WO2021218182A1 - 聚烯烃粉料后处理装置及方法 - Google Patents

聚烯烃粉料后处理装置及方法 Download PDF

Info

Publication number
WO2021218182A1
WO2021218182A1 PCT/CN2020/136287 CN2020136287W WO2021218182A1 WO 2021218182 A1 WO2021218182 A1 WO 2021218182A1 CN 2020136287 W CN2020136287 W CN 2020136287W WO 2021218182 A1 WO2021218182 A1 WO 2021218182A1
Authority
WO
WIPO (PCT)
Prior art keywords
steamer
powder
dryer
heat exchange
polyolefin powder
Prior art date
Application number
PCT/CN2020/136287
Other languages
English (en)
French (fr)
Inventor
郑碧磊
高军
杨卫东
范昌海
陈秀平
洪日
尚明柱
章斌
周轶
李亚萍
Original Assignee
浙江卫星能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江卫星能源有限公司 filed Critical 浙江卫星能源有限公司
Publication of WO2021218182A1 publication Critical patent/WO2021218182A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • C08F6/005Removal of residual monomers by physical means from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/02Neutralisation of the polymerisation mass, e.g. killing the catalyst also removal of catalyst residues

Definitions

  • the invention relates to a powder processing device, in particular to a polyolefin powder post-processing device and method, and belongs to the technical field of petrochemical industry.
  • the polyolefin powder after leaving the polymerization reactor undergoes a preliminary gas/solid separation to deactivate the catalyst remaining in the polyolefin powder, and economically recover the polyolefin powder carried in the polyolefin powder. Hydrocarbons.
  • hydrocarbons include but not Limited to ethylene, propylene, propane, hexane, etc.
  • the first purpose of the post-processing of polyolefin powder is to remove these carried hydrocarbons to ensure the safety and environmental protection of the powder during use.
  • the hydrocarbons in the polyolefin powder are generally replaced by adding low-value inert gases such as steam, nitrogen, etc., alone or mixed.
  • This process is generally called steaming, degassing or devolatilization.
  • water vapor is introduced, or a mixed gas with water vapor accounting for more than 10%
  • nitrogen is necessary to remove the water carried in the polyolefin powder.
  • Steam this process is generally referred to as drying of polyolefin powder.
  • the polyolefin powder can also be heated to a certain temperature to promote the volatilization of hydrocarbons.
  • the second purpose of the post-treatment of polyolefin powder is to react the remaining active catalyst in the powder into a safe and stable compound.
  • the catalyst includes but not limited to titanium tetrachloride, triethyl aluminum, etc.
  • the process is generally called This is the deactivation or passivation of the catalyst.
  • the method of catalyst deactivation or passivation is to pass a small amount of water vapor into the polyolefin powder, and the water vapor reacts with the catalyst to produce stable compounds.
  • the water vapor takes the replaced hydrocarbons and leaves from the top of the steamer, and recovers the hydrocarbons after condensation, dehydration, and compression.
  • the steamer has a jacket, which can be fed with water vapor to properly heat the polyolefin powder. While the polymer is in contact with water vapor in the steamer, its residual catalyst fully reacts with the water vapor to produce stable compounds.
  • the polyolefin powder leaving the steamer does not carry hydrocarbons, but carries water vapor, which requires further drying treatment.
  • the polyolefin powder containing water vapor enters a dryer with vertical stirring from the top, falls with gravity, contacts the large amount of nitrogen at the bottom of the dryer in reverse, and completely removes water vapor, and leaves the dryer from the bottom. Nitrogen takes the replaced water vapor and leaves from the top of the dryer. After condensation, dehydration and compression, the nitrogen returns to the dryer for recycling.
  • the advantage of the first steaming and post-drying method is that a large amount of water vapor is introduced from the bottom of the steamer to heat the powder and contact the powder in the reverse direction, which can completely remove the hydrocarbons in the polymer.
  • the dryer adopts similar operation and can completely remove the water vapor in the polyolefin powder.
  • the disadvantage is that the steamer has a large amount of steam, and the dryer has a large amount of replacement nitrogen. The entire powder processing process is long, there are many equipment, and the energy consumption is high.
  • the disadvantage is that the degassing chamber has no stirring or heating, and a large amount of nitrogen is required to ensure the removal of hydrocarbons in the powder.
  • the content of nitrogen in the mixed gas leaving from the top of the degassing bin exceeds 70% Vol, and the cost of hydrocarbon recovery is high.
  • Chinese patent 200410053651.3 does not pass any replacement gas into the devolatilizer with horizontal stirring blades.
  • the hydrocarbons leaving the devolatilizer from the top contain no other inert gases and can be directly recovered, they leave the devolatilizer from the bottom of the other end.
  • the hydrocarbons contained in the polyolefin powder of the steamer are higher, causing the steamer to pass a large amount of nitrogen to replace the hydrocarbons in the powder, and the hydrocarbon content in the mixed gas leaving the steamer from the top reaches 8% Vol, which is difficult Recycling, economic losses are relatively large, and it does not meet the environmental protection standards for exhausting the atmosphere.
  • Chinese patent 201010515744.9 introduces steam into a devolatilizer with horizontal stirring blades to replace the hydrocarbons in the polyolefin powder.
  • the disadvantage of this patent is that even if steam is passed in, it leaves the devolatilizer from the top. Hydrocarbons can be recovered directly after the gas is condensed and dehydrated, but the content of hydrocarbons carried by the polyolefin powder leaving the devolatilizer is still high.
  • the steamer also needs to pass a large amount of nitrogen to replace the hydrocarbons in the powder and leave from the top.
  • the hydrocarbon content in the mixed gas of the steamer reaches 5% Vol, which is difficult to recover, has a large economic loss, and does not meet the environmental protection standards for exhausting the atmosphere.
  • a devolatilizer with a horizontal stirring blade is used to remove the hydrocarbons carried in the polyolefin powder.
  • the devolatilizer can increase the devolatilization temperature of the powder through direct or indirect water vapor, it is The material residence time is short (the reason for the short residence time is that compared with vertical stirring, horizontal stirring has higher resistance during powder agitation and higher equipment power, which limits the processing capacity of the horizontal stirring devolatilizer, which can only be shortened under high throughput. Residence time), and the polyolefin powder is not in full reverse contact with the replacement gas, resulting in the powder leaving the devolatilizer still carrying more hydrocarbons.
  • the purpose of the present invention is to provide a polyolefin powder post-processing device to solve the problem that the polyolefin powder has a long residence time and the polyolefin powder cannot fully reverse contact with the replacement gas, resulting in that the powder leaving the devolatilizer still carries a lot of powder Technical flaws in hydrocarbons.
  • the invention also provides a post-treatment method for polyolefin powder.
  • a polyolefin powder post-processing device including a steamer and a dryer, the steamer outlet is connected with the dryer:
  • the steamer is a cylinder with a tapered bottom.
  • the cylinder is divided into upper and lower sections.
  • the upper part is the powder feeding section, and the lower part is the heating section.
  • the powder feeding section is equipped with a powder distribution plate.
  • the powder distribution plate is open The porosity is 30%-70%;
  • the lower part of the steamer cylinder is the heating section, and one or more layers of built-in detachable plate heat exchange components are arranged in the heating section, and each layer of plate heat exchange components is composed of multiple heat exchange plates;
  • the cone-shaped bottom of the body is provided with a steamer cone displacement steam annular distributor connected with the cylinder;
  • the structure of the dryer is similar to that of the steamer.
  • the upper part of the cylinder is the powder feed section, and the powder distribution plate is set in the feed section.
  • the lower part of the dryer cylinder is the heating section.
  • Disassemble the plate type heat exchange assembly each layer of the plate type heat exchange assembly is composed of multiple heat exchange plates; the cone bottom of the cylinder is provided with a dryer cone replacement gas annular distributor connected with the cylinder.
  • the design of the powder distribution plate of the steamer allows the powder passing through the distribution plate to be uniformly fed with gravity (or called piston flow blanking). This feeding method enables the flow rate of the powder at any point in the steamer to be Consistent.
  • the steamer can be used as a single unit, or multiple units can be used in series to improve the removal effect of hydrocarbons carried in the polyolefin powder, and multiple units can also be used in parallel to improve the processing capacity of the polyolefin powder.
  • the dryer can be used as a single unit, or multiple units can be used in series to improve the removal effect of water vapor carried in the polyolefin powder, and multiple units can also be used in parallel to improve the processing capacity of the polyolefin powder.
  • the polyolefin powder leaving the polymerization system after preliminary gas/solid separation enters the steamer with the powder distribution plate and the built-in detachable plate heat exchange component in the device of the present invention, and passes through the water
  • the steam is indirectly heated to about 110°C, and it contacts the water vapor at the bottom of the steamer in reverse to remove the hydrocarbons in the polyolefin powder, and at the same time deactivates the remaining catalyst, and then enters the powder distribution plate and the built-in removable
  • the nitrogen introduced through the bottom of the dryer is in reverse contact to remove water vapor.
  • the built-in detachable plate heat exchange component of the dryer can not only pass in water vapor to heat the polyolefin powder indirectly, but also pass in a cooling medium such as circulating water to reduce the temperature of the polyolefin powder and prevent hot oxygen after the polyolefin powder is processed. degradation.
  • Both the steamer and the dryer adopt slightly positive pressure operation.
  • the top of the steamer is provided with a feed port and a steamer replacement tail gas outlet, and the steamer discharge port is located at the bottom of its cone; the top of the dryer is provided with a dryer replacement tail gas outlet, and the cone bottom of the dryer is provided with a discharge port .
  • the aperture size of the powder distribution plate is 5-50mm; the angle between the powder distribution plate in the steamer and the dryer is larger than the angle of repose (or called the angle of repose) of the polyolefin powder 1-5°, so that the powder passing through the distribution plate is uniformly cut.
  • the best choice is that the angle between the powder distribution plate and the horizontal is about 2° larger than the angle of repose of the polyolefin powder.
  • the outer spacing of the two heat exchange plates on each layer of plate heat exchange assembly of the steamer is 5-50mm; the outer spacing of the two heat exchange plates on each layer of plate heat exchange assembly of the dryer is 10-70mm. Further optimization is that the outer spacing of the two heat exchange plates on each layer of plate heat exchange assembly of the steamer is 10-30mm; the outer spacing of the two heat exchange plates on each layer of plate heat exchange assembly of the dryer is 20-50mm.
  • both the steamer and the dryer cylinder are provided with a steam jacket.
  • the total length of the lower cone of the steamer and the dryer is 0.8-1.7 times the diameter of the cylinder body, preferably, the total length of the cone is 1.1-1.4 times the diameter of the cylinder body.
  • a post-processing method for polyolefin powder comprising the following steps:
  • the polymer powder enters from the top of the steamer, and steam is introduced into the plate heat exchange assembly in the steamer to indirectly heat the polyolefin powder that is uniformly fed by gravity to 90-110°C; the replacement steam passes through the steamer cone
  • the ring distributor of body replacement steam is in reverse contact with the polyolefin powder from bottom to top, and the replaced mixed gas leaves from the top of the steamer, and recovers hydrocarbons after condensation and dehydration; the polyolefin powder in the steamer cone is in a uniform state
  • the material state (or called plug flow cutting) ensures that the residence time of the polyolefin powder in the steamer is consistent, the temperature control is uniform, and the gas replacement effect is uniform.
  • the total hydrocarbon carrying amount of the polyolefin powder leaving the steamer is less than 100 ppmwt.
  • the water vapor introduced to the bottom of the steamer cone will simultaneously react with the remaining catalyst in the polyolefin powder to produce stable compounds.
  • the hydrocarbon removal effect of the polyolefin powder in the steamer is determined by the temperature of the powder, the residence time, and the flow rate of the replacement steam.
  • the residence time of the polyolefin powder in the steamer can be controlled by the discharge speed of the powder, and the residence time is controlled at 20-50min; the temperature of the powder can be controlled by the heating water vapor flow rate of the built-in removable plate heat exchange component Control, control the temperature of the powder at 90-110°C; the flow rate of the replacement water vapor can be directly controlled.
  • the steamer adopts slightly positive pressure operation to improve the removal effect of hydrocarbons in the powder.
  • the vapor pressure of the steamer is controlled at 1-10KPag.
  • the polyolefin powder After removing the hydrocarbons, the polyolefin powder leaves from the bottom of the steamer and enters from the top of the dryer.
  • Water vapor is introduced into the plate heat exchange components of the dryer, and the temperature of the polyolefin powder that is uniformly fed with gravity is controlled at 90-110°C, or circulating cooling water, chilled water or desalinated water is introduced into the plate heat exchange components , And control the temperature of the polyolefin powder leaving the dryer at 10-90°C by adjusting the flow of the cooling medium;
  • the replacement gas introduced into the drier cone replacement gas annular distributor is nitrogen, which is in reverse contact with the polyolefin powder fed uniformly in the dryer to replace the water vapor in the polyolefin powder; after removing the water vapor
  • the polyolefin powder leaves the bottom of the dryer. Nitrogen containing water vapor leaves from the top of the dryer, after condensation, dehydration and pressurization, it returns to the replacement gas ring distributor at the bottom of the dryer for recycling;
  • the water vapor carrying amount of the polyolefin powder leaving the bottom of the dryer is less than 200 ppmwt.
  • the water vapor removal effect of the polyolefin powder in the dryer is determined by the temperature of the powder, the residence time, and the flow rate of the replacement nitrogen.
  • the residence time of the polyolefin powder in the dryer can be controlled by the powder discharge speed, and the residence time is controlled at 15-45min; the temperature of the powder can be controlled by the heating water vapor flow of the built-in detachable plate heat exchange component Control, control the temperature of the powder at 90-110°C; the replacement nitrogen flow can be directly controlled.
  • the dryer adopts slight positive pressure operation to improve the removal effect of water vapor in the powder.
  • the gas pressure of the dryer is controlled at 1-7KPag by controlling the flow of the replaced mixed gas leaving from the top of the dryer.
  • the built-in detachable plate heat exchange component of the dryer can either pass water vapor to heat the polyolefin powder leaving the dryer to above 90-110°C; Circulating cooling water, chilled water or desalinated water is passed through the built-in removable plate heat exchange components of the dryer, and the temperature of the polyolefin powder leaving the dryer is controlled at 10-90°C by adjusting the flow of the cooling medium.
  • the temperature control of the polyolefin powder in the dryer is low, you can increase the replacement nitrogen flow to ensure that the water vapor in the powder is removed cleanly.
  • the lowest level of polyolefin powder in the steamer and dryer should be controlled above the corresponding powder distribution plate.
  • the gas pressure in the steamer is controlled at 1-10KPag, and the pressure in the dryer is controlled at 1-7KPag.
  • the residence time of the polyolefin powder in the steamer is 20-50min, preferably, the residence time of the polyolefin powder is 30-40min; the residence time of the polyolefin powder in the dryer is 15-45min, preferably , The residence time of polyolefin powder is 25-35min.
  • the steam replacement tail gas is composed of hydrocarbons and water vapor, and the water vapor can be completely recovered after condensation and dehydration.
  • the polyolefin powder passing through the steamer contains little hydrocarbons, so that the dryer tail gas Nitrogen can be recycled through condensation and dehydration.
  • the temperature of the polyolefin powder passing through the dryer can be adjusted within the range of 10-90°C according to the conditions of use.
  • Figure 1 is a schematic front view of the structure of the polyolefin powder post-processing device of the present invention
  • Example 2 is a schematic diagram of the left side structure of the polyolefin powder post-processing device described in Example 3;
  • the steamer has a built-in detachable plate heat exchange component
  • the steamer has a built-in detachable plate heat exchange component to heat the steam inlet
  • the steamer has a built-in detachable plate heat exchange component condensate outlet
  • the dryer has a built-in detachable plate heat exchange component to heat the steam inlet
  • the dryer has a built-in detachable plate heat exchange component cooling water outlet
  • the dryer has a built-in detachable plate heat exchange component condensate outlet
  • the dryer has a built-in detachable plate heat exchange component cooling water inlet
  • the core of the present invention is to provide a polyolefin powder post-processing device, which is composed of a steamer 05 and a dryer 10, and the steamer outlet 06 is connected to the top of the dryer.
  • the steamer is a cylinder with a tapered bottom.
  • the cylinder is divided into upper and lower sections.
  • the upper part is the powder feeding section, and the lower part is the heating section.
  • the steamer powder distribution plate 02 is set in the powder feeding section.
  • the opening rate of the distribution plate is 30%-70%;
  • the lower part of the steamer cylinder is the heating section, and the heating section is equipped with a multi-layer steamer built-in detachable plate heat exchange assembly 03, each layer of plate heat exchange assembly consists of multiple heat exchanges Plate composition;
  • the conical bottom of the cylinder is provided with a steamer cone replacement steam annular distributor 04 connected with the cylinder, and the steamer cylinder is provided with a steamer cylinder jacket 08;
  • the structure of the dryer is similar to that of the steamer.
  • the upper part of the cylinder is a powder feed section, and the dryer powder distribution plate 11 is set in the feed section.
  • the lower part of the dryer cylinder is a heating section.
  • Built-in detachable plate heat exchange assembly 12 each layer of plate heat exchange assembly is composed of multiple heat exchange plates; the cone bottom of the cylinder is provided with a dryer cone replacement gas annular distributor 13, which is connected to the cylinder.
  • a dryer barrel jacket 18 is provided on the outside of the barrel;
  • the top of the steamer is provided with a feed port 01 and a steamer replacement tail gas outlet 07, and the steamer discharge port is located at the bottom of its cone; the top of the dryer is provided with a dryer replacement tail gas outlet 15, and the bottom of the dryer is provided with a dryer outlet. ⁇ 14 ⁇ Material mouth 14.
  • the aperture size of the powder distribution plate of the steamer or dryer is controlled within the range of 5-50mm, and adjusted according to the actual situation; the powder distribution plate in the steamer and the dryer has an angle compared with the horizontal polyolefin
  • the angle of repose (or called the angle of repose) of the powder is larger than 1-5°, so that the powder passing through the distribution plate can be uniformly discharged.
  • the best choice is that the angle between the powder distribution plate and the horizontal is about 2° larger than the angle of repose of the polyolefin powder.
  • the outer spacing of the two heat exchange plates on each layer of the plate heat exchange assembly of the steamer is 5-50mm; the outer spacing of the two heat exchange plates on each layer of the plate heat exchange assembly of the dryer is 10-70mm.
  • the best setting is that the outer spacing of the two heat exchange plates on each plate heat exchange assembly of the steamer is 10-30mm; the outer spacing of the two heat exchange plates on each plate heat exchange assembly of the dryer is 20-50mm.
  • the total length of the lower cone of the steamer and the dryer is 0.8-1.7 times the diameter of the cylinder, and the best setting is that the total length of the cone is 1.1-1.4 times the diameter of the cylinder.
  • the design of the powder distribution plate of the steamer allows the powder passing through the distribution plate to be uniformly fed with gravity (or called piston flow blanking). This feeding method enables the flow rate of the powder at any point in the steamer to be Consistent.
  • the steamer can be used as a single unit, or multiple units can be used in series to improve the removal effect of hydrocarbons carried in the polyolefin powder, and multiple units can also be used in parallel to improve the processing capacity of the polyolefin powder.
  • the dryer can be used as a single unit, or multiple units can be used in series to improve the removal effect of water vapor carried in the polyolefin powder, and multiple units can also be used in parallel to improve the processing capacity of the polyolefin powder.
  • the core of the present invention is to provide a post-processing method for polyolefin powder, which includes the following steps:
  • the polymer After the initial gas/solid separation of the polymer powder leaving the polymerization reactor, the polymer still carries about 2%wt of hydrocarbons.
  • the polymer powder enters from the top of the steamer in the polyolefin powder post-processing device of the present invention.
  • the steamer of the present invention is a vertical steamer without stirring.
  • Steam is introduced into the plate heat exchange assembly in the steamer to indirectly heat the polyolefin powder that is uniformly fed by gravity from about 65°C to 110°C; the replacement steam passes through the steamer cone to replace the steam ring distributor, from the bottom The upper part is in reverse contact with the polyolefin powder, and the replaced mixed gas leaves from the top of the steamer, and recovers hydrocarbons after condensation and dehydration; the polyolefin powder in the steamer cone is in a uniform feeding state (or called a piston flow down) Material), make the residence time of polyolefin powder in the steamer consistent, the temperature control is uniform, and the gas replacement effect is uniform.
  • the total hydrocarbon carrying amount of the polyolefin powder leaving the steamer is less than 100 ppmwt.
  • the water vapor introduced to the bottom of the steamer cone will simultaneously react with the remaining catalyst in the polyolefin powder to produce stable compounds.
  • the hydrocarbon removal effect of the polyolefin powder in the steamer is determined by the temperature of the powder, the residence time, and the flow rate of the replacement steam.
  • the residence time of the polyolefin powder in the steamer can be controlled by the discharge speed of the powder, and the residence time is controlled at 20-50min; the temperature of the powder can be controlled by the heating water vapor flow rate of the built-in removable plate heat exchange component Control, control the temperature of the powder at 90-110°C; the flow rate of the replacement water vapor can be directly controlled.
  • the steamer adopts slightly positive pressure operation to improve the removal effect of hydrocarbons in the powder.
  • the vapor pressure of the steamer is controlled at 1-10KPag.
  • the polyolefin powder After removing the hydrocarbons, the polyolefin powder leaves from the bottom of the steamer and enters from the top of the dryer.
  • Water vapor is introduced into the plate heat exchange assembly of the dryer, and the temperature of the polyolefin powder that is uniformly fed with gravity is controlled at 90-110°C.
  • the replacement gas introduced into the drier cone replacement gas annular distributor is nitrogen, which is in reverse contact with the polyolefin powder fed uniformly in the dryer to replace the water vapor in the polyolefin powder; after removing the water vapor
  • the polyolefin powder leaves the bottom of the dryer. Nitrogen containing water vapor leaves from the top of the dryer, after condensation, dehydration and pressurization, it returns to the replacement gas ring distributor at the bottom of the dryer for recycling;
  • the water vapor carrying amount of the polyolefin powder leaving the bottom of the dryer is less than 200 ppmwt.
  • the water vapor removal effect of the polyolefin powder in the dryer is determined by the temperature of the powder, the residence time, and the flow rate of the replacement nitrogen.
  • the residence time of the polyolefin powder in the dryer can be controlled by the powder discharge speed, and the residence time is controlled at 15-45min; the temperature of the powder can be controlled by the heating water vapor flow of the built-in detachable plate heat exchange component Control, control the temperature of the powder at 90-110°C; the replacement nitrogen flow can be directly controlled.
  • the dryer adopts slight positive pressure operation to improve the removal effect of water vapor in the powder.
  • the gas pressure of the dryer is controlled at 1-7KPag by controlling the flow of the replaced mixed gas leaving from the top of the dryer.
  • the built-in detachable plate heat exchange component of the dryer can either pass water vapor to heat the polyolefin powder leaving the dryer to above 90-110°C; Circulating cooling water, chilled water or desalinated water is passed through the built-in removable plate heat exchange components of the dryer, and the temperature of the polyolefin powder leaving the dryer is controlled at 10-90°C by adjusting the flow of the cooling medium.
  • the temperature control of the polyolefin powder in the dryer is low, you can increase the replacement nitrogen flow to ensure that the water vapor in the powder is removed cleanly.
  • a post-treatment method of polyolefin powder the specific process is: 65°C polypropylene powder 10000Kg/h carries propylene 200Kg/h, and enters steamer 05 from feed port 01. After the steamer powder distribution plate 02, the powder distribution plate has an opening rate of 40% and a hole diameter of 12mm, which evenly passes through the detachable plate heat exchange assembly 03 built in the steamer.
  • the steamer built-in detachable plate heat exchange component 03 is composed of 20 heat exchange plates, the outer spacing of each two heat exchange plates is 25mm, and the single heat exchange plate is heated from the steamer built-in removable plate heat exchange component to heat the steam inlet 09A 35Kg/h of saturated water vapor at 120°C is introduced, and the condensed water is discharged from the condensate outlet 09B of the detachable plate heat exchange assembly built in the steamer of the heat exchange plate.
  • Steamer barrel jacket 08, 120°C steam is introduced from the upper part, the flow rate is 125Kg/h, and the condensate is discharged from the lower part of the jacket.
  • the temperature of the polypropylene powder entering the plate heat exchange assembly from the top was 72°C
  • the temperature of the polypropylene powder leaving the plate heat exchange assembly from the bottom was 101°C.
  • the 120°C replacement steam 250Kg/h is passed into it, and it contacts with the polypropylene powder in the steamer 05 in reverse to replace the propylene in the powder, and then remains in the polypropylene powder.
  • the catalyst reacts to produce stable compounds.
  • the replaced propylene and part of the steam are discharged from the exhaust gas outlet 07 of the steamer replacement.
  • the steamer replaces the mixed gas temperature of the tail gas outlet 07 at 70°C, of which propylene is 199.1Kg/h and water vapor is 125Kg/h.
  • the mixed gas flow at the outlet of the replacement tail gas the gas pressure at the top of the steamer 05 is maintained at 7KPag.
  • Steamer outlet 06 polypropylene powder 10000Kg/h, temperature 105°C, carry propylene 0.9Kg/h, water vapor 122Kg/h, enter the dryer 10.
  • the residence time of polypropylene powder in the steamer 05 is maintained at 35 minutes, and the material level is controlled above the powder distribution plate.
  • the powder distribution plate After passing through the dryer powder distribution plate 11, the powder distribution plate has an opening rate of 50% and a hole diameter of 15 mm, which evenly passes through the detachable plate heat exchange assembly 12 built in the dryer.
  • the built-in detachable plate heat exchange assembly 12 of the dryer is composed of 12 heat exchange plates. The outer spacing of each two heat exchange plates is 35mm.
  • the single heat exchange plate is heated by the built-in detachable plate heat exchange assembly of the dryer to heat the steam inlet 16A.
  • Saturated water vapor at 110°C is 15Kg/h, and the condensed water is discharged from the condensate outlet 17A of the detachable plate heat exchange assembly built in the dryer.
  • the dryer cylinder jacket 18 is supplied with 110°C steam from the upper part, the flow rate is 45Kg/h, and the condensate is discharged from the lower part of the dryer cylinder jacket.
  • the temperature of the polypropylene powder entering the detachable plate heat exchange assembly 12 in the dryer from the top is 103°C, and the temperature of the polypropylene powder leaving the detachable plate heat exchange assembly 12 in the dryer from the bottom is 112°C.
  • the replacement gas ring distributor 13 of the dryer cone is fed with replacement nitrogen gas of 275Kg/h at 20°C, which contacts with the polypropylene powder in the dryer 10 in reverse and replaces the water vapor and trace propylene in the powder.
  • the replaced nitrogen gas, water vapor and trace amounts of propylene are discharged from the exhaust outlet 15 of the dryer replacement at the top of the dryer 10.
  • the mixed gas temperature of the replacement tail gas outlet 15 is 100°C, in which propylene is 0.9Kg/h, water vapor is 122Kg/h, and nitrogen is 200Kg/h.
  • the outlet 14 of the dryer at the bottom of the dryer 10 polypropylene powder is 10000Kg/h, the temperature is 110°C, and the nitrogen is 75Kg/h.
  • the residence time of the polypropylene powder of the dryer 10 is maintained at 25 minutes, and the material level is controlled above the powder distribution plate.
  • the hydrocarbon content of the replacement tail gas of the steamer is about 61.43%wt, and the rest is water vapor. Hydrocarbons can be completely recovered by removing the clear water after cooling and condensation.
  • a post-treatment method of polyolefin powder the specific process is: 65°C polypropylene powder 10000Kg/h carries propylene 200Kg/h, and enters steamer 05 from feed port 01. After the steamer powder distribution plate 02, the powder distribution plate has an opening rate of 40% and a hole diameter of 12mm, which evenly passes through the detachable plate heat exchange assembly 03 built in the steamer.
  • the steamer built-in detachable plate heat exchange component 03 is composed of 20 heat exchange plates, the outer spacing of each two heat exchange plates is 25mm, and the single heat exchange plate is heated by the steamer built-in removable plate heat exchange component to heat the steam inlet 09A Saturated water vapor at 120°C is 35Kg/h, and the condensed water is discharged from the condensate outlet 09B of the detachable plate heat exchange assembly built in the steamer of the heat exchange plate.
  • Steamer barrel jacket 08, 120°C steam is introduced from the upper part, the flow rate is 125Kg/h, and the condensate is discharged from the lower part of the jacket.
  • the temperature of the polypropylene powder entering the plate heat exchange assembly from the top is 72°C
  • the temperature of the polypropylene powder leaving the plate heat exchange assembly from the bottom is 101°C.
  • a 120°C replacement steam of 250Kg/h is passed into it, which contacts the polypropylene powder in the steamer 05 in reverse and replaces the propylene in the powder, and then remains in the polypropylene powder.
  • the catalyst reacts to produce stable compounds.
  • the replaced propylene and part of the steam are discharged from the exhaust gas outlet 07 of the steamer at the top of the steamer 05.
  • the steamer replaces the mixed gas temperature of the tail gas outlet 07 at 75°C, of which propylene is 199.1Kg/h and water vapor is 125Kg/h.
  • the gas pressure at the top of the steamer 05 is maintained at 7KPag.
  • Steamer outlet 06 polypropylene powder 10000Kg/h, temperature 105°C, carry propylene 0.9Kg/h, water vapor 122Kg/h, enter the dryer 10.
  • the residence time of polypropylene powder in the steamer 05 is maintained at 35 minutes, and the material level is controlled above the powder distribution plate.
  • the powder distribution plate After passing through the dryer powder distribution plate 11, the powder distribution plate has an opening rate of 50% and a hole diameter of 15 mm, which evenly passes through the detachable plate heat exchange assembly 12 built in the dryer.
  • the built-in detachable plate heat exchange assembly 12 of the dryer is composed of 12 heat exchange plates. The outer spacing of each two heat exchange plates is 25mm.
  • the single heat exchange plate passes through the dryer's built-in removable plate heat exchange assembly cooling water inlet 17B. Enter 1000Kg/h of cooling water at 10°C, and then discharge the cooling water from the cooling water outlet 16B of the detachable plate heat exchange assembly built in the dryer.
  • the dryer jacket is different for heating steam.
  • the temperature of the polypropylene powder entering the detachable plate heat exchange assembly 12 in the dryer from the top is 90°C
  • the temperature of the polypropylene powder leaving the detachable plate heat exchange assembly 12 in the dryer from the bottom is 35°C.
  • the replacement gas ring distributor 13 of the dryer cone is fed with a replacement nitrogen gas of 350Kg/h at 20°C, which contacts the polypropylene powder in the dryer 10 in a reverse direction and replaces the water vapor and trace propylene in the powder.
  • the replaced nitrogen gas, water vapor and trace amounts of propylene are discharged from the exhaust outlet 15 of the dryer replacement at the top of the dryer 10.
  • the temperature of the mixed gas at the exhaust outlet 15 of the dryer replacement is 70°C, of which propylene is 0.9Kg/h, water vapor is 122Kg/h, and nitrogen is 275Kg/h.
  • the outlet 14 of the dryer at the bottom of the dryer 10 polypropylene powder is 10000Kg/h, the temperature is 30°C, and the nitrogen is 75Kg/h.
  • the residence time of the polypropylene powder in the dryer 10 is maintained at 35 minutes, and the material level is controlled above the powder distribution plate.
  • the hydrocarbon content of the replacement tail gas of the steamer is 61.54%wt, and the rest is water vapor. Hydrocarbons can be completely recovered by removing the clear water after cooling and condensation.

Abstract

聚烯烃粉料后处理装置及方法,所述后处理装置包括汽蒸器和干燥器,汽蒸器出料口和干燥器连接:汽蒸器为带有锥形底部的筒体,该筒体分上下两段,上部为粉料进料段,下部为加热段,粉料进料段内设置粉料分布板,粉料分布板开孔率为30%-70%;汽蒸器筒体下部为加热段,加热段内设有一层或多层内置可拆卸板式换热组件,每层板式换热组件由多块换热板组成;筒体的锥形底部上设有与筒体连通的汽蒸器锥体置换汽环形分布器;干燥器的结构与汽蒸器相似。所述方法采用所述后处理装置,包括以下步骤:1)聚烯烃粉料的汽蒸;2)聚烯烃粉料的干燥。该方法可以解决聚烯烃粉料停留时间长、聚烯烃粉料不能与置换气体充分逆向接触,导致离开脱挥器的粉料仍携带较多烃类的技术缺陷。

Description

聚烯烃粉料后处理装置及方法 技术领域
本发明涉及一种粉料处理装置,特别涉及聚烯烃粉料后处理装置及方法,属于石油化工技术领域。
背景技术
在聚烯烃的生产工艺中,离开聚合反应器之后的聚烯烃粉料,经过初步的气/固分离,将聚烯烃粉料中残留的催化剂失活,并经济的回收聚烯烃粉料中携带的烃类。
众所周知,合成聚烯烃粉料之后,因聚烯烃特有的空隙结构和堆密性,离开聚合系统的聚烯烃粉料会携带一定量的烃类,根据生产聚烯烃的工艺不同,烃类包括但不限于乙烯、丙烯、丙烷、己烷等。聚烯烃粉料后处理的第一个目的就是要将这些携带的烃类脱除,以确保粉料在使用过程中的安全、环保。在脱除烃类时,一般通过单独或者是混合加入水蒸汽、氮气等低价值惰性气体来置换聚烯烃粉料中的烃类,该过程一般称之为汽蒸、脱气或者是脱挥。另外,如果通入的是水蒸汽,或者是水蒸汽占比超过10%的混合气,则聚烯烃粉料在脱除烃类后,还需要再用氮气脱除聚烯烃粉料中携带的水蒸汽,该过程一般称之为聚烯烃粉料的干燥。同时,为提高水蒸汽、氮气脱除聚烯烃粉料中的烃类效果,还可以将聚烯烃粉料加热至一定温度,促进烃类的挥发。
聚烯烃粉料后处理的第二个目的是将粉料中残留的带活性的催化剂反应成安全、稳定的化合物,催化剂包括但不限于四氯化钛、三乙基铝等,该过程一般称之为催化剂失活或钝化。催化剂失活或钝化的方法是向聚烯烃粉料中通入少量的水蒸汽,水蒸汽与催化剂反应生产稳定的化合物。
现将国内外聚烯烃粉料后处理方法和装置的专利综述如下:
1、先汽蒸、后干燥。日本专利特开昭58-216735中所述的环管聚合工艺就是采用这一后处理方法。离开聚合反应器的聚合物粉料经过初步的气/固分离后,聚合物仍携带约2%wt的烃类。聚合物粉料先从顶部进入一台带立式搅拌的汽蒸器,随重力落下,与汽蒸器底部通入的大量水蒸汽将进入汽蒸器的聚烯烃粉料温度从约80℃间接加热到约110℃并与聚烯烃粉料逆向接触并完全脱除烃类,聚烯烃粉料再从底部离开汽蒸器。水蒸汽带着置换出来的烃类从汽蒸器顶部离开,经过冷凝脱水、压缩后回收烃类。汽蒸器有夹套,可通入水蒸汽,适当加热聚烯烃粉料。聚合物在汽蒸器中接触水蒸汽的同时, 其残留的催化剂与水蒸汽充分反应,生产稳定的化合物。
离开汽蒸器的聚烯烃粉料,不携带烃类,但是携带水蒸汽,需要进一步干燥处理。含水蒸汽的聚烯烃粉料从顶部进入一台带立式搅拌的干燥器,随重力落下,与干燥器底部通入的大量氮气逆向接触并完全脱除水蒸汽,并从底部离开干燥器。氮气带着置换出来的水蒸汽从干燥器顶部离开,经过冷凝脱水、压缩后的氮气再重新回到干燥器,循环使用。
先汽蒸、后干燥方法的优点是从汽蒸器底部通入大量水蒸汽加热粉料并与粉料逆向接触,能完全彻底的脱除聚合物中的烃类。干燥器采用类似操作,又能完全脱除聚烯烃粉料中的水蒸汽。缺点是汽蒸器通入蒸汽量较大,干燥器置换氮气通入量也较大,整个粉料处理流程长,设备多,能耗高。
2、同时进行脱挥、失活。日本专利昭59-230010(Amoco/Chisso)中所述的聚合工艺采用该处理方法。离开聚合反应器的聚合物粉料经过初步的气/固分离后,聚合物仍携带约2%wt的烃类。聚合物粉料从顶部进入一台脱气仓,随重力落下,与脱气仓底部通入的大量氮气和少量水蒸汽逆向接触并完全脱除烃类,水蒸汽与残留的催化剂反应,生产稳定的化合物。该方法的优点是流程短,设备少,操作简单。缺点是脱气仓无搅拌,也无加热,需要通入大量氮气才能保证粉料中烃类的脱除效果。另外,从脱气仓顶部离开的混合气中,氮气的含量超过70%Vol,烃类回收成本高。
3、先脱挥、后失活。离开聚合反应器的聚合物粉料经过初步的气/固分离后,聚合物仍携带约2%wt的烃类。聚合物粉料从一端顶部进入一台带卧式搅拌桨的脱挥器,脱挥器的卧式搅拌轴、搅拌叶片、夹套都可以通入水蒸汽,将进入脱挥器的粉料温度从约65℃间接加热到约110℃。在搅拌的推动下,聚合物粉料从脱挥器的另一端底部离开脱挥器,再从顶部进入一台带立式搅拌桨的汽蒸器。汽蒸器底部通入水蒸汽、氮气混合气,与随重力落下的粉料逆向接触,进一步去除聚烯烃粉料中的烃类,同时水蒸汽与残留的催化剂反应,生产稳定的化合物。
不同聚合工艺在带卧式搅拌桨脱挥器的内部操作略有不同,叙述如下。
日本专利56-139520(三井优化)方法中,向带卧式搅拌桨的脱挥器中通入大量氮气置换聚烯烃粉料中的烃类,该专利的缺点从顶部离开脱挥器的混合气中氮气的含量超过80%Vol,烃类回收成本高。且从另一端底部离开脱挥器的聚烯烃粉料中携带的烃类 偏高,造成汽蒸器还需要通入氮气再置换粉料中的烃类,且从顶部离开汽蒸器的混合气中烃含量达到2%,难以回收,也不符合排大气的环保标准。
中国专利200410053651.3则不向带卧式搅拌桨的脱挥器中通入任何置换气体,虽然从顶部离开脱挥器的烃类不含其它惰性气体,可以直接回收,但是从另一端底部离开脱挥器的聚烯烃粉料中携带的烃类更高,造成汽蒸器还需要通入大量氮气再置换粉料中的烃类,且从顶部离开汽蒸器的混合气中烃含量达到8%Vol,难以回收,经济损失较大,也不符合排大气的环保标准。
中国专利201010515744.9则向带卧式搅拌桨的脱挥器中通入水蒸汽来置换聚烯烃粉料中的烃类,该专利的缺点是即使通入了水蒸汽,虽然从顶部离开脱挥器的混合气经过冷凝脱水后可以直接回收烃类,但离开脱挥器的聚烯烃粉料携带的烃含量仍偏高,汽蒸器还需要通入大量氮气再置换粉料中的烃类,且从顶部离开汽蒸器的混合气中烃含量达到5%Vol,难以回收,经济损失较大,也不符合排大气的环保标准。
整体上,采用带卧式搅拌桨的脱挥器来脱除聚烯烃粉料中携带的烃类,虽然该脱挥器可通过直接或间接的水蒸汽提高粉料的脱挥温度,但由于粉料停留时间短(停留时间短的原因是卧式搅拌相比立式搅拌,粉料搅动时阻力大,设备功率大,限制了卧式搅拌脱挥器的处理能力,高处理量下只能缩短停留时间),且聚烯烃粉料不是与置换气体充分逆向接触,导致离开脱挥器的粉料仍携带较多烃类。携带烃类的粉料在进入汽蒸器后还需要通入较多氮气继续置换粉料中的烃类,汽蒸器的置换尾气烃含量在2%-8%Vol,既难以回收,又超过环保法律法规允许的60mg/m 3的大气污染物排放标准。
发明内容
本发明的目的在于提供一种聚烯烃粉料后处理装置,以解决聚烯烃粉料停留时间长、聚烯烃粉料不能与置换气体充分逆向接触,导致离开脱挥器的粉料仍携带较多烃类的技术缺陷。
本发明还提供一种聚烯烃粉料后处理方法。
本发明解决其技术问题所采用的技术方案是:
一种聚烯烃粉料后处理装置,包括汽蒸器和干燥器,汽蒸器出料口和干燥器连接:
汽蒸器为带有锥形底部的筒体,该筒体分上下两段,上部为粉料进料段,下部为加热段,粉料进料段内设置粉料分布板,粉料分布板开孔率为30%-70%;汽蒸器筒体下部 为加热段,加热段内设有一层或多层内置可拆卸板式换热组件,每层板式换热组件由多块换热板组成;筒体的锥形底部上设有与筒体连通的汽蒸器锥体置换汽环形分布器;
干燥器的结构与汽蒸器相似的,其筒体上部为粉料进料段,进料段内设置粉料分布板,干燥器筒体下部为加热段,加热段内有一层或多层内置可拆卸板式换热组件,每层板式换热组件由多块换热板组成;筒体的锥形底部上设有与筒体连通的干燥器锥体置换气环形分布器。
汽蒸器粉料分布板的设计,可使经过分布板的粉料随重力均匀下料(或称之为活塞流下料),这种下料方式可使粉料在汽蒸器内任意点的流速是一致的。
汽蒸器可以单台使用,也可以多台串联使用,提高聚烯烃粉料中携带烃类的脱除效果,还可以多台并联使用,提高聚烯烃粉料处理能力。
干燥器可以单台使用,也可以多台串联使用,提高聚烯烃粉料中携带水蒸气的脱除效果,还可以多台并联使用,提高聚烯烃粉料处理能力。
在聚烯烃生产工艺中,离开聚合系统经初步气/固分离后的聚烯烃粉料,进入本发明所述装置中的带粉料分布板和内置可拆卸板式换热组件的汽蒸器,经水蒸汽间接加热到约110℃,并与汽蒸器底部通入的水蒸汽逆向接触脱除聚烯烃粉料中的烃类,同时使残留的催化剂失活,再进入带粉料分布板和内置可拆卸板式换热组件的干燥器,经干燥器底部通入的氮气逆向接触脱除水蒸汽。干燥器的内置可拆卸板式换热组件既可以通入水蒸汽间接加热聚烯烃粉料,也可以通入循环水等冷却介质降低聚烯烃粉料的温度,防止聚烯烃粉料经处理后出现热氧降解。汽蒸器和干燥器均采用微正压操作。
作为优选,汽蒸器顶部设有进料口和汽蒸器置换尾气出口,汽蒸器出料口位于其锥形底部;干燥器顶部设有干燥器置换尾气出口,干燥器锥形底部设有出料口。
作为优选,粉料分布板上的孔径尺寸为5-50mm;汽蒸器和干燥器内的粉料分布板,其与水平夹角比聚烯烃粉料的安息角(或称之为静止角)大1-5°,以使经过分布板的粉料均匀下料。最佳选择是,粉料分布板与水平夹角比聚烯烃粉料的安息角大2°左右。
作为优选,汽蒸器每层板式换热组件上的两块换热板外侧间距为5-50mm;干燥器每层板式换热组件上的两块换热板外侧间距为10-70mm。进一步优化的是,汽蒸器每层板式换热组件上的两块换热板外侧间距为10-30mm;干燥器每层板式换热组件上的两块换热板外侧间距为20-50mm。
作为优选,汽蒸器和干燥器筒体均设有蒸汽夹套。
作为优选,汽蒸器和干燥器的下部锥体总长度为筒体内直径的0.8-1.7倍,优选的,锥体总长度为筒体内直径的1.1-1.4倍。
一种聚烯烃粉料后处理方法,该方法包括以下步骤:
1)聚烯烃粉料的汽蒸
聚合物粉料从汽蒸器的顶部进入,汽蒸器内的板式换热组件内通入水蒸汽,将随重力均匀下料的聚烯烃粉料间接加热到90-110℃;置换水蒸汽经汽蒸器锥体置换汽环形分布器,自下而上与聚烯烃粉料逆向接触,置换后的混合气从汽蒸器顶部离开,经冷凝脱水后回收烃类;汽蒸器锥体内的聚烯烃粉料处于均匀下料状态(或称之为活塞流下料),使聚烯烃粉料在汽蒸器内的停留时间一致,温度控制均匀,气体置换效果均一。离开汽蒸器的聚烯烃粉料总烃携带量小于100ppmwt。向汽蒸器锥体底部通入的水蒸汽同时会与聚烯烃粉料中残留的催化剂反应生产稳定的化合物。
聚烯烃粉料在汽蒸器内的烃类脱除效果,由粉料的温度、停留时间、置换水蒸汽体流量决定。其中聚烯烃粉料在汽蒸器内的停留时间,可通过粉料出料速度来控制,控制停留时间在20-50min;粉料的温度,可通过内置可拆卸板式换热组件的加热水蒸汽流量控制,控制粉料温度在90-110℃;置换水蒸汽体流量可直接控制。
汽蒸器采用微正压操作,以提高粉料中烃类的脱除效果,通过控制从汽蒸器顶部离开的置换后混合气流量使汽蒸器气相压力控制在1-10KPag。
2)聚烯烃粉料的干燥
脱除烃类后的聚烯烃粉料从汽蒸器底部离开后,从干燥器的顶部进入。
干燥器的板式换热组件内通入水蒸汽,将随重力均匀下料的聚烯烃粉料的温度控制在90-110℃,或者向板式换热组件中通入循环冷却水、冷冻水或脱盐水,并通过调整冷却介质流量使离开干燥器的聚烯烃粉料温度控制在10-90℃;
在干燥器锥体置换气环形分布器中通入的置换气体是氮气,与干燥器内均匀下料的聚烯烃粉料逆向接触,置换聚烯烃粉料中的水蒸汽;脱除水蒸汽后的聚烯烃粉料从干燥器底部离开。含水蒸汽的氮气从干燥器顶部离开,经冷凝脱水、加压后重新返回干燥器底部的置换气环形分布器,循环使用;
从干燥器底部离开的聚烯烃粉料水蒸气携带量小于200ppmwt。
聚烯烃粉料在干燥器内的水蒸气脱除效果,由粉料的温度、停留时间、置换氮气流量决定。其中聚烯烃粉料在干燥器内的停留时间,可通过粉料出料速度来控制,控制停留时间在15-45min;粉料的温度,可通过内置可拆卸板式换热组件的加热水蒸汽流量控制,控制粉料温度在90-110℃;置换氮气流量可直接控制。干燥器采用微正压操作,以提高粉料中水蒸气的脱除效果,通过控制从干燥器顶部离开的置换后混合气流量使干燥器气相压力控制在1-7KPag。
根据离开干燥器的聚烯烃粉料温度控制要求,干燥器的内置可拆卸板式换热组件既可以通入水蒸汽,使离开干燥器的聚烯烃粉料加热到90-110℃以上;也可以向干燥器的内置可拆卸板式换热组件中通入循环冷却水、冷冻水或脱盐水,并通过调整冷却介质流量使离开干燥器的聚烯烃粉料温度控制在10-90℃。这对于直接生产聚烯烃粉料的工艺和装置,通过降低粉料处理后的温度,能有效防止聚烯烃粉料出现热氧降解(众所周知,温度每升高10℃,聚烯烃粉料热氧降解速度增加一倍),这一点现有技术中并未体现。如果干燥器内聚烯烃粉料温度控制偏低,可通过提高置换氮气流量来确保粉料中水蒸气脱除干净。
作为优选,汽蒸器、干燥器内聚烯烃粉料最低料位要控制在对应的粉料分布板之上。
作为优选,在汽蒸器内气相压力控制在1-10KPag,干燥器内气相压力控制在1-7KPag。
作为优选,汽蒸器内聚烯烃粉料的停留时间为20-50min,优选的,聚烯烃粉料的停留时间为30-40min;干燥器内聚烯烃粉料的停留时间为15-45min,优选的,聚烯烃粉料的停留时间为25-35min。
本发明的有益效果是:汽蒸器置换尾气组成为烃类与水蒸气,通过冷凝、脱水后可完全回收水蒸气,同时通过汽蒸器的聚烯烃粉料夹带的烃类很少,使干燥器尾气通过冷凝、脱水后氮气可以循环使用。另外,通过干燥器的聚烯烃粉料温度可根据使用情况在10-90℃范围内进行调整。
附图说明
图1是本发明所述聚烯烃粉料后处理装置的主视结构示意图;
图2是实施例3所述聚烯烃粉料后处理装置的左视结构示意图;
[根据细则91更正 07.01.2021] 
图3是实施例4所述聚烯烃粉料后处理装置的左视结构示意图;
标号说明:
01 进料口
02 汽蒸器粉料分布板
03 汽蒸器内置可拆卸板式换热组件
04 汽蒸器锥体置换汽环形分布器
05 汽蒸器
06 汽蒸器出料口
07 汽蒸器置换尾气出口
08 汽蒸器筒体夹套
09A 汽蒸器内置可拆卸板式换热组件加热蒸汽入口
09B 汽蒸器内置可拆卸板式换热组件冷凝液出口
10 干燥器
11 干燥器粉料分布板
12 干燥器内置可拆卸板式换热组件
13 干燥器锥体置换气环形分布器
14 干燥器出料口
15 干燥器置换尾气出口
16A 干燥器内置可拆卸板式换热组件加热蒸汽入口
16B 干燥器内置可拆卸板式换热组件冷却水出口
17A 干燥器内置可拆卸板式换热组件冷凝液出口
17B 干燥器内置可拆卸板式换热组件冷却水入口
18 干燥器筒体夹套。
具体实施方式
下面通过具体实施例,对本发明的技术方案作进一步的具体说明。应当理解,本发明的实施并不局限于下面的实施例,对本发明所做的任何形式上的变通和/或改变都将落入本发明保护范围。
在本发明中,若非特指,所有的份、百分比均为重量单位,所采用的设备和原料等均可从市场购得或是本领域常用的。下述实施例中的方法,如无特别说明,均为本领域 的常规方法。
实施例1:
本发明的核心是提供一种聚烯烃粉料后处理装置,由汽蒸器05和干燥器10组成,汽蒸器出料口06和干燥器顶部连接,
汽蒸器为带有锥形底部的筒体,该筒体分上下两段,上部为粉料进料段,下部为加热段,粉料进料段内设置汽蒸器粉料分布板02,粉料分布板开孔率为30%-70%;汽蒸器筒体下部为加热段,加热段内设有多层汽蒸器内置可拆卸板式换热组件03,每层板式换热组件由多块换热板组成;筒体的锥形底部上设有与筒体连通的汽蒸器锥体置换汽环形分布器04,汽蒸器筒体外设有汽蒸器筒体夹套08;
干燥器的结构与汽蒸器相似,其筒体上部为粉料进料段,进料段内设置干燥器粉料分布板11,干燥器筒体下部为加热段,加热段内有多层干燥器内置可拆卸板式换热组件12,每层板式换热组件由多块换热板组成;筒体的锥形底部上设有与筒体连通的干燥器锥体置换气环形分布器13,干燥器筒体外设有干燥器筒体夹套18;
汽蒸器顶部设有进料口01和汽蒸器置换尾气出口07,汽蒸器出料口位于其锥形底部;干燥器顶部设有干燥器置换尾气出口15,干燥器锥形底部设有干燥器出料口14。
所述的汽蒸器或干燥器的粉料分布板上的孔径尺寸控制在5-50mm范围内,根据实际情况进行调整;汽蒸器和干燥器内的粉料分布板,与水平夹角比聚烯烃粉料的安息角(或称之为静止角)大1-5°,以使经过分布板的粉料均匀下料。最佳选择是,粉料分布板与水平夹角比聚烯烃粉料的安息角大2°左右。
汽蒸器每层板式换热组件上的两块换热板外侧间距为5-50mm;干燥器每层板式换热组件上的两块换热板外侧间距为10-70mm。最佳设置为,汽蒸器每层板式换热组件上的两块换热板外侧间距为10-30mm;干燥器每层板式换热组件上的两块换热板外侧间距为20-50mm。
上述结构中是,汽蒸器和干燥器的下部锥体总长度为筒体内直径的0.8-1.7倍,最佳设置是,锥体总长度为筒体内直径的1.1-1.4倍。
汽蒸器粉料分布板的设计,可使经过分布板的粉料随重力均匀下料(或称之为活塞流下料),这种下料方式可使粉料在汽蒸器内任意点的流速是一致的。
汽蒸器可以单台使用,也可以多台串联使用,提高聚烯烃粉料中携带烃类的脱除效 果,还可以多台并联使用,提高聚烯烃粉料处理能力。
干燥器可以单台使用,也可以多台串联使用,提高聚烯烃粉料中携带水蒸气的脱除效果,还可以多台并联使用,提高聚烯烃粉料处理能力。
实施例2:
本发明的核心是提供一种聚烯烃粉料的后处理方法,该方法包括以下步骤:
(1)聚烯烃粉料的汽蒸
离开聚合反应器的聚合物粉料经过初步的气/固分离后,聚合物仍携带约2%wt的烃类。
聚合物粉料从本发明所述的聚烯烃粉料后处理装置中的汽蒸器的顶部进入,本发明所述汽蒸器是一台不带搅拌的立式汽蒸器。
汽蒸器内的板式换热组件内通入水蒸汽,将随重力均匀下料的聚烯烃粉料从约65℃间接加热到110℃;置换水蒸汽经汽蒸器锥体置换汽环形分布器,自下而上与聚烯烃粉料逆向接触,置换后的混合气从汽蒸器顶部离开,经冷凝脱水后回收烃类;汽蒸器锥体内的聚烯烃粉料处于均匀下料状态(或称之为活塞流下料),使聚烯烃粉料在汽蒸器内的停留时间一致,温度控制均匀,气体置换效果均一。离开汽蒸器的聚烯烃粉料总烃携带量小于100ppmwt。向汽蒸器锥体底部通入的水蒸汽同时会与聚烯烃粉料中残留的催化剂反应生产稳定的化合物。
聚烯烃粉料在汽蒸器内的烃类脱除效果,由粉料的温度、停留时间、置换水蒸汽体流量决定。其中聚烯烃粉料在汽蒸器内的停留时间,可通过粉料出料速度来控制,控制停留时间在20-50min;粉料的温度,可通过内置可拆卸板式换热组件的加热水蒸汽流量控制,控制粉料温度在90-110℃;置换水蒸汽体流量可直接控制。
汽蒸器采用微正压操作,以提高粉料中烃类的脱除效果,通过控制从汽蒸器顶部离开的置换后混合气流量使汽蒸器气相压力控制在1-10KPag。
(2)聚烯烃粉料的干燥
脱除烃类后的聚烯烃粉料从汽蒸器底部离开后,从干燥器的顶部进入。
干燥器的板式换热组件内通入水蒸汽,将随重力均匀下料的聚烯烃粉料的温度控制在90-110℃。在干燥器锥体置换气环形分布器中通入的置换气体是氮气,与干燥器内 均匀下料的聚烯烃粉料逆向接触,置换聚烯烃粉料中的水蒸汽;脱除水蒸汽后的聚烯烃粉料从干燥器底部离开。含水蒸汽的氮气从干燥器顶部离开,经冷凝脱水、加压后重新返回干燥器底部的置换气环形分布器,循环使用;
从干燥器底部离开的聚烯烃粉料水蒸气携带量小于200ppmwt。
聚烯烃粉料在干燥器内的水蒸气脱除效果,由粉料的温度、停留时间、置换氮气流量决定。其中聚烯烃粉料在干燥器内的停留时间,可通过粉料出料速度来控制,控制停留时间在15-45min;粉料的温度,可通过内置可拆卸板式换热组件的加热水蒸汽流量控制,控制粉料温度在90-110℃;置换氮气流量可直接控制。干燥器采用微正压操作,以提高粉料中水蒸气的脱除效果,通过控制从干燥器顶部离开的置换后混合气流量使干燥器气相压力控制在1-7KPag。
根据离开干燥器的聚烯烃粉料温度控制要求,干燥器的内置可拆卸板式换热组件既可以通入水蒸汽,使离开干燥器的聚烯烃粉料加热到90-110℃以上;也可以向干燥器的内置可拆卸板式换热组件中通入循环冷却水、冷冻水或脱盐水,并通过调整冷却介质流量使离开干燥器的聚烯烃粉料温度控制在10-90℃。这对于直接生产聚烯烃粉料的工艺和装置,通过降低粉料处理后的温度,能有效防止聚烯烃粉料出现热氧降解(众所周知,温度每升高10℃,聚烯烃粉料热氧降解速度增加一倍),这一点现有技术中并未体现。如果干燥器内聚烯烃粉料温度控制偏低,可通过提高置换氮气流量来确保粉料中水蒸气脱除干净。
实施例3:
一种聚烯烃粉料的后处理方法,具体过程是:65℃的聚丙烯粉料10000Kg/h携带丙烯200Kg/h,从进料口01进入汽蒸器05。经过汽蒸器粉料分布板02,粉料分布板开孔率40%,孔径12mm,均匀通过汽蒸器内置可拆卸板式换热组件03。汽蒸器内置可拆卸板式换热组件03由20块换热板组成,每两块换热板的外侧间距为25mm,单块换热板都从汽蒸器内置可拆卸板式换热组件加热蒸汽入口09A通入120℃的饱和水蒸气35Kg/h,冷凝水从换热板的汽蒸器内置可拆卸板式换热组件冷凝液出口09B排出。汽蒸器筒体夹套08,从上部通入120℃蒸汽,流量为125Kg/h,冷凝液从夹套的下部排出。从上部进入板式换热组件的聚丙烯粉料温度为72℃,从下部离开板式换热组件的聚丙 烯粉料温度为101℃。
在汽蒸器锥体置换汽环形分布器04通入120℃的置换水蒸汽250Kg/h,与汽蒸器05中的聚丙烯粉料逆向接触置换粉料中的丙烯,再与聚丙烯粉料中残留的催化剂反应生产稳定的化合物。置换后的丙烯与部分水蒸气从汽蒸器置换尾气出口07排出。汽蒸器置换尾气出口07的混合气温度70℃,其中丙烯199.1Kg/h,水蒸气125Kg/h。通过置换尾气出口的混合气流量控制,将汽蒸器05顶部气相压力维持在7KPag。
汽蒸器出料口06,聚丙烯粉料10000Kg/h,温度105℃,携带丙烯0.9Kg/h、水蒸汽122Kg/h,进入干燥器10。通过汽蒸器出料口06的出料流量控制,将汽蒸器05内的聚丙烯粉料停留时间维持在35分钟,且料位控制在粉料分布板之上。
经过干燥器粉料分布板11,粉料分布板开孔率50%,孔径15mm,均匀通过干燥器内置可拆卸板式换热组件12。干燥器内置可拆卸板式换热组件12由12块换热板组成,每两块换热板的外侧间距为35mm,单换热板都通过干燥器内置可拆卸板式换热组件加热蒸汽入口16A通入110℃的饱和水蒸气15Kg/h,冷凝水从干燥器内置可拆卸板式换热组件冷凝液出口17A排出。干燥器筒体夹套18,从上部通入110℃蒸汽,流量为45Kg/h,冷凝液从干燥器筒体夹套的下部排出。从上部进入干燥器内置可拆卸板式换热组件12的聚丙烯粉料温度为103℃,从下部离开干燥器内置可拆卸板式换热组件12的聚丙烯粉料温度为112℃。
在干燥器锥体置换气环形分布器13通入20℃的置换氮气275Kg/h,与干燥器10中的聚丙烯粉料逆向接触并置换粉料中的水蒸汽和微量丙烯。置换后的氮气、水蒸气和微量丙烯从干燥器10顶部干燥器置换尾气出口15排出。置换尾气出口15的混合气温度100℃,其中丙烯0.9Kg/h,水蒸气122Kg/h,氮气200Kg/h。通过控制置换尾气出口的混合气流量,将干燥器10顶部气相压力控制在2KPag。
干燥器10底部的干燥器出料口14,聚丙烯粉料10000Kg/h,温度110℃,携带氮气75Kg/h。通过对干燥器出料口的出料流量控制,将干燥器10的聚丙烯粉料停留时间维持在25分钟,且料位控制在粉料分布板之上。
本实施例中,汽蒸器的置换尾气烃含量61.43%wt左右,其余为水蒸气。通过降温、冷凝后脱除明水,可完全回收烃类。
离开干燥器10顶部的气相,62%wt左右为氮气,其余主要是水蒸气。通过降温、 冷凝后脱除明水,氮气可重新进入干燥器锥体置换气环形分布器13循环使用。
实施例4:
一种聚烯烃粉料的后处理方法,具体过程是:65℃的聚丙烯粉料10000Kg/h携带丙烯200Kg/h,从进料口01进入汽蒸器05。经过汽蒸器粉料分布板02,粉料分布板开孔率40%,孔径12mm,均匀通过汽蒸器内置可拆卸板式换热组件03。汽蒸器内置可拆卸板式换热组件03由20块换热板组成,每两块换热板的外侧间距为25mm,单换热板都通过汽蒸器内置可拆卸板式换热组件加热蒸汽入口09A通入120℃的饱和水蒸气35Kg/h,冷凝水从换热板的汽蒸器内置可拆卸板式换热组件冷凝液出口09B排出。汽蒸器筒体夹套08,从上部通入120℃蒸汽,流量为125Kg/h,冷凝液从夹套的下部排出。从上部进入板式换热组件的聚丙烯粉料温度为72℃,从下部离开板式换热组件的聚丙烯粉料温度为101℃。
在汽蒸器锥体置换汽环形分布器04通入120℃的置换蒸汽250Kg/h,与汽蒸器05中的聚丙烯粉料逆向接触并置换粉料中的丙烯,再与聚丙烯粉料中残留的催化剂反应生产稳定的化合物。置换后的丙烯与部分水蒸气从汽蒸器05顶部汽蒸器置换尾气出口07排出。汽蒸器置换尾气出口07的混合气温度75℃,其中丙烯199.1Kg/h,水蒸气125Kg/h。通过置换尾气出口的混合气流量控制,将汽蒸器05顶部气相压力维持在7KPag。
汽蒸器出料口06,聚丙烯粉料10000Kg/h,温度105℃,携带丙烯0.9Kg/h、水蒸汽122Kg/h,进入干燥器10。通过汽蒸器出料口06的出料流量控制,将汽蒸器05内的聚丙烯粉料停留时间维持在35分钟,且料位控制在粉料分布板之上。
经过干燥器粉料分布板11,粉料分布板开孔率50%,孔径15mm,均匀通过干燥器内置可拆卸板式换热组件12。干燥器内置可拆卸板式换热组件12由12块换热板组成,每两块换热板的外侧间距为25mm,单换热板都通过干燥器内置可拆卸板式换热组件冷却水入口17B通入10℃的冷却水1000Kg/h,冷却水再从干燥器内置可拆卸板式换热组件冷却水出口16B排出。干燥器夹套不同加热蒸汽。从上部进入干燥器内置可拆卸板式换热组件12的聚丙烯粉料温度为90℃,从下部离开干燥器内置可拆卸板式换热组件12的聚丙烯粉料温度为35℃。
在干燥器锥体置换气环形分布器13通入20℃的置换氮气350Kg/h,与干燥器10中的聚丙烯粉料逆向接触并置换粉料中的水蒸汽和微量丙烯。置换后的氮气、水蒸气和微量丙烯从干燥器10顶部干燥器置换尾气出口15排出。干燥器置换尾气出口15的混合气温度70℃,其中丙烯0.9Kg/h,水蒸气122Kg/h,氮气275Kg/h。通过控制置换尾气出口的混合气流量,将干燥器10顶部气相压力控制在2KPag。
干燥器10底部的干燥器出料口14,聚丙烯粉料10000Kg/h,温度30℃,携带氮气75Kg/h。通过对干燥器出料口14的出料流量控制,将干燥器10的聚丙烯粉料停留时间维持在35分钟,且料位控制在粉料分布板之上。
本实施例中,汽蒸器的置换尾气烃含量61.54%wt,其余为水蒸气。通过降温、冷凝后脱除明水,可完全回收烃类。
离开干燥器10顶部的气相,69%wt左右为氮气,其余主要是水蒸气。通过降温、冷凝后脱除明水,氮气可重新进入干燥器锥体置换气环形分布器13循环使用。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
以上对本发明所提供的聚烯烃粉料后处理装置及方法进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 一种聚烯烃粉料后处理装置,包括汽蒸器和干燥器,汽蒸器出料口和干燥器连接,其特征在于:
    汽蒸器为带有锥形底部的筒体,该筒体分上下两段,上部为粉料进料段,下部为加热段,粉料进料段内设置粉料分布板,粉料分布板开孔率为30%-70%;汽蒸器筒体下部为加热段,加热段内设有一层或多层内置可拆卸板式换热组件,每层板式换热组件由多块换热板组成;筒体的锥形底部上设有与筒体连通的汽蒸器锥体置换汽环形分布器;
    干燥器的结构与汽蒸器相似的,其筒体上部为粉料进料段,进料段内设置粉料分布板,干燥器筒体下部为加热段,加热段内有一层或多层内置可拆卸板式换热组件,每层板式换热组件由多块换热板组成;筒体的锥形底部上设有与筒体连通的干燥器锥体置换气环形分布器。
    汽蒸器粉料分布板的设计,可使经过分布板的粉料随重力均匀下料(或称之为活塞流下料),这种下料方式可使粉料在汽蒸器内任意点的流速是一致的。
  2. 根据权利要求1所述的聚烯烃粉料后处理装置,其特征在于:汽蒸器顶部设有进料口和汽蒸器置换尾气出口,汽蒸器出料口位于其锥形底部;干燥器顶部设有干燥器置换尾气出口,干燥器锥形底部设有出料口。
  3. 根据权利要求1所述的聚烯烃粉料后处理装置,其特征在于:粉料分布板上的孔径尺寸为5-50mm;
    汽蒸器和干燥器内的粉料分布板,其与水平夹角比聚烯烃粉料的安息角大1-5°。
  4. 根据权利要求1所述的聚烯烃粉料后处理装置,其特征在于:汽蒸器每层板式换热组件上的两块换热板外侧间距为5-50mm;
    干燥器每层板式换热组件上的两块换热板外侧间距为10-70mm。
  5. 根据权利要求1所述的聚烯烃粉料后处理装置,其特征在于:汽蒸器每层板式换热组件上的两块换热板外侧间距为10-30mm;
    干燥器每层板式换热组件上的两块换热板外侧间距为20-50mm。
  6. 根据权利要求1所述的聚烯烃粉料后处理装置,其特征在于:汽蒸器和干燥器筒体均设有蒸汽夹套。
  7. 根据权利要求1所述的聚烯烃粉料后处理装置,其特征在于:汽蒸器和干燥器的下部锥体总长度为筒体内直径的0.8-1.7倍。
  8. 一种采用权利要求1所述的装置的聚烯烃粉料后处理方法,其特征在于该方法包括以下步骤:
    1)聚烯烃粉料的汽蒸
    聚合物粉料从汽蒸器的顶部进入,汽蒸器内的板式换热组件内通入水蒸汽,将随重力均匀下料的聚烯烃粉料间接加热到90-110℃;置换水蒸汽经汽蒸器锥体置换汽环形分布器,自下而上与聚烯烃粉料逆向接触,置换后的混合气从汽蒸器顶部离开,经冷凝脱水后回收烃类;汽蒸器锥体内的聚烯烃粉料处于均匀下料状态;
    离开汽蒸器的聚烯烃粉料总烃携带量小于100ppmwt;
    2)聚烯烃粉料的干燥
    脱除烃类后的聚烯烃粉料从汽蒸器底部离开后,从干燥器的顶部进入。
    干燥器的板式换热组件内通入水蒸汽,将随重力均匀下料的聚烯烃粉料的温度控制在90-110℃,或者向板式换热组件中通入循环冷却水、冷冻水或脱盐水,并通过调整冷却介质流量使离开干燥器的聚烯烃粉料温度控制在10-90℃;
    在干燥器锥体置换气环形分布器中通入的置换气体是氮气,与干燥器内均匀下料的聚烯烃粉料逆向接触,置换聚烯烃粉料中的水蒸汽;脱除水蒸汽后的聚烯烃粉料从干燥器底部离开;含水蒸汽的氮气从干燥器顶部离开,经冷凝脱水、加压后重新返回干燥器底部的置换气环形分布器,循环使用;
    从干燥器底部离开的聚烯烃粉料水蒸气携带量小于200ppmwt。
  9. 根据权利要求1所述的方法,其特征在于:在汽蒸器内气相压力控制在1-10KPag,干燥器内气相压力控制在1-7KPag。
  10. 根据权利要求1所述的方法,其特征在于:汽蒸器内聚烯烃粉料的停留时间为20-50min;干燥器内聚烯烃粉料的停留时间为15-45min。
PCT/CN2020/136287 2020-04-30 2020-12-15 聚烯烃粉料后处理装置及方法 WO2021218182A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010365971.1A CN111635467A (zh) 2020-04-30 2020-04-30 聚烯烃粉料后处理装置及方法
CN202010365971.1 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021218182A1 true WO2021218182A1 (zh) 2021-11-04

Family

ID=72328251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136287 WO2021218182A1 (zh) 2020-04-30 2020-12-15 聚烯烃粉料后处理装置及方法

Country Status (2)

Country Link
CN (1) CN111635467A (zh)
WO (1) WO2021218182A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111635467A (zh) * 2020-04-30 2020-09-08 浙江卫星能源有限公司 聚烯烃粉料后处理装置及方法
CN114199049B (zh) * 2021-11-22 2023-06-27 浙江卫星能源有限公司 一种聚丙烯粉料的冷却方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4518750A (en) * 1982-03-10 1985-05-21 Montedison S.P.A. Fluid bed reactor
CN1733810A (zh) * 2004-08-11 2006-02-15 高煦 聚丙烯粉料后处理方法
CN101573390A (zh) * 2006-12-29 2009-11-04 巴塞尔聚烯烃意大利有限责任公司 聚烯烃后处理方法
CN101573576A (zh) * 2006-12-29 2009-11-04 巴塞尔聚烯烃意大利有限责任公司 干燥聚合物的方法和设备
CN102453161A (zh) * 2010-10-22 2012-05-16 高煦 聚丙烯粉料后处理方法
CN106397641A (zh) * 2015-07-28 2017-02-15 中国石油天然气股份有限公司 脱除聚合物粉料中挥发份的装置及方法
CN111635467A (zh) * 2020-04-30 2020-09-08 浙江卫星能源有限公司 聚烯烃粉料后处理装置及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204400887U (zh) * 2014-12-18 2015-06-17 神华集团有限责任公司 聚丙烯粉料后处理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4518750A (en) * 1982-03-10 1985-05-21 Montedison S.P.A. Fluid bed reactor
CN1733810A (zh) * 2004-08-11 2006-02-15 高煦 聚丙烯粉料后处理方法
CN101573390A (zh) * 2006-12-29 2009-11-04 巴塞尔聚烯烃意大利有限责任公司 聚烯烃后处理方法
CN101573576A (zh) * 2006-12-29 2009-11-04 巴塞尔聚烯烃意大利有限责任公司 干燥聚合物的方法和设备
CN102453161A (zh) * 2010-10-22 2012-05-16 高煦 聚丙烯粉料后处理方法
CN106397641A (zh) * 2015-07-28 2017-02-15 中国石油天然气股份有限公司 脱除聚合物粉料中挥发份的装置及方法
CN111635467A (zh) * 2020-04-30 2020-09-08 浙江卫星能源有限公司 聚烯烃粉料后处理装置及方法

Also Published As

Publication number Publication date
CN111635467A (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
WO2021218182A1 (zh) 聚烯烃粉料后处理装置及方法
CN101613426B (zh) 聚丙烯的生产方法及其装置
CN106338066B (zh) 一种固体有机材料的裂解方法及系统
CN106397641B (zh) 脱除聚合物粉料中挥发份的装置及方法
CN114956935A (zh) 一种电子级含水有机物耦合深度脱水方法及系统
EA023744B1 (ru) Способ и система для регенерации тепловой энергии из пароосушителя
CN211912779U (zh) 一种微负压脱除乙烯或乙烯共聚物中voc、降低气味等级的装置
CN105218334A (zh) 一种甲醛生产方法
JP6502532B2 (ja) 半炭化バイオマスの冷却方法
CN102748923B (zh) 一种煤泥烘干的方法
CN109053819B (zh) 一种二茂铁连续分离精制装置及工艺
CN208995416U (zh) 一种四溴双酚a生产装置
CN102863330A (zh) 一种从pta工艺废水分离精制工业苯甲酸的方法
CN212292814U (zh) 适用于多个沸腾炉的危险废炭节能活化再生系统
JP2018506637A5 (zh)
CN206033271U (zh) 一种高纯聚氯化铝生产系统
CN211451658U (zh) 一种炉渣干化减重装置系统
CN108673782A (zh) 一种氟橡胶脱水工艺
CN107619170A (zh) 一种造纸污泥的固化干燥处理方法
CN205035107U (zh) 一种带过滤机构的旋膜式除氧器
CN209940474U (zh) 一种磷酸铁的干燥烧结装置
CN106854026A (zh) 一种处理2,6‑二叔丁基对甲基苯酚生产废液的方法
CN113828114B (zh) 干法纺丝介质回收循环的方法和装置以及纺丝方法和装置
CN104943017A (zh) 一种合成橡胶生产用的干燥设备及方法
CN217189621U (zh) 一种粉末活性炭干燥装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933138

Country of ref document: EP

Kind code of ref document: A1