WO2021217883A1 - 具有扰流散热结构的机器人动力关节及机器人 - Google Patents

具有扰流散热结构的机器人动力关节及机器人 Download PDF

Info

Publication number
WO2021217883A1
WO2021217883A1 PCT/CN2020/101109 CN2020101109W WO2021217883A1 WO 2021217883 A1 WO2021217883 A1 WO 2021217883A1 CN 2020101109 W CN2020101109 W CN 2020101109W WO 2021217883 A1 WO2021217883 A1 WO 2021217883A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
rotor
joint
gap
stator
Prior art date
Application number
PCT/CN2020/101109
Other languages
English (en)
French (fr)
Inventor
黄强
张武
孟非
孟兆平
余张国
曲道奎
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Publication of WO2021217883A1 publication Critical patent/WO2021217883A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0054Cooling means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges

Definitions

  • the invention relates to the technical field of robots, in particular to a robot power joint and a robot with a spoiler heat dissipation structure.
  • Humanoid robots as a whole have requirements such as light weight, high strength, high explosiveness, and high reliability; as the power source of the robot, the power joints require that the torque motor as the core power component must have high peak torque density, that is, the output of the unit weight of the motor The highest possible torque.
  • the iron core of the motor will produce iron loss in the alternating magnetic field, copper loss will also occur after the winding is energized, and other types of losses will also occur, which will cause the temperature of the motor to rise .
  • the temperature rise of the motor exceeds the maximum operating temperature, it will damage the motor, thereby destroying the stability of the power joint; the design of high explosive torque of the motor will eventually be limited by the excessive temperature rise caused by the high overload of the motor.
  • Oil cooling requires a liquid cooler to circulate the oil inside or outside the motor, and the cooling fan requires a specially designed protective structure. . Although liquid cooling, oil cooling or additional cooling fans can meet the heat dissipation requirements of the motor, their large size and complex structure of the heat dissipation device do not meet the requirements of lightweight and compact biomimetic robots. Therefore, it is necessary to design an effective and suitable heat dissipation structure for torque motors and joints of bionic robots.
  • the present invention provides a robot power joint and a robot with a spoiler heat dissipation structure to solve one or more problems in the prior art.
  • the present invention discloses a power joint with a spoiler and heat dissipation structure.
  • the power joint includes a motor, a joint housing and an end encapsulation component, and the motor is mounted on the joint housing.
  • the end encapsulation component is located at the end of the motor, a first gap is provided between the rotor and the stator of the motor, and a first end is provided between the first end of the rotor and the end encapsulation component Part clearance
  • the middle part of the rotor has an axial through cavity, and a plurality of axial airflow channels are formed in the axial through cavity through spacers;
  • the axial air flow channel, the first end gap, and the first gap form a connected first air channel;
  • the axial air flow channel, the second end gap, and the second gap form a connected second air channel
  • the end of the joint housing away from the first end gap has a plurality of heat dissipation channels connecting the hollow cavity with the outside, so that the first air channel and the second air channel communicate with the outside to The air flow is caused to flow along the first air passage and the second air passage when the rotor is rotating.
  • heat dissipation fins are installed at the winding end of the stator.
  • the heat dissipation fins are a plurality of heat dissipation fins uniformly arranged along the circumference at the winding end of the stator.
  • the spacer is a blade, and the blade extends radially to the inner wall of the rotor along the central axis of the rotor in the axial through cavity of the rotor.
  • the rotor and the blade are integrally formed.
  • an end of the joint housing away from the first end gap is provided with a joint flange, and each heat dissipation channel includes an end of the joint housing away from the first end gap.
  • a ventilation slot is opened in the circumferential direction at one end and a through hole is arranged on the joint flange.
  • the ventilation slots and through holes of the plurality of heat dissipation channels are uniformly arranged in the circumferential direction of the joint housing and in the circumferential direction of the joint flange, respectively.
  • the number of the heat dissipation runners is equal to the number of slots of the stator, and the ends of the heat dissipation runners are flush with the winding ends of the stator.
  • a thermally conductive material is used to fill gaps between the heat dissipation fins and the winding ends of the stator.
  • the present invention provides a bionic robot including the above-mentioned power joint with a spoiler heat dissipation structure.
  • an axial air flow channel is provided on the rotor of the motor, so that a first air channel and a second air channel are formed inside the power joint;
  • the end of the inner cavity of the package motor is provided with a heat dissipation channel for connecting the first air channel and the second air channel with the outside; so that under the action of the rotation of the motor rotor, the external air can flow along the first air channel and the second air channel.
  • the flow of the two air channels strengthens the convection heat dissipation capacity between the motor and the joint shell, reduces the transient temperature rise of the motor under the peak state, improves the load capacity of the motor, and ensures the stability of the power joint; and the power joint There is no need to install other heat dissipation devices, so the requirements of lightweight and compact robots are also met on the premise of meeting the heat dissipation requirements.
  • cooling fins are arranged at the winding end of the stator, which increases the heat dissipation area of the winding end, improves the heat dissipation efficiency of the winding end, and avoids the phenomenon of damaging the motor due to the temperature rise of the winding end; and
  • the heat dissipation fins at the ends combine with the convection heat dissipation structure in the power joint, which further strengthens the convection heat dissipation capacity of the winding ends.
  • FIG. 1 is a schematic diagram of the structure of a stator and a rotor of a motor according to an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of a joint housing according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the internal structure of a dynamic joint according to an embodiment of the present invention.
  • Rotor 111 First gap 112: Axial air flow channel
  • Second gap 122 Heat dissipation fin 124: Second end gap
  • Joint shell 210 Heat dissipation channel 220: Joint flange
  • connection in this text can not only refer to direct connection, but also to indicate the presence of Indirect connection of intermediates.
  • Direct connection means that two parts are connected without the aid of intermediate parts
  • indirect connection means that the two parts are connected by other parts.
  • dynamic joints in this article can be applied to the arm structure of an industrial robot, and can also be applied to the leg structure of a footed robot.
  • FIG. 3 is an implementation of the present invention.
  • first gap 111 between the stator 120 and the rotor 110.
  • the end encapsulation component is located at the end of the motor, and it forms a closed hollow cavity with the joint housing 200; further, there is a first end gap 114 between the first end of the rotor 110 and the end encapsulation component; specifically, The end encapsulation component may be the end cover 300.
  • the first end gap 114 is the gap formed between the end of the rotor 110 and the end cover 300, and the first end gap 114 can be used as a flow gap for airflow.
  • the stator 120 is sleeved on the outside of the rotor 110, the middle of the rotor 110 has an axial through cavity, and the axial through cavity forms two or more axial airflows through one or more spacers.
  • the first end of the stator 120 and the first end of the rotor 110 are located at the same end of the motor, and the end packaging components adjacent to the stator 120 and the rotor 110 may also be the same.
  • the second end gap 124 may be a gap formed between the end of the stator 120 and the end cover 300, and the axial air flow channel 112, the second end gap 124, and the second gap 121 form a connected second air channel.
  • the end encapsulation component may be a component other than the end cap. For example, when the joint housing 200 has a split structure with an upper half and a lower half, the end encapsulation component may also be Located on the end wall of the hollow cavity of the joint housing 200 itself.
  • One end of the hollow cavity of the joint housing 200 away from the first end gap 114 also has a plurality of heat dissipation channels 210 connecting the hollow cavity with the outside.
  • the heat dissipation channels 210 can make the first air channel and the second air channel Both are connected to the outside.
  • the high-speed rotation of the rotor 110 can drive the airflow to flow along the first air channel and the second air channel.
  • the strong convection air formed by the self-air-cooled turbulent heat dissipation structure in the motor strengthens the convection heat dissipation capacity between the motor and the joint housing.
  • the specific structure of the heat dissipation channel 210 may be a hole or a ventilation groove structure communicating with the outside; as can be seen from the joint housing as shown in FIG. 2, the joint housing 200 may be a cylindrical cylinder with a hollow part. Structure, a part of the hollow part of the cylindrical structure is used as an inner cavity for encapsulating the stator 120 and the rotor 110, and the end wall of the inner cavity has a hole for extending the motor output shaft to the outside of the joint housing 200.
  • the end of the joint housing 200 of the cylindrical barrel structure away from the first end gap 114 may also be provided with a joint flange 220, which is used to connect the joint housing 200 to other components, such as the body of a robot.
  • the joint flange 220 has a plurality of rectangular long grooves arranged in the axial direction, and the plurality of rectangular long grooves are used as heat dissipation channels 210 to connect the outside with the inner cavity for encapsulating the stator 120 and the rotor 110; in addition to this
  • the heat dissipation channel 210 can also be regarded as a ventilation groove formed in the circumferential direction of the joint housing 200 and a through hole arranged on the joint flange 220, and the through hole is connected to the ventilation groove.
  • the specific structure of the heat dissipation channel 210 can be changed according to the specific structure of the joint housing 200; for example, the end of the cavity of the joint housing 200 may also have only one cavity end wall, and the stator of the motor Both 120 and the rotor 110 are enclosed in the inner cavity.
  • the inner cavity end wall has a through hole at the center, and the output shaft of the motor extends from the through hole to the outside of the joint.
  • the first air duct and the second air duct are connected to the heat dissipation runner 210 outside.
  • the plurality of heat dissipation channels 210 on the joint housing 200 with a cylindrical cylindrical structure may be evenly distributed along the circumference of the joint housing 200 or arranged in a mirror image along the circumference of the joint housing 200.
  • the joint housing 200 may also have a cavity structure other than a cylindrical body, such as a square structure; specifically, a cylindrical inner cavity may be provided at one end of the square joint housing 200, and the motor The stator 120 is arranged in the cylindrical cavity.
  • One end of the cylindrical cavity of the square joint housing 200 can also be encapsulated by the end cap 300, and the end away from the first end gap can also be provided with a joint flange structure similar to the cylindrical joint housing.
  • the joint flange structure is provided with a plurality of grooves or through holes for communicating the cylindrical inner cavity with the outside to serve as heat dissipation channels. It should be understood that the specific number and specific distribution of the heat dissipation runners can be changed as needed, as long as it can be ensured that both the first and second air channels are connected to the outside; and in the rotating state of the rotor 110, not only
  • the external air can be circulated along the first path formed by the axial air flow channel 112, the first end gap 114, the first gap 111, and the heat dissipation channel 210, and it can also flow along the axial air flow channel 112 and the second end gap.
  • the second path formed by the second gap 121 and the heat dissipation channel 210 may be circulated.
  • the joint housing 200 is provided with the first air duct and the second air duct.
  • the heat dissipation channel 210 connected by the channel guides the airflow through the rotor 110 and the stator 120 of the motor and the joint housing 200, so that the originally static air is transformed into a turbulent state, which improves the heat dissipation capacity of the motor.
  • the power joint effectively improves the heat dissipation efficiency of the power joint by providing a convection heat dissipation channel between the joint housing 200 and the motor; compared with the power joint, it adopts a liquid-cooled heat dissipation method, so that the power joint can still maintain a relatively compact structure; and Compared with the natural air-cooled heat dissipation method, the turbulent effect of the airflow avoids heat accumulation in the stator 120 of the motor, thereby ensuring the stability of the power joint.
  • a heat dissipation fin 122 is also provided at the winding end of the stator 120 to increase the heat dissipation area of the winding end; the heat dissipation fin 122 further enhances the convection heat dissipation capacity of the motor.
  • the winding end of the stator may be equipped with a plurality of heat dissipation fins 122, which are evenly distributed along the circumferential direction of the stator; and further in order to make the stator end winding and the heat dissipation fins 122 separate An effective heat conduction path is formed between the heat dissipation fins 122 and the winding end of the stator 120 to fill the gaps between the heat dissipation fins 122 and the winding ends of the stator 120.
  • the second end gap 124 is the gap formed between the heat dissipation fin 122 and the end packaging component, and the end packaging component may be the end cover 300; therefore, in the rotating state of the rotor 110 , The external airflow can sequentially follow the axial airflow channel 112, the gap between the heat dissipation fin 122 and the end cover 300, the second gap, and the heat dissipation channel 210 on the joint housing 200 as a complete air flow path.
  • the spacer inside the rotor 110 of the motor may be a blade 113.
  • the blades 113 penetrate the cavity in the axial direction of the rotor and extend radially along the central axis of the rotor to the inner wall of the rotor.
  • the blades 113 can also be regarded as being arranged along the axial direction of the rotor 110.
  • the axial through cavity of the rotor 110 has six blades 113 arranged in the axial direction, and the six blades 113 divide the hollow structure into six axial airflow channels 112.
  • the rotation of the rotor 110 can introduce the external airflow from the six axial airflow channels 112 into the inside of the motor, and divide the airflow to the first air duct and the second air duct at the end of the rotor 110, thereby realizing the stator 120 and the rotor 110 simultaneous heat dissipation.
  • the specific arrangement of the blades 113 in the axially penetrating cavity of the rotor 110 is not limited, as long as the axial air flow channel 112 of the air flow can be formed, that is, the convective heat dissipation of the motor and the joint housing 200 can be realized; and The number of airflow channels 112 and blades 113 can also be set according to specific needs.
  • the axial air flow passage 112 can also be realized by providing a plurality of axially penetrating through holes on the solid rotor shaft itself.
  • the rotor 110 and the blade 113 may be formed as an integral structure, which reduces the assembly process of the blade 113 and the rotor 110, improves the processing efficiency, and facilitates mass production.
  • the rotor 110 and the blade 113 can also be two separate parts.
  • the blade 113 is detachably fixed in the axial through cavity of the rotor 110, and the specific fixing method can be screw or bolt fixing; examples
  • the side of the blade 113 may be provided with a fixing hole for connecting with the rotor 110, through which screws or bolts fix the blade 113 on the inner wall of the rotor 110; or the blade 113 and the rotor 110 may also pass through other fixing holes.
  • the connection aids realize the connection.
  • a plurality of blades 113 are provided on the rotor shaft of the original hollow structure, and the blades 113 can also function as stiffeners, which further improves the strength and load-carrying capacity of the rotor 110.
  • the number of heat dissipation channels 210 and the number of slots of the stator 120 can be set equal. Further, the ends of the heat dissipation channel 210 and the winding ends of the stator 120 are arranged in a flush state, so that a short air flow path can be maintained between the motor and the joint housing 200.
  • FIG. 3 shows the movement path of forced convection air between the motor in the power joint and the joint housing 200 when the motor rotor 110 is in a rotating state.
  • the air enters from the axial air flow channel 112 of the rotor 110, flows through the end of the rotor 110 and the end of the heat dissipation fin 122 at the winding end of the stator 120, and flows through the first part between the stator 120 and the rotor 110.
  • the motor has achieved continuous self-air cooling convection heat dissipation.
  • the present invention also provides a bionic robot, which includes the dynamic joint in the above-mentioned embodiment.
  • the power joint is the main component of the bionic robot, so the performance of the power joint affects the operating state of the entire robot;
  • the power joint in the embodiment of the present invention has a turbulence and heat dissipation structure between the motor and the joint housing 200, which improves the performance of the motor in the power joint.
  • the heat dissipation capacity, under the continuous high torque output of the motor not only meets the requirements of the bionic robot for the lightweight and compact structure of the power joint, but also ensures the stable operation of the robot.
  • the power joint of the present invention is provided with an axial air flow channel on the motor rotor to form a first air duct and a second air duct inside the power joint; and the joint housing is used for packaging
  • the end of the inner cavity of the motor is provided with a heat dissipation channel for connecting the first air channel and the second air channel with the outside; under the continuous rotation of the motor rotor, the external air can be along the circumference of the motor rotor and stator Circulating flow, so the convection heat dissipation capacity between the motor and the joint housing is strengthened, the transient temperature rise of the motor under the peak state is reduced, the load capacity of the motor is improved, and the stability of the power joint is guaranteed; and the turbulence heat dissipation
  • the structure does not need to use other heat dissipation devices, so the requirements of lightweight and compact robots are also met on the premise of meeting the heat dissipation requirements.
  • radiating fins are arranged at the winding end of the stator, which further increases the heat dissipation area of the winding end, improves the heat dissipation efficiency of the winding end, and avoids the phenomenon of motor damage due to heat accumulation at the winding end, and further Improved the stability of the dynamic joint.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

本发明提供一种具有扰流散热结构的机器人动力关节及机器人,动力关节包括电机、关节壳体和端部封装部件,电机安装在关节壳体形成的中空腔内,端部封装部件位于电机的端部,转子与定子之间具有第一缝隙,转子的第一端与端部封装部件之间具有第一端部间隙;转子中部通过间隔件形成有多个轴向气流通道;定子的周向表面与关节壳体之间具有第二缝隙,定子的第一端与端部封装部件之间具有第二端部间隙,定子的第一端与转子的第一端为电机的同一端;轴向气流通道、第一端部间隙及第一缝隙形成连通的第一风道;轴向气流风道、第二端部间隙及第二缝隙形成连通的第二风道;关节壳体的远离第一端部间隙的一端具有使第一风道、第二风道与外部连通的散热流道。

Description

具有扰流散热结构的机器人动力关节及机器人 技术领域
本发明涉及机器人技术领域,尤其涉及一种具有扰流散热结构的机器人动力关节及机器人。
背景技术
仿人机器人整体具有轻量化、高强度、高爆发、高可靠性等要求;动力关节作为机器人的动力来源,要求作为核心动力部件的力矩电机必须具有高峰值转矩密度,即电机单位重量要输出尽可能高的转矩。但在电机转子的连续旋转状态下,电机铁芯处在交变磁场中会产生铁损,绕组通电后还会产生铜损,并且还会产生其它类型的损耗,这些损耗会导致电机温度升高。当电机的温升超过最大工作温度时,就会损坏电机,进而破坏动力关节的稳定性;电机的高爆发转矩设计最终必然会受到电机高过载下带来的温升过高限制。
现有的电机在进行散热时,一般是采用自然风冷、液冷和油冷却的方式。自然风冷是对电机不做任何的结构改变,电机产生的热能传导至外部环境以进行自然冷却,该降温方式降温速度慢,而对于高爆发力要求的仿生机器人,根本满足不了其散热要求。液冷是在电机的机壳内设置液冷水道,制冷液在液冷水道内循环流动以达到降温的目的;该方式需要单独设置液冷装置,并需将机壳内部的液冷水道与外部的液冷装置接通。在一些大型的异步电机中,也采用油冷却或串联冷却风扇的散热方式,油冷却需要在电机的内部或外部设置用于使油循环流动的液冷器,冷却风扇需要有特殊设计的防护结构。液冷、油冷却或加装冷却风扇的方式虽然能满足电机的散热需要,但其体积大,散热装置结构复杂,不符合仿生机器人轻质化、紧凑型的要求。因此设计一种行之有效且适用于仿生机器人的力矩电机及其关节的散热结构是必要的。
发明内容
有鉴于此,本发明提供了一种具有扰流散热结构的机器人动力关节及机器人,以解决现有技术中存在的一个或多个问题。
根据本发明的一个方面,本发明公开了一种具有扰流散热结构的动力关节,所述动力 关节包括电机、关节壳体和端部封装部件,所述电机安装在所述关节壳体形成的中空腔内,所述端部封装部件位于所述电机的端部,所述电机的转子与定子之间具有第一缝隙,转子的第一端与所述端部封装部件之间具有第一端部间隙;
所述转子中部具有轴向贯通腔体,所述轴向贯通腔体内通过间隔件形成有多个轴向气流通道;
所述定子的周向表面与所述关节壳体之间具有第二缝隙,所述定子的第一端与所述端部封装部件之间具有第二端部间隙,所述定子的第一端与所述转子的第一端为电机的同一端;
其中,所述轴向气流通道、第一端部间隙及第一缝隙形成连通的第一风道;所述轴向气流风道、第二端部间隙及第二缝隙形成连通的第二风道;所述关节壳体的远离所述第一端部间隙的一端具有将所述中空腔与外部连通的多个散热流道,使所述第一风道、第二风道与外部连通,以使得在所述转子转动的状态下气流沿所述第一风道和所述第二风道流动。
在本发明的一些实施例中,所述定子的绕组端部安装有散热翅片。
在本发明的一些实施例中,所述散热翅片为在所述定子的绕组端部沿圆周均匀排布的多个散热翅片。
在本发明的一些实施例中,所述间隔件为叶片,所述叶片在所述转子的轴向贯通腔体内沿转子中心轴径向延伸至所述转子的内壁。
在本发明的一些实施例中,所述转子与所述叶片为一体成型结构。
在本发明的一些实施例中,所述关节壳体的远离所述第一端部间隙的一端具有关节法兰,每一散热流道包括在关节壳体的远离所述第一端部间隙的一端的圆周方向上开具的通风槽和在所述关节法兰上布置的通孔。
在本发明的一些实施例中,所述多个散热流道的通风槽和通孔分别在所述关节壳体的周向上和在所述关节法兰的周向上均匀布置。
在本发明的一些实施例中,所述散热流道的数量与所述定子的槽数相等,所述散热流道的端部与所述定子的绕组端部相对应的平齐设置。
在本发明的一些实施例中,所述散热翅片与所述定子的绕组端部之间用导热材料填隙。
根据本发明的另一方面,本发明提供了一种仿生机器人,所述仿生机器人包括如上所述的具有扰流散热结构的动力关节。
本发明实施例中的具有扰流散热结构的动力关节,在电机的转子上设置轴向气流通道,使动力关节内部形成第一风道和第二风道;并且,在关节壳体的用于封装电机的内腔的端部设置用于使第一风道、第二风道与外部均接通的散热流道;以在电机转子的旋转作用下,外部气体可沿第一风道和第二风道流动,加强了电机与关节壳体之间的对流散热能力,降低了电机峰值状态下的暂态温升,提高了电机的承载能力,保证了动力关节的稳定性;并且该动力关节无需加装其它的散热装置,因此在满足散热需求的前提下也满足了机器人轻质化、紧凑化的要求。
除此之外,定子的绕组端部设置散热翅片,增加了绕组端部的散热面积,提高了绕组端部的散热效率,避免了由于绕组端部的温升而损坏电机的现象;并且绕组端部的散热翅片结合动力关节内的对流散热结构,进一步的加强了绕组端部的对流散热能力。
本发明的附加优点、目的,以及特征将在下面的描述中将部分地加以阐述,且将对于本领域普通技术人员在研究下文后部分地变得明显,或者可以根据本发明的实践而获知。本发明的目的和其它优点可以通过在书面说明及其权利要求书以及附图中具体指出的结构实现到并获得。
本领域技术人员将会理解的是,能够用本发明实现的目的和优点不限于以上具体所述,并且根据以下详细说明将更清楚地理解本发明能够实现的上述和其他目的。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的限定。附图中的部件不是成比例绘制的,而只是为了示出本发明的原理。为了便于示出和描述本发明的一些部分,附图中对应部分可能被放大,即,相对于依据本发明实际制造的示例性装置中的其它部件可能变得更大。在附图中:
图1为本发明一实施例的电机定子及转子的结构示意图。
图2为本发明一实施例的关节壳体的结构示意图。
图3为本发明一实施例的动力关节的内部结构示意图。
附图标记:
110:转子         111:第一缝隙         112:轴向气流通道
113:叶片         114:第一端部间隙     120:定子
121:第二缝隙     122:散热翅片         124:第二端部间隙
200:关节壳体     210:散热流道         220:关节法兰
300:端盖
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。
在此,需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
应该强调,术语“包括/包含/具有”在本文使用时指特征、要素、步骤或组件的存在,但并不排除一个或更多个其它特征、要素、步骤或组件的存在或附加。
在此,还需要说明的是,本说明书内容中所出现的方位名词是相对于附图所示的位置方向;如果没有特殊说明,术语“连接”在本文不仅可以指直接连接,也可以表示存在中间物的间接连接。直接连接为两个零部件之间不借助中间部件进行连接,间接连接为两个零部件之间借助其他零部件进行连接。应当理解的是,本文中的动力关节皆可以应用在工业机器人的手臂结构,也可以应用在足式机器人的腿部结构。
为了加强电机与关节壳体之间的扰流散热能力,保证动力关节的稳定输出及结构紧凑性,本发明实施例提供了一种具有扰流散热结构的动力关节,图3为本发明一实施例的具有扰流散热结构的动力关节的结构示意图;如图3所示,该动力关节包括电机、关节壳体200和端部封装部件,其中关节壳体200具有空腔结构;电机包括定子120和转子110,并且定子120和转子110被安装在关节壳体200的中空腔体内。为了保证电机的转子110有效的转动,定子120和转子110之间具有第一缝隙111。端部封装部件位于电机的端部,其与关节壳体200形成一个封闭的中空腔;进一步的,转子110的第一端与端部封装部件之间具有第一端部间隙114;具体的,端部封装部件可为端盖300,此时第一端部间隙114即为转子110的端部与端盖300之间形成的间隙,第一端部间隙114可用作气流的流动间隙。
在本发明中,定子120套置在转子110的外部,转子110的中部具有轴向贯通腔体,且该轴向贯通腔体通过一个或多个间隔件形成两个或更多个轴向气流通道112,并且轴向气流通道112、第一端部间隙114及第一缝隙111形成连通的第一风道。进一步的,定子120的外圆周面与关节壳体的内腔壁之间具有第二缝隙121,且定子120的第一端与端部 封装部件之间也具有第二端部间隙124,值得注意的是,定子120的第一端与转子110的第一端位于电机的同一端,与定子120和转子110相邻的端部封装部件也可为同一个。类似的,第二端部间隙124可为定子120的端部与端盖300之间形成的间隙,轴向气流通道112、第二端部间隙124及第二缝隙121形成连通的第二风道。值得注意的是,端部封装部件可以为除端盖之外的其他部件,例如,当关节壳体200为具有上半部和下半部的分体结构时,其端部封装部件也可为位于关节壳体200本身的中空腔体的端壁。
关节壳体200的中空腔体的远离第一端部间隙114的一端还具有将中空腔体与外部连通的多个散热流道210,散热流道210可使第一风道、第二风道均与外部接通。在转子110的旋转状态下,转子110的高速旋转可带动气流沿着第一风道和第二风道流动。电机内的自风冷扰流散热结构形成的强对流空气,加强了电机与关节壳体之间的对流散热能力。
进一步的,散热流道210的具体结构可为与外部连通的孔或通风槽结构;如图2中所示的关节壳体可以看出,关节壳体200可为具有中空部的圆柱形筒体结构,该筒体结构中空部的一部分作为用于封装定子120和转子110的内腔,内腔的端壁上具有用于使电机输出轴伸出至关节壳体200外部的孔。圆柱形筒体结构的关节壳体200的远离第一端部间隙114的一端还可设有关节法兰220,关节法兰220用于将关节壳体200连接到其他部件上,如机器人的躯体或肢体等;关节法兰220上具有沿轴向方向布置的多个矩形长槽,多个矩形长槽作为散热流道210以连通外部与用于封装定子120和转子110的内腔;除此之外,散热流道210也可以看作为在关节壳体200的周向上开具的通风槽和在关节法兰220上布置的通孔,通孔与通风槽连通。除此之外,散热流道210的具体结构可根据关节壳体200的具体结构进行相应的变化;例如,关节壳体200的内腔端部也可仅具有一个内腔端壁,电机的定子120和转子110均被封装在内腔内,内腔端壁的中心部位具有通孔,电机的输出轴从该通孔延伸至关节外部,内腔端壁上也可仅开设槽孔作为使第一风道、第二风道与外部接通的散热流道210。
另外,位于圆柱形筒体结构的关节壳体200上的多个散热流道210可以沿该关节壳体200的圆周均匀分布,或沿关节壳体200的圆周镜像布置。并且关节壳体200也可为除圆柱形筒体之外的具有空腔结构的其他结构形状,如方形结构;具体的,可在方形关节壳体200的一端设有圆柱形的内腔,电机的定子120被设置在该圆柱形内腔内。方形关节壳体200的圆柱形内腔的一端也可通过端盖300进行封装,并且远离第一端部间隙的一端可以与圆柱形关节壳体相类似的也设置有关节法兰结构,并在该关节法兰结构上设置多个用于使圆柱形内腔与外部连通的凹槽或通孔以用作散热流道。应当理解的是,散热流道的具体 数量及具体分布方式可根据需要进行改变,只要能保证其将第一风道、第二风道均与外部连通;并且在转子110的旋转状态下,不仅可使外部空气沿轴向气流通道112、第一端部间隙114、第一缝隙111、散热流道210形成的第一路径进行循环流动,也可沿轴向气流通道112、第二端部间隙、第二缝隙121、散热流道210形成的第二路径进行循环流动即可。
在上述的动力关节中,由于电机的定子120和转子110在关节壳体200内一般是封闭的,定子和转子110通风散热差;在关节壳体200上设置与第一风道和第二风道连通的散热流道210,在转子110的旋转状态下,引导气流通过电机的转子110和定子120及关节壳体200,使原本静止的空气转变为湍流状态,提高了电机的散热能力。该动力关节通过在关节壳体200和电机间设置对流散热通道,有效的提高了动力关节的散热效率;相对于动力关节采用液冷的散热方式,可使动力关节仍然保持相对紧凑的结构;而相对于自然风冷的散热方式,由于气流的湍流作用避免了电机的定子120产生热量聚集现象,因此保证了动力关节的稳定性。
进一步的,在电机的运行状态下,电机的绕组端部为散热薄弱处,其热传导能力较定子槽内的绕组差,因此绕组端部的热量难以散去,并容易形成热孤岛;严重时甚至会烧毁电机,影响电机的稳定运行。因此本发明也在定子120的绕组端部设置散热翅片122以增大绕组端部散热面积;该散热翅片122进一步的加强了电机的对流散热能力。如图1所示,定子的绕组端部可安装有多个散热翅片122,多个散热翅片122沿定子的圆周方向均匀分布;并且进一步的为了使定子端部绕组与散热翅片122之间形成有效的热传导路径,散热翅片122与定子120的绕组端部之间通过导热材料进行填隙。应当理解的是,此时第二端部间隙124为散热翅片122与端部封装部件之间所形成的间隙,并且端部封装部件可为端盖300;因此,在转子110的旋转状态下,外部气流可依次沿轴向气流通道112、散热翅片122与端盖300之间的间隙、第二间隙、关节壳体200上的散热流道210作为一条完整的空气流动路径。
在本发明的一个实施例中,电机的转子110内部的间隔件可为叶片113。叶片113在转子的轴向贯通腔体内沿转子的中心轴径向延伸至转子的内壁。具体的也可将叶片113看作为沿转子110的轴向方向布置。如图1所示,转子110的轴向贯通腔体内具有轴向方向布置的六个叶片113,并且该六个叶片113将该中空结构分隔成六个轴向气流通道112。转子110的旋转可将外部气流从该六个轴向气流通道112引入至电机的内部,并在转子110的端部将气流分流至第一风道和第二风道,从而实现定子120和转子110的同步散热。 另,叶片113在转子110的轴向贯通腔体内的具体设置方式可不做限定,只要能形成气流的轴向气流通道112即可,也即实现电机和关节壳体200的对流散热;并且轴向气流通道112及叶片113的数量也可根据具体需要进行设置。另外,轴向气流通道112除了采用叶片113形成之外,也可以通过实心转子轴本身设置多个轴向贯通的通孔来实现。
进一步的,转子110和叶片113之间可为一体成型的结构,此结构减少了叶片113和转子110的组装工艺过程,提高了加工效率,便于批量化生产。除此之外,转子110和叶片113也可为单独的两个部件,叶片113通过可拆卸的方式固定在转子110的轴向贯通腔体内,其具体的固定方式可为螺钉或螺栓固定;示例性的,叶片113的侧面上可设有用于与转子110连接的固定孔,螺钉或螺栓通过该固定孔将叶片113固定在转子110的内孔壁上;或者叶片113及转子110也可以通过其它连接辅助件实现连接。另,在原为中空结构的转子轴上设置有多个叶片113,叶片113也可起到类似于加强筋的作用,进一步的提高了转子110的强度及承载能力。
进一步的,为了使电机与关节壳体200之间获得较佳的扰流散热方式,可将散热流道210的数量与定子120的槽数设置为相等。进一步的将散热流道210的端部与定子120绕组端部相对应的设置为平齐的状态,可以使电机与关节壳体200之间保持较短的气流流动路径。图3中示出了电机转子110在旋转状态下,动力关节内电机和关节壳体200之间的强制对流空气的运动路径。此时空气从转子110的轴向气流通道112进入,流过转子110的端部及定子120绕组端部的散热翅片122的端部,并分流流经定子120与转子110之间的第一缝隙111及定子120与关节壳体200之间的第二缝隙121,并且最终将流经第一缝隙111和第二缝隙121的气流从关节壳体200的散热流道210流出;既实现了一次循环。经过多次上述循环,电机既实现了连续的自风冷对流散热。
根据本发明的另一方面,发明还提供了一种仿生机器人,该仿生机器人包括上述实施例中的动力关节。动力关节作为仿生机器人的主要部件,因此动力关节的性能影响整个机器人的运行状态;本发明实施例中的动力关节具有电机和关节壳体200间的扰流散热结构,提高了动力关节中电机的散热能力,在电机的持续大力矩输出的情况下,不仅满足了仿生机器人对动力关节结构轻质化、紧凑化的要求,还保证了机器人的稳定运行。
根据上述实施例可以发现,本发明中的动力关节通过在电机转子上设置轴向气流通道,以在动力关节的内部形成第一风道和第二风道;并且在关节壳体的用于封装电机的内腔的端部设置用于使第一风道、第二风道与外部均接通的散热流道;在电机转子的连续旋转下,使得外部空气可沿电机转子及定子的圆周面循环流动,因此加强了电机与关节壳体 之间的对流散热能力,降低了电机峰值状态下的暂态温升,提高了电机的承载能力,保证了动力关节的稳定性;并且该扰流散热结构无需采用其它的散热装置,因此在满足散热需求的前提下也满足了机器人轻质化、紧凑化的要求。
并且,在定子的绕组端部设置散热翅片,进一步的增加了绕组端部的散热面积,提高了绕组端部的散热效率,避免了由于绕组端部的热量聚集而造成电机损坏的现象,进一步的提高了动力关节的稳定性。
本发明中,针对一个实施方式描述和/或例示的特征,可以在一个或更多个其它实施方式中以相同方式或以类似方式使用,和/或与其他实施方式的特征相结合或代替其他实施方式的特征。
上述所列实施例,显示和描述了本发明的基本原理与主要特征,但本发明不受上述实施例的限制,本领域技术人员在没有做出创造性劳动的前提下对本发明做出的修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

Claims (18)

  1. 一种具有扰流散热结构的动力关节,其特征在于,所述动力关节包括电机、关节壳体和端部封装部件,所述电机安装在所述关节壳体形成的中空腔内,所述端部封装部件位于所述电机的端部,所述电机的转子与定子之间具有第一缝隙,所述转子的第一端与所述端部封装部件之间具有第一端部间隙;
    所述转子中部具有轴向贯通腔体,所述轴向贯通腔体内通过间隔件形成有多个轴向气流通道;
    所述定子的周向表面与所述关节壳体之间具有第二缝隙,所述定子的第一端与所述端部封装部件之间具有第二端部间隙,所述定子的第一端与所述转子的第一端为电机的同一端;
    其中,所述轴向气流通道、第一端部间隙及第一缝隙形成连通的第一风道;所述轴向气流风道、第二端部间隙及第二缝隙形成连通的第二风道;所述关节壳体的远离所述第一端部间隙的一端具有将所述中空腔与外部连通的多个散热流道,使所述第一风道、第二风道与外部连通,以使得在所述转子转动的状态下气流沿所述第一风道和所述第二风道流动。
  2. 根据权利要求1所述的具有扰流散热结构的动力关节,其特征在于,所述定子的绕组端部安装有散热翅片。
  3. 根据权利要求2所述的具有扰流散热结构的动力关节,其特征在于,所述散热翅片为在所述定子的绕组端部沿圆周均匀排布的多个散热翅片。
  4. 根据权利要求1所述的具有扰流散热结构的动力关节,其特征在于,所述间隔件为叶片,所述叶片在所述转子的轴向贯通腔体内沿转子中心轴径向延伸至所述转子的内壁。
  5. 根据权利要求4所述的具有扰流散热结构的动力关节,其特征在于,所述转子与所述叶片为一体成型结构。
  6. 根据权利要求1所述的具有扰流散热结构的动力关节,其特征在于,所述关节壳体的远离所述第一端部间隙的一端具有关节法兰,每一散热流道包括在关节壳体的远离所述第一端部间隙的一端的周向上开具的通风槽和在所述关节法兰上布置的通孔。
  7. 根据权利要求6所述的具有扰流散热结构的动力关节,其特征在于,所述多个散热流道的通风槽和通孔分别在所述关节壳体的周向上和在所述关节法兰的周向上均匀布置。
  8. 根据权利要求7所述的具有扰流散热结构的动力关节,其特征在于,所述散热流道的数量与所述定子的槽数相等,所述散热流道的端部与所述定子的绕组端部相对应的平齐设置。
  9. 根据权利要求3所述的具有扰流散热结构的动力关节,其特征在于,所述散热翅片与所述定子的绕组端部之间用导热材料填隙。
  10. 一种仿生机器人,其特征在于,所述仿生机器人包括具有扰流散热结构的动力关节,所述动力关节包括电机、关节壳体和端部封装部件,所述电机安装在所述关节壳体形成的中空腔内,所述端部封装部件位于所述电机的端部,所述电机的转子与定子之间具有第一缝隙,所述转子的第一端与所述端部封装部件之间具有第一端部间隙;
    所述转子中部具有轴向贯通腔体,所述轴向贯通腔体内通过间隔件形成有多个轴向气流通道;
    所述定子的周向表面与所述关节壳体之间具有第二缝隙,所述定子的第一端与所述端部封装部件之间具有第二端部间隙,所述定子的第一端与所述转子的第一端为电机的同一端;
    其中,所述轴向气流通道、第一端部间隙及第一缝隙形成连通的第一风道;所述轴向气流风道、第二端部间隙及第二缝隙形成连通的第二风道;所述关节壳体的远离所述第一端部间隙的一端具有将所述中空腔与外部连通的多个散热流道,使所述第一风道、第二风道与外部连通,以使得在所述转子转动的状态下气流沿所述第一风道和所述第二风道流动。
  11. 根据权利要求10所述的仿生机器人,其特征在于,所述定子的绕组端部安装有散热翅片。
  12. 根据权利要求11所述的仿生机器人,其特征在于,所述散热翅片为在所述定子的绕组端部沿圆周均匀排布的多个散热翅片。
  13. 根据权利要求10所述的仿生机器人,其特征在于,所述间隔件为叶片,所述叶片在所述转子的轴向贯通腔体内沿转子中心轴径向延伸至所述转子的内壁。
  14. 根据权利要求13所述的仿生机器人,其特征在于,所述转子与所述叶片为一体成型结构。
  15. 根据权利要求10所述的仿生机器人,其特征在于,所述关节壳体的远离所述第一端部间隙的一端具有关节法兰,每一散热流道包括在关节壳体的远离所述第一端部间隙的一端的周向上开具的通风槽和在所述关节法兰上布置的通孔。
  16. 根据权利要求15所述的仿生机器人,其特征在于,所述多个散热流道的通风槽和通孔分别在所述关节壳体的周向上和在所述关节法兰的周向上均匀布置。
  17. 根据权利要求16所述的仿生机器人,其特征在于,所述散热流道的数量与所述定子的槽数相等,所述散热流道的端部与所述定子的绕组端部相对应的平齐设置。
  18. 根据权利要求12所述的仿生机器人,其特征在于,所述散热翅片与所述定子的绕组端部之间用导热材料填隙。
PCT/CN2020/101109 2020-04-30 2020-07-09 具有扰流散热结构的机器人动力关节及机器人 WO2021217883A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010368017.8A CN111509912A (zh) 2020-04-30 2020-04-30 具有扰流散热结构的机器人动力关节及机器人
CN202010368017.8 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021217883A1 true WO2021217883A1 (zh) 2021-11-04

Family

ID=71874949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101109 WO2021217883A1 (zh) 2020-04-30 2020-07-09 具有扰流散热结构的机器人动力关节及机器人

Country Status (2)

Country Link
CN (1) CN111509912A (zh)
WO (1) WO2021217883A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113941997A (zh) * 2021-11-18 2022-01-18 华中科技大学鄂州工业技术研究院 一种开放式结构的水下电动机械手
CN114633281A (zh) * 2022-02-28 2022-06-17 浙江大学 一种抗侧倾高功率密度机器人关节驱动单元
CN114928203A (zh) * 2022-07-20 2022-08-19 江苏航天动力机电有限公司 一种具有多项伸展式散热机构的电机
CN116117857A (zh) * 2022-09-30 2023-05-16 广东天太机器人有限公司 机器人关节模组
CN117856511A (zh) * 2024-03-01 2024-04-09 科弛医疗科技(北京)有限公司 电机散热装置、器械驱动机构以及手术机器人设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103444A (ja) * 1991-10-07 1993-04-23 Honda Motor Co Ltd 電動機の冷却構造
CN1175811A (zh) * 1996-08-09 1998-03-11 株式会社电装 具有导热部件的回转电机
CN103023184A (zh) * 2011-09-20 2013-04-03 德昌电机(深圳)有限公司 高速气流产生装置及其无刷电机
CN204349707U (zh) * 2014-12-23 2015-05-20 江西清华泰豪三波电机有限公司 一种电机双风路的双层风扇
CN208571849U (zh) * 2018-02-08 2019-03-01 安徽明腾永磁机电设备有限公司 永磁同步电机
CN110518722A (zh) * 2019-07-17 2019-11-29 南京师范大学 一种组合式高速永磁电机冷却装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4490770B2 (ja) * 2004-09-14 2010-06-30 株式会社日立産機システム 回転電機の固定子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103444A (ja) * 1991-10-07 1993-04-23 Honda Motor Co Ltd 電動機の冷却構造
CN1175811A (zh) * 1996-08-09 1998-03-11 株式会社电装 具有导热部件的回转电机
CN103023184A (zh) * 2011-09-20 2013-04-03 德昌电机(深圳)有限公司 高速气流产生装置及其无刷电机
CN204349707U (zh) * 2014-12-23 2015-05-20 江西清华泰豪三波电机有限公司 一种电机双风路的双层风扇
CN208571849U (zh) * 2018-02-08 2019-03-01 安徽明腾永磁机电设备有限公司 永磁同步电机
CN110518722A (zh) * 2019-07-17 2019-11-29 南京师范大学 一种组合式高速永磁电机冷却装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113941997A (zh) * 2021-11-18 2022-01-18 华中科技大学鄂州工业技术研究院 一种开放式结构的水下电动机械手
CN114633281A (zh) * 2022-02-28 2022-06-17 浙江大学 一种抗侧倾高功率密度机器人关节驱动单元
CN114633281B (zh) * 2022-02-28 2023-12-29 浙江大学 一种抗侧倾高功率密度机器人关节驱动单元
CN114928203A (zh) * 2022-07-20 2022-08-19 江苏航天动力机电有限公司 一种具有多项伸展式散热机构的电机
CN116117857A (zh) * 2022-09-30 2023-05-16 广东天太机器人有限公司 机器人关节模组
CN116117857B (zh) * 2022-09-30 2023-08-15 广东天太机器人有限公司 机器人关节模组
CN117856511A (zh) * 2024-03-01 2024-04-09 科弛医疗科技(北京)有限公司 电机散热装置、器械驱动机构以及手术机器人设备

Also Published As

Publication number Publication date
CN111509912A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
WO2021217883A1 (zh) 具有扰流散热结构的机器人动力关节及机器人
US11005330B2 (en) Closed rotary electric machine comprising an internal cooling system
AU2017370503B2 (en) Motor rotor support frame and motor
US20140292163A1 (en) Electric motor with cooling apparatus
US8704414B2 (en) Machines and methods and assembly for same
US9525324B2 (en) Axial flux electrical machines
US20110181138A1 (en) Totally enclosed motor
CN212909259U (zh) 一种快速散热的永磁同步电机
US9331550B2 (en) Air cooling of a motor using radially mounted fan
JP2014033584A (ja) 回転電機の風冷構造
CN208539671U (zh) 一种自冷却电机转子
CN207426868U (zh) 一种防爆高速电机
CN112491181B (zh) 一种内转子电机冷却结构
AU2020266635B2 (en) Cooling system, motor and wind turbine generator set
CN202918125U (zh) 新型三相异步电机
CN219322225U (zh) 一种风冷内循环电动机散热机构
US20170338720A1 (en) Enhanced convective rotor cooling
CN221042563U (zh) 降低电机绕组温升的端盖结构及电机
CN215007795U (zh) 一种高压变压器的散热装置
CN209642460U (zh) 一种快速冷却型电机
CN107086690B (zh) 一种高效散热的电机转子结构
CN219420503U (zh) 一种水冷电驱一体化水泵电机结构
CN215646469U (zh) 具有散热结构的电机外壳及双定子盘式电机
CN218335483U (zh) 自散热型转子组件
CN115001215A (zh) 一种轴向永磁同步电机转子甩油冷却系统及其冷却方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20932943

Country of ref document: EP

Kind code of ref document: A1