WO2022011883A1 - 一种用于多运营商核心网对接mec的方法及系统 - Google Patents

一种用于多运营商核心网对接mec的方法及系统 Download PDF

Info

Publication number
WO2022011883A1
WO2022011883A1 PCT/CN2020/125643 CN2020125643W WO2022011883A1 WO 2022011883 A1 WO2022011883 A1 WO 2022011883A1 CN 2020125643 W CN2020125643 W CN 2020125643W WO 2022011883 A1 WO2022011883 A1 WO 2022011883A1
Authority
WO
WIPO (PCT)
Prior art keywords
mec
request message
nef
pcf
udr
Prior art date
Application number
PCT/CN2020/125643
Other languages
English (en)
French (fr)
Inventor
尤建洁
朱泓艺
Original Assignee
网络通信与安全紫金山实验室
上海宽带技术及应用工程研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 网络通信与安全紫金山实验室, 上海宽带技术及应用工程研究中心 filed Critical 网络通信与安全紫金山实验室
Publication of WO2022011883A1 publication Critical patent/WO2022011883A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a method and a system for connecting a multi-operator core network with an MEC.
  • 5G 5th generation mobile networks or 5th generation wireless systems, 5th-Generation, fifth-generation mobile communication technology
  • 3GPP 3rd Generation Partnership Project
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-reliable and Low Latency Communications
  • ultra-reliable and low-latency Communication ultra-reliable and low-latency Communication
  • mMTC Massive Machine Type Communication
  • the eMBB scenario provides high-traffic mobile broadband services, such as high-speed download, high-definition video, etc., which puts a huge pressure on the wireless backhaul network, which requires the service to sink to the network edge as much as possible to realize the local offload of services;
  • the URLLC scenario provides ultra-reliable and ultra-low-latency communication, such as unmanned driving, industrial control, etc., which also needs to sink services to the network edge to reduce the network delay caused by network transmission.
  • MEC Multi-Access Edge Computing, edge computing
  • the 5G core network is separated from the UP (User plane, user plane) through the CP (control plane, control plane), and the UPF (User Plane Function, user plane network element) can be flexibly deployed to the network edge, while the PCF (Policy Control Function) , policy control) and SMF (Session Management Function, session management) and other control plane functions can be deployed centrally.
  • the 5G core network selects a UPF close to the UE and performs flow control from the UPF to the local data network through the N6 interface.
  • Embodiments of the present invention provide a method and a system for connecting a multi-operator core network to an MEC, which can realize the connection of the MEC system to the 5G core networks of different operators.
  • an embodiment of the present application provides a method for connecting a multi-operator core network to an MEC, including:
  • the AF of the MEC queries and obtains the core network entry of the operator pointed to by the request message according to the locally stored association information or configuration information; the AF of the MEC sends the request message to the NEF, and the NEF stores the received data in the UDR. request message; PCF receives the notification of data change from the UDR, and updates the PCC rules of the SMF; after receiving the updated PCC rules from the PCF, the SMF reconfigures the user plane of the PDU session.
  • the embodiments of the present application provide a system for connecting a multi-operator core network to an MEC, including:
  • the MEC is used to obtain the core network entry of the operator pointed to by the request message by querying the AF according to the locally stored association information or configuration information; then, the request message is sent to the NEF; the NEF is used to save in the UDR The received request message; PCF, used to receive the notification of data change from the UDR, and update the PCC rules of the SMF; SMF, used to reconfigure the user of the PDU session after receiving the updated PCC rules from the PCF noodle.
  • the method further includes: a first processing unit, a second processing unit and a transmission preprocessing unit deployed on the MEC:
  • the first processing unit is configured to trigger the AF to call the Nnef_TrafficInfluence_Create service operation during the process of creating the request message, where the request message includes the transaction identifier of the AF.
  • the second processing unit is configured to update or remove the existing request message, trigger the AF to call the Nnef_TrafficInfluence_Update service operation or the Nnef_TrafficInfluence_Delete service operation, and provide the transaction identifier of the AF corresponding to the existing request message.
  • the transmission preprocessing unit is used to trigger the AF to reach the PCF selected for the current PDU session according to the configuration or by calling the Nbsf_management_Discovery service operation.
  • mapping unit and a data management unit are deployed on the NEF, wherein:
  • the mapping unit is used to map the information provided by the AF of the MEC to the information required by the 5GC.
  • a data management unit configured to: when the AF of the MEC calls the Nnef_TrafficInfluence_Create service operation, or when the Nnef_TrafficInfluence_Update service operation is called, the NEF saves the request message in the UDR;
  • the NEF deletes the AF requirement of the MEC from the UDR;
  • the NEF sends response information to the AF of the MEC.
  • a detection unit and a rule management unit are deployed on the PCF, wherein:
  • a detection unit used for the PCF to receive a notification Nudr_DM_Notify notification of data change from the UDR, wherein the PCF subscribes to the AF request modification of the MEC.
  • the PCF invokes the Npcf_SMPolicyControl_UpdateNotify service operation to update the PCC rules of the SMF;
  • the request message includes a request for a notification report of a user plane path change
  • the information added by the PCF in the PCC rule includes: the notification destination address of the AF pointing to the NEF or the MEC, and the information that includes the internal AF transaction.
  • the ID's notification association ID is included in the request message.
  • a rule forwarding unit is deployed on the SMF, which is used by the SMF to deliver to the UPF through the N4 interface, carrying PCC rules and operator network identification information. information.
  • a rule loading unit is deployed on the UPF, configured to, after the UPF receives the message sent by the SMF, load the The request message is managed in association with the resources occupied by the operator on the MEC and the UPF, and performs corresponding resource control.
  • a feedback unit is deployed, for the MEC host level to feed back the resource usage of the operator at the MEC host level to the MEC system level .
  • a resource maintenance unit is deployed for the MEC system level to maintain network identification information and resource request message tables of different operators.
  • the method and system for connecting a multi-operator core network to an MEC have a resource management module at the MEC system level, which is responsible for managing the resource usage of UPFs connecting to 5G core networks of different operators.
  • the UPF is in the MEC
  • the MEC host level reports the usage of the local UPF by different operators to the MEC system level, and the MEC system level conducts statistics and management according to the signed agreements with different operators.
  • the resource management module at the MEC system level can also issue corresponding policy rules to the UPF at the MEC host level, and the resource execution module on the UPF will execute the relevant policy.
  • the resource management module manages and maintains the network identification information of different operators and the corresponding resource request message table.
  • the SMF sends a message carrying the PCC rule to the MEC UPF through the N4 interface, specifically, the message also carries the operator network identification information, such as PLMN-ID.
  • the MEC UPF associates and manages the request message with the resources occupied by the operator on the MEC UPF according to the operator's network identification information, and performs corresponding resource control.
  • the MEC host level feeds back the resource usage of the operator at the MEC host level to the MEC system level, and the MEC system level maintains the network identification information of different operators and the corresponding resource request message table. In this way, the MEC system can be connected to the 5G core networks of different operators.
  • FIG. 1 is a schematic diagram of the current 5G and MEC basic architecture provided by an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method provided by an embodiment of the present invention.
  • 3 is an MEC and a multi-operator 5G core network architecture provided by an embodiment of the present invention
  • FIG. 4 is a routing flowchart of processing a MEC AF request to affect a session not identified by a UE address provided by an embodiment of the present invention.
  • connection or “coupled” as used herein may include wirelessly connected or coupled.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items. It will be understood by those skilled in the art that, unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It should also be understood that terms such as those defined in general dictionaries should be understood to have meanings consistent with their meanings in the context of the prior art and, unless defined as herein, are not to be taken in an idealized or overly formal sense. explain.
  • UPF User Plane Function
  • PCF Policy Control Function
  • PCC Policy Control and Charging
  • SMF Session Management Function, session management function
  • NEF Network Exposure Function, Network Exposure Function
  • 5G 5th generation mobile networks or 5th generation wireless systems, 5th-Generation, fifth generation mobile communication technology
  • eMBB Enhanced Mobile Broadband
  • UE User Equipment, user equipment
  • NFs Network Functions, network functions.
  • the ETSI GS MEC specification defines the MEC reference architecture, and the ETSI MEC system consists of the MEC host and the MEC management function.
  • the MEC host contains the MEC platform, virtualization infrastructure, and various MEC applications and services running on it.
  • MEC management functions include MEC system-level management functions and host-level management functions.
  • the MEC system-level management functions include user application lifecycle management agents, operation support systems, and MEC orchestrators.
  • MEC host-level management functions include MEC platform managers and virtualization. Infrastructure Manager.
  • MEC enables operators and third-party services to be hosted close to the UE's access point, enabling efficient service delivery by reducing end-to-end latency and load on the transport network.
  • the 5G core network selects a UPF close to the UE and performs flow control from the UPF to the local data network through the N6 interface. This may be based on UE's subscription data, UE location, information from application functions (APs), policies or other relevant traffic rules.
  • APs application functions
  • the MEC system plays the role of AP+DN relative to the 5G core network.
  • the MEC orchestrator is the MEC system-level functional entity, which acts as an AF and can be combined with NEF (Network Exposure Function, network Open function) interaction, or in some cases directly interact with target 5G NFs, for example, in the role of non-trusted AF to influence user plane policies through NEF->PCP->SMP, or in the role of trusted AF by directly going to PCP->SMP affects the user plane policy.
  • NEF Network Exposure Function
  • the MEC platform can also act as an AF to interact with 5G NFs.
  • the MEC system can interact more with NEF/PCF and invoke other 5GC (5G core network) open capabilities, such as message subscription, QoS, and so on.
  • the solution in this embodiment is a secondary development based on the architecture shown in FIG. 1 , and finally designs the MEC and multi-operator 5G core network architecture as shown in FIG. 3 .
  • This embodiment aims to propose a multi-operator 5G MEC communication method to support the MEC system to connect to the 5G core networks of different operators, deeply integrate the access network with Internet services, and provide services at the network edge closer to users, to improve user experience.
  • the MEC system level has a resource management module, which is responsible for managing the resource usage of UPFs that connect to the 5G core networks of different operators.
  • the UPF is at the MEC host level, and the MEC host level reports to the MEC system level for The usage of the local UPF by different operators is counted and managed at the MEC system level according to the signed agreements with different operators.
  • the resource management module at the MEC system level can also issue corresponding policy rules to the UPF at the MEC host level, and the resource execution module on the UPF will execute the relevant policy.
  • the resource management module manages and maintains the network identification information of different operators and the corresponding resource request message table.
  • An embodiment of the present invention provides a method for connecting a multi-operator core network to an MEC, as shown in FIG. 2 , including:
  • the AF of the MEC queries and obtains the core network entry of the operator pointed to by the request message according to the locally stored association information or configuration information.
  • the core network entry can be queried according to the common understanding in the current 5G solution, that is: assuming that there are 5G core networks A and B, if the MEC AF is based on the local configuration information (for example, the configured The entry address of 5GCA is IPA), then it is sent according to the address of the configuration information; if MEC AF needs to send a request for a user of 5G core network A, it will first know that the user belongs to 5G core network A according to the associated information, and then send the request message. , the associated information records the 5G core network to which the user belongs.
  • the AF of the MEC sends the request message to the NEF, and the NEF stores the received request message in the UDR.
  • the PCF receives the notification of the data change from the UDR, and updates the PCC rule of the SMF.
  • the notification of the data change can be generally understood in the current 5G solution, that is: first, the AF request message is stored in the UDR. If the PCF subscribes to the AF request modification, the UDR sends the notification to the PCF, and the notification Used to inform the PCF that the AF request message stored in the UDR has changed.
  • the PCC rules described in this embodiment generally include service data flow templates, QoS parameters, etc.
  • the UPF implements the PCC rules to manage and control the service traffic of a specific UE, and the operator's core network can formulate PCC rules.
  • the SMF After receiving the updated PCC rule from the PCF, the SMF reconfigures the user plane of the PDU session.
  • the user plane can be understood as a forwarding device.
  • the UPF in this solution belongs to the user plane device.
  • the UPF and the MEC belong to a large system and are usually deployed by an operator.
  • the parameters of the user plane are "reconfigured".
  • the updated PCC rules lower the QoS parameters such as user priority and bandwidth.
  • the AF of the MEC calls the Nnef_TrafficInfluence_Create service operation, where the request message includes the transaction identifier of the AF.
  • the string of characters called "Nnef_TrafficInfluence_Create" is a message name, which is specifically implemented as a service operation.
  • the AF of the MEC calls the Nnef_TrafficInfluence_Update service operation or the Nnef_TrafficInfluence_Delete service operation, and provides the transaction identifier of the AF corresponding to the existing request message. For example, as shown in FIG.
  • Step 1 the routing process of processing MEC AF requests to affect sessions not identified by UE addresses in this implementation, wherein: Step 1.
  • the AF of MEC calls the Nnef_TrafficInfluence_Create service operation.
  • the request includes an AF transaction identifier. If the AF of the MEC is subscribed to event notifications related to the PDU session, the AF of the MEC also indicates where it wishes to receive the corresponding notifications (AF notification report information). Call the Nnef_TrafficInfluence_Update or Nnef_TrafficInfluence_Delete service operation to update or remove an existing AF requesting MEC, and provide the corresponding AF transaction identifier.
  • the AF of the MEC sends the request message to the NEF, including: the AF of the MEC arrives at the PCF selected for the current PDU session according to the configuration or calls the Nbsf_management_Discovery service operation, wherein the "according to the configuration” , which means that the MEC AF finds the corresponding PCF according to the pre-configured address. If it is to call the service, it finds the corresponding PCF based on the BSF (Binding Support Function), and then sends the message.
  • the "arrival" here refers to sending the message to the PCF.
  • the previous configuration or service call is to find the PCF, thus realizing the communication of the information flow.
  • the PDU session can be understood as a channel for exchanging data between the UE and the network.
  • the NEF maps the information provided by the AF of the MEC to the information required by the 5GC, where "the information provided by the AF of the MEC" specifically includes the parameters carried in the AF request message, and "the information provided by the AF is mapped as "Information required by 5GC” can be understood as: the conversion of the parameters of one or several MEC systems to the parameters of another one or several 5GC systems, the parameter names before and after the conversion are different, and the "information required by 5GC” refers to the conversion
  • the latter parameter is the result of the above parameter mapping. For example: as shown in Figure 4, where: Step 2.
  • the MEC AF sends a request to the NEF.
  • the AF sends the request message to the corresponding operator's 5G core network according to the service requirements, and the AF of the MEC can find the corresponding operator's 5G core network entry according to the local association information or configuration information. If the request is sent by the AF of the MEC directly to the PCF, the AF of the MEC arrives at the PCF selected for the current PDU session according to the configuration or by calling the Nbsf_management_Discovery service operation.
  • the NEF ensures the necessary authorization controls, including flow control of the MEC's AF requests, and maps the information provided by the MEC's AF to the information required by the 5GC.
  • the NEF saves the received request message in the UDR, including: when the AF of the MEC calls the Nnef_TrafficInfluence_Create service operation or calls the Nnef_TrafficInfluence_Update service operation, the NEF saves the request message in the UDR .
  • the AF of the MEC invokes the Nnef_TrafficInfluence_Delete service operation
  • the NEF deletes the AF requirement of the MEC from the UDR, where the "requirement" here refers to the existing AF request message. This request message
  • the parameters carried in are used as the "requirements".
  • NEF After the NEF saves the request message in the UDR, or the NEF deletes the AF requirement of the MEC from the UDR, the NEF sends response information to the AF of the MEC. For example, as shown in Figure 4, where: Step 3.
  • NEF saves the AF request message of the MEC in the UDR.
  • Nnef_TrafficInfluence_Delete NEF deletes AF requirement of MEC from UDR. The NEF sends a response to the AF of the MEC.
  • the PCF receives the notification of the data change from the UDR, including: the PCF receives the notification Nudr_DM_Notify notification of the data change from the UDR, wherein the PCF subscribes to the AF of the MEC to request modification, Specifically, it is understood that the PCF can subscribe the "AF request modification" to the UDR, that is, if the AF request is modified, the UDR shall send a message to the PCF. For example, as shown in Figure 4, where: Step 4. The PCF that subscribes to the MEC's AF requesting modification receives the Nudr_DM_Notify notification of the data change from the UDR.
  • the updating of the PCC rules of the SMF includes: the PCF determines the PDU sessions currently affected by the AF request of the MEC, and for each determined PDU session, the PCF invokes the Npcf_SMPolicyControl_UpdateNotify service operation to update the PCC rules of the SMF , where the PDU session is affected by the AF request of the MEC, which can be understood as: because the AF request message carries parameters, these parameters will eventually be converted into PCC rules and executed on the UPF, thereby affecting the UE's PDU session.
  • the information added by the PCF to the PCC rule includes: the notification destination address of the AF pointing to the NEF or the MEC, and the AF transaction
  • the notification association identifier of the internal identifier is the literal translation of the English manuscript of the current 5G standard, which means that if the user plane path changes, the PCF needs to send the corresponding destination address to the The object sends a notification report, and the above operation of sending a notification report needs to be indicated in the request message, otherwise the subsequent notification report will not be sent, so it is called "request for notification report”. For example, as shown in FIG. 4 , in which: Step 5.
  • the PCF determines whether the current PDU session may be affected by the AF request of the MEC. For each affected PDU session, the PCF updates the PCC rules of the SMF by calling the Npcf_SMPolicyControl_UpdateNotify service operation. If the AF request of the MEC includes a request for a notification report of the user plane path change, the PCF includes the information required to report the event in the PCC rule, including the notification destination address of the AF pointing to the NEF or MEC, and the internal identifier of the AF transaction. Notification association identifier, where the "notification association identifier" here is a parameter, which also includes the "AF transaction internal identifier", which belongs to the concept and definition in the 5G standard document.
  • the SMF after receiving the updated PCC rules from the PCF, the SMF reconfigures the user plane of the PDU session, including:
  • the SMF sends a message to the UPF through the N4 interface, which carries the PCC rule and the operator network identification information.
  • the UPF After receiving the message sent by the SMF, the UPF associates and manages the request message with the resources occupied by the operator on the MEC and the UPF according to the network identification information of the operator, and executes corresponding resources control.
  • the UPF that receives the message sent by the SMF refers to the MEC UPF, which means that the UPF belongs to the large MEC system and is deployed by the same operator.
  • the MEC host level feeds back the resource usage of the operator at the MEC host level to the MEC system level.
  • the MEC system level maintains network identification information and resource request message tables of different operators.
  • Step 6 After receiving the PCC rules from the PCF, the SMF can take appropriate measures to reconfigure the user plane of the PDU session, and the SMF sends a message carrying the PCC rules to the UPF through the N4 interface, Specifically, the message also carries operator network identification information, such as PLMN-ID.
  • the MEC UPF After the MEC UPF receives the SMF message, it associates and manages the request message with the resources occupied by the operator on the MEC UPF according to the operator's network identification information, and performs corresponding resource control.
  • the MEC host level feeds back the resource usage of the operator at the MEC host level to the MEC system level, and the MEC system level maintains the network identification information of different operators and the corresponding resource request message table.
  • the actions performed by SMF are:
  • This embodiment also provides a system for connecting a multi-operator core network to an MEC, as shown in FIG. 3 , including:
  • the MEC is used to obtain, through the AF, the core network entry of the operator pointed to by the request message according to the locally stored association information or configuration information. Afterwards, the request message is sent to the NEF.
  • the NEF is used to store the received request message in the UDR.
  • the PCP is used to receive a notification of data change from the UDR and update the PCC rules of the SMF.
  • SMF is used to reconfigure the user plane of the PDU session after receiving the updated PCC rules from the PCP.
  • the steps of the methods or algorithms described in conjunction with the disclosure of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory (RandomAccessMemory, RAM), flash memory, read-only memory (ReadOnlyMemory, ROM), erasable programmable read-only memory (ErasableProgrammableROM, EPROM) , Electrically Erasable Programmable Read-Only Memory (Flectrically EPROM, EEPROM), registers, hard disk, removable hard disk, CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist in the core network interface device as discrete components.
  • This embodiment further includes a first processing unit, a second processing unit, and a transmission preprocessing unit deployed on the MEC, wherein:
  • the first processing unit is configured to trigger the AF to call the Nnef_TrafficInfluence_Create service operation during the process of creating the request message, where the request message includes the transaction identifier of the AF;
  • the second processing unit is used to update or remove the existing request message, trigger the AF to call the Nnef_TrafficInfluence_Update service operation or the Nnef_TrafficInfluence_Delete service operation, and provide the transaction identifier of the AF corresponding to the existing request message;
  • the transmission preprocessing unit is used to trigger the AF to reach the PCF selected for the current PDU session according to the configuration or call the Nbsf_management_Discovery service operation;
  • a feedback unit is deployed for the MEC host level to feed back the resource usage of the operator at the MEC host level to the MEC system level;
  • a resource maintenance unit is deployed for the MEC system level to maintain network identification information and resource request message tables of different operators.
  • mapping unit and a data management unit are deployed on the NEF, where:
  • the mapping unit is used to map the information provided by the AF of the MEC to the information required by the 5GC.
  • a data management unit configured to: when the AF of the MEC calls the Nnef_TrafficInfluence_Create service operation, or when the Nnef_TrafficInfluence_Update service operation is called, the NEF saves the request message in the UDR;
  • the NEF deletes the AF requirement of the MEC from the UDR;
  • the NEF sends response information to the AF of the MEC.
  • a detection unit and a rule management unit are deployed on the PCF, where:
  • a detection unit used for the PCF to receive a notification Nudr_DM_Notify notification of a data change from the UDR, wherein the PCF subscribes to the AF request modification of the MEC;
  • the PCF invokes the Npcf_SMPolicyControl_UpdateNotify service operation to update the PCC rules of the SMF;
  • the request message includes a request for a notification report of a user plane path change
  • the information added by the PCF in the PCC rule includes: the notification destination address of the AF pointing to the NEF or the MEC, and the information that includes the internal AF transaction.
  • the ID's notification association ID is included in the request message.
  • a rule forwarding unit is deployed on the SMF, for the SMF to deliver a message to the UPF through the N4 interface, which carries the PCC rule and the operator network identification information.
  • a rule loading unit is deployed on the UPF, and is configured to, after the UPF receives the message sent by the SMF, send the request message to the operator in the MEC and the operator according to the operator network identification information.
  • the resources occupied on the UPF are associated with management, and corresponding resource control is performed.

Abstract

本发明实施例公开了一种用于多运营商核心网对接MEC的方法及系统,涉及通信技术领域,能够实现MEC系统对接不同运营商的5G核心网。本发明包括:MEC的AF根据本地存储的关联信息或者配置信息,查询得到请求消息指向的运营商的核心网入口;所述MEC的AF将所述请求消息发送至NEF,所述NEF在UDR中保存接收到的请求消息;PCF收到来自所述UDR的数据改变的通知,并更新SMF的PCC规则;SMF从PCF接收到更新后的PCC规则后,重新配置PDU会话的用户面。本发明适用于MEC系统对接5G核心网。

Description

一种用于多运营商核心网对接MEC的方法及系统 技术领域
本发明涉及通信技术领域,尤其涉及一种用于多运营商核心网对接MEC的方法及系统。
背景技术
随着国际形势的突变,国内进一步加速了5G(5th generation mobile networks或5th generation wireless systems、5th-Generation,第五代移动通信技术)建设,同时也在加速各类基于5G技术的二次开发和应用方案。3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)定义了5G应用的三大场景:eMBB(Enhanced Mobile Broadband,增强移动宽带)、URLLC(Ultra-reliable and Low Latency Communications,超高可靠低时延通信)和mMTC(Massive Machine Type Communication,海量机器类通信)。其中,eMBB场景提供大流量移动宽带业务,如高速下载、高清视频等,这对无线回传网络造成巨大的压力,这需要将业务尽可能下沉至网络边缘,以实现业务的本地分流;而URLLC场景提供超高可靠超低时延通信,如无人驾驶、工业控制等,这也需要将业务下沉至网络边缘,以减少网络传输带来的网络时延。
面对5G应用需要下沉至网络边缘的特点,MEC(Multi-Access Edge Computing,边缘计算)应运而生,并且已经作为关键技术被纳入3GPP 5G标准。5G核心网通过CP(control plane,控制面)与UP(User plane,用户面)分离,UPF(User Plane Function,用户面网元)可以灵活的下沉部署到网络边缘,而PCF(Policy Control Function,策略控制)以及SMF(Session Management Function,会话管理)等控制面功能可以集中部署。而MEC使运营商和第三方服务可以托管在UE(User Equipment,用户终端)的接入点附近,从而通过减少端到端延迟和传输网络上的负载来实现高效的服务交付。5G核心网选择一个靠近UE的UPF,并通过N6接口执行从UPF到本地数据网络的流量控制。
但是,在目前的5G+MEC架构中,只能支持MEC系统对接单个运营商的5G核心网,即MEC系统和5G核心网需要属于同一个运营商,而MEC系统无法对接不同运营商的5G核心网,这一点也导致了5G应用的成本难以进一步降低,运营商的建设成本也居高不下。
发明内容
本发明的实施例提供一种用于多运营商核心网对接MEC的方法及系统,能够实现MEC系统对接不同运营商的5G核心网。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本申请实施例提供一种用于多运营商核心网对接MEC的方法,包括:
MEC的AF根据本地存储的关联信息或者配置信息,查询得到请求消息指向的运营商的核心网入口;所述MEC的AF将所述请求消息发送至NEF,所述NEF在UDR中保存接收到的请求消息;PCF收到来自所述UDR的数据改变的通知,并更新SMF的PCC规则;SMF从PCF接收到更新后的PCC规则后,重新配置PDU会话的用户面。
第二方面,本申请实施例提供用于多运营商核心网对接MEC的系统,包括:
MEC,用于通过AF根据本地存储的关联信息或者配置信息,查询得到请求消息指向的运营商的核心网入口;之后,将所述请求消息发送至NEF;所述NEF,用于在UDR中保存接收到的请求消息;PCF,用于收到来自所述UDR的数据改变的通知,并更新SMF的PCC规则;SMF,用于从PCF接收到更新后的PCC规则后,重新配置PDU会话的用户面。
在第二方面的第一种可能的实现方式中,还包括:部署在所述MEC上的第一处理单元、第二处理单元和传输预处理单元:
第一处理单元用于在创建所述请求消息的过程中,触发AF调用Nnef_TrafficInfluence_Create服务操作,所述请求消息包括所述AF的事务标识。
第二处理单元,用于更新或移除已有的请求消息,触发AF调用Nnef_TrafficInfluence_Update服务操作或Nnef_TrafficInfluence_Delete服务操作,同时提供对应所述已有的请求消息的AF的事务标识。
传输预处理单元,用于触发AF根据配置或者调用Nbsf_management_Discovery服务操作,到达为当前PDU会话选择的PCF。
在第二方面的第二种可能的实现方式中,所述NEF上部署了映射单元和数据管理单元,其中:
映射单元,用于将所述MEC的AF提供的信息映射为5GC所需的信息。
数据管理单元,用于:当所述MEC的AF调用Nnef_TrafficInfluence_Create服务操作时,或者调用Nnef_TrafficInfluence_Update服务操作时,所述NEF在所述UDR中保存所述请求消息;
和,当所述MEC的AF调用Nnef_TrafficInfluence_Delete服务操作时,所述NEF从所述UDR中删除所述MEC的AF需求;
和,在所述NEF在所述UDR中保存所述请求消息,或者所述NEF从所述UDR中删除所述MEC 的AF需求之后,所述NEF向MEC的AF发送响应信息。
在第二方面的第三种可能的实现方式中,所述PCF上部署了检测单元和规则管理单元,其中:
检测单元,用于所述PCF接收来自所述UDR的数据改变的通知Nudr_DM_Notify notification,其中,所述PCF订阅了MEC的AF请求修改。
规则管理单元,用于所述PCF确定当前被所述MEC的AF请求影响的PDU会话,针对每一个所确定的PDU会话,所述PCF调用Npcf_SMPolicyControl_UpdateNotify服务操作更新所述SMF的PCC规则;其中,当所述请求消息,包含对用户面路径改变的通知报告的请求时,所述PCF在PCC规则中添加的信息包括:指向所述NEF或所述MEC的AF的通知目标地址,和包含AF事务内部标识的通知关联标识。
在第二方面的第四种可能的实现方式中,所述SMF上部署了规则转发单元,用于所述SMF通过N4接口,向所述UPF下发,携带PCC规则和运营商网络标识信息的消息。
在第二方面的第五种可能的实现方式中,所述UPF上部署了规则加载单元,用于在UPF收到所述SMF发出的消息后,根据所述运营商网络标识信息,将所述请求消息与所述运营商在所述MEC和所述UPF上占用的资源关联管理,并执行相应的资源控制。
在第二方面的第六种可能的实现方式中,在MEC主机级上,部署了反馈单元,用于MEC主机级向MEC系统级,反馈所述运营商在所述MEC主机级的资源使用情况。
在第二方面的第七种可能的实现方式中,在MEC系统级上,部署了资源维护单元,用于所述MEC系统级,维护不同运营商的网络标识信息和资源请求消息表。
本发明实施例提供的用于多运营商核心网对接MEC的方法及系统,MEC系统级具有资源管理模块,负责管理对接不同运营商5G核心网的UPF的资源使用情况,具体地,UPF处于MEC主机级,MEC主机级向MEC系统级上报针对本地UPF不同运营商的使用情况,MEC系统级根据与不同运营商的签约协议进行统计和管理。MEC系统级的资源管理模块还可以下发相应策略规则给MEC主机级的UPF,UPF上的资源执行模块将执行有关策略。资源管理模块管理并维护不同运营商网络标识信息与其对应的资源请求消息表。SMF通过N4接口向MEC UPF下发携带PCC规则的消息,具体地,该消息还携带运营商网络标识信息,例如PLMN-ID。MEC UPF收到SMF的消息后,根据运营商网络标识信息将该请求消息与该运营商在此MEC UPF上占用的资源关联管理,并执行相应的资源控制。MEC主机级向MEC系统级反馈运营商在MEC主机级的资源使用情况,MEC系统级维护不同运营商网络标识信息与其对应的资源请求消息表。从而实现了MEC系统对接不同 运营商的5G核心网。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的目前的5G与MEC基本架构示意图;
图2为本发明实施例提供的方法流程示意图;
图3为本发明实施例提供的的MEC与多运营商5G核心网架构;
图4为本发明实施例提供的处理MEC AF请求以影响未由UE地址标识的会话的路由流程图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。下文中将详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。本发明的技术方案也不排除具有未被直接或明确表述的其它单元和步骤的情形。诸如“第一”和“第二”之类的用语并不表示单元在时间、空间、大小等方面的顺序而仅仅是作区分各单元之用。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的任一单元和全部组合。本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
本实施例中所出现的一些英文缩写,分别表示:
MEC(Multi-Access Edge Computing,多接入边缘计算)、
UPF(User Plane Function,用户面功能)、
PCF(Policy Control Function,策略控制功能)、
PCC(Policy Control and Charging,策略控制和计费)、
SMF(Session Management Function,会话管理功能)、
NEF(Network Exposure Function,网络开放功能)、
5G(5th generation mobile networks或5th generation wireless systems、5th-Generation,第五代移动通信技术)、
3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)、
eMBB(Enhanced Mobile Broadband,增强移动宽带)、
URLLC(Ultra-reliable and Low Latency Communications,超高可靠低时延通信)、
mMTC(Massive Machine Type Communication,海量机器类通信)、
CP(control plane,控制面)、
UP(User plane,用户面)、
UE(Uset Equipment,用户设备)、
AF(Application Function,应用功能)、
DN(Data Network,数据网络)、
NFs(Network Functions,网络功能)。
在实际应用中,ETSI GS MEC规范定义了MEC参考架构,ETSI MEC系统由MEC主机和MEC管理功能组成。MEC主机包含MEC平台、虚拟化基础设施以及上面运行的各种MEC应用和服务。MEC管理功能包含MEC系统级管理功能和主机级管理功能,其中MEC系统级管理功能包含用户应用生命周期管理代理、运营支撑系统和MEC编排器,MEC主机级管理功能包含MEC平台管理器和虚拟化基础设施管理器。MEC使运营商和第三方服务可以托管在UE的接入点附近,从而通过减少端到端延迟和传输网络上的负载来实现高效的服务交付。5G核心网选择一个靠近UE的UPF,并通过N6接口执行从UPF到本地数据网络的流量控制。这可以基于UE的签约数据、UE位置、来自应用功能(AP)的信息、策略或其他相关流量规则。
在这类应用场景中,MEC系统相对于5G核心网是AP+DN的角色,如图1所示,MEC编排器是MEC系统级功能实体,它充当AF,可以与NEF(Network Exposure Function,网络开放功能)交互,或者在某些情况下直接与目标5G NFs交互,比如,以非可信AF的角色通过NEF->PCP->SMP影响用户面策略,或者以可信AF的角色通过直接到PCP->SMP影响用户面策 略。在MEC主机级别上,MEC平台也可以作为AF,与5G NFs交互。MEC系统作为AF的一种特殊形式,可以与NEF/PCF进行更多的交互,调用其他的5GC(5G核心网)开放能力,如消息订阅、QoS等等。
本实施例的方案,是在如图1所示的架构基础上进行的二次开发,并最终设计出如图3所示的MEC与多运营商5G核心网架构。本实施例旨在提出一种多运营商的5G MEC通信方法,以支持MEC系统对接不同运营商的5G核心网,将接入网与互联网业务深度融合,在更靠近用户的网络边缘提供服务,以提升用户体验。具体在图3的方案中,MEC系统级具有资源管理模块,负责管理对接不同运营商5G核心网的UPF的资源使用情况,具体地,UPF处于MEC主机级,MEC主机级向MEC系统级上报针对本地UPF不同运营商的使用情况,MEC系统级根据与不同运营商的签约协议进行统计和管理。MEC系统级的资源管理模块还可以下发相应策略规则给MEC主机级的UPF,UPF上的资源执行模块将执行有关策略。资源管理模块管理并维护不同运营商网络标识信息与其对应的资源请求消息表。
本发明实施例提供一种用于多运营商核心网对接MEC的方法,如图2所示,包括:
S1、MEC的AF根据本地存储的关联信息或者配置信息,查询得到请求消息指向的运营商的核心网入口。
其中,根据本地存储的关联信息或者配置信息,查询核心网入口,可以按照目前5G方案中的通常理解,即:假设有5G核心网A和B,如果MEC AF根据本地配置信息(比如,配置的5GCA的入口地址为IPA),则根据配置信息的地址发送;如果MEC AF需要为5G核心网A的用户发送请求,则先根据关联信息获知该用户属于5G核心网A,再将请求消息发送过去,关联信息记载了用户所属于的5G核心网。
S2、所述MEC的AF将所述请求消息发送至NEF,所述NEF在UDR中保存接收到的请求消息。
S3、PCF收到来自所述UDR的数据改变的通知,并更新SMF的PCC规则。
其中,所述的数据改变的通知,可以按照目前5G方案中的通常理解,即:首先在UDR中保存AF请求消息,若PCF订阅了AF请求修改,则所以UDR向PCF发送该通知,该通知用于告知PCF:UDR中保存的AF请求消息改变。本实施例中所述的PCC规则,一般包含业务数据流模板,QoS参数等,UPF通过执行PCC规则来实现特定UE的业务流量的管控,而运营商的核心网可以制定PCC规则。
S4、SMF从PCF接收到更新后的PCC规则后,重新配置PDU会话的用户面。
其中,所述的用户面,可以理解为转发设备,比如本方案中的UPF属于用户面设备,在实 际的落地实现中,UPF与MEC属于一个大系统,并且通常由一个运营商部署,此处不同于部署5G核心网的运营商。重新配置PDU会话的用户面的过程中,“重新配置”的是用户面的参数,例如:在重新配置后,更新后的PCC规则调低了用户的优先级、带宽等QoS参数。
进一步的,还包括:在创建所述请求消息的过程中,所述MEC的AF调用Nnef_TrafficInfluence_Create服务操作,所述请求消息包括所述AF的事务标识。其中,被调用的“Nnef_TrafficInfluence_Create”这串字符是一个消息名,具体执行上实现为一种服务操作(service operation)。更新或移除已有的请求消息,MEC的AF调用Nnef_TrafficInfluence_Update服务操作或Nnef_TrafficInfluence_Delete服务操作,同时提供对应所述已有的请求消息的AF的事务标识。例如:图4所示的,为本实施中处理MEC AF请求以影响未由UE地址标识的会话的路由流程,其中:步骤1.为创建一个新的请求,MEC的AF调用Nnef_TrafficInfluence_Create服务操作。该请求包括一个AF事务标识。如果MEC的AF订阅了与所述PDU会话相关的事件通知,则MEC的AF还指示其希望在何处接收相应的通知(AF通知报告信息)。为更新或移除一个已有的请求MEC的AF调用Nnef_TrafficInfluence_Update或Nnef_TrafficInfluence_Delete服务操作,同时提供对应的AF事务标识。
进一步的,所述MEC的AF将所述请求消息发送至NEF,包括:所述MEC的AF根据配置或者调用Nbsf_management_Discovery服务操作,到达为当前PDU会话选择的PCF,其中,所述的“根据配置”,是指MEC AF根据预先配置好的地址找到对应的PCF,如果是调用服务则基于BSF(绑定支持功能)找到对应的PCF,再将消息发送过去。这里的“到达”,指的是把消息发送到该PCF,前面的配置或者调用服务都是为了找到PCF,从而实现了信息流的通达。所述的PDU会话可以理解为:UE与网络之间交换数据的通道。所述NEF将所述MEC的AF提供的信息映射为5GC所需的信息,其中,“所述MEC的AF提供的信息”具体包括了AF请求消息中携带的参数,“AF提供的信息映射为5GC所需的信息”可以理解为:一个或几个MEC系统的参数到另外一个或几个5GC系统的参数的转换,转变前后的参数名字不同,而“5GC所需的信息”指的就是转变后的参数,即上述参数映射的结果。例如:图4所示的,其中:步骤2.MEC AF发送请求到NEF。具体地,AF根据业务需求将请求消息发送到对应的运营商5G核心网,MEC的AF可以根据本地的关联信息或者配置信息找到对应的运营商5G核心网入口。如果请求是由MEC的AF直接发送给PCF,则MEC的AF根据配置或者调用Nbsf_management_Discovery服务操作,到达为当前PDU会话选择的PCF。NEF确保必要的授权控制,包括对MEC的AF请求的流量控制,并将MEC的AF提供的信息映射为5GC所需的信息。
具体的,所述NEF在UDR中保存接收到的请求消息,包括:当所述MEC的AF调用Nnef_TrafficInfluence_Create服务操作时,或者调用Nnef_TrafficInfluence_Update服务操作时,所述NEF在所述UDR中保存所述请求消息。当所述MEC的AF调用Nnef_TrafficInfluence_Delete服务操作时,所述NEF从所述UDR中删除所述MEC的AF需求,其中,此处的“需求”指的是就是已经存在的AF请求消息,这个请求消息中携带的参数作为所述“需求”。在所述NEF在所述UDR中保存所述请求消息,或者所述NEF从所述UDR中删除所述MEC的AF需求之后,所述NEF向MEC的AF发送响应信息。例如:图4所示的,其中:步骤3.当Nnef_TrafficInfluence_Create或Update:NEF在UDR中保存MEC的AF请求消息。当Nnef_TrafficInfluence_Delete:NEF从UDR中删除MEC的AF需求。NEF向MEC的AF发送响应。
进一步的,所述PCF收到来自所述UDR的数据改变的通知,包括:所述PCF收到来自所述UDR的数据改变的通知Nudr_DM_Notify notification,其中,所述PCF订阅了MEC的AF请求修改,具体来说,即理解为PCF可以向UDR订阅“AF请求修改”,即如果AF请求发生了修改,UDR要向PCF发送消息。例如:图4所示的,其中:步骤4.订阅了MEC的AF请求修改的PCF收到来自UDR的数据改变的通知Nudr_DM_Notify notification。
所述更新SMF的PCC规则,包括:所述PCF确定当前被所述MEC的AF请求影响的PDU会话,针对每一个所确定的PDU会话,所述PCF调用Npcf_SMPolicyControl_UpdateNotify服务操作更新所述SMF的PCC规则,其中,PDU会话被所述MEC的AF请求影响,可以理解为:因为AF请求消息中携带了参数,这些参数最终会转化为PCC规则,并在UPF上执行,从而影响了UE的PDU会话。当所述请求消息,包含对用户面路径改变的通知报告的请求时,所述PCF在PCC规则中添加的信息包括:指向所述NEF或所述MEC的AF的通知目标地址,和包含AF事务内部标识的通知关联标识,其中,需要说明的是:“…的通知报告的请求”是目前5G标准的英文文稿的直译,表示的是:如果用户面路径发生改变,则PCF需要向对应目标地址对象发送通知报告,而上述发送通知报告的操作是需要在请求消息中指示的,否则不会发送后续的通知报告,因此称之为“通知报告的请求”。例如:图4所示的,其中:步骤5.PCF判断当前PDU会话是否可能被MEC的AF请求影响。对于每一个受影响的PDU会话,PCF通过调用Npcf_SMPolicyControl_UpdateNotify服务操作更新SMF的PCC规则。如果MEC的AF请求包含对用户面路径改变的通知报告的请求,则PCF在PCC规则中包含上报事件所需的信息,包括指向NEF或MEC的AF的通知目标地址,以及包含AF事务内部标识的通知关联标识,其中,此处的“通知关联标识”是一个参数,这个参数又包含了“AF事务内部标识”,属于5G标准文稿里的概念和定义。
需要说明的是,本实施例中,SMF从PCF接收到更新后的PCC规则后,重新配置PDU会话的用户面,包括:
所述SMF通过N4接口,向所述UPF下发,携带PCC规则和运营商网络标识信息的消息。
UPF收到所述SMF发出的消息后,根据所述运营商网络标识信息,将所述请求消息与所述运营商在所述MEC和所述UPF上占用的资源关联管理,并执行相应的资源控制。此处收到所述SMF发出的消息的UPF,指的是MEC UPF,即表示UPF属于MEC大系统的,并且是由同一个运营商部署的。
MEC主机级向MEC系统级,反馈所述运营商在所述MEC主机级的资源使用情况。
所述MEC系统级,维护不同运营商的网络标识信息和资源请求消息表。
例如:图4所示的,其中:步骤6.当从PCF接收到PCC规则后,SMF可以采取适当的措施重配置PDU会话的用户面,SMF通过N4接口向UPF下发携带PCC规则的消息,具体地,该消息还携带运营商网络标识信息,例如PLMN-ID。MEC UPF收到SMF的消息后,根据运营商网络标识信息将该请求消息与该运营商在此MEC UPF上占用的资源关联管理,并执行相应的资源控制。MEC主机级向MEC系统级反馈运营商在MEC主机级的资源使用情况,MEC系统级维护不同运营商网络标识信息与其对应的资源请求消息表。比如SMF执行的动作有:
1-在数据路径上增加、替换或移除一个UPF,比如作为UL-CL或者分流点。
2-为UE分配一个新的前缀(适用于IPv6 multi-homing)。
3-向目标DNAI中的UPF更新新的流量引导规则。
4-通过Namf_EventExposure_Subscribe服务操作,向AMF订阅感兴趣区域的通知。
本实施例,还提供一种用于多运营商核心网对接MEC的系统,如图3所示的,包括:
MEC,用于通过AF根据本地存储的关联信息或者配置信息,查询得到请求消息指向的运营商的核心网入口。之后,将所述请求消息发送至NEF。
所述NEF,用于在UDR中保存接收到的请求消息。
PCP,用于收到来自所述UDR的数据改变的通知,并更新SMF的PCC规则。
SMF,用于从PCP接收到更新后的PCC规则后,重新配置PDU会话的用户面。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(RandomAccessMemory,RAM)、闪存、只读存储器(ReadOnlyMemory,ROM)、可擦除可编程只读存储器(ErasableProgrammableROM,EPROM)、电可擦可编程只读存 储器(FlectricallyEPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本实施例中还包括,部署在所述MEC上的第一处理单元、第二处理单元和传输预处理单元,其中:
第一处理单元用于在创建所述请求消息的过程中,触发AF调用Nnef_TrafficInfluence_Create服务操作,所述请求消息包括所述AF的事务标识;
第二处理单元,用于更新或移除已有的请求消息,触发AF调用Nnef_TrafficInfluence_Update服务操作或Nnef_TrafficInfluence_Delete服务操作,同时提供对应所述已有的请求消息的AF的事务标识;
传输预处理单元,用于触发AF根据配置或者调用Nbsf_management_Discovery服务操作,到达为当前PDU会话选择的PCF;
进一步的,在所述MEC的主机级(即MEC主机级),部署了反馈单元,用于MEC主机级向MEC系统级,反馈所述运营商在所述MEC主机级的资源使用情况;
在所述MEC的系统级(即MEC系统级),部署了资源维护单元,用于所述MEC系统级,维护不同运营商的网络标识信息和资源请求消息表。
所述NEF上部署了映射单元和数据管理单元,其中:
映射单元,用于将所述MEC的AF提供的信息映射为5GC所需的信息。
数据管理单元,用于:当所述MEC的AF调用Nnef_TrafficInfluence_Create服务操作时,或者调用Nnef_TrafficInfluence_Update服务操作时,所述NEF在所述UDR中保存所述请求消息;
和,当所述MEC的AF调用Nnef_TrafficInfluence_Delete服务操作时,所述NEF从所述UDR中删除所述MEC的AF需求;
和,在所述NEF在所述UDR中保存所述请求消息,或者所述NEF从所述UDR中删除所述MEC的AF需求之后,所述NEF向MEC的AF发送响应信息。
所述PCF上部署了检测单元和规则管理单元,其中:
检测单元,用于所述PCF接收来自所述UDR的数据改变的通知Nudr_DM_Notify  notification,其中,所述PCF订阅了MEC的AF请求修改;
规则管理单元,用于所述PCF确定当前被所述MEC的AF请求影响的PDU会话,针对每一个所确定的PDU会话,所述PCF调用Npcf_SMPolicyControl_UpdateNotify服务操作更新所述SMF的PCC规则;其中,当所述请求消息,包含对用户面路径改变的通知报告的请求时,所述PCF在PCC规则中添加的信息包括:指向所述NEF或所述MEC的AF的通知目标地址,和包含AF事务内部标识的通知关联标识。
所述SMF上部署了规则转发单元,用于所述SMF通过N4接口,向所述UPF下发,携带PCC规则和运营商网络标识信息的消息。
所述UPF上部署了规则加载单元,用于在UPF收到所述SMF发出的消息后,根据所述运营商网络标识信息,将所述请求消息与所述运营商在所述MEC和所述UPF上占用的资源关联管理,并执行相应的资源控制。本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (10)

  1. 一种用于多运营商核心网对接MEC的方法,其特征在于,包括:
    MEC的AF根据本地存储的关联信息或者配置信息,查询得到请求消息指向的运营商的核心网入口;
    所述MEC的AF将所述请求消息发送至NEF,所述NEF在UDR中保存接收到的请求消息;
    PCF收到来自所述UDR的数据改变的通知,并更新SMF的PCC规则;
    SMF从PCF接收到更新后的PCC规则后,重新配置PDU会话的用户面。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    在创建所述请求消息的过程中,所述MEC的AF调用Nnef_TrafficInfluence_Create服务操作,所述请求消息包括所述AF的事务标识;
    更新或移除已有的请求消息,MEC的AF调用Nnef_TrafficInfluence_Update服务操作或Nnef_TrafficInfluence_Delete服务操作,同时提供对应所述已有的请求消息的AF的事务标识。
  3. 根据权利要求1所述的方法,其特征在于,所述MEC的AF将所述请求消息发送至NEF,包括:
    所述MEC的AF根据配置或者调用Nbsf_management_Discovery服务操作,到达为当前PDU会话选择的PCF;
    所述NEF将所述MEC的AF提供的信息映射为5GC所需的信息。
  4. 根据权利要求3所述的方法,其特征在于,所述NEF在UDR中保存接收到的请求消息,包括:
    当所述MEC的AF调用Nnef_TrafficInfluence_Create服务操作时,或者调用Nnef_TrafficInfluence_Update服务操作时,所述NEF在所述UDR中保存所述请求消息;
    当所述MEC的AF调用Nnef_TrafficInfluence_Delete服务操作时,所述NEF从所述UDR中删除所述MEC的AF需求;
    在所述NEF在所述UDR中保存所述请求消息,或者所述NEF从所述UDR中删除所述MEC的AF需求之后,所述NEF向MEC的AF发送响应信息。
  5. 根据权利要求1所述的方法,其特征在于,所述PCF收到来自所述UDR的数据改变的通知,包括:
    所述PCF收到来自所述UDR的数据改变的通知Nudr_DM_Notify notification,其中,所述PCF订阅了MEC的AF请求修改。
  6. 根据权利要求1所述的方法,其特征在于,所述更新SMF的PCC规则,包括:
    所述PCF确定当前被所述MEC的AF请求影响的PDU会话,针对每一个所确定的PDU会话,所述PCF调用Npcf_SMPolicyControl_UpdateNotify服务操作更新所述SMF的PCC规则;
    当所述请求消息,包含对用户面路径改变的通知报告的请求时,所述PCF在PCC规则中添加的信息包括:指向所述NEF或所述MEC的AF的通知目标地址,和包含AF事务内部标识的通知关联标识。
  7. 根据权利要求1所述的方法,其特征在于,SMF从PCF接收到更新后的PCC规则后,重新配置PDU会话的用户面,包括:
    所述SMF通过N4接口,向所述UPF下发,携带PCC规则和运营商网络标识信息的消息;
    UPF收到所述SMF发出的消息后,根据所述运营商网络标识信息,将所述请求消息与所述运营商在所述MEC和所述UPF上占用的资源关联管理,并执行相应的资源控制。
  8. 根据权利要求7所述的方法,其特征在于,还包括:MEC主机级向MEC系统级反馈所述运营商在所述MEC主机级的资源使用情况。
  9. 根据权利要求8所述的方法,其特征在于,还包括:所述MEC系统级维护不同运营商的网络标识信息和资源请求消息表。
  10. 一种用于多运营商核心网对接MEC的系统,其特征在于,包括:
    MEC,用于通过AF根据本地存储的关联信息或者配置信息,查询得到请求消息指向的运营商的核心网入口;之后,将所述请求消息发送至NEF;
    所述NEF,用于在UDR中保存接收到的请求消息;
    PCF,用于收到来自所述UDR的数据改变的通知,并更新SMF的PCC规则;
    SMF,用于从PCF接收到更新后的PCC规则后,重新配置PDU会话的用户面。
PCT/CN2020/125643 2020-07-17 2020-10-31 一种用于多运营商核心网对接mec的方法及系统 WO2022011883A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010692058.2 2020-07-17
CN202010692058.2A CN111935738B (zh) 2020-07-17 2020-07-17 一种用于多运营商核心网对接mec的方法及系统

Publications (1)

Publication Number Publication Date
WO2022011883A1 true WO2022011883A1 (zh) 2022-01-20

Family

ID=73313647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125643 WO2022011883A1 (zh) 2020-07-17 2020-10-31 一种用于多运营商核心网对接mec的方法及系统

Country Status (2)

Country Link
CN (1) CN111935738B (zh)
WO (1) WO2022011883A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752301B (zh) * 2020-12-31 2022-10-14 网络通信与安全紫金山实验室 切换多运营场景的方法及系统、通信设备
WO2022174411A1 (zh) * 2021-02-20 2022-08-25 华为技术有限公司 一种业务流的处理方法及装置
CN117650991A (zh) * 2021-02-25 2024-03-05 腾讯科技(深圳)有限公司 QoS变化的通知方法、装置、设备及介质
WO2022205470A1 (zh) * 2021-04-02 2022-10-06 北京小米移动软件有限公司 一种业务流处理方法、业务流处理装置及存储介质
CN115967985A (zh) * 2021-10-11 2023-04-14 维沃移动通信有限公司 服务确定方法、装置、网络功能及可读存储介质
CN116419170A (zh) * 2021-12-31 2023-07-11 中兴通讯股份有限公司 Pcc策略的控制方法、pcf、smf及通信系统
CN115734201A (zh) * 2022-11-18 2023-03-03 中国联合网络通信集团有限公司 用户业务数据的获取方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600802A (zh) * 2017-09-29 2019-04-09 华为技术有限公司 数据传输方法、相关设备及系统
WO2019118964A1 (en) * 2017-12-15 2019-06-20 Idac Holdings, Inc. Enhanced nef function, mec and 5g integration
CN110048951A (zh) * 2018-01-16 2019-07-23 中国移动通信有限公司研究院 一种pcf寻址方法及装置、设备、存储介质
US20190357301A1 (en) * 2018-05-16 2019-11-21 Huawei Technologies Co., Ltd. Message and system for application function influence on traffic routing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10574833B2 (en) * 2015-02-26 2020-02-25 Nokia Solutions And Networks Oy Charging and control of edge services
CN108574728B (zh) * 2017-03-08 2021-05-04 中兴通讯股份有限公司 用于移动边缘计算的流量路径改变检测的方法和装置
JP2020113807A (ja) * 2017-05-09 2020-07-27 シャープ株式会社 ユーザ装置
WO2019122497A1 (en) * 2017-12-21 2019-06-27 Nokia Technologies Oy Communication connection control procedure using selected communication connection slices
CN109831548B (zh) * 2019-03-18 2022-02-18 中国联合网络通信集团有限公司 虚拟内容分发网络vCDN节点建立方法及服务器
CN110769039B (zh) * 2019-10-09 2021-12-10 腾讯科技(深圳)有限公司 资源调度方法及装置、电子设备和计算机可读存储介质
CN111093225B (zh) * 2019-12-30 2021-07-06 北京邮电大学 一种数据路径服务质量的监视及报告方法、装置及介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600802A (zh) * 2017-09-29 2019-04-09 华为技术有限公司 数据传输方法、相关设备及系统
WO2019118964A1 (en) * 2017-12-15 2019-06-20 Idac Holdings, Inc. Enhanced nef function, mec and 5g integration
CN110048951A (zh) * 2018-01-16 2019-07-23 中国移动通信有限公司研究院 一种pcf寻址方法及装置、设备、存储介质
US20190357301A1 (en) * 2018-05-16 2019-11-21 Huawei Technologies Co., Ltd. Message and system for application function influence on traffic routing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL, ZTE: "Relaying of Nnef_TrafficInfluence requests to the PCF", 3GPP DRAFT; S2-185919 WAS S2-184743-23502- NNEF_TRAFFICINFLUENCE - FLOWS-, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Newport Beach, USA; 20180528 - 20180601, 2 June 2018 (2018-06-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051536287 *
ZTE, HUAWEI, CHINA MOBILE: "Include AF relocation acknowledgement into Traffic influence procedures", 3GPP DRAFT; C3-194257 WAS 4234 INCLUDE AF RELOCATION ACKNOWLEDGEMENT INTO TRAFFIC INFLUENCE PROCEDURES, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. CT WG3, no. Portoroz, Slovenia; 20191007 - 20191011, 10 October 2019 (2019-10-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051803249 *

Also Published As

Publication number Publication date
CN111935738B (zh) 2022-07-26
CN111935738A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
WO2022011883A1 (zh) 一种用于多运营商核心网对接mec的方法及系统
US11528770B2 (en) Session management method, apparatus, and system
US11700549B2 (en) Policy control for multiple accesses
CN110049070B (zh) 事件通知方法及相关设备
US11778035B2 (en) Selecting a user plane function (UPF) for layer 2 networks
US11895717B2 (en) Charging aggregation control for network slices
WO2018006784A1 (zh) 一种网络切片选择方法、设备及系统
WO2017076086A1 (zh) 一种网络切片能力开放的方法、装置及系统
WO2018161803A1 (zh) 一种网络切片的选择方法及装置
WO2020103523A1 (zh) 一种网络切片的选择方法、网络设备及终端
WO2021189869A1 (zh) 一种获取信息的方法及装置
WO2023000935A1 (zh) 一种数据处理方法、网元设备以及可读存储介质
WO2022152238A1 (zh) 一种通信方法及通信装置
WO2022033345A1 (zh) 一种pdu会话建立方法、终端设备和芯片系统
WO2016182770A1 (en) Dynamically adjusting network services stratum parameters based on access and/or connectivity stratum utilization and/or congestion information
WO2021223637A1 (zh) 应用迁移方法及装置
CN114554550A (zh) 5g接入网与边缘云网关的通信方法及装置
KR20210144490A (ko) 무선 통신 시스템에서 단말로 지역 데이터 네트워크 정보를 제공하기 위한 방법 및 장치
WO2022062071A1 (zh) 一种mec与多运营商核心网的通信方法及系统
WO2023124609A1 (zh) 服务发现的处理方法、设备和存储介质
WO2022141708A1 (zh) 切换多运营场景的方法及系统、通信设备
WO2023185692A1 (zh) 一种通信方法、装置及设备
WO2023185690A1 (zh) 一种通信方法、装置及设备
EP4287689B1 (en) Method for using a terminal device in a telecommunications network, wherein, regarding a specific user equipment functionality, the telecommunications network initializes or provides a logical user equipment entity or functionality, system for using a terminal device in a telecommunications network, terminal device, program and computer-readable medium
WO2022228192A1 (zh) 一种通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945210

Country of ref document: EP

Kind code of ref document: A1