设备 - Google Patents

用于实现业务连续性的方法及相关设备 Download PDF

Info

Publication number
WO2021218397A1
WO2021218397A1 PCT/CN2021/079715 CN2021079715W WO2021218397A1 WO 2021218397 A1 WO2021218397 A1 WO 2021218397A1 CN 2021079715 W CN2021079715 W CN 2021079715W WO 2021218397 A1 WO2021218397 A1 WO 2021218397A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
data packet
application server
network element
user plane
Prior art date
Application number
PCT/CN2021/079715
Other languages
English (en)
French (fr)
Inventor
熊春山
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to EP21797348.6A priority Critical patent/EP4024922A4/en
Publication of WO2021218397A1 publication Critical patent/WO2021218397A1/zh
Priority to US17/708,686 priority patent/US20220224646A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • H04L45/745Address table lookup; Address filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/2514Translation of Internet protocol [IP] addresses between local and global IP addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/2521Translation architectures other than single NAT servers
    • H04L61/2532Clique of NAT servers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/2557Translation policies or rules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/142Reselecting a network or an air interface over the same radio air interface technology
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method and device for realizing business continuity, user plane function network elements, user equipment, electronic equipment, and computer-readable storage media.
  • the embodiments of the present disclosure provide a method and device for realizing business continuity, user-plane function network elements, user equipment, electronic equipment, and computer-readable storage media, which can maintain business performance when the user equipment or application server is migrated. Continuity.
  • the embodiment of the present disclosure provides a method for achieving business continuity, which is executed by a session management function network element.
  • the method includes: receiving a target relocation message, the target relocation message carrying target data routing information, and the target
  • the data routing information includes a target data network access identifier and network address translation information.
  • the network address translation information includes a target user equipment network address, a first application server network address, and a second application server network address, wherein the target user equipment network The target user equipment corresponding to the address has established a target protocol data unit session to the first protocol data unit session anchor user plane function network element, and communicates with the first application server corresponding to the first application server network address;
  • the target data routing information generates data packet processing rules, the data packet processing rules include network address translation rules, and the network address translation rules include transferring the destination address of the uplink data packet sent by the target user equipment from the first application
  • the server network address is converted to the second application server network address, and the received source address of the downlink data packet whose destination address is the target user equipment network address is converted from the second application server network address to the second application server network address.
  • An application server network address; the data packet processing rule is issued to the target network device, so that the target network device forwards the uplink data packet sent by the target user equipment to the target network device according to the data packet processing rule
  • the second application server corresponding to the network address of the second application server, and forwards the received downlink data packet whose destination address is the network address of the target user equipment and the source address is the network address of the second application server to the target user equipment.
  • the embodiment of the present disclosure provides a method for realizing service continuity, which is executed by a user plane function network element, and the method includes: receiving a target N4 session request message sent by a session management function network element through a target user plane function network element,
  • the target N4 session request message includes data packet processing rules, and the data packet processing rules include network address translation rules; uplink data packets are received through the target user plane function network element; if the target user plane function network element If the data packet processing rule detects that the source address of the uplink data packet is the target user equipment network address and the destination address is the first application server network address, the destination address of the uplink data packet is converted according to the network address conversion rule Is the network address of the second application server; the uplink data packet whose destination address is converted to the network address of the second application server is forwarded to the second application server corresponding to the network address of the second application server through the target user plane function network element .
  • the embodiment of the present disclosure provides a device for realizing business continuity.
  • the device includes: a relocation message receiving unit configured to receive a target relocation message, the target relocation message carrying target data routing information, and the target
  • the data routing information includes a target data network access identifier and network address translation information.
  • the network address translation information includes a target user equipment network address, a first application server network address, and a second application server network address, wherein the target user equipment network
  • the target user equipment corresponding to the address has established a target protocol data unit session to the first protocol data unit session anchor user plane function network element, and communicates with the first application server corresponding to the first application server network address; processing rules
  • the generating unit is configured to generate a data packet processing rule according to the target data routing information, the data packet processing rule includes a network address translation rule, and the network address translation rule includes the purpose of sending an uplink data packet sent by the target user equipment
  • the address is converted from the network address of the first application server to the network address of the second application server, and the source address of the downlink data packet whose destination address is the target user equipment network address is transferred from the second application server
  • the network address is converted into the network address of the first application server;
  • a processing rule issuing unit configured to issue the data packet processing rule to a target network device, so that the target network device according to the
  • the embodiment of the present disclosure provides a user plane function network element, including: a session request message receiving unit, configured to receive a target N4 session request message sent by a session management function network element, where the target N4 session request message includes data packet processing rules,
  • the data packet processing rule includes a network address conversion rule; an uplink data packet receiving unit for receiving an uplink data packet; an uplink data packet detection and conversion unit for detecting the uplink data packet according to the data packet processing rule
  • the source address is the network address of the target user equipment and the destination address is the network address of the first application server, the destination address of the uplink data packet is converted to the network address of the second application server according to the network address conversion rule; an uplink data packet forwarding unit , For forwarding the uplink data packet for converting the destination address into the network address of the second application server to the second application server corresponding to the network address of the second application server.
  • An embodiment of the present disclosure provides a user equipment, the user equipment includes: a unit session establishment unit, configured to establish a target protocol data unit session to a user plane function network element of a first protocol data unit session anchor point; an application server communication unit, It is used for communicating with the first application server corresponding to the network address of the first application server; the uplink data packet sending unit is used for sending the uplink data packet to the target network device, and the source address of the uplink data packet is the network address of the target network device, The destination address is the network address of the first application server, so that the target network device processes the uplink data packet according to the packet processing rules, and converts the destination address of the uplink data packet into a second application server network address And forward the uplink data packet whose destination address is converted to the network address of the second application server to the second application server corresponding to the network address of the second application server.
  • a unit session establishment unit configured to establish a target protocol data unit session to a user plane function network element of a first protocol data unit session anchor point
  • the embodiments of the present disclosure provide a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the method for realizing business continuity as described in the above-mentioned embodiment is implemented.
  • the embodiments of the present disclosure provide an electronic device, including: one or more processors; a storage device, configured to store one or more programs, when the one or more programs are executed by the one or more processors At this time, the one or more processors are caused to implement the method for realizing business continuity as described in the foregoing embodiment.
  • the network address translation technology can be used to maintain business continuity when the application server is migrated or when the location of the user equipment changes, which is simple to implement. Easy to deploy; on the other hand, a new technical solution is added to the relevant technical solution, which does not modify the system much, and is easy to carry out standardization and large-scale deployment.
  • Figure 1 shows a schematic diagram of an EC architecture in related technologies
  • Figure 2 shows a schematic diagram of another EC architecture in the related art
  • FIG. 3 shows a flow chart of the AF affecting data routing requested by the AF for a single UE in the related art
  • FIG. 4 shows a schematic flow chart of notification of user plane management events in related technologies
  • Fig. 5 schematically shows a flowchart of a method for realizing business continuity according to an embodiment of the present disclosure
  • Fig. 6 schematically shows a flow chart of a method for realizing business continuity according to an embodiment of the present disclosure
  • Fig. 7 schematically shows a schematic flow chart of a method for realizing business continuity according to an embodiment of the present disclosure
  • FIG. 8 schematically shows a schematic flowchart of a method for realizing business continuity according to an embodiment of the present disclosure
  • FIG. 9 schematically shows a schematic flowchart of a method for realizing business continuity according to an embodiment of the present disclosure
  • FIG. 10 schematically shows a schematic flowchart of a method for realizing business continuity according to an embodiment of the present disclosure
  • FIG. 11 schematically shows a schematic flowchart of a method for realizing business continuity according to an embodiment of the present disclosure
  • FIG. 12 schematically shows a schematic flowchart of a method for realizing business continuity according to an embodiment of the present disclosure
  • FIG. 13 schematically shows a schematic flowchart of a method for realizing business continuity according to an embodiment of the present disclosure
  • FIG. 14 schematically shows a schematic flowchart of a method for realizing business continuity according to an embodiment of the present disclosure
  • FIG. 15 schematically shows a schematic flowchart of a method for realizing business continuity according to an embodiment of the present disclosure
  • FIG. 16 schematically shows a flowchart of a method for realizing business continuity according to an embodiment of the present disclosure
  • Fig. 17 schematically shows a block diagram of an apparatus for realizing business continuity according to an embodiment of the present disclosure
  • FIG. 18 schematically shows a block diagram of a user plane function network element according to an embodiment of the present disclosure
  • Fig. 19 schematically shows a block diagram of a user equipment according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure includes a computer program product, which includes a computer program carried on a computer-readable storage medium, and the computer program contains program code for executing the method shown in the flowchart.
  • the computer-readable storage medium shown in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the two.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination of the above.
  • Computer-readable storage media may include, but are not limited to: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable removable Programmable read-only memory (EPROM (Erasable Programmable Read Only Memory) or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or the above Any suitable combination of.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in a baseband or as a part of a carrier wave, and a computer-readable program code is carried therein.
  • This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable storage medium other than the computer-readable storage medium, and the computer-readable storage medium may be sent, propagated or transmitted for use by or in combination with the instruction execution system, apparatus, or device program of.
  • the program code contained on the computer-readable storage medium can be transmitted by any suitable medium, including but not limited to: wireless, wire, optical cable, RF (Radio Frequency), etc., or any suitable combination of the foregoing.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of the code, and the above-mentioned module, program segment, or part of the code contains one or more for realizing the specified logic function.
  • Executable instructions may also occur in a different order from the order marked in the drawings. For example, two blocks shown one after another can actually be executed substantially in parallel, and they can sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagram or flowchart, and the combination of blocks in the block diagram or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or operations, or can be implemented by It is realized by a combination of dedicated hardware and computer instructions.
  • the units described in the embodiments of the present disclosure may be implemented in software or hardware, and the described units may also be provided in a processor. Among them, the names of these units do not constitute a limitation on the unit itself under certain circumstances.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium may be included in the electronic device described in the above-mentioned embodiments; or it may exist alone without being assembled into the computer-readable storage medium.
  • the foregoing computer-readable storage medium carries one or more programs, and when the foregoing one or more programs are executed by an electronic device, the electronic device realizes the method described in the following embodiments.
  • the electronic device can implement the steps shown in FIG. 5 or FIG. 6 or FIG. 7 or FIG. 8 or FIG. 9 or FIG. 10 or FIG. 11 or FIG. 12 or FIG. 13 or FIG. 14 or FIG. 15.
  • EC Electronic Device minimizes the communication delay between the UE and the AS by deploying the AS to a location close to the UE.
  • the Release 17 (Version 17) protocol TR23.748 released by 3GPP (3rd Generation Partnership Project) is undergoing EC standardization research.
  • TR23.748 EC architecture is used as an example of the solution baseline in the embodiments of the present disclosure, the present disclosure is not limited to this. In other embodiments, it can also be extended to adapt to Other EC architectures.
  • the implementation of EC includes two basic architectures, as shown in Figure 1 and Figure 2 respectively.
  • UPF User Plane Function, user plane function
  • PSA PDU (Protocol Data Unit, packet data unit) Session Anchor, PDU session anchor
  • AN Access Network, access network
  • EAS Edge Application Server
  • DN Data Network
  • Figure 1 does not use UL CL/BP to access EAS
  • Figure 2 uses UL CL/BP to access EAS.
  • the full English name of NEF is Network Exposure Function, that is, network opening function
  • Nnef refers to the Nnef message for obtaining services provided by NEF.
  • the full English name of PCF is Policy Control Function, which is the policy control function.
  • Npcf refers to the Npcf message to obtain the service provided by the PCF.
  • the full English name of AF is Application Function
  • Naf refers to the Naf message for obtaining the service provided by the AF.
  • the full English name of AMF is Access and Mobility Management Function, that is, access and mobility management functions.
  • Namf refers to the Namf message for obtaining services provided by AMF.
  • the full English name of SMF is Session Management Function, which is the session management function.
  • Nsmf refers to the Nsmf message for obtaining the service provided by SMF.
  • the UE and AMF interact through the N1 interface, between AMF and AN through the N2 interface, between SMF and UPF through the N4 interface, between AN and UPF through the N3 interface, and between UPF and DN through the N6 interface.
  • the UPF interacts through the N9 interface.
  • TR23.748 determines that the following KI (Key Issue, key issue) needs to be resolved: when the UE moves, how to perform the migration of EAS to maintain business continuity and at the same time realize EC communication (such as communication delay is small). Or, when the EAS is migrating and the UE is not moving, how to maintain business continuity while achieving EC communication (for example, with little communication delay).
  • KI Key Issue, key issue
  • edge computing With the deployment of edge computing in 5G systems, when designing the best deployment plan for edge solutions, UE mobility and relocation of application servers need to be considered. For example, when the UE moves in a 5G system, the location of the UE may change and the network and the edge are required to handle the change in the location of the UE.
  • the 3GPP Rel-16 (Release 16) specification has solved some of these aspects, and the key issue is to study potential improvements.
  • UE mobility and application server relocation needs to be considered when designing solutions for optimal deployment. For example, as the UE and moves location across, the system may require the 5G change network and the edge to deal with the change of UE location.
  • 3GPP Rel-16 specifications already address some of these aspects and the key issue is to study potential improvements.
  • SA WG1 The Business and System Working Group 1 (SA WG1) defines the term Service Hosting Environment. This term has been converted and expanded to Edge Hosting Environment in the work of SA WG2 of the current TR, which serves as an edge The execution of the application server provides the required support environment. Therefore, the requirements of SA WG1 are interpreted as applicable to the edge host environment. (Clause 6.5.2 of TS 22.261contains requirements that are related to this key issue.SA WG1 defined the term Service Hosting Environment that has beentranslated and broadened in SA WG2work in the support Environment for Edge Application Server's execution. The requirements from SA WG1 are thus being interpreted as applying to the Edge Hosting Environment.)
  • Edge application servers for example, due to service edge application servers becoming congested or in an outage state. This assumes that the EAS IP (Internet Protocol) address changes. (Change of the Edge Application Server e.g. due to the serving Edge Application Server becoming congested or being in outage condition. This assumes EAS IP address change.)
  • EAS IP Internet Protocol
  • the technical solutions provided by the embodiments of the present disclosure can be used to solve the above-mentioned KI.
  • Some mechanisms have been defined in 3GPP protocols TS23.501 and TS23.502 (introduced in Figure 3 and Figure 4 below), which can solve this KI.
  • the solution provided by the embodiment of the present disclosure is to enhance the mechanism defined by TS23.501 and TS23.502, so as to solve Edge Relocation more effectively.
  • Figure 3 shows a flow chart of the AF affecting data routing requested by the AF for a single UE in the related art.
  • Section 5.6.7 of the 3GPP protocol TS23.501 gives a detailed description of the function of AF affecting data routing (Application Function influence on traffic routing), and provides a related parameter table, as shown in Table 1 below.
  • Section 4.3.6 of the 3GPP protocol TS23.502 gives a flowchart in different scenarios.
  • Figure 3 is a flow of AF affecting data routing (Transferring an AF request targeting an individual UE address to the relevant PCF) for the AF requested by a single UE.
  • Step 1 If the AF sends an AF request through the NEF, the AF sends a Nnef_TrafficInfluence_Create/Update/Delete Request (Nnef_Data Influence_Create/Update/Delete Request) for a single UE address to the NEF.
  • This request corresponds to an AF request to affect data routing for a single UE address.
  • NEF receives the AF request from the AF, NEF ensures the necessary authorization control and maps the information provided by the AF to the information required by the 5G core network. NEF responds to AF.
  • Step 2 If the PCF address based on the local configuration is not available on the NEF, AF/NEF uses the Nbsf_Management_Discovery (Nbsf_Management_Discovery) service operation (providing at least the UE address) to find the address of the relevant PCF, otherwise skip step 1. AF/NEF finds BSF (Binding Support Function, binding support function network element) according to local configuration or using NRF (NF Repository Function, NF storage function network element).
  • Nbsf_Management_Discovery Nbsf_Management_Discovery
  • Step 3 The BSF provides the AF/NEF with the PCF address in the Nbsf_Management_Discovery response (Nbsf_Management_Discovery Response) message.
  • Step 4 NEF will call the Npcf_PolicyAuthorization service to the PCF to transmit the AF request. If the AF sends an AF request directly to the PCF, the AF calls the Npcf_PolicyAuthorization service, and the PCF responds to the AF.
  • Step 5 The PCF uses the corresponding new PCC (Policy Control and Charging) rules to update the SMF, and the PCF starts the SM policy association modification procedure.
  • PCC Policy Control and Charging
  • SMF can take appropriate actions to reconfigure the user plane of the PDU session when applicable, for example:
  • Prefix a new prefix for the UE.
  • the AF can directly send the Npcf_PolicyAuthorization_Create/Update/Delete Request (Npcf_PolicyAuthorization_Create/Update/Delete Request) message to the PCF; or, the AF can also first send the Nnef_TrafficInfluence_Create/Update/DeleteRequest(Nnef _Data Impact_Create/Update/Delete Request) message is sent to NEF, and then Npcf_PolicyAuthorization_Create/Update/Delete Request message is sent to PCF through NEF.
  • the parameters that affect data routing by the AF provided by the AF to the NEF are given, and the parameters that affect the data routing by the AF provided by the AF/NEF to the PCF are given.
  • Section 5.4.3.3.3 of the 3GPP protocol TS29.522 provides the parameters of the application function influence on traffic routing provided by the AF to the NEF, as shown in Table 1 below:
  • N is a positive integer greater than or equal to 1.
  • Section 5.6.2.13 of the 3GPP protocol TS29.514 provides the parameters affecting data routing provided by AF/NEF to the PCF, as shown in Table 2 below.
  • Section 5.6.7.1 in TS23.501 defines the parameters that affect data routing provided by AF to NEF and PCF, as shown in Table 3 below.
  • the full English name of DNN in Table 3 is Data Network Name, which is the name of the data network.
  • the full English name of S-NSSAI is Single Network Slice Selection Assistance Information, that is, single network slice selection assistance information.
  • the full English name of GPSI is Generic Public Subscription Identifier, which is the general public subscription identifier.
  • Table 3 above is the parameters defined in section 5.6.7.1 of TS23.501.
  • Table 1 and Table 2 above are detailed definitions of the above parameters, and they are consistent.
  • 3GPP protocol TS29.571 RouteToLocation corresponds to Traffic Routing requirements (data routing requirements) in TS23.501 and TS23.502, as shown in Table 4 below.
  • Attribute name type of data describe dnai Dnai Indicates the location of the application routeInfo Routing information Including data routing information routeProfId String Indicate routing profile Id
  • each DNAI includes N6 data routing information (N6 traffic routing information) and routing profile ID (Routing Profile ID).
  • N6 traffic routing information N6 traffic routing information
  • routing profile ID routing profile ID
  • the Routing Profile ID is just a string (String)
  • its corresponding N6 Traffic Routing function is negotiated in advance by the operator and the AF in the standard, and is configured on the AF and 5G network. That is to say, the N6 Traffic Routing function corresponding to the Routing Profile ID is not defined in the standard.
  • Section 5.4.4.16 in TS29.571 defines routing information (RouteInformation), as shown in Table 5 below.
  • Attribute name type of data describe ipv4Addr Ipv4Addr IPv4 address of the end of the tunnel in the data network ipv6Addr Ipv6Addr IPv6 address of the end of the tunnel in the data network portNumber Uinteger UDP port number of the end of the tunnel in the data network
  • Tunnel tunnel routing technology based on UDP (User Datagram Protocol, User Datagram Protocol).
  • Section 4.3.6.3 of TS23.502 gives a schematic flow diagram of the notification of user plane management events (Notification of User Plane Management Events) as shown in Figure 4.
  • the process includes the following steps.
  • Step 1 The conditions for triggering the AF notification have been met.
  • the SMF sends the notification to the NF that subscribes to the SMF notification.
  • the further processing of the SMF notification depends on the NF receiving the notification, as shown in steps 2a and 2c.
  • Step 2a If the AF requests an Early Notification through the NEF, the SMF notifies the NEF of the target DNAI of the PDU session by calling the Nsmf_EventExposure_Notify (Nsmf_EventExposure_Notify) service operation.
  • Step 2b When NEF receives Nsmf_EventExposure_Notify, NEF performs mapping according to the information (for example, notify the AF service internal ID provided in the relevant ID to the AF service ID, SUPI (Subscription Permanent Identifier, subscription permanent identifier) to GPSI, etc.), and Trigger the appropriate Nnef_TrafficInfluence_Notify (Nnef_Data Influence_Notify) message. In this case, step 2c does not apply.
  • the information for example, notify the AF service internal ID provided in the relevant ID to the AF service ID, SUPI (Subscription Permanent Identifier, subscription permanent identifier) to GPSI, etc.
  • Nnef_TrafficInfluence_Notify Nnef_Data Influence_Notify
  • Step 2c If the AF requests direct early notification, the SMF notifies the AF of the target DNAI of the PDU session by calling the Nsmf_EventExposure_Notify service operation.
  • Step 2d AF responds to Nnef_TrafficInfluence_Notify by immediately calling the Nnef_TrafficInfluence_AppRelocationInfo (Nnef_data influence_application relocation information) service operation or after completing any required application relocation in the target DNAI.
  • AF includes N6 service routing detailed information corresponding to the target DNAI.
  • Nnef_TrafficInfluence_Notify the AF can answer negatively, for example, if the AF determines that the application relocation cannot be completed successfully and/or on time.
  • Step 2e When NEF receives Nnef_TrafficInfluence_AppRelocationInfo, NEF triggers a corresponding Nsmf_EventExposure_AppRelocationInfo (Nsmf_Event Opening_App Relocation Information) message.
  • Step 2f AF responds to Nsmf_EventExposure_Notify by immediately calling the Nsmf_EventExposure_AppRelocationInfo service operation or after completing any required application relocation in the target DNAI.
  • AF includes N6 service routing detailed information corresponding to the target DNAI.
  • Nsmf_EventExposure_Notify the AF can answer negatively, for example, if the AF determines that the application relocation cannot be successfully completed on time.
  • Step 3 SMF forces to change DNAI or add, change or delete UPF.
  • the SMF can wait for the AF's response to the early notification according to the indication of the "AF Expected Confirmation" included in the AF subscription SMF event. SMF will not perform this step before receiving a positive response from AF.
  • Step 4a If AF requests late notification through NEF, SMF notifies NEF of the target DNAI of the PDU session by calling the Nsmf_EventExposure_Notify service operation.
  • the SMF can send a late notification according to the "AF response" indication contained in the AF subscription SMF event, and wait for AF's affirmation before activating a new uplink path response.
  • Step 4b When the NEF receives the Nsmf_EventExposure_Notify, the NEF maps according to the information (for example, the AF service internal ID provided in the notification related ID to the AF service ID, SUPI to GPSI, etc.), and triggers an appropriate Nnef_EventExposure_Notify message. In this case, step 4c does not apply.
  • the information for example, the AF service internal ID provided in the notification related ID to the AF service ID, SUPI to GPSI, etc.
  • Step 4c If the AF requests direct late notification, the SMF notifies the AF of the target DNAI of the PDU session by calling the Nsmf_EventExposure_Notify service operation.
  • Step 4d AF responds to Nnef_TrafficInfluence_Notify by immediately calling the Nnef_TrafficInfluence_AppRelocationInfo service operation or after completing any required application relocation in the target DNAI.
  • AF includes N6 service routing detailed information corresponding to the target DNAI. For Nnef_TrafficInfluence_Notify, AF can answer negatively, for example, if AF determines that the application relocation cannot be successfully completed on time.
  • Step 4e When NEF receives Nnef_TrafficInfluence_AppRelocationInfo, NEF triggers a corresponding Nsmf_EventExposure_AppRelocationInfo message.
  • Step 4f AF responds to Nsmf_EventExposure_Notify by immediately calling the Nsmf_EventExposure_AppRelocationInfo service operation or after completing any required application relocation in the target DNAI.
  • AF includes N6 service routing detailed information corresponding to the target DNAI.
  • Nsmf_EventExposure_Notify AF can answer negatively, for example, if AF determines that the application relocation cannot be successfully completed on time.
  • the KI mentioned in the previous article contains one item: changing the DNAI according to the location of the UE to better serve the UE. This may mean that the EAS IP address changes, but in some cases, as long as the UE service is not ended, the old EAS can be retained. This problem can also be solved by using the functions defined in section 4.3.6.3 of TS23.502.
  • Tunnel tunnel
  • UDP User Datagram Protocol, User Datagram Protocol
  • the Event Notification of SMF is defined in the 3GPP protocol TS29.508. You can refer to Tables 6, 7 and 8 below.
  • NsmfEventExposureNotification Nsmf event open notification
  • SMF Session Management Function
  • AF/NEF Event open notification
  • EventNotifications Each EventNotification separately describes a Notification event (that is, one The report can contain multiple event reports).
  • One EventNotification contains some parameters, as shown in Table 6, which include:
  • Source DNAI source DNAI
  • Target DNAI target DNAI
  • DNAI Change Type (DNAI change type);
  • Source UE IP address (source UE IP address);
  • Target UE IP address (target UE IP address);
  • Source N6 Traffic Routing information (source N6 data routing information);
  • Target N6 Traffic Routing information (target N6 data routing information).
  • Table 10 shows several possible values of DnaiChangeType.
  • EventNotification only EARLY or LATE can be used, but AF can subscribe at the same time when subscribing to event notification, that is, SMF needs to be reported in Early and Late phases.
  • the technical solution proposed in the embodiments of the present disclosure can not only solve the KI#2 problem of EC, but also solve the problem of non-EC. Therefore, the problem to be solved will not be specifically explained in the following, that is, the KI#2 problem of EC is no longer specified, but the problem is generalized, that is, the (E)AS mentioned later can be either EAS or It is AS.
  • the embodiment of the present disclosure proposes that before or after the migration of the (E)AS, the (E)AS informs the AF, and the AF will notify the relevant parameters, such as the target DNAI of the (E)AS migration and the supported N6 routing methods and parameters (NAT conversion Parameters) and so on, sent to the 5G network. Then, the 5G network performs UE data rerouting (including NAT, and inserting or modifying UL CL/BP) according to these parameters.
  • the second question is how to perform (E)AS migration when the UE moves to maintain business continuity and at the same time realize EC communication (for example, communication delay is small).
  • the embodiment of the present disclosure proposes that before or after the user plane is modified after the UE moves, the SMF informs the AF (either through NEF or directly to the AF) the following parameters: the target DNAI list supported by the UE after the movement, and the supported N6 routing mode And parameters (parameters for NAT translation), etc.
  • AF determines the migration of (E)AS, and returns the selected (E)AS moving parameters (such as N6 routing mode and parameters) to the 5G network.
  • the 5G network performs UE data rerouting (including NAT, and inserting or modifying UL CL/BP) according to these parameters.
  • Fig. 5 schematically shows a flowchart of a method for realizing business continuity according to an embodiment of the present disclosure.
  • the method provided in the embodiment of FIG. 5 may be executed by a session management function network element, such as SMF, but the present disclosure is not limited thereto.
  • the method provided by the embodiment of the present disclosure may include the following steps.
  • a target relocation message is received, the target relocation message may carry target data routing information, the target data routing information may include a target data network access identifier and network address translation information, and the network address translation information It may include a target user equipment network address, a first application server network address, and a second application server network address, where the target user equipment corresponding to the target user equipment network address has been established to reach the first protocol data unit session anchor user plane function network The meta-target protocol data unit session, and communicates with the first application server corresponding to the network address of the first application server.
  • the target data routing information may include a target data network access identifier and network address translation information
  • the network address translation information It may include a target user equipment network address, a first application server network address, and a second application server network address, where the target user equipment corresponding to the target user equipment network address has been established to reach the first protocol data unit session anchor user plane function network The meta-target protocol data unit session, and communicates with the first application server corresponding to the network address of the first application server.
  • the first application server before receiving the target relocation message, has been migrated to the second application server through an application function network element.
  • the target relocation message may include a session management policy control update notification message.
  • the receiving the target relocation message may include: receiving the session management policy control update notification message from the target policy control function network element, and the session management policy control update notification message may include the communication with the first protocol data unit The source data network access identifier, the target data network access identifier, and the target data routing information corresponding to the session anchor user plane function network element.
  • the session management policy control update notification message may be generated by the target policy control function network element according to a policy authorization request message received from the target network open function network element, the policy authorization request message It includes the target user equipment network address, the source data network access identifier, the target data network access identifier, and the target data routing information.
  • the policy authorization request message may be generated by the target network opening function network element according to a data-influencing routing request message received from an application function network element, and the data-influencing routing request message may include the target user equipment network Address, the source data network access identifier, the target data network access identifier, and the target data routing information.
  • the session management policy control update notification message may be generated by the target policy control function network element according to a data-influencing routing request message received from an application function network element, the data-influencing routing request message It may include the target user equipment network address, the source data network access identifier, the target data network access identifier, and the target data routing information.
  • the target relocation message includes an event opening application relocation information message.
  • the receiving the target relocation message may include: receiving the event opening application relocation information message from an application function network element, where the event opening application relocation information message includes the target data routing information.
  • the method may further include: receiving an early event subscription message of the application function network element; deciding to be a protocol data unit session anchor user plane function network element According to the decision, transmit an early event notification message to the application function network element, the early event notification message includes event notification parameters, and the event notification parameters include the first protocol data unit session anchor user plane The source data network access identifier corresponding to the functional network element and the target data network access identifier corresponding to the second protocol data unit session anchor user plane function network element.
  • the method may further include: the application function network element triggers the migration of the first application server from the source data network access identifier to the target according to the early event notification message The data network access identifier becomes the second application server.
  • a data packet processing rule is generated according to the target data routing information.
  • the data packet processing rule may include a network address translation rule, and the network address translation rule may include an uplink data packet sent by the target user equipment.
  • the destination address is converted from the network address of the first application server to the network address of the second application server, and the source address of the downlink data packet whose destination address is the target user equipment network address is changed from the second
  • the application server network address is converted into the first application server network address.
  • the network address translation rule may further include Convert the destination port number of the uplink data packet from the first port number to the second port number, and convert the source port number of the downlink data packet from the second port number to the first port number The port number.
  • step S530 the data packet processing rule is issued to the target network device, so that the target network device forwards the uplink data packet sent by the target user equipment to the first network device according to the data packet processing rule.
  • the second application server corresponding to the network address of the application server, and forwards the received downlink data packet whose destination address is the network address of the target user equipment and the source address is the network address of the second application server to the target user equipment .
  • the target network device may include the first protocol data unit session anchor user plane function network element .
  • the issuing the data packet processing rule to the target network device may include: sending an N4 session modification request message to the first protocol data unit session anchor user plane function network element, the N4 session modification request The message includes the packet processing rules.
  • the method may further include: receiving an N4 session modification response message returned by the first protocol data unit session anchor user plane function network element; and returning the session management to the target policy control function network element Policy control update notification response message, so that the target policy control function network element returns to the application function network element a data-influencing routing response message.
  • the application function network element After the application function network element receives the data-influencing response message, it triggers the completion of the data routing response message.
  • the first application server is migrated to the second application server.
  • the target network device may It includes a second protocol data unit session anchor user plane function network element and an uplink classifier user plane function network element.
  • the data packet processing rule may also include a data packet forwarding rule, and the data packet forwarding rule may include the received The uplink data packet with the source address being the network address of the target user equipment and the destination address being the network address of the first application server is forwarded to the session anchor user plane function network element of the second protocol data unit.
  • the issuing the data packet processing rule to the target network device may include: issuing the data packet forwarding rule to the uplink classifier user plane function network element; and downloading the network address translation rule It is sent to the user plane function network element of the session anchor of the second protocol data unit.
  • the method may further include: determining the second protocol data unit session anchor user plane function network element; determining the uplink Classifier user plane function network element; update the downlink user plane of the first protocol data unit session anchor user plane function network element; update the downlink user plane of the second protocol data unit session anchor user plane function network element.
  • the target network device may Including uplink classifier user plane function network element.
  • the issuing the data packet processing rule to the target network device may include: issuing the data packet processing rule to the user plane function network element of the uplink classifier.
  • the data packet processing rule may further include a data packet forwarding rule.
  • the method may further include: determining the session anchor user plane function network element of the second protocol data unit and the uplink classifier user plane function network element; The protocol data unit session anchor user plane function network element and the uplink classifier user plane function network element serve as the target network equipment.
  • the issuing the data packet processing rule to the target network device may include: issuing the data packet forwarding rule to the uplink classifier user plane function network element; and downloading the network address translation rule It is sent to the user plane function network element of the session anchor of the second protocol data unit.
  • the method may further include: determining the second protocol data unit session anchor user plane function network element and the uplink classifier user plane function network element; Use the uplink classifier user plane function network element as the target network device.
  • the issuing the data packet processing rule to the target network device may include: issuing the data packet processing rule to the user plane function network element of the uplink classifier.
  • the method may further include: receiving a late event subscription message of the application function network element; deciding to be a protocol data unit session anchor user plane function network element According to the decision, determine the second protocol data unit session anchor user plane function network element and the uplink classifier user plane function network element; configure the uplink classifier user plane function network element to receive the uplink data packet Forward to the first protocol data unit session anchor user plane function network element; transmit a late event notification message to the application function network element, where the late event notification message includes event notification parameters, and the event notification parameters include the The source data network access identifier corresponding to the first protocol data unit session anchor user plane function network element and the target data network access identifier corresponding to the second protocol data unit session anchor user plane function network element.
  • the method may further include: the application function network element triggers the migration of the first application server from the source data network access identifier to the target according to the late event notification message The data network access identifier becomes the second application server.
  • the data packet processing rule may further include a data packet forwarding rule.
  • the method may further include: using the second protocol data unit session anchor user plane function network element and the uplink classifier user plane function network element as the target Network equipment.
  • the issuing the data packet processing rule to the target network device may include: issuing the data packet forwarding rule to the uplink classifier user plane function network element; and downloading the network address translation rule It is sent to the user plane function network element of the session anchor of the second protocol data unit.
  • the method may further include: using the uplink classifier user plane function network element as the target network device.
  • the issuing the data packet processing rule to the target network device may include: issuing the data packet processing rule to the user plane function network element of the uplink classifier.
  • the method for realizing user service continuity uses network address translation technology to maintain service continuity when the application server is migrated or when the location of the user equipment changes. It is simple to implement and easy to deploy; on the other hand, a new technical solution is added to the related technical solution, which makes little modification to the system and is easy to carry out standardization and large-scale deployment.
  • Fig. 6 schematically shows a schematic flowchart of a method for realizing business continuity according to an embodiment of the present disclosure.
  • the (E)AS Relocation (relocation) under the condition that the source DNAI is unchanged is described, that is, the source DANI and the target DNAI are the same.
  • the method provided by the embodiment of the present disclosure may include the following steps.
  • Step 1.1 the target UE (target user equipment) establishes a target PDU session (target protocol data unit session) to UPF/PSA1 (the first protocol data unit session anchor user plane function network element) through SMF (session management network element) , Assign an IPv4 (Internet Protocol version 4, Internet Protocol version 4) address or an IPv6 (Internet Protocol version 6, Internet Protocol version 6) Prefix to the target UE.
  • IPv4 address and IPv6 Prefix are also collectively referred to as IP addresses
  • the IP address of the target UE is referred to as the target user equipment network address.
  • Step 1.2 The target UE establishes an IP connection with an (E)AS1 (first application server) through the assigned IP address, and performs IP communication for service interaction.
  • E E
  • AS1 first application server
  • Step 1.3 AF decides to migrate (E)AS1 to (E)AS2 (second application server).
  • the virtual machine running (E)AS1 is migrated from one physical Server to another physical Server.
  • the two physical servers may be in the same Cloud Data Center, or they may not be in the same Cloud Data Center.
  • the corresponding DNAI is generally unchanged, that is, the source DNAI corresponding to (E)AS1 is the same as the target DNAI corresponding to (E)AS2.
  • their corresponding DNAI will change, that is, the source DNAI corresponding to (E)AS1 is different from the target DNAI corresponding to (E)AS2.
  • DNAI is not changed as an example for illustration.
  • Step 1.4 The AF may directly send a message to the target PCF (target policy control function network element), or the AF may first send a message to the target NEF (target network open function network element), and then the target NEF sends the message to the target PCF.
  • target PCF target policy control function network element
  • target NEF target network open function network element
  • the AF sends the Nnef_TrafficInfluenceCreate/Update Request message (Nnef_data influence creation/update request message, referred to as the influence data routing request message) to the target NEF as an example for illustration.
  • the AF can also directly send the Nnef_TrafficInfluenceCreate/Update Request message to the target PCF.
  • the TrafficInfluence-related message is the Nnef_TrafficInfluenceCreateRequest message; if the AF is not sending a TrafficInfluence-related message to the target NEF for the first time, the TrafficInfluence-related message is Nnef_TrafficInfluenceUpdateRequest. information.
  • the IPue contained in the Nnef_TrafficInfluenceCreate/Update Request message is the UE IP address (ie the target user equipment network address) in step 1.1 and step 1.2, and (E) AS1 Relocation Indication is used for (E) AS1 relocation indication information.
  • Source DNAI source DNAI
  • Target DNAI target DNAI
  • Traffic Filter contains at least the network address (IP address) IPas1 of the first application server corresponding to (E)AS1, and the target port number PORTas1() corresponding to (E)AS1.
  • the first port number of the first application server), and the transport layer protocol (such as UDP/TCP (Transmission Control Protocol, Transmission Control Protocol)), and may also include the IP address of the target UE, namely IPue, and target N6 Traffic Routing Information (Target N6 data routing information) is the target data routing information.
  • target N6 Traffic Routing Information can include DNAI (here refers to target DNAI); network address translation information is NAT, where NAT contains (in (IPue, IPas1, (o (short for option, which is optional) Network address translation between PORTas1) and (IPue, IPas2, (o)PORTas2)), that is, NAT (between(IPue,IPas1,(o)PORTas1)and(IPue,IPas2,(o)PORTas2)), IPas2 means ( E) The network address (IP address) of the second application server corresponding to AS2, and PORTas2 represents the second port number of the second application server.
  • IPI here refers to target DNAI
  • NAT contains (in (IPue, IPas1, (o (short for option, which is optional) Network address translation between PORTas1) and (IPue, IPas2, (o)PORTas2)), that is, NAT (between(IPue,IPas1,(o)PORTas
  • the Nnef_TrafficInfluenceCreate/Update Request message may contain one or more N6 Traffic Routing Information.
  • N6 Traffic Routing Information proposed in the embodiment of the present disclosure using the NAT method is listed.
  • This NAT is Convert the IP stream with the source address of IPue and the destination address of IPas1 (upstream data packet) to the IP stream with the source address of IPue and the destination address of IPas2; and the IP stream with the source address of IPas2 and the destination address of IPue (downstream data Packet) is converted into an IP stream with a source address of IPas1 and a destination address of IPue.
  • NAT converts an IP stream (upstream data packet) with a source address of IPue, a destination address of IPas1, and a destination port number of PORTas1 to the source address of IPue and the destination address of IPas2, the IP flow whose destination port number is PORTas2; and convert the IP flow (downstream data packet) whose source address is IPas2, destination address is IPue, and source port number is PORTas2 to source address as IPas1, destination address is IPue, source port The IP stream numbered PORTas1.
  • the AF can query the internal configuration information according to the IPue in the Nnef_TrafficInfluenceCreate/Update Request message to obtain the target NEF ID (not defined by the standard), and then send the target NEF corresponding to the target NEF ID Send Nnef_TrafficInfluenceCreate/Update Request message.
  • Step 1.5 The target NEF sends a Npcf_PolicyAuthorization_Create/Update Request message (Npcf_PolicyAuthorization_Create/Update request, that is, a policy authorization request message) to the target PCF according to the above parameters provided by the AF. If the AF sends the Nnef_TrafficInfluenceCreateRequest message in step 1.4, In step 1.5, the target NEF sends the Npcf_PolicyAuthorization_Create Request message; if the AF sends the Nnef_TrafficInfluenceUpdate Request message in step 1.4, the target NEF sends the Npcf_PolicyAuthorization_Update Request message in step 1.5.
  • Npcf_PolicyAuthorization_Create/Update request that is, a policy authorization request message
  • the target NEF can be mapped to get SUPI, DNN and S-NSSAI according to the above parameters provided by AF.
  • the IPue, Source DNAI, Target DNAI, Traffic Filter, Target N6 Traffic Routing Information in the Npcf_PolicyAuthorization_Create/Update Request message are directly derived from the parameters of the Nnef_TrafficInfluenceCreate/Update Request message in step 1.4.
  • the AF/target NEF If the AF/target NEF sends the Npcf_PolicyAuthorization_Create/Update Request message to the target PCF, the AF/target NEF queries the BSF according to the IPue in the Npcf_PolicyAuthorization_Create/Update Request message, obtains the ID of the target PCF, and then sends the Npcf_PolicyAuthorization_Create/Update Request to the PCF corresponding to the target PCF information.
  • Step 1.6 The target PCF sends a Npcf_SMPolicyControl UpdateNotify message to the SMF (Npcf_SM policy control update notification message, that is, session management policy control update notification message, the full English name of SM is Session Management), which contains some of the parameters provided in step 1.4/1.5: IPue , Source DNAI, Target DNAI, Traffic Filter, Target N6 Traffic Routing Information.
  • Step 1.7 The SMF receives the Npcf_SMPolicyControlUpdateNotify message provided by the target PCF, and judges that the Target DNAI is consistent with the Source DNAI. Therefore, the SMF decides not to change the PSA, that is, not to insert the UL CL. At the same time, SMF determines to perform NAT operation according to Target N6 Traffic Routing Information provided by the target PCF, so it sends N4 Session Command (session command) to UPF/PSA1.
  • N4 Session Command session command
  • step 1.1 the SMF has sent the N4 Session Establishment Request message (ie, the N4 session establishment request message) to the UPF/PSA1, and the UPF/PSA1 returned the N4 Session Establishment Response message (ie the N4 session establishment response message) to the SMF. Therefore, in step 1.7, the SMF can send the N4 Session Modification Request message (ie, the N4 session modification request message) to the UPF/PSA1, and carry the packet processing rules in the N4 session modification request message.
  • the N4 Session Modification Request message ie, the N4 session modification request message
  • the UPF/PSA1 After the UPF/PSA1 receives the N4 Session Modification Request message, it returns the N4 Session Modification Response message (ie, the N4 Session Modification Response message) to the SMF to confirm that it has received the N4 Session Modification Request message.
  • N4 Session Modification Response message ie, the N4 Session Modification Response message
  • UPF/PSA1 can convert the detected IP flow (upstream data packet) whose source address is IPue and destination address is IPas1 into an IP flow whose source address is IPue and destination address is IPas2 according to the packet processing rule; and will detect The IP stream (downstream data packet) whose source address is IPas2 and whose destination address is IPue is converted into an IP flow whose source address is IPas1 and whose destination address is IPue.
  • UPF/PSA1 can convert the detected IP stream (upstream data packet) with the source address as IPue, the destination address as IPas1, and the destination port number as PORTas1 to the source address as IPue, the destination address is IPas2, the destination port number is the IP flow of PORTas2; and the detected source address is IPas2, the destination address is IPue, the source port number is the IP flow (downstream data packet) of PORTas2 is converted into the source address is IPas1 , The IP flow whose destination address is IPue and source port number is PORTas1.
  • Step 1.8 The SMF returns a Npcf_SMPolicyControlUpdateNotifyResponse message to the target PCF according to the received N4 Session Modification Response message sent by the UPF/PSA1.
  • Step 1.9 The target PCF returns a Npcf_PolicyAuthorization_Create/Update Response message to the target NEF according to the Npcf_SMPolicyControl UpdateNotify Response message sent by the received SMF.
  • Step 1.10 The target NEF returns a Nnef_TrafficInfluenceCreate/Update Response message to the AF according to the received Npcf_PolicyAuthorization_Create/Update Response message sent by the target PCF.
  • Step 1.11 AF receives the Nnef_TrafficInfluenceCreate/Update Response message of the target NEF, and if the message is a Positive reply, it will migrate (E)AS1 to (E)AS2.
  • Step 1.12 The uplink data packet sent by the target UE through the target PDU Session established in step 1.1, for example, an uplink IP packet, reaches UPF/PSA1. If UPF/PSA1 detects the received packet according to the packet processing rules issued by SMF in step 1.7 above, The source address of the upstream IP packet is IPue, the destination address is IPas1, the source port number is PORTue (the port number of the target UE), and the destination port number is PORTas1 (if the packet processing rules also include the first port number and the second port No.), the transport layer protocol is for example UDP/TCP, then go to step 1.13.
  • Step 1.13 UPF/PSA1 replaces the destination address IPas1 of the received upstream IP packet with IPas2 according to the packet processing rules issued by the SMF in step 1.7 above, and replaces the destination port number PORTas1 with PORTas2 (if the packet processing rules PORT conversion is required in the following example, similar to this in the following embodiments).
  • Step 1.14 UPF/PSA1 sends the NAT-translated upstream IP packet (source address IPue, destination address IPas2, source port number PORTue, destination port number PORTas2, transport layer protocol (such as UDP/TCP)) to (E)AS2.
  • source address IPue destination address IPas2, source port number PORTue, destination port number PORTas2, transport layer protocol (such as UDP/TCP)
  • transport layer protocol such as UDP/TCP
  • Step 1.15 (E) AS2 receives the upstream IP packet, and the reply downstream IP packet (source address IPas2, destination address IPue, source port number PORTas2, destination port number PORTue, transport layer protocol (such as UDP/TCP)) arrives at UPF/ PSA1.
  • source address IPas2, destination address IPue, source port number PORTas2, destination port number PORTue, transport layer protocol (such as UDP/TCP) arrives at UPF/ PSA1.
  • UPF/PSA1 detects the downstream IP packet (source address IPas2, destination address IPue, source port number PORTas2, transport layer protocol (such as UDP/TCP)) according to the packet processing rules issued by SMF in step 1.7 To match the packet processing rules, replace the destination address IPas2 of the received downstream IP packet with IPas1, and replace the source port number PORTas2 with PORTas1 (if the PORT conversion is to be performed in the packet processing rule, the following example is similar to this ).
  • Step 1.17 UPF/PSA1 will send the downstream IP packet (source address IPas1, destination address IPue, source port number PORTas1, destination port number PORTue, transport layer protocol (such as UDP/TCP)) for NAT conversion through the established target PDU Session To the target UE.
  • source address IPas1, destination address IPue, source port number PORTas1, destination port number PORTue, transport layer protocol (such as UDP/TCP) for NAT conversion through the established target PDU Session To the target UE.
  • Fig. 7 schematically shows a schematic flowchart of a method for realizing business continuity according to an embodiment of the present disclosure.
  • Steps 2.1-2.2 in the embodiment of FIG. 7 are similar to steps 1.1-1.2 in the embodiment of FIG. 6.
  • the difference between the embodiment in FIG. 7 and the embodiment in FIG. 6 is that in step 2.3, the migration from (E)AS1 to (E)AS2 is performed, so step 1.11 in the embodiment in FIG. 6 is no longer performed.
  • Steps 2.4-2.10 in the embodiment in FIG. 7 are similar to steps 1.4-1.10 in the embodiment in FIG. 6, and steps 2.11-2.16 in the embodiment in FIG. 7 are similar to steps 1.12-1.17 in the embodiment in FIG. 6.
  • FIG. 8 schematically shows a schematic flowchart of a method for realizing business continuity according to an embodiment of the present disclosure.
  • the embodiment of FIG. 8 is (E)AS Relocation in the case of DNAI change, and it is determined that UPF/PSA2 (the second protocol data unit session anchor user plane function network element) is used for NAT conversion.
  • UPF/PSA2 the second protocol data unit session anchor user plane function network element
  • Steps 3.1-3.6 in the embodiment of FIG. 8 are similar to steps 1.1-1.6 in the embodiment of FIG. 6, except that the Target DNAI in the message sent by the AF is different from the Source DNAI.
  • the difference between the embodiment in FIG. 8 and the embodiment in FIG. 6 is that it further includes the following steps.
  • Step 3.7 if the target N6 Traffic Routing Information (DNAI, NAT(between(IPue,IPas1,(o)PORTas1)and(IPue,IPas2,(o)PORTas2)) in the target N6 Traffic Routing Information received by the SMF (Target DNAI) does not match the DNAI (source DNAI) supported by the UPF/PSA1 of the current SMF, then SMF determines and selects a UPF/PSA2 and UPF/UL CL (uplink classifier) that matches the DNAI (target DNAI) provided by AF. User plane function network element), SMF sends a message to the selected UPF/PSA2.
  • DNAI target N6 Traffic Routing Information
  • Step 3.9 The SMF sends a message to UPF/PSA1, so that the downlink user plane of UPF/PSA1 is switched from RAN (Radio AN, radio access network) to UPF/UL CL.
  • RAN Radio AN, radio access network
  • Step 3.10 The SMF sends a message to UPF/PSA2 so that the downlink user plane of UPF/PSA2 is UPF/UL CL.
  • Step 3.11 SMF generates and sends to UPF/UL CL according to the target N6 Traffic Routing Information (DNAI, NAT(between(IPue,IPas1,(o)PORTas1)and(IPue,IPas2,(o)PORTas2) received in step 3.7
  • UPF/UL CL can forward the received source address as IPue, destination address as IPas1, and optionally, the uplink data packet with destination port number PORTas1 can be forwarded to UPF /PSA2.
  • step 3.11 can also be performed in step 3.8, that is, when SMF sends a message to UPF/UL CL for the first time, it sends an N4 Session Establishment Request message, and the packet forwarding rules can be included in the N4 Session Establishment Request message.
  • the Request message is sent to UPF/UL CL, and UPF/UL CL replies to SMF with an N4 Session Establishment Response message to confirm receipt of the N4 Session Establishment Request message.
  • the SMF sends a N4 Session Modification Request message, and the packet forwarding rules can be included in the N4 Session Modification Request message and sent to UPF/UL CL, UPF/UL CL replies to the SMF with an N4 Session Modification Response message to confirm receipt of the N4 Session Modification Request message.
  • the N4 Session Establishment Request message or the N4 Session Modification Request message that contains the packet forwarding rules sent by the SMF to the UPF/UL CL is called the first N4 session request message.
  • Step 3.12 SMF generates the information sent to UPF/PSA2 according to the target N6 Traffic Routing Information (DNAI, NAT (between(IPue,IPas1,(o)PORTas1)and(IPue,IPas2,(o)PORTas2) received in step 3.7 Network address translation rules to enable UPF/PSA2 to perform NAT operations.
  • DNAI Traffic Routing Information
  • NAT between(IPue,IPas1,(o)PORTas1)and(IPue,IPas2,(o)PORTas2
  • step 3.12 can also be executed in step 3.10, that is, when the SMF sends a message to UPF/PSA2 for the first time, it sends the N4 Session Establishment Request message, and the network address translation rules can be included in the N4 Session Establishment Request.
  • the message is sent to UPF/PSA2, and UPF/PSA2 replies to SMF with an N4 Session Establishment Response message to confirm receipt of the N4 Session Establishment Request message.
  • SMF If SMF is not sending a message to UPF/PSA2 for the first time, SMF sends a N4 Session Modification Request message, and the network address conversion rule can be included in the N4 Session Modification Request message and sent to UPF/PSA2, and UPF/PSA2 to SMF Reply to the N4 Session Modification Response message to confirm receipt of the N4 Session Modification Request message.
  • the N4 Session Establishment Request message or the N4 Session Modification Request message containing the network address translation rules sent by the SMF to the UPF/PSA2 is called the second N4 session request message.
  • Step 3.13 The SMF sends a message to the RAN to update the uplink user plane of the RAN to UPF/UL CL.
  • Steps 3.14 to 3.17 in the embodiment of FIG. 8 are similar to steps 1.8 to 1.11 in the embodiment of FIG. 6.
  • Step 3.18 The uplink data packet sent by the target UE, for example, an uplink IP packet (source address IPue, destination address IPas, source port number PORTue, destination port number PORTas1, transport layer protocol (such as UDP/TCP)) arrives at UPF/UL CL.
  • an uplink IP packet (source address IPue, destination address IPas, source port number PORTue, destination port number PORTas1, transport layer protocol (such as UDP/TCP)) arrives at UPF/UL CL.
  • transport layer protocol such as UDP/TCP
  • Step 3.19 UPF/UL CL according to the packet forwarding rules issued by SMF in step 3.11, if it is detected that the source address of the upstream IP packet is IPue, the destination address is IPas1, and the destination port number is PORTas1 (if the packet forwarding rules are It also includes PORT related parameters), then the uplink IP packet matching the packet forwarding rule is forwarded to UPF/PSA2, otherwise, the uplink IP packet that does not match the packet forwarding rule is forwarded to UPF/PSA1.
  • Steps 3.20-3.25 in the embodiment of FIG. 8 are similar to steps 1.13-1.17 in the embodiment of FIG. 6, except that in the embodiment of FIG. UPF/PSA2 is sent to UPF/UL CL, and then sent to the target UE.
  • the UPF/UL CL needs to perform matching and steering operations on uplink data packets; for downlink data packets, no matching operation is performed, and the downlink data packets are directly sent to the RAN and then reach the target UE.
  • FIG. 9 schematically shows a schematic flowchart of a method for realizing business continuity according to an embodiment of the present disclosure.
  • the embodiment in FIG. 9 is similar to the embodiment in FIG. 8, with the difference that the migration from (E)AS1 to (E)AS2 is performed in step 4.3, so step 3.17 in the embodiment in FIG. 8 is not performed any more.
  • Steps 4.1-4.2 in the embodiment of FIG. 9 are similar to steps 3.1-3.2 in the embodiment of FIG. 8, and steps 4.4-4.16 in the embodiment of FIG. 9 are similar to steps 3.4-3.16 in the embodiment of FIG. 8.
  • the embodiment of FIG. 9 Steps 4.17-4.24 in Figure 8 are similar to steps 3.18-3.25 in the embodiment of Figure 8.
  • FIG. 10 schematically shows a schematic flowchart of a method for realizing business continuity according to an embodiment of the present disclosure.
  • the embodiment in FIG. 10 is similar to the embodiment in FIG. 8, the difference is that in the embodiment in FIG. 10, UPF/ULCL is used for NAT translation instead of UPF/PSA2.
  • the UPF/UL CL in the embodiment of FIG. 8 is only used for the matching diversion in the packet processing rules, and the UPF/PSA2 is used for the NAT translation.
  • the embodiment of FIG. 10 changes the NAT translation in the embodiment of FIG. 8 from UPF/PSA2 to UPF/UL CL. Therefore, the UPF/UL CL in the embodiment of FIG. 10 has a data forwarding function after NAT conversion, while the UPF/PSA2 no longer has a special function, which is similar to the function in related standards.
  • Steps 5.1-5.10 in the embodiment of FIG. 10 are similar to steps 3.1-3.10 in the embodiment of FIG. 8.
  • the Target DNAI in the message sent by the AF is different from the Source DNAI.
  • Steps 3.11 and 3.12 in the embodiment of FIG. 8 are no longer executed.
  • Step 5.11 SMF generates information to UPF/UL CL according to target N6 Traffic Routing Information (DNAI, NAT (between(IPue, IPas1, (o)PORTas1) and (IPue, IPas2, (o)PORTas2) received in step 5.6
  • the sent data packet processing rules so that UPF/UL CL can perform NAT operation, and can send the converted uplink data packet to UPF/PSA2.
  • step 5.11 can also be performed in step 5.8, that is, when SMF sends a message to UPF/UL CL for the first time, it sends an N4 Session Establishment Request message, and the packet processing rules can be included in the N4 Session Establishment Request message.
  • the Request message is sent to UPF/UL CL, and UPF/UL CL replies to SMF with an N4 Session Establishment Response message to confirm receipt of the N4 Session Establishment Request message.
  • the SMF sends a N4 Session Modification Request message, and the packet processing rules can be included in the N4 Session Modification Request message and sent to UPF/UL CL, UPF/UL CL replies to the SMF with an N4 Session Modification Response message to confirm receipt of the N4 Session Modification Request message.
  • the N4 Session Establishment Request message or the N4 Session Modification Request message that contains the packet processing rules sent by the SMF to the UPF/UL CL is called the target N4 session request message.
  • Steps 5.12-5.17 in the embodiment of FIG. 10 are the same as steps 3.13-3.18 in the embodiment of FIG. 8.
  • Step 5.18 UPF/UL CL according to the packet processing rules issued by the SMF in step 5.11, detects that the source address of the received uplink data packet is IPue, the destination address is IPas1, and the destination port number is PORTas (if the packet processing rules are It also contains PORTas)), then the upstream data packet matching the data packet processing rule is NATed (see step 1.13 in the embodiment of FIG. 6).
  • Step 5.19 UPF/UL CL forwards the converted uplink data packet to UPF/PSA2.
  • UPF/UL CL forwards the uplink data packets that do not match the packet processing rules to UPF/PSA1.
  • Step 5.20 UPF/PSA2 sends the uplink data packet to (E)AS2.
  • Step 5.21 (E) AS2 reply downstream data packets (source address IPas2, destination address IPue, source port number PORTas2, destination port number PORTue, transport layer protocol (such as UDP/TCP)) arrive at UPF/PSA2.
  • source address IPas2, destination address IPue, source port number PORTas2, destination port number PORTue, transport layer protocol (such as UDP/TCP) arrive at UPF/PSA2.
  • Step 5.22 UPF/PSA2 sends the downlink data packet to UPF/UL CL.
  • UPF/UL CL detects that the source address of the downstream IP packet is IPas2, the destination address is IPue, the source port number is PORTas2, and the transport layer protocol is, for example, UDP/ TCP, replace the destination address of the downstream data packet matching the packet processing rule from IPas2 to IPas1, and replace the source port number PORTas2 with PORTas1 (if PORT conversion is required in the packet processing rule), and then change the converted downstream The data packet is sent to the target UE.
  • the transport layer protocol is, for example, UDP/ TCP
  • UPF/UL CL needs to perform matching, NAT conversion, and diversion operations on uplink and downlink data packets.
  • the uplink data packet received subsequently by the UPF/UL CL still matches the above-mentioned data packet processing rule, then continue to process the uplink data packet according to the above steps 5.18 and 5.19. If the downstream data packet received by the UPF/UL CL still matches the above-mentioned data packet processing rule, the downstream data packet will continue to be processed according to the above steps 5.22 and 5.23. If the PORT item is included in the packet processing rules, PORT conversion is required.
  • FIG. 11 schematically shows a schematic flowchart of a method for realizing business continuity according to an embodiment of the present disclosure.
  • the embodiment in FIG. 11 is similar to the embodiment in FIG. 10, and the difference is that the migration from (E)AS1 to (E)AS2 is performed in step 6.3, so step 5.16 in the embodiment in FIG. 10 is no longer performed.
  • Steps 6.1-4.2 in the embodiment of FIG. 11 are similar to steps 5.1-5.2 in the embodiment of FIG. 10, and steps 6.4-6.15 in the embodiment of FIG. 11 are similar to steps 5.4-5.16 in the embodiment of FIG. Steps 6.16 to 6.23 in Figure 10 are similar to steps 5.17 to 5.24 in the embodiment in Figure 10.
  • the method for realizing business continuity provided by the embodiments of the present disclosure is initiated by AF, and can maintain business continuity when the address of the (E)AS changes under the condition that the DNAI changes and does not change.
  • This method can be used to realize EC communication, and EC communication has great application value, and can be widely used in services such as game acceleration, video acceleration, and V2X (vehicle to everything, wireless communication technology for vehicles).
  • the NAT technical solution provided by the embodiments of the present disclosure is simple, feasible, and easy to deploy.
  • the technical solution provided by the embodiment of the present disclosure is only to add a new solution on top of the technical solution of the relevant standard. Therefore, the system is not much modified, and it is easy to carry out standardization and large-scale deployment.
  • Fig. 12 schematically shows a schematic flowchart of a method for realizing business continuity according to an embodiment of the present disclosure.
  • the embodiment of FIG. 12 uses Early Notification to perform (E)AS Relocation when DNAI changes, and it is determined that UPF/PSA2 performs NAT translation.
  • Steps 7.1-7.2 in the embodiment of FIG. 12 are similar to steps 1.1-1.2 in the embodiment of FIG. 6, and in the embodiment of FIG. 12, the AF subscribes to SMF for some events.
  • the event that AF subscribes to SMF is "UP_PATH_CH”.
  • AF can subscribe directly to SMF, or first subscribe to the target NEF, and then the target NEF subscribes to SMF.
  • the subscribed event "UP_PATH_CH” can be "EARLY (early)", “LATE (late)” or “EARLY_LATE” (early). _Night). If the "UP_PATH_CH” subscribed by the AF to the SMF is "EARLY” or “EARLY_LATE” (morning_late), it is said that the AF has sent an early event subscription message to the SMF.
  • Step 7.3 Due to the mobility of the target UE, SMF can determine the distance between the target UE and UPF/PSA1 according to the location of the target UE, and UPF/PSA1 as the IP Anchor of the target UE is no longer suitable for the external (E)AS1 For communication, it is necessary to modify the protocol data unit session anchor user plane function network element and modify the user data routing. At this time, the Notification event subscribed by AF on SMF is triggered.
  • Step 7.4 When the SMF decides to modify the protocol data unit session anchor user plane function network element (add a UPF/PSA2 and UPF/UL CL, and DNAI changes at the same time), and if the AF subscribes to the Notification event on the SMF If it is "EARLY” or "EARLY_LATE", the SMF initiates the Notification process.
  • the SMF can directly send the Nsmf_EventExposure_Notify (Early Notification) message to the AF or through the target NEF to the AF. Event notification message) Report Notification event.
  • the SMF includes the target DNAI corresponding to UPF/PSA2 and the source DNAI corresponding to UPF/PSA1 in this parameter of EventNotification, the DnaiChangeType is EARLY, and the event type is "UP_PATH_CH”.
  • Step 7.5 AF triggers the migration of (E)AS1 to target DNAI to become (E)AS2.
  • Step 7.6 AF replies (E) the Nsmf_EventExposure_AppRelocationInfo message (Nsmf_event opening_application relocation information message, that is, the event opening application relocation information message) that the AS1 migration is successful to the SMF.
  • This message contains target N6 Traffic Routing Information, and this target N6 Traffic Routing Information includes the same parameters as target N6 Traffic Routing Information in the foregoing embodiment.
  • SMF determines the operation of UPF/PSA2 to perform NAT translation.
  • steps 7.7-1.21 please refer to steps 4.7-4.24 in the embodiment of FIG. 9.
  • FIG. 13 schematically shows a schematic flowchart of a method for realizing business continuity according to an embodiment of the present disclosure.
  • the embodiment of FIG. 13 uses Early Notification to perform (E)AS Relocation when DNAI changes, and it is determined that UPF/ULCL performs NAT translation.
  • Steps 8.1-8.6 in the embodiment in FIG. 13 are the same as steps 7.1-7.6 in the embodiment in FIG. 12.
  • SMF determines the operation of UPF/ULCL to perform NAT translation.
  • steps 8.7-8.20 please refer to steps 6.7-6.23 in the embodiment of FIG. 11.
  • FIG. 14 schematically shows a schematic flowchart of a method for realizing business continuity according to an embodiment of the present disclosure.
  • the embodiment of FIG. 14 uses Late Notification to perform (E)AS Relocation when DNAI changes, and it is determined that UPF/PSA2 performs NAT translation.
  • Steps 9.1-9.2 in the embodiment of FIG. 14 are similar to steps 7.1-7.2 in the embodiment of FIG. 12. The difference is that in the embodiment of FIG. 14, the event "UP_PATH_CH” subscribed by AF to SMF is "LATE (late)” or “EARLY_LATE”. "(Early_late), it is said that AF sends a late event subscription message to SMF.
  • Step 9.3 in the embodiment in FIG. 14 is the same as step 7.3 in the embodiment in FIG. 12.
  • Steps 9.4-9.7 in the embodiment of FIG. 14 are the same as steps 7.7-7.10 in the embodiment of FIG. 12.
  • Step 9.8 SMF configures UPF/UL CL to route all the uplink data packets of the target UE to UPF/PSA1, because the migration of (E)AS1 to (E)AS2 has not been completed yet, so no uplink data packets can be routed To UPF/PSA2.
  • Step 9.9 in the embodiment in FIG. 14 is the same as step 7.13 in the embodiment in FIG. 12.
  • Step 9.10 The SMF initiates the Notification process, and the SMF can directly send a Nsmf_EventExposure_Notify (Late Notification) message (Nsmf_Event Opening_Notification (late notification) message, that is, a late event notification message) to the AF directly or through the target NEF to the AF to report the Notification event.
  • SMF includes the target DNAI corresponding to UPF/PSA2 and the source DNAI corresponding to UPF/PSA1 in this parameter of EventNotification, the DnaiChangeType is LATE, and the event type is "UP_PATH_CH".
  • Step 9.11 AF triggers the migration of (E)AS1 to target DNAI and becomes (E)AS2.
  • Step 9.12 AF replies to SMF (E) the Nsmf_EventExposure_AppRelocationInfo message (Nsmf_EventExposure_App Relocation Information Message, that is, the event open application relocation information message) that the AS1 migration is successful.
  • This message contains target N6 Traffic Routing Information, and this target N6 Traffic Routing Information includes the same parameters as target N6 Traffic Routing Information in the foregoing embodiment.
  • SMF determines the operation of UPF/PSA2 to perform NAT translation.
  • Steps 9.13 to 9.22 can refer to steps 7.11 to 7.12 and steps 7.14 to 7.21 in the embodiment of FIG. 12.
  • FIG. 15 schematically shows a schematic flowchart of a method for realizing business continuity according to an embodiment of the present disclosure.
  • the embodiment in FIG. 15 uses Late Notification to perform (E)AS Relocation when DNAI changes, and it is determined that UPF/UL CL performs NAT translation.
  • Steps 10.1-12 in the embodiment of FIG. 15 are the same as steps 9.1-9.10 in the embodiment of FIG. 14.
  • Step 10.13 in the embodiment of FIG. 15 is the same as step 8.11 in the embodiment of FIG. 13.
  • Steps 10.14-10.21 in the embodiment of FIG. 15 are the same as steps 8.13-8.20 in the embodiment of FIG. 13.
  • SMF can trigger the Early Notification and Late Notification processes , Notify (E)AS to migrate between different DNAIs, and at the same time realize the maintenance of business continuity when the address of (E)AS changes.
  • This method can be used to realize EC communication, and EC communication has great application value, and can be widely used in services such as game acceleration, video acceleration, and V2X (vehicle to everything, wireless communication technology for vehicles).
  • the NAT technical solution provided by the embodiments of the present disclosure is simple, feasible, and easy to deploy.
  • the technical solution provided by the embodiment of the present disclosure is only to add a new solution on top of the technical solution of the relevant standard. Therefore, the system is not much modified, and it is easy to carry out standardization and large-scale deployment.
  • Fig. 16 schematically shows a flowchart of a method for realizing business continuity according to an embodiment of the present disclosure.
  • the method provided by the embodiment of the present disclosure may be executed by a user plane function network element, such as a user equipment, and includes the following steps.
  • step S1610 the target N4 session request message sent by the session management function network element is received through the target user plane function network element, the target N4 session request message includes data packet processing rules, and the data packet processing rules include network address translation rules .
  • step S1620 an uplink data packet is received through the target user plane function network element.
  • step S1630 if the target user plane function network element detects according to the data packet processing rule that the source address of the uplink data packet is the target user equipment network address and the destination address is the first application server network address, then The network address conversion rule converts the destination address of the uplink data packet into a second application server network address.
  • the target user plane function network element further detects according to the data packet processing rule that the destination port number of the uplink data packet is the first application server corresponding to the network address of the first application server
  • the method may further include: converting the destination port number of the uplink data packet to the second port number of the second application server according to the network address translation rule.
  • step S1640 the uplink data packet whose destination address is converted to the network address of the second application server is forwarded to the second application server corresponding to the network address of the second application server through the target user plane function network element.
  • the method may further include: receiving a downlink data packet through the target user plane function network element; if the target user plane function network element detects the downlink data according to the data packet processing rule If the source address of the packet is the network address of the second application server and the destination address is the network address of the target user equipment, the source address of the downlink data packet is converted to the first application server according to the network address conversion rule Network address; the downlink data packet whose source address is converted to the network address of the first application server is forwarded to the target user equipment corresponding to the target user equipment network address through the target user plane function network element.
  • the method may further include: converting the source port number of the downlink data packet into the first port number of the first application server corresponding to the network address of the first application server according to the network address conversion rule.
  • the target user plane function network element may include a first protocol data unit session anchor user plane function network element.
  • the target user plane function network element may include an uplink classifier user plane function network element and a second protocol data unit session anchor user plane function network element, and the data packet processing rule further includes a data packet
  • the target N4 session request message includes a first N4 session request message and a second N4 session request message.
  • the receiving the target N4 session request message sent by the session management function network element through the target user plane function network element may include: receiving the first N4 session request message through the uplink classifier user plane function network element, and The first N4 session request message includes the data packet forwarding rule; the second N4 session request message is received through the second protocol data unit session anchor user plane function network element, and the second N4 session request message includes The network address translation rule.
  • the receiving the uplink data packet through the target user plane function network element may include: receiving the uplink data packet through the uplink classifier user plane function network element.
  • said converting the destination address of the uplink data packet into a second application server network address according to the network address translation rule may include: the uplink classifier user plane function network element will match the data packet forwarding rule The uplink data packet of the second protocol data unit is forwarded to the session anchor user plane function network element of the second protocol data unit; the session anchor user plane function network element of the second protocol data unit converts the detected slave The destination address of the uplink data packet received by the user plane function network element of the uplink classifier is converted from the network address of the first application server to the address of the second application server.
  • the forwarding of the uplink data packet that converts the destination address into the network address of the second application server through the target user plane function network element to the second application server corresponding to the network address of the second application server may include: The uplink data packet whose destination address is converted to the address of the second application server is forwarded to the second application server through the session anchor user plane function network element of the second protocol data unit.
  • the method may further include: the second protocol data unit session anchor user plane function network element transforms the detected user plane function from the uplink classifier according to the network address translation rule The destination port number of the uplink data packet received by the network element is converted from the first port number of the first application server corresponding to the network address of the first application server to the second port number of the second application server.
  • the method may further include: receiving a downlink data packet through the second protocol data unit session anchor user plane function network element; if the second protocol data unit session anchor user plane function network element When the element detects that the source address of the downlink data packet is the second application server network address and the destination address is the target user equipment network address, it converts the source address of the downlink data packet according to the network address translation rule Is the network address of the first application server; the second protocol data unit session anchor user plane function network element forwards the downlink data packet whose source address is converted to the network address of the first application server to the uplink classifier user Plane function network element; the uplink classifier user plane function network element forwards the downlink data packet whose source address is converted to the network address of the first application server to the target user equipment.
  • the method may further include: converting the source port number of the downlink data packet into the first port number of the first application server corresponding to the network address of the first application server according to the network address conversion rule.
  • the target user plane function network element may include an uplink classifier user plane function network element.
  • the method before receiving the target N4 session request message, may further include: establishing a target protocol data unit session between the target user equipment corresponding to the target user equipment network address, so that The target user equipment communicates with the first application server corresponding to the network address of the first application server.
  • Fig. 17 schematically shows a block diagram of an apparatus for realizing business continuity according to an embodiment of the present disclosure.
  • the apparatus 1700 for realizing business continuity provided by the embodiments of the present disclosure may include: a relocation message receiving unit 1710, a processing rule generating unit 1720, and a processing rule issuing unit 1730.
  • the relocation message receiving unit 1710 may be configured to receive a target relocation message, the target relocation message carrying target data routing information, and the target data routing information includes a target data network access identifier and network address translation information.
  • the network address translation information includes a target user equipment network address, a first application server network address, and a second application server network address, wherein the target user equipment corresponding to the target user equipment network address has been established to reach the first protocol data unit session anchor user
  • the target protocol data unit session of the plane function network element communicates with the first application server corresponding to the network address of the first application server.
  • the processing rule generation unit 1720 may be configured to generate a data packet processing rule according to the target data routing information, the data packet processing rule includes a network address translation rule, and the network address translation rule includes uplink data sent by the target user equipment.
  • the destination address of the packet is converted from the network address of the first application server to the network address of the second application server, and the source address of the downlink data packet with the received destination address being the target user equipment network address is changed from the first Second, the network address of the application server is converted into the network address of the first application server.
  • the processing rule issuing unit 1730 may be configured to issue the data packet processing rule to a target network device, so that the target network device forwards the uplink data packet sent by the target user equipment according to the data packet processing rule To the second application server corresponding to the network address of the second application server, and forward the received downlink data packet whose destination address is the network address of the target user equipment and the source address is the network address of the second application server to all The target user equipment.
  • the target relocation message may include a session management policy control update notification message.
  • the relocation message receiving unit 1710 may include: a session management policy control update notification message receiving unit, which may be configured to receive the session management policy control update notification message from the target policy control function network element, and the session management policy control update notification The message may include the source data network access identifier corresponding to the user plane function network element of the first protocol data unit session anchor, the target data network access identifier, and the target data routing information.
  • the session management policy control update notification message may be generated by the target policy control function network element according to a policy authorization request message received from the target network open function network element, the policy authorization request message It may include the target user equipment network address, the source data network access identifier, the target data network access identifier, and the target data routing information.
  • the policy authorization request message may be generated by the target network opening function network element according to a data-influencing routing request message received from an application function network element, and the data-influencing routing request message may include the target user equipment network Address, the source data network access identifier, the target data network access identifier, and the target data routing information.
  • the session management policy control update notification message may be generated by the target policy control function network element according to a data-influencing routing request message received from an application function network element, the data-influencing routing request message It may include the target user equipment network address, the source data network access identifier, the target data network access identifier, and the target data routing information.
  • the target network device may include the first protocol data unit session anchor user plane function network element .
  • the processing rule issuing unit 1730 may include: an N4 session modification request message sending unit, which may be used to send an N4 session modification request message to the first protocol data unit session anchor user plane function network element, and the N4 session modification request message The request message includes the data packet processing rule.
  • the apparatus 1700 for achieving service continuity may further include: an N4 session modification response message receiving unit, which may be used to receive the N4 response from the first protocol data unit session anchor user plane function network element Session modification response message; the session management policy control update notification response message return unit may be used to return a session management policy control update notification response message to the target policy control function network element, so that the target policy control function network element can apply
  • the function network element returns a data-influencing routing response message, and after the application function network element receives the data-influencing routing response message, it triggers the completion of the migration of the first application server to the second application server.
  • the first application server before receiving the target relocation message, has been migrated to the second application server through an application function network element.
  • the network address translation rule may also Including converting the destination port number of the uplink data packet from the first port number to the second port number, and converting the source port number of the downlink data packet from the second port number to the second port number One port number.
  • the target network device may It includes a second protocol data unit session anchor user plane function network element and an uplink classifier user plane function network element.
  • the data packet processing rule may also include a data packet forwarding rule, and the data packet forwarding rule may include the received The uplink data packet with the source address being the network address of the target user equipment and the destination address being the network address of the first application server is forwarded to the session anchor user plane function network element of the second protocol data unit.
  • the processing rule issuing unit 1730 may include: a data packet forwarding rule issuing unit, which may be used to issue the data packet forwarding rule to the uplink classifier user plane function network element; and a network address translation rule issuing unit , Can be used to issue the network address translation rule to the session anchor user plane function network element of the second protocol data unit.
  • the apparatus 1700 for achieving business continuity may further include: a user plane path changing unit, which may be used to determine the second protocol before issuing the data packet processing rule to the target network device Data unit session anchor user plane function network element; determine the uplink classifier user plane function network element; update the downlink user plane of the first protocol data unit session anchor user plane function network element; update the second protocol The downlink user plane of the data unit session anchor user plane function network element.
  • a user plane path changing unit which may be used to determine the second protocol before issuing the data packet processing rule to the target network device Data unit session anchor user plane function network element; determine the uplink classifier user plane function network element; update the downlink user plane of the first protocol data unit session anchor user plane function network element; update the second protocol The downlink user plane of the data unit session anchor user plane function network element.
  • the target network device may Including uplink classifier user plane function network element.
  • the processing rule issuing unit 1730 may include an uplink classifier receiving packet processing rule unit, which may be used to issue the data packet processing rule to the uplink classifier user plane function network element.
  • the target relocation message may include an event opening application relocation information message.
  • the relocation message receiving unit 1710 may include: an event open application relocation information message receiving unit, which may be configured to receive the event open application relocation information message from an application function network element, where the event open application relocation information message includes The target data routing information.
  • the apparatus 1700 for achieving business continuity may further include: an early event notification unit, which may be configured to receive an early event subscription message of the application function network element before receiving the target relocation message Deciding to modify the protocol data unit session anchor user plane function network element; according to the decision, transmit an early event notification message to the application function network element, the early event notification message including event notification parameters, the event notification
  • the parameters include the source data network access identifier corresponding to the first protocol data unit session anchor user plane function network element and the target data network access identifier corresponding to the second protocol data unit session anchor user plane function network element.
  • the apparatus 1700 for achieving business continuity may further include: a first application server migration unit, which may be used for the application function network element to trigger the first application server migration according to the early event notification message
  • the application server migrates from the source data network access identifier to the target data network access identifier, and becomes the second application server.
  • the data packet processing rule may further include a data packet forwarding rule.
  • the apparatus 1700 for achieving service continuity may further include: a second uplink user plane function network element determining unit, which may be used to determine the session anchor point of the second protocol data unit after receiving the target relocation message The user plane function network element and the uplink classifier user plane function network element; the first target network device determining unit may be used to compare the session anchor user plane function network element of the second protocol data unit and the uplink classifier user plane The functional network element serves as the target network device.
  • the processing rule issuing unit 1730 may include: a data packet forwarding rule sending unit, which may be used to issue the data packet forwarding rule to the user plane function network element of the uplink classifier; and a network address translation rule sending unit, which may It is used to issue the network address translation rule to the session anchor user plane function network element of the second protocol data unit.
  • the apparatus 1700 for achieving business continuity may further include: a user plane function network element adding unit, which may be used to determine the second protocol data unit after receiving the target relocation message The session anchor user plane function network element and the uplink classifier user plane function network element; the second target network device determining unit may be configured to use the uplink classifier user plane function network element as the target network device.
  • the processing rule issuing unit 1730 may include: a data packet processing rule sending unit, which may be configured to issue the data packet processing rule to the uplink classifier user plane function network element.
  • the apparatus 1700 for achieving business continuity may further include: a late event notification unit, which may be configured to receive a late event subscription message from the application function network element before receiving the target relocation message ; Decide to modify the protocol data unit session anchor user plane function network element; according to the decision, determine the second protocol data unit session anchor user plane function network element and the uplink classifier user plane function network element; configure the uplink The classifier user plane function network element forwards the received uplink data packet to the first protocol data unit session anchor user plane function network element; transmits a late event notification message to the application function network element, the late event notification The message includes event notification parameters, the event notification parameters including the source data network access identifier corresponding to the first protocol data unit session anchor user plane function network element and the second protocol data unit session anchor user plane function network The target data network access identifier corresponding to the meta.
  • a late event notification unit which may be configured to receive a late event subscription message from the application function network element before receiving the target relocation message ; Decide to modify the protocol data unit session anchor user plane function network
  • the apparatus 1700 for realizing business continuity may further include: a second application server migration unit, which may be used for the application function network element to trigger the transfer of the first application server according to the late event notification message
  • the application server migrates from the source data network access identifier to the target data network access identifier, and becomes the second application server.
  • the data packet processing rule may further include a data packet forwarding rule.
  • the apparatus 1700 for achieving business continuity may further include: a third target network device determining unit, which may be used to set the session anchor user plane function of the second protocol data unit after receiving the target relocation message The network element and the user plane function network element of the uplink classifier serve as the target network device.
  • the processing rule issuing unit 1730 may include: a data packet forwarding rule transmission unit, which may be used to issue the data packet forwarding rule to the uplink classifier user plane function network element; a network address translation rule transmission unit, which may It is used to issue the network address translation rule to the session anchor user plane function network element of the second protocol data unit.
  • the apparatus 1700 for realizing service continuity may further include: a fourth target network device determining unit, which may be configured to, after receiving the target relocation message, compare the uplink classifier user plane function The network element serves as the target network device.
  • the processing rule issuing unit 1730 may include: a data packet inspection rule issuing unit, which may be configured to issue the data packet processing rule to the uplink classifier user plane function network element.
  • each unit in the device for realizing business continuity may refer to the content in the above method for realizing business continuity, which will not be repeated here.
  • Fig. 18 schematically shows a block diagram of a user plane function network element according to an embodiment of the present disclosure.
  • the user plane function network element 1800 provided by the embodiments of the present disclosure may include: a session request message receiving unit 1810, an uplink data packet receiving unit 1820, an uplink data packet detection and conversion unit 1830, and an uplink data packet forwarding unit 1840.
  • the session request message receiving unit 1810 may be configured to receive a target N4 session request message sent by a session management function network element, where the target N4 session request message includes data packet processing rules, and the data packet processing rules include network address translation rules.
  • the uplink data packet receiving unit 1820 may be used to receive uplink data packets.
  • the uplink data packet detection and conversion unit 1830 may be configured to detect that the source address of the uplink data packet is the network address of the target user equipment and the destination address is the network address of the first application server according to the data packet processing rule.
  • the address conversion rule converts the destination address of the uplink data packet into the network address of the second application server.
  • the uplink data packet forwarding unit 1840 may be configured to forward the uplink data packet whose destination address is converted to the network address of the second application server to the second application server corresponding to the network address of the second application server.
  • the uplink data packet detection and conversion unit 1830 may include: a first destination port number conversion unit, which may be configured to detect that the source address of the uplink data packet is the target user equipment according to the data packet processing rule;
  • the network address and the destination address are the network address of the first application server, and the destination port number is the first port number of the first application server corresponding to the network address of the first application server, then the uplink data is converted according to the network address translation rule
  • the destination address of the packet is converted to the network address of the second application server, and the destination port number is converted to the second port number of the second application server.
  • the user plane function network element 1800 may further include: a first downlink data packet receiving unit, which may be used to receive a downlink data packet; and a first source address conversion unit, which may be used to When the processing rule detects that the source address of the downlink data packet is the network address of the second application server and the destination address is the network address of the target user equipment, the source address of the downlink data packet is converted according to the network address translation rule. Converted to the network address of the first application server; a first downlink data packet forwarding unit, which may be used to forward the downlink data packet whose source address is converted to the network address of the first application server to the corresponding network address of the target user equipment The target user device.
  • a first downlink data packet receiving unit which may be used to receive a downlink data packet
  • a first source address conversion unit which may be used to When the processing rule detects that the source address of the downlink data packet is the network address of the second application server and the destination address is the network address of the target user equipment, the source address of the downlink
  • the first source address conversion unit may include: a first source port number conversion unit, which may be configured to detect that the source address of the downlink data packet is the second source address according to the data packet processing rule;
  • the application server network address, the destination address are the target user equipment network address, and the source port number is the second port number of the second application server, then the source address of the downlink data packet is converted according to the network address conversion rule
  • the network address and source port number of the first application server are converted into the first port number of the first application server corresponding to the network address of the first application server.
  • the user plane function network element may include a first protocol data unit session anchor user plane function network element.
  • the user plane function network element may include an uplink classifier user plane function network element and a second protocol data unit session anchor user plane function network element
  • the data packet processing rule may also include a data packet
  • the target N4 session request message may include a first N4 session request message and a second N4 session request message.
  • the session request message receiving unit 1810 may include: a first N4 session request message receiving unit, which may be configured to receive the first N4 session request message through the uplink classifier user plane function network element, and the first N4 session request message The request message includes the data packet forwarding rule; the second N4 session request message receiving unit may be used to receive the second N4 session request message through the session anchor user plane function network element of the second protocol data unit, The second N4 session request message includes the network address translation rule.
  • the uplink data packet receiving unit 1820 may include: an uplink data packet obtaining unit, which may be configured to receive the uplink data packet through the uplink classifier user plane function network element.
  • the uplink data packet detection and conversion unit 1830 may include: an uplink data packet sending unit, which may be used for the uplink classifier user plane function network element to forward the uplink data packet matching the data packet forwarding rule to the second protocol The data unit session anchor user plane function network element; the destination address conversion unit can be used for the second protocol data unit session anchor user plane function network element to convert the detected data from the uplink according to the network address conversion rule The destination address of the uplink data packet received by the classifier user plane function network element is converted from the network address of the first application server to the address of the second application server.
  • the uplink data packet forwarding unit 1840 may include: an uplink data packet transmission unit, which may be used to convert the destination address to the uplink of the second application server address through the session anchor user plane function network element of the second protocol data unit. The data packet is forwarded to the second application server.
  • the destination address conversion unit may include: a second destination port number conversion unit, which may be used for the second protocol data unit session anchor user plane function network element to detect according to the network address conversion rule
  • the destination address of the uplink data packet received from the user plane function network element of the uplink classifier is converted from the network address of the first application server to the address of the second application server, and the destination port number is converted from the first application server.
  • the first port number of the first application server corresponding to the network address is converted to the second port number of the second application server.
  • the user plane function network element 1800 may further include: a second downlink data packet receiving unit, which may be configured to receive a downlink data packet through the session anchor user plane function network element of the second protocol data unit;
  • the second source address conversion unit can be used to if the second protocol data unit session anchor user plane function network element detects that the source address of the downlink data packet is the second application server network address and the destination address is the The network address of the target user equipment, the source address of the downlink data packet is converted to the network address of the first application server according to the network address translation rule;
  • the second downlink data packet forwarding unit may be used for the second protocol
  • the data unit session anchor user plane function network element forwards the downlink data packet whose source address is converted to the network address of the first application server to the uplink classifier user plane function network element;
  • the third downlink data packet forwarding unit can be used The user plane function network element of the uplink classifier forwards the downlink data packet whose source address is converted to the network address of the first application server to the target user equipment
  • the second source address conversion unit may include: a second source port number conversion unit, which may be configured to detect the downlink data packet if the session anchor user plane function network element of the second protocol data unit
  • the source address is the network address of the second application server
  • the destination address is the network address of the target user equipment
  • the source port number is the second port number of the second application server.
  • the source address of the downlink data packet is converted into the network address of the first application server, and the source port number is converted into the first port number of the first application server corresponding to the network address of the first application server.
  • the user plane function network element may include an uplink classifier user plane function network element.
  • the user plane function network element 1800 may further include: a unit session establishment unit, which may be used to establish a target user equipment corresponding to the target user equipment network address before receiving the target N4 session request message A target protocol data unit session between the two, so that the target user equipment communicates with the first application server corresponding to the network address of the first application server.
  • a unit session establishment unit which may be used to establish a target user equipment corresponding to the target user equipment network address before receiving the target N4 session request message A target protocol data unit session between the two, so that the target user equipment communicates with the first application server corresponding to the network address of the first application server.
  • each unit in the user plane function network element may refer to the content in the above-mentioned method for realizing service continuity, which will not be repeated here.
  • Fig. 19 schematically shows a block diagram of a user equipment according to an embodiment of the present disclosure.
  • the user equipment 1900 provided by the embodiments of the present disclosure may include: a unit session establishing unit 1910, an application server communication unit 1920, and an uplink data packet sending unit 1930.
  • the unit session establishment unit 1910 may be used to establish a target protocol data unit session to the user plane function network element of the first protocol data unit session anchor point.
  • the application server communication unit 1920 may be configured to communicate with the first application server corresponding to the network address of the first application server.
  • the uplink data packet sending unit 1930 may be configured to send an uplink data packet to a target network device, where the source address of the uplink data packet is the network address of the target network device, and the destination address is the network address of the first application server, so as to facilitate the target
  • the network device processes the uplink data packet according to the data packet processing rule, converts the destination address of the uplink data packet to the second application server network address, and converts the destination address to the uplink data of the second application server network address
  • the packet is forwarded to the second application server corresponding to the network address of the second application server.
  • the user equipment 1900 may further include: a downlink data packet switching unit, which may be configured to receive a downlink data packet from the target network device, and the source address of the downlink data packet is based on the target network device
  • the data packet processing rule is converted from the second application server network address to the first application server network address, and the destination address of the downlink data packet is the target user equipment network address.
  • the example embodiments described here can be implemented by software, or can be implemented by combining software with necessary hardware. Therefore, the technical solution according to the embodiments of the present disclosure can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (which can be a CD-ROM, U disk, mobile hard disk, etc.) or on the network , Including several instructions to make a computing device (which may be a personal computer, a server, a touch terminal, or a network device, etc.) execute the method according to the embodiments of the present disclosure.
  • a non-volatile storage medium which can be a CD-ROM, U disk, mobile hard disk, etc.
  • Including several instructions to make a computing device which may be a personal computer, a server, a touch terminal, or a network device, etc.

Abstract

本公开实施例提供了一种用于实现业务连续性的方法及相关设备。该方法包括:接收目标重定位消息,其携带目标数据路由信息,目标数据路由信息包括目标数据网络接入标识和网络地址转换信息,网络地址转换信息包括目标用户设备网络地址、第一应用服务器网络地址和第二应用服务器网络地址;根据目标数据路由信息生成数据包处理规则,其包括网络地址转换规则,网络地址转换规则包括将目标用户设备发送的上行数据包的目的地址从第一应用服务器网络地址转换为第二应用服务器网络地址,并将接收到的目的地址为目标用户设备网络地址的下行数据包的源地址从第二应用服务器网络地址转换为第一应用服务器网络地址;将数据包处理规则下发至目标网络设备。

Description

用于实现业务连续性的方法及相关设备
本申请要求于2020年4月30日提交中国专利局、申请号为202010367304.7、发明名称为“用于实现业务连续性的方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信技术领域,具体而言,涉及一种用于实现业务连续性的方法及装置、用户面功能网元、用户设备、电子设备和计算机可读存储介质。
背景技术
当前,一个需要解决的技术问题是:当UE(User Equipment,用户设备)发生移动时,如何进行AS(Application Server,应用服务器)的迁移,以保持业务的连续性;或者,当AS发生迁移而UE没有移动时,如何保持业务的连续性。
因此,需要一种新的用于实现业务连续性的方法及装置、电子设备和计算机可读存储介质。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解。
发明内容
本公开实施例提供一种用于实现业务连续性的方法及装置、用户面功能网元、用户设备、电子设备和计算机可读存储介质,能够在用户设备或者应用服务器发生迁移时,保持业务的连续性。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
本公开实施例提供一种用于实现业务连续性的方法,由会话管理功能网元执行,所述方法包括:接收目标重定位消息,所述目标重定位消息携带目标数据路由信息,所述目标数据路由信息包括目标数据网络接入标识和网络地址转换信息,所述网络地址转换信息包括目标用户设备网络地址、第一应用服务器网络地址和第二应用服务器网络地址,其中所述目标用户设备网络地址对应的目标用户设备已建立到达第一协议数据单元会话锚点用户面功能网元的目标协议数据单元会话,并与所述第一应用服务器网络地址对应的第一应用服务器进行通信;根据所述目标数据路由信息生成数据包处理规则,所述数据包处理规则包括网络地址转换规则,所述网络地址转换规则包括将所述目标用户设备发送的上行数据包的目的地址从所述第一应用服务器网络地址转换为所述第二应用服务器网络地址,并将接收到的目的地址为所述目标用户设备网络地址的下行数据包的源地址从所述第二应用服务器网络地址转换为所述第一应用服务器网络地址;将所述数据包处理规则下发至目标网络设备,以使得所述目标网络设备根据所述数据包处理规则,将所述目标用户设备发送的上行数据包转发至所述第二应用服务器网络地址对应的第二应用服务器,并将接收到的目的地址为所述目标用户设备网络地址、源地址为所述第二应用服务器网络地址的下行数据包转发至所述目标用户设备。
本公开实施例提供一种用于实现业务连续性的方法,由用户面功能网元执行,所述方法包括:通过目标用户面功能网元接收会话管理功能网元发送的目标N4会话请求消息,所述目标N4会话请求消息包括数据包处理规则,所述数据包处理规则包括网络地址转换规则;通过所述目标用户面功能网元接收上行数据包;若所述目标用户面功能网元根据所述数据包处理规则检测到所述上行数据包的源地址为目标用户设备网络地址、目的地址为第一应用服务器网络地址,则根据所述网络地址转换规则将所述上行数据包的目的地址转换为第二应用服务器网络地址;通过所述目标用户面功能网元将目的地址转换为所述第二应用服务器网络地址的上行数据包转发至所述第二应用服务器网络地址对应的第二应用服务器。
本公开实施例提供一种用于实现业务连续性的装置,所述装置包括:重定位消息接收单元,用于接收目标重定位消息,所述目标重定位消息携带目标数据路由信息,所述目标数据路由信息包括目标数据网络接入标识和网络地址转换信息,所述网络地址转换信息包括目标用户设备网络地址、第一应用服务器网络地址和第二应用服务器网络地址,其中所述目标用户设备网络地址对应的目标用户设备已建立到达第一协议数据单元会话锚点用户面功能网元的目标协议数据单元会话,并与所述第一应用服务器网络地址对应的第一应用服务器进行通信;处理规则生成单元,用于根据所述目标数据路由信息生成数据包处理规则,所述数据包处理规则包括网络地址转换规则,所述网络地址转换规则包括将所述目标用户设备发送的上行数据包的目的地址从所述第一应用服务器网络地址转换为所述第二应用服务器网络地址,并将接收到的目的地址为所述目标用户设备网络地址的下行数 据包的源地址从所述第二应用服务器网络地址转换为所述第一应用服务器网络地址;处理规则下发单元,用于将所述数据包处理规则下发至目标网络设备,以使得所述目标网络设备根据所述数据包处理规则,将所述目标用户设备发送的上行数据包转发至所述第二应用服务器网络地址对应的第二应用服务器,并将接收到的目的地址为所述目标用户设备网络地址、源地址为所述第二应用服务器网络地址的下行数据包转发至所述目标用户设备。
本公开实施例提供一种用户面功能网元,包括:会话请求消息接收单元,用于接收会话管理功能网元发送的目标N4会话请求消息,所述目标N4会话请求消息包括数据包处理规则,所述数据包处理规则包括网络地址转换规则;上行数据包接收单元,用于接收上行数据包;上行数据包检测转换单元,用于若根据所述数据包处理规则检测到所述上行数据包的源地址为目标用户设备网络地址、目的地址为第一应用服务器网络地址,则根据所述网络地址转换规则将所述上行数据包的目的地址转换为第二应用服务器网络地址;上行数据包转发单元,用于将目的地址转换为所述第二应用服务器网络地址的上行数据包转发至所述第二应用服务器网络地址对应的第二应用服务器。
本公开实施例提供一种用户设备,所述用户设备包括:单元会话建立单元,用于建立到达第一协议数据单元会话锚点用户面功能网元的目标协议数据单元会话;应用服务器通信单元,用于与第一应用服务器网络地址对应的第一应用服务器进行通信;上行数据包发送单元,用于向目标网络设备发送上行数据包,所述上行数据包的源地址为目标网络设备网络地址、目的地址为所述第一应用服务器网络地址,以便于所述目标网络设备根据数据包处理规则对所述上行数据包进行处理,将所述上行数据包的目的地址转换为第二应用服务器网络地址,将目的地址转换为所述第二应用服务器网络地址的上行数据包转发至所述第二应用服务器网络地址对应的第二应用服务器。
本公开实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现如上述实施例中所述的用于实现业务连续性的方法。
本公开实施例提供了一种电子设备,包括:一个或多个处理器;存储装置,配置为存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如上述实施例中所述的用于实现业务连续性的方法。
在本公开的一些实施例所提供的技术方案中,一方面,利用网络地址转换技术,能够在应用服务器发生迁移时,或者当用户设备的位置发生变化时,保持业务的连续性,实现简单,容易部署;另一方面,是在相关技术方案上,增加一种新的技术方案,对系统的修改不大,容易进行标准化与大规模部署。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图简要说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1示出了相关技术中一种EC架构的示意图;
图2示出了相关技术中另一种EC架构的示意图;
图3示出了相关技术中AF对单个UE请求的AF影响数据路由的流程图;
图4示出了相关技术中用户面管理事件的通知的流程示意图;
图5示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程图;
图6示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图;
图7示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图;
图8示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图;
图9示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图;
图10示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图;
图11示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图;
图12示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图;
图13示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图;
图14示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图;
图15示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图;
图16示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程图;
图17示意性示出了根据本公开的一实施例的用于实现业务连续性的装置的框图;
图18示意性示出了根据本公开的一实施例的用户面功能网元的框图;
图19示意性示出了根据本公开的一实施例的用户设备的框图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知方法、装置、实现或者操作以避免模糊本公开的各方面。
附图中所示的方框图仅仅是功能实体,不一定必须与物理上独立的实体相对应。即,可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
特别地,根据本公开的实施例,下文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在计算机可读存储介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。
需要说明的是,本公开所示的计算机可读存储介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM(Erasable Programmable Read Only Memory,可擦除可编程只读存储器)或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读存储介质,该计算机可读存储介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读存储介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、RF(Radio Frequency,射频)等等,或者上述的任意合适的组合。
附图中的流程图和框图,图示了按照本公开各种实施例的方法、装置和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,上述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图或流程图中的每个方框、以及框图或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现,所描述的单元也可以设置在处理器中。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定。
作为另一方面,本申请还提供了一种计算机可读存储介质,该计算机可读存储介质可以是上述实施例中描述的电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。上述计算机可读存储介质承载有一个或者多个程序,当上述一个或者多个程序被一个该电子设备执行时,使得该电子设备实现如下述实施例中所述的方法。例如,所述的电子设备可以实现如图5或图6或图7或图8或图9或图10或图11或图12或图13或图14或图15所示的各个步骤。
EC(边缘计算,Edge Computing)通过将AS部署到离UE近的位置,从而实现UE与AS的通信时延最小化。3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)发布的Release 17 (版本17)的协议TR23.748正在进行EC的标准化研究。
需要说明的是,虽然本公开实施例中是以TR23.748的EC架构作为其解决方案的基线进行举例说明,但本公开并不限定于此,在其他实施例中,也可以扩展到适应于其它EC架构。
其中,实现EC包括两个基本的架构,分别如图1和图2所示。
图1中,是将UPF(User Plane Function,用户面功能)/PSA(PDU(Protocol Data Unit,分组数据单元)Session Anchor,PDU会话锚点)部署在基站(AN(Access Network,接入网))附近,同时将EAS(Edge Application Server,边缘应用服务器)部署在与PSA相连的DN(Data Network,数据网络)中。
图2中,是在UPF/PSA1部署在中心位置时,通过在近基站AN处部署一个UL CL(Uplink Classifier,上行分类器)/BP(Branching Point,分支点),然后分出一个近基站的UPF/PSA2,将EAS部署在与PSA2相连的本地接入(Local Access)的相同DN。
即图1没有利用UL CL/BP访问EAS,图2利用UL CL/BP访问EAS。
上述图1和图2中,NEF的英文全称是Network Exposure Function,即网络开放功能,Nnef是指获取NEF提供的服务的Nnef消息。PCF的英文全称是Policy Control Function,即策略控制功能,Npcf是指获取PCF提供的服务的Npcf消息。AF的英文全称是Application Function,即应用功能),Naf是指获取AF提供的服务的Naf消息。AMF的英文全称是Access and Mobility Management Function,即接入和移动性管理功能,Namf是指获取AMF提供的服务的Namf消息。SMF的英文全称是Session Management Function,即会话管理功能,Nsmf是指获取SMF提供的服务的Nsmf消息。UE与AMF之间通过N1接口交互,AMF与AN之间通过N2接口交互,SMF与UPF之间通过N4接口交互,AN与UPF之间通过N3接口交互,UPF与DN之间通过N6接口交互,UPF之间通过N9接口交互。
TR23.748确定了需要解决如下的KI(Key Issue,关键问题):当UE发生移动时,如何进行EAS的迁移,以保持业务的连续性,同时实现EC通信(如通信延迟很少)。或者,当EAS发生迁移,UE没有移动时,如何保持业务的连续性,同时实现EC通信(如通信延迟很少)。
具体可以参见TR23.748的章节5.2“Key Issue#2:Edge relocation(边缘重定位)”的5.2.1的描述:
随着边缘计算在5G系统中的部署,在设计边缘解决方案的最佳部署方案时,需要考虑UE移动性和应用服务器的重定位。例如,当UE在5G系统中移动时,UE位置可能改变并且要求网络和边缘处理UE位置的改变。3GPP Rel-16(版本16)规范已经解决了其中一些方面,关键问题是研究潜在的改进。(With edge computing being deployed for 5G systems,UE mobility and application server relocation need to be considered when designing solutions for optimal deployment of edge solutions.For example,as the UE moves across the 5G system,the UE location may change and require the network and the edge to deal with the change of UE location.3GPP Rel-16 specifications already address some of these aspects and the key issue is to study potential improvements.)
协议TS 22.261的章节6.5.2包含与本关键问题相关的要求。业务与系统工作组1(SA WG1)定义了术语Service Hosting Environment(服务宿主环境),该术语已在当前TR的SA WG2的工作中转换并扩展为Edge Hosting Environment(边缘宿主环境),作为为边缘应用服务器的执行提供所需支持的环境。因此,SA WG1的要求被解释为适用于边缘宿主环境。(Clause 6.5.2 of TS 22.261contains requirements that are related to this key issue.SA WG1 defined the term Service Hosting Environment that has been translated and broadened in SA WG2 work in the present TR to Edge Hosting Environment as the environment providing support required for Edge Application Server's execution.The requirements from SA WG1 are thus being interpreted as applying to the Edge Hosting Environment.)
将研究以下UE移动性和应用服务器重定位的场景:(The following scenarios of UE mobility and application server relocation will be investigated:)
-在不更改DNAI(DN Access Identifier,数据网络接入标识)的情况下,更改服务边缘应用服务器。这包括:(Change of the serving Edge Application Server with no change of DNAI.This includes:)
-边缘应用服务器的更改,例如,由于服务边缘应用服务器变得拥塞或处于中断状态。这假设EAS IP(Internet Protocol,网际互联协议)地址更改。(Change of the Edge Application Server e.g.due to the serving Edge Application Server becoming congested or being in outage condition.This assumes EAS IP address change.)
-根据UE的位置更改DNAI,以更好地服务UE。这可能意味着EAS IP地址改变,但在某些情况下,只要UE业务没有结束,旧的EAS就可以保留。(Change of the DNAI depending on the location of the UE to better serve the UE.This may imply EAS IP address change but in some cases the old EAS may be kept as long as the UE transaction is not over.)”
本公开实施例提供的技术方案,可以用于解决上述KI。在3GPP协议TS23.501及TS23.502已 经定义了一些机制(在下文的图3和图4中介绍),这些机制可解决这个KI。本公开实施例提供的方案是增强TS23.501及TS23.502所定义的机制,从而更加有效地解决Edge Relocation。
图3示出了相关技术中AF对单个UE请求的AF影响数据路由的流程图。
在3GPP协议TS23.501的章节5.6.7给出了AF影响数据路由(Application Function influence on traffic routing)的功能的详细说明,并提供了相关的参数表,如下表1所示。
在3GPP协议TS23.502的章节4.3.6给出了不同的场景下的流程图。图3是AF对单个UE请求的AF影响数据路由(Transferring an AF request targeting an individual UE address to the relevant PCF)的流程。
如图3所示,可以包括以下步骤。
步骤1、如果AF通过NEF发送AF请求,则AF向NEF发送针对单个UE地址的Nnef_TrafficInfluence_Create/Update/Delete Request(Nnef_数据影响_创建/更新/删除请求)。该请求对应于AF请求,以影响针对单个UE地址的数据路由。当NEF从AF接收到AF请求时,NEF确保必要的授权控制,并从AF提供的信息映射到5G核心网所需的信息。NEF响应AF。
步骤2、如果基于本地配置的PCF地址在NEF上不可用,AF/NEF使用Nbsf_管理_发现(Nbsf_Management_Discovery)服务操作(至少提供UE地址)来查找相关PCF的地址,否则跳过步骤1。AF/NEF根据本地配置或使用NRF(NF Repository Function,NF贮存功能网元)来查找BSF(Binding Support Function,绑定支持功能网元)。
步骤3、BSF在Nbsf_管理_发现响应(Nbsf_Management_Discovery response)消息中给AF/NEF提供PCF地址。
步骤4、如果执行了步骤1,NEF将调用Npcf_策略授权(Npcf_PolicyAuthorization)服务至PCF来传输AF请求。如果AF直接向PCF发送AF请求,AF调用Npcf_PolicyAuthorization服务,PCF响应AF。
步骤5、PCF使用相应的新PCC(Policy Control and Charging,策略控制和计费)规则更新SMF,PCF启动了SM策略关联修改程序。当从PCF接收到PCC规则时,SMF可以在适用时采取适当的操作来重新配置PDU会话的用户面,例如:
-在数据路径中添加、替换或移除UPF,例如充当UL CL、BP和/或PDU会话锚点。
-为UE分配一个新的前缀(Prefix)。
-使用新的数据转向规则(traffic steering rules)更新有关目标DNAI的UPF。
从图3中可以获知,AF可以直接将Npcf_PolicyAuthorization_Create/Update/Delete Request(Npcf_策略授权_创建/更新/删除请求)消息发送给PCF;或者,AF也可以先将Nnef_TrafficInfluence_Create/Update/Delete Request(Nnef_数据影响_创建/更新/删除请求)消息发给NEF,然后再通过NEF发送Npcf_PolicyAuthorization_Create/Update/Delete Request消息给PCF。在下文中给出AF提供给NEF的AF影响数据路由的参数,AF/NEF提供给PCF的AF影响数据路由的参数。
3GPP协议TS29.522的章节5.4.3.3.3给出了AF提供给NEF的影响数据路由(Application Function influence on traffic routing)的参数,如下表1所示:
表1
Figure PCTCN2021079715-appb-000001
上述表1中,N为大于或者等于1的正整数。
3GPP协议TS29.514的章节5.6.2.13给出了AF/NEF提供给PCF的影响数据路由的参数,如下表2所示。
表2
Figure PCTCN2021079715-appb-000002
TS23.501中的章节5.6.7.1定义了AF提供给NEF与PCF的影响数据路由的参数,如下表3所示。
表3
Figure PCTCN2021079715-appb-000003
表3中的DNN的英文全称是Data Network Name,即数据网络名称。S-NSSAI的英文全称是Single Network Slice Selection Assistance Information,即单个网络切片选择辅助信息。GPSI的英文全称是Generic Public Subscription Identifier,即通用公共订阅标识符。
上表3为TS23.501中的章节5.6.7.1所定义的参数,上表1和表2是对上述参数的详细定义,它们是一致的。
3GPP协议TS29.571 RouteToLocation(到位置的路由)对应于TS23.501及TS23.502中的Traffic Routing requirements(数据路由要求),如下表4所示。
表4
属性名 数据类型 描述
dnai Dnai 指示应用的位置
routeInfo 路由信息 包括数据路由信息
routeProfId 字符串 指示路由配置文件Id
从上表4可以获知,对于每个DNAI包括N6数据路由信息(N6 traffic routing information)和路由配置文件ID(Routing Profile ID)。其中,Routing Profile ID只是一个字符串(String),它对应的N6 Traffic Routing功能在标准中是由运营商与AF事先协商好,并且配置在AF与5G网络上的。也就是说Routing Profile ID对应的N6 Traffic Routing功能在标准中不作定义。
TS29.571中的章节5.4.4.16定义了路由信息(RouteInformation),如下表5所示。
表5
属性名 数据类型 描述
ipv4Addr Ipv4Addr 数据网络中隧道终点IPv4地址
ipv6Addr Ipv6Addr 数据网络中隧道终点IPv6地址
portNumber Uinteger 数据网络中隧道终点的UDP端口号
从上述RouteInformaiton的定义来看,相关技术中只支持基于UDP(User Datagram Protocol,用户数据报协议)的Tunnel(隧道)的路由技术。
在TS23.502的章节4.3.6.3给出了如图4所示的用户面管理事件的通知(Notification of User Plane Management Events)的流程示意图。
如图4所示,该流程包括以下步骤。
步骤1、已经满足触发AF通知的条件。SMF将通知发送给订阅SMF通知的NF。SMF通知的进一步处理取决于接收该通知的NF,如步骤2a和2c所示。
步骤2a、如果AF请求通过NEF的早通知(Early Notification),SMF通过调用Nsmf_EventExposure_Notify(Nsmf_事件开放_通知)服务操作将PDU会话的目标DNAI通知给NEF。
步骤2b、当NEF接收到Nsmf_EventExposure_Notify时,NEF根据信息进行映射(例如,通知相关ID中提供的AF业务内部ID到AF业务ID、SUPI(Subscription Permanent Identifier,订阅永久标识符)到GPSI等),并触发适当的Nnef_TrafficInfluence_Notify(Nnef_数据影响_通知)消息。在这种情况下,步骤2c不适用。
步骤2c、如果AF请求直接早通知,SMF通过调用Nsmf_EventExposure_Notify服务操作将PDU会话的目标DNAI通知给AF。
步骤2d、AF通过立即调用Nnef_TrafficInfluence_AppRelocationInfo(Nnef_数据影响_应用重定位信息)服务操作或在目标DNAI中完成任何所需的应用重定位之后,来响应Nnef_TrafficInfluence_Notify。AF包括与目标DNAI对应的N6业务路由详细信息。对于Nnef_TrafficInfluence_Notify,AF可以否定地回答,例如,如果AF确定不能成功地和/或准时地完成应用重定位。
步骤2e、当NEF接收到Nnef_TrafficInfluence_AppRelocationInfo时,NEF触发相应的Nsmf_EventExposure_AppRelocationInfo(Nsmf_事件开放_应用重定位信息)消息。
步骤2f、AF通过立即调用Nsmf_EventExposure_AppRelocationInfo服务操作或在目标DNAI中完成任何所需的应用重定位之后,来响应Nsmf_EventExposure_Notify。AF包括与目标DNAI对应的N6业务路由详细信息。对于Nsmf_EventExposure_Notify,AF可以否定地回答,例如,如果AF确定不能按时成功地完成应用重定位。
步骤3、SMF强制更改DNAI或添加、更改或删除UPF。
如果基于本地配置启用5G核心网和AF之间的运行时协调,则根据AF订阅SMF事件中包含的“AF预期确认”的指示,SMF可以在该步骤之前等待AF对早通知的响应。在收到来自AF的肯定响应之前,SMF不会执行此步骤。
步骤4a、如果AF请求通过NEF的晚通知,SMF通过调用Nsmf_EventExposure_Notify服务操作将PDU会话的目标DNAI通知给NEF。
如果基于本地配置启用5G核心网和AF之间的运行时协调,则根据AF订阅SMF事件中包含的“AF应答”指示,SMF可以发送晚通知,并在激活新的上行路径之前等待AF的肯定响应。
步骤4b、当NEF接收到Nsmf_EventExposure_Notify时,NEF根据信息进行映射(例如通知相关ID中提供的AF业务内部ID到AF业务ID、SUPI到GPSI等),并触发适当的 Nnef_EventExposure_Notify消息。在这种情况下,步骤4c不适用。
步骤4c、如果AF请求直接晚通知,SMF通过调用Nsmf_EventExposure_Notify服务操作将PDU会话的目标DNAI通知给AF。
步骤4d、AF通过立即调用Nnef_TrafficInfluence_AppRelocationInfo服务操作或在目标DNAI中完成任何所需的应用重定位之后,来响应Nnef_TrafficInfluence_Notify。AF包括与目标DNAI对应的N6业务路由详细信息。对于Nnef_TrafficInfluence_Notify,AF可以否定地回答,例如,如果AF确定不能按时成功地完成应用程序重定位。
步骤4e、当NEF接收到Nnef_TrafficInfluence_AppRelocationInfo时,NEF触发相应的Nsmf_EventExposure_AppRelocationInfo消息。
步骤4f、AF通过立即调用Nsmf_EventExposure_AppRelocationInfo服务操作或在目标DNAI中完成任何所需的应用重定位之后,来响应Nsmf_EventExposure_Notify。AF包括与目标DNAI对应的N6业务路由详细信息。对于Nsmf_EventExposure_Notify,AF可以否定地回答,例如,如果AF确定不能按时成功地完成应用程序重定位。
前文中提及的KI中包含一项:根据UE的位置更改DNAI,以更好地服务UE。这可能意味着EAS IP地址改变,但在某些情况下,只要UE业务没有结束,旧的EAS就可以保留。这个问题也可以应用TS23.502中的章节4.3.6.3所定义的功能来解决。
如图4所示,这个Notification有两种情形,一种是Early Notification(早通知),另外一种是Late Notification(晚通知)。
但是,正如前文所述,相关技术中只支持基于UDP(User Datagram Protocol,用户数据报协议)的Tunnel(隧道)的路由技术。
在3GPP协议TS29.508中定义了SMF的Event Notification(事件通知),可以参考下表6、7和8。
表6、类型事件通知(EventNotification)的定义
Figure PCTCN2021079715-appb-000004
Figure PCTCN2021079715-appb-000005
表7、NsmfEventExposureNotification类型的定义
Figure PCTCN2021079715-appb-000006
表8、Smf事件枚举
枚举值 描述
AC_TY_CH Access Type Change,接入类型改变
UP_PATH_CH UP Path Change,上行路径改变
PDU_SES_REL PDU Session Release,PDU会话释放
PLMN_CH PLMN Change,PLMN改变
UE_IP_CH UE IP address change,UE IP地址改变
DDDS Downlink data delivery status,下行数据传输状态
COMM_FAIL Communication failure,通信失败
PDU_SES_EST PDU Session Establishment,PDU会话建立
QFI_ALLOC QFI allocation,QFI分配
QOS_MON QoS Monitoring,QoS监测
由上述表6-8可知,在SMF提供给AF/NEF的由于用户面路径修改的NsmfEventExposureNotification(Nsmf事件开放通知)消息中包含一个或多个EventNotification,每个EventNotification分别来说明一个Notification事件(即一个报告中可以包含多个事件的报告),其中一个EventNotification包含一些参数,如表6所示,其中有:
SUPI+GPSI;
Source DNAI(源DNAI);
Target DNAI(目标DNAI);
DNAI Change Type(DNAI更改类型);
Source UE IP address(源UE IP地址);
Target UE IP address(目标UE IP地址);
Source N6 Traffic Routing information(源N6数据路由信息);
Target N6 Traffic Routing information(目标N6数据路由信息)。
TS29.522所定义的、NEF提供给AF的影响数据路由Notification的参数,如下表9和10所示。
表9、类型EventNotification的定义
Figure PCTCN2021079715-appb-000007
表10、DnaiChangeType枚举
Figure PCTCN2021079715-appb-000008
由上述表9和10可知,在NEF提供给AF的由于用户面路径修改的EventNotification消息中包含的参数与SMF提供的参数(见表6-8)几乎一样,只是没有包含SUPI。SUPI一般是不允许提供给AF的。
表10给出了DnaiChangeType的几个可能取值,在EventNotification时只能取值EARLY或LATE,但AF在订阅事件通知时,可以同时订阅,即SMF在Early与Late阶段都需要上报。
需要说明的是,本公开实施例提出的技术方案,不仅可以解决EC的KI#2问题,还可以解决非EC的问题。因此,后面不再对要解决的问题作特别的说明,即不再特指EC的KI#2问题,而是将问题通用化,即后面所说的(E)AS既可以是EAS,也可以是AS。
从前述RouteInformaiton的定义来看,相关技术中只支持基于UDP的Tunnel(隧道)的路由技术。本公开实施例提出了一种新的使用反向NAT(Network Address Translation,网络地址转换)技术的路由技术,不使用Tunnel,能够解决以下技术问题:
问题一、当(E)AS发生迁移,但UE没有移动时,如何在保持业务的连续性的同时实现EC通信(如通信延迟很少)。
本公开实施例提出在(E)AS发生迁移前或迁移后,(E)AS通知AF,AF将相关的参数,例如(E)AS迁移的目标DNAI和支持的N6路由方式与参数(NAT转换的参数)等,发送给5G网络。然后,5G网络根据这些参数进行UE的数据重路由(包含NAT、以及插入或修改UL CL/BP)。
问题二、当UE发生移动时,如何进行(E)AS的迁移,以保持业务的连续性,同时实现EC通信 (如通信延迟很少)。
本公开实施例提出,当UE发生移动后的用户面修改前或修改后,SMF通知AF(可通过NEF,或直接到AF)如下参数:UE移动后支持的目标DNAI列表、支持的N6路由方式与参数(NAT转换的参数)等。AF确定进行(E)AS的迁移,将选择的(E)AS移动的参数(如N6路由方式与参数)回复给5G网络。然后,5G网络根据这些参数进行UE的数据重路由(包含NAT、以及插入或修改UL CL/BP)。
下面结合图5-16对本公开实施例提供的方法进行举例说明。
图5示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程图。图5实施例提供的方法可以由会话管理功能网元,例如SMF执行,但本公开并不限定于此。如图5所示,本公开实施例提供的方法可以包括如下步骤。
在步骤S510中,接收目标重定位消息,所述目标重定位消息可以携带目标数据路由信息,所述目标数据路由信息可以包括目标数据网络接入标识和网络地址转换信息,所述网络地址转换信息可以包括目标用户设备网络地址、第一应用服务器网络地址和第二应用服务器网络地址,其中所述目标用户设备网络地址对应的目标用户设备已建立到达第一协议数据单元会话锚点用户面功能网元的目标协议数据单元会话,并与所述第一应用服务器网络地址对应的第一应用服务器进行通信。
在示例性实施例中,在接收所述目标重定位消息之前,已通过应用功能网元将所述第一应用服务器迁移至所述第二应用服务器。
在示例性实施例中,所述目标重定位消息可以包括会话管理策略控制更新通知消息。其中,所述接收目标重定位消息,可以包括:从目标策略控制功能网元接收所述会话管理策略控制更新通知消息,所述会话管理策略控制更新通知消息可以包括与所述第一协议数据单元会话锚点用户面功能网元对应的源数据网络接入标识、所述目标数据网络接入标识和所述目标数据路由信息。
在示例性实施例中,所述会话管理策略控制更新通知消息可以是所述目标策略控制功能网元根据从目标网络开放功能网元接收到的策略授权请求消息生成的,所述策略授权请求消息包括所述目标用户设备网络地址、所述源数据网络接入标识、所述目标数据网络接入标识和所述目标数据路由信息。其中,所述策略授权请求消息可以是所述目标网络开放功能网元根据从应用功能网元接收到的影响数据路由请求消息生成的,所述影响数据路由请求消息可以包括所述目标用户设备网络地址、所述源数据网络接入标识、所述目标数据网络接入标识和所述目标数据路由信息。
在示例性实施例中,所述会话管理策略控制更新通知消息可以是所述目标策略控制功能网元根据从应用功能网元接收到的影响数据路由请求消息生成的,所述影响数据路由请求消息可以包括所述目标用户设备网络地址、所述源数据网络接入标识、所述目标数据网络接入标识和所述目标数据路由信息。
在示例性实施例中,所述目标重定位消息包括事件开放应用重定位信息消息。其中,所述接收目标重定位消息可以包括:从应用功能网元接收所述事件开放应用重定位信息消息,所述事件开放应用重定位信息消息包括所述目标数据路由信息。
在示例性实施例中,在接收所述目标重定位消息之前,所述方法还可以包括:接收所述应用功能网元的早事件订阅消息;决定作协议数据单元会话锚点用户面功能网元的修改;根据所述决定,向所述应用功能网元传输早事件通知消息,所述早事件通知消息包括事件通知参数,所述事件通知参数包括所述第一协议数据单元会话锚点用户面功能网元对应的源数据网络接入标识和第二协议数据单元会话锚点用户面功能网元对应的所述目标数据网络接入标识。
在示例性实施例中,所述方法还可以包括:所述应用功能网元根据所述早事件通知消息,触发将所述第一应用服务器从所述源数据网络接入标识迁移至所述目标数据网络接入标识,成为所述第二应用服务器。
在步骤S520中,根据所述目标数据路由信息生成数据包处理规则,所述数据包处理规则可以包括网络地址转换规则,所述网络地址转换规则可以包括将所述目标用户设备发送的上行数据包的目的地址从所述第一应用服务器网络地址转换为所述第二应用服务器网络地址,并将接收到的目的地址为所述目标用户设备网络地址的下行数据包的源地址从所述第二应用服务器网络地址转换为所述第一应用服务器网络地址。
在示例性实施例中,若所述目标数据路由信息还包括所述第一应用服务器的第一端口号和所述第二应用服务器的第二端口号,则所述网络地址转换规则还可以包括将所述上行数据包的目的端口号从所述第一端口号转换为所述第二端口号,并将所述下行数据包的源端口号从所述第二端口号转换为所述第一端口号。
在步骤S530中,将所述数据包处理规则下发至目标网络设备,以使得所述目标网络设备根据所述数据包处理规则,将所述目标用户设备发送的上行数据包转发至所述第二应用服务器网络地址对 应的第二应用服务器,并将接收到的目的地址为所述目标用户设备网络地址、源地址为所述第二应用服务器网络地址的下行数据包转发至所述目标用户设备。
在示例性实施例中,若所述目标数据网络接入标识与所述源数据网络接入标识匹配,则所述目标网络设备可以包括所述第一协议数据单元会话锚点用户面功能网元。其中,所述将所述数据包处理规则下发至目标网络设备,可以包括:向所述第一协议数据单元会话锚点用户面功能网元发送N4会话修改请求消息,所述N4会话修改请求消息包括所述数据包处理规则。
在示例性实施例中,所述方法还可以包括:接收所述第一协议数据单元会话锚点用户面功能网元回复的N4会话修改响应消息;向所述目标策略控制功能网元返回会话管理策略控制更新通知响应消息,以使得所述目标策略控制功能网元向应用功能网元返回影响数据路由响应消息,所述应用功能网元接收到所述影响数据路由响应消息后,触发完成将所述第一应用服务器迁移至所述第二应用服务器。
在示例性实施例中,若所述目标数据网络接入标识与所述第一协议数据单元会话锚点用户面功能网元支持的源数据网络接入标识不匹配,则所述目标网络设备可以包括第二协议数据单元会话锚点用户面功能网元和上行分类器用户面功能网元,所述数据包处理规则还可以包括数据包转发规则,所述数据包转发规则可以包括将接收到的源地址为所述目标用户设备网络地址、目的地址为所述第一应用服务器网络地址的上行数据包转发至所述第二协议数据单元会话锚点用户面功能网元。其中,所述将所述数据包处理规则下发至目标网络设备,可以包括:将所述数据包转发规则下发至所述上行分类器用户面功能网元;将所述网络地址转换规则下发至所述第二协议数据单元会话锚点用户面功能网元。
在示例性实施例中,将所述数据包处理规则下发至目标网络设备之前,所述方法还可以包括:确定所述第二协议数据单元会话锚点用户面功能网元;确定所述上行分类器用户面功能网元;更新所述第一协议数据单元会话锚点用户面功能网元的下行用户面;更新所述第二协议数据单元会话锚点用户面功能网元的下行用户面。
在示例性实施例中,若所述目标数据网络接入标识与所述第一协议数据单元会话锚点用户面功能网元支持的源数据网络接入标识不匹配,则所述目标网络设备可以包括上行分类器用户面功能网元。其中,所述将所述数据包处理规则下发至目标网络设备,可以包括:将所述数据包处理规则下发至所述上行分类器用户面功能网元。
在示例性实施例中,所述数据包处理规则还可以包括数据包转发规则。其中,在接收所述目标重定位消息之后,所述方法还可以包括:确定所述第二协议数据单元会话锚点用户面功能网元和上行分类器用户面功能网元;将所述第二协议数据单元会话锚点用户面功能网元和所述上行分类器用户面功能网元作为所述目标网络设备。其中,所述将所述数据包处理规则下发至目标网络设备,可以包括:将所述数据包转发规则下发至所述上行分类器用户面功能网元;将所述网络地址转换规则下发至所述第二协议数据单元会话锚点用户面功能网元。
在示例性实施例中,在接收所述目标重定位消息之后,所述方法还可以包括:确定所述第二协议数据单元会话锚点用户面功能网元和上行分类器用户面功能网元;将所述上行分类器用户面功能网元作为所述目标网络设备。其中,所述将所述数据包处理规则下发至目标网络设备,可以包括:将所述数据包处理规则下发至所述上行分类器用户面功能网元。
在示例性实施例中,在接收所述目标重定位消息之前,所述方法还可以包括:接收所述应用功能网元的晚事件订阅消息;决定作协议数据单元会话锚点用户面功能网元的修改;根据所述决定,确定第二协议数据单元会话锚点用户面功能网元和上行分类器用户面功能网元;配置所述上行分类器用户面功能网元将接收到的上行数据包转发至所述第一协议数据单元会话锚点用户面功能网元;向所述应用功能网元传输晚事件通知消息,所述晚事件通知消息包括事件通知参数,所述事件通知参数包括所述第一协议数据单元会话锚点用户面功能网元对应的源数据网络接入标识和所述第二协议数据单元会话锚点用户面功能网元对应的所述目标数据网络接入标识。
在示例性实施例中,所述方法还可以包括:所述应用功能网元根据所述晚事件通知消息,触发将所述第一应用服务器从所述源数据网络接入标识迁移至所述目标数据网络接入标识,成为所述第二应用服务器。
在示例性实施例中,所述数据包处理规则还可以包括数据包转发规则。其中,在接收所述目标重定位消息之后,所述方法还可以包括:将所述第二协议数据单元会话锚点用户面功能网元和所述上行分类器用户面功能网元作为所述目标网络设备。其中,所述将所述数据包处理规则下发至目标网络设备,可以包括:将所述数据包转发规则下发至所述上行分类器用户面功能网元;将所述网络地址转换规则下发至所述第二协议数据单元会话锚点用户面功能网元。
在示例性实施例中,在接收所述目标重定位消息之后,所述方法还可以包括:将所述上行分类 器用户面功能网元作为所述目标网络设备。其中,所述将所述数据包处理规则下发至目标网络设备,可以包括:将所述数据包处理规则下发至所述上行分类器用户面功能网元。
本公开实施例提供的用于实现用户业务连续性的方法,一方面,利用网络地址转换技术,能够当应用服务器发生迁移时,或者,当用户设备的位置发生变化时,保持业务的连续性,实现简单,容易部署;另一方面,是在相关技术方案上,增加了一种新的技术方案,对系统的修改不大,容易进行标准化与大规模部署。
图6示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图。在图6实施例中描述了源DNAI不变的情况下的(E)AS Relocation(重定位),即源DANI和目标DNAI相同。如图6所示,本公开实施例提供的方法可以包括以下步骤。
步骤1.1、目标UE(目标用户设备)通过SMF(会话管理网元)建立一个到达UPF/PSA1(第一协议数据单元会话锚点用户面功能网元)的目标PDU Session(目标协议数据单元会话),给目标UE分配一个IPv4(Internet Protocol version 4,网际协议版本4)地址或一个IPv6(Internet Protocol version 6,网际协议版本6)Prefix(前缀)。在下文的描述中,也将IPv4地址与IPv6 Prefix统称为IP地址,目标UE的IP地址称为目标用户设备网络地址。
步骤1.2、目标UE通过分配的IP地址与一个(E)AS1(第一应用服务器)建立了IP连接,进行IP通信以进行业务的交互。
步骤1.3、AF决定将(E)AS1迁移到(E)AS2(第二应用服务器)。
例如,将运行(E)AS1的虚拟机从一个物理的Server(服务器)迁移到另外一个物理的Server中。其中,两个物理的Server可以在同一个Cloud Data Center(云数据中心)中,也可以不在同一个Cloud Data Center中。当在同一个Cloud Data Center中时,一般其对应的DNAI不变,即(E)AS1对应的源DNAI与(E)AS2对应的目标DNAI相同。当不在同一个Cloud Data Center中时,其对应的DNAI将会发生改变,即(E)AS1对应的源DNAI与(E)AS2对应的目标DNAI不同。图6实施例中是以DNAI不变为例进行举例说明的。
步骤1.4、AF可以直接向目标PCF(目标策略控制功能网元)发送消息,AF也可以先向目标NEF(目标网络开放功能网元)发送消息,然后目标NEF向目标PCF发送消息。
图6实施例中,是以AF向目标NEF发送Nnef_TrafficInfluenceCreate/Update Request消息(Nnef_数据影响创建/更新请求消息,称为影响数据路由请求消息)为例进行举例说明的,在其它实施例中,AF也可以直接向目标PCF发送Nnef_TrafficInfluenceCreate/Update Request消息。
若AF是第一次向目标NEF发送TrafficInfluence相关的消息,则该TrafficInfluence相关的消息是Nnef_TrafficInfluenceCreate Request消息;若AF不是第一次向目标NEF发送TrafficInfluence相关的消息,则该TrafficInfluence相关的消息是Nnef_TrafficInfluenceUpdate Request消息。
图6实施例中,Nnef_TrafficInfluenceCreate/Update Request消息中包含的IPue为步骤1.1和步骤1.2中的UE IP地址(即目标用户设备网络地址),(E)AS1Relocation Indication即(E)AS1重定位指示信息用于指示(E)AS1将要迁移;Source DNAI(源DNAI)和Target DNAI(目标DNAI)是新加入的参数,表明(E)AS1将从Source DNAI迁移到target DNAI,Source DNAI与Target DNAI若取相同的值,则表明DNAI实际上没有发生改变;Traffic Filter(数据过滤器)至少包含(E)AS1对应的第一应用服务器网络地址(IP地址)IPas1、(E)AS1对应的目标端口号PORTas1(第一应用服务器的第一端口号)、以及传输层协议(如UDP/TCP(Transmission Control Protocol,传输控制协议)),另外,还可能包含目标UE的IP地址即IPue、以及target N6 Traffic Routing Information(目标N6数据路由信息)即目标数据路由信息。
继续参考图6,target N6 Traffic Routing Information可以包括DNAI(这里是指目标DNAI);网络地址转换信息即NAT,其中NAT包含(在(IPue,IPas1,(o(option的简称,即可选的)PORTas1)和(IPue,IPas2,(o)PORTas2)之间作网络地址转换),即NAT(between(IPue,IPas1,(o)PORTas1)and(IPue,IPas2,(o)PORTas2)),IPas2表示(E)AS2对应的第二应用服务器网络地址(IP地址),PORTas2表示第二应用服务器的第二端口号。
需要说明的是,Nnef_TrafficInfluenceCreate/Update Request消息中可以包含一个或多个N6 Traffic Routing Information,图6实施例中只列出本公开实施例提出的新的采用NAT方法的N6 Traffic Routing Information,这个NAT是将源地址为IPue、目的地址为IPas1的IP流(上行数据包)转换为源地址为IPue、目的地址为IPas2的IP流;以及将源地址为IPas2、目的地址为IPue的IP流(下行数据包)转换为源地址为IPas1、目的地址为IPue的IP流。可选的,当包含PORT(端口)参数时,则NAT是将源地址为IPue、目的地址为IPas1、目的端口号为PORTas1的IP流(上行数据包)转换为源地址为IPue、目的地址为IPas2、目的端口号为PORTas2的IP流;以及将源地址为IPas2、目的地址为IPue、源端口号为PORTas2的IP流(下行数据包)转换为源地址为IPas1、目的地址为 IPue、源端口号为PORTas1的IP流。
若AF决定向目标NEF发送Nnef_TrafficInfluenceCreate/Update Request消息,则AF可以根据Nnef_TrafficInfluenceCreate/Update Request消息中的IPue查询内部配置信息,得到目标NEF ID(标准不定义),然后向此目标NEF ID对应的目标NEF发送Nnef_TrafficInfluenceCreate/Update Request消息。
步骤1.5、目标NEF根据AF提供的上述参数向目标PCF发送Npcf_PolicyAuthorization_Create/Update Request消息(Npcf_策略授权_创建/更新请求,即策略授权请求消息),若步骤1.4中AF发送的是Nnef_TrafficInfluenceCreate Request消息,则步骤1.5中目标NEF发送的是Npcf_PolicyAuthorization_Create Request消息;若步骤1.4中AF发送的是Nnef_TrafficInfluenceUpdate Request消息,则步骤1.5中目标NEF发送的是Npcf_PolicyAuthorization_Update Request消息。
其中目标NEF根据AF提供的上述参数可以映射得到SUPI、DNN和S-NSSAI。其中Npcf_PolicyAuthorization_Create/Update Request消息中的IPue、Source DNAI、Target DNAI、Traffic Filter、Target N6 Traffic Routing Information是直接来自于步骤1.4中的Nnef_TrafficInfluenceCreate/Update Request消息的参数。
若AF/目标NEF向目标PCF发送Npcf_PolicyAuthorization_Create/Update Request消息,则AF/目标NEF根据Npcf_PolicyAuthorization_Create/Update Request消息中的IPue查询BSF,得到目标PCF的ID,然后向目标PCF对应的PCF发送Npcf_PolicyAuthorization_Create/Update Request消息。
步骤1.6、目标PCF向SMF发送Npcf_SMPolicyControl UpdateNotify消息(Npcf_SM策略控制更新通知消息,即会话管理策略控制更新通知消息,SM的英文全称是Session Management),其中包含步骤1.4/1.5中提供的一些参数:IPue、Source DNAI、Target DNAI、Traffic Filter、Target N6 Traffic Routing Information。
步骤1.7、SMF接收目标PCF提供的Npcf_SMPolicyControl UpdateNotify消息,判断其中的Target DNAI与Source DNAI是一致的,因此,SMF决定不进行PSA的改变,即不进行UL CL的插入操作。同时SMF根据目标PCF提供的Target N6 Traffic Routing Information确定要进行NAT操作,因此向UPF/PSA1发送N4 Session Command(会话指令)。在步骤1.1中,SMF已经向UPF/PSA1发送了N4 Session Establishment Request消息(即N4会话建立请求消息),UPF/PSA1向SMF返回了N4 Session Establishment Response消息(即N4会话建立响应消息)。因此,在步骤1.7中,SMF可以向UPF/PSA1发送N4 Session Modification Request消息(即N4会话修改请求消息),并在该N4会话修改请求消息中携带数据包处理规则。
UPF/PSA1接收到N4 Session Modification Request消息后,向SMF返回N4 Session Modification Response消息(即N4会话修改响应消息),以确认已收到了N4 Session Modification Request消息。
UPF/PSA1可以根据该数据包处理规则将检测到的源地址为IPue、目的地址为IPas1的IP流(上行数据包)转换为源地址为IPue、目的地址为IPas2的IP流;以及将检测到的源地址为IPas2、目的地址为IPue的IP流(下行数据包)转换为源地址为IPas1、目的地址为IPue的IP流。可选的,当包含PORT(端口)参数时,则UPF/PSA1可以将检测到的源地址为IPue、目的地址为IPas1、目的端口号为PORTas1的IP流(上行数据包)转换为源地址为IPue、目的地址为IPas2、目的端口号为PORTas2的IP流;以及将检测到的源地址为IPas2、目的地址为IPue、源端口号为PORTas2的IP流(下行数据包)转换为源地址为IPas1、目的地址为IPue、源端口号为PORTas1的IP流。
步骤1.8、SMF根据接收到的UPF/PSA1发送的N4 Session Modification Response消息,向目标PCF返回Npcf_SMPolicyControl UpdateNotify Response消息。
步骤1.9、目标PCF根据接收到的SMF发送的Npcf_SMPolicyControl UpdateNotify Response消息,向目标NEF返回Npcf_PolicyAuthorization_Create/Update Response消息。
步骤1.10、目标NEF根据接收到的目标PCF发送的Npcf_PolicyAuthorization_Create/Update Response消息,向AF返回Nnef_TrafficInfluenceCreate/Update Response消息。
步骤1.11、AF接收到目标NEF的Nnef_TrafficInfluenceCreate/Update Response消息,若该消息是Positive(肯定)回复,则将(E)AS1迁移到(E)AS2。
步骤1.12、目标UE通过步骤1.1中建立的目标PDU Session发送的上行数据包例如上行IP包到达UPF/PSA1,若UPF/PSA1根据上述步骤1.7中SMF下发的数据包处理规则,检测到接收到的上行IP包的源地址为IPue,目的地址为IPas1,源端口号为PORTue(目标UE的端口号),目的端口号为PORTas1(若数据包处理规则中还包括第一端口号和第二端口号),传输层协议例如为UDP/TCP,则进入步骤1.13。
步骤1.13、UPF/PSA1根据上述步骤1.7中SMF下发的数据包处理规则,将接收到的该上行IP 包的目的地址IPas1替换为IPas2,将目的端口号PORTas1替换为PORTas2(若数据包处理规则中要进行PORT的转换,以下实施例中与此类似)。
步骤1.14、UPF/PSA1将作NAT转换的上行IP包(源地址IPue,目的地址IPas2,源端口号PORTue,目的端口号PORTas2,传输层协议(如UDP/TCP))发送给(E)AS2。
步骤1.15、(E)AS2接收到上行IP包,回复的下行IP包(源地址IPas2,目的地址IPue,源端口号PORTas2,目的端口号PORTue,传输层协议(如UDP/TCP))到达UPF/PSA1。
步骤1.16、UPF/PSA1根据步骤1.7中SMF下发的数据包处理规则,检测到该下行IP包的(源地址IPas2,目的地址IPue,源端口号PORTas2,传输层协议(如UDP/TCP))匹配数据包处理规则,则将接收到的下行IP包的目的地址IPas2替换为IPas1,将源端口号PORTas2替换为PORTas1(若数据包处理规则中要进行PORT的转换,以下实施例中与此类似)。
步骤1.17、UPF/PSA1将作NAT转换的下行IP包(源地址IPas1,目的地址IPue,源端口号PORTas1,目的端口号PORTue,传输层协议(如UDP/TCP))通过建立的目标PDU Session发送给目标UE。
需要说明的是,若UPF/PSA1后继接收到的上行数据包仍然匹配上述数据包处理规则,则继续按照上述步骤1.13和1.14对上行数据包进行处理。若UPF/PSA1后继接收到的下行数据包仍然匹配上述数据包处理规则,则继续按照上述步骤1.16和1.17对下行数据包进行处理。若数据包处理规则中包含PORT项,则需要作PORT的转换。
图7示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图。图7实施例中的步骤2.1-2.2与图6实施例中的步骤1.1-1.2类似。图7实施例与图6实施例的区别之处在于,在步骤2.3中,执行(E)AS1到(E)AS2的迁移,因此图6实施例中的步骤1.11不再执行。图7实施例中的步骤2.4-2.10与图6实施例中的步骤1.4-1.10类似,图7实施例中的步骤2.11-2.16与图6实施例中的步骤1.12-1.17类似。
在下面的实施例中,也可以包括类似的(E)AS1完成到(E)AS2的迁移的后与前两种情形。
图8示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图。图8实施例是DNAI改变情况下的(E)AS Relocation,且确定由UPF/PSA2(第二协议数据单元会话锚点用户面功能网元)作NAT转换。
图8实施例中的步骤3.1-3.6与图6实施例中的步骤1.1-1.6类似,只是AF发出的消息中的Target DNAI同Source DNAI不相同。图8实施例与图6实施例的区别之处在于,还包括以下步骤。
步骤3.7、若SMF收到的目标PCF的消息中的target N6 Traffic Routing Information(DNAI,NAT(between(IPue,IPas1,(o)PORTas1)and(IPue,IPas2,(o)PORTas2))中的DNAI(目标DNAI)与当前SMF的UPF/PSA1所支持的DNAI(源DNAI)不匹配,则SMF确定并选择一个匹配AF提供的DNAI(目标DNAI)的UPF/PSA2及UPF/UL CL(上行分类器用户面功能网元),SMF向选择的UPF/PSA2发送消息,SMF与PSA2的详细交互过程见TS23.502的章节4.3.5.4(Addition of additional PDU Session Anchor and Branching Point or UL CL,新增PDU会话锚点和分支点或者上行分类器的增加)的步骤2。
步骤3.8、SMF确定并选择一个UPF/UL CL,SMF与UPF/UL CL的详细交互过程见TS23.502的章节4.3.5.4的步骤3。
步骤3.9、SMF向UPF/PSA1发送消息,以使得UPF/PSA1的下行用户面从RAN(Radio AN,无线接入网)切换到UPF/UL CL上来。详细交互过程见TS23.502的章节4.3.5.4的步骤4。
步骤3.10、SMF向UPF/PSA2发送消息,以使得UPF/PSA2的下行用户面为UPF/UL CL,详细交互过程见TS23.502的章节4.3.5.4的步骤5。
步骤3.11、SMF根据步骤3.7中收到的target N6 Traffic Routing Information(DNAI,NAT(between(IPue,IPas1,(o)PORTas1)and(IPue,IPas2,(o)PORTas2)生成向UPF/UL CL发送的数据包转发规则,根据该数据包转发规则,UPF/UL CL可以将接收到的源地址为IPue、目的地址为IPas1、可选的还可以包括目的端口号为PORTas1的上行数据包转发到UPF/PSA2。
需要说明的是,步骤3.11也可以在步骤3.8中执行,即SMF第一次向UPF/UL CL发送消息时,发送的是N4 Session Establishment Request消息,可以将数据包转发规则包含在该N4 Session Establishment Request消息中发送给UPF/UL CL,UPF/UL CL给SMF回复N4 Session Establishment Response消息,以确认收到了该N4 Session Establishment Request消息。若SMF不是第一次向UPF/UL CL发送消息,则SMF发送的是N4 Session Modification Request消息,可以将数据包转发规则包含在该N4 Session Modification Request消息中发送给UPF/UL CL,UPF/UL CL给SMF回复N4 Session Modification Response消息,以确认收到了该N4 Session Modification Request消息。
上述SMF发送给UPF/UL CL的包含数据包转发规则的N4 Session Establishment Request消息或者N4 Session Modification Request消息称为第一N4会话请求消息。
步骤3.12、SMF根据步骤3.7中收到的target N6 Traffic Routing Information(DNAI,NAT(between(IPue,IPas1,(o)PORTas1)and(IPue,IPas2,(o)PORTas2)生成向UPF/PSA2发送的网络地址转换规则,以使得UPF/PSA2能够执行NAT操作。
需要说明的是,步骤3.12也可以在步骤3.10中执行,即SMF第一次向UPF/PSA2发送消息时,发送的是N4 Session Establishment Request消息,可以将网络地址转换规则包含在该N4 Session Establishment Request消息中发送给UPF/PSA2,UPF/PSA2给SMF回复N4 Session Establishment Response消息,以确认收到了该N4 Session Establishment Request消息。若SMF不是第一次向UPF/PSA2发送消息,则SMF发送的是N4 Session Modification Request消息,可以将网络地址转换规则包含在该N4 Session Modification Request消息中发送给UPF/PSA2,UPF/PSA2给SMF回复N4 Session Modification Response消息,以确认收到了该N4 Session Modification Request消息。
上述SMF发送给UPF/PSA2的包含网络地址转换规则的N4 Session Establishment Request消息或者N4 Session Modification Request消息称为第二N4会话请求消息。
步骤3.13、SMF向RAN发送消息,以使得RAN的上行用户面更新为UPF/UL CL,详细交互过程见TS23.502的章节4.3.5.4的步骤6。
图8实施例中的步骤3.14-3.17与图6实施例中的步骤1.8-1.11类似。
步骤3.18、目标UE发送的上行数据包例如上行IP包(源地址IPue,目的地址IPas,源端口号PORTue,目的端口号PORTas1,传输层协议(如UDP/TCP))到达UPF/UL CL。
步骤3.19、UPF/UL CL根据步骤3.11中SMF下发的数据包转发规则,若检测到该上行IP包的源地址为IPue,目的地址为IPas1,目的端口号为PORTas1(若数据包转发规则中还包含PORT相关参数),则将该匹配数据包转发规则的上行IP包转发给UPF/PSA2,否则将不匹配该数据包转发规则的上行IP包转发给UPF/PSA1。
图8实施例中的步骤3.20-3.25与图6实施例中的步骤1.13-1.17类似,只是图8实施例中是UPF/PSA2执行数据包处理规则的匹配与NAT转换,并且下行数据包是由UPF/PSA2发送给UPF/UL CL,然后再发送给目标UE。
可以理解的是,图8实施例中,UPF/UL CL需要对上行数据包进行匹配与转向操作;对于下行数据包,不作匹配操作,直接将下行数据包发送给RAN,然后到达目标UE。
需要说明的是,若UPF/PSA2后继接收到的上行数据包仍然匹配上述数据包处理规则,则继续按照上述步骤3.20和3.21处理。若UPF/PSA2后继接收到的下行数据包仍然匹配上述数据包处理规则,则继续按照上述步骤3.22和3.23处理。若数据包处理规则中包含PORT项,则需要作PORT的转换。
图9示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图。图9实施例与图8实施例类似,其区别在于,在步骤4.3执行(E)AS1到(E)AS2的迁移,因此图8实施例中的步骤3.17不再执行。
图9实施例中的步骤4.1-4.2与图8实施例中的步骤3.1-3.2类似,图9实施例中的步骤4.4-4.16与图8实施例中的步骤3.4-3.16类似,图9实施例中的步骤4.17-4.24与图8实施例中的步骤3.18-3.25类似。
图10示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图。图10实施例与图8实施例类似,其区别在于图10实施例中由UPF/ULCL作NAT转换,而非UPF/PSA2。
图8实施例中的UPF/UL CL只作数据包处理规则中的匹配转向,UPF/PSA2作NAT转换。图10实施例是将图8实施例中的NAT转换从UPF/PSA2改变到UPF/UL CL上来。因此,图10实施例中的UPF/UL CL具有NAT转换后数据转向功能,而UPF/PSA2不再具有特殊的功能,与相关标准中的功能类似。
图10实施例中的步骤5.1-5.10与图8实施例中的步骤3.1-3.10类似,AF发出的消息中的Target DNAI同Source DNAI不相同。图8实施例中的步骤3.11和3.12不再执行。
步骤5.11、SMF根据步骤5.6中收到的target N6 Traffic Routing Information(DNAI,NAT(between(IPue,IPas1,(o)PORTas1)and(IPue,IPas2,(o)PORTas2)生成向UPF/UL CL下发的数据包处理规则,以使得UPF/UL CL能够进行NAT操作,且可以将转换后的上行数据包发送给UPF/PSA2。
需要说明的是,步骤5.11也可以在步骤5.8中执行,即SMF第一次向UPF/UL CL发送消息时,发送的是N4 Session Establishment Request消息,可以将数据包处理规则包含在该N4 Session Establishment Request消息中发送给UPF/UL CL,UPF/UL CL给SMF回复N4 Session Establishment Response消息,以确认收到了该N4 Session Establishment Request消息。若SMF不是第一次向UPF/UL CL发送消息,则SMF发送的是N4 Session Modification Request消息,可以将数据包处理规则包含在该N4 Session Modification Request消息中发送给UPF/UL CL,UPF/UL CL给SMF回复N4 Session  Modification Response消息,以确认收到了该N4 Session Modification Request消息。
上述SMF发送给UPF/UL CL的包含数据包处理规则的N4 Session Establishment Request消息或者N4 Session Modification Request消息称为目标N4会话请求消息。
图10实施例中的步骤5.12-5.17同图8实施例中的步骤3.13-3.18。
步骤5.18、UPF/UL CL根据步骤5.11中SMF下发的数据包处理规则,检测到接收到的上行数据包的源地址为IPue,目的地址为IPas1,目的端口号为PORTas(若数据包处理规则中还包含PORTas)),则将匹配该数据包处理规则的上行数据包进行NAT转换(见图6实施例的步骤1.13)。
步骤5.19、UPF/UL CL将转换后的上行数据包转发给UPF/PSA2。UPF/UL CL将不匹配该数据包处理规则的上行数据包转发给UPF/PSA1。
步骤5.20、UPF/PSA2将该上行数据包发送给(E)AS2。
步骤5.21、(E)AS2回复的下行数据包(源地址IPas2,目的地址IPue,源端口号PORTas2,目的端口号PORTue,传输层协议(如UDP/TCP))到达UPF/PSA2。
步骤5.22、UPF/PSA2将该下行数据包发送给UPF/UL CL。
步骤5.23、UPF/UL CL根据步骤5.11中SMF下发的数据包处理规则,检测到该下行IP包的源地址为IPas2,目的地址为IPue,源端口号为PORTas2,传输层协议为例如UDP/TCP,则将匹配数据包处理规则的下行数据包的目的地址从IPas2替换为IPas1,将源端口号PORTas2替换为PORTas1(若数据包处理规则中要进行PORT的转换),然后将转换后的下行数据包发送给目标UE。
图10实施例中,UPF/UL CL需要对上、下行数据包进行匹配、NAT转换及转向操作。
需要说明的是,若UPF/UL CL后继接收到的上行数据包仍然匹配上述数据包处理规则,则继续按照上述步骤5.18和5.19对上行数据包进行处理。若UPF/UL CL后继接收到的下行数据包仍然匹配上述数据包处理规则,则继续按照上述步骤5.22和5.23对下行数据包进行处理。若数据包处理规则中包含PORT项,则需要作PORT的转换。
图11示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图。图11实施例与图10实施例类似,不同之处在步骤6.3执行(E)AS1到(E)AS2的迁移,因此图10实施例中的步骤5.16不再执行。
图11实施例中的步骤6.1-4.2与图10实施例中的步骤5.1-5.2类似,图11实施例中的步骤6.4-6.15与图10实施例中的步骤5.4-5.16类似,图11实施例中的步骤6.16-6.23与图10实施例中的步骤5.17-5.24类似。
本公开实施例提供的用于实现业务连续性的方法,由AF发起,在DNAI变化及不变化的情况下,都能够实现在(E)AS的地址变化时保持业务的连续性。该方法可用于实现EC通信,而EC通信有重大的应用价值,可以广泛应用于游戏加速、视频加速与V2X(vehicle to everything,车用无线通信技术)等业务中。本公开实施例提供的NAT技术方案简单可行,容易部署。本公开实施例提供的技术方案只是在相关标准的技术方案之上,增加一种新的方案,因此,对系统的修改不大,容易进行标准化与大规模部署。
图12示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图。图12实施例使用Early Notification,在DNAI变化的情况下进行(E)AS Relocation,并确定由UPF/PSA2执行NAT转换。
图12实施例中的步骤7.1-7.2与图6实施例中的步骤1.1-1.2类似,且图12实施例中,AF向SMF订阅了一些事件。AF向SMF订阅的事件是“UP_PATH_CH”。AF可以直接向SMF订阅,也可以先向目标NEF订阅,然后目标NEF再向SMF订阅,订阅的事件“UP_PATH_CH”可以是“EARLY(早)”,“LATE(晚)”或“EARLY_LATE”(早_晚)。若AF向SMF订阅的“UP_PATH_CH”是“EARLY(早)”或“EARLY_LATE”(早_晚),则称为AF向SMF发送了早事件订阅消息。
步骤7.3、由于目标UE的移动性,SMF根据目标UE的位置可确定目标UE与UPF/PSA1之间的距离较远,UPF/PSA1作为目标UE的IP Anchor不再适合与外部的(E)AS1进行通信,需要进行协议数据单元会话锚点用户面功能网元的修改及用户数据路由的修改。此时AF在SMF上订阅的Notification事件被触发。
步骤7.4、当SMF决定要进行协议数据单元会话锚点用户面功能网元的修改(增加一个UPF/PSA2及UPF/UL CL,同时DNAI作了改变),且若AF在SMF上订阅的Notification事件是“EARLY”,或是“EARLY_LATE”,则SMF发起Notification过程,SMF可以直接向AF或通过目标NEF向AF发送Nsmf_EventExposure_Notify(Early Notification)消息(Nsmf_事件开放_通知(早通知)消息,即早事件通知消息)报告Notification事件。则SMF在EventNotification的这个参数中包含UPF/PSA2对应的目标DNAI,以及对应于UPF/PSA1的源DNAI,DnaiChangeType为EARLY,event类型是“UP_PATH_CH”。
步骤7.5、AF触发(E)AS1迁移到目标DNAI成为(E)AS2。
步骤7.6、AF向SMF回复(E)AS1迁移成功的Nsmf_EventExposure_AppRelocationInfo消息(Nsmf_事件开放_应用重定位信息消息,即事件开放应用重定位信息消息),此消息包含target N6 Traffic Routing Information,且此target N6 Traffic Routing Information包含与上述实施例中的target N6 Traffic Routing Information相同的参数。
图12实施例中,SMF确定UPF/PSA2进行NAT转换的操作,步骤7.7-7.21可以参见图9实施例中的步骤4.7-4.24。
图13示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图。图13实施例使用Early Notification,在DNAI变化的情况下进行(E)AS Relocation,并确定由UPF/ULCL执行NAT转换。
图13实施例中的步骤8.1-8.6同图12实施例的步骤7.1-7.6。
图13实施例中,SMF确定UPF/ULCL进行NAT转换的操作,步骤8.7-8.20可以参见图11实施例中的步骤6.7-6.23。
图14示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图。图14实施例使用Late Notification,在DNAI变化的情况下进行(E)AS Relocation,并确定由UPF/PSA2执行NAT转换。
图14实施例中的步骤9.1-9.2类似图12实施例中的步骤7.1-7.2,区别在于,图14实施例中,AF向SMF订阅的事件“UP_PATH_CH”是“LATE(晚)”或“EARLY_LATE”(早_晚),则称为AF向SMF发送了晚事件订阅消息。
图14实施例中的步骤9.3同图12实施例中的步骤7.3。
图14实施例中的步骤9.4-9.7同图12实施例中的步骤7.7-7.10。
步骤9.8、SMF配置UPF/UL CL将目标UE的所有上行数据包仍然路由到UPF/PSA1,因为此时尚未完成将(E)AS1迁移到(E)AS2,因此不能将任何的上行数据包路由到UPF/PSA2上。
图14实施例中的步骤9.9同图12实施例中的步骤7.13。
步骤9.10、SMF发起Notification过程,SMF可以直接向AF或通过目标NEF向AF发送Nsmf_EventExposure_Notify(Late Notification)消息(Nsmf_事件开放_通知(晚通知)消息,即晚事件通知消息)报告Notification事件。则SMF在EventNotification的这个参数中包含UPF/PSA2对应的目标DNAI,以及对应于UPF/PSA1的源DNAI,DnaiChangeType为LATE,event类型是“UP_PATH_CH”。
步骤9.11、AF触发(E)AS1迁移到目标DNAI成为(E)AS2。
步骤9.12、AF向SMF回复(E)AS1迁移成功的Nsmf_EventExposure_AppRelocationInfo消息(Nsmf_事件开放_应用重定位信息消息,即事件开放应用重定位信息消息),此消息包含target N6 Traffic Routing Information,且此target N6 Traffic Routing Information包含与上述实施例中的target N6 Traffic Routing Information相同的参数。
图14实施例中,SMF确定UPF/PSA2进行NAT转换的操作,步骤9.13-9.22可以参见图12实施例中的步骤7.11-7.12和步骤7.14-7.21。
图15示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程示意图。图15实施例使用Late Notification,在DNAI变化的情况下进行(E)AS Relocation,并确定由UPF/UL CL执行NAT转换。
图15实施例中的步骤10.1-12同图14实施例中的步骤9.1-9.10。
图15实施例中的步骤10.13同图13实施例中的步骤8.11。
图15实施例中的步骤10.14-10.21同图13实施例中的步骤8.13-8.20。
本公开实施例提供的用于实现业务连续性的方法中,当UE位置变化导致UE的当前UPF/PSA1与(E)AS 1之间的路由不合适时,SMF可以触发Early Notification与Late Notification过程,通知(E)AS进行不同DNAI之间的迁移,同时实现了在(E)AS的地址变化时保持业务的连续性。该方法可用于实现EC通信,而EC通信有重大的应用价值,可以广泛应用于游戏加速、视频加速与V2X(vehicle to everything,车用无线通信技术)等业务中。本公开实施例提供的NAT技术方案简单可行,容易部署。本公开实施例提供的技术方案只是在相关标准的技术方案之上,增加一种新的方案,因此,对系统的修改不大,容易进行标准化与大规模部署。
图16示意性示出了根据本公开的一实施例的用于实现业务连续性的方法的流程图。如图16所示,本公开实施例提供的方法可以由用户面功能网元,例如用户设备执行,并包括以下步骤。
在步骤S1610中,通过目标用户面功能网元接收会话管理功能网元发送的目标N4会话请求消息,所述目标N4会话请求消息包括数据包处理规则,所述数据包处理规则包括网络地址转换规则。
在步骤S1620中,通过所述目标用户面功能网元接收上行数据包。
在步骤S1630中,若所述目标用户面功能网元根据所述数据包处理规则检测到所述上行数据包的源地址为目标用户设备网络地址、目的地址为第一应用服务器网络地址,则根据所述网络地址转换规则将所述上行数据包的目的地址转换为第二应用服务器网络地址。
在示例性实施例中,若所述目标用户面功能网元根据所述数据包处理规则进一步检测到所述上行数据包的目的端口号为所述第一应用服务器网络地址对应的第一应用服务器的第一端口号,则所述方法还可以包括:根据所述网络地址转换规则将所述上行数据包的目的端口号转换为所述第二应用服务器的第二端口号。
在步骤S1640中,通过所述目标用户面功能网元将目的地址转换为所述第二应用服务器网络地址的上行数据包转发至所述第二应用服务器网络地址对应的第二应用服务器。
在示例性实施例中,所述方法还可以包括:通过所述目标用户面功能网元接收下行数据包;若所述目标用户面功能网元根据所述数据包处理规则检测到所述下行数据包的源地址为所述第二应用服务器网络地址、目的地址为所述目标用户设备网络地址,则根据所述网络地址转换规则将所述下行数据包的源地址转换为所述第一应用服务器网络地址;通过所述目标用户面功能网元将源地址转换为所述第一应用服务器网络地址的下行数据包转发至所述目标用户设备网络地址对应的目标用户设备。
在示例性实施例中,若所述目标用户面功能网元根据所述数据包处理规则进一步检测到所述下行数据包的源端口号为所述第二应用服务器的第二端口号,则所述方法还可以包括:根据所述网络地址转换规则将所述下行数据包的源端口号转换为所述第一应用服务器网络地址对应的第一应用服务器的第一端口号。
在示例性实施例中,所述目标用户面功能网元可以包括第一协议数据单元会话锚点用户面功能网元。
在示例性实施例中,所述目标用户面功能网元可以包括上行分类器用户面功能网元和第二协议数据单元会话锚点用户面功能网元,所述数据包处理规则还包括数据包转发规则,所述目标N4会话请求消息包括第一N4会话请求消息和第二N4会话请求消息。其中,所述通过目标用户面功能网元接收会话管理功能网元发送的目标N4会话请求消息,可以包括:通过所述上行分类器用户面功能网元接收所述第一N4会话请求消息,所述第一N4会话请求消息包括所述数据包转发规则;通过所述第二协议数据单元会话锚点用户面功能网元接收所述第二N4会话请求消息,所述第二N4会话请求消息包括所述网络地址转换规则。
在示例性实施例中,所述通过所述目标用户面功能网元接收上行数据包,可以包括:通过所述上行分类器用户面功能网元接收所述上行数据包。其中,所述根据所述网络地址转换规则将所述上行数据包的目的地址转换为第二应用服务器网络地址,可以包括:所述上行分类器用户面功能网元将匹配所述数据包转发规则的上行数据包转发至所述第二协议数据单元会话锚点用户面功能网元;所述第二协议数据单元会话锚点用户面功能网元根据所述网络地址转换规则,将检测到的从所述上行分类器用户面功能网元接收的上行数据包的目的地址从所述第一应用服务器网络地址转换为所述第二应用服务器地址。其中,所述通过所述目标用户面功能网元将目的地址转换为所述第二应用服务器网络地址的上行数据包转发至所述第二应用服务器网络地址对应的第二应用服务器,可以包括:通过所述第二协议数据单元会话锚点用户面功能网元将目的地址转换为所述第二应用服务器地址的上行数据包转发至所述第二应用服务器。
在示例性实施例中,所述方法还可以包括:所述第二协议数据单元会话锚点用户面功能网元根据所述网络地址转换规则,将检测到的从所述上行分类器用户面功能网元接收的上行数据包的目的端口号从所述第一应用服务器网络地址对应的第一应用服务器的第一端口号转换至所述第二应用服务器的第二端口号。
在示例性实施例中,所述方法还可以包括:通过所述第二协议数据单元会话锚点用户面功能网元接收下行数据包;若所述第二协议数据单元会话锚点用户面功能网元检测到所述下行数据包的源地址为所述第二应用服务器网络地址、目的地址为所述目标用户设备网络地址,则根据所述网络地址转换规则将所述下行数据包的源地址转换为所述第一应用服务器网络地址;所述第二协议数据单元会话锚点用户面功能网元将源地址转换为所述第一应用服务器网络地址的下行数据包转发至所述上行分类器用户面功能网元;所述上行分类器用户面功能网元将源地址转换为所述第一应用服务器网络地址的下行数据包转发至所述目标用户设备。
在示例性实施例中,若所述第二协议数据单元会话锚点用户面功能网元进一步检测到所述下行数据包的源端口号为所述第二应用服务器的第二端口号,则所述方法还可以包括:根据所述网络地址转换规则将所述下行数据包的源端口号转换为所述第一应用服务器网络地址对应的第一应用服务器的第一端口号。
在示例性实施例中,所述目标用户面功能网元可以包括上行分类器用户面功能网元。
在示例性实施例中,在接收所述目标N4会话请求消息之前,所述方法还可以包括:建立与所述目标用户设备网络地址对应的目标用户设备之间的目标协议数据单元会话,以使得所述目标用户设备与所述第一应用服务器网络地址对应的第一应用服务器进行通信。
本公开实施例提供的用于实现业务连续性的方法的具体实现可以参照上述其它实施例中用于实现业务连续性的方法中的内容,在此不再赘述。
图17示意性示出了根据本公开的一实施例的用于实现业务连续性的装置的框图。如图17所示,本公开实施方式提供的用于实现业务连续性的装置1700可以包括:重定位消息接收单元1710、处理规则生成单元1720以及处理规则下发单元1730。
其中,重定位消息接收单元1710可以用于接收目标重定位消息,所述目标重定位消息携带目标数据路由信息,所述目标数据路由信息包括目标数据网络接入标识和网络地址转换信息,所述网络地址转换信息包括目标用户设备网络地址、第一应用服务器网络地址和第二应用服务器网络地址,其中所述目标用户设备网络地址对应的目标用户设备已建立到达第一协议数据单元会话锚点用户面功能网元的目标协议数据单元会话,并与所述第一应用服务器网络地址对应的第一应用服务器进行通信。
处理规则生成单元1720可以用于根据所述目标数据路由信息生成数据包处理规则,所述数据包处理规则包括网络地址转换规则,所述网络地址转换规则包括将所述目标用户设备发送的上行数据包的目的地址从所述第一应用服务器网络地址转换为所述第二应用服务器网络地址,并将接收到的目的地址为所述目标用户设备网络地址的下行数据包的源地址从所述第二应用服务器网络地址转换为所述第一应用服务器网络地址。
处理规则下发单元1730可以用于将所述数据包处理规则下发至目标网络设备,以使得所述目标网络设备根据所述数据包处理规则,将所述目标用户设备发送的上行数据包转发至所述第二应用服务器网络地址对应的第二应用服务器,并将接收到的目的地址为所述目标用户设备网络地址、源地址为所述第二应用服务器网络地址的下行数据包转发至所述目标用户设备。
在示例性实施例中,所述目标重定位消息可以包括会话管理策略控制更新通知消息。其中,重定位消息接收单元1710可以包括:会话管理策略控制更新通知消息接收单元,可以用于从目标策略控制功能网元接收所述会话管理策略控制更新通知消息,所述会话管理策略控制更新通知消息可以包括与所述第一协议数据单元会话锚点用户面功能网元对应的源数据网络接入标识、所述目标数据网络接入标识和所述目标数据路由信息。
在示例性实施例中,所述会话管理策略控制更新通知消息可以是所述目标策略控制功能网元根据从目标网络开放功能网元接收到的策略授权请求消息生成的,所述策略授权请求消息可以包括所述目标用户设备网络地址、所述源数据网络接入标识、所述目标数据网络接入标识和所述目标数据路由信息。其中,所述策略授权请求消息可以是所述目标网络开放功能网元根据从应用功能网元接收到的影响数据路由请求消息生成的,所述影响数据路由请求消息可以包括所述目标用户设备网络地址、所述源数据网络接入标识、所述目标数据网络接入标识和所述目标数据路由信息。
在示例性实施例中,所述会话管理策略控制更新通知消息可以是所述目标策略控制功能网元根据从应用功能网元接收到的影响数据路由请求消息生成的,所述影响数据路由请求消息可以包括所述目标用户设备网络地址、所述源数据网络接入标识、所述目标数据网络接入标识和所述目标数据路由信息。
在示例性实施例中,若所述目标数据网络接入标识与所述源数据网络接入标识匹配,则所述目标网络设备可以包括所述第一协议数据单元会话锚点用户面功能网元。其中,处理规则下发单元1730可以包括:N4会话修改请求消息发送单元,可以用于向所述第一协议数据单元会话锚点用户面功能网元发送N4会话修改请求消息,所述N4会话修改请求消息包括所述数据包处理规则。
在示例性实施例中,用于实现业务连续性的装置1700还可以包括:N4会话修改响应消息接收单元,可以用于接收所述第一协议数据单元会话锚点用户面功能网元回复的N4会话修改响应消息;会话管理策略控制更新通知响应消息返回单元,可以用于向所述目标策略控制功能网元返回会话管理策略控制更新通知响应消息,以使得所述目标策略控制功能网元向应用功能网元返回影响数据路由响应消息,所述应用功能网元接收到所述影响数据路由响应消息后,触发完成将所述第一应用服务器迁移至所述第二应用服务器。
在示例性实施例中,在接收所述目标重定位消息之前,已通过应用功能网元将所述第一应用服务器迁移至所述第二应用服务器。
在示例性实施例中,若所述目标数据路由信息还可以包括所述第一应用服务器的第一端口号和所述第二应用服务器的第二端口号,则所述网络地址转换规则还可以包括将所述上行数据包的目的 端口号从所述第一端口号转换为所述第二端口号,并将所述下行数据包的源端口号从所述第二端口号转换为所述第一端口号。
在示例性实施例中,若所述目标数据网络接入标识与所述第一协议数据单元会话锚点用户面功能网元支持的源数据网络接入标识不匹配,则所述目标网络设备可以包括第二协议数据单元会话锚点用户面功能网元和上行分类器用户面功能网元,所述数据包处理规则还可以包括数据包转发规则,所述数据包转发规则可以包括将接收到的源地址为所述目标用户设备网络地址、目的地址为所述第一应用服务器网络地址的上行数据包转发至所述第二协议数据单元会话锚点用户面功能网元。其中,处理规则下发单元1730可以包括:数据包转发规则下发单元,可以用于将所述数据包转发规则下发至所述上行分类器用户面功能网元;网络地址转换规则下发单元,可以用于将所述网络地址转换规则下发至所述第二协议数据单元会话锚点用户面功能网元。
在示例性实施例中,用于实现业务连续性的装置1700还可以包括:用户面路径改变单元,可以用于将所述数据包处理规则下发至目标网络设备之前,确定所述第二协议数据单元会话锚点用户面功能网元;确定所述上行分类器用户面功能网元;更新所述第一协议数据单元会话锚点用户面功能网元的下行用户面;更新所述第二协议数据单元会话锚点用户面功能网元的下行用户面。
在示例性实施例中,若所述目标数据网络接入标识与所述第一协议数据单元会话锚点用户面功能网元支持的源数据网络接入标识不匹配,则所述目标网络设备可以包括上行分类器用户面功能网元。其中,处理规则下发单元1730可以包括:上行分类器接收包处理规则单元,可以用于将所述数据包处理规则下发至所述上行分类器用户面功能网元。
在示例性实施例中,所述目标重定位消息可以包括事件开放应用重定位信息消息。其中,重定位消息接收单元1710可以包括:事件开放应用重定位信息消息接收单元,可以用于从应用功能网元接收所述事件开放应用重定位信息消息,所述事件开放应用重定位信息消息包括所述目标数据路由信息。
在示例性实施例中,用于实现业务连续性的装置1700还可以包括:早事件通知单元,可以用于在接收所述目标重定位消息之前,接收所述应用功能网元的早事件订阅消息;决定作协议数据单元会话锚点用户面功能网元的修改;根据所述决定,向所述应用功能网元传输早事件通知消息,所述早事件通知消息包括事件通知参数,所述事件通知参数包括所述第一协议数据单元会话锚点用户面功能网元对应的源数据网络接入标识和第二协议数据单元会话锚点用户面功能网元对应的所述目标数据网络接入标识。
在示例性实施例中,用于实现业务连续性的装置1700还可以包括:第一应用服务器迁移单元,可以用于所述应用功能网元根据所述早事件通知消息,触发将所述第一应用服务器从所述源数据网络接入标识迁移至所述目标数据网络接入标识,成为所述第二应用服务器。
在示例性实施例中,所述数据包处理规则还可以包括数据包转发规则。其中,用于实现业务连续性的装置1700还可以包括:第二上行用户面功能网元确定单元,可以用于在接收所述目标重定位消息之后,确定所述第二协议数据单元会话锚点用户面功能网元和上行分类器用户面功能网元;第一目标网络设备确定单元,可以用于将所述第二协议数据单元会话锚点用户面功能网元和所述上行分类器用户面功能网元作为所述目标网络设备。其中,处理规则下发单元1730可以包括:数据包转发规则发送单元,可以用于将所述数据包转发规则下发至所述上行分类器用户面功能网元;网络地址转换规则发送单元,可以用于将所述网络地址转换规则下发至所述第二协议数据单元会话锚点用户面功能网元。
在示例性实施例中,用于实现业务连续性的装置1700还可以包括:用户面功能网元新增单元,可以用于在接收所述目标重定位消息之后,确定所述第二协议数据单元会话锚点用户面功能网元和上行分类器用户面功能网元;第二目标网络设备确定单元,可以用于将所述上行分类器用户面功能网元作为所述目标网络设备。其中,处理规则下发单元1730可以包括:数据包处理规则发送单元,可以用于将所述数据包处理规则下发至所述上行分类器用户面功能网元。
在示例性实施例中,用于实现业务连续性的装置1700还可以包括:晚事件通知单元,可以用于在接收所述目标重定位消息之前,接收所述应用功能网元的晚事件订阅消息;决定作协议数据单元会话锚点用户面功能网元的修改;根据所述决定,确定第二协议数据单元会话锚点用户面功能网元和上行分类器用户面功能网元;配置所述上行分类器用户面功能网元将接收到的上行数据包转发至所述第一协议数据单元会话锚点用户面功能网元;向所述应用功能网元传输晚事件通知消息,所述晚事件通知消息包括事件通知参数,所述事件通知参数包括所述第一协议数据单元会话锚点用户面功能网元对应的源数据网络接入标识和所述第二协议数据单元会话锚点用户面功能网元对应的所述目标数据网络接入标识。
在示例性实施例中,用于实现业务连续性的装置1700还可以包括:第二应用服务器迁移单元, 可以用于所述应用功能网元根据所述晚事件通知消息,触发将所述第一应用服务器从所述源数据网络接入标识迁移至所述目标数据网络接入标识,成为所述第二应用服务器。
在示例性实施例中,所述数据包处理规则还可以包括数据包转发规则。其中,用于实现业务连续性的装置1700还可以包括:第三目标网络设备确定单元,可以用于在接收所述目标重定位消息之后,将所述第二协议数据单元会话锚点用户面功能网元和所述上行分类器用户面功能网元作为所述目标网络设备。其中,处理规则下发单元1730可以包括:数据包转发规则传输单元,可以用于将所述数据包转发规则下发至所述上行分类器用户面功能网元;网络地址转换规则传输单元,可以用于将所述网络地址转换规则下发至所述第二协议数据单元会话锚点用户面功能网元。
在示例性实施例中,用于实现业务连续性的装置1700还可以包括:第四目标网络设备确定单元,可以用于在接收所述目标重定位消息之后,将所述上行分类器用户面功能网元作为所述目标网络设备。其中,处理规则下发单元1730可以包括:数据包检测规则下发单元,可以用于将所述数据包处理规则下发至所述上行分类器用户面功能网元。
本公开实施例提供的用于实现业务连续性的装置中的各个单元的具体实现可以参照上述用于实现业务连续性的方法中的内容,在此不再赘述。
图18示意性示出了根据本公开的一实施例的用户面功能网元的框图。如图18所示,本公开实施方式提供的用户面功能网元1800可以包括:会话请求消息接收单元1810、上行数据包接收单元1820、上行数据包检测转换单元1830以及上行数据包转发单元1840。
其中,会话请求消息接收单元1810可以用于接收会话管理功能网元发送的目标N4会话请求消息,所述目标N4会话请求消息包括数据包处理规则,所述数据包处理规则包括网络地址转换规则。上行数据包接收单元1820可以用于接收上行数据包。上行数据包检测转换单元1830可以用于若根据所述数据包处理规则检测到所述上行数据包的源地址为目标用户设备网络地址、目的地址为第一应用服务器网络地址,则根据所述网络地址转换规则将所述上行数据包的目的地址转换为第二应用服务器网络地址。上行数据包转发单元1840可以用于将目的地址转换为所述第二应用服务器网络地址的上行数据包转发至所述第二应用服务器网络地址对应的第二应用服务器。
在示例性实施例中,上行数据包检测转换单元1830可以包括:第一目的端口号转换单元,可以用于若根据所述数据包处理规则检测到所述上行数据包的源地址为目标用户设备网络地址、目的地址为第一应用服务器网络地址、目的端口号为所述第一应用服务器网络地址对应的第一应用服务器的第一端口号,则根据所述网络地址转换规则将所述上行数据包的目的地址转换为第二应用服务器网络地址、目的端口号转换为所述第二应用服务器的第二端口号。
在示例性实施例中,用户面功能网元1800还可以包括:第一下行数据包接收单元,可以用于接收下行数据包;第一源地址转换单元,可以用于若根据所述数据包处理规则检测到所述下行数据包的源地址为所述第二应用服务器网络地址、目的地址为所述目标用户设备网络地址,则根据所述网络地址转换规则将所述下行数据包的源地址转换为所述第一应用服务器网络地址;第一下行数据包转发单元,可以用于将源地址转换为所述第一应用服务器网络地址的下行数据包转发至所述目标用户设备网络地址对应的目标用户设备。
在示例性实施例中,第一源地址转换单元可以包括:第一源端口号转换单元,可以用于若根据所述数据包处理规则检测到所述下行数据包的源地址为所述第二应用服务器网络地址、目的地址为所述目标用户设备网络地址、源端口号为所述第二应用服务器的第二端口号,则根据所述网络地址转换规则将所述下行数据包的源地址转换为所述第一应用服务器网络地址、源端口号转换为所述第一应用服务器网络地址对应的第一应用服务器的第一端口号。
在示例性实施例中,所述用户面功能网元可以包括第一协议数据单元会话锚点用户面功能网元。
在示例性实施例中,所述用户面功能网元可以包括上行分类器用户面功能网元和第二协议数据单元会话锚点用户面功能网元,所述数据包处理规则还可以包括数据包转发规则,所述目标N4会话请求消息可以包括第一N4会话请求消息和第二N4会话请求消息。其中,会话请求消息接收单元1810可以包括:第一N4会话请求消息接收单元,可以用于通过所述上行分类器用户面功能网元接收所述第一N4会话请求消息,所述第一N4会话请求消息包括所述数据包转发规则;第二N4会话请求消息接收单元,可以用于通过所述第二协议数据单元会话锚点用户面功能网元接收所述第二N4会话请求消息,所述第二N4会话请求消息包括所述网络地址转换规则。
在示例性实施例中,上行数据包接收单元1820可以包括:上行数据包获得单元,可以用于通过所述上行分类器用户面功能网元接收所述上行数据包。其中,上行数据包检测转换单元1830可以包括:上行数据包发送单元,可以用于所述上行分类器用户面功能网元将匹配所述数据包转发规则的上行数据包转发至所述第二协议数据单元会话锚点用户面功能网元;目的地址转换单元,可以用于所述第二协议数据单元会话锚点用户面功能网元根据所述网络地址转换规则,将检测到的从所述上 行分类器用户面功能网元接收的上行数据包的目的地址从所述第一应用服务器网络地址转换为所述第二应用服务器地址。其中,上行数据包转发单元1840可以包括:上行数据包传输单元,可以用于通过所述第二协议数据单元会话锚点用户面功能网元将目的地址转换为所述第二应用服务器地址的上行数据包转发至所述第二应用服务器。
在示例性实施例中,目的地址转换单元可以包括:第二目的端口号转换单元,可以用于所述第二协议数据单元会话锚点用户面功能网元根据所述网络地址转换规则,将检测到的从所述上行分类器用户面功能网元接收的上行数据包的目的地址从所述第一应用服务器网络地址转换为所述第二应用服务器地址、目的端口号从所述第一应用服务器网络地址对应的第一应用服务器的第一端口号转换至所述第二应用服务器的第二端口号。
在示例性实施例中,用户面功能网元1800还可以包括:第二下行数据包接收单元,可以用于通过所述第二协议数据单元会话锚点用户面功能网元接收下行数据包;第二源地址转换单元,可以用于若所述第二协议数据单元会话锚点用户面功能网元检测到所述下行数据包的源地址为所述第二应用服务器网络地址、目的地址为所述目标用户设备网络地址,则根据所述网络地址转换规则将所述下行数据包的源地址转换为所述第一应用服务器网络地址;第二下行数据包转发单元,可以用于所述第二协议数据单元会话锚点用户面功能网元将源地址转换为所述第一应用服务器网络地址的下行数据包转发至所述上行分类器用户面功能网元;第三下行数据包转发单元,可以用于所述上行分类器用户面功能网元将源地址转换为所述第一应用服务器网络地址的下行数据包转发至所述目标用户设备。
在示例性实施例中,第二源地址转换单元可以包括:第二源端口号转换单元,可以用于若所述第二协议数据单元会话锚点用户面功能网元检测到所述下行数据包的源地址为所述第二应用服务器网络地址、目的地址为所述目标用户设备网络地址、源端口号为所述第二应用服务器的第二端口号,则根据所述网络地址转换规则将所述下行数据包的源地址转换为所述第一应用服务器网络地址、源端口号转换为所述第一应用服务器网络地址对应的第一应用服务器的第一端口号。
在示例性实施例中,所述用户面功能网元可以包括上行分类器用户面功能网元。
在示例性实施例中,用户面功能网元1800还可以包括:单元会话建立单元,可以用于在接收所述目标N4会话请求消息之前,建立与所述目标用户设备网络地址对应的目标用户设备之间的目标协议数据单元会话,以使得所述目标用户设备与所述第一应用服务器网络地址对应的第一应用服务器进行通信。
本公开实施例提供的用户面功能网元中的各个单元的具体实现可以参照上述用于实现业务连续性的方法中的内容,在此不再赘述。
图19示意性示出了根据本公开的一实施例的用户设备的框图。如图19所示,本公开实施方式提供的用户设备1900可以包括:单元会话建立单元1910、应用服务器通信单元1920以及上行数据包发送单元1930。
其中,单元会话建立单元1910可以用于建立到达第一协议数据单元会话锚点用户面功能网元的目标协议数据单元会话。应用服务器通信单元1920可以用于与第一应用服务器网络地址对应的第一应用服务器进行通信。上行数据包发送单元1930可以用于向目标网络设备发送上行数据包,所述上行数据包的源地址为目标网络设备网络地址、目的地址为所述第一应用服务器网络地址,以便于所述目标网络设备根据数据包处理规则对所述上行数据包进行处理,将所述上行数据包的目的地址转换为第二应用服务器网络地址,将目的地址转换为所述第二应用服务器网络地址的上行数据包转发至所述第二应用服务器网络地址对应的第二应用服务器。
在示例性实施例中,用户设备1900还可以包括:下行数据包转接单元,可以用于从所述目标网络设备接收下行数据包,所述下行数据包的源地址是所述目标网络设备根据所述数据包处理规则,从所述第二应用服务器网络地址转换为所述第一应用服务器网络地址,所述下行数据包的目的地址为所述目标用户设备网络地址。
本公开实施例提供的用户设备中的各个单元的具体实现可以参照上述用于实现业务连续性的方法中的内容,在此不再赘述。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多单元的特征和功能可以在一个单元中具体化。反之,上文描述的一个单元的特征和功能可以进一步划分为由多个单元来具体化。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、 触控终端、或者网络设备等)执行根据本公开实施方式的方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (38)

  1. 一种用于实现用户业务连续性的方法,由会话管理功能网元执行,所述方法包括:
    接收目标重定位消息,所述目标重定位消息携带目标数据路由信息,所述目标数据路由信息包括目标数据网络接入标识和网络地址转换信息,所述网络地址转换信息包括目标用户设备网络地址、第一应用服务器网络地址和第二应用服务器网络地址,其中所述目标用户设备网络地址对应的目标用户设备已建立到达第一协议数据单元会话锚点用户面功能网元的目标协议数据单元会话,并与所述第一应用服务器网络地址对应的第一应用服务器进行通信;
    根据所述目标数据路由信息生成数据包处理规则,所述数据包处理规则包括网络地址转换规则,所述网络地址转换规则包括将所述目标用户设备发送的上行数据包的目的地址从所述第一应用服务器网络地址转换为所述第二应用服务器网络地址,并将接收到的目的地址为所述目标用户设备网络地址的下行数据包的源地址从所述第二应用服务器网络地址转换为所述第一应用服务器网络地址;
    将所述数据包处理规则下发至目标网络设备,以使得所述目标网络设备根据所述数据包处理规则,将所述目标用户设备发送的上行数据包转发至所述第二应用服务器网络地址对应的第二应用服务器,并将接收到的目的地址为所述目标用户设备网络地址、源地址为所述第二应用服务器网络地址的下行数据包转发至所述目标用户设备。
  2. 根据权利要求1所述的用于实现业务连续性的方法,其中,所述目标重定位消息包括会话管理策略控制更新通知消息;其中,所述接收目标重定位消息,包括:
    从目标策略控制功能网元接收所述会话管理策略控制更新通知消息,所述会话管理策略控制更新通知消息包括与所述第一协议数据单元会话锚点用户面功能网元对应的源数据网络接入标识、所述目标数据网络接入标识和所述目标数据路由信息。
  3. 根据权利要求2所述的用于实现业务连续性的方法,其中,所述会话管理策略控制更新通知消息是所述目标策略控制功能网元根据从目标网络开放功能网元接收到的策略授权请求消息生成的,所述策略授权请求消息包括所述目标用户设备网络地址、所述源数据网络接入标识、所述目标数据网络接入标识和所述目标数据路由信息;
    其中,所述策略授权请求消息是所述目标网络开放功能网元根据从应用功能网元接收到的影响数据路由请求消息生成的,所述影响数据路由请求消息包括所述目标用户设备网络地址、所述源数据网络接入标识、所述目标数据网络接入标识和所述目标数据路由信息。
  4. 根据权利要求2所述的用于实现业务连续性的方法,其中,所述会话管理策略控制更新通知消息是所述目标策略控制功能网元根据从应用功能网元接收到的影响数据路由请求消息生成的,所述影响数据路由请求消息包括所述目标用户设备网络地址、所述源数据网络接入标识、所述目标数据网络接入标识和所述目标数据路由信息。
  5. 根据权利要求2所述的用于实现业务连续性的方法,其中,若所述目标数据网络接入标识与所述源数据网络接入标识匹配,则所述目标网络设备包括所述第一协议数据单元会话锚点用户面功能网元;其中,所述将所述数据包处理规则下发至目标网络设备,包括:
    向所述第一协议数据单元会话锚点用户面功能网元发送N4会话修改请求消息,所述N4会话修改请求消息包括所述数据包处理规则。
  6. 根据权利要求5所述的用于实现业务连续性的方法,其中,还包括:
    接收所述第一协议数据单元会话锚点用户面功能网元回复的N4会话修改响应消息;
    向所述目标策略控制功能网元返回会话管理策略控制更新通知响应消息,以使得所述目标策略控制功能网元向应用功能网元返回影响数据路由响应消息,所述应用功能网元接收到所述影响数据路由响应消息后,触发完成将所述第一应用服务器迁移至所述第二应用服务器。
  7. 根据权利要求1所述的用于实现业务连续性的方法,其中,在接收所述目标重定位消息之前,已通过应用功能网元将所述第一应用服务器迁移至所述第二应用服务器。
  8. 根据权利要求1所述的用于实现业务连续性的方法,其中,若所述目标数据路由信息还包括所述第一应用服务器的第一端口号和所述第二应用服务器的第二端口号,则所述网络地址转换规则还包括将所述上行数据包的目的端口号从所述第一端口号转换为所述第二端口号,并将所述下行数据包的源端口号从所述第二端口号转换为所述第一端口号。
  9. 根据权利要求1所述的用于实现业务连续性的方法,其中,若所述目标数据网络接入标识与所述第一协议数据单元会话锚点用户面功能网元支持的源数据网络接入标识不匹配,则所述目标网络设备包括第二协议数据单元会话锚点用户面功能网元和上行分类器用户面功能网元,所述数据包处理规则还包括数据包转发规则,所述数据包转发规则包括将接收到的源地址为所述目标用户设备 网络地址、目的地址为所述第一应用服务器网络地址的上行数据包转发至所述第二协议数据单元会话锚点用户面功能网元;其中,所述将所述数据包处理规则下发至目标网络设备,包括:
    将所述数据包转发规则下发至所述上行分类器用户面功能网元;
    将所述网络地址转换规则下发至所述第二协议数据单元会话锚点用户面功能网元。
  10. 根据权利要求9所述的用于实现业务连续性的方法,其中,将所述数据包处理规则下发至目标网络设备之前,所述方法还包括:
    确定所述第二协议数据单元会话锚点用户面功能网元;
    确定所述上行分类器用户面功能网元;
    更新所述第一协议数据单元会话锚点用户面功能网元的下行用户面;
    更新所述第二协议数据单元会话锚点用户面功能网元的下行用户面。
  11. 根据权利要求1所述的用于实现业务连续性的方法,其中,若所述目标数据网络接入标识与所述第一协议数据单元会话锚点用户面功能网元支持的源数据网络接入标识不匹配,则所述目标网络设备包括上行分类器用户面功能网元;其中,所述将所述数据包处理规则下发至目标网络设备,包括:
    将所述数据包处理规则下发至所述上行分类器用户面功能网元。
  12. 根据权利要求1所述的用于实现业务连续性的方法,其中,所述目标重定位消息包括事件开放应用重定位信息消息;其中,所述接收目标重定位消息,包括:
    从应用功能网元接收所述事件开放应用重定位信息消息,所述事件开放应用重定位信息消息包括所述目标数据路由信息。
  13. 根据权利要求12所述的用于实现业务连续性的方法,其中,在接收所述目标重定位消息之前,所述方法还包括:
    接收所述应用功能网元的早事件订阅消息;
    决定作协议数据单元会话锚点用户面功能网元的修改;
    根据所述决定,向所述应用功能网元传输早事件通知消息,所述早事件通知消息包括事件通知参数,所述事件通知参数包括所述第一协议数据单元会话锚点用户面功能网元对应的源数据网络接入标识和第二协议数据单元会话锚点用户面功能网元对应的所述目标数据网络接入标识。
  14. 根据权利要求13所述的用于实现业务连续性的方法,其中,还包括:
    所述应用功能网元根据所述早事件通知消息,触发将所述第一应用服务器从所述源数据网络接入标识迁移至所述目标数据网络接入标识,成为所述第二应用服务器。
  15. 根据权利要求13所述的用于实现业务连续性的方法,其中,所述数据包处理规则还包括数据包转发规则;其中,在接收所述目标重定位消息之后,所述方法还包括:
    确定所述第二协议数据单元会话锚点用户面功能网元和上行分类器用户面功能网元;
    将所述第二协议数据单元会话锚点用户面功能网元和所述上行分类器用户面功能网元作为所述目标网络设备;
    其中,所述将所述数据包处理规则下发至目标网络设备,包括:
    将所述数据包转发规则下发至所述上行分类器用户面功能网元;
    将所述网络地址转换规则下发至所述第二协议数据单元会话锚点用户面功能网元。
  16. 根据权利要求13所述的用于实现业务连续性的方法,其中,在接收所述目标重定位消息之后,所述方法还包括:
    确定所述第二协议数据单元会话锚点用户面功能网元和上行分类器用户面功能网元;
    将所述上行分类器用户面功能网元作为所述目标网络设备;
    其中,所述将所述数据包处理规则下发至目标网络设备,包括:
    将所述数据包处理规则下发至所述上行分类器用户面功能网元。
  17. 根据权利要求12所述的用于实现业务连续性的方法,其中,在接收所述目标重定位消息之前,所述方法还包括:
    接收所述应用功能网元的晚事件订阅消息;
    决定作协议数据单元会话锚点用户面功能网元的修改;
    根据所述决定,确定第二协议数据单元会话锚点用户面功能网元和上行分类器用户面功能网元;
    配置所述上行分类器用户面功能网元将接收到的上行数据包转发至所述第一协议数据单元会话锚点用户面功能网元;
    向所述应用功能网元传输晚事件通知消息,所述晚事件通知消息包括事件通知参数,所述事件通知参数包括所述第一协议数据单元会话锚点用户面功能网元对应的源数据网络接入标识和所述第二协议数据单元会话锚点用户面功能网元对应的所述目标数据网络接入标识。
  18. 根据权利要求17所述的用于实现业务连续性的方法,其中,还包括:
    所述应用功能网元根据所述晚事件通知消息,触发将所述第一应用服务器从所述源数据网络接入标识迁移至所述目标数据网络接入标识,成为所述第二应用服务器。
  19. 根据权利要求17所述的用于实现业务连续性的方法,其中,所述数据包处理规则还包括数据包转发规则;其中,在接收所述目标重定位消息之后,所述方法还包括:
    将所述第二协议数据单元会话锚点用户面功能网元和所述上行分类器用户面功能网元作为所述目标网络设备;
    其中,所述将所述数据包处理规则下发至目标网络设备,包括:
    将所述数据包转发规则下发至所述上行分类器用户面功能网元;
    将所述网络地址转换规则下发至所述第二协议数据单元会话锚点用户面功能网元。
  20. 根据权利要求17所述的用于实现业务连续性的方法,其中,在接收所述目标重定位消息之后,所述方法还包括:
    将所述上行分类器用户面功能网元作为所述目标网络设备;
    其中,所述将所述数据包处理规则下发至目标网络设备,包括:
    将所述数据包处理规则下发至所述上行分类器用户面功能网元。
  21. 一种用于实现业务连续性的方法,由用户面功能网元执行,所述方法包括:
    通过目标用户面功能网元接收会话管理功能网元发送的目标N4会话请求消息,所述目标N4会话请求消息包括数据包处理规则,所述数据包处理规则包括网络地址转换规则;
    通过所述目标用户面功能网元接收上行数据包;
    若所述目标用户面功能网元根据所述数据包处理规则检测到所述上行数据包的源地址为目标用户设备网络地址、目的地址为第一应用服务器网络地址,则根据所述网络地址转换规则将所述上行数据包的目的地址转换为第二应用服务器网络地址;
    通过所述目标用户面功能网元将目的地址转换为所述第二应用服务器网络地址的上行数据包转发至所述第二应用服务器网络地址对应的第二应用服务器。
  22. 根据权利要求21所述的用于实现业务连续性的方法,其中,若所述目标用户面功能网元根据所述数据包处理规则进一步检测到所述上行数据包的目的端口号为所述第一应用服务器网络地址对应的第一应用服务器的第一端口号,则所述方法还包括:根据所述网络地址转换规则将所述上行数据包的目的端口号转换为所述第二应用服务器的第二端口号。
  23. 根据权利要求21所述的用于实现业务连续性的方法,其中,还包括:
    通过所述目标用户面功能网元接收下行数据包;
    若所述目标用户面功能网元根据所述数据包处理规则检测到所述下行数据包的源地址为所述第二应用服务器网络地址、目的地址为所述目标用户设备网络地址,则根据所述网络地址转换规则将所述下行数据包的源地址转换为所述第一应用服务器网络地址;
    通过所述目标用户面功能网元将源地址转换为所述第一应用服务器网络地址的下行数据包转发至所述目标用户设备网络地址对应的目标用户设备。
  24. 根据权利要求23所述的用于实现业务连续性的方法,其中,若所述目标用户面功能网元根据所述数据包处理规则进一步检测到所述下行数据包的源端口号为所述第二应用服务器的第二端口号,则所述方法还包括:根据所述网络地址转换规则将所述下行数据包的源端口号转换为所述第一应用服务器网络地址对应的第一应用服务器的第一端口号。
  25. 根据权利要求21所述的用于实现业务连续性的方法,其中,所述目标用户面功能网元包括第一协议数据单元会话锚点用户面功能网元。
  26. 根据权利要求21所述的用于实现业务连续性的方法,其中,所述目标用户面功能网元包括上行分类器用户面功能网元和第二协议数据单元会话锚点用户面功能网元,所述数据包处理规则还包括数据包转发规则,所述目标N4会话请求消息包括第一N4会话请求消息和第二N4会话请求消息;其中,所述通过目标用户面功能网元接收会话管理功能网元发送的目标N4会话请求消息,包括:
    通过所述上行分类器用户面功能网元接收所述第一N4会话请求消息,所述第一N4会话请求消息包括所述数据包转发规则;
    通过所述第二协议数据单元会话锚点用户面功能网元接收所述第二N4会话请求消息,所述第二N4会话请求消息包括所述网络地址转换规则。
  27. 根据权利要求26所述的用于实现业务连续性的方法,其中,所述通过所述目标用户面功能网元接收上行数据包,包括:
    通过所述上行分类器用户面功能网元接收所述上行数据包;
    其中,所述根据所述网络地址转换规则将所述上行数据包的目的地址转换为第二应用服务器网 络地址,包括:
    所述上行分类器用户面功能网元将匹配所述数据包转发规则的上行数据包转发至所述第二协议数据单元会话锚点用户面功能网元;
    所述第二协议数据单元会话锚点用户面功能网元根据所述网络地址转换规则,将检测到的从所述上行分类器用户面功能网元接收的上行数据包的目的地址从所述第一应用服务器网络地址转换为所述第二应用服务器地址;
    其中,所述通过所述目标用户面功能网元将目的地址转换为所述第二应用服务器网络地址的上行数据包转发至所述第二应用服务器网络地址对应的第二应用服务器,包括:
    通过所述第二协议数据单元会话锚点用户面功能网元将目的地址转换为所述第二应用服务器地址的上行数据包转发至所述第二应用服务器。
  28. 根据权利要求27所述的用于实现业务连续性的方法,其中,还包括:
    所述第二协议数据单元会话锚点用户面功能网元根据所述网络地址转换规则,将检测到的从所述上行分类器用户面功能网元接收的上行数据包的目的端口号从所述第一应用服务器网络地址对应的第一应用服务器的第一端口号转换至所述第二应用服务器的第二端口号。
  29. 根据权利要求26所述的用于实现业务连续性的方法,其中,还包括:
    通过所述第二协议数据单元会话锚点用户面功能网元接收下行数据包;
    若所述第二协议数据单元会话锚点用户面功能网元检测到所述下行数据包的源地址为所述第二应用服务器网络地址、目的地址为所述目标用户设备网络地址,则根据所述网络地址转换规则将所述下行数据包的源地址转换为所述第一应用服务器网络地址;
    所述第二协议数据单元会话锚点用户面功能网元将源地址转换为所述第一应用服务器网络地址的下行数据包转发至所述上行分类器用户面功能网元;
    所述上行分类器用户面功能网元将源地址转换为所述第一应用服务器网络地址的下行数据包转发至所述目标用户设备。
  30. 根据权利要求29所述的用于实现业务连续性的方法,其中,若所述第二协议数据单元会话锚点用户面功能网元进一步检测到所述下行数据包的源端口号为所述第二应用服务器的第二端口号,则所述方法还包括:根据所述网络地址转换规则将所述下行数据包的源端口号转换为所述第一应用服务器网络地址对应的第一应用服务器的第一端口号。
  31. 根据权利要求21所述的用于实现业务连续性的方法,其中,所述目标用户面功能网元包括上行分类器用户面功能网元。
  32. 根据权利要求21所述的用于实现业务连续性的方法,其中,在接收所述目标N4会话请求消息之前,所述方法还包括:
    建立与所述目标用户设备网络地址对应的目标用户设备之间的目标协议数据单元会话,以使得所述目标用户设备与所述第一应用服务器网络地址对应的第一应用服务器进行通信。
  33. 一种用于实现业务连续性的装置,其中,包括:
    重定位消息接收单元,用于接收目标重定位消息,所述目标重定位消息携带目标数据路由信息,所述目标数据路由信息包括目标数据网络接入标识和网络地址转换信息,所述网络地址转换信息包括目标用户设备网络地址、第一应用服务器网络地址和第二应用服务器网络地址,其中所述目标用户设备网络地址对应的目标用户设备已建立到达第一协议数据单元会话锚点用户面功能网元的目标协议数据单元会话,并与所述第一应用服务器网络地址对应的第一应用服务器进行通信;
    处理规则生成单元,用于根据所述目标数据路由信息生成数据包处理规则,所述数据包处理规则包括网络地址转换规则,所述网络地址转换规则包括将所述目标用户设备发送的上行数据包的目的地址从所述第一应用服务器网络地址转换为所述第二应用服务器网络地址,并将接收到的目的地址为所述目标用户设备网络地址的下行数据包的源地址从所述第二应用服务器网络地址转换为所述第一应用服务器网络地址;
    处理规则下发单元,用于将所述数据包处理规则下发至目标网络设备,以使得所述目标网络设备根据所述数据包处理规则,将所述目标用户设备发送的上行数据包转发至所述第二应用服务器网络地址对应的第二应用服务器,并将接收到的目的地址为所述目标用户设备网络地址、源地址为所述第二应用服务器网络地址的下行数据包转发至所述目标用户设备。
  34. 一种用户面功能网元,其中,包括:
    会话请求消息接收单元,用于接收会话管理功能网元发送的目标N4会话请求消息,所述目标N4会话请求消息包括数据包处理规则,所述数据包处理规则包括网络地址转换规则;
    上行数据包接收单元,用于接收上行数据包;
    上行数据包检测转换单元,用于若根据所述数据包处理规则检测到所述上行数据包的源地址为 目标用户设备网络地址、目的地址为第一应用服务器网络地址,则根据所述网络地址转换规则将所述上行数据包的目的地址转换为第二应用服务器网络地址;
    上行数据包转发单元,用于将目的地址转换为所述第二应用服务器网络地址的上行数据包转发至所述第二应用服务器网络地址对应的第二应用服务器。
  35. 一种用户设备,其中,包括:
    单元会话建立单元,用于建立到达第一协议数据单元会话锚点用户面功能网元的目标协议数据单元会话;
    应用服务器通信单元,用于与第一应用服务器网络地址对应的第一应用服务器进行通信;
    上行数据包发送单元,用于向目标网络设备发送上行数据包,所述上行数据包的源地址为目标网络设备网络地址、目的地址为所述第一应用服务器网络地址,以便于所述目标网络设备根据数据包处理规则对所述上行数据包进行处理,将所述上行数据包的目的地址转换为第二应用服务器网络地址,将目的地址转换为所述第二应用服务器网络地址的上行数据包转发至所述第二应用服务器网络地址对应的第二应用服务器。
  36. 根据权利要求35所述的用户设备,其中,还包括:
    下行数据包转接单元,用于从所述目标网络设备接收下行数据包,所述下行数据包的源地址是所述目标网络设备根据所述数据包处理规则,从所述第二应用服务器网络地址转换为所述第一应用服务器网络地址,所述下行数据包的目的地址为所述目标用户设备网络地址。
  37. 一种电子设备,其中,包括:
    一个或多个处理器;
    存储装置,配置为存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1至32中任一项所述的方法。
  38. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至32中任一项所述的方法。
PCT/CN2021/079715 2020-04-30 2021-03-09 用于实现业务连续性的方法及相关设备 WO2021218397A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21797348.6A EP4024922A4 (en) 2020-04-30 2021-03-09 PROCEDURES FOR ACHIEVEMENT OF CONTINUITY OF SERVICE AND RELATED EQUIPMENT
US17/708,686 US20220224646A1 (en) 2020-04-30 2022-03-30 Method for implementing service continuity and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010367304.7A CN111586670A (zh) 2020-04-30 2020-04-30 用于实现业务连续性的方法及相关设备
CN202010367304.7 2020-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/708,686 Continuation US20220224646A1 (en) 2020-04-30 2022-03-30 Method for implementing service continuity and related device

Publications (1)

Publication Number Publication Date
WO2021218397A1 true WO2021218397A1 (zh) 2021-11-04

Family

ID=72115141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079715 WO2021218397A1 (zh) 2020-04-30 2021-03-09 用于实现业务连续性的方法及相关设备

Country Status (4)

Country Link
US (1) US20220224646A1 (zh)
EP (1) EP4024922A4 (zh)
CN (1) CN111586670A (zh)
WO (1) WO2021218397A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116321272A (zh) * 2023-03-22 2023-06-23 广州爱浦路网络技术有限公司 Af网元中ue地址信息的时效预测方法及装置
WO2024065793A1 (en) * 2022-09-30 2024-04-04 Lenovo (Beijing) Limited Method and apparatus of selecting a network function of session management

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11856489B2 (en) * 2019-08-08 2023-12-26 Qualcomm Incorporated Uplink broadcast/multicast packet processing
KR20210125389A (ko) * 2020-04-08 2021-10-18 삼성전자주식회사 Target AF로 Notification을 전송하는 방법 및 장치
CN111586670A (zh) * 2020-04-30 2020-08-25 腾讯科技(深圳)有限公司 用于实现业务连续性的方法及相关设备
US11968167B2 (en) * 2020-07-06 2024-04-23 Nokia Technologies Oy Apparatus and method to facilitate network address translation service
CN114268591B (zh) * 2020-09-16 2024-03-26 华为技术有限公司 数据分流方法和装置
CN114363285A (zh) * 2020-09-28 2022-04-15 华为技术有限公司 地址管理的方法、装置及系统
CN116420393A (zh) * 2020-11-10 2023-07-11 华为技术有限公司 标识发送方法和通信装置
US20240089801A1 (en) * 2021-01-26 2024-03-14 Beijing Xiaomi Mobile Software Co., Ltd. Application function session processing method, apparatus and storage medium
WO2022165745A1 (zh) * 2021-02-05 2022-08-11 华为技术有限公司 数据配置方法、装置、系统及存储介质
CN113014630A (zh) * 2021-02-10 2021-06-22 腾讯科技(深圳)有限公司 实现通信连续性的方法及相关设备
CN115486102B (zh) * 2021-03-30 2024-04-02 北京小米移动软件有限公司 一种策略确定方法、策略确定装置及存储介质
WO2022227010A1 (zh) * 2021-04-30 2022-11-03 华为技术有限公司 管理协议数据单元会话的方法和装置
CN113873502B (zh) * 2021-09-29 2024-02-23 中国电信股份有限公司 Ip地址管理方法、nef实体和通信系统
CN115955716A (zh) * 2021-10-08 2023-04-11 华为技术有限公司 数据收集方法、通信装置及通信系统
CN113992671B (zh) * 2021-10-25 2024-01-30 中国电信股份有限公司 数据处理方法、电子设备和计算机可读存储介质
CN116418780A (zh) * 2021-12-31 2023-07-11 中国移动通信有限公司研究院 一种信息处理方法、装置、设备及可读存储介质
CN117062049A (zh) * 2022-05-05 2023-11-14 华为技术有限公司 通信方法和通信装置
CN117062162A (zh) * 2022-05-06 2023-11-14 大唐移动通信设备有限公司 迁移边缘应用服务器的方法、装置、网元及存储介质
CN117641563A (zh) * 2022-08-10 2024-03-01 中国电信股份有限公司 会话绑定方法及功能、存储介质及电子设备
CN117041969B (zh) * 2023-09-28 2024-01-02 新华三技术有限公司 5g双域专网的接入方法、系统及装置、电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109981316A (zh) * 2017-12-27 2019-07-05 华为技术有限公司 应用服务器的切换方法及会话管理网元、终端设备
CN110169089A (zh) * 2017-01-05 2019-08-23 华为技术有限公司 用于应用友好型协议数据单元会话管理的系统和方法
CN111586670A (zh) * 2020-04-30 2020-08-25 腾讯科技(深圳)有限公司 用于实现业务连续性的方法及相关设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109275160B (zh) * 2017-07-17 2020-07-07 华为技术有限公司 数据分流方法、设备及系统
CN109842639B (zh) * 2017-11-24 2020-09-08 华为技术有限公司 实现切换过程中业务连续性的方法、设备及系统
CN110099010B (zh) * 2018-01-31 2021-08-03 华为技术有限公司 一种业务分流的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110169089A (zh) * 2017-01-05 2019-08-23 华为技术有限公司 用于应用友好型协议数据单元会话管理的系统和方法
CN109981316A (zh) * 2017-12-27 2019-07-05 华为技术有限公司 应用服务器的切换方法及会话管理网元、终端设备
CN111586670A (zh) * 2020-04-30 2020-08-25 腾讯科技(深圳)有限公司 用于实现业务连续性的方法及相关设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on enhancement of support for Edge Computing in 5G Core network (5GC) (Release 17)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 23.748, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. V0.3.0, 3 February 2020 (2020-02-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 40, XP051861023 *
See also references of EP4024922A4
TENCENT: "KI #2, New Sol: Edge Server Relocation", 3GPP DRAFT; S2-2004186, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Elbonia; 20200601 - 20200612, 22 May 2020 (2020-05-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051890190 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065793A1 (en) * 2022-09-30 2024-04-04 Lenovo (Beijing) Limited Method and apparatus of selecting a network function of session management
CN116321272A (zh) * 2023-03-22 2023-06-23 广州爱浦路网络技术有限公司 Af网元中ue地址信息的时效预测方法及装置
CN116321272B (zh) * 2023-03-22 2023-10-03 广州爱浦路网络技术有限公司 Af网元中ue地址信息的时效预测方法及装置

Also Published As

Publication number Publication date
EP4024922A4 (en) 2022-12-07
CN111586670A (zh) 2020-08-25
EP4024922A1 (en) 2022-07-06
US20220224646A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
WO2021218397A1 (zh) 用于实现业务连续性的方法及相关设备
JP6564934B2 (ja) 分散型ソフトウェア定義ネットワークパケットコアシステムにおけるモビリティ管理のためのシステムおよび方法
WO2020259509A1 (zh) 一种应用迁移方法及装置
KR101987784B1 (ko) 소프트웨어 정의 네트워크를 기반으로 내용 배포 네트워크를 구현하는 방법 및 시스템
WO2018054195A1 (zh) 一种资源分配的方法及基站
WO2018153346A1 (zh) 一种网络切片的选择方法及装置
WO2021043191A1 (zh) 域名系统服务器的确定方法、请求处理方法和装置、系统
JP7427082B2 (ja) サービスオフロード方法、装置、システム、電子機器、及びコンピュータプログラム
CN114450982B (zh) 用于促进信令业务的装置、存储设备和方法
JP2022513083A (ja) 時間依存ネットワーキング通信方法及び装置
WO2018113401A1 (zh) 移动边缘计算中路径切换方法、移动边缘计算平台及网关
WO2015124045A1 (zh) 一种通道建立的方法和设备
WO2017162089A1 (zh) 网络服务的业务配置方法和装置
WO2014117376A1 (zh) 可定制的移动宽带网络系统和定制移动宽带网络的方法
WO2022011883A1 (zh) 一种用于多运营商核心网对接mec的方法及系统
WO2014194753A1 (zh) 一种生成业务路径的方法、设备及系统
WO2022242507A1 (zh) 通信方法、装置、计算机可读介质、电子设备及程序产品
US11558491B2 (en) Information-centric networking over 5G or later networks
WO2012041604A1 (en) Aggregation of mobile broadband network interfaces
JP7126021B2 (ja) OpenFlowインスタンスの構成
WO2019071995A1 (zh) 内容分发方法、设备及系统
CN116058000A (zh) 用于在重定位时协调到边缘应用服务器的无缝服务连续性的机制
JP7076558B2 (ja) アンカーレス・バックホールのサポートのためのgtpトンネル
WO2022099484A1 (zh) 标识发送方法和通信装置
WO2018076234A1 (zh) 一种通信方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021797348

Country of ref document: EP

Effective date: 20220328

NENP Non-entry into the national phase

Ref country code: DE