WO2021217683A1 - 一种锌离子电池固态电解质 - Google Patents

一种锌离子电池固态电解质 Download PDF

Info

Publication number
WO2021217683A1
WO2021217683A1 PCT/CN2020/088549 CN2020088549W WO2021217683A1 WO 2021217683 A1 WO2021217683 A1 WO 2021217683A1 CN 2020088549 W CN2020088549 W CN 2020088549W WO 2021217683 A1 WO2021217683 A1 WO 2021217683A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
solid electrolyte
mol
bromide
chloride
Prior art date
Application number
PCT/CN2020/088549
Other languages
English (en)
French (fr)
Inventor
高超
褚星远
Original Assignee
杭州高烯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州高烯科技有限公司 filed Critical 杭州高烯科技有限公司
Priority to PCT/CN2020/088549 priority Critical patent/WO2021217683A1/zh
Publication of WO2021217683A1 publication Critical patent/WO2021217683A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a zinc ion battery solid electrolyte and a zinc ion solid battery using the electrolyte.
  • Solid electrolyte is a kind of solid material with ion conductivity, which can be used as electrolyte in batteries. Compared with the traditional liquid electrolyte, the solid electrolyte is not flammable, not easy to short circuit, and has the advantage of higher safety.
  • the commonly used solid electrolyte is an inorganic salt whose conductivity comes from the shuttle of smaller ions (such as lithium ions) in the lattice gap.
  • Zinc ion battery is a kind of battery with potential. Metal zinc has a high theoretical specific capacity (820mAh g -1 ) and a rich source. There is no report on the use of solid electrolytes (excluding gel electrolytes) in zinc-ion batteries.
  • the present invention develops a solid electrolyte for zinc ion batteries, which is obtained by high-temperature treatment of the ternary system of zinc chloride-zinc bromide-zinc acetate.
  • the zinc chloride-zinc bromide-zinc acetate ternary system is prepared by the following method: zinc chloride, zinc bromide and zinc acetate are added to dispersed water, heated to dissolve and then cooled to obtain a total salt concentration of 60-100 mol kg -1 zinc chloride-zinc bromide-zinc acetate ternary system.
  • the concentration range of zinc chloride is 20-30 mol kg -1
  • the concentration range of zinc bromide is 20-30 mol kg -1
  • the concentration range of zinc acetate is 20-40 mol kg -1 .
  • the high temperature treatment is heat treatment at 160-180°C.
  • the positive electrode of the zinc ion battery is made of carbon material
  • the negative electrode is made of metallic zinc, zinc-containing alloy or metallic zinc, zinc-containing alloy or other inert conductive substrate that can support zinc.
  • the carbon materials include carbon nanotubes, natural graphite, expanded graphite, graphene, graphene assemblies, and other carbon materials with a graphite lattice structure.
  • the beneficial effect of the present invention is that the present invention provides a solid electrolyte for zinc ion batteries, which has a conductivity of 10 -6 S m -1 . Solving the technical bottleneck of zinc-ion solid-state batteries, making zinc-ion solid-state batteries possible. Compared with other solid-state batteries, the zinc-ion solid-state battery based on the electrolyte of the present invention has the characteristics of low cost and simple preparation.
  • Figure 1 is a photograph of a solid electrolyte obtained by treating a water-based gel of zinc chloride-zinc bromide-zinc acetate with a total concentration of 60 mol kg-1 at 180°C.
  • zinc chloride, zinc bromide, zinc acetate and deionized water from a wide range of sources are used as raw materials, a ternary system is prepared first, and then a solid electrolyte is prepared by high-temperature treatment of the ternary system.
  • the preparation of a high-concentration ternary system is the basis for obtaining a solid electrolyte.
  • the present invention is based on the "end-capping" effect, which inhibits the crystallization process and makes the inorganic ions in the system form a three-dimensional inorganic polymer.
  • the ternary system is placed in a strain bottle, and the ternary system will not flow after being inverted.
  • the concentration is expressed by the ratio of solute to solvent.
  • 60-100 mol kg -1 means that the amount of solute dissolved per kilogram of water is 60-100 mol.
  • step 2 The colloid obtained in step 1 is heated at 180°C for 5 minutes and cooled to obtain a solid electrolyte, as shown in Figure 1.
  • step 3 Heat the colloid obtained in step 1 at 180°C for 5 minutes, pour it on a polytetrafluoroethylene film, cover it with a second polytetrafluoroethylene film, press iron blocks, and cool to obtain a thickness of 0.1mm flakes.
  • the measured conductivity of the sheet is 10 -6 S m -1 .
  • the test method is: stacking the titanium foil, the solid electrolyte sheet and the titanium foil in sequence in the Swaglok battery mold, pressurizing and heat sealing. The resistance is measured by the AC impedance method, and the conductivity can be obtained by calculation.
  • the zinc negative electrode, the solid electrolyte sheet, and the graphene film positive electrode are sequentially stacked in the battery mold for pressure and heat sealing.
  • the obtained battery cell has a mass specific capacity of 40 mAh g -1 (calculated based on the positive electrode active material) at a current density of 0.1A g -1.
  • step 3 of this embodiment the solid obtained in step 2 can also be reheated to 160-200 degrees Celsius, melted and then poured into molding.
  • step 2 Heat the colloid obtained in step 1 at 180°C for 5 minutes, pour it on a polytetrafluoroethylene film, cover it with a second polytetrafluoroethylene film, press iron blocks, and cool to obtain a thickness of 0.1mm flakes.
  • the measured conductivity is 8 ⁇ 10 -7 S m -1 .
  • the zinc negative electrode, the solid electrolyte sheet and the expanded graphite positive electrode are sequentially stacked in the battery mold for pressure and heat sealing.
  • the obtained battery cell has a mass specific capacity of 30 mAh g -1 (calculated based on the positive electrode active material) at a current density of 0.1A g -1.
  • step 2 (2) Heat the colloid obtained in step 1 at 160°C for 10 minutes, pour it on a polytetrafluoroethylene film, cover it with a second polytetrafluoroethylene film, press iron blocks, and cool to obtain a thickness of 0.1mm flakes.
  • the measured conductivity is 10 -6 S m -1 .
  • the zinc negative electrode, the solid electrolyte sheet, and the graphene film positive electrode are sequentially stacked in the battery mold for pressure and heat sealing.
  • its mass specific capacity is 38 mAh g -1 (calculated based on the positive electrode active material).
  • step 2 Heat the colloid obtained in step 1 at 200°C for 1 minute, pour it on a polytetrafluoroethylene film, cover it with a second layer of polytetrafluoroethylene film, press iron blocks, and cool to obtain a thickness of 0.1mm flakes.
  • the measured conductivity is 6 ⁇ 10 -7 S m -1 .
  • the zinc negative electrode, the solid electrolyte flake and the natural graphite positive electrode are sequentially stacked in the battery mold for pressure and heat sealing.
  • the resulting battery cell at a current density of 0.1A g -1, the mass specific capacity 2mAh g -1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

一种锌离子电池固态电解质,由高温处理氯化锌-溴化锌-醋酸锌三元体系所得。该固态电解质具有较高的离子电导率(10-6S m-1),将其组装成锌离子固态电池,基于正极活性物质计算,该电池的比容量可达40mAh g-1。该固态电解质制备简单,成本低廉,有望在储能领域获得应用。

Description

一种锌离子电池固态电解质 技术领域
本发明涉及一种锌离子电池固态电解质,以及使用该电解质的锌离子固态电池。
背景技术
固态电解质是一类具有离子导电性的固体材料,可作为电解质应用在电池中。与传统的液态电解质相比,固态电解质不易燃,不易短路,具有安全性更高的优势。通常采用的固态电解质为无机盐,其导电性来源于较小离子(如锂离子)在晶格间隙的穿梭。
锌离子电池是一类具有潜力的电池。金属锌具有高理论比容量(820mAh g -1)和丰富的来源。目前未见锌离子电池使用固态电解质(不包括凝胶电解质)的报道。
发明内容
本发明研制了一种锌离子电池固态电解质,由氯化锌-溴化锌-醋酸锌三元体系经高温处理得到。所述氯化锌-溴化锌-醋酸锌三元体系通过以下方法制备得到:将氯化锌、溴化锌和醋酸锌到分散水中,加热溶解后冷却,得到盐总浓度为60~100mol kg -1的氯化锌-溴化锌-醋酸锌三元体系。其中,氯化锌的浓度范围为20~30mol kg -1,溴化锌的浓度范围为20~30mol kg -1,醋酸锌的浓度范围为20~40mol kg -1。所述高温处理为160~180℃加热处理。
进一步的,锌离子电池正极为碳材料,负极为金属锌、含锌合金或金属锌、含锌合金或其它可负载锌的惰性导电基底。
进一步的,所述碳材料包括碳纳米管、天然石墨、膨胀石墨、石墨烯、石墨烯组装体及其它具有石墨晶格结构的碳材料。
本发明的有益效果在于,本发明提供了一种锌离子电池固态电解质,其电导率达10 -6S m -1。解决了锌离子固态电池的技术瓶颈,使得锌离子固态电池成为可能。相比于其他固态电池,基于本发明电解质的锌离子固态电池具有成本低,制备简单的特点。
附图说明
图1为由总浓度为60mol kg-1的氯化锌-溴化锌-醋酸锌水系凝胶经180℃处理所得的固态电解质照片。
具体实施方式
本发明以来源广泛的氯化锌、溴化锌、醋酸锌和去离子水为原料,先制备三元体系,再通过对其高温处理制备固态电解质。
其中,高浓度三元体系的制备是获得固态电解质的基础,本发明基于“封端”作用,抑制结晶过程并使体系内的无机离子形成三维无机高分子,得到的胶状体具有类似水凝胶的性质,将该三元体系置于菌种瓶中,倒扣后该三元体系不会流动。
本发明中,除特别说明,浓度均采用溶质溶剂比表示,60~100mol kg -1指的是每千克水所溶解的溶质的物质的量为60~100mol。
下面通过实施例对本发明进行具体描述,本实施例只用于对本发明做进一步的说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据上述发明的内容做出一些非本质的改变和调整,均属于本发明的保护范围。
实施例1:
(1)将0.2mol氯化锌、0.2mol溴化锌和0.2mol醋酸锌依次加入到10g去离子水中,加热至120℃溶解,自然冷却至室温得到总浓度为60mol kg -1的氯化锌-溴化锌-醋酸锌水系胶状体。
(2)将步骤1得到的胶状体在180℃条件下加热5分钟,冷却可得固态电解质,见图1。
(3)将步骤1得到的胶状体在180℃条件下加热5分钟,浇在聚四氟乙烯膜上,其上覆盖第二层聚四氟乙烯膜,压铁块,冷却以获得厚度为0.1mm的薄片。
(4)测得薄片电导率为10 -6S m -1。测试方法为:将钛箔、固态电解质薄片和钛箔依次叠加到Swaglok电池模具中加压热封。使用交流阻抗方法测得其电阻,通过计算可得其电导率。
(5)将锌负极、固态电解质薄片和石墨烯膜正极依次叠加到电池模具中加压热封。得到的电池单体在0.1A g -1的电流密度下,其质量比容量为40mAh g -1(基于正极活性物质计算)。
本实施例的步骤3中,也可以将步骤2得到的固态进行重新加热至160~200摄氏度,熔化后进行浇筑成型。
实施例2:
(1)将0.3mol氯化锌、0.3mol溴化锌和0.4mol醋酸锌依次加入到10g去离子水中,加热至130℃溶解,自然冷却至室温得到总浓度为100mol kg -1的氯化锌-溴化锌-醋酸锌水系胶状体。
(2)将步骤1得到的胶状体在180℃条件下加热5分钟,浇在聚四氟乙烯膜上,其 上覆盖第二层聚四氟乙烯膜,压铁块,冷却以获得厚度为0.1mm的薄片。
(3)测得其电导率为8×10 -7S m -1
(4)将锌负极、固态电解质薄片和膨胀石墨正极依次叠加到电池模具中加压热封。得到的电池单体在0.1A g -1的电流密度下,其质量比容量为30mAh g -1(基于正极活性物质计算)。
实施例3:
(1)将0.2mol氯化锌、0.2mol溴化锌和0.2mol醋酸锌依次加入到10g去离子水中,加热至120℃溶解,自然冷却至室温得到总浓度为60mol kg -1的氯化锌-溴化锌-醋酸锌水系胶状体。
(2)将步骤1得到的胶状体在160℃条件下加热10分钟,浇在聚四氟乙烯膜上,其上覆盖第二层聚四氟乙烯膜,压铁块,冷却以获得厚度为0.1mm的薄片。
(3)测得其电导率为10 -6S m -1
(4)将锌负极、固态电解质薄片和石墨烯膜正极依次叠加到电池模具中加压热封。得到的电池单体在0.1A g -1的电流密度下,其质量比容量为38mAh g -1(基于正极活性物质计算)。
实施例4:
(1)将0.3mol氯化锌、0.3mol溴化锌和0.4mol醋酸锌依次加入到10g去离子水中,加热至120℃溶解,自然冷却至室温得到总浓度为100mol kg -1的氯化锌-溴化锌-醋酸锌水系胶状体。
(2)将步骤1得到的胶状体在200℃条件下加热1分钟,浇在聚四氟乙烯膜上,其上覆盖第二层聚四氟乙烯膜,压铁块,冷却以获得厚度为0.1mm的薄片。
(3)测得其电导率为6×10 -7S m -1
(4)将锌负极、固态电解质薄片和天然石墨正极依次叠加到电池模具中加压热封。得到的电池单体在0.1A g -1的电流密度下,其质量比容量为2mAh g -1

Claims (3)

  1. 一种锌离子电池固态电解质,其特征在于,由氯化锌-溴化锌-醋酸锌三元体系经高温处理得到。所述氯化锌-溴化锌-醋酸锌三元体系通过以下方法制备得到:将氯化锌、溴化锌和醋酸锌到分散水中,加热溶解后冷却,得到盐总浓度为60~100mol kg -1的氯化锌-溴化锌-醋酸锌三元体系。其中,氯化锌的浓度范围为20~30mol kg -1,溴化锌的浓度范围为20~30mol kg -1,醋酸锌的浓度范围为20~40mol kg -1。所述高温处理为在160~200℃下加热1~10min。
  2. 根据权利要求1所述的固态电解质,其特征在于,锌离子电池正极为碳材料,负极为金属锌、含锌合金或金属锌、含锌合金或其它可负载锌的惰性导电基底。
  3. 根据权利要求2所述的固态电解质,其特征在于,所述碳材料包括碳纳米管、天然石墨、膨胀石墨、石墨烯、石墨烯组装体及其它具有石墨晶格结构的碳材料。
PCT/CN2020/088549 2020-05-01 2020-05-01 一种锌离子电池固态电解质 WO2021217683A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088549 WO2021217683A1 (zh) 2020-05-01 2020-05-01 一种锌离子电池固态电解质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088549 WO2021217683A1 (zh) 2020-05-01 2020-05-01 一种锌离子电池固态电解质

Publications (1)

Publication Number Publication Date
WO2021217683A1 true WO2021217683A1 (zh) 2021-11-04

Family

ID=78331694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088549 WO2021217683A1 (zh) 2020-05-01 2020-05-01 一种锌离子电池固态电解质

Country Status (1)

Country Link
WO (1) WO2021217683A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946667A (zh) * 2018-01-25 2018-04-20 浙江中科立德新材料有限公司 一种水系固态锂离子电池及其制备方法
CN109411835A (zh) * 2018-10-26 2019-03-01 北京大学深圳研究生院 一种复合固态电解质、其制备方法和应用
CN110277585A (zh) * 2018-03-14 2019-09-24 中国科学院苏州纳米技术与纳米仿生研究所 高耐盐型固态电解质、固态柔性锌锰电池及其制备方法
CN110444822A (zh) * 2019-08-15 2019-11-12 哈尔滨工业大学 一种一体化准固态锌离子电池的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946667A (zh) * 2018-01-25 2018-04-20 浙江中科立德新材料有限公司 一种水系固态锂离子电池及其制备方法
CN110277585A (zh) * 2018-03-14 2019-09-24 中国科学院苏州纳米技术与纳米仿生研究所 高耐盐型固态电解质、固态柔性锌锰电池及其制备方法
CN109411835A (zh) * 2018-10-26 2019-03-01 北京大学深圳研究生院 一种复合固态电解质、其制备方法和应用
CN110444822A (zh) * 2019-08-15 2019-11-12 哈尔滨工业大学 一种一体化准固态锌离子电池的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG CHONG, HOLOUBEK JOHN, WU XIANYONG, DANIYAR AIGERIM, ZHU LIANGDONG, CHEN CHENG, LEONARD DANIEL P., RODRÍGUEZ-PÉREZ ISMAEL A.,: "A ZnCl_2 water-in-salt electrolyte for a reversible Zn metal anode.", CHEM. COMMUN., vol. 54, no. 100, 21 November 2018 (2018-11-21), pages 14097 - 14099, XP055866950, ISSN: 1359-7345 *

Similar Documents

Publication Publication Date Title
CN108258323B (zh) 一种高比能全固态锂电池的制作方法
Shi et al. A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries
Yang et al. Boehmite particle coating modified microporous polyethylene membrane: A promising separator for lithium ion batteries
CN108232318A (zh) 一种全固态动力锂离子电池的制作方法
Cai et al. A cleverly designed asymmetrical composite electrolyte via in-situ polymerization for high-performance, dendrite-free solid state lithium metal battery
JPH11191319A (ja) ハイブリッドポリマー電解質、その製造方法及びこれを用いて製造したリチウム電池
CN107324316A (zh) 一种石墨烯膜正极材料的制备方法及其在铝离子电池中的应用
JP2023526525A (ja) 電気化学装置のセパレータ及びその作製方法
Song et al. Boosting Battery Safety by Mitigating Thermal‐Induced Crosstalk with a Bi‐Continuous Separator
CN109119632A (zh) 正极浆料、正极片及锂离子电池
CN111934008B (zh) 一种层状复合固态电解质及其制备方法和应用
Yang et al. Interfacial engineering of polypropylene separator with outstanding high-temperature stability for highly safe and stable lithium-sulfur batteries
Liu et al. An enhanced poly (vinylidene fluoride) matrix separator with high density polyethylene for good performance lithium ion batteries
Wen et al. Enhanced electrochemical properties of a novel polyvinyl formal membrane supporting gel polymer electrolyte by Al2O3 modification
Hwang et al. Electrochemical studies on poly (vinylidene fluoride–hexafluoropropylene) membranes prepared by phase inversion method
CN110911741B (zh) 氧化碳球掺杂的固态聚合物电解质膜及其制备方法和应用
Li et al. A stretchable ionic conductive elastomer for high‐areal‐capacity lithium‐metal batteries
CN109065816A (zh) 一种聚氨酯-纳米材料复合隔膜及制备方法及用途
Chandra Synthesis and dielectric studies of PEO-PVP blended solid polymer electrolytes
Zheng et al. AP (VDF-HFP) and nonwoven-fabric based composite as high-performance gel polymer electrolyte for fast-charging sodium metal batteries
WO2021217683A1 (zh) 一种锌离子电池固态电解质
Da et al. CO2‐Assisted Induced Self‐Assembled Aramid Nanofiber Aerogel Composite Solid Polymer Electrolyte for All‐Solid‐State Lithium‐Metal Batteries
CN110797581B (zh) 一种基于超高比表面积多孔碳材料复合凝胶聚合物电解质及其制备方法与应用
Wu et al. Hierarchical-structure and high-modulus aramid nanofiber membrane protective layer achieving high-performance lithium metal anode
CN207504101U (zh) 一种石墨烯方形锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934026

Country of ref document: EP

Kind code of ref document: A1