WO2021217784A1 - 一种粉煤灰固废纤维免烧陶粒及其制作方法 - Google Patents

一种粉煤灰固废纤维免烧陶粒及其制作方法 Download PDF

Info

Publication number
WO2021217784A1
WO2021217784A1 PCT/CN2020/094476 CN2020094476W WO2021217784A1 WO 2021217784 A1 WO2021217784 A1 WO 2021217784A1 CN 2020094476 W CN2020094476 W CN 2020094476W WO 2021217784 A1 WO2021217784 A1 WO 2021217784A1
Authority
WO
WIPO (PCT)
Prior art keywords
fly ash
solid waste
ceramsite
waste fiber
powder
Prior art date
Application number
PCT/CN2020/094476
Other languages
English (en)
French (fr)
Inventor
李全民
Original Assignee
南京钜力智能制造技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钜力智能制造技术研究院有限公司 filed Critical 南京钜力智能制造技术研究院有限公司
Publication of WO2021217784A1 publication Critical patent/WO2021217784A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to the field of building materials, in particular to a non-fired ceramsite with fly ash solid waste fiber and a manufacturing method thereof.
  • fly ash As a large coal-producing country in the world, China has a large amount of fly ash as an industrial waste.
  • the discharge of fly ash not only occupies land resources and causes a waste of funds, but more seriously, it will cause serious air pollution, soil pollution and water resource pollution, and endanger the natural environment and human health. Therefore, comprehensive research on fly ash and reasonable reuse of discharged fly ash has obvious research value for protecting resources, protecting the environment, and benefiting civilization.
  • Straw is the general term for the stems and leaves (ears) of mature crops. It usually refers to the remaining part of wheat, rice, corn, tubers, rape, cotton, sugar cane and other crops (usually coarse grains) after harvesting the seeds. At present, there are huge resources of straw , Its disposal is more difficult, and simple incineration will cause serious air pollution. Therefore, reasonable treatment of straw is of high value for resource utilization and environmental protection.
  • ceramsite As a kind of lightweight aggregate for construction, ceramsite has received great attention for its light weight, heat preservation, environmental protection and other characteristics. It can replace gravel to produce ceramsite concrete, ceramsite blocks, and ceramsite wallboards. Quality wall materials or as roadbed materials. At present, ceramsites are mostly made of clay or other materials by sintering at high temperature, which consumes a large amount of clay resources and also consumes a large amount of energy such as coal, gas, electricity, etc. The exhaust gas emissions generated will also pollute the environment. , And the cost is high.
  • Non-fired ceramsite refers to the ceramsite prepared by using various active waste residues and adopting a reasonable formula and curing process; compared with sintered ceramsite, the production process of non-fired ceramsite is simple and efficient.
  • Industrial solid waste conforms to the development trend of energy saving and environmental protection; in the prior art, the production method of using industrial solid waste to make non-sintered ceramsite overcomes the disadvantages of high cost and high pollution of sintered ceramsite, but its production process is relatively Complicated, and the produced ceramsite has a small particle size.
  • the present invention provides a kind of fly ash solid waste fiber non-burning ceramsite and a manufacturing method thereof, which can consume a large amount of solid waste such as fly ash and straw and use it for secondary use, while avoiding environmental damage. It causes pollution, and the production method is simple, does not require sintering, reduces energy consumption, and has energy-saving and low-carbon environmental protection effects.
  • the present invention firstly proposes a kind of fly ash solid waste fiber non-burning ceramsite, which is prepared from the following raw materials according to mass percentage: fly ash 70%-75%, straw 10% ⁇ 15%, furnace ash 1.0% ⁇ 5.0%, fine slag powder 5.0% ⁇ 10%, sodium silicate 1.0% ⁇ 2.0%, desulfurized gypsum 1.0% ⁇ 2.0%, cement 1.0% ⁇ 2.0%, admixture 1.0% ⁇ 2.0% .
  • the fly ash solid waste fiber non-fired ceramsite is specifically formulated from the following raw materials according to mass percentages: fly ash 73.5%, straw 11.0%, furnace ash 3.4%, slag powder 6.0%, sodium silicate 1.2% %, desulfurization gypsum 1.5%, cement 1.8%, admixture 1.6%.
  • the grated straw has a particle size of no more than 1 mm, a fiber length ⁇ 10 mm, and a moisture content of less than 1.0%.
  • the part of the furnace ash with a particle size> 1 mm does not exceed 5%, and the moisture content is ⁇ 1.0%.
  • the desulfurized gypsum has a free water content of 5% to 10%, an average particle size of 20 ⁇ m to 50 ⁇ m, and a 200-mesh sieve residue of 5.0%.
  • the content of f-CaO (active calcium oxide and calcium hydroxide in the fly ash) in the fly ash is less than 1.0%, and the water content is less than 1.0%.
  • the sodium silicate is in powder form, the mass percentage of water insoluble matter is ⁇ 0.04%, the mass percentage of water content is ⁇ 25%, the modulus is 2.6-2.8, and the particle size is 20-40 mesh.
  • the loss on ignition of the slag powder is -2.0% to 1.5%
  • the specific surface area after grinding is more than 400 m 2 /kg
  • the 28-day activity is not less than 95%.
  • the cement is P.O42.5 cement, and all indicators meet (GB175-2007), wherein the 3-day flexural strength is not less than 3.5MPa, the 3-day compressive strength is not less than 17MPa, and the 28-day flexural strength is not less than Less than 6.5MPa, and the 3-day compressive strength is not less than 42.5MPa.
  • the present invention also proposes a method for making non-fired ceramsite with fly ash solid waste fiber, including:
  • the present invention grinds the straw into powder, mixes it into the formula, and wraps it in the ceramsite to form a closed tissue, which has the function of light weight and heat preservation; it can be used for the secondary use of the straw to make full use of resources at the same time Can avoid pollution to the environment.
  • fly ash is made into a light ceramsite aggregate with a certain strength, which replaces part of the currently scarce natural sand and gravel resources, and is used for concrete, wall insulation materials, water treatment filtration, etc. required by various occasions. And so on, the secondary utilization of fly ash can avoid pollution to the environment.
  • the present invention uses furnace ash as a solid waste material, and also as a raw material for the fly ash solid waste fiber non-fired ceramsite of the present invention.
  • the secondary utilization is carried out to make full use of resources and solve the problem of furnace ash. Handling issues.
  • the present invention can also absorb industrial wastes such as slag powder and desulfurized gypsum, which broadens the utilization of the above-mentioned solid waste materials.
  • the invention adopts the non-sintering process, the production method is simple, and large-scale calcining equipment is not needed for sintering, which reduces the energy consumption and has the environmental protection effect of energy saving and low carbon.
  • Embodiment 1 The method for manufacturing the non-fired ceramsite of fly ash solid waste fiber in this embodiment:
  • fly ash is weighed at 75% by mass
  • straw powder is weighed at 10% by mass
  • furnace ash is weighed at 5.0% by mass
  • slag powder is weighed at 5.0% by mass
  • sodium silicate is weighed at 1.0% by mass.
  • the straw powder obtained after straw grinding has a particle size of 1mm, a fiber length of 10mm, and a moisture content of 0.5%; the part of the ash with a particle size> 1mm is 5% and moisture content is 0.5%; the free water content of desulfurized gypsum is 5%, the average particle size is 20 ⁇ m, the 200-mesh sieve is 5.0%; the content of f-CaO (active calcium oxide and calcium hydroxide in the fly ash) in the fly ash is 0.5%, and the water content is 0.5%; silicic acid Sodium is in powder form, the mass percentage of water-insoluble matter is 0.04%, the mass percentage of water content is 25%, the modulus is 2.6, and the particle size is 20 mesh; the ignition loss of slag powder is -2.0%, after grinding The specific surface area is 450m 2 /kg, and the 28-day activity is 95%; the cement is P.O42.5 cement, all indicators are in line with (GB175-2007), of which the 3-day flex
  • Embodiment 2 The manufacturing method of the non-fired ceramsite of fly ash solid waste fiber in this embodiment:
  • fly ash is weighed at 70% by mass
  • straw powder is weighed at 15% by mass
  • furnace ash is weighed at 1.0% by mass
  • slag powder is weighed at 10% by mass
  • sodium silicate is weighed at 1.0% by mass.
  • the straw powder obtained after straw grinding has a particle size of 0.5mm, a fiber length of 5mm, and a moisture content of 0.9%; the part of the ash with a particle size greater than 1mm is 4%, and the moisture content is 0.9%; the free water content of desulfurized gypsum
  • the average particle size is 50 ⁇ m, and the 200-mesh sieve is 5.0%; the content of f-CaO (active calcium oxide and calcium hydroxide in the fly ash) in the fly ash is 0.9%, and the water content is 0.9%;
  • Sodium is powder, the mass percentage of water insoluble matter is 0.03%, the mass percentage of water content is 20%, the modulus is 2.8, the particle size is 40 mesh; the ignition loss of slag powder is 1.5%, after grinding
  • the specific surface area is 500m 2 /kg, and the 28-day activity is 96%; the cement is P.O42.5 cement, all indicators conform to (GB175-2007), of which the 3-day flexural strength is 4.0MP
  • Embodiment 3 The method for manufacturing the non-fired ceramsite of fly ash solid waste fiber in this embodiment:
  • fly ash is weighed at 73.5% by mass
  • straw powder is weighed at 11.0% by mass
  • furnace ash is weighed at 3.4% by mass
  • slag powder is weighed at 6.0% by mass
  • sodium silicate is weighed at 1.2% by mass.
  • % Is weighed, desulfurized gypsum is weighed at 1.5% by mass, cement is weighed at 1.8% by mass, and admixtures are weighed at 1.6% by mass.
  • the straw powder obtained after straw grinding has a particle size of 0.8mm, a fiber length of 7mm, and a moisture content of 0.3%; the part of the ash with a particle size> 1mm is 2%, and the moisture content is 0.2%; free water content of desulfurized gypsum
  • the average particle size is 35 ⁇ m, and the 200-mesh sieve is 5.0%; the content of f-CaO (active calcium oxide and calcium hydroxide in the fly ash) in the fly ash is 0.2%, and the water content is 0.2%; Sodium is in powder form, the mass percentage of water insoluble matter is 0.02%, the mass percentage of water content is 10%, the modulus is 2.7, and the particle size is 30 mesh; the ignition loss of slag powder is 0.5%, after grinding
  • the specific surface area is 600m 2 /kg, and the 28-day activity is 98%; the cement is P.O42.5 cement, all indicators conform to (GB175-2007), of which the 3-day flexural strength is 5.0MPa
  • Embodiment 4 The method for manufacturing the non-fired ceramsite of fly ash solid waste fiber in this embodiment:
  • fly ash is weighed as 73.0% by mass
  • straw powder is weighed as 10.5% by mass
  • furnace ash is weighed as 4.0% by mass
  • slag powder is weighed as 5.5% by mass
  • sodium silicate is weighed as 2.0% by mass.
  • % Is weighed, desulfurized gypsum is weighed by 2.0% by mass, cement is weighed by 1.5% by mass, and admixtures are weighed by 1.5% by mass.
  • the straw powder obtained after straw grinding has a particle size of 0.3mm, a fiber length of 4mm, and a moisture content of 0.6%; the part of the ash with a particle size> 1mm is 3% and moisture content is 0.7%; the free water content of desulfurized gypsum
  • the average particle size is 25 ⁇ m, and the 200-mesh sieve is 5.0%; the content of f-CaO (active calcium oxide and calcium hydroxide in the fly ash) in fly ash is 0.7%, and the water content is 0.7%; silicon Sodium is in powder form, the mass percentage of water insoluble matter is 0.01%, the mass percentage of water content is 15%, the modulus is 2.65, the particle size is 25 mesh; the ignition loss of slag powder is 1.0%, after grinding
  • the specific surface area is 550m 2 /kg, and the 28-day activity is 97%; the cement is P.O42.5 cement, all indicators conform to (GB175-2007), of which the 3-day flexural strength is 6.0MPa,
  • Embodiment 5 In this embodiment, a method for making non-fired ceramsite with fly ash solid waste fiber:
  • fly ash is weighed at 73.8% by mass
  • straw powder is weighed at 11.5% by mass
  • furnace ash is weighed at 3.2% by mass
  • slag powder is weighed at 6.3% by mass
  • sodium silicate is weighed at 1.5% by mass.
  • % Is weighed, desulfurized gypsum is weighed at 1.2% by mass, cement is weighed at 1.2% by mass, and admixtures are weighed at 1.3% by mass.
  • the straw powder obtained after straw grinding has a particle size of 0.6mm, a fiber length of 9mm, and a moisture content of 0.8%; the part of the ash with a particle size greater than 1mm is 1%, and the moisture content is 0.4%; free water content of desulfurized gypsum
  • the average particle size is 40 ⁇ m, and the 200-mesh sieve is 5.0%; the content of f-CaO (active calcium oxide and calcium hydroxide in the fly ash) in fly ash is 0.3%, and the water content is 0.3%; Sodium is in powder form, the mass percentage of water insoluble matter is 0.005%, the mass percentage of water content is 5%, the modulus is 2.75, the particle size is 35 mesh; the ignition loss of slag powder is -1.0%, finely ground After the specific surface area is 650m 2 /kg, the 28-day activity is 99%; the cement is P.O42.5 cement, all indicators are in line with (GB175-2007), of which the 3-day flexural strength is
  • Embodiment 6 The manufacturing method of a kind of non-fired ceramsite of fly ash solid waste fiber in this embodiment:
  • fly ash is weighed at 70.5% by mass
  • straw powder is weighed at 12.5% by mass
  • furnace ash is weighed at 3.8% by mass
  • slag powder is weighed at 6.8% by mass
  • sodium silicate is weighed at 1.7 by mass percentage.
  • % Is weighed, desulfurized gypsum is weighed as 1.6% by mass, cement is weighed as 1.4% by mass, and admixture is weighed as 1.7% by mass.
  • the straw powder obtained by grinding straw has a particle size of 0.9mm, a fiber length of 8mm, and a moisture content of 0.4%; the part of the ash with a particle size> 1mm is 2.5%, and the moisture content is 0.6%; the free water content of desulfurized gypsum
  • the average particle size is 45 ⁇ m, and the 200-mesh sieve is 5.0%; the content of f-CaO (active calcium oxide and calcium hydroxide in the fly ash) in fly ash is 0.8%, and the water content is 0.8%; Sodium is in powder form, the mass percentage of water insoluble matter is 0.035%, the mass percentage of water content is 23%, the modulus is 2.78, the particle size is 38 mesh; the ignition loss of slag powder is -1.5%, finely ground After the specific surface area is 430m 2 /kg, the 28-day activity is 95.5%; the cement is P.O42.5 cement, all indicators are in line with (GB175-2007), of which the 3-day flexural strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一种粉煤灰固废纤维免烧陶粒及其制作方法,其中,该陶粒,通过以下组分按照质量百分比配制而成:粉煤灰70%~75%、秸秆10%~15%、炉灰1.0%~5.0%、矿渣微粉5.0%~10%、硅酸钠1.0%~2.0%、脱硫石膏1.0%~2.0%、水泥1.0%~2.0%、外加剂1.0%~2.0%。利用粉煤灰、秸秆、炉灰、矿渣微粉等固废制备粉煤灰固废纤维免烧陶粒,一方面降低了免烧陶粒的生产成本;另一方面消纳了大量的固废,拓宽了固废材料的利用途径。

Description

一种粉煤灰固废纤维免烧陶粒及其制作方法 技术领域
本发明涉及建筑材料领域,尤其涉及一种粉煤灰固废纤维免烧陶粒及其制作方法。
背景技术
中国作为世界上的产煤大国,粉煤灰作为一种工业废料排放量较大。粉煤灰的排放不仅占用土地资源,造成资金的浪费,更严重的是会造成严重的大气污染、土壤污染和水资源污染,危害自然环境和人类健康。因此,对粉煤灰进行综合研究,合理地回用排放的粉煤灰,对于保护资源、保护环境、造福人类,具有明显的研究价值。
秸秆是成熟农作物茎叶(穗)部分的总称,通常指小麦、水稻、玉米、薯类、油菜、棉花、甘蔗和其它农作物(通常为粗粮)在收获籽实后的剩余部分,而目前秸秆资源巨大,其处理较为困难,单纯的焚烧会造成较严重的大气污染。因此,对秸秆进行合理的处理对于资源的利用、环境的保护均具有较高的价值。
陶粒作为一种建筑用轻骨料,以其轻体、保温、环保等特性受到了人们的极大重视,可以替代碎石来生产陶粒混凝土、陶粒砌块和陶粒墙板等轻质墙体材料或作为路基材料。目前陶粒大都是采用粘土或者其他材料采用烧结工艺高温烧结而成,在消耗了大量的粘土资源的同时也消耗了大量的煤、燃气、电力等能源,产生的废气排放还会对环境造成污染,且成本很高。免烧陶粒是指不需要烧结,而是利用各种具有活性的废渣,采取合理的配方及养护工艺制备出的陶粒;与烧结陶粒相比,免烧陶粒生产工艺简单,高效利用工业固废,符合生产节能及环保的发展趋势;现有技术中采用工业固废制作免烧陶粒的制作方法中,虽然克服了烧结陶粒成本高、污染大的缺点,但其制作过程较为复杂,且制作的陶粒粒径较小。
需要说明的是,上述内容属于发明人的技术认知范畴,并不必然构成现有技术。
发明内容
为了解决上述问题,本发明提供了一种粉煤灰固废纤维免烧陶粒及其制作方法,可大量消耗粉煤灰与秸秆等固废并对其进行二次利用,同时可避免对环境造成污染,且制作方法简单,无需进行烧结,减少了对能源的消耗,具有节能、低碳的环保效果。
为实现上述目的,第一方面,本发明首先提出了一种粉煤灰固废纤维免烧陶粒,由以下原材料按照质量百分比配制而成:粉煤灰70%~75%、秸秆10%~15%、炉灰1.0%~5.0%、矿渣微粉5.0%~10%、硅酸钠1.0%~2.0%、脱硫石膏1.0%~2.0%、水泥1.0%~2.0%、外加剂1.0%~2.0%。
优选地,所述粉煤灰固废纤维免烧陶粒具体由以下原材料按照质量百分比配制而成:粉煤灰73.5%、秸秆11.0%、炉灰3.4%、矿渣微粉6.0%、硅酸钠1.2%、脱硫石膏1.5%、水泥1.8%、外加剂1.6%。
优选地,所述秸秆磨碎后的粒径不大于1mm,纤维长度≤10mm,水份<1.0%。
优选地,所述炉灰中粒径>1mm的部分不超过5%,水份<1.0%。
优选地,所述脱硫石膏自由水含量5%~10%,平均粒度20μm~50μm,200目筛余5.0%。
优选地,所述粉煤灰中f-CaO(粉煤灰中的活性氧化钙和氢氧化钙)的含量<1.0%,含水量<1.0%。
优选地,所述硅酸钠为粉末状,水不溶物质量百分数≤0.04%,含水量质量百分数≤25%,模数为2.6~2.8,粒度为20~40目。
优选地,所述矿渣微粉烧失量-2.0%~1.5%,磨细后的比表面积为 400m 2/kg以上,28天活性不低于95%。
优选地,所述水泥为P.O42.5水泥,各项指标符合(GB175-2007),其中3天抗折强度不小于3.5MPa,3天抗压强度不小于17MPa,28天抗折强度不小于6.5MPa,3天抗压强度不小于42.5MPa。
第二方面,本发明还提出了一种粉煤灰固废纤维免烧陶粒的制作方法,包括:
S1:按量称取秸秆粉末、炉灰、水泥、粉煤灰、脱硫石膏、矿渣微粉、硅酸钠和外加剂,置于干粉搅拌机中,先顺时针搅拌5min,然后逆时针再搅拌5min,获得搅拌均匀的粉料;
S2:将步骤一中制备的粉料通过对辊造粒机制备免烧陶粒坯体;
S3:将步骤二中制备的免烧陶粒坯体放入蒸养装置中,静停2h,以10℃/h的升温速度升温至50℃,湿度90%,恒温养护5h,再以15℃/h的升温速度升温至80℃,湿度95%,恒温养护5h,之后以15℃/h的降温速度降温至室温,即获得粉煤灰固废纤维免烧陶粒。
本发明所达到的有益效果是:
1.本发明将秸秆磨碎成粉末状,掺进配方中,包裹在陶粒中间可以形成封闭的组织,起到轻质、保温的作用;可对秸秆进行二次利用,充分利用资源的同时可避免对环境造成污染。
2.本发明将粉煤灰做成具有一定强度的轻质陶粒骨料,替代部分当前紧缺的天然的砂石资源,用于各种场合要求的混凝土、墙体保温材料、水处理过滤等等,对粉煤灰进行二次利用的同时可避免对环境造成污染。
3.本发明将炉灰作为固体废物材料,同样作为本发明粉煤灰固废纤维免烧陶粒的一种原料,对其进行了二次利用,充分利用了资源的同时解决了炉灰难以处理的问题。
4.本发明除可消纳大量的粉煤灰、秸秆和炉灰之外,还可消纳矿渣微粉和脱硫石膏等工业废弃物,拓宽了上述固废材料的利用途径。
5.本发明采用免烧工艺,制作方法简单,无需大型煅烧设备进行烧结,减少了对能源的消耗,具有节能、低碳的环保效果。
具体实施方式
为了更清楚的阐释本发明的整体构思,下面以示例的方式进行详细说明。
实施例一:本实施例中一种粉煤灰固废纤维免烧陶粒的制作方法:
S1:按量称取秸秆粉末、炉灰、水泥、粉煤灰、脱硫石膏、矿渣微粉、硅酸钠和外加剂,置于干粉搅拌机中,先顺时针搅拌5min,然后逆时针再搅拌5min,获得搅拌均匀的粉料;
其中,粉煤灰按质量百分比75%称取、秸秆粉末按质量百分比10%称取、炉灰按质量百分比5.0%称取、矿渣微粉按质量百分比5.0%称取、硅酸钠按质量百分比1.0%称取、脱硫石膏按质量百分比1.0%称取、水泥按质量百分比2.0%称取、外加剂按质量百分比1.0%称取。
秸秆磨碎后得到的秸秆粉末的粒径为1mm,纤维长度为10mm,水份为0.5%;炉灰中粒径>1mm的部分为5%,水份为0.5%;脱硫石膏自由水含量为5%,平均粒度为20μm,200目筛余5.0%;粉煤灰中f-CaO(粉煤灰中的活性氧化钙和氢氧化钙)的含量为0.5%,含水量为0.5%;硅酸钠为粉末状,其中的水不溶物所占质量百分数为0.04%,含水量质量百分数为25%,模数为2.6,粒度为20目;矿渣微粉的烧失量为-2.0%,磨细后的比表面积为450m 2/kg,28天活性为95%;水泥为P.O42.5水泥,各项指标符合(GB175-2007),其中3天抗折强度为3.5MPa,3天抗压强度为17MPa,28天抗折强度为6.5MPa,3天抗压强度为42.5MPa。
S2:将S1中制备的粉料通过对辊造粒机制备免烧陶粒坯体;
S3:将S2中制备的免烧陶粒坯体放入蒸养装置中,静停2h,以10℃/h的升温速度升温至50℃,湿度90%,恒温养护5h,再以15℃/h的升温速度升温至80℃,湿度95%,恒温养护5h,之后以15℃/h的降温速度降温至室温,即 可获得粒径10~20mm、密度600~700kg/m 3、筒压强度为3~5Mpa的粉煤灰固废纤维免烧陶粒。
实施例二:本实施例中一种粉煤灰固废纤维免烧陶粒的制作方法:
S1:按量称取秸秆粉末、炉灰、水泥、粉煤灰、脱硫石膏、矿渣微粉、硅酸钠和外加剂,置于干粉搅拌机中,先顺时针搅拌5min,然后逆时针再搅拌5min,获得搅拌均匀的粉料;
其中,粉煤灰按质量百分比70%称取、秸秆粉末按质量百分比15%称取、炉灰按质量百分比1.0%称取、矿渣微粉按质量百分比10%称取、硅酸钠按质量百分比1.0%称取、脱硫石膏按质量百分比1.0%称取、水泥按质量百分比1.0%称取、外加剂按质量百分比2.0%称取。
秸秆磨碎后得到的秸秆粉末的粒径为0.5mm,纤维长度为5mm,水份为0.9%;炉灰中粒径>1mm的部分为4%,水份为0.9%;脱硫石膏自由水含量为10%,平均粒度为50μm,200目筛余5.0%;粉煤灰中f-CaO(粉煤灰中的活性氧化钙和氢氧化钙)的含量为0.9%,含水量为0.9%;硅酸钠为粉末状,其中的水不溶物所占质量百分数为0.03%,含水量质量百分数为20%,模数为2.8,粒度为40目;矿渣微粉的烧失量为1.5%,磨细后的比表面积为500m 2/kg,28天活性为96%;水泥为P.O42.5水泥,各项指标符合(GB175-2007),其中3天抗折强度为4.0MPa,3天抗压强度为18MPa,28天抗折强度为7.0MPa,3天抗压强度为43.0MPa。
S2:将S1中制备的粉料通过对辊造粒机制备免烧陶粒坯体;
S3:将S2中制备的免烧陶粒坯体放入蒸养装置中,静停2h,以10℃/h的升温速度升温至50℃,湿度90%,恒温养护5h,再以15℃/h的升温速度升温至80℃,湿度95%,恒温养护5h,之后以15℃/h的降温速度降温至室温,即可获得粒径10~20mm、密度600~700kg/m 3、筒压强度为3~5Mpa的粉煤灰固废纤维免烧陶粒。
实施例三:本实施例中一种粉煤灰固废纤维免烧陶粒的制作方法:
S1:按量称取秸秆粉末、炉灰、水泥、粉煤灰、脱硫石膏、矿渣微粉、硅酸钠和外加剂,置于干粉搅拌机中,先顺时针搅拌5min,然后逆时针再搅拌5min,获得搅拌均匀的粉料;
其中,粉煤灰按质量百分比73.5%称取、秸秆粉末按质量百分比11.0%称取、炉灰按质量百分比3.4%称取、矿渣微粉按质量百分比6.0%称取、硅酸钠按质量百分比1.2%称取、脱硫石膏按质量百分比1.5%称取、水泥按质量百分比1.8%称取、外加剂按质量百分比1.6%称取。
秸秆磨碎后得到的秸秆粉末的粒径为0.8mm,纤维长度为7mm,水份为0.3%;炉灰中粒径>1mm的部分为2%,水份为0.2%;脱硫石膏自由水含量为7%,平均粒度为35μm,200目筛余5.0%;粉煤灰中f-CaO(粉煤灰中的活性氧化钙和氢氧化钙)的含量为0.2%,含水量为0.2%;硅酸钠为粉末状,其中的水不溶物所占质量百分数为0.02%,含水量质量百分数为10%,模数为2.7,粒度为30目;矿渣微粉的烧失量为0.5%,磨细后的比表面积为600m 2/kg,28天活性为98%;水泥为P.O42.5水泥,各项指标符合(GB175-2007),其中3天抗折强度为5.0MPa,3天抗压强度为20MPa,28天抗折强度为10MPa,3天抗压强度为45MPa。
S2:将S1中制备的粉料通过对辊造粒机制备免烧陶粒坯体;
S3:将S2中制备的免烧陶粒坯体放入蒸养装置中,静停2h,以10℃/h的升温速度升温至50℃,湿度90%,恒温养护5h,再以15℃/h的升温速度升温至80℃,湿度95%,恒温养护5h,之后以15℃/h的降温速度降温至室温,即可获得粒径10~20mm、密度600~700kg/m 3、筒压强度为3~5Mpa的粉煤灰固废纤维免烧陶粒。
实施例四:本实施例中一种粉煤灰固废纤维免烧陶粒的制作方法:
S1:按量称取秸秆粉末、炉灰、水泥、粉煤灰、脱硫石膏、矿渣微粉、硅酸钠和外加剂,置于干粉搅拌机中,先顺时针搅拌5min,然后逆时针再搅拌5min,获得搅拌均匀的粉料;
其中,粉煤灰按质量百分比73.0%称取、秸秆粉末按质量百分比10.5%称取、炉灰按质量百分比4.0%称取、矿渣微粉按质量百分比5.5%称取、硅酸钠按质量百分比2.0%称取、脱硫石膏按质量百分比2.0%称取、水泥按质量百分比1.5%称取、外加剂按质量百分比1.5%称取。
秸秆磨碎后得到的秸秆粉末的粒径为0.3mm,纤维长度为4mm,水份为0.6%;炉灰中粒径>1mm的部分为3%,水份为0.7%;脱硫石膏自由水含量为6%,平均粒度为25μm,200目筛余5.0%;粉煤灰中f-CaO(粉煤灰中的活性氧化钙和氢氧化钙)的含量为0.7%,含水量为0.7%;硅酸钠为粉末状,其中的水不溶物所占质量百分数为0.01%,含水量质量百分数为15%,模数为2.65,粒度为25目;矿渣微粉的烧失量为1.0%,磨细后的比表面积为550m 2/kg,28天活性为97%;水泥为P.O42.5水泥,各项指标符合(GB175-2007),其中3天抗折强度为6.0MPa,3天抗压强度为25MPa,28天抗折强度为15MPa,3天抗压强度为44MPa。
S2:将S1中制备的粉料通过对辊造粒机制备免烧陶粒坯体;
S3:将S2中制备的免烧陶粒坯体放入蒸养装置中,静停2h,以10℃/h的升温速度升温至50℃,湿度90%,恒温养护5h,再以15℃/h的升温速度升温至80℃,湿度95%,恒温养护5h,之后以15℃/h的降温速度降温至室温,即可获得粒径10~20mm、密度600~700kg/m 3、筒压强度为3~5Mpa的粉煤灰固废纤维免烧陶粒。
实施例五:本实施例中一种粉煤灰固废纤维免烧陶粒的制作方法:
S1:按量称取秸秆粉末、炉灰、水泥、粉煤灰、脱硫石膏、矿渣微粉、硅酸钠和外加剂,置于干粉搅拌机中,先顺时针搅拌5min,然后逆时针再搅拌 5min,获得搅拌均匀的粉料;
其中,粉煤灰按质量百分比73.8%称取、秸秆粉末按质量百分比11.5%称取、炉灰按质量百分比3.2%称取、矿渣微粉按质量百分比6.3%称取、硅酸钠按质量百分比1.5%称取、脱硫石膏按质量百分比1.2%称取、水泥按质量百分比1.2%称取、外加剂按质量百分比1.3%称取。
秸秆磨碎后得到的秸秆粉末的粒径为0.6mm,纤维长度为9mm,水份为0.8%;炉灰中粒径>1mm的部分为1%,水份为0.4%;脱硫石膏自由水含量为8%,平均粒度为40μm,200目筛余5.0%;粉煤灰中f-CaO(粉煤灰中的活性氧化钙和氢氧化钙)的含量为0.3%,含水量为0.3%;硅酸钠为粉末状,其中的水不溶物所占质量百分数为0.005%,含水量质量百分数为5%,模数为2.75,粒度为35目;矿渣微粉的烧失量为-1.0%,磨细后的比表面积为650m 2/kg,28天活性为99%;水泥为P.O42.5水泥,各项指标符合(GB175-2007),其中3天抗折强度为7.0MPa,3天抗压强度为19MPa,28天抗折强度为8MPa,3天抗压强度为46MPa。
S2:将S1中制备的粉料通过对辊造粒机制备免烧陶粒坯体;
S3:将S2中制备的免烧陶粒坯体放入蒸养装置中,静停2h,以10℃/h的升温速度升温至50℃,湿度90%,恒温养护5h,再以15℃/h的升温速度升温至80℃,湿度95%,恒温养护5h,之后以15℃/h的降温速度降温至室温,即可获得粒径10~20mm、密度600~700kg/m 3、筒压强度为3~5Mpa的粉煤灰固废纤维免烧陶粒。
实施例六:本实施例中一种粉煤灰固废纤维免烧陶粒的制作方法:
S1:按量称取秸秆粉末、炉灰、水泥、粉煤灰、脱硫石膏、矿渣微粉、硅酸钠和外加剂,置于干粉搅拌机中,先顺时针搅拌5min,然后逆时针再搅拌5min,获得搅拌均匀的粉料;
其中,粉煤灰按质量百分比70.5%称取、秸秆粉末按质量百分比12.5%称 取、炉灰按质量百分比3.8%称取、矿渣微粉按质量百分比6.8%称取、硅酸钠按质量百分比1.7%称取、脱硫石膏按质量百分比1.6%称取、水泥按质量百分比1.4%称取、外加剂按质量百分比1.7%称取。
秸秆磨碎后得到的秸秆粉末的粒径为0.9mm,纤维长度为8mm,水份为0.4%;炉灰中粒径>1mm的部分为2.5%,水份为0.6%;脱硫石膏自由水含量为9%,平均粒度为45μm,200目筛余5.0%;粉煤灰中f-CaO(粉煤灰中的活性氧化钙和氢氧化钙)的含量为0.8%,含水量为0.8%;硅酸钠为粉末状,其中的水不溶物所占质量百分数为0.035%,含水量质量百分数为23%,模数为2.78,粒度为38目;矿渣微粉的烧失量为-1.5%,磨细后的比表面积为430m 2/kg,28天活性为95.5%;水泥为P.O42.5水泥,各项指标符合(GB175-2007),其中3天抗折强度为5.5MPa,3天抗压强度为21MPa,28天抗折强度为9MPa,3天抗压强度为47MPa。
S2:将S1中制备的粉料通过对辊造粒机制备免烧陶粒坯体;
S3:将S2中制备的免烧陶粒坯体放入蒸养装置中,静停2h,以10℃/h的升温速度升温至50℃,湿度90%,恒温养护5h,再以15℃/h的升温速度升温至80℃,湿度95%,恒温养护5h,之后以15℃/h的降温速度降温至室温,即可获得粒径10~20mm、密度600~700kg/m 3、筒压强度为3~5Mpa的粉煤灰固废纤维免烧陶粒。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本发明的实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (10)

  1. 一种粉煤灰固废纤维免烧陶粒,其特征在于,由以下原材料按照质量百分比配制而成:粉煤灰70%~75%、秸秆10%~15%、炉灰1.0%~5.0%、矿渣微粉5.0%~10%、硅酸钠1.0%~2.0%、脱硫石膏1.0%~2.0%、水泥1.0%~2.0%、外加剂1.0%~2.0%。
  2. 根据权利要求1所述的粉煤灰固废纤维免烧陶粒,其特征在于,由以下原材料按照质量百分比配制而成:粉煤灰73.5%、秸秆11.0%、炉灰3.4%、矿渣微粉6.0%、硅酸钠1.2%、脱硫石膏1.5%、水泥1.8%、外加剂1.6%。
  3. 根据权利要求1所述的粉煤灰固废纤维免烧陶粒,其特征在于,所述秸秆磨碎后的粒径不大于1mm,纤维长度≤10mm,水份<1.0%。
  4. 根据权利要求1所述的粉煤灰固废纤维免烧陶粒,其特征在于,所述炉灰中粒径>1mm的部分不超过5%,水份<1.0%。
  5. 根据权利要求1所述的粉煤灰固废纤维免烧陶粒,其特征在于,所述脱硫石膏自由水含量5%~10%,平均粒度20μm~50μm,200目筛余5.0%。
  6. 根据权利要求1所述的粉煤灰固废纤维免烧陶粒,其特征在于,所述粉煤灰中f-CaO的含量<1.0%,含水量<1.0%。
  7. 根据权利要求1所述的粉煤灰固废纤维免烧陶粒,其特征在于,所述硅酸钠为粉末状,水不溶物质量百分数≤0.04%,含水量质量百分数≤25%,模数为2.6~2.8,粒度为20~40目。
  8. 根据权利要求1所述的粉煤灰固废纤维免烧陶粒,其特征在于,所述矿渣微粉烧失量-2.0%~1.5%,磨细后的比表面积为400m 2/kg以上,28天活性不低于95%。
  9. 根据权利要求1所述的粉煤灰固废纤维免烧陶粒,其特征在于,所述水泥为P.042.5水泥,各项指标符合(GB175-2007),其中3天抗折强度不小于3.5MPa,3天抗压强度不小于17MPa,28天抗折强度不小于6.5MPa,3天抗压强度不小于42.5MPa。
  10. 根据权利要求1至8中任一项所述的粉煤灰固废纤维免烧陶粒的制作方法,其特征在于,包括:
    S1:按量称取秸秆粉末、炉灰、水泥、粉煤灰、脱硫石膏、矿渣微粉、硅酸钠和外加剂,置于干粉搅拌机中,先顺时针搅拌5min,然后逆时针再搅拌5min,获得搅拌均匀的粉料;
    S2:将步骤一中制备的粉料通过对辊造粒机制备免烧陶粒坯体;
    S3:将步骤二中制备的免烧陶粒坯体放入蒸养装置中,静停2h,以10℃/h的升温速度升温至50℃,湿度90%,恒温养护5h,再以15℃/h的升温速度升温至80℃,湿度95%,恒温养护5h,之后以15℃/h的降温速度降温至室温,即获得粉煤灰固废纤维免烧陶粒。
PCT/CN2020/094476 2020-04-30 2020-06-04 一种粉煤灰固废纤维免烧陶粒及其制作方法 WO2021217784A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010362399.3 2020-04-30
CN202010362399.3A CN111620663B (zh) 2020-04-30 2020-04-30 一种粉煤灰固废纤维免烧陶粒及其制作方法

Publications (1)

Publication Number Publication Date
WO2021217784A1 true WO2021217784A1 (zh) 2021-11-04

Family

ID=72256986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094476 WO2021217784A1 (zh) 2020-04-30 2020-06-04 一种粉煤灰固废纤维免烧陶粒及其制作方法

Country Status (2)

Country Link
CN (1) CN111620663B (zh)
WO (1) WO2021217784A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133213A (zh) * 2021-11-12 2022-03-04 合肥工业大学 一种铁尾矿陶粒及其制备方法
CN114538955A (zh) * 2022-02-25 2022-05-27 青岛光大集团工程有限公司 一种轻质陶粒混凝土及其制备方法
CN114907137A (zh) * 2022-06-21 2022-08-16 浙江方远新材料股份有限公司 一种窑灰再生制得的超轻陶粒的制备工艺
CN115095074A (zh) * 2022-06-17 2022-09-23 哈尔滨理工大学 基于绿色建筑所用的生态秸秆复合砌块
CN116283228A (zh) * 2023-01-29 2023-06-23 陕西博实翊圣新材料环保科技有限公司 一种建筑用固废基保温板的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113200731B (zh) * 2021-05-27 2022-09-27 中国十七冶集团有限公司 一种固废基免烧高强陶粒及其制备方法
CN115959864A (zh) * 2023-02-20 2023-04-14 褚孟雷 一种固废免烧轻质陶粒及其制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351557A (zh) * 2011-06-22 2012-02-15 哈尔滨工业大学 一种活性污泥掺混粉煤灰免烧陶粒的制备方法
CN104108903A (zh) * 2014-06-18 2014-10-22 东南大学 玉米秸秆纤维增强粉煤灰地聚合物胶凝材料及其制备方法
CN104387011A (zh) * 2014-10-23 2015-03-04 齐齐哈尔越峰科技有限公司 一种利用固体废弃物制备免烧砖的方法
CN104609808A (zh) * 2014-12-18 2015-05-13 齐齐哈尔越峰科技有限公司 一种利用粉煤灰和改性植物纤维制备多孔免烧制品的方法
CN105060924A (zh) * 2015-08-17 2015-11-18 长沙鼎成新材料科技有限公司 一种用于屋顶绿化的轻质免烧陶粒及其制备方法
CN108424096A (zh) * 2018-04-03 2018-08-21 东南大学 一种中温煅烧低密高比强地聚物轻骨料及其制备方法
CN108516755A (zh) * 2018-07-06 2018-09-11 四川建筑职业技术学院 一种利用污泥制备的无机聚合物发泡材料及其制备方法
KR102086017B1 (ko) * 2018-11-08 2020-03-06 한국건설기술연구원 흡수율 저감 인공 잔골재 및 그 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1111516C (zh) * 2000-02-25 2003-06-18 赵传文 轻质粉煤灰陶粒、其制法和用途以及由该陶粒制成的空心砌块
CN102617107B (zh) * 2012-04-01 2013-09-04 浙江大学宁波理工学院 建筑淤土免烧陶粒及其制备方法
CN106082734A (zh) * 2016-06-14 2016-11-09 马鞍山十七冶工程科技有限责任公司 一种市政污泥免烧陶粒及其制作方法
CN107162521A (zh) * 2017-04-19 2017-09-15 马鞍山十七冶工程科技有限责任公司 一种秸秆纤维陶粒泡沫混凝土及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351557A (zh) * 2011-06-22 2012-02-15 哈尔滨工业大学 一种活性污泥掺混粉煤灰免烧陶粒的制备方法
CN104108903A (zh) * 2014-06-18 2014-10-22 东南大学 玉米秸秆纤维增强粉煤灰地聚合物胶凝材料及其制备方法
CN104387011A (zh) * 2014-10-23 2015-03-04 齐齐哈尔越峰科技有限公司 一种利用固体废弃物制备免烧砖的方法
CN104609808A (zh) * 2014-12-18 2015-05-13 齐齐哈尔越峰科技有限公司 一种利用粉煤灰和改性植物纤维制备多孔免烧制品的方法
CN105060924A (zh) * 2015-08-17 2015-11-18 长沙鼎成新材料科技有限公司 一种用于屋顶绿化的轻质免烧陶粒及其制备方法
CN108424096A (zh) * 2018-04-03 2018-08-21 东南大学 一种中温煅烧低密高比强地聚物轻骨料及其制备方法
CN108516755A (zh) * 2018-07-06 2018-09-11 四川建筑职业技术学院 一种利用污泥制备的无机聚合物发泡材料及其制备方法
KR102086017B1 (ko) * 2018-11-08 2020-03-06 한국건설기술연구원 흡수율 저감 인공 잔골재 및 그 제조방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133213A (zh) * 2021-11-12 2022-03-04 合肥工业大学 一种铁尾矿陶粒及其制备方法
CN114538955A (zh) * 2022-02-25 2022-05-27 青岛光大集团工程有限公司 一种轻质陶粒混凝土及其制备方法
CN114538955B (zh) * 2022-02-25 2022-11-08 青岛光大集团工程有限公司 一种轻质陶粒混凝土及其制备方法
CN115095074A (zh) * 2022-06-17 2022-09-23 哈尔滨理工大学 基于绿色建筑所用的生态秸秆复合砌块
CN114907137A (zh) * 2022-06-21 2022-08-16 浙江方远新材料股份有限公司 一种窑灰再生制得的超轻陶粒的制备工艺
CN114907137B (zh) * 2022-06-21 2024-02-06 浙江方远新材料股份有限公司 一种窑灰再生制得的超轻陶粒的制备工艺
CN116283228A (zh) * 2023-01-29 2023-06-23 陕西博实翊圣新材料环保科技有限公司 一种建筑用固废基保温板的制备方法

Also Published As

Publication number Publication date
CN111620663A (zh) 2020-09-04
CN111620663B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2021217784A1 (zh) 一种粉煤灰固废纤维免烧陶粒及其制作方法
US10894741B2 (en) Method for preparing ceramsite by using municipal sludge as raw material
CN102643060B (zh) 一种掺有低温稻壳灰的高强混凝土
CN103183521B (zh) 轻质水泥发泡保温板及其制备方法
CN112028564B (zh) 一种利用co2强化再生粉体制备的再生混凝土砌块
CN113955996B (zh) 一种相变抗裂混凝土及其制备方法
CN100375654C (zh) 硬质微粉缓释助磨剂
CN111574193A (zh) 一种污泥灰渣陶粒滤料及其制备方法
CN110862270A (zh) 一种轻质粉煤灰陶粒及其制备方法
CN115028416B (zh) 利用工业废渣的低收缩混凝土及其制备方法
CN115368103A (zh) 一种减缩抗裂型碱激发矿渣砂浆及其制备方法
CN113372052A (zh) 利用玻璃态煤渣制备的混凝土及其制备方法
CN110759710A (zh) 一种气化渣烧结砖及其制备方法
CN110451876B (zh) 一种建筑垃圾废弃砖为载体的自修复混凝土及其制备方法
CN104944818A (zh) 一种用于水电混凝土的掺合料
CN108947462A (zh) 一种粉煤灰基绝热材料及其制备方法
CN108033761A (zh) 碳化稻壳轻质蒸压砖及其制备方法
CN108439882B (zh) 秸秆脱硫石膏复合墙材及其制备方法
JP2021116224A (ja) セメント用混合材、セメント組成物、およびセメント組成物の製造方法
CN112745095A (zh) 一种蒸压加气混凝土砌块制备方法及蒸压加气混凝土砌块
CN112194429A (zh) 一种固硫灰干混砂浆及其制备方法
CN111099915A (zh) 一种抗冻煤矸石空心砖
CN117361548B (zh) 一种利用秸秆制备改性亲水纳米二氧化硅的方法、产品及超高性能混凝土
CN117550913B (zh) 一种轻质固废多孔骨料及其制备方法和应用
CN114409359B (zh) 一种绿色防磷污染砂浆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933069

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20933069

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20933069

Country of ref document: EP

Kind code of ref document: A1