WO2021217431A1 - 降低噪声的方法、状态确定方法和电子设备 - Google Patents

降低噪声的方法、状态确定方法和电子设备 Download PDF

Info

Publication number
WO2021217431A1
WO2021217431A1 PCT/CN2020/087536 CN2020087536W WO2021217431A1 WO 2021217431 A1 WO2021217431 A1 WO 2021217431A1 CN 2020087536 W CN2020087536 W CN 2020087536W WO 2021217431 A1 WO2021217431 A1 WO 2021217431A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
microphone
audio signal
audio
operating state
Prior art date
Application number
PCT/CN2020/087536
Other languages
English (en)
French (fr)
Inventor
薛政
刘洋
莫品西
边云锋
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/087536 priority Critical patent/WO2021217431A1/zh
Priority to CN202080006262.2A priority patent/CN113056786A/zh
Publication of WO2021217431A1 publication Critical patent/WO2021217431A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor

Definitions

  • the present invention relates to the technical field of signal processing, and in particular to a method for reducing noise, a method for determining a state, and an electronic device.
  • UAV unmanned aerial vehicles
  • electronic devices such as unmanned aerial vehicles (UAV) are often used in tasks such as monitoring, reconnaissance, or image shooting. In some cases, electronic devices may need to collect and record audio signals in the environment.
  • UAV unmanned aerial vehicles
  • the first aspect of the embodiments of the present invention provides a method for reducing noise, which is applied to an electronic device, and the electronic device is provided with a first microphone and a second microphone;
  • the first microphone includes a first diaphragm and a first housing, the first diaphragm and the first housing form a first pickup cavity, and the first pickup cavity is arranged to be connected to the electronic The external environment where the equipment is connected;
  • the second microphone includes a second diaphragm and a second housing, the second diaphragm and the second housing form a second pickup cavity, and the second pickup cavity is arranged to be connected to the electronic The external environment where the equipment is located;
  • the method includes:
  • a second aspect of the embodiments of the present invention provides a method for determining a state, which is applied to an electronic device, the electronic device is provided with a microphone, the microphone includes a diaphragm and a housing, and the diaphragm and the housing form a pickup cavity , The sound pickup cavity is set to be blocked from the external environment where the electronic device is located, and the method includes:
  • the operating state of the electronic device is determined according to the audio signal.
  • a third aspect of the embodiments of the present invention provides a sound collection method, which is applied to an electronic device, the electronic device includes at least one microphone, the microphone has a closed sound receiving hole, and the method includes:
  • the audio signal is analyzed.
  • a fourth aspect of the embodiments of the present invention provides an electronic device, the electronic device is provided with a first microphone and a second microphone;
  • the first microphone includes a first diaphragm and a first housing, the first diaphragm and the first housing form a first pickup cavity, and the first pickup cavity is arranged to be connected to the electronic The external environment where the equipment is connected;
  • the second microphone includes a second diaphragm and a second housing, the second diaphragm and the second housing form a second pickup cavity, and the second pickup cavity is arranged to be connected to the electronic The external environment where the equipment is located;
  • the electronic device includes a processor configured to perform noise reduction processing on the first audio signal by using the second audio signal to reduce noise generated by the electronic device in the first audio signal.
  • a fifth aspect of the embodiments of the present invention provides an electronic device, the electronic device is provided with a microphone, the microphone includes a diaphragm and a housing, the diaphragm and the housing form a sound pickup cavity, and the sound pickup cavity Is set to block the external environment where the electronic device is located; the microphone is used to collect audio signals;
  • the electronic device includes a processor configured to determine the operating state of the electronic device according to the audio signal.
  • a sixth aspect of the embodiments of the present invention provides an electronic device, the electronic device is provided with a microphone, the microphone includes a diaphragm and a housing, the diaphragm and the housing form a sound pickup cavity, and the sound pickup cavity Is set to block the external environment where the electronic device is located; the microphone is used to collect audio signals;
  • the electronic device includes a processor for analyzing the audio signal.
  • a seventh aspect of the embodiments of the present invention provides a computer storage medium on which a computer program is stored, and when the computer program is executed by a processor, the method for reducing noise provided by the first aspect of the embodiments of the present invention is implemented.
  • An eighth aspect of the embodiments of the present invention provides a computer storage medium on which a computer program is stored, and when the computer program is executed by a processor, the method for determining the state provided in the second aspect of the embodiment of the present invention is implemented.
  • a ninth aspect of the embodiments of the present invention provides a computer storage medium on which a computer program is stored, and when the computer program is executed by a processor, the sound collection method provided in the third aspect of the embodiment of the present invention is implemented.
  • the noise reduction scheme of the embodiment of the present invention uses microphones with different radio structures to collect the first audio signal and the second audio signal respectively, and using the second audio signal to perform noise reduction processing on the first audio signal can improve the quality of the first audio signal. Noise reduction effect of noise generated by electronic equipment.
  • the noise-based fault diagnosis solution of the embodiment of the present invention uses a microphone whose pickup cavity is set to be blocked from the external environment where the electronic device is located to collect audio signals, which can increase the proportion of noise generated by the electronic device in the audio signal.
  • the audio signal can more accurately determine the operating state of the electronic device.
  • the sound collection solution of the embodiment of the present invention uses a microphone in which the pickup cavity is set to be blocked from the external environment in which the electronic device is located to collect audio signals, which can increase the proportion of noise generated by the electronic device in the audio signal, and can Various analyses are performed on the audio signal.
  • Fig. 1 shows a flowchart of a method for reducing noise according to an embodiment of the present invention
  • FIG. 2 shows a structural block diagram of an electronic device that can be used to implement the method for reducing noise according to an embodiment of the present invention
  • Fig. 3 shows a force model of the first microphone according to an embodiment of the present invention
  • Fig. 4 shows a circuit model of a first microphone according to an embodiment of the present invention
  • Fig. 5 shows a force model of a second microphone according to an embodiment of the present invention
  • Fig. 6 shows a circuit model of a second microphone according to an embodiment of the present invention
  • FIG. 7 shows a flowchart of a method for determining a state according to an embodiment of the present invention
  • FIG. 8 shows a structural block diagram of an electronic device that can be used to implement the state determination method according to an embodiment of the present invention
  • Fig. 9 shows a flowchart of a sound collection method according to an embodiment of the present invention.
  • Fig. 10 shows a structural block diagram of an electronic device that can be used to implement the sound collection method according to an embodiment of the present invention.
  • One solution is to use master-slave recording, that is, the main microphone is far away from the noise source for recording to obtain a high signal-to-noise ratio audio signal, and the auxiliary microphone is close to the noise source for recording to obtain a high-noise signal ratio audio signal.
  • Channel audio signals are sent to the noise reduction module for noise reduction processing.
  • this solution has strong restrictions on the shape of the noise source, and is more suitable for scenarios where the noise source is small, and audio signals with different signal-to-noise ratios can be obviously obtained through the microphone layout, and it also has greater restrictions on the microphone layout;
  • Another solution is to use partitioned recording, that is, to improve the signal-to-noise ratio of the audio signal recorded by the microphone by adopting some structural design, material noise isolation and other measures.
  • the design and other requirements are high, and the signal-to-noise ratio of the audio signal obtained by this scheme is far inferior to the first scheme.
  • the embodiment of the present invention provides a noise reduction solution applied to an electronic device.
  • the embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the case of no conflict, the following embodiments and features in the implementation can be combined with each other.
  • FIG. 1 shows a flowchart of a method 100 for reducing noise according to an embodiment of the present invention.
  • the method 100 is applied to an electronic device, the electronic device is provided with a first microphone and a second microphone; the first microphone includes a first diaphragm and a first housing, the first diaphragm and the first housing The body forms a first sound pickup cavity, and the first sound pickup cavity is arranged to communicate with the external environment in which the electronic device is located; the second microphone includes a second diaphragm and a second housing, and the second The diaphragm and the second housing form a second sound pickup cavity, and the second sound pickup cavity is arranged to block the external environment where the electronic device is located.
  • the first sound pickup cavity is provided with a first sound pickup hole, the first sound pickup hole is an open sound pickup hole, and the first sound pickup cavity communicates with the external environment through the first sound pickup hole.
  • the second sound-collecting cavity is provided with a second sound-receiving hole, and the second sound-receiving hole is closed by a sealing material.
  • the electronic device includes at least one first microphone and at least one second microphone, the first microphone has an open sound hole, and the second microphone has a closed sound hole.
  • the method 100 includes the following steps:
  • step S110 a first audio signal is collected through the first microphone, and a second audio signal is collected through the second microphone;
  • step S120 the second audio signal is used to perform noise reduction processing on the first audio signal. Therefore, the noise generated by the electronic device in the first audio signal can be reduced.
  • a second microphone with a closed sound hole is used to collect the second audio signal, which can increase the proportion of the noise generated by the electronic device in the second audio signal.
  • the audio signal performs noise reduction processing on the first audio signal to improve the noise reduction effect on the noise generated by the electronic device in the first audio signal.
  • the first audio signal and the second audio signal may be collected at the same time, and the aforementioned noise reduction operation may also be performed in real time along with the collection of the audio signal. In this way, the real-time performance of noise reduction processing can be further improved.
  • the method 100 for reducing noise in the embodiment of the present invention is applied to an electronic device.
  • the electronic device can be any electronic device that can be used for recording, such as including but not limited to drones, handheld pan-tilt devices, imaging devices, etc. .
  • FIG. 2 shows a schematic block diagram of an electronic device 200 for implementing the method 100 for reducing noise according to an embodiment of the present invention.
  • the electronic device 200 includes a first microphone 210, a second microphone 220 and a processor 230.
  • the first microphone 210 has an open sound hole for collecting the first audio signal
  • the second microphone 220 has a closed sound hole for collecting the second audio signal
  • the processor 230 may be used to implement the steps in the method 100
  • the second audio signal is used to perform noise reduction processing on the first audio signal, so as to reduce the noise generated by the electronic device in the first audio signal.
  • the electronic device 200 in the embodiment of the present invention may be an electronic device that can be used for recording, such as a drone, a handheld pan-tilt device, or an imaging device.
  • the UAV can include any type of unmanned movable objects such as unmanned vehicles and unmanned aerial vehicles, such as objects that can move in the air, on land, on water, or in space.
  • the drone can move in response to instructions issued by a remote control.
  • the drone can follow preset program instructions to run.
  • the drone can operate completely autonomously or semi-autonomously.
  • the drone may operate semi-autonomously in response to one or more instructions from the remote control, or it may operate completely autonomously.
  • the drone may be an unmanned aerial vehicle.
  • the unmanned aerial vehicle may include one or more power units.
  • the power unit is used to provide power for the unmanned aerial vehicle to fly in the air.
  • One or more of the power units can make the UAV move in one or more degrees of freedom.
  • the UAV can rotate about one or more rotation axes, and the rotation axes may be orthogonal to each other.
  • the rotation axis may include a pitch axis, a roll axis, and a yaw axis.
  • the UAV is also capable of moving in one or more dimensions, for example, moving upwards under the lifting of one or more rotors.
  • the unmanned aerial vehicle may be a rotorcraft.
  • the unmanned aerial vehicle is a multi-rotor aerial vehicle, and the multi-rotor aerial vehicle may include multiple rotors as a power unit of the unmanned aerial vehicle for driving the unmanned aerial vehicle to fly freely in the air.
  • the multiple rotors can rotate at the same speed, giving the UAV the same lifting force or propulsion force.
  • the plurality of rotors can also be rotated at a variety of different speeds to provide different lifting or propulsive forces for the unmanned aerial vehicle, and can also cause the unmanned aerial vehicle to rotate.
  • the rotor may include blades, and a plurality of the rotors may be driven by one or more motors, respectively. Both when the rotor is rotating and when the motor is running, extremely loud noises are emitted.
  • the unmanned aerial vehicle may include a body, and the body may include a casing, and the casing may enclose one or more components of the unmanned aerial vehicle.
  • one or more electronic components of the UAV are housed in the housing.
  • the flight controller of the unmanned aerial vehicle is arranged in the housing. The flight controller is used to control the operation of one or more power units.
  • a pan/tilt may also be provided on the drone.
  • the pan/tilt may support a camera mounted on the drone, and the pan/tilt may change the position of the camera relative to the drone.
  • the shaft arm of the pan/tilt is driven by a motor, which also generates noise during operation.
  • electronic devices can also include handheld pan-tilt devices.
  • the handheld PTZ device can be used to hold a camera.
  • the handheld pan/tilt device may generally include a pan/tilt, the pan/tilt includes a plurality of axis arms; the handheld pan/tilt device may also include a yaw axis motor, a roll axis motor, and/or a pitch axis motor, so that the pan/tilt It can rotate around one axis, two axis or three axis.
  • the camera can be installed on the end of the handheld pan/tilt device or on the mounting seat.
  • the yaw axis, roll axis or pitch axis of the handheld pan/tilt device can be adjusted independently.
  • the yaw axis motor, roll axis motor, and/or pitch axis motor all generate noise when operating.
  • the electronic device 200 may also include an imaging device.
  • the imaging device may be a sports camera. When the imaging device is used for image shooting, the internal motor of the imaging device will continue to work to make the lens of the imaging device zoom and focus. When some imaging devices respond to certain events or perform certain functions, they will beep.
  • the imaging device may include a shutter, and the shutter may also generate noise during operation.
  • the electronic device 200 of the embodiment of the present invention is configured to collect a first audio signal through a first microphone 210 provided on the electronic device 200, and the first audio signal includes at least an environmental audio signal.
  • the first audio signal collected by the first microphone 210 may be mixed with noise.
  • the noise may be the noise emitted by the electronic device 200, and may specifically include the noise emitted by the electronic device itself or a controlled device on the electronic device. In order to obtain useful audio, it is necessary to remove the noise emitted by the electronic device from the first audio signal collected by the first microphone 210.
  • the controlled devices included in the electronic device 200 that may generate noise are, for example, a camera, a pan/tilt, a motor, etc.
  • the motors include, for example, a pan/tilt motor, a propeller motor, and a cooling fan motor and other mechanical components.
  • these controlled devices will generate strong noise, for example, when a motor drives the optical components of the camera to move, drives the support arm of the pan/tilt to move, or drives a fan blade to rotate to provide power.
  • the device body of the electronic device running also emits noise, such as wind noise. When the electronic device 200 generates noise, the entire device may vibrate.
  • the electronic device 200 uses the first microphone 210 to collect a first audio signal with a high signal-to-noise ratio, and uses the second microphone 220 to collect a second audio signal with a high-noise signal ratio, wherein the first audio signal It mainly includes ambient sound from the outside world, and the second audio signal mainly includes noise generated by the electronic device itself.
  • the processor 230 uses the second audio signal to remove the noise generated by the electronic device in the first audio signal.
  • the difference between the signal-to-noise ratio of the first audio signal and the second audio signal is mainly achieved by the different designs of the sound holes of the first microphone 210 and the second microphone 220, that is, the first microphone 210 has an open sound pickup. Hole, the second microphone 220 has a closed sound-receiving hole.
  • the sound receiving hole of the second microphone 220 may be closed by a sealing material
  • the sealing material may include a flexible material, a rigid material, or a combination of a flexible material and a rigid material.
  • the rigid material includes, for example, metal
  • the flexible material includes, for example, plasticine
  • the combination of the flexible material and the rigid material includes, for example, metal with a rubber sealing ring.
  • the second microphone 220 can be closed manually by the user, or can be closed at the factory. Alternatively, the second microphone 220 may also be manufactured in a form without a sound hole.
  • the sound reception principle of the first microphone 210 and the second microphone 220 will be explained:
  • the force model of the first microphone 210 is shown in FIG. 3.
  • the housing of the first microphone is provided with a sound-receiving hole, which is connected to the outside world.
  • the inside of the housing is the diaphragm of the first microphone and other precision devices.
  • the force of the diaphragm can be divided into two ways: one is air conduction, air vibration is transmitted into the front cavity of the diaphragm through the sound hole, driving the diaphragm to vibrate; the other is vibration conduction, specifically, when the electronic device 200 vibrates,
  • the first microphone 210 will vibrate along with the vibration of the electronic device 200.
  • the vibration of the housing of the first microphone 210 causes the air in the front cavity of the diaphragm to vibrate, which in turn drives the diaphragm to vibrate, thereby generating an electrical signal.
  • the circuit model of the first microphone 210 is shown in FIG. 4.
  • the sound receiving hole of the second microphone 220 is closed, so that the air conduction path is weakened or disappeared, leaving only the vibration conduction path, and the effect of the vibration conduction path is enhanced.
  • FIG. 6 for the circuit model of the second microphone 220. Compared with the circuit model of FIG. 4, the air impedance branch disappears, so that the diaphragm impedance branch signal becomes stronger, and the corresponding vibration conduction effect is enhanced.
  • the symbolic abstract representation can be described as follows: the air conduction signal is marked as X, the vibration conduction signal is marked as Y, then the first audio signal recorded by the first microphone 210 is X+Y, and the second audio signal recorded by the second microphone 220 It can be considered as ⁇ X+ ⁇ Y, where 0 ⁇ 1, ⁇ >1, that is, the air conduction path is attenuated and the vibration conduction path is strengthened.
  • the recording method of ambient sound is mainly conducted through air
  • the noise generated by the electronic device 200 itself is mainly conducted through vibration.
  • the first audio signal The signal-to-noise ratio of is X/Y, and the signal-to-noise ratio of the second audio signal is ( ⁇ / ⁇ )X/Y, that is, compared with the first audio signal, the signal-to-noise ratio of the second audio signal is reduced by ⁇ / ⁇ times , The noise-to-signal ratio is improved by ⁇ / ⁇ times.
  • the number of the second microphone 220 may be multiple, and the sound receiving holes of the multiple second microphones 220 may be enclosed by sealing materials with different impedances to collect second audio signals with different audio characteristics.
  • the audio feature includes a signal-to-noise ratio, and the higher the impedance, the lower the signal-to-noise ratio.
  • the audio characteristics may also include other audio characteristics such as frequency, amplitude, or phase.
  • the second audio signal with different audio characteristics can be used for comprehensive analysis of the second audio signal, and the noise signal can be extracted from the second audio signal more accurately.
  • the SNR of the first audio signal and/or the SNR of the second audio signal can be further improved.
  • the open sound receiving hole of the first microphone 210 can be arranged on the surface of the electronic device 200 to improve the effect of collecting external environmental sounds.
  • the first microphone 210 is closer to the surface of the electronic device 200 than the second microphone 220 to collect as much ambient sound as possible, and the second microphone 220 is closer to the controlled device that generates noise than the first microphone 210 , To collect as much noise as possible.
  • the sound source generally comes from below the unmanned aerial vehicle, so the first microphone 210 may be arranged under the body of the unmanned aerial vehicle.
  • the first microphone 210 can also be installed at any position on the outer surface of the unmanned aerial vehicle, housed in the casing of the unmanned aerial vehicle, integrally formed on the casing of the unmanned aerial vehicle, or It is installed on the extension part of the UAV, etc., as long as the first microphone 210 can collect audio signals from the outside of the body.
  • the first microphone 210 may be installed on an extension that extends away from the UAV, such as a landing gear, etc., so that the first microphone 210 is better than the second microphone 220. To be far away from the one or more background noise generating elements on the unmanned aerial vehicle.
  • the first microphone 210 may be installed on or adjacent to a surface that helps to collect ambient sound.
  • the surface that helps to collect environmental sounds can be a dish-shaped or parabolic-shaped container.
  • the number of the first microphones 210 can be any value. In some embodiments, the number of the first microphone 210 is one. In other embodiments, the number of first microphones 210 may also be multiple, and multiple first microphones 210 may be arranged at different positions of the electronic device. The plurality of first microphones 210 may be the same type of microphones, or may be different types of microphones.
  • multiple first microphones 210 may be used to form an audio collection array.
  • the directional collection of audio can be achieved through beam synthesis technology to improve the signal-to-noise ratio and achieve a better denoising effect.
  • the second microphone 220 may be arranged adjacent to the noise source that generates the background noise, so as to be better than the first microphone 210. Ground noise floor of the electronic device 200, even if the amplitude of the noise floor collected by the second microphone 220 may be greater than the amplitude of the noise floor collected by the first microphone 210, or the second The noise floor collected by the microphone 220 is clearer than the noise floor collected by the first microphone 210.
  • the noise source may include the above-mentioned controlled device such as the motor, pan/tilt or camera, and may also include the optical components of the camera driven by the controlled device, the support arm of the pan/tilt, or the blades of the rotor or cooling fan And other moving parts.
  • the distance between the second microphone 220 and the noise source is within a preset distance range.
  • the distance between the second microphone 220 and the noise source is smaller than the distance between the first microphone 210 and the noise source.
  • the second microphone 220 is arranged as close to the noise source as possible.
  • the second microphone 220 may be arranged below the driving motor of the rotor, or directly below the rotor.
  • the second microphone 220 may also be directly installed on the controlled device.
  • the second microphone 220 may be installed on a housing for partially or completely accommodating the background noise generating element.
  • the second microphone 220 can be directly installed on the motor of the electronic device 200.
  • the second microphone 220 can be directly installed on the camera mounted on the drone, or the second microphone 220 can also be directly installed on the drone of the drone.
  • the second microphone 220 may be directly installed on a motor of the pan/tilt head (for example, a pitch axis motor, a roll axis motor, or a yaw axis motor, etc.).
  • the electronic device 200 may include a plurality of second microphones 220, and the plurality of second microphones 220 may be arranged at different positions of the electronic device 200, thereby making the collected second audio data more diversified and extracting
  • the noise signal obtained is richer and more comprehensive, which is more conducive to improving the noise reduction effect.
  • a plurality of the second microphones simultaneously collect the second audio signal or sequentially collect the second audio signal.
  • one second microphone 220 may be set within a preset distance range around one, two or more controlled devices. In other words, one second microphone 220 is provided within a preset distance range around each controlled device.
  • each of the controlled devices may be configured with a dedicated second microphone 220.
  • more than one controlled device may be configured with a common second microphone 220 in common.
  • the second microphone 220 configured for each controlled device may be the same or different. For example, different second microphones 220 may use sealing materials with different impedances to seal the sound receiving holes.
  • the first microphone 210 and the second microphone 220 may be used as independent components. In some other embodiments, the first microphone 210 and the second microphone 220 may also be integrated with other components. For example, the first microphone 210 and the second microphone 220 may be integrated in a camera or a pan-tilt.
  • the sensitivity or receiving range of the first microphone 210 is higher than that of the second microphone 220. Since the first microphone 210 is mainly used to collect environmental sounds, including sounds emitted by distant targets, and the second microphone 220 is mainly used to collect background noise emitted by the electronic device 200, its sensing range of audio signals can be It is smaller than the first microphone 210.
  • the first microphone 210 may be an omnidirectional microphone, which can collect the first audio signal in an all-round manner in a relatively wide spatial range; and if the controlled device emitting noise is relative to the second microphone 220 If the orientation of is fixed, the second microphone 220 can be designed to be able to collect the second audio signal conducted from a specific direction.
  • the processor 230 may execute step S130 in the method 100, and use the second audio signal to perform noise reduction processing on the first audio signal, so as to reduce the noise in the first audio signal.
  • the performing noise reduction processing on the first audio signal by using the second audio signal includes: using the first audio signal as a signal to be noise-reduced, and using the second audio signal as noise
  • the reference signal is input to the noise reduction algorithm model, and the noise-reduced first audio signal is output.
  • the noise reduction algorithm model determines the spectrum range and size corresponding to the noise floor signal by analyzing the Hanning window spectrum of the second audio signal, and calculates the corresponding filter parameters.
  • the first audio signal is filtered with corresponding filter parameters to reduce or eliminate the amplitude of the noise floor signal frequency band contained in the first audio signal, so as to obtain the noise-reduced first audio Signal.
  • the noise reduction algorithm model is set according to one or more of the following algorithms: Wiener noise reduction algorithm, machine learning noise reduction algorithm, and echo cancellation noise reduction algorithm.
  • Wiener noise reduction algorithm any other suitable noise reduction algorithm can also be used for noise reduction, or multiple noise reduction processing can be used to obtain a better noise reduction effect.
  • the noise reduction algorithm model includes at least a plurality of filters.
  • the multiple filters include, but are not limited to, IIR (Infinite Impulse Response, infinite impulse response) filters, biquad filters, and the like.
  • the biquad filter integrates characteristics such as high-pass filter, low-pass filter, frequency equalization filter, notch filter, etc., and the combination of these filters realizes the reduction of noise frequency band, which can achieve better The noise reduction effect.
  • the process of noise reduction processing may be performed in real time during the audio collection process of the electronic device 200, so that the user can hear the audio signal after noise reduction processing in real time.
  • the first audio signal and the second audio signal may be stored in a memory, and noise reduction processing may be performed at any subsequent time.
  • the processor 230 may be a part of the control circuit board of the electronic device 200, or it may be an independent circuit board, module, or chip.
  • the processor may be implemented by a central processing unit (CPU), an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA).
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the electronic device further includes a memory.
  • the memory includes one or more computer program products, and the computer program products may include various forms of computer-readable storage media, such as volatile memory and/or non-volatile memory.
  • the volatile memory may include random access memory (RAM) and/or cache memory (cache), for example.
  • the non-volatile memory may include, for example, read-only memory (ROM), hard disk, flash memory, and the like.
  • One or more computer program instructions can be stored on the computer-readable storage medium, and the processor 230 can run the program instructions to implement the method steps and steps in the embodiments of the present invention (implemented by the processor) described below. / Or other desired functions.
  • Various application programs and various data such as various data used and/or generated by the application program, can also be stored in the computer-readable storage medium.
  • the processor 230 may be arranged on the device body of the electronic device 200, or may be arranged separately from the device body of the electronic device 200.
  • an external device with the processor may be used to perform the step S130.
  • the external device may be a controller of the drone.
  • the controller of the unmanned aerial vehicle can control the operation of the unmanned aerial vehicle, or can control any other components on the unmanned aerial vehicle.
  • the external device may be a monitor, a desktop computer, a notebook computer, a tablet computer, a cellular portable phone, a smart portable phone, a personal digital assistant device, or any other device.
  • one or more processors may be distributed on the electronic device 200 and one or more external devices, or one or more processors may be distributed on multiple external devices, and each processor may Each performs work independently and generates a processed signal, or can perform work cooperatively and generate a processed signal.
  • the first audio signal after the noise reduction process can be used for media processing of the electronic device 200, such as audio and video editing, automatic subtitle editing, audio transmission, stereo synthesis, and so on.
  • the first audio signal after the noise reduction process may also be transmitted to the user.
  • the first audio signal after the noise reduction process can be transmitted to the user through a speaker or other audio transmitting device, so that the user can hear the sound converted into the first audio signal after the noise reduction process.
  • the noise-reduction processed first audio signal removes the background noise emitted by the electronic device 200, and thus is clearer.
  • the first audio signal after the noise reduction process can also be recorded, for example, stored in a memory for transmission and/or repeated playback.
  • the second audio signal mainly includes the background noise of the electronic device 200, and the background noise is mainly controlled by the electronic device 200. It is caused by the operation of the device. Therefore, in an embodiment of the present invention, the operating state of the electronic device 200 can also be determined according to the second audio signal.
  • audio characteristic parameters may be extracted from the second audio signal, the audio characteristic parameters may be compared with preset audio characteristic parameters, and the operation of the electronic device may be determined according to the comparison result state.
  • the audio characteristic parameters may include frequency, amplitude, phase and other characteristic parameters that characterize the characteristics of the audio signal.
  • the operating state of the electronic device may include the operating state of the motor in the electronic device 200 and/or the operating state of the fan blade.
  • the second audio signal may be analyzed to extract audio feature parameters and compare them with preset audio feature parameters, which are associated with a preset operating state.
  • the vibration and noise mainly include the fundamental frequency and its harmonic frequencies.
  • the frequency of the fundamental frequency is directly determined by the rotation speed of the motor or the fan blade. Therefore, the audio characteristic parameter may include the fundamental frequency extracted from the second audio signal.
  • the frequency of the frequency signal may include the fundamental frequency extracted from the second audio signal.
  • audio feature parameters can be extracted from the second audio signal, the operating parameters of the electronic device 200 can be determined according to the audio feature parameters, and the operating parameters can be compared with preset operating parameters , And determine the operating state of the electronic device 200 according to the comparison result.
  • the operating parameters of the electronic device may include the operating parameters of the controlled device in the electronic device 200.
  • the operating parameters include the motion state parameters of the motor and/or the motion state parameters of the fan blades.
  • the audio feature parameter can be converted into a motion state parameter of the motor, such as the rotation speed of the motor.
  • the audio feature parameter can be converted into a motion state parameter of the fan blade, for example, the rotation speed of the fan blade. Then, the rotation speed of the motor can be compared with the preset motor rotation speed to determine the running state of the motor, and/or the fan blade rotation speed can be compared with the preset fan blade rotation speed to determine the running state of the fan blade.
  • determining the operating state of the electronic device according to the comparison result may include determining whether the operating state of the electronic device is a normal state or an abnormal state according to the comparison result. For example, when the deviation between the audio feature parameter and the preset audio feature parameter exceeds the preset threshold, or the deviation between the operating parameter of the electronic device determined according to the audio feature parameter and the preset operating parameter exceeds the preset Threshold, it is determined that the electronic device is in an abnormal state.
  • the deviation between the audio feature parameters and the preset audio feature parameters does not exceed the preset threshold, or the operating parameters of the electronic device 200 and the preset values determined according to the audio feature parameters If the deviation between the operating parameters does not exceed the preset threshold, it is determined that the operating state of the electronic device 200 is in a normal state.
  • control parameters of the electronic device can be adjusted in time, for example, the control parameters of the motor or the fan blades can be adjusted, so as to avoid an operation accident of the electronic device.
  • the determining the operating state of the electronic device according to the comparison result includes: determining, according to the comparison result, that the operating state of the electronic device is a working state or a non-working state, for example, according to the comparison result Determine whether the motor and/or fan blades are currently rotating, etc.
  • the determining the operating state of the electronic device according to the comparison result includes: determining the operating state of the electronic device as one of a plurality of preset operating states according to the comparison result.
  • multiple preset operating states can be preset, and each operating state corresponds to an interval of the audio feature parameter or the operating parameter of the electronic device.
  • the noise reduction mode used in the noise reduction processing in step S130 can also be determined according to the operating state. For example, in different operating states, noise reduction modes with different noise reduction intensities can be used. Among them, each noise reduction mode can be pre-configured with different filter parameters. For example, when the rotation speed of the motor and/or the fan blade is faster, the noise generated is larger, so a stronger noise reduction mode can be adopted. Or, since the noise is relatively large when the operating state is detected as an abnormal state, the noise reduction intensity used in the noise reduction processing can also be appropriately increased.
  • the method 100 for reducing noise and the electronic device 200 use a second microphone with a closed sound hole to collect the second audio signal, which can increase the proportion of noise generated by the electronic device in the second audio signal.
  • Using the second audio signal to perform noise reduction processing on the first audio signal can improve the noise reduction effect on the noise generated by the electronic device in the first audio signal.
  • the embodiment of the present invention also provides a computer storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the method 100 shown in FIG. 1 can be implemented.
  • the computer storage medium is a computer-readable storage medium.
  • the computer storage medium may include, for example, a memory card of a smart phone, a storage component of a tablet computer, a hard disk of a personal computer, a read-only memory (ROM), an erasable programmable read-only memory (EPROM), a portable compact disk read-only memory ( CD-ROM), USB memory, or any combination of the above storage media.
  • the computer-readable storage medium may be any combination of one or more computer-readable storage media.
  • the embodiment of the present invention provides a noise-based state determination solution. Since the solution of the state determination based on the second audio signal has been described above, in the following description, part of the details already described above are omitted.
  • the method 700 is applied to an electronic device, the electronic device is provided with a microphone, the microphone includes a diaphragm and a housing, the diaphragm and the housing form a pickup cavity, and the pickup cavity is set to be in contact with the The external environment barrier where the electronic equipment is located.
  • the sound-collecting cavity is provided with a sound-receiving hole, and the sound-receiving hole is closed by a sealing material.
  • the electronic device includes at least one microphone, and the microphone has a closed sound-receiving hole.
  • the method 700 includes the following steps:
  • step S710 an audio signal is collected through the microphone
  • step S720 the operating state of the electronic device is determined according to the audio signal.
  • a microphone with a closed sound hole is used to collect audio signals, which can increase the proportion of noise generated by the electronic device in the audio signal, and can more accurately determine the electronic device according to the audio signal The operating status of the.
  • FIG. 8 shows a schematic block diagram of an electronic device 800 for implementing a state determination method 700 provided by an embodiment of the present invention.
  • the electronic device 800 includes a microphone 810 and a processor 820.
  • the microphone 810 includes a diaphragm and a housing, the diaphragm and the housing form a pickup cavity, and the pickup cavity is set to be blocked from the external environment where the electronic device 800 is located.
  • the microphone 810 is used to collect audio signals.
  • the processor 820 may be used to implement step S720 in the method 700, that is, to determine the operating state of the electronic device according to the audio signal.
  • the electronic device 800 in the embodiment of the present invention may be an electronic device that can be used for recording, such as a drone, a handheld pan-tilt device, or an imaging device.
  • the UAV can include any type of unmanned movable objects such as unmanned vehicles and unmanned aerial vehicles.
  • the sound-receiving hole of the microphone 810 is in a closed state, including: the sound-receiving hole of the microphone 810 is closed by a sealing material.
  • the sealing material includes a flexible material, a rigid material, or a combination of a flexible material and a rigid material.
  • the electronic device 800 includes one or more of the following controlled devices: a camera, a pan-tilt, and a motor.
  • the drone can be equipped with a camera; the drone can also be provided with a pan-tilt for supporting the camera, and the pan-tilt can change the camera relative to the unmanned drone.
  • the direction of the aircraft; the drone can also be equipped with multiple motors, for example, the motor can drive the optical assembly of the camera, drive the support arm of the pan/tilt, or drive the fan blades of rotors and other components to rotate to provide power and many more.
  • the handheld pan/tilt device may include a pan/tilt and a motor for driving the movement of the support arm of the pan/tilt; the handheld pan/tilt device may also include a camera for collecting images.
  • the electronic device 800 may also include an imaging device.
  • the imaging device may be a sports camera.
  • the electronic device 800 includes one or more controlled devices, and the controlled device or other moving parts driven by the controlled device will generate background noise during operation.
  • the audio characteristics of the noise are related to the operating state of the controlled device of the electronic device 800. Therefore, the embodiment of the present invention adopts a microphone 810 with a closed sound-receiving hole to collect audio signals, and the audio signals mainly include vibration-conducted background noise signals, which can better reflect the operating state of the electronic device 800.
  • the microphone 810 can be arranged as close as possible to the noise source, or even directly on the noise source, and the noise source can be the aforementioned controlled device.
  • the noise source can be the aforementioned controlled device.
  • each controlled device corresponds to one microphone 810, or several controlled devices Share a microphone 810.
  • the plurality of microphones 810 may be enclosed by sealing materials with different impedances to collect the audio signals with different audio characteristics.
  • the audio feature includes a signal-to-noise ratio, and the higher the impedance, the lower the signal-to-noise ratio.
  • the microphone 810 can collect audio signals at the same time, and the audio signals collected by multiple microphones 810 can be used to determine the status, so as to improve the accuracy.
  • multiple microphones 810 can also collect audio signals in sequence, and the audio signals collected by one microphone 810 are used to determine the status each time. For example, when the state of a controlled device is determined, the microphone 810 near the controlled device is turned on to collect audio signals for state determination.
  • audio characteristic parameters may be extracted from the audio signal, the audio characteristic parameters may be compared with preset audio characteristic parameters, and the operating state of the electronic device may be determined according to the comparison result.
  • the audio characteristic parameters may include frequency, amplitude, phase and other characteristic parameters that characterize the characteristics of the audio signal.
  • the operating state of the electronic device may include the operating state of the motor in the electronic device 800 and/or the operating state of the fan blade.
  • the audio signal can be analyzed to extract audio feature parameters and compare them with preset audio feature parameters, which are associated with a preset operating state.
  • vibration and noise mainly include the fundamental frequency and its harmonic frequencies.
  • the frequency of the fundamental frequency is directly determined by the rotation speed of the motor or the fan blade. Therefore, the audio characteristic parameters may include the fundamental frequency signal extracted from the audio signal. Frequency of.
  • audio feature parameters can be extracted from the audio signal, the operating parameters of the electronic device 800 can be determined according to the audio feature parameters, and the operating parameters can be compared with preset operating parameters, and The operating state of the electronic device 800 is determined according to the comparison result.
  • the operating parameters of the electronic device may include the operating parameters of the controlled device in the electronic device 800.
  • the operating parameters include the motion state parameters of the motor and/or the motion state parameters of the fan blades.
  • the audio feature parameter can be converted into the motion state parameter of the motor, such as the rotation speed of the motor.
  • the audio feature parameter can be converted into the motion state parameter of the fan blade, such as the rotation speed of the fan blade. Then, the rotation speed of the motor can be compared with the preset motor rotation speed to determine the running state of the motor, and/or the fan blade can be compared with the preset fan rotation speed to determine the running state of the fan blade.
  • determining the operating state of the electronic device according to the comparison result may include determining whether the operating state of the electronic device is a normal state or an abnormal state according to the comparison result. For example, when the deviation between the audio feature parameter and the preset audio feature parameter exceeds the preset threshold, or the deviation between the operating parameter of the electronic device determined according to the audio feature parameter and the preset operating parameter exceeds the preset Threshold, it is determined that the electronic device is in an abnormal state.
  • the operating parameters of the electronic device 800 determines whether the operating state of the electronic device 800 is in a normal state.
  • control parameters of the electronic device can be adjusted in time, for example, the control parameters of the motor or the fan blades can be adjusted, so as to avoid an operation accident of the electronic device.
  • the determining the operating state of the electronic device according to the comparison result includes: determining, according to the comparison result, that the operating state of the electronic device is a working state or a non-working state, for example, according to the comparison result Determine whether the motor and/or fan blades are currently rotating, etc.
  • the determining the operating state of the electronic device according to the comparison result includes: determining the operating state of the electronic device as one of a plurality of preset operating states according to the comparison result. For example, multiple preset operating states can be set in advance, and each operating state corresponds to an interval of the audio feature parameter or the operating parameter of the electronic device. When it is determined that the audio feature parameter extracted from the audio signal falls within one of the audio feature parameters If the operating parameter determined according to the audio characteristic parameter falls within a certain interval of the operating parameter, the operating state of the electronic device is determined as the corresponding preset operating state.
  • the audio signal is collected by a microphone with a closed sound hole, which can increase the proportion of noise generated by the electronic device in the audio signal, and the audio signal can be used to Judge the operating status of electronic equipment more accurately.
  • the embodiment of the present invention also provides a computer storage medium on which a computer program is stored.
  • the steps of the method 700 shown in FIG. 7 can be implemented.
  • the computer storage medium is a computer-readable storage medium.
  • the computer storage medium may include, for example, a memory card of a smart phone, a storage component of a tablet computer, a hard disk of a personal computer, a read-only memory (ROM), an erasable programmable read-only memory (EPROM), a portable compact disk read-only memory ( CD-ROM), USB memory, or any combination of the above storage media.
  • the computer-readable storage medium may be any combination of one or more computer-readable storage media.
  • the embodiment of the present invention also provides a sound collection solution.
  • a sound collection method 900 provided by an embodiment of the present invention will be described.
  • the method 900 is applied to an electronic device, the electronic device includes at least one microphone, the microphone includes a diaphragm and a housing, the diaphragm and the housing form a pickup cavity, and the pickup cavity is set to The external environment where the electronic device is located is blocked; the sound pickup cavity of each microphone is provided with a sound-receiving hole, and the sound-receiving hole is closed by a sealing material.
  • the method 900 includes the following steps:
  • step S910 an audio signal is collected through the microphone
  • step S920 the audio signal is analyzed.
  • a microphone with a closed sound receiving hole is used to collect audio signals, and an audio signal with a relatively high noise floor can be obtained for analysis.
  • FIG. 10 shows a schematic block diagram of an electronic device 1000 for implementing a sound collection method 900 provided by an embodiment of the present invention.
  • the electronic device 1000 includes a microphone 1010 and a processor 1020.
  • the microphone 1010 has a closed sound hole for collecting audio signals
  • the processor 1020 can be used to implement step S920 in the method 900, that is, to determine the operating state of the electronic device according to the audio signals.
  • the electronic device 1000 in the embodiment of the present invention may be an electronic device that can be used for recording, such as a drone, a handheld pan-tilt device, or an imaging device.
  • the UAV can include any type of unmanned movable objects such as unmanned vehicles and unmanned aerial vehicles.
  • blocking the sound pickup cavity of the microphone 1010 from the external environment includes: the sound pickup hole of the microphone 1010 is closed by a sealing material.
  • the sealing material includes a flexible material, a rigid material, or a combination of a flexible material and a rigid material.
  • the electronic device 1000 may include a plurality of the microphones 1010.
  • the sound receiving holes of the plurality of microphones 1010 may be sealed by sealing materials with different impedances to collect audio signals with different audio characteristics.
  • the audio feature may be a signal-to-noise ratio, or may be audio features such as frequency, amplitude, and phase. Taking the signal-to-noise ratio as an example, the higher the impedance of the sealing material that closes the sound receiving hole, the lower the ambient audio signal received by the microphone 1010 through the air conduction path, and the higher the background noise of the electronic device 900 received through the vibration conduction path. , Thus the lower the signal-to-noise ratio.
  • the processor 1020 may be used to analyze the audio signal.
  • the processor 1020 may be used to analyze audio feature parameters that characterize the audio features of the audio signal. Further, the processor 1020 analyzes the audio signals collected by the multiple microphones 1010.
  • the analysis performed by the processor 1020 includes, but is not limited to, the above-mentioned use of the audio feature parameters extracted from the audio signal to perform fault diagnosis, and may also include the use of the audio signal to perform other analysis on the operating state of the electronic device 1020.
  • the processor 1020 may analyze the audio signal in real time, or may store the audio signal in a storage device, and subsequently analyze the audio signal.
  • the embodiment of the present invention also provides a computer storage medium on which a computer program is stored.
  • the steps of the method 900 shown in FIG. 9 can be implemented.
  • the computer storage medium is a computer-readable storage medium.
  • the computer storage medium may include, for example, a memory card of a smart phone, a storage component of a tablet computer, a hard disk of a personal computer, a read-only memory (ROM), an erasable programmable read-only memory (EPROM), a portable compact disk read-only memory ( CD-ROM), USB memory, or any combination of the above storage media.
  • the computer-readable storage medium may be any combination of one or more computer-readable storage media.
  • the method for reducing noise and the electronic device in the embodiments of the present invention use a second microphone with a pickup cavity to block the external environment to collect the second audio signal, which can improve the noise generated by the electronic device in the second audio signal.
  • using the second audio signal to perform noise reduction processing on the first audio signal can improve the noise reduction effect on the noise generated by the electronic device in the first audio signal.
  • the state determination method and the electronic device of the embodiment of the present invention use a microphone that is blocked from the pickup cavity and the external environment to collect audio signals, which can increase the proportion of noise generated by the electronic device in the audio signal, and can more accurately determine the electronic device based on the audio signal The operating status of the.
  • the sound collection method and the electronic device of the embodiment of the present invention collect audio signals by using a microphone blocked by the sound pickup cavity from the external environment, which can increase the proportion of noise generated by the electronic device in the audio signal, and can perform various analyses on the audio signal.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another device, or some features can be ignored or not implemented.
  • the various component embodiments of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some modules according to the embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

一种降低噪声的方法(100)、状态确定方法和电子设备(200),降低噪声的方法(100)应用于电子设备(200),电子设备(200)包括至少一个第一麦克风(210)和至少一个第二麦克风(220),第一麦克风(210)和第二麦克风(220)的收音结构不同,方法(100)包括:通过第一麦克风(210)采集第一音频信号,通过第二麦克风(220)采集第二音频信号(S110);利用第二音频信号对第一音频信号进行降噪处理(S120),这样,可以降低第一音频信号中由电子设备(200)产生的噪声。

Description

降低噪声的方法、状态确定方法和电子设备 技术领域
本发明涉及信号处理技术领域,具体而言涉及一种降低噪声的方法、状态确定方法和电子设备。
背景技术
如无人飞行器(unmanned aerial vehicle,UAV)等电子设备经常被用于监测、侦查或影像拍摄等任务中。在一些情况下,电子设备可能需采集并录制环境中的音频信号。
然而,由于电子设备包括多个机械部件,因而电子设备在运行时,例如当无人飞行器在飞行时,会产生干扰有用音频的本底噪声,通过设置在电子设备上的麦克风采集的音频信号将严重受到本地噪声的影响。因此,有必要从采集到的音频信号中降低或消除电子设备产生的噪声的影响。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
针对现有技术的不足,本发明实施例第一方面提供了一种降低噪声的方法,应用于电子设备,所述电子设备设置有第一麦克风和第二麦克风;
所述第一麦克风包括第一振膜和第一壳体,所述第一振膜与所述第一壳体形成第一拾音腔,所述第一拾音腔被设置为与所述电子设备所处的外部环境连通;
所述第二麦克风包括第二振膜和第二壳体,所述第二振膜和所述第二壳体形成第二拾音腔,所述第二拾音腔被设置为与所述电子设备 所处的外部环境阻隔;
所述方法包括:
通过所述第一麦克风采集第一音频信号,通过所述第二麦克风采集第二音频信号;
利用所述第二音频信号对所述第一音频信号进行降噪处理。
这样,可以降低所述第一音频信号中由所述电子设备产生的噪声。
本发明实施例第二方面提供一种状态确定方法,应用于电子设备,所述电子设备设置有麦克风,所述麦克风包括振膜和壳体,所述振膜和所述壳体形成拾音腔,所述拾音腔被设置为与所述电子设备所处的外部环境阻隔,所述方法包括:
通过所述麦克风采集音频信号;
根据所述音频信号确定所述电子设备的运行状态。
本发明实施例第三方面提供一种声音采集方法,应用于电子设备,所述电子设备包括至少一个麦克风,所述麦克风具有封闭的收音孔,所述方法包括:
通过所述麦克风采集音频信号;
对所述音频信号进行分析。
本发明实施例第四方面提供一种电子设备,所述电子设备设置有第一麦克风和第二麦克风;
所述第一麦克风包括第一振膜和第一壳体,所述第一振膜与所述第一壳体形成第一拾音腔,所述第一拾音腔被设置为与所述电子设备所处的外部环境连通;
所述第二麦克风包括第二振膜和第二壳体,所述第二振膜和所述第二壳体形成第二拾音腔,所述第二拾音腔被设置为与所述电子设备所处的外部环境阻隔;
所述电子设备包括处理器,用于利用所述第二音频信号对所述第一音频信号进行降噪处理,以降低所述第一音频信号中由所述电子设备产生的噪声。
本发明实施例第五方面提供一种电子设备,所述电子设备设置有麦克风,所述麦克风包括振膜和壳体,所述振膜和所述壳体形成拾音 腔,所述拾音腔被设置为与所述电子设备所处的外部环境阻隔;所述麦克风,用于采集音频信号;
所述电子设备包括处理器,用于根据所述音频信号确定所述电子设备的运行状态。
本发明实施例第六方面提供一种电子设备,所述电子设备设置有麦克风,所述麦克风包括振膜和壳体,所述振膜和所述壳体形成拾音腔,所述拾音腔被设置为与所述电子设备所处的外部环境阻隔;所述麦克风,用于采集音频信号;
所述电子设备包括处理器,用于对所述音频信号进行分析。
本发明实施例第七方面提供一种计算机存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例第一方面所提供的降低噪声的方法。
本发明实施例第八方面提供一种计算机存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例第二方面所提供的状态确定方法。
本发明实施例第九方面提供一种计算机存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例第三方面所提供的声音采集方法。
本发明实施例的降低噪声的方案采用具有不同收音结构的麦克风分别采集第一音频信号和第二音频信号,利用第二音频信号对第一音频信号进行降噪处理能够提高对第一音频信号中由电子设备产生的噪声的降噪效果。
本发明实施例的基于噪声的故障诊断方案采用拾音腔被设置为与所述电子设备所处的外部环境阻隔的麦克风采集音频信号,可以提高音频信号中由电子设备产生的噪声的比例,根据该音频信号可以较为准确地确定电子设备的运行状态。
本发明实施例的声音采集方案采用所述拾音腔被设置为与所述电子设备所处的外部环境阻隔的麦克风采集音频信号,可以提高音频信号中由电子设备产生的噪声的比例,并可以对该音频信号进行多种分析。
附图说明
本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述,用来解释本发明的原理。
附图中:
图1示出了根据本发明一实施例的降低噪声的方法的流程图;
图2示出了根据本发明一实施例的可用于实现所述降低噪声的方法的电子设备的结构框图;
图3示出了根据本发明一实施例的第一麦克风的受力模型;
图4示出了根据本发明一实施例的第一麦克风的电路模型;
图5示出了根据本发明一实施例的第二麦克风的受力模型;
图6示出了根据本发明一实施例的第二麦克风的电路模型;
图7示出了根据本发明一实施例的状态确定方法的流程图;
图8示出了根据本发明一实施例的可用于实现所述状态确定方法的电子设备的结构框图;
图9示出了根据本发明一实施例的声音采集方法的流程图;
图10示出了根据本发明一实施例的可用于实现所述声音采集方法的电子设备的结构框图。
具体实施方式
为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完 全,并且将本发明的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本发明,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本发明提出的技术方案。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
针对机器本底噪声过强的环境,有如下两种录音方案:
一种方案是采用主从式录音,即主麦克风远离噪声源进行录音,以获得高信噪比的音频信号,辅麦克风贴近噪声源进行录音,以获得高噪信比的音频信号,再将两路音频信号送入降噪模块进行降噪处理。但该方案对噪声源形态限制较强,比较适用于噪声源较小,通过麦克风布局能明显获得信噪比不同的音频信号的场景,对麦克风布局也有较大限制;
另一种方案是采用隔断式录音,即采用一些结构设计、材料隔噪等措施来提高麦克风录制的音频信号的信噪比,该方案不需要使用额外的麦克风,但该方案对结构设计、材料设计等要求较高,并且该方案得到的音频信号的信噪比也远不如第一种方案。
基于此,本发明实施例提供了一种应用于电子设备的降低噪声的方案。下面结合附图,对本发明实施例的进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
首先,参照图1,对本发明实施例提供的降低噪声的方法进行描述。图1示出了根据本发明的一个实施例的降低噪声的方法100的流程图。该方法100应用于电子设备,所述电子设备设置有第一麦克风和第二麦克风;所述第一麦克风包括第一振膜和第一壳体,所述第一振膜与所述第一壳体形成第一拾音腔,所述第一拾音腔被设置为与所 述电子设备所处的外部环境连通;所述第二麦克风包括第二振膜和第二壳体,所述第二振膜和所述第二壳体形成第二拾音腔,所述第二拾音腔被设置为与所述电子设备所处的外部环境阻隔。
所述第一拾音腔上开设有第一收音孔,所述第一收音孔为一开放的收音孔,所述第一拾音腔通过所述第一收音孔与所述外部环境连通。所述第二拾音腔上开设有第二收音孔,所述第二收音孔由封闭材料进行封闭。换言之,所述电子设备包括至少一个第一麦克风和至少一个第二麦克风,所述第一麦克风具有开放的收音孔,所述第二麦克风具有封闭的收音孔。
如图1所示,方法100包括如下步骤:
在步骤S110,通过所述第一麦克风采集第一音频信号,通过所述第二麦克风采集第二音频信号;
在步骤S120,利用所述第二音频信号对所述第一音频信号进行降噪处理。由此可以降低所述第一音频信号中由所述电子设备产生的噪声。
根据本发明实施例所提供的降低噪声的方法100,其采用具有封闭收音孔的第二麦克风采集第二音频信号,可以提高第二音频信号中由电子设备产生的噪声的比例,利用该第二音频信号对第一音频信号进行降噪处理能够提高对第一音频信号中由电子设备产生的噪声的降噪效果。
具体的,所述第一音频信号和第二音频信号可以同时采集,上述降低噪声的操作也可以随着音频信号的采集实时执行。这样,能够进一步提升降噪处理的实时性。
如上所述,本发明实施例的降低噪声的方法100应用于电子设备,所述电子设备可以是任意可用于录音的电子设备,如包括但不限于无人机、手持云台设备、影像设备等。图2示出了本发明实施例所提供的用于实现降低噪声的方法100的电子设备200的示意性框图。
如图2所示,电子设备200包括第一麦克风210、第二麦克风220和处理器230。其中,第一麦克风210具有开放的收音孔,用于采集第一音频信号,第二麦克风220具有封闭的收音孔,用于采集第二音频信号,处理器230可以用于实现方法100中的步骤S120,即利用 所述第二音频信号对所述第一音频信号进行降噪处理,以降低所述第一音频信号中由所述电子设备产生的噪声。
本发明实施例的电子设备200可以是无人机、手持云台设备或影像设备等可用于录音的电子设备。其中,无人机可以包括无人车、无人飞行器等任何类型的无人驾驶的可移动物体,如可以在空中、陆地上、水上或太空中移动的物体。作为示例,所述无人机能够响应于遥控器所发出的指令进行移动。所述无人机能够遵循预设的程序指令运行。在一些实施例中,所述无人机可以完全自主运行或者半自主运行。在一些实施例中,所述无人机既可以响应来自遥控器的一个或多个指令半自主运行,也可以完全自主运行。
作为示例,所述无人机可以为无人飞行器。所述无人飞行器可以包括一个或多个动力单元。所述动力单元用于为所述无人飞行器在空中飞行提供动力。一个或多个所述动力单元能够使所述无人飞行器在一个或多个自由度内运动。在一些实施例中,所述无人飞行器能够关于一个或多个旋转轴线转动,所述旋转轴线可以相互正交。所述旋转轴线可以包括俯仰轴、横滚轴和偏航轴。所述无人飞行器还能够在一个或多个维度内移动,例如,在一个或多个旋翼的抬升下向上运动。
所述无人飞行器可以为旋翼飞行器。在一些实施例中,所述无人飞行器为多旋翼飞行器,所述多旋翼飞行器可以包括多个旋翼,以作为所述无人飞行器的动力单元,用于驱动所述无人飞行器空中自由地飞行。多个所述旋翼能够以相同的速度转动,给予所述无人飞行器相同的提升力或推进力。多个所述旋翼还能够以多种不同的速度转动,以为所述无人飞行器提供不同的提升力或推进力,并且还可以使得所述无人飞行器旋转。所述旋翼可以包括桨叶,且多个所述旋翼可以分别由一个或多个电机驱动。所述旋翼在转动时和所述电机在运行时都会发出极大的噪声。
所述无人飞行器可以包括机体,所述机体可以包括壳体,所述壳体可以将所述无人飞行器的一个或多个元件包覆于其内。在一些实施例中,所述无人飞行器的一个或多个电子元件,收容于所述壳体内。例如,所述无人飞行器的飞行控制器设置于所述壳体内。所述飞行控制器用于控制一个或多个动力单元的运行。
在一个实施例中,所述无人机上还可以设置有云台。所述云台可以支撑所述无人机所搭载的摄像机,并且,所述云台可以改变摄像机相对于所述无人机的方位。云台的轴臂受电机驱动,其在运行时也会产生噪声。
除了无人机以外,电子设备还可以包括手持云台设备。例如,所述手持云台设备可以用于固持摄像机。所述手持云台设备通常可以包括云台,所述云台包括多个轴臂;手持云台设备还可以包括偏航轴电机、横滚轴电机、和/或俯仰轴电机,以使得云台能够绕一轴、二轴或三轴旋转。摄像机可以装设于所述手持云台设备的末端或安装座上,在所述电机的驱动下,能够通过调整手持云台设备的偏航轴、横滚轴或俯仰轴来独立地调节所述摄像机的偏航角、横滚角和/或俯仰角。偏航轴电机、横滚轴电机、和/或俯仰轴电机在运转时均会产生噪声。
或者,电子设备200还可以包括影像设备。所述影像设备可以是运动相机。当所述影像设备用于影像拍摄时,所述影像设备内部的电机会持续工作,使所述影像设备的镜头变焦并聚焦。当一些影像设备对某些特定事件进行响应或在执行某些功能的时候,其会发出蜂鸣声。在一些实施例中,所述影像设备可以包括快门,所述快门在工作时也会产生噪声。
本发明实施例的电子设备200用于通过设置在所述电子设备200上的第一麦克风210采集第一音频信号,所述第一音频信号至少包括环境音频信号。然而,在采集环境音频信号时,第一麦克风210采集的第一音频信号中会混有噪声。所述噪声可以是所述电子设备200发出的噪声,具体可以包括所述电子设备自身或所述电子设备上的受控装置所发出的噪声。为了获得有用音频,有必要从所述第一麦克风210所采集到的第一音频信号中去除所述电子设备发出的噪声。
其中,电子设备200所包括的可能产生噪声的受控装置例如为摄像头、云台、电机等,所述电机例如包括云台电机、螺旋桨电机,以及散热风扇电机等机械部件,在电子设备的运行过程中,这些受控装置会产生较强的噪声,例如,当电机驱动所述摄像头的光学组件运动、驱动所述云台的支撑臂运动、或驱动扇叶转动以提供动力等时。在一 些实施方式中,所述电子设备运行的其设备本体也发出噪声,例如风声等。电子设备200在产生噪声时会导致设备整体产生震动。
因此,根据本发明实施例的电子设备200采用第一麦克风210采集具有高信噪比的第一音频信号,采用第二麦克风220采集具有高噪信比的第二音频信号,其中第一音频信号主要包括外界的环境声,第二音频信号主要包括电子设备自身产生的噪声。之后,处理器230利用第二音频信号去处第一音频信号中的由电子设备产生的噪声。
具体地,第一音频信号和第二音频信号的信噪比的不同主要是通过对第一麦克风210和第二麦克风220的收音孔的不同设计来实现的,即第一麦克风210具有开放的收音孔,第二麦克风220具有封闭的收音孔。
示例性地,第二麦克风220的收音孔可以由封闭材料进行封闭,所述封闭材料可以包括柔性材料、刚性材料或柔性材料与刚性材料的组合。其中,刚性材料例如包括金属,柔性材料例如包括橡皮泥,柔性材料与刚性材料的组合例如包括具有橡胶密封圈的金属等等。第二麦克风220可以由用户手动封闭,也可以在出厂时进行封闭。或者,第二麦克风220也可以被制造为不具备收音孔的形式。下文将对第一麦克风210和第二麦克风220的收音原理进行阐述:
第一麦克风210的受力模型参见图3,第一麦克风的外壳上设有收音孔,收音孔与外界导通,外壳内部是第一麦克风的振膜等精密器件,其内部空间可以简化为振膜前腔和振膜后腔。振膜的受力方式可以分为两路:一路是空气传导,空气振动通过收音孔传入振膜前腔,驱动振膜振动;一路是振动传导,具体地,当电子设备200发生振动时,第一麦克风210会随着电子设备200的振动而发生振动,第一麦克风210外壳的振动导致振膜前腔空气的振动,继而驱动振膜振动,从而产生电信号。第一麦克风210的电路模型参见图4。
与之相比,参见图5,第二麦克风220的收音孔封闭,使空气传导路径减弱或消失,仅剩振动传导路径,并且振动传导路径的效果得到增强。第二麦克风220的电路模型参见图6,与图4的电路模型相比,空气阻抗支路消失,从而振膜阻抗支路信号变强,对应振动传导效果增强。
用符号抽象表示可如此描述:空气传导信号记为X,振动传导信号记为Y,则第一麦克风210录制到的第一音频信号为X+Y,第二麦克风220录制到的第二音频信号可认为是αX+βY,其中0<α<1,β>1,即空气传导路径被衰减,振动传导路径被加强。在实际工作中,环境声的录音方式主要通过空气传导,电子设备200自身产生的噪声主要通过振动传导,若认为空气传导的环境声是有用信号,振动传导的声音是噪声,则第一音频信号的信噪比为X/Y,第二音频信号的信噪比为(α/β)X/Y,即与第一音频信号相比,第二音频信号的信噪比降低了β/α倍,噪信比提高了β/α倍。
在一个实施例中,第二麦克风220的个数可以为多个,多个第二麦克风220的收音孔可以由具有不同阻抗的封闭材料进行封闭,以采集具有不同音频特征的第二音频信号。其中,所述音频特征包括信噪比,所述阻抗越高,所述信噪比越低。所述音频特征也可以包括频率、幅度或相位等其他的音频特征。采用具有不同音频特征的第二音频信号可以对第二音频信号进行综合分析,并且可以更为准确地从第二音频信号中提取噪声信号。
除此之外,还可以通过对第一麦克风210和第二麦克风220的位置等进行设计,来进一步提高第一音频信号的信噪比,和/或提高第二音频信号的噪信比。
例如,由于第一麦克风210主要用于采集环境音,因而可以将所述第一麦克风210的开放的收音孔设置于电子设备200的表面,以提高对外界环境音的采集效果。在一些实施例中,第一麦克风210较第二麦克风220更接近于电子设备200的表面,以尽可能多地采集环境音,第二麦克风220较第一麦克风210更接近产生噪声的受控装置,以尽可能多地采集噪声。
在一些实施方式中,当电子设备为无人飞行器时,音源一般来自于无人飞行器的下方,因此第一麦克风210可以设置于无人飞行器机体的下方。当然,所述第一麦克风210还可以装设于所述无人飞行器的外表面任意位置上、收容于所述无人飞行器的壳体内,一体成型于所述无人飞行器的壳体上、或者装设于所述无人飞行器的外伸部件上等等,只要所述第一麦克风210能够采集到机体外部的音频信号。
在一些实施方式中,所述第一麦克风210可以装设在远离所述无人飞行器延伸的延伸件上,例如起落架等,从而使所述第一麦克风210相对与第二麦克风220而言更为远离所述无人飞行器上的所述一个或多个本底噪声产生元件。
在其他的一些实施例中,所述第一麦克风210可以装设于有助于采集环境音的表面上或邻近所述表面设置。例如,有助于采集环境音的表面可以是碟状或者抛物面状容器。
可以理解,所述第一麦克风210的数量可以为任意值。在一些实施例中,所述第一麦克风210的数量为一个。在另外一些实施例中,第一麦克风210的数量还可以为多个,多个所述第一麦克风210可以设置在所述电子设备的不同位置。多个所述第一麦克风210可以为同一类型的麦克风,也可以为不同类型的麦克风。
在一些实施例中,可以采用多个第一麦克风210组成一个音频采集阵列。通过音频采集阵列,能够通过束波合成技术达成音频的定向采集,以提高信噪比并达到更好的去噪效果。
为了使所述第二麦克风220能够尽可能多地采集电子设备200的本底噪声,所述第二麦克风220可以邻近产生本底噪声的噪声源设置,以能够比所述第一麦克风210更好地采集电子设备200的本底噪声,即使所述第二麦克风220所采集到的本底噪声的振幅可以大于所述第一麦克风210所采集到的本底噪声的振幅,或使所述第二麦克风220所采集到的本底噪声相较于所述第一麦克风210所采集到的本底噪声更为清晰。所述噪声源可以包括上文所述的电机、云台或摄像头等受控装置,也可以包括由受控装置驱动的摄像头的光学组件、云台的支撑臂、或旋翼或散热风扇的扇叶等运动部件。
例如,所述第二麦克风220与所述噪声源的距离在一预设距离范围内。或者,第二麦克风220与噪声源之间的距离小于第一麦克风210与噪声源之间的距离。在一些实施例中,所述第二麦克风220尽可能靠近所述噪声源设置。例如,所述第二麦克风220可以设置在所述旋翼的驱动电机下方,或者直接设置在所述旋翼下方。而在另外一些实施例中,所述第二麦克风220也可以直接装设于所述受控装置上。例如,所述第二麦克风220可以装设在用于部分收容或完全收容 所述背景噪声产生元件的壳体上。
例如,所述第二麦克风220可以直接装设于所述电子设备200的电机上。当电子设备为无人机时,所述第二麦克风220可以直接装设于所述无人机所搭载的摄像头上,或者所述第二麦克风220也可以直接装设于所述无人机的云台上。当电子设备为手持云台设备时,所述第二麦克风220可以直接装设于所述云台的电机(例如俯仰轴电机、横滚轴电机或者偏航轴电机等)上。
在一个实施例中,电子设备200可以包括多个第二麦克风220,多个第二麦克风220可以设置在电子设备200的不同位置,从而使采集到的第二音频数据更多样化,使提取到的噪声信号更丰富全面,更有利于提高降噪效果。多个所述第二麦克风同时采集所述第二音频信号或依次采集所述第二音频信号。
在一些实施例中,可以在一个、两个或多个受控装置周围的预设距离范围之内设置一个所述第二麦克风220。也就是说,每一个所述受控装置周围的预设距离范围之内均设置有一个所述第二麦克风220。具体地,每一个所述受控装置可以均配置有一个专用的第二麦克风220。或者,一个以上的所述受控装置可以共同配置有一个共用的所述第二麦克风220。为每个受控装置配置的第二麦克风220可以相同,也可以不同,例如,不同的第二麦克风220可以采用具有不同阻抗的封闭材料进行收音孔的封闭。
在一些实施例中,所述第一麦克风210和所述第二麦克风220可以作为独立的元件使用。在其他的一些实施例中,所述第一麦克风210和所述第二麦克风220还可以集成与其他部件上。例如,所述第一麦克风210和所述第二麦克风220可以集成于摄像机或云台内。
在一些实施例中,第一麦克风210的灵敏度或收音范围比所述第二麦克风220更高。由于第一麦克风210主要用于采集环境音,其中包括距离较远的目标物发出的声音,而第二麦克风220主要用于采集电子设备200发出的本底噪声,其对音频信号的感应范围可以小于第一麦克风210。
在一些实施例中,第一麦克风210可以为全向型传声器,其能够在一个较为宽广的空间范围内全方位地采集第一音频信号;而若发出 噪声的受控装置相对于第二麦克风220的方位固定不变,则第二麦克风220可以设计为能够采集从特定方向传导的第二音频信号。
获取第一音频信号和第二音频信号后,可以由处理器230执行方法100中的步骤S130,利用第二音频信号对第一音频信号进行降噪处理,以降低所述第一音频信号中由所述电子设备200产生的噪声。
在一个实施例中,所述利用所述第二音频信号对所述第一音频信号进行降噪处理,包括:将所述第一音频信号作为待降噪信号、所述第二音频信号作为噪声参考信号输入到降噪算法模型,并输出降噪后的第一音频信号。示例性地,降噪算法模型通过分析第二音频信号的汉宁窗频谱,确定本底噪声信号对应的频谱范围和大小,并计算得出相应的滤波器参数。接着,采用相应的滤波器参数对所述第一音频信号进行滤波处理,以降低或消除所述第一音频信号中包含的本底噪声信号频段的幅值,从而得到降噪后的第一音频信号。
示例性地,所述降噪算法模型是根据以下一种或多种算法设置的:维纳降噪算法、机器学习的降噪算法和回声消除降噪算法。当然,也可以采用其他任何合适的降噪算法进行降噪,或者采用多重的降噪处理以获得更好的降噪效果。
示例性地,所述降噪算法模型至少包括多个滤波器。其中,所述多个滤波器包括但不限于IIR(Infinite Impulse Response,无限长脉冲响应)滤波器或双二阶(Biquad)滤波器等。所述双二阶滤波器集成了例如高通滤波器、低通滤波器、频率均衡滤波器、陷波滤波器等的特性,利用这些滤波器的组合实现了对噪声频段的降低,可实现较好的降噪效果。
其中,降噪处理的过程可以在电子设备200进行音频采集的过程中实时地进行,以使得用户能够实时地听到降噪处理后的音频信号。或者,所述第一音频信号和所述第二音频信号可以被存储在存储器中,并在后续任意时刻进行降噪处理。
示例性地,所述处理器230可以为所述电子设备200的控制电路板的一部分,或者,其可以为独立的电路板、模组或芯片。所述处理器可由中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)或现场可编程门阵列 (Field Programmable Gate Array,FPGA)实现。所述处理器可以为一个或多个,多个处理器能够独立地或者协同地实现前述处理器实现的任一项功能。
在一个实施例中,电子设备还包括存储器。所述存储器包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。所述非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。在所述计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器230可以运行所述程序指令,以实现下文所述的本发明实施例中(由处理器实现)的方法步骤和/或其它期望的功能。在所述计算机可读存储介质中还可以存储各种应用程序和各种数据,例如所述应用程序使用和/或产生的各种数据等。
处理器230可以设置于所述电子设备200的设备本体上,也可以与所述电子设备200的设备本体相分离设置。在一些实施例中,可以利用一具有所述处理器的外部设备执行所述步骤S130。例如,当电子设备为无人机时,所述外部设备可以为所述无人机的控制器。所述无人飞行器的控制器能够控制所述无人机的运行,或能够控制所述无人机上的其他任何部件。在一些实施例中,所述外部设备可以为监视器、台式电脑、笔记本电脑、平板电脑、蜂窝式便携电话机、智能型便携电话机、个人数字辅助装置,或任意其他设备。在一些实施例中,一个或多个处理器可以分布在所述电子设备200及一个或多个外部设备上,或者,一个或多个处理器可以分布在多个外部设备上,各个处理器可以各自独立地执行工作并产生处理后的信号,或可以协同地共同执行工作并产生处理后的信号。
在一些实施例中,降噪处理后的所述第一音频信号可以用于所述电子设备200的媒体处理,例如音视频编辑、自动编辑字幕、音频传输、立体声合成等等。
在一些实施例中,还可以将降噪处理后的第一音频信号传送给用户。例如,可以通过扬声器或其他音频发射装置将降噪处理后的第一音频信号传送至用户处,使所述用户能够听到降噪处理后的第一音频 信号所转换成的声音。相对于未经处理的第一音频信号,降噪处理后的第一音频信号去除了电子设备200发出的本底噪声,因而更为清晰。此外,还可以将降噪处理后的第一音频信号记录下来,例如将其存储在存储器中,以用于被传送和/或重复播放。
除了如上所述的采用第二音频信号对第一音频信号进行降噪处理以外,由于第二音频信号主要包括电子设备200的本底噪声,而本底噪声主要是由电子设备200中的受控装置运行所引起的,因而在本发明的一个实施例中,还可以根据第二音频信号确定电子设备200的运行状态。
具体地,作为一种实现方式,可以从所述第二音频信号中提取音频特征参数,将所述音频特征参数与预设的音频特征参数进行对比,并根据对比结果确定所述电子设备的运行状态。其中,所述音频特征参数可以包括频率、幅值、相位等表征音频信号特征的特征参数。
其中,所述电子设备的运行状态可以包括电子设备200中电机的运行状态和/或扇叶的运行状态。可以对第二音频信号进行分析,以提取音频特征参数,并与预设的音频特征参数进行对比,所述预设的音频特征参数与预设的运行状态相关联。示例性地,振动噪声中主要包含基频及其谐频,基频的频率由电机或扇叶的转速直接决定,因此,所述音频特征参数可以包括从所述第二音频信号中提取的基频信号的频率。
作为另外一种实现方式,可以从所述第二音频信号中提取音频特征参数,根据所述音频特征参数确定所述电子设备200的运行参数,以及将所述运行参数与预设运行参数进行对比,并根据对比结果确定所述电子设备200的运行状态。电子设备的运行参数可以包括所述电子设备200中受控装置的运行参数。
示例性地,所述运行参数包括电机的运动状态参数和/或扇叶的运动状态参数。例如,在从第二音频信号中提取音频特征参数之后,可以将该音频特征参数转换为电机的运动状态参数,例如电机的转速。或者,从第二音频信号中提取音频特征参数之后,可以将该音频特征参数转换为扇叶的运动状态参数,例如扇叶的转速。接着,可以将电机的转速与预设的电机转速相比,以确定电机的运行状态,和/ 或将扇叶的转速与预设的扇叶转速相比,以确定扇叶的运行状态。
在一个实施例中,根据对比结果确定所述电子设备的运行状态可以包括根据所述对比的结果确定所述电子设备的运行状态为正常状态或异常状态。例如,当音频特征参数与预设的音频特征参数之间的偏差超过预设的阈值,或根据音频特征参数所确定的电子设备的运行参数与预设的运行参数之间的偏差超过预设的阈值,则判断电子设备处于异常状态,反之,当音频特征参数与预设的音频特征参数之间的偏差未超过预设的阈值,或根据音频特征参数所确定的电子设备200的运行参数与预设的运行参数之间的偏差未超过预设的阈值,则判断电子设备200的运行状态处于正常状态。
进一步地,当所述电子设备的运行状态为异常状态时,可以及时调整电子设备的控制参数,例如调整所述电机或者所述扇叶的控制参数,以避免电子设备发生运行事故。
在另一个实施例中,所述根据对比结果确定所述电子设备的运行状态包括:根据所述对比的结果确定所述电子设备的运行状态为工作状态或非工作状态,例如,根据比对结果判断电机和/或扇叶当前是否转动等。
在另一个实施例中,所述根据对比结果确定所述电子设备的运行状态包括:根据所述对比的结果,将所述电子设备的运行状态确定为多个预设运行状态中的一个。例如,可以预先设定多个预设运行状态,每个运行状态对应音频特征参数或电子设备的运行参数的一个区间,当确定从第二音频信号中提取的音频特征参数落在音频特征参数的某个区间范围内,或根据所述音频特征参数确定的运行参数落在运行参数的某个区间范围内,则将电子设备的运行状态确定为相应的预设运行状态。
进一步地,在确定电子设备的运行状态以后,还可以根据所述运行状态确定步骤S130中所述降噪处理所采用的降噪模式。例如,在不同的所述运行状态下,可以采用具有不同降噪强度的降噪模式。其中,每种降噪模式可以预先配置不同的滤波器参数。例如,当电机和/或扇叶的转速较快时,产生的噪声较大,因而可以采用强度较大的降噪模式。或者,由于当检测到所述运行状态为异常状态时,噪声较 大,因而也可以适当提高所述降噪处理所采用的降噪强度。
综上所述,根据本发明实施例的降低噪声的方法100和电子设备200采用具有封闭收音孔的第二麦克风采集第二音频信号,可以提高第二音频信号中由电子设备产生的噪声的比例,利用该第二音频信号对第一音频信号进行降噪处理能够提高对第一音频信号中由电子设备产生的噪声的降噪效果。
另外,本发明实施例还提供了一种计算机存储介质,其上存储有计算机程序。当所述计算机程序由处理器执行时,可以实现前述图1所示的方法100的步骤。
例如,该计算机存储介质为计算机可读存储介质。计算机存储介质例如可以包括智能电话的存储卡、平板电脑的存储部件、个人计算机的硬盘、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、或者上述存储介质的任意组合。计算机可读存储介质可以是一个或多个计算机可读存储介质的任意组合。
如上所述,当采用具有封闭的收音孔的麦克风采集音频信号时,所采集到的音频信号主要为电子设备产生的噪声,并且所述噪声直接与电子设备的运行状态相关。基于此,本发明实施例提供了一种基于噪声的状态确定方案。由于基于第二音频信号进行状态确定的方案已在上文中进行了说明,因而在以下的描述中,省略了上文已描述的部分细节。
首先,参照图7,对本发明实施例提供的状态确定方法700进行描述。该方法700应用于电子设备,所述电子设备设置有麦克风,所述麦克风包括振膜和壳体,所述振膜和所述壳体形成拾音腔,所述拾音腔被设置为与所述电子设备所处的外部环境阻隔。所述拾音腔上开设有收音孔,所述收音孔由封闭材料进行封闭。
所述电子设备包括至少一个麦克风,所述麦克风具有封闭的收音孔。如图7所示,方法700包括如下步骤:
在步骤S710,通过所述麦克风采集音频信号;
在步骤S720,根据所述音频信号确定所述电子设备的运行状态。
根据本发明实施例所提供的状态确定方法700,其采用具有封闭收音孔的麦克风采集音频信号,可以提高音频信号中由电子设备产生的噪声的比例,根据该音频信号可以较为准确地确定电子设备的运行状态。
如上所述,本发明实施例的状态确定方法700应用于电子设备,所述电子设备可以包括但不限于无人机、手持云台设备、影像设备等。图8示出了本发明实施例所提供的用于实现状态确定方法700的电子设备800的示意性框图。
如图8所示,电子设备800包括麦克风810和处理器820。其中,所述麦克风810包括振膜和壳体,所述振膜和所述壳体形成拾音腔,所述拾音腔被设置为与所述电子设备800所处的外部环境阻隔。麦克风810用于采集音频信号。处理器820可以用于实现方法700中的步骤S720,即根据所述音频信号确定所述电子设备的运行状态。
本发明实施例的电子设备800可以是无人机、手持云台设备或影像设备等可用于录音的电子设备。其中,无人机可以包括无人车、无人飞行器等任何类型的无人驾驶的可移动物体。
在一个实施例中,所述麦克风810的收音孔为封闭状态,包括:所述麦克风810的收音孔由封闭材料进行封闭。其中,所述封闭材料包括柔性材料、刚性材料或柔性材料与刚性材料的组合。
在一个实施例中,所述电子设备800包括以下一个或多个受控装置:摄像头、云台、电机。例如,当所述电子设备800为无人机时,所述无人机上可以搭载有摄像头;无人机上还可以设置用于支撑摄像机的云台,并且所述云台可以改变摄像机相对于无人机的方向;无人机上还可以设有多个电机,例如,所述电机可以驱动所述摄像头的光学组件、驱动所述云台的支撑臂、或者驱动旋翼等部件的扇叶转动以提供动力等等。
当所述电子设备800为手持云台设备时,手持云台设备可以包括云台以及用于驱动所述云台的支撑臂运动的电机;手持云台设备还可以包括用于采集图像的摄像头。或者,所述电子设备800还可以包括影像设备。所述影像设备可以是运动相机。
综上,电子设备800包括一个或多个受控装置,受控装置或由受 控装置驱动的其他运动部件在运行时会产生本底噪声。噪声的音频特征与电子设备800的受控装置的运行状态相关。因此,本发明实施例采用具有封闭收音孔的麦克风810采集音频信号,该音频信号主要包括振动传导的本底噪声信号,因而能较好地反映电子设备800的运行状态。
为了更清晰地采集噪声信号,可以将麦克风810尽可能靠近噪声源设置,甚至直接设置在噪声源上,所述噪声源可以为上述的受控装置。在一个实施例中,麦克风810的数目为多个,多个所述麦克风可以设置在所述电子设备800的不同位置,例如,每个受控装置对应设置一个麦克风810,或者,若干受控装置共用一个麦克风810。多个麦克风810可以由具有不同阻抗的封闭材料进行封闭,以采集具有不同音频特征的所述音频信号。其中,所述音频特征包括信噪比,所述阻抗越高,所述信噪比越低。
在一个实施例中,所述麦克风810可以同时采集音频信号,并且,可以使用多个麦克风810采集的音频信号进行状态确定,以提高准确率。或者,多个麦克风810也可以依次采集音频信号,每次使用一个麦克风810采集的音频信号进行状态确定。例如,当对某一个受控装置进行状态确定时,开启该受控装置附近的麦克风810,以采集用于对其进行状态确定的音频信号。
具体地,作为一种实现方式,可以从所述音频信号中提取音频特征参数,将所述音频特征参数与预设的音频特征参数进行对比,并根据对比结果确定所述电子设备的运行状态。其中,所述音频特征参数可以包括频率、幅值、相位等表征音频信号特征的特征参数。
其中,所述电子设备的运行状态可以包括电子设备800中电机的运行状态和/或扇叶的运行状态。可以对音频信号进行分析,以提取音频特征参数,并与预设的音频特征参数进行对比,所述预设的音频特征参数与预设的运行状态相关联。示例性地,振动噪声中主要包含基频及其谐频,基频的频率由电机或扇叶的转速直接决定,因此,所述音频特征参数可以包括从所述音频信号中提取的基频信号的频率。
作为另外一种实现方式,可以从所述音频信号中提取音频特征参数,根据所述音频特征参数确定所述电子设备800的运行参数,以及 将所述运行参数与预设运行参数进行对比,并根据对比结果确定所述电子设备800的运行状态。电子设备的运行参数可以包括所述电子设备800中受控装置的运行参数。
示例性地,所述运行参数包括电机的运动状态参数和/或扇叶的运动状态参数。例如,在从音频信号中提取音频特征参数之后,可以将该音频特征参数转换为电机的运动状态参数,例如电机的转速。或者,从音频信号中提取音频特征参数之后,可以将该音频特征参数转换为扇叶的运动状态参数,例如扇叶的转速。接着,可以将电机的转速与预设的电机转速相比,以确定电机的运行状态,和/或将扇叶的转速与预设的扇叶转速相比,以确定扇叶的运行状态。
在一个实施例中,根据对比结果确定所述电子设备的运行状态可以包括根据所述对比的结果确定所述电子设备的运行状态为正常状态或异常状态。例如,当音频特征参数与预设的音频特征参数之间的偏差超过预设的阈值,或根据音频特征参数所确定的电子设备的运行参数与预设的运行参数之间的偏差超过预设的阈值,则判断电子设备处于异常状态,反之,当音频特征参数与预设的音频特征参数之间的偏差未超过预设的阈值,或根据音频特征参数所确定的电子设备800的运行参数与预设的运行参数之间的偏差未超过预设的阈值,则判断电子设备800的运行状态处于正常状态。
进一步地,当所述电子设备的运行状态为异常状态时,可以及时调整电子设备的控制参数,例如调整所述电机或者所述扇叶的控制参数,以避免电子设备发生运行事故。
在另一个实施例中,所述根据对比结果确定所述电子设备的运行状态包括:根据所述对比的结果确定所述电子设备的运行状态为工作状态或非工作状态,例如,根据比对结果判断电机和/或扇叶当前是否转动等。
在另一个实施例中,所述根据对比结果确定所述电子设备的运行状态包括:根据所述对比的结果,将所述电子设备的运行状态确定为多个预设运行状态中的一个。例如,可以预先设定多个预设运行状态,每个运行状态对应音频特征参数或电子设备的运行参数的一个区间,当确定从音频信号中提取的音频特征参数落在音频特征参数的某个 区间范围内,或根据所述音频特征参数确定的运行参数落在运行参数的某个区间范围内,则将电子设备的运行状态确定为相应的预设运行状态。
综上所述,根据本发明实施例的状态确定方法700和电子设备800采用具有封闭收音孔的麦克风采集音频信号,可以提高该音频信号中由电子设备产生的噪声的比例,利用该音频信号可以较为准确地判断电子设备的运行状态。
另外,本发明实施例还提供了一种计算机存储介质,其上存储有计算机程序。当所述计算机程序由处理器执行时,可以实现前述图7所示的方法700的步骤。
例如,该计算机存储介质为计算机可读存储介质。计算机存储介质例如可以包括智能电话的存储卡、平板电脑的存储部件、个人计算机的硬盘、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、或者上述存储介质的任意组合。计算机可读存储介质可以是一个或多个计算机可读存储介质的任意组合。
此外,本发明实施例还提供了一种声音采集方案。首先,参照图9,对本发明实施例提供的声音采集方法900进行描述。该方法900应用于电子设备,所述电子设备包括至少一个麦克风,所述麦克风包括振膜和壳体,所述振膜和所述壳体形成拾音腔,所述拾音腔被设置为与所述电子设备所处的外部环境阻隔;每一所述麦克风的所述拾音腔上开设有收音孔,所述收音孔由封闭材料进行封闭。如图9所示,方法900包括如下步骤:
在步骤S910,通过所述麦克风采集音频信号;
在步骤S920,对所述音频信号进行分析。
根据本发明实施例所提供的声音采集方法900,其采用具有封闭收音孔的麦克风采集音频信号,可以获得具有较高本底噪声的音频信号以用于进行分析。
如上所述,本发明实施例的声音采集方法900应用于电子设备,所述电子设备可以包括但不限于无人机、手持云台设备、影像设备等。 图10示出了本发明实施例所提供的用于实现声音采集方法900的电子设备1000的示意性框图。
如图10所示,电子设备1000包括麦克风1010和处理器1020。其中,所述麦克风1010具有封闭的收音孔,用于采集音频信号,处理器1020可以用于实现方法900中的步骤S920,即根据所述音频信号确定所述电子设备的运行状态。
本发明实施例的电子设备1000可以是无人机、手持云台设备或影像设备等可用于录音的电子设备。其中,无人机可以包括无人车、无人飞行器等任何类型的无人驾驶的可移动物体。
在一个实施例中,所述麦克风1010的拾音腔与外部环境阻隔包括:麦克风1010的收音孔由封闭材料进行封闭。其中,所述封闭材料包括柔性材料、刚性材料或柔性材料与刚性材料的组合。
在一个实施例中,电子设备1000可以包括多个所述麦克风1010。多个麦克风1010的收音孔可以由具有不同阻抗的封闭材料进行封闭,以采集具有不同音频特征的音频信号。其中,所述音频特征可以是信噪比,也可以是频率、幅值、相位等音频特征。以信噪比为例,封闭收音孔的封闭材料的阻抗越高,则麦克风1010通过空气传导路径接收到的环境音频信号越低,通过振动传导路径接收到的电子设备900的本底噪声越高,因而信噪比越低。
处理器1020可以用于对所述音频信号进行分析。在一个实施例中,处理器1020可以用于对表征音频信号的音频特征的音频特征参数进行分析。进一步地,处理器1020上述多个麦克风1010采集的音频信号进行分析。其中,处理器1020进行的分析包括但不限于上文所述的利用从音频信号中提取的音频特征参数进行故障诊断,还可以包括利用该音频信号进行其他有关于电子设备1020运行状态的分析。处理器1020可以实时地对所述音频信号进行分析,也可以将所述音频信号存储于存储装置中,并在后续对所述音频信号进行分析。
另外,本发明实施例还提供了一种计算机存储介质,其上存储有计算机程序。当所述计算机程序由处理器执行时,可以实现前述图9所示的方法900的步骤。
例如,该计算机存储介质为计算机可读存储介质。计算机存储介 质例如可以包括智能电话的存储卡、平板电脑的存储部件、个人计算机的硬盘、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、或者上述存储介质的任意组合。计算机可读存储介质可以是一个或多个计算机可读存储介质的任意组合。
综上所述,本发明实施例的降低噪声的方法和电子设备采用具有拾音腔与外部环境阻隔的第二麦克风采集第二音频信号,可以提高第二音频信号中由电子设备产生的噪声的比例,利用该第二音频信号对第一音频信号进行降噪处理能够提高对第一音频信号中由电子设备产生的噪声的降噪效果。
本发明实施例的状态确定方法和电子设备采用拾音腔与外部环境阻隔的麦克风采集音频信号,可以提高音频信号中由电子设备产生的噪声的比例,根据该音频信号可以较为准确地确定电子设备的运行状态。
本发明实施例的声音采集方法和电子设备采用拾音腔与外部环境阻隔的麦克风采集音频信号,可以提高音频信号中由电子设备产生的噪声的比例,并可以对该音频信号进行多种分析。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。 另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本发明的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本发明的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本发明的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和 电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本发明的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施 例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的一些模块的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本发明的具体实施方式或对具体实施方式的说明,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以权利要求的保护范围为准。

Claims (100)

  1. 一种降低噪声的方法,应用于电子设备,其特征在于,所述电子设备设置有第一麦克风和第二麦克风;
    所述第一麦克风包括第一振膜和第一壳体,所述第一振膜与所述第一壳体形成第一拾音腔,所述第一拾音腔被设置为与所述电子设备所处的外部环境连通;
    所述第二麦克风包括第二振膜和第二壳体,所述第二振膜和所述第二壳体形成第二拾音腔,所述第二拾音腔被设置为与所述电子设备所处的外部环境阻隔;
    所述方法包括:
    通过所述第一麦克风采集第一音频信号,通过所述第二麦克风采集第二音频信号;
    利用所述第二音频信号对所述第一音频信号进行降噪处理。
  2. 根据权利要求1所述的方法,其特征在于,所述第一拾音腔上开设有第一收音孔,所述第一收音孔为一开放的收音孔,所述第一拾音腔通过所述第一收音孔与所述外部环境连通。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二拾音腔上开设有第二收音孔,所述第二收音孔由封闭材料进行封闭。
  4. 根据权利要求3所述的方法,其特征在于,所述封闭材料包括柔性材料、刚性材料或柔性材料与刚性材料的组合。
  5. 根据权利要求1-4之一所述的方法,其特征在于,所述电子设备为以下任意一种:无人机、手持云台设备、影像设备。
  6. 根据权利要求1-5之一所述的方法,其特征在于,所述电子设备包括以下一个或多个受控装置:摄像头、云台、电机。
  7. 根据权利要求6所述的方法,其特征在于,所述电机被配置为具备以下任意功能:驱动摄像头的光学组件运动、驱动云台的支撑臂运动、驱动扇叶转动以提供动力。
  8. 根据权利要求1-7之一所述的方法,其特征在于,降噪处理后的所述音频信号用于所述电子设备的媒体处理。
  9. 根据权利要求1-8之一所述的方法,其特征在于,还包括:
    从所述第二音频信号中提取音频特征参数;
    将所述音频特征参数与预设音频特征参数进行对比,并根据对比结果确定所述电子设备的运行状态。
  10. 根据权利要求1-8之一所述的方法,其特征在于,还包括:
    从所述第二音频信号中提取音频特征参数;
    根据所述音频特征参数确定所述电子设备的运行参数;
    将所述运行参数与预设运行参数进行对比,并根据对比结果确定所述电子设备的运行状态。
  11. 根据权利要求9或10所述的方法,其特征在于,所述音频特征参数包括从所述第二音频信号中提取的基频信号的频率。
  12. 根据权利要求9-11之一所述的方法,其特征在于,所述根据对比结果确定所述电子设备的运行状态包括:
    根据所述对比的结果确定所述电子设备的运行状态为正常状态或异常状态。
  13. 根据权利要求9-11之一所述的方法,其特征在于,所述根据对比结果确定所述电子设备的运行状态包括:
    根据所述对比的结果确定所述电子设备的运行状态为工作状态或非工作状态。
  14. 根据权利要求9-11之一所述的方法,其特征在于,所述运行参数包括电机的运动状态参数和/或扇叶的运动状态参数。
  15. 根据权利要求14所述的方法,其特征在于,还包括:
    当所述电子设备的运行状态为异常状态时,调整所述电机或者所述扇叶的控制参数。
  16. 根据权利要求9-11之一所述的方法,其特征在于,所述根据对比结果确定所述电子设备的运行状态包括:
    根据所述对比的结果,将所述电子设备的运行状态确定为多个预设运行状态中的一个。
  17. 根据权利要求9-16之一所述的方法,其特征在于,还包括:根据所述运行状态确定所述降噪处理所采用的降噪模式。
  18. 根据权利要求17所述的方法,其特征在于,所述根据所述运行状态确定所述降噪处理所采用的降噪模式,包括:
    在不同的所述运行状态下,采用具有不同降噪强度的降噪模式。
  19. 根据权利要求18所述的方法,其特征在于,所述在不同的所述运行状态下,采用具有不同降噪强度的降噪模式,包括:
    当检测到所述运行状态为异常状态时,提高所述降噪处理所采用的降噪强度。
  20. 根据权利要求1-19之一所述的方法,其特征在于,所述利用所述第二音频信号对所述第一音频信号进行降噪处理,包括:
    将所述第一音频信号作为待降噪信号、所述第二音频信号作为噪声参考信号输入到降噪算法模型,并输出降噪后的第一音频信号。
  21. 根据权利要求20所述的方法,其特征在于,所述降噪算法模型是根据以下一种或多种算法设置的:维纳降噪算法、机器学习的降噪算法和回声消除降噪算法。
  22. 根据权利要求1所述的方法,其特征在于,所述电子设备包括多个所述第二麦克风,多个所述第二麦克风设置在所述电子设备的不同位置。
  23. 根据权利要求22所述的方法,其特征在于,所述电子设备包括受控装置,所述第二麦克风与所述受控装置的距离,较所述第一麦克风与所述受控装置更近。
  24. 根据权利要求22或23所述的方法,其特征在于,多个所述第二麦克风的收音孔由具有不同阻抗的封闭材料进行封闭,以采集具有不同音频特征的所述第二音频信号。
  25. 根据权利要求24所述的方法,其特征在于,所述音频特征包括信噪比,所述阻抗越高,所述信噪比越低。
  26. 根据权利要求22-25之一所述的方法,其特征在于,多个所述第二麦克风同时采集所述第二音频信号或依次采集所述第二音频信号。
  27. 根据权利要求1-26之一所述的方法,其特征在于,所述第一麦克风较所述第二麦克风更接近于所述电子设备的表面。
  28. 根据权利要求1所述的方法,其特征在于,所述电子设备包括多个所述第一麦克风,多个所述第一麦克风设置在所述电子设备的不同位置。
  29. 一种状态确定方法,应用于电子设备,其特征在于,所述电 子设备设置有麦克风,所述麦克风包括振膜和壳体,所述振膜和所述壳体形成拾音腔,所述拾音腔被设置为与所述电子设备所处的外部环境阻隔;
    所述方法包括:
    通过所述麦克风采集音频信号;
    根据所述音频信号确定所述电子设备的运行状态。
  30. 根据权利要求29所述的方法,其特征在于,所述拾音腔上开设有收音孔,所述收音孔由封闭材料进行封闭。
  31. 根据权利要求30所述的方法,其特征在于,所述封闭材料包括柔性材料、刚性材料或柔性材料与刚性材料的组合。
  32. 根据权利要求29-31之一所述的方法,其特征在于,所述电子设备包括以下任意一种:可移动平台、云台、相机。
  33. 根据权利要求29-32之一所述的方法,其特征在于,所述电子设备包括以下一个或多个受控装置:摄像头、云台、电机。
  34. 根据权利要求33所述的方法,其特征在于,所述电机被配置为具备以下任意功能:驱动所述摄像头的光学组件、驱动所述云台的支撑臂、驱动扇叶转动以提供升力。
  35. 根据权利要求29-34之一所述的方法,其特征在于,所述根据所述音频信号确定所述电子设备的运行状态包括:
    从所述音频信号中提取音频特征参数;
    将所述音频特征参数与预设音频特征参数进行对比,并根据对比结果确定所述电子设备的运行状态。
  36. 根据权利要求29-34之一所述的方法,其特征在于,所述根据所述音频信号确定所述电子设备的运行状态包括:
    从所述音频信号中提取音频特征参数,并根据所述音频特征参数确定所述电子设备的运行参数;
    将所述运行参数与预设运行参数进行对比,并根据对比结果确定所述电子设备的运行状态。
  37. 根据权利要求35或36所述的方法,其特征在于,所述音频特征参数包括从所述音频信号中提取的基频信号的频率。
  38. 根据权利要求35-37之一所述的方法,其特征在于,所述根 据对比结果确定所述电子设备的运行状态包括:
    根据所述对比的结果确定所述电子设备的运行状态为正常状态或异常状态。
  39. 根据权利要求35-37之一所述的方法,其特征在于,所述根据对比结果确定所述电子设备的运行状态包括:
    根据所述对比的结果确定所述电子设备的运行状态为工作状态或非工作状态。
  40. 根据权利要求35-37之一所述的方法,其特征在于,所述运行参数包括电机的运动状态参数和/或扇叶的运动状态参数。
  41. 根据权利要求40所述的方法,其特征在于,还包括:
    当所述电子设备的运行状态为异常状态时,调整所述电机或者所述扇叶的控制参数。
  42. 根据权利要求35-37之一所述的方法,其特征在于,所述根据对比结果确定所述电子设备的运行状态包括:
    根据所述对比的结果,将所述电子设备的运行状态确定为多个预设运行状态中的一个。
  43. 根据权利要求29-42之一所述的方法,其特征在于,所述电子设备包括多个所述麦克风,多个所述麦克风的收音孔由具有不同阻抗的封闭材料进行封闭,以采集具有不同音频特征的所述音频信号。
  44. 根据权利要求43所述的方法,其特征在于,所述音频特征包括信噪比,所述阻抗越高,所述信噪比越低。
  45. 根据权利要求43或44所述的方法,其特征在于,多个所述麦克风设置在所述电子设备的不同位置。
  46. 根据权利要求43-45之一所述的方法,其特征在于,多个所述麦克风同时采集所述音频信号或依次采集所述音频信号。
  47. 一种声音采集方法,应用于电子设备,其特征在于,所述电子设备包括至少一个麦克风,所述麦克风包括振膜和壳体,所述振膜和所述壳体形成拾音腔,所述拾音腔被设置为与所述电子设备所处的外部环境阻隔;
    所述方法包括:
    通过所述麦克风采集音频信号;
    对所述音频信号进行分析。
  48. 根据权利要求47所述的方法,其特征在于,每一所述麦克风的所述拾音腔上开设有收音孔,所述收音孔由封闭材料进行封闭;
    所述电子设备包括多个所述麦克风,多个所述麦克风的收音孔由具有不同阻抗的封闭材料进行封闭,以采集具有不同音频特征的所述音频信号。
  49. 根据权利要求48所述的方法,其特征在于,所述音频特征包括信噪比,所述阻抗越高,所述信噪比越低。
  50. 一种电子设备,其特征在于,所述电子设备设置有第一麦克风和第二麦克风;
    所述第一麦克风,用于采集第一音频信号;所述第一麦克风包括第一振膜和第一壳体,所述第一振膜与所述第一壳体形成第一拾音腔,所述第一拾音腔被设置为与所述电子设备所处的外部环境连通;
    所述第二麦克风,用于采集第二音频信号;所述第二麦克风包括第二振膜和第二壳体,所述第二振膜和所述第二壳体形成第二拾音腔,所述第二拾音腔被设置为与所述电子设备所处的外部环境阻隔;
    所述电子设备包括处理器,用于:
    利用所述第二音频信号对所述第一音频信号进行降噪处理。
  51. 根据权利要求50所述的电子设备,其特征在于,所述第一拾音腔上开设有第一收音孔,所述第一收音孔为一开放的收音孔,所述第一拾音腔通过所述第一收音孔与所述外部环境连通。
  52. 根据权利要求50或51所述的电子设备,其特征在于,所述第二拾音腔上开设有第二收音孔,所述第二收音孔由封闭材料进行封闭。
  53. 根据权利要求52所述的电子设备,其特征在于,所述封闭材料包括柔性材料、刚性材料或柔性材料与刚性材料的组合。
  54. 根据权利要求50-53之一所述的电子设备,其特征在于,所述电子设备为以下任意一种:无人机、手持云台设备、影像设备。
  55. 根据权利要求50-54之一所述的电子设备,其特征在于,所述电子设备包括以下一个或多个受控装置:摄像头、云台、电机。
  56. 根据权利要求55所述的电子设备,其特征在于,所述电机 被配置为具备以下任意功能:驱动摄像头的光学组件运动、驱动云台的支撑臂运动、驱动扇叶转动以提供动力。
  57. 根据权利要求50-56之一所述的电子设备,其特征在于,降噪处理后的所述音频信号用于所述电子设备的媒体处理。
  58. 根据权利要求50-57之一所述的电子设备,其特征在于,所述处理器还用于:
    从所述第二音频信号中提取音频特征参数;
    将所述音频特征参数与预设音频特征参数进行对比,并根据对比结果确定所述电子设备的运行状态。
  59. 根据权利要求50-57之一所述的电子设备,其特征在于,所述处理器还用于:
    从所述第二音频信号中提取音频特征参数;
    根据所述音频特征参数确定所述电子设备的运行参数;
    将所述运行参数与预设运行参数进行对比,并根据对比结果确定所述电子设备的运行状态。
  60. 根据权利要求58或59所述的电子设备,其特征在于,所述音频特征参数包括从所述第二音频信号中提取的基频信号的频率。
  61. 根据权利要求58-60之一所述的电子设备,其特征在于,所述根据对比结果确定所述电子设备的运行状态包括:
    根据所述对比的结果确定所述电子设备的运行状态为正常状态或异常状态。
  62. 根据权利要求58-60之一所述的电子设备,其特征在于,所述根据对比结果确定所述电子设备的运行状态包括:
    根据所述对比的结果确定所述电子设备的运行状态为工作状态或非工作状态。
  63. 根据权利要求58-60之一所述的电子设备,其特征在于,所述运行参数包括电机的运动状态参数和/或扇叶的运动状态参数。
  64. 根据权利要求63所述的电子设备,其特征在于,所述处理器还用于:
    当所述电子设备的运行状态为异常状态时,调整所述电机或者所述扇叶的控制参数。
  65. 根据权利要求58-60之一所述的电子设备,其特征在于,所述根据对比结果确定所述电子设备的运行状态包括:
    根据所述对比的结果,将所述电子设备的运行状态确定为多个预设运行状态中的一个。
  66. 根据权利要求58-65之一所述的电子设备,其特征在于,所述处理器还用于:根据所述运行状态确定所述降噪处理所采用的降噪模式。
  67. 根据权利要求66所述的电子设备,其特征在于,所述根据所述运行状态确定所述降噪处理所采用的降噪模式,包括:
    在不同的所述运行状态下,采用具有不同降噪强度的降噪模式。
  68. 根据权利要求67所述的电子设备,其特征在于,所述在不同的所述运行状态下,采用具有不同降噪强度的降噪模式,包括:
    当检测到所述运行状态为异常状态时,提高所述降噪处理所采用的降噪强度。
  69. 根据权利要求50-68之一所述的电子设备,其特征在于,所述利用所述第二音频信号对所述第一音频信号进行降噪处理,包括:
    将所述第一音频信号作为待降噪信号、所述第二音频信号作为噪声参考信号输入到降噪算法模型,并输出降噪后的第一音频信号。
  70. 根据权利要求50所述的电子设备,其特征在于,所述电子设备包括多个所述第二麦克风,多个所述第二麦克风设置在所述电子设备的不同位置。
  71. 根据权利要求70所述的电子设备,其特征在于,所述电子设备包括受控装置,所述第二麦克风与所述受控装置的距离,较所述第一麦克风与所述受控装置更近。
  72. 根据权利要求70或71所述的电子设备,其特征在于,多个所述第二麦克风的收音孔由具有不同阻抗的封闭材料进行封闭,以采集具有不同音频特征的所述第二音频信号。
  73. 根据权利要求72所述的电子设备,其特征在于,所述音频特征包括信噪比,所述阻抗越高,所述信噪比越低。
  74. 根据权利要求70-73之一所述的电子设备,其特征在于,多个所述第二麦克风同时采集所述第二音频信号或依次采集所述第二 音频信号。
  75. 根据权利要求50-74之一所述的电子设备,其特征在于,所述第一麦克风较所述第二麦克风更接近于所述电子设备的表面。
  76. 根据权利要求50所述的电子设备,其特征在于,所述电子设备包括多个所述第一麦克风,多个所述第一麦克风设置在所述电子设备的不同位置。
  77. 一种电子设备,其特征在于,所述电子设备设置有麦克风,所述麦克风包括振膜和壳体,所述振膜和所述壳体形成拾音腔,所述拾音腔被设置为与所述电子设备所处的外部环境阻隔;
    所述电子设备包括处理器,用于根据所述麦克风采集的音频信号确定所述电子设备的运行状态。
  78. 根据权利要求77所述的电子设备,其特征在于,所述拾音腔上开设有收音孔,所述收音孔由封闭材料进行封闭。
  79. 根据权利要求78所述的电子设备,其特征在于,所述封闭材料包括柔性材料、刚性材料或柔性材料与刚性材料的组合。
  80. 根据权利要求77-79之一所述的电子设备,其特征在于,所述电子设备包括以下任意一种:可移动平台、云台、相机。
  81. 根据权利要求77-80之一所述的电子设备,其特征在于,所述电子设备包括以下一个或多个受控装置:摄像头、云台、电机。
  82. 根据权利要求81所述的电子设备,其特征在于,所述电机被配置为具备以下任意功能:驱动所述摄像头的光学组件、驱动所述云台的支撑臂、驱动扇叶转动以提供升力。
  83. 根据权利要77-82之一所述的电子设备,其特征在于,所述根据所述音频信号确定所述电子设备的运行状态包括:
    从所述音频信号中提取音频特征参数;
    将所述音频特征参数与预设音频特征参数进行对比,并根据对比结果确定所述电子设备的运行状态。
  84. 根据权利要求77-82之一所述的电子设备,其特征在于,所述根据所述音频信号确定所述电子设备的运行状态包括:
    从所述音频信号中提取音频特征参数,并根据所述音频特征参数确定所述电子设备的运行参数;
    将所述运行参数与预设运行参数进行对比,并根据对比结果确定所述电子设备的运行状态。
  85. 根据权利要求83或84所述的电子设备,其特征在于,所述音频特征参数包括从所述音频信号中提取的基频信号的频率。
  86. 根据权利要求83-85之一所述的电子设备,其特征在于,所述根据对比结果确定所述电子设备的运行状态包括:
    根据所述对比的结果确定所述电子设备的运行状态为正常状态或异常状态。
  87. 根据权利要求83-85之一所述的电子设备,其特征在于,所述根据对比结果确定所述电子设备的运行状态包括:
    根据所述对比的结果确定所述电子设备的运行状态为工作状态或非工作状态。
  88. 根据权利要求83-85之一所述的电子设备,其特征在于,所述运行参数包括电机的运动状态参数和/或扇叶的运动状态参数。
  89. 根据权利要求88所述的电子设备,其特征在于,所述处理器还用于:
    当所述电子设备的运行状态为异常状态时,调整所述电机或者所述扇叶的控制参数。
  90. 根据权利要求83-85之一所述的电子设备,其特征在于,所述根据对比结果确定所述电子设备的运行状态包括:
    根据所述对比的结果,将所述电子设备的运行状态确定为多个预设运行状态中的一个。
  91. 根据权利要求77-90之一所述的电子设备,其特征在于,所述电子设备包括多个所述麦克风,多个所述麦克风的收音孔由具有不同阻抗的封闭材料进行封闭,以采集具有不同音频特征的所述音频信号。
  92. 根据权利要求91所述的电子设备,其特征在于,所述音频特征包括信噪比,所述阻抗越高,所述信噪比越低。
  93. 根据权利要求91或92所述的电子设备,其特征在于,多个所述麦克风设置在所述电子设备的不同位置。
  94. 根据权利要求91-93之一所述的电子设备,其特征在于,多 个所述麦克风同时采集所述音频信号或依次采集所述音频信号。
  95. 一种电子设备,其特征在于,所述电子设备设置有麦克风,所述麦克风包括振膜和壳体,所述振膜和所述壳体形成拾音腔,所述拾音腔被设置为与所述电子设备所处的外部环境阻隔;
    所述电子设备包括处理器,用于对所述麦克风采集的音频信号进行分析。
  96. 根据权利要求95所述的电子设备,其特征在于,所述拾音腔上开设有收音孔,所述收音孔由封闭材料进行封闭;
    所述电子设备包括多个所述麦克风,多个所述麦克风的收音孔由具有不同阻抗的封闭材料进行封闭,以采集具有不同音频特征的所述音频信号。
  97. 根据权利要求96所述的电子设备,其特征在于,所述音频特征包括信噪比,所述阻抗越高,所述信噪比越低。
  98. 一种计算机存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现权利要求1-28中任一项所述的降低噪声的方法。
  99. 一种计算机存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现权利要求29-46中任一项所述的状态确定方法。
  100. 一种计算机存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现权利要求47-49中任一项所述的声音采集方法。
PCT/CN2020/087536 2020-04-28 2020-04-28 降低噪声的方法、状态确定方法和电子设备 WO2021217431A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/087536 WO2021217431A1 (zh) 2020-04-28 2020-04-28 降低噪声的方法、状态确定方法和电子设备
CN202080006262.2A CN113056786A (zh) 2020-04-28 2020-04-28 降低噪声的方法、状态确定方法和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/087536 WO2021217431A1 (zh) 2020-04-28 2020-04-28 降低噪声的方法、状态确定方法和电子设备

Publications (1)

Publication Number Publication Date
WO2021217431A1 true WO2021217431A1 (zh) 2021-11-04

Family

ID=76509769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087536 WO2021217431A1 (zh) 2020-04-28 2020-04-28 降低噪声的方法、状态确定方法和电子设备

Country Status (2)

Country Link
CN (1) CN113056786A (zh)
WO (1) WO2021217431A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114630167A (zh) * 2022-03-07 2022-06-14 歌尔智能科技有限公司 遥控器和电子系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000004494A (ja) * 1998-06-16 2000-01-07 Matsushita Electric Ind Co Ltd 機器内蔵型マイクロホン装置
CN207198617U (zh) * 2017-05-23 2018-04-06 上海碧虎网络科技有限公司 一种风扇噪音监控装置
US20180102123A1 (en) * 2016-10-06 2018-04-12 Gopro, Inc. Active acoustic and vibration noise canceling in waterproof camera
CN110149573A (zh) * 2019-04-01 2019-08-20 联想(北京)有限公司 一种电子设备
CN110307899A (zh) * 2019-07-29 2019-10-08 电子科技大学中山学院 一种基于深度学习的声音异常检测系统
CN110335617A (zh) * 2019-05-24 2019-10-15 国网新疆电力有限公司乌鲁木齐供电公司 一种变电站中的噪音分析方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2839815B2 (ja) * 1993-02-26 1998-12-16 松下電器産業株式会社 ビデオカメラ用収音装置
CN107973206A (zh) * 2017-12-29 2018-05-01 通力电梯有限公司 自动扶梯润滑状态监测系统及用于其的声音收集装置
CN110375846B (zh) * 2019-08-14 2023-08-04 杭州柯林电气股份有限公司 感知声纹振动在线诊断变压器内部故障的装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000004494A (ja) * 1998-06-16 2000-01-07 Matsushita Electric Ind Co Ltd 機器内蔵型マイクロホン装置
US20180102123A1 (en) * 2016-10-06 2018-04-12 Gopro, Inc. Active acoustic and vibration noise canceling in waterproof camera
CN207198617U (zh) * 2017-05-23 2018-04-06 上海碧虎网络科技有限公司 一种风扇噪音监控装置
CN110149573A (zh) * 2019-04-01 2019-08-20 联想(北京)有限公司 一种电子设备
CN110335617A (zh) * 2019-05-24 2019-10-15 国网新疆电力有限公司乌鲁木齐供电公司 一种变电站中的噪音分析方法
CN110307899A (zh) * 2019-07-29 2019-10-08 电子科技大学中山学院 一种基于深度学习的声音异常检测系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114630167A (zh) * 2022-03-07 2022-06-14 歌尔智能科技有限公司 遥控器和电子系统
WO2023168803A1 (zh) * 2022-03-07 2023-09-14 歌尔股份有限公司 遥控器和电子系统

Also Published As

Publication number Publication date
CN113056786A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
Strauss et al. DREGON: Dataset and methods for UAV-embedded sound source localization
US20210163132A1 (en) Unmanned aerial vehicle (uav) for collecting audio data
KR102244175B1 (ko) 드론 비행 제어
US10692481B2 (en) Systems, apparatus, and methods for drone audio noise reduction
US10192538B2 (en) Mobile body
EP2633699B1 (en) Systems, methods, apparatus, and computer-readable media for orientation-sensitive recording control
EP2882170B1 (en) Audio information processing method and apparatus
US20170150254A1 (en) System, device, and method of sound isolation and signal enhancement
CN105228054B (zh) 飞行装置、拍摄装置及其录音降噪装置和方法
CN110737277A (zh) 无人飞行体、信息处理方法以及程序记录介质
CN113281706B (zh) 一种目标定位方法、装置及计算机可读存储介质
WO2018095400A1 (zh) 音频信号处理方法与相关设备
CN107068164A (zh) 音频信号处理方法、装置和电子设备
JP7149498B2 (ja) 無人飛行体、情報処理方法およびプログラム
US20190130889A1 (en) Drone-based interactive and active audio system
WO2021217431A1 (zh) 降低噪声的方法、状态确定方法和电子设备
CN106782491A (zh) 无人机噪音抑制装置及其方法
Wang et al. Deep-learning-assisted sound source localization from a flying drone
CN112912309A (zh) 无人飞行体、信息处理方法以及程序
Yen et al. Source enhancement for unmanned aerial vehicle recording using multi-sensory information
JP2020006793A (ja) 収音機能付き無人航空機
JP7489669B2 (ja) 無人飛行体、情報処理方法及びプログラム
JP4655572B2 (ja) 信号処理方法および信号処理装置、ならびに、ロボット
Hioka et al. Clean audio recording using unmanned aerial vehicles
CN113168842B (zh) 声音处理方法、装置、无人飞行器和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933106

Country of ref document: EP

Kind code of ref document: A1