WO2021218054A1 - 定量装车系统的检测装置及方法 - Google Patents

定量装车系统的检测装置及方法 Download PDF

Info

Publication number
WO2021218054A1
WO2021218054A1 PCT/CN2020/121654 CN2020121654W WO2021218054A1 WO 2021218054 A1 WO2021218054 A1 WO 2021218054A1 CN 2020121654 W CN2020121654 W CN 2020121654W WO 2021218054 A1 WO2021218054 A1 WO 2021218054A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
measurement parameter
measurement
group
quality
Prior art date
Application number
PCT/CN2020/121654
Other languages
English (en)
French (fr)
Inventor
刘吉岑
梁七华
Original Assignee
上海敬邦机电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海敬邦机电设备有限公司 filed Critical 上海敬邦机电设备有限公司
Publication of WO2021218054A1 publication Critical patent/WO2021218054A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G67/00Loading or unloading vehicles
    • B65G67/02Loading or unloading land vehicles
    • B65G67/04Loading land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow

Definitions

  • This application relates to the technical field of flow control, for example, to a detection device and method for a quantitative loading system.
  • the accuracy measurement of most quantitative loading systems on the market is provided by the accuracy of a single device (for example, a flow meter).
  • a single device for example, a flow meter
  • this calculation method can provide relatively accurate data, it can only be the accuracy data of a single node position.
  • the entire quantitative loading process includes a long process flow, and there may be a variety of conditions in the process. For example, due to leaks and other conditions, the final quantitative loading accuracy is low, which cannot meet the demand for quantitative loading.
  • the present application provides a detection device and method for a quantitative loading system, which can obtain the loading accuracy of quantitative loading in time and reduce the flow loss of materials.
  • An embodiment of the application provides a detection device for a quantitative loading system, including: a controller and three sets of measuring equipment; wherein, the three sets of measuring equipment include a first group of measuring equipment, a second group of measuring equipment, and a third group of measuring equipment. measuring equipment;
  • the first set of measuring equipment is set in the tank area and is set to obtain the first measurement parameters of materials passing through the tank area;
  • the second set of measurement equipment is set in the pipeline area and is set to obtain materials passing through the pipeline area
  • the third set of measurement equipment is set in the loading area, and is set to obtain the third measurement parameter of the material passing through the loading area;
  • the controller is electrically connected to the three sets of measurement equipment, And set to separately obtain the first measurement parameter, the second measurement parameter, and the third measurement parameter of the material;
  • the controller is further configured to obtain the material passing through the tank area and the third measurement parameter according to the first measurement parameter, the second measurement parameter, and the third measurement parameter of the material in the same time period. The quality difference between the pipeline area and the loading area.
  • the embodiment of the present application also provides a detection method of a quantitative loading system, which is applied to the detection device of a quantitative loading system provided in any embodiment of the present application, and the detection method of the quantitative loading system includes:
  • the first group of measuring equipment obtains the first measurement parameters of the material passing through the tank area
  • the second group of measurement equipment obtains the second measurement parameters of the material passing through the pipeline area
  • the third group of measurement equipment obtains the third measurement parameter of the material passing through the loading area
  • the controller separately obtains the first measurement parameter, the second measurement parameter, and the third measurement parameter of the material in the same time period to obtain the material passing through the tank area, the pipeline area, and The difference in the quality of the loading area.
  • FIG. 1 is a schematic structural diagram of a detection device of a quantitative loading system provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of another detection device of a quantitative loading system provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a detection method of a quantitative loading system provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of another detection method of a quantitative loading system provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another detection method of a quantitative loading system provided by an embodiment of the present application.
  • Quantitative loading system includes tank area, pipeline area and loading area.
  • the tank area includes material tanks for placing materials, which can be discharged through the outlet of the material tank;
  • the pipeline area includes a number of criss-crossing pipes, which are connected to the outlet of the above tank area, and are set to discharge auxiliary materials to the loading truck
  • the loading area includes the loading area entrance connected with the above-mentioned pipeline, so as to finally enter the materials into the vehicles in the loading area.
  • the batch controller can quantitatively control the discharge of materials according to user requirements, thereby completing the entire process of quantitative loading.
  • the batch controller obtains the material flow rate according to the flow meter set at a certain position of the quantitative loading system mentioned above, and controls the opening and closing of the gates of the material tank and the pipeline to obtain the material quantitatively, but the above-mentioned areas of the quantitative loading system are A long process flow only uses the above-mentioned flowmeter for batch control, which has low accuracy and cannot meet the needs of users for quantitative loading.
  • the embodiment of the present application provides a detection device for a quantitative loading system, including: a controller and three sets of measurement equipment; wherein, the three sets of measurement equipment include a first set of measurement equipment, a second set of measurement equipment, and The third group of measuring equipment.
  • the first group of measuring equipment is set in the tank area and is set to obtain the first measurement parameter of the material passing through the tank area;
  • the second group of measuring equipment is set in the pipeline area and is set to obtain the second measurement parameter of the material passing through the pipeline area;
  • the group of measuring equipment is set in the loading area, and is set to obtain the third measurement parameter of the material passing through the loading area;
  • the controller is electrically connected to the three groups of measurement equipment, and is set to obtain the first measurement parameter and the second measurement parameter of the material respectively And the third measurement parameter.
  • the controller is also set to obtain the quality difference of the material passing through the tank area, the pipeline area, and the loading area according to the first measurement parameter, the second measurement parameter, and the third measurement parameter of the material in the same time period.
  • the first set of measurement equipment is set in the tank area of the quantitative loading system
  • the second set of measurement equipment is set in the pipeline area of the quantitative loading system
  • the third set of measurement equipment is set in the pipeline area of the quantitative loading system.
  • Equipment so that the first measurement parameter of the material is obtained through the first group of measurement equipment, the second measurement parameter of the material is obtained through the second group of measurement equipment, and the third measurement parameter of the material is obtained through the third group of measurement equipment.
  • the detection device includes the above-mentioned three sets of measuring equipment and a controller electrically connected to the above-mentioned measuring equipment. The controller can obtain the material in the path tank according to the first measurement parameter, the second measurement parameter and the third measurement parameter of the material in the same time period.
  • the quality difference formed by the area, the pipeline area and the loading area that is, the loading accuracy of the material in the entire quantitative loading process, and the loss of the material.
  • the controller judges that the device accuracy of the quantitative loading system is low, and then can check and locate the fault factors in the process that affect the accuracy according to the above-mentioned measurement parameters, so that the user can remedy or improve in time Failure to reduce material loss.
  • FIG. 1 is a schematic structural diagram of a detection device for a quantitative loading system provided by an embodiment of the present application.
  • the detection device of the quantitative loading system includes three sets of measurement equipment, and each set of measurement equipment includes multiple measurement devices and multiple measurement device settings.
  • the three groups of measuring equipment are the first group of measuring equipment 12, the second group of measuring equipment 13, and the third group of measuring equipment 14.
  • the second group of measuring equipment 13 is set in the pipeline area and is set to obtain the second measurement parameter of the material in the pipeline area
  • the third group of measuring equipment 14 is set in the loading area and is set to obtain the material in the loading area.
  • the third measurement parameter is set.
  • the above-mentioned materials all refer to the same batch of materials.
  • each group of measurement equipment may include a temperature measurement device 21, a pressure measurement device 22, a flow measurement device 23, and a density Measuring device 24; the first measurement parameter, the second measurement parameter, and the third measurement parameter all include temperature, pressure, flow, and density.
  • the temperature measurement device 21 can obtain the temperature of the material
  • the pressure measurement device 22 can obtain the pressure of the material
  • the flow measurement device 23 can obtain the flow rate of the material
  • the density measurement device 24 can obtain the density of the material.
  • the materials refer to the same batch of materials, so that it is convenient to compare and analyze the measurement parameters of the materials in different areas of the tank area, the pipeline area and the loading area, to obtain the performance of the material, and to assist in the accuracy measurement of the quantitative loading system .
  • the controller 11 can be electrically connected with the first group of measuring equipment 12, the second group of measuring equipment 13 and the third group of measuring equipment 14 to obtain the first measurement parameter, the second measurement parameter and the first measurement parameter of the same batch of materials in the same time period. Three measurement parameters, so as to obtain the quality difference of the material passing through the tank area, pipeline area and loading area.
  • the quality of the material passing through the tank area, pipeline area and loading area is the same Or tend to be the same, there will be no material residues or material leakage failures in the tank area, pipeline area, and loading area, but the quantitative loading system has many pipelines, the above-mentioned failures are very easy to occur, and there may be other failures, then this embodiment
  • the quality difference of the material in the tank area, the pipeline area and the loading area can be obtained, so as to obtain whether the loading accuracy of the quantitative loading system is qualified.
  • the quality of the tank area, pipeline area and loading area is quite different, the loading accuracy of the quantitative loading system is low, and troubleshooting and maintenance are required.
  • RS485 communication can be used for data transmission between the controller 11 and each group of measuring equipment, so that the data transmission rate between the controller 11 and the measuring equipment is high, the transmission distance is long, and the controller 11 can connect more The measuring device, and the anti-jamming ability to transmit data between different measuring devices and the controller is strong.
  • the first group of measuring equipment 12 may also include a liquid level measuring device 25, and the first measurement parameter may also include liquid level; the third group of measuring equipment 14 may also include a loading quality measuring device 26, and the third measuring device Parameters also include loading quality.
  • a liquid level measuring device 25 can be provided in the first group of measuring equipment 12, so that the liquid level measuring device 25 can obtain the liquid level in the material tank for a period of time.
  • the third group of measuring equipment 14 may also include a loading quality measuring device 26, so as to measure the loading quality on the vehicle, so as to facilitate direct access to the material in the loading area the quality of.
  • the above-mentioned liquid level measuring device 25 and loading quality measuring device 26 facilitate the acquisition of more accurate material quality and enhance the quality detection accuracy of the quantitative loading system.
  • the temperature measuring device 21, the pressure measuring device 22, the density measuring device 24, and the liquid level measuring device 25 of the first group of measuring equipment 12 may be arranged in the tank cavity of the tank area, and the flow measuring device 23 may be arranged at the outlet of the tank area;
  • the temperature measurement device 21, the pressure measurement device 22, the flow measurement device 23, and the density measurement device 24 of the second group of measurement equipment 13 can be arranged in the pipe cavity;
  • the flow measuring device 23 and the density measuring device 24 can be arranged at the entrance of the loading area, and the loading quality measuring device 26 can be arranged at the bottom of the accommodating cavity of the loading area.
  • the temperature measuring device 21, the pressure measuring device 22, the density measuring device 24 and the liquid level measuring device 25 of the first group of measuring devices 12 are arranged on the inner wall of the tank cavity of the material tank in the tank area.
  • the measuring device 23 is arranged at the outlet of the tank area, so that the flow rate of the material discharged from the material tank is accurate.
  • the temperature measurement device 21, pressure measurement device 22, flow measurement device 23, and density measurement device 24 of the second group of measurement equipment 13 can be set on the inner wall of the pipe cavity to obtain the temperature, pressure, flow, density, etc. of the pipe.
  • a second set of measuring devices 13 can be set at the same distance to enhance the accuracy of parameter measurement.
  • the third group of measuring equipment 14 temperature measuring device 21, pressure measuring device 22, flow measuring device 23 and density measuring device 24 can be installed at the entrance of the loading area, and the loading quality measuring device 26 can be installed at the bottom of the accommodating cavity of the vehicle in the loading area
  • the loading quality measuring device 26 may be a ground pump or the like, which is not limited in this embodiment.
  • the controller 11 can be set to: obtain the first quality of the material passing through the tank area according to the first measurement parameter of the material in the same time period, and according to the material in the tank area.
  • the second measurement parameter in the same time period obtains the second quality of the material passing through the pipeline area
  • the third measurement parameter of the material in the same time period obtains the third quality of the material passing through the loading area;
  • the quality and the third quality are compared to obtain the quality difference of the materials passing through the tank area, pipeline area and loading area.
  • the first quality of the materials released from the material tank, the second quality of the materials flowing out of the pipeline area, and the equipment during the same period of time should be equal or approximately equal.
  • This implementation compares the above-mentioned first, second and third quality. If the difference exceeds the set threshold, it can be determined that the material is in the way The quality of the tank area, pipeline area and loading area is quite different. It is very likely that there may be faults such as material leakage or mixing of impurities. It is necessary to stop the quantitative loading process of materials, and perform faults and detections on the quantitative loading system to reduce materials Loss, and improve the accuracy of quantitative loading and the purity of materials.
  • the controller 11 can also be set to: detect the temperature failure of the quantitative loading system according to the temperature obtained by each group of measuring equipment; detect the leakage failure and blockage failure of the quantitative loading system according to the pressure obtained by each group of measuring equipment ; According to the flow obtained by each group of measuring equipment, detect the leakage fault and blockage fault of the quantitative loading system; according to the density obtained by each group of measuring equipment, detect the impurity fault of the quantitative loading system.
  • the temperature measured by the first group of measuring equipment 12, the second group of measuring equipment 13 and the third group of measuring equipment 14 can be obtained and compared to detect the temperature failure of the quantitative loading system, for example, if the second group of measuring equipment The temperature of the material in the pipeline area measured by the device 13 is much lower than the temperature of the material in the tank area measured by the first group of measuring devices 12, which indicates that the insulation component of the pipeline area is faulty and needs to be overhauled.
  • the pressure measured by the first group of measuring equipment 12, the second group of measuring equipment 13 and the third group of measuring equipment 14 can be obtained to detect leakage faults and blockage faults of the quantitative loading system. For example, if the second group of measuring equipment 13 measures The pressure in the pipeline area is much greater than the tank area pressure measured by the first group of measuring equipment 12, indicating that the pipeline is most likely to have a blockage fault, and if the pressure in the loading area measured by the third group of measuring equipment 13 is much lower than that of the second group The pressure in the pipeline area measured by the group measuring device 13 indicates that the pipeline may have a leakage fault.
  • the horizontal comparison of the above pressure parameters can also measure the failure state of the pipeline valve switch.
  • the valve at the output end of the pipeline area may not be opened in accordance with the control, resulting in accumulation of materials in the pipeline area.
  • the flow measured by the first group of measuring equipment 12, the second group of measuring equipment 13 and the third group of measuring equipment 14 can be obtained to detect leakage faults and blockage faults of the quantitative loading system. For example, if the second group of measuring equipment 13 The measured flow rate in the pipeline area is much larger than the tank outlet flow rate measured by the first group of measuring equipment 12, indicating that the pipeline is likely to have a blockage fault, and if the third group of measuring equipment 13 measures far away from the loading area flow If the flow rate in the pipeline area measured by the second group of measuring devices 13 is smaller, it indicates that the pipeline may have a leakage fault.
  • the density measured by the first group of measuring equipment 12, the second group of measuring equipment 13 and the third group of measuring equipment 14 can be obtained to detect the impurity fault of the quantitative loading system, for example, if the pipeline area measured by the second group of measuring equipment 13
  • the difference between the density and the outlet density of the tank area measured by the first set of measuring equipment 12 is large, which indicates that the pipeline has been mixed with impurities, which affects the purity of the material.
  • the above-mentioned fault detection process is to perform a horizontal comparison of the tank area, the pipeline area and the loading area with a single parameter.
  • this embodiment can also perform a horizontal comparison through a combination of multiple parameters to perform fault detection on the quantitative loading system.
  • To enhance the accuracy of fault detection and location For example, if the pressure of the pipeline area measured by the second group of measuring equipment 13 is greater than the tank area pressure measured by the first group of measuring equipment 12, and the flow rate of the pipeline area measured by the second group of measuring equipment 13 is smaller than that of the first group of measuring equipment 12 The measured outlet flow of the tank area, the pipeline in the pipeline area near the loading area in the manual is blocked.
  • the detection device of the quantitative loading system may further include: a data server 15; the controller 11 is electrically connected to the data server 15, and the data server 15 is configured to store the first measurement parameter, the second measurement parameter, and the third measurement parameter, And make the controller 11 call the first measurement parameter, the second measurement parameter and the third measurement parameter.
  • the data server 15 can store the historical measurement data of the first measurement parameter, the second measurement parameter, and the third measurement parameter in chronological order, which is convenient for the user to perform subsequent evaluation of the detection device of the quantitative loading system, and can make the controller 11 call the above-mentioned at any time. Historical inspection data to analyze the loading accuracy and fault detection of the quantitative loading system.
  • an embodiment of the application also provides a detection method of a quantitative loading system, which is applied to the detection device of a quantitative loading system provided in any embodiment of this application.
  • FIG. 3 is a quantitative loading system provided by an embodiment of the application.
  • the schematic flow chart of the detection method of the vehicle system, as shown in FIG. 3, the method of this embodiment includes the following steps:
  • the first group of measuring equipment 12 obtains the first measurement parameter of the material passing through the tank area.
  • the second group of measuring equipment 13 acquires the second measurement parameter of the material passing through the pipeline area.
  • the third group of measurement equipment 14 obtains the third measurement parameter of the material passing through the loading area.
  • each group of measurement equipment may include a temperature measurement device 21, a pressure measurement device 22, a flow measurement device 23, and a density measurement device 24; the first measurement parameter, the second measurement parameter, and the third measurement parameter all include temperature and pressure. , Flow and density; the first measurement parameter, the second measurement parameter and the third measurement parameter all include temperature, pressure, flow and density.
  • the first group of measuring equipment 12 may further include a liquid level measuring device 25, and the first measurement parameter further includes a liquid level; the third group of measuring equipment 14 further includes a loading quality measuring device 26, and the third measuring parameter further includes a loading quality. .
  • the temperature measuring device 21, the pressure measuring device 22, the density measuring device 24, and the liquid level measuring device 25 of the first group of measuring equipment 12 may be arranged in the tank cavity of the tank area, and the flow measuring device 23 may be arranged at the outlet of the tank area;
  • the temperature measurement device 21, the pressure measurement device 22, the flow measurement device 23, and the density measurement device 24 of the second group of measurement equipment 13 can be arranged in the pipe cavity;
  • the flow measuring device 23 and the density measuring device 24 can be arranged at the entrance of the loading area, and the loading quality measuring device 26 can be arranged at the bottom of the accommodating cavity of the loading area.
  • the controller 11 respectively obtains the first measurement parameter, the second measurement parameter and the third measurement parameter of the material in the same time period to obtain the quality difference of the material passing through the tank area, the pipeline area, and the loading area.
  • the first group of measuring equipment 12 is installed in the tank area of the quantitative loading system
  • the second group of measuring equipment 13 is installed in the pipeline area of the quantitative loading system
  • the third group is installed in the pipeline area of the quantitative loading system.
  • the detection device of the quantitative loading system includes the above three sets of measurement equipment, and a controller 11 electrically connected to the above measurement equipment. The controller 11 can be based on the first measurement parameter, the second measurement parameter and the first measurement parameter of the material in the same time period.
  • Three measurement parameters are used to obtain the quality difference of materials in the tank area, pipeline area and loading area, that is, to obtain the loading accuracy of the material in the whole quantitative loading process, and the loss of the material.
  • the controller judges that the device accuracy of the quantitative loading system is low, and then can check and locate the fault factors in the process that affect the accuracy according to the above-mentioned measurement parameters, so that the user can remedy or improve in time Failure to reduce material loss.
  • the controller 11 obtains the first measurement parameter, the second measurement parameter and the third measurement parameter of the material in the same time period respectively, and obtains the material passing through the tank area, the pipeline area, and the storage area.
  • FIG. 4 is a schematic flowchart of another detection method of a quantitative loading system provided by an embodiment of the present application, as shown in FIG. 4, the above S140 Including the following steps:
  • S210 Acquire the first quality of the material passing through the tank area according to the first measurement parameter of the material in the same time period.
  • S220 Acquire the second quality of the material passing through the pipeline area according to the second measurement parameter of the material in the same time period.
  • S230 Acquire the third quality of the material passing through the loading area according to the third measurement parameter of the material in the same time period.
  • the first quality, the second quality, and the third quality are compared to obtain the quality difference of the materials passing through the tank area, the pipeline area, and the loading area.
  • the controller 11 can calculate and obtain the first quality of the material passing through the tank area according to the first measurement parameter of the material during the same time period, and calculate and obtain the first quality of the material passing through the pipeline area according to the second measurement parameter of the material during the same time period.
  • Second quality the third quality of the material passing through the loading area is calculated according to the third measurement parameter of the material in the same time period.
  • the controller can detect the above conditions in time, so that the quantitative loading system can be maintained at a higher level. Within the accuracy range of the vehicle, it is helpful to avoid the waste of materials and improve the transportation efficiency of materials.
  • Fig. 5 is a schematic flowchart of another detection method of a quantitative loading system provided by an embodiment of the present application. As shown in Fig. 5, the detection method of a quantitative loading system further includes the following steps:
  • the execution sequence of the above S310-S340 is not prioritized, and can be executed sequentially or simultaneously, so as to detect and locate the fault of the quantitative loading system in time, and ensure the stability of the quantitative loading system and the smooth progress of the loading process.
  • this embodiment can horizontally compare the same parameters among the first measurement parameter, the second measurement parameter, and the third measurement parameter, and obtain and locate the quantitative loading system in time. Failures enable users to remedy and improve the above failures in time, improve material transportation efficiency, avoid material waste, ensure the stability of the quantitative loading system, and enable the loading process to proceed smoothly.

Abstract

一种定量装车系统的检测装置及方法,定量装车系统的检测装置包括:控制器(11)和三组测量设备;第一组测量设备(12)设置于罐区,设置为获取物料途经罐区的第一测量参数;第二组测量设备(13)设置于管道区,设置为获取物料途经管道区的第二测量参数;第三组测量设备(14)设置于装车区,设置为获取物料途经装车区的第三测量参数;控制器(11)与三组测量设备电连接,控制器(11)设置为:获取物料的第一测量参数、第二测量参数和第三测量参数;及根据物料在同一时间段内的第一测量参数、第二测量参数和第三测量参数,获取物料途经罐区、管道区以及装车区的质量差异。

Description

定量装车系统的检测装置及方法
本申请要求申请日为2020年4月28日、申请号为202010350885.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及流量控制技术领域,例如涉及一种定量装车系统的检测装置及方法。
背景技术
在炼油厂、化工厂及一些中小型油库,装车作业十分频繁,一般通过定量装车系统对物料进行定量装车,以获取精确质量的物料。在定量装车过程中,装车速度、精度和安全性一直都是影响装车作业的重要因素。
目前,市场上绝大多数定量装车系统的精度测量都由单一的设备(例如,流量计)精度提供。此种计算方式虽然能提供相对准确的数据,但也只能是单一的节点位置的精度数据,整个定量装车过程中包括较长的工艺流程,在该流程中可能会存在多种状况影响,例如,泄露等状况,导致最终定量装车精度较低,无法满足定量装车的需求。
发明内容
本申请提供了一种定量装车系统的检测装置及方法,可及时获取定量装车的装车精度,减少物料的流量损失。
本申请实施例提供了一种定量装车系统的检测装置,包括:控制器和三组测量设备;其中,所述三组测量设备包括第一组测量设备、第二组测量设备和第三组测量设备;
所述第一组测量设备设置于罐区,且设置为获取物料途经所述罐区的第一测量参数;所述第二组测量设备设置于管道区,且设置为获取物料途经所述管道区的第二测量参数;所述第三组测量设备设置于装车区,且设置为获取物料途经所述装车区的第三测量参数;所述控制器与所述三组测量设备电连接,且设置为分别获取所述物料的所述第一测量参数、所述第二测量参数和所述第三测量参数;
所述控制器还设置为根据所述物料在同一时间段内的所述第一测量参数、所述第二测量参数和所述第三测量参数,获取所述物料途经所述罐区、所述管道区以及所述装车区的质量差异。
本申请实施例还提供了一种定量装车系统的检测方法,应用于本申请任意实施例提供的定量装车系统的检测装置,所述定量装车系统的检测方法包括:
第一组测量设备获取物料途经罐区的第一测量参数;
第二组测量设备获取物料途经管道区的第二测量参数;
第三组测量设备获取物料途经装车区的第三测量参数;
控制器分别获取所述物料在同一时间段内的所述第一测量参数、所述第二测量参数和所述第三测量参数,以获取所述物料途经所述罐区、所述管道区以及所述装车区的质量差异。
附图说明
图1是本申请实施例提供的一种定量装车系统的检测装置的结构示意图;
图2是本申请实施例提供的另一种定量装车系统的检测装置的结构示意图;
图3是本申请实施例提供的一种定量装车系统的检测方法的流程示意图;
图4是本申请实施例提供的另一种定量装车系统的检测方法的流程示意图;
图5是本申请实施例提供的另一种定量装车系统的检测方法的流程示意图。
具体实施方式
定量装车系统包括罐区、管道区和装车区。罐区包括用于放置物料的物料罐,物料可通过物料罐的罐区出口放出物料;管道区包括多条纵横交错的管道,管道与上述罐区出口连通,且设置为辅助物料排放至装车区;装车区包括与上述管道连通的装车区入口,从而最终将物料输入装车区的车辆内。批控器能够根据用户需求定量控制物料的排放,从而完成定量装车的整个过程。相关技术中,批控器根据上述定量装车系统的某个位置设置的流量计获取物料流量,并控制物料罐和管道的闸门开合,从而定量获取物料,但是定量装车系统的上述各区是一个较长的工艺流程,仅根据上述流量计进行批控,精准性较低,无法满足用户定量装车的需求。
为解决上述问题,本申请实施例提供了一种定量装车系统的检测装置,包括:控制器和三组测量设备;其中,三组测量设备包括第一组测量设备、第二 组测量设备和第三组测量设备。
第一组测量设备设置于罐区,且设置为获取物料途经罐区的第一测量参数;第二组测量设备设置于管道区,且设置为获取物料途经管道区的第二测量参数;第三组测量设备设置于装车区,且设置为获取物料途经装车区的第三测量参数;控制器与三组测量设备电连接,且设置为分别获取物料的第一测量参数、第二测量参数和第三测量参数。
控制器还设置为根据物料在同一时间段内的第一测量参数、第二测量参数和第三测量参数,获取物料途经罐区、管道区以及装车区的质量差异。
本申请实施例中,通过在定量装车系统的罐区设置第一组测量设备,在定量装车系统的管道区设置第二组测量设备,在定量装车系统的管道区设置第三组测量设备,从而通过第一组测量设备获取物料的第一测量参数,通过第二组测量设备获取物料的第二测量参数,通过第三组测量设备获取物料的第三测量参数,定量装车系统的检测装置包括上述三组测量设备,以及与上述测量设备电连接的控制器,控制器能够根据物料在同一时间段内的第一测量参数、第二测量参数和第三测量参数获取物料在途径罐区、管道区以及装车区形成的质量差异,也即,获取物料在整个定量装车过程中的装车精度,以及物料的损失情况。示例性的,如果物料损失较多,则控制器判断定量装车系统的装置精度较低,进而能够根据上述测量参数对工艺流程中影响精度的故障因素进行排查和定位,使得用户及时补救或改善故障,减少物料损失。
图1是本申请实施例提供的一种定量装车系统的检测装置的结构示意图,定量装车系统的检测装置包括三组测量设备,每组测量设备包括多种测量器件,多种测量器件设置为测量物料的各类参数。示例性的,三组测量设备为第一组测量设备12、第二组测量设备13和第三组测量设备14,第一组测量设备12设置于罐区,能够获取物料在罐区的第一测量参数,第二组测量设备13设置于管道区,且设置为获取物料在管道区的第二测量参数,第三组测量设备14设置于装车区,且设置为获取物料在装车区的第三测量参数。其中,上述物料均指的同一批次的物料。
图2是本申请实施例提供的另一种定量装车系统的检测装置的结构示意图,可选的,每组测量设备均可以包括温度测量器件21、压力测量器件22、流量测量器件23和密度测量器件24;第一测量参数、第二测量参数和第三测量参数均包括温度、压力、流量和密度。温度测量器件21能够获取物料的温度,压力测 量器件22能够获取物料的压力,流量测量器件23可以获取物料的流量,密度测量器件24能够获取物料的密度,本实施例中每组测量设备测量的物料均指的同一批次的物料,从而便于对该物料在罐区、管道区和装车区的不同区域的测量参数进行比较和分析,获取物料的性能,辅助对定量装车系统的精度测量。
控制器11可与第一组测量设备12、第二组测量设备13和第三组测量设备14电连接,以获取同一批物料在同一时间段内的第一测量参数、第二测量参数和第三测量参数,从而能够获取物料途径罐区、管道区和装车区的质量差异,在定量装车系统的装车精度较高时,物料在途径罐区、管道区和装车区的质量相同或趋于相同,罐区、管道区和装车区均不会有物料残留或物料泄露故障,但是定量装车系统管道繁多,上述故障非常容易发生,并且还可能存在其他故障,则本实施例通过第一测量参数、第二测量参数和第三测量参数获取到物料在途径罐区、管道区和装车区的质量差异,从而获取定量装车系统的装车精度是否合格,当物料在途径罐区、管道区和装车区的质量差异较大时,则定量装车系统的装车精度较低,需要进行故障排查和检修。
可选的,控制器11与每组测量设备之间可以通过RS485的通讯方式进行数据传输,使得控制器11和测量设备之间的数据传输速率高,传输距离远,控制器11能够连接更多的测量器件,并且对不同测量器件与控制器之间传输数据的抗干扰能力较强。
可选的,继续参考图2,第一组测量设备12还可以包括液位测量器件25,第一测量参数还包括液位;第三组测量设备14还包括装载质量测量器件26,第三测量参数还包括装载质量。
通过测量的罐区的温度、压力、流量和密度等测量参数,即能够计算获取物料经过罐区的质量,同理,也能够计算获取物料经过管道区的质量,以及计算获取物料经过装车区的质量,但本实施例为了辅助验证上述质量计算的精准率,可在第一组测量设备12中设置液位测量器件25,则使得液位测量器件25能够获取一段时间内物料罐内液位变化,便于获取物料体积变化,便于根据物料的密度获取质量,第三组测量设备14还可以包括装载质量测量器件26,从而测量装载至车辆上的装载质量,从而便于直接获取物料在装车区的质量。上述液位测量器件25和装载质量测量器件26便于获取更加准确的物料质量,增强定量装车系统的质量检测精度。
可选的,第一组测量设备12的温度测量器件21、压力测量器件22、密度 测量器件24和液位测量器件25可以设置于罐区罐腔,流量测量器件23可以设置于罐区出口;第二组测量设备13的温度测量器件21、压力测量器件22、流量测量器件23和密度测量器件24可以设置于管道区管腔;第三组测量设备14的温度测量器件21、压力测量器件22、流量测量器件23和密度测量器件24可以设置于装车区入口,装载质量测量器件26可以设置于装车区容纳腔底部。
为了增强测量器件的测量精度,第一组测量设备12的温度测量器件21、压力测量器件22、密度测量器件24和液位测量器件25设置于罐区的物料罐的罐腔的内壁上,流量测量器件23设置于罐区出口,从而精确物料罐放出物料的流量。同理,第二组测量设备13的温度测量器件21、压力测量器件22、流量测量器件23和密度测量器件24可以设置于管道区管腔内壁上,获取管道的温度、压力、流量和密度等参数,当管道区路径过长时,可每隔相同一段距离设置一个第二组测量设备13,以增强参数测量的准确性。第三组测量设备14温度测量器件21、压力测量器件22、流量测量器件23和密度测量器件24可以设置于装车区入口,装载质量测量器件26可以设置于装车区的车辆的容纳腔底部,从而对车辆内物料质量进行测量,示例性的,装载质量测量器件26可为地泵等器件,本实施例对此不进行限定。
在上述测量设备对测量参数的精准测量的基础上,可选的,控制器11可以设置为:根据物料在同一时间段内的第一测量参数获取物料途经罐区的第一质量,根据物料在同一时间段内的第二测量参数获取物料途经管道区的第二质量,根据物料在同一时间段内的第三测量参数获取物料途经装车区的第三质量;并将第一质量、第二质量以及第三质量进行比较,以获取物料在途经罐区、管道区以及装车区的质量差异。
对于同一批物料,若物料在工艺流程中无泄漏或掺入杂质等故障,在同一时间段内,从物料罐中放出的物料的第一质量,管道区流出的物料的第二质量,以及装车区装载的物料的第三质量,应为相等或近似相等,则本实施通过上述第一质量、第二质量和第三质量进行比较,若其差值超过设置阈值,则可判定物料在途径罐区、管道区以及装车区的质量差异较大,极可能存在物料的泄漏或掺入杂质等故障,需要停止物料的定量装车过程,对定量装车系统进行故障和检测,以降低物料损失,并提高定量装车的精度和物料纯度。
可选的,控制器11还可以设置为:根据每组测量设备获取的温度,检测定量装车系统的温度故障;根据每组测量设备获取的压力,检测定量装车系统的 泄露故障和堵塞故障;根据每组测量设备获取的流量,检测定量装车系统的泄露故障和堵塞故障;根据每组测量设备获取的密度,检测定量装车系统的杂质故障。
本实施例除了通过物料质量测量装车精度之外,还可以通过将罐区、管道区以及装车区的测量器件测得的参数进行横向对比,对定量装车系统进行故障检测。示例性的,可获取第一组测量设备12、第二组测量测设备13和第三组测量设备14测量的温度并进行比较,检测定量装车系统的温度故障,例如,若第二组测量设备13测得的管道区的物料的温度远小于第一组测量设备12测得的罐区的物料的温度,则说明管道区的保温部件出现故障,需要对保温部件进行检修。
可获取第一组测量设备12、第二组测量测设备13和第三组测量设备14测量的压力,检测定量装车系统的泄露故障和堵塞故障,例如,若第二组测量设备13测得的管道区的压力远大于第一组测量设备12测得的罐区压力,则说明管道极可能存在堵塞故障,而若第三组测量测设备13测得的装车区的压力远小于第二组测量设备13测得的管道区的压力,则说明管道可能存在泄露故障。此外,上述压力参数的横向比较,还可以测量管道阀门开关的失灵状态,例如,若第二组测量设备13测得的管道区的压力远大于第一组测量设备12测得的罐区压力,并且管道未被堵塞,则可能管道区输出端的阀门可能未按照控制打开,导致物料在管道区的堆积。
同理,可获取第一组测量设备12、第二组测量测设备13和第三组测量设备14测量的流量,检测定量装车系统的泄露故障和堵塞故障,例如,若第二组测量设备13测得的管道区的流量远大于第一组测量设备12测得的罐区出口流量,则说明管道极可能存在堵塞故障,而若第三组测量测设备13测得的装车区流量远小于第二组测量设备13测得的管道区的流量,则说明管道可能存在泄露故障。
可获取第一组测量设备12、第二组测量测设备13和第三组测量设备14测量的密度,检测定量装车系统的杂质故障,例如,若第二组测量设备13测得的管道区的密度与第一组测量设备12测得的罐区出口密度相差较大,则说明管道中被掺入了杂质,影响了物料的纯度。
上述故障检测过程均是将单个参数进行罐区、管道区和装车区的横向比较,此外,本实施例还可以通过多个参数的组合进行横向比较,以对定量装车系统进行故障检测,以增强故障检测和定位的准确性。例如,若第二组测量设备13 测得的管道区的压力大于第一组测量设备12测得的罐区压力,且第二组测量设备13测得的管道区的流量小于第一组测量设备12测得的罐区出口流量,则说明书管道区靠近装车区的管道发生堵塞。
可选的,定量装车系统的检测装置还可以包括:数据服务器15;控制器11与数据服务器15电连接,数据服务器15设置为存储第一测量参数、第二测量参数和第三测量参数,并使控制器11调用第一测量参数、第二测量参数和第三测量参数。
数据服务器15能够按照时间顺序存储第一测量参数、第二测量参数和第三测量参数的历史测量数据,便于用户对定量装车系统的检测装置进行后续评估,并能够使得控制器11随时调用上述历史检测数据,从而对定量装车系统的装车精度和故障检测进行分析。
基于同一构思,本申请实施例还提供一种定量装车系统的检测方法,应用于本申请任意实施例提供的定量装车系统的检测装置,图3是本申请实施例提供的一种定量装车系统的检测方法的流程示意图,如图3所示,本实施例的方法包括如下步骤:
S110、第一组测量设备12获取物料途经罐区的第一测量参数。
S120、第二组测量设备13获取物料途经管道区的第二测量参数。
S130、第三组测量设备14获取物料途经装车区的第三测量参数。
可选的,每组测量设备均可以包括温度测量器件21、压力测量器件22、流量测量器件23、密度测量器件24;第一测量参数、第二测量参数和第三测量参数均包括温度、压力、流量和密度;第一测量参数、第二测量参数和第三测量参数均包括温度、压力、流量和密度。
可选的,第一组测量设备12还可以包括液位测量器件25,第一测量参数还包括液位;第三组测量设备14还包括装载质量测量器件26,第三测量参数还包括装载质量。
可选的,第一组测量设备12的温度测量器件21、压力测量器件22、密度测量器件24和液位测量器件25可以设置于罐区罐腔,流量测量器件23可以设置于罐区出口;第二组测量设备13的温度测量器件21、压力测量器件22、流量测量器件23和密度测量器件24可以设置于管道区管腔;第三组测量设备14 的温度测量器件21、压力测量器件22、流量测量器件23和密度测量器件24可以设置于装车区入口,装载质量测量器件26可以设置于装车区容纳腔底部。
S140、控制器11分别获取物料在同一时间段内的第一测量参数、第二测量参数和第三测量参数,以获取物料途经罐区、管道区以及装车区的质量差异。
本申请实施例中,通过在定量装车系统的罐区设置第一组测量设备12,在定量装车系统的管道区设置第二组测量设备13,在定量装车系统的管道区设置第三组测量设备14,从而通过第一组测量设备12获取物料的第一测量参数,通过第二组测量设备13获取物料的第二测量参数,通过第三组测量设备14获取物料的第三测量参数,定量装车系统的检测装置包括上述三组测量设备,以及与上述测量设备电连接的控制器11,控制器11能够根据物料在同一时间段内的第一测量参数、第二测量参数和第三测量参数获取物料在途径罐区、管道区以及装车区形成的质量差异,也即,获取物料在整个定量装车过程中的装车精度,以及物料的损失情况。示例性的,如果物料损失较多,则控制器判断定量装车系统的装置精度较低,进而能够根据上述测量参数对工艺流程中影响精度的故障因素进行排查和定位,使得用户及时补救或改善故障,减少物料损失。
在上述实施例的一具体示例中,本示例对控制器11分别获取物料在同一时间段内的第一测量参数、第二测量参数和第三测量参数,获取物料途经罐区、管道区以及装车区的质量差异的具体工作过程进行详述,如图4所示,图4是本申请实施例提供的另一种定量装车系统的检测方法的流程示意图,如图4所示,上述S140包括如下步骤:
S210、根据物料在同一时间段内的第一测量参数获取物料途经罐区的第一质量。
S220、根据物料在同一时间段内的第二测量参数获取物料途经管道区的第二质量。
S230、根据物料在同一时间段内的第三测量参数获取物料途经装车区的第三质量。
S240、将第一质量、第二质量以及第三质量进行比较,以获取物料在途经罐区、管道区以及装车区的质量差异。
本实施例中,控制器11能够根据物料在同一时间段内第一测量参数计算获取物料途经罐区的第一质量,根据物料在同一时间段内第二测量参数计算获取物料途经管道区的第二质量,根据物料在同一时间段内第三测量参数计算获取 物料途经装车区的第三质量,在理想状态下,当定量装车系统的装车精度较高时,上述第一质量、第二质量和第三质量应该相等,但是若其相互之间存在差值,则说明物料存在泄露或混入杂质等状况,控制器可及时检测出上述状况,使得定量装车系统保持在较高的装车精度范围内,有利于避免物料的浪费,提高物料的运输效率。
在上述实施例的基础上,本实施例保证对定量装车系统的装车精度的基础上,能够根据第一测量参数、第二测量参数和第三测量参数,及时获取和定位定量装车系统的故障,如图5所示,图5是本申请实施例提供的另一种定量装车系统的检测方法的流程示意图,如图5所示,定量装车系统的检测方法还包括如下步骤:
S310、根据每组测量设备获取的温度,检测定量装车系统的温度故障。
S320、根据每组测量设备获取的压力,检测定量装车系统的泄露故障和堵塞故障。
S330、根据每组测量设备获取的流量,检测定量装车系统的泄露故障和堵塞故障。
S340、根据每组测量设备获取的密度,检测定量装车系统的杂质故障。
上述S310-S340的执行顺序无先后之分,可依次执行或者同时执行,从而及时发现和定位定量装车系统的故障,保证定量装车系统的稳定和装车过程的顺利进行。
本实施例保证对定量装车系统的装车精度的基础上,能够对第一测量参数、第二测量参数和第三测量参数中的相同参数进行横向比较,及时获取和定位定量装车系统的故障,使得用户能够及时对上述故障进行补救和改善,提高物料的运输效率,避免物料的浪费,保证定量装车系统的稳定性,使得装车过程能够顺利进行。

Claims (10)

  1. 一种定量装车系统的检测装置,包括:控制器(11)和三组测量设备;其中,所述三组测量设备包括第一组测量设备(12)、第二组测量设备(13)和第三组测量设备(14);
    所述第一组测量设备(12)设置于罐区,且设置为获取物料途经所述罐区的第一测量参数;所述第二组测量设备(13)设置于管道区,且设置为获取物料途经所述管道区的第二测量参数;所述第三组测量设备(14)设置于装车区,且设置为获取物料途经所述装车区的第三测量参数;所述控制器(11)与所述三组测量设备电连接,且设置为分别获取所述物料的所述第一测量参数、所述第二测量参数和所述第三测量参数;
    所述控制器(11)还设置为根据所述物料在同一时间段内的所述第一测量参数、所述第二测量参数和所述第三测量参数,获取所述物料途经所述罐区、所述管道区以及所述装车区的质量差异。
  2. 根据权利要求1所述的定量装车系统的检测装置,其中:
    每组所述测量设备包括温度测量器件(21)、压力测量器件(22)、流量测量器件(23)和密度测量器件(24);
    所述第一测量参数、所述第二测量参数和所述第三测量参数分别包括温度、压力、流量和密度。
  3. 根据权利要求2所述的定量装车系统的检测装置,其中:
    所述第一组测量设备(12)还包括液位测量器件(25),所述第一测量参数还包括液位;
    所述第三组测量设备(14)还包括装载质量测量器件(26),所述第三测量参数还包括装载质量。
  4. 根据权利要求3所述的定量装车系统的检测装置,其中:
    所述第一组测量设备(12)的温度测量器件(21)、压力测量器件(22)、密度测量器件(24)和液位测量器件(25)设置于罐区罐腔,流量测量器件(23)设置于罐区出口;
    所述第二组测量设备(13)的温度测量器件(21)、压力测量器件(22)、流量测量器件(23)和密度测量器件(24)设置于所述管道区管腔;
    所述第三组测量设备(14)的温度测量器件(21)、压力测量器件(22)、流量测量器件(23)和密度测量器件(24)设置于装车区入口,装载质量测量器件(26)设置于装车区容纳腔底部。
  5. 根据权利要求1所述的定量装车系统的检测装置,其中,所述控制器(11)设置为:
    根据所述物料在同一时间段内的所述第一测量参数获取所述物料途经所述罐区的第一质量;根据所述物料在同一时间段内的所述第二测量参数获取所述物料途经所述管道区的第二质量;根据所述物料在同一时间段内的所述第三测量参数获取所述物料途经所述装车区的第三质量;并将所述第一质量、所述第二质量以及所述第三质量进行比较,以获取所述物料在途经所述罐区、所述管道区以及所述装车区的质量差异。
  6. 根据权利要求2所述的定量装车系统的检测装置,其中,所述控制器(11)还设置为:
    根据每组测量设备获取的温度,检测定量装车系统的温度故障;根据每组测量设备获取的压力,检测所述定量装车系统的泄露故障和堵塞故障;根据每组测量设备获取的流量,检测所述定量装车系统的泄露故障和堵塞故障;根据每组测量设备获取的密度,检测所述定量装车系统的杂质故障。
  7. 根据权利要求1所述的定量装车系统的检测装置,还包括:数据服务器(15);
    所述控制器(11)与所述数据服务器(15)电连接,所述数据服务器(15)设置为存储所述第一测量参数、所述第二测量参数和所述第三测量参数,并使所述控制器(11)调用所述第一测量参数、所述第二测量参数和所述第三测量参数。
  8. 根据权利要求1所述的定量装车系统的检测装置,其中,所述控制器(11)与每组测量设备之间通过RS485的通讯方式进行数据传输。
  9. 一种定量装车系统的检测方法,应用于上述权利要求1-8任一项所述的定量装车系统的检测装置,所述定量装车系统的检测方法包括:
    第一组测量设备(12)获取物料途经罐区的第一测量参数;
    第二组测量设备(13)获取物料途经管道区的第二测量参数;
    第三组测量设备(14)获取物料途经装车区的第三测量参数;
    控制器(11)分别获取所述物料在同一时间段内的所述第一测量参数、所述第二测量参数和所述第三测量参数,以获取所述物料途经所述罐区、所述管道区以及所述装车区的质量差异。
  10. 根据权利要求9所述的定量装车系统的检测方法,其中,所述控制器 (11)分别获取所述物料在同一时间段内的所述第一测量参数、所述第二测量参数和所述第三测量参数,以获取所述物料途经所述罐区、所述管道区以及所述装车区的质量差异,包括:
    根据所述物料在同一时间段内的所述第一测量参数获取所述物料途经所述罐区的第一质量;
    根据所述物料在同一时间段内的所述第二测量参数获取所述物料途经所述管道区的第二质量;
    根据所述物料在同一时间段内的所述第三测量参数获取所述物料途经所述装车区的第三质量;
    将所述第一质量、所述第二质量以及所述第三质量进行比较,以获取所述物料在途经所述罐区、所述管道区以及所述装车区的质量差异。
PCT/CN2020/121654 2020-04-28 2020-10-16 定量装车系统的检测装置及方法 WO2021218054A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010350885.3A CN111487078A (zh) 2020-04-28 2020-04-28 一种定量装车系统的检测装置及方法
CN202010350885.3 2020-04-28

Publications (1)

Publication Number Publication Date
WO2021218054A1 true WO2021218054A1 (zh) 2021-11-04

Family

ID=71811816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121654 WO2021218054A1 (zh) 2020-04-28 2020-10-16 定量装车系统的检测装置及方法

Country Status (2)

Country Link
CN (1) CN111487078A (zh)
WO (1) WO2021218054A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487078A (zh) * 2020-04-28 2020-08-04 上海敬邦机电设备有限公司 一种定量装车系统的检测装置及方法
CN113550736A (zh) * 2021-07-26 2021-10-26 重庆夏软科技有限公司 应用于油气采集的异常分析系统及方法
CN113705993B (zh) * 2021-08-17 2023-11-21 青岛沃华软控有限公司 一种溶液自动装车用一体化远程信息管理系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868177A (en) * 1995-07-27 1999-02-09 Chemical Control Systems, Inc. Method and apparatus for injecting additives
CN103771329A (zh) * 2012-10-26 2014-05-07 中国石油化工股份有限公司 一种火车大鹤管装车计量系统
CN204714507U (zh) * 2015-05-29 2015-10-21 山东陆地科技有限责任公司 原油自动控制定量装车装置
CN107244567A (zh) * 2017-07-24 2017-10-13 兖矿科技有限公司 一种煤场智能装运系统
CN107621813A (zh) * 2017-09-15 2018-01-23 石河子开发区天业化工有限责任公司 一种液碱智能充装计量控制方法
CN108313761A (zh) * 2018-04-10 2018-07-24 常铁坡 一种用于装载粉状物料的定量装车系统及方法
CN111487078A (zh) * 2020-04-28 2020-08-04 上海敬邦机电设备有限公司 一种定量装车系统的检测装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868177A (en) * 1995-07-27 1999-02-09 Chemical Control Systems, Inc. Method and apparatus for injecting additives
CN103771329A (zh) * 2012-10-26 2014-05-07 中国石油化工股份有限公司 一种火车大鹤管装车计量系统
CN204714507U (zh) * 2015-05-29 2015-10-21 山东陆地科技有限责任公司 原油自动控制定量装车装置
CN107244567A (zh) * 2017-07-24 2017-10-13 兖矿科技有限公司 一种煤场智能装运系统
CN107621813A (zh) * 2017-09-15 2018-01-23 石河子开发区天业化工有限责任公司 一种液碱智能充装计量控制方法
CN108313761A (zh) * 2018-04-10 2018-07-24 常铁坡 一种用于装载粉状物料的定量装车系统及方法
CN111487078A (zh) * 2020-04-28 2020-08-04 上海敬邦机电设备有限公司 一种定量装车系统的检测装置及方法

Also Published As

Publication number Publication date
CN111487078A (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
WO2021218054A1 (zh) 定量装车系统的检测装置及方法
US5046519A (en) Method and apparatus for monitoring a fluid conduit system
KR20080025415A (ko) 압력 센서를 보유하는 유량 제어 장치를 이용한 유체공급계의 이상 검출 방법
EP0545450B1 (en) Statistically detecting leakage of fluid from a conduit
CN105890844A (zh) 隐蔽储油罐微泄漏定性与定量检测方法
CN111024327B (zh) 漏气自检和对待测物进行漏气检测的装置和方法
WO2022041968A1 (zh) 一种液位监测装置、取样监测方法
CN113720555A (zh) 一种油气管道球阀内漏的检测装置及方法
US20050252277A1 (en) Method and apparatus for continuously monitoring interstitial regions in gasoline storage facilities and pipelines
CN113357549B (zh) 一种机舱内双壁管泄漏检测方法
CN108680347B (zh) 一种杂质环境下阀门流量特性鉴定方法
CN107121177A (zh) 明渠与管道污水流量一体化标准装置
CN208037231U (zh) 一种涂料粉料储料罐
CN208596095U (zh) 成品油罐分层密度计
CN212567959U (zh) 一种定量装车系统的检测装置
CN113740006A (zh) 一种油气回收系统的检测装置及其应用和检测方法
KR101571968B1 (ko) 선박용 연료공급 모니터링 장치
JP5475076B2 (ja) 水位変化検出機能付残留塩素計
CN206919988U (zh) 明渠与管道污水流量一体化标准装置
CN101603889A (zh) 一种逐点扫描式微液量计量装置及方法
CN112216411A (zh) 一种压水堆核电站一回路排气方法
CN217878236U (zh) 一种油流量管道试压及吹扫装置
CN115962826A (zh) 一种脱硫浆液流量计校验装置及方法
CN220872447U (zh) 一种空气在线监测的自动质控气路装置
CN108007518A (zh) 油耗计算装置和方法及工程机械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933783

Country of ref document: EP

Kind code of ref document: A1