WO2021217414A1 - 光学膜片、背光模组及显示装置 - Google Patents

光学膜片、背光模组及显示装置 Download PDF

Info

Publication number
WO2021217414A1
WO2021217414A1 PCT/CN2020/087478 CN2020087478W WO2021217414A1 WO 2021217414 A1 WO2021217414 A1 WO 2021217414A1 CN 2020087478 W CN2020087478 W CN 2020087478W WO 2021217414 A1 WO2021217414 A1 WO 2021217414A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
optical film
film
backlight module
Prior art date
Application number
PCT/CN2020/087478
Other languages
English (en)
French (fr)
Inventor
张嘉尹
黄柏菖
林坤政
Original Assignee
瑞仪(广州)光电子器件有限公司
瑞仪光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞仪(广州)光电子器件有限公司, 瑞仪光电股份有限公司 filed Critical 瑞仪(广州)光电子器件有限公司
Priority to CN202080007083.0A priority Critical patent/CN113853539B/zh
Priority to PCT/CN2020/087478 priority patent/WO2021217414A1/zh
Priority to TW109117722A priority patent/TWI768354B/zh
Priority to US17/446,169 priority patent/US11531154B2/en
Publication of WO2021217414A1 publication Critical patent/WO2021217414A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices

Definitions

  • the present disclosure relates to optical films and their applications, and particularly relates to optical films with improved optical structures and backlight modules and display devices using the optical films.
  • FIG. 1 is a schematic diagram showing the device of the conventional backlight module.
  • the conventional backlight module 100 mainly includes a light source 110, a light guide plate 120, and a turning film 130.
  • the light source 110 is arranged on one side of the light guide plate 120 to provide light entering the light guide plate.
  • the inverse prism sheet 130 is arranged in front of the light guide plate 120 to convert the light emitted from the light guide plate into the light in the front view direction. Therefore, the light emitted from the light guide plate 120 after passing through the inverse prism sheet 130 can have a normal viewing angle. sold out.
  • the application of the inverse prism sheet to the backlight module can make the backlight module produce a narrow viewing angle and high brightness effect, for current automotive products, a larger display viewing angle can satisfy the left and right side of the front seat of the car. Demand; and for products such as AR (Augmented Reality) or VR (virtual reality), a larger display angle is needed to meet the needs of ultra-close viewing. Obviously, displays that generally emit light at a front viewing angle can no longer meet new display requirements.
  • the purpose of the present disclosure is to provide an optical film that can be applied to a backlight module and a display device, so that the backlight module and the display device can emit light from different viewing angles.
  • an optical film is provided.
  • the optical film is configured to receive and guide light.
  • the optical film includes a body and a plurality of optical structures.
  • the main body has a light emitting surface, an optical surface, a first side surface and a second side surface, wherein the light emitting surface is opposite to the optical surface, and the first side surface and the second side surface are respectively connected to two opposite sides of the optical surface.
  • the optical structure is arranged on the first area of the optical surface, and the light is guided by the optical structure in the optical film to emit light from the light-emitting surface.
  • Each optical structure has a first surface and a second surface.
  • the first surface is inclined with respect to the optical surface and has a first included angle with the optical surface, wherein the first surface is a light-receiving surface.
  • the second surface is connected to the first surface, wherein the second surface is inclined with respect to the optical surface and has a second included angle with the optical surface.
  • the first included angle and the second included angle are both acute angles, and the first included angle of the optical structure gradually changes along the first side surface toward the second side surface in the first direction.
  • the above-mentioned optical film is a turning film.
  • the optical surface further includes a second area, and the second area is provided with an optical structure, wherein the first area and the second area are arranged along the first direction, the first area is connected to the first side surface, and the second area is connected to the second side surface .
  • the first included angle of the optical structure arranged in the first zone gradually increases along the first direction.
  • the first included angle of the optical structure disposed in the second zone gradually increases along the first direction.
  • the above-mentioned optical film is a light guide film.
  • the first zone extends from the first side to the second side.
  • the first included angle of the optical structure arranged in the first zone gradually increases along the first direction.
  • the size or height of the above-mentioned optical structure increases as the distance between the optical structure and the first side surface increases.
  • the distance between the above-mentioned optical structures decreases as the distance between the optical structure and the first side surface increases.
  • each optical structure is arranged along a first direction, and each optical structure is a strip structure extending along a second direction, wherein the second direction is perpendicular to the first direction.
  • the backlight module includes the aforementioned optical film and light source.
  • the light source is configured to provide light entering the optical film.
  • the backlight module includes a light guide film, a light source and the aforementioned optical film.
  • the optical film is arranged above the light guide film.
  • the light provided by the light source passes through the light guide film and emerges from the light exit surface of the light guide film, and can enter the optical film from the first surface of the optical structure of the optical film, and is reflected by the second surface to escape from the optical film
  • the light-emitting surface of the film emits light.
  • the backlight module includes the aforementioned optical film, light source and turning film.
  • the light source is adjacent to the first side surface of the optical film.
  • the turning film is arranged above the optical film.
  • the light provided by the light source can enter the optical film from the first side, and the light entering the optical film can be reflected by the first surface of the optical structure of the optical film and exit from the light-emitting surface of the optical film, and then enter the turning film middle.
  • the display device includes the aforementioned backlight module and a display panel.
  • the display panel is arranged in front of the backlight module.
  • the advantage of the present disclosure is that by providing an optical structure with a light-receiving surface with a gradual oblique angle on the optical film, the light output angle of the light generated by the light source after passing through the optical film is changed to produce viewing angles in different directions. , So it is especially suitable for current car display devices, AR/VR display devices and other products. That is to say, the design of the optical film disclosed in the present disclosure can significantly increase the light-emitting viewing angle range of the backlight module, which can fully meet the left and right viewing needs of the front seat of the car or the ultra-close viewing needs of AR/VR, and then Meet the needs of various products.
  • FIG. 1 is a schematic diagram showing a device of a conventional backlight module
  • FIG. 2 is a schematic diagram showing the device of the backlight module according to the first embodiment of the present disclosure
  • 3A and 3B are respectively a schematic diagram and a light-emitting simulation diagram of different areas of the backlight module according to the first embodiment of the present disclosure
  • FIG. 4 is a simulation diagram of light output generated by using a conventional inverse prism sheet and the optical film sheet of the first embodiment of the present disclosure, respectively;
  • FIG. 5 is a schematic diagram showing the device of the backlight module according to the second embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram showing the device of the backlight module according to the third embodiment of the present disclosure.
  • FIG. 7 is a device schematic diagram of a display device according to an embodiment of the present disclosure.
  • the backlight module 200 of this embodiment mainly includes a light source 210, a light guide film 220, and an optical film 230.
  • the light guide film 220 includes a light incident surface 221 and a light output surface 222 connected to the light incident surface 221.
  • the light source 210 is adjacent to the light incident surface 221 to provide light entering the light guide film 220.
  • the optical film 230 is disposed above the light exit surface 222 of the light guide film 220, and is mainly used to convert the light from the light guide film 220 into light rays in different directions and emit them.
  • the optical film 230 is a turning film.
  • the optical film 230 mainly includes a main body 231 and a plurality of optical structures 232.
  • the main body 231 has a light emitting surface 231a, an optical surface 231b, a first side surface 231c, and a second side surface 231d.
  • the light emitting surface 231a of the main body 231 is opposite to the optical surface 231b, and the first side surface 231c and the second side surface 231d are respectively connected to two opposite sides of the optical surface 231b.
  • the optical structure 232 is arranged on the optical surface 231b of the main body 231, and the light emitted from the light guide film 220 can be guided by the optical structure 232 of the optical film 230 and emitted from the optical film 230 after entering the optical film 230
  • the surface 231a emits light.
  • FIG. 3A is a schematic diagram of light-emitting viewing angles of different areas of the backlight module according to the first embodiment of the present disclosure.
  • the optical surface 231b of the optical film 230 has a first area A1 and a second area A2.
  • the first area A1 and the second area A2 are arranged along the first direction D1 of the first side surface 231c toward the second side surface 231d, and the first area A1 is connected to the first side surface 231c, and the second area A2 is connected to the second side surface 231d .
  • the optical structures 232 are arranged in the first area A1 and the second area A2 along the first direction D1.
  • each optical structure 232 is a strip structure extending along the second direction D2.
  • the first direction D1 is perpendicular to the second direction D2.
  • each optical structure 232 has a first surface 232a and a second surface 232b connected to the first surface 232a, wherein the first surface 232a is a light-receiving surface.
  • the “light-receiving surface” is defined as the surface that the light emitted from the light guide film 220 first touches when it enters the optical film 230.
  • the first surface 232a is inclined with respect to the optical surface 231b, and there is a first included angle ⁇ 1 between the first surface 232a and the optical surface 231b.
  • the second surface 232b is inclined with respect to the optical surface 231b, and there is a second included angle ⁇ 2 between the second surface 232b and the optical surface 231b.
  • the first included angle ⁇ 1 and the second included angle ⁇ 2 of each optical structure 232 are both acute angles.
  • the first included angle ⁇ 1 of the optical structures 232 gradually changes along the first direction D1.
  • the first included angle ⁇ 1 of the optical structure 232 disposed in the first area A1 gradually increases along the first direction D1
  • the first included angle ⁇ 1 of the optical structure 232 disposed in the second area A2 ⁇ 1 also gradually increases along the first direction D1.
  • the shapes of the optical structure 232 arranged in the first area A1 and the optical structure 232 arranged in the second area A2 are symmetrical with the boundary line B1 of the first area A1 and the second area A2 as the center.
  • the light provided by the light source 210 passes through the light guide film 220 and exits the light exit surface 222 of the light guide film 220, it can be emitted from the first optical structure 232 of the optical film 230.
  • the surface 232a enters the optical film 230 and is reflected by the second surface 232b of the optical structure 232 to emit light from the light-emitting surface 231a of the optical film 230.
  • the light can be deflected toward the -Y direction to emit light.
  • FIG. 3B is a light-emitting simulation diagram of different areas of the backlight module according to the first embodiment of the present disclosure.
  • 3B shows a simulation image of the area C closer to the light source 210 showing that the light gray color block is shifted downward, which indicates that the light energy is shifted toward the -Y direction; the simulation image of the area A farther from the light source 210 shows light The gray color block shifts upwards, which means that the light energy is concentrated in the +Y direction; the simulation images of the areas B, D, and E in the middle position show that the light gray color block is still in the center, which means that these areas are still emitting light from a positive viewing angle.
  • FIG. 4 is a simulation diagram of light emission generated by the conventional inverse prism sheet and the optical film of the first embodiment of the present disclosure, respectively.
  • the use of the optical film 230 of the first embodiment of the present disclosure can make the light from the middle position of the backlight module 200 (for example, area B) to the area close to the light source 210 (for example, area C) gradually emit light. Increase the negative angle (-Y direction).
  • the use of the optical film of the first embodiment of the present disclosure can make the light from the middle position of the backlight module 200 (for example, area B) to the area away from the light source 210 (for example, area A), the viewing angle of the light to gradually increase the forward angle (+Y direction).
  • the viewing angle of light from different areas of the backlight module is about 1 degree.
  • the use of the optical film 230 of the present disclosure can make the backlight module 200 have a viewing angle of +Y direction and -Y direction deviation, and for each position in the X direction, the viewing angle or brightness will not produce a large Variety.
  • the X direction of the backlight module 200 of the present disclosure may correspond to the vertical direction of the user (up and down direction ), and the Y-direction of the backlight module 200 of the present disclosure can correspond to the user's horizontal direction (left-right direction), so that the light-emitting viewing angle of the backlight module 200 can be expanded in the left-right direction without excessively sacrificing the vertical direction.
  • Brightness when the backlight module 200 of the present disclosure is applied to an in-vehicle product, the X direction of the backlight module 200 of the present disclosure may correspond to the vertical direction of the user (up and down direction ), and the Y-direction of the backlight module 200 of the present disclosure can correspond to the user's horizontal direction (left-right direction), so that the light-emitting viewing angle of the backlight module 200 can be expanded in the left-right direction without excessively sacrificing the vertical direction. Brightness.
  • the X direction of the backlight module 200 of the present disclosure may correspond to the level of the viewer's eyeballs Direction (left-right direction)
  • the Y-direction of the backlight module 200 of the present disclosure corresponds to the vertical direction (up-down direction) of the viewer’s eyeballs, so that the light-emitting viewing angle of the backlight module 200 can be expanded toward the up-down direction, and then focused through the lens To the eyeball.
  • the optical film can also have different designs.
  • FIG. 5 is a schematic diagram of a backlight module device according to the second embodiment of the present disclosure.
  • the backlight module 300 of this embodiment mainly includes a light source 310, an optical film 320, and a turning film 330.
  • the optical film 320 is a light guide film, that is, a light guide plate generally used in an edge-type backlight module.
  • the optical film 320 mainly includes a main body 321 and a plurality of optical structures 322.
  • the main body 321 has a light emitting surface 321a, an optical surface 321b, a first side surface 321c, and a second side surface 321d.
  • the light emitting surface 321a of the main body 321 is opposite to the optical surface 321b, and the first side surface 321c and the second side surface 321d are respectively connected to two opposite sides of the optical surface 321b.
  • the optical structure 322 is disposed on the optical surface 321 b of the main body 321.
  • the light source 310 is adjacent to the first side surface 321c of the main body 321, so after the light provided by the light source 310 enters the optical film 320 from the first side surface 321c, it can exit the light exit surface 321a of the optical film 320 and enter the turning film 330 .
  • the optical structures 322 are arranged on the optical surface 321b along the first direction D3 of the first side surface 321c toward the second side surface 321d.
  • the optical structure 322 may be a strip structure extending along a second direction perpendicular to the first direction D3.
  • Each optical structure 322 has a first surface 322a and a second surface 322b connected to the first surface 322a, wherein the first surface 322a is a light-receiving surface.
  • the "light-receiving surface” is defined as the surface that light touches for the first time after entering the optical film 320, and since the light source 310 is located on the left side of the optical film 320, the light source 310 emits from left to right Therefore, the “light-receiving surface” of the optical film 320 will be dominated by the right side surface of the optical structure 322 facing the left side (that is, the first surface 322a). If the light source 310 is arranged on the right side of the optical film 320, the "light-receiving surface” of the optical film 320 will be mainly the left side surface (that is, the second surface 322b) facing the right in the optical structure 322. As shown in FIG.
  • the first surface 322a is inclined with respect to the optical surface 321b, and there is a first included angle ⁇ 1 between the first surface 322a and the optical surface 321b.
  • the second surface 322b is inclined with respect to the optical surface 321b, and there is a second included angle ⁇ 2 between the second surface 322b and the optical surface 321b, and the first included angle ⁇ 1 and the second included angle ⁇ 2 of each optical structure 322 All are acute angles.
  • the first included angle ⁇ 1 of the optical structures 322 gradually changes along the first direction D3.
  • the first included angle ⁇ 1 of the optical structure 322 gradually increases along the first direction D3.
  • the light provided by the light source 310 can enter the optical film 320 from the first side surface 321c, and the light entering the optical film 320 can be reflected by the first surface 322a of the optical structure 322 of the optical film 320 from The light-emitting surface 321 a of the optical film 320 is emitted, and then enters the turning film 330.
  • the light L4 enters the turning film 330 by the optical structure 322 closer to the first side surface 321c, it can be deflected out toward the -Y direction.
  • the light L5 enters the turning film 330 by the optical structure 232 closer to the second side surface 321d, it can be deflected toward the +Y direction to exit the light.
  • the light L6 After the light L6 enters the turning film 330 by the optical structure 322 located at the middle position of the optical film 320, it can emit light at a positive viewing angle. From this, it can be seen that the use of the optical film 320 of the present disclosure can make the backlight module 300 generate a viewing angle that is skewed toward the +Y direction and the -Y direction.
  • FIG. 6 is a schematic diagram of the backlight module according to the third embodiment of the present disclosure.
  • the structure of the optical film 420 of the backlight module 400 of this embodiment is substantially the same as the structure of the optical film 320 of FIG. 5.
  • the optical structure 422 of the optical film 420 of this embodiment has a different arrangement.
  • the backlight module 400 mainly includes a light source 410, an optical film 420 and a turning film 430.
  • the optical film 420 of this embodiment is a light guide film, which mainly includes a main body 421 and a plurality of optical structures 422 disposed on the main body 421.
  • the main body 421 has a first side surface 421a, a second side surface 421b, a light emitting surface 421c, and an optical surface 421d.
  • the first side surface 421a is defined as a light incident surface, and the light source 410 is adjacent to the first side surface 421a.
  • the optical structure 422 is disposed on the optical surface 421d. Wherein, each optical structure 422 has a first surface 422a and a second surface 422b connected to the first surface 422a, wherein the first surface 422a is a light-receiving surface.
  • the first surface 422a is inclined with respect to the optical surface 421d, and the degree of inclination of the first surface 422a of the optical structures 422 gradually changes along the direction from the first side surface 421a to the second side surface 421b.
  • the light provided by the light source 410 can enter the optical film 420 from the first side surface 421a, and the light entering the optical film 420 can be reflected by the first surface 422a of the optical structure 422 of the optical film 420 and exit the optical film 420.
  • the light emitting surface 421c of the 420 emits, and then enters the turning diaphragm 430.
  • the use of the optical film 420 of the present disclosure can make the backlight module 400 generate a viewing angle that is skewed toward the +Y direction and the -Y direction.
  • the distance between the optical structures 422 decreases as the distance between the optical structure 422 and the first side surface 421 a increases. That is, the pitch P2 between the optical structures 422 far from the first side surface 421a is smaller than the pitch P1 between the optical structures 422 close to the first side surface 421a. Therefore, by the densely arranged design of the optical structures 422 away from the first side surface 421a, the light output of the optical film 420 at a position away from the first side surface 421a can be increased, thereby increasing the overall light output uniformity of the optical film 420 .
  • the size or height of the optical structure 422 may increase as the distance between the optical structure 422 and the first side surface 421a increases.
  • the height H2 of the optical structure 422 farther from the first side surface 421a is greater than the height H1 of the optical structure 422 closer to the first side surface 421a, which can also improve the optical film 420 at a position far away from the first side surface 421a.
  • the purpose of the amount of light is greater than the height H1 of the optical structure 422 closer to the first side surface 421a, which can also improve the optical film 420 at a position far away from the first side surface 421a.
  • FIG. 7 is a device schematic diagram of a display device according to an embodiment of the present disclosure.
  • the display device 500 of this embodiment includes a backlight module 200 and a display panel 510 as shown in FIG. 2.
  • the display panel 510 is arranged in front of the backlight module 200.
  • the display device 500 can also achieve the purpose of generating different light-emitting angles through the design of the optical film 230 in the backlight module 200, so it will not be repeated here.
  • the application of the backlight module 200 shown in FIG. 2 to the display device 500 in the embodiment of the present application is only for demonstration and not for limiting the disclosure.
  • the backlight modules of the aforementioned other embodiments (for example, the backlight module 300 shown in FIG. 5 or the backlight module 400 shown in FIG. 6) can be applied to a display device to produce the same effect.
  • the advantage of the present disclosure is that by providing an optical structure with a light-receiving surface with a gradual inclination angle on the optical film, the light output angle of the light generated by the light source after passing through the optical film is changed to produce
  • the viewing angles in different directions are especially suitable for current vehicle-mounted display devices, AR/VR display devices and other products. That is to say, the design of the optical film disclosed in the present disclosure can significantly increase the light-emitting viewing angle range of the backlight module, which can fully meet the left and right viewing needs of the front seat of the car or the ultra-close viewing needs of AR/VR, and then Meet the needs of various products.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种光学膜片、背光模组及显示装置。光学膜片配置以接收并导引光线。光学膜片包括本体及多个光学结构。本体具有出光面、光学面、第一侧面以及第二侧面。出光面与光学面相对,且第一侧面与第二侧面分别连接于出光面与光学面的相对两个侧边。光学结构设置在光学面的第一区上。每一个光学结构具有第一表面及第二表面。第一表面与光学面具有第一夹角。第一表面为受光面。第二表面连接于第一表面。第二表面与光学面具有第二夹角。光学结构的第一夹角沿着第一侧面朝向第二侧面的第一方向渐变。

Description

光学膜片、背光模组及显示装置 技术领域
本揭露涉及光学膜片及其应用,且特别是涉及具有改良光学结构的光学膜片以及应用此光学膜片的背光模组及显示装置。
背景技术
请参照图1,其是绘示习知的背光模组的装置示意图。习知的背光模组100主要包含光源110、导光板120以及逆棱镜片(Turning Film)130。光源110设置在导光板120的一侧,用以提供进入至导光板中的光线。逆棱镜片130设在导光板120的前方,用以将从导光板射出的光线转化为正视方向的光线射出,故从导光板120射出的光线在通过逆棱镜片130后,可以正视角的角度出光。
虽然将逆棱镜片应用在背光模组上可以使背光模组产生窄视角、高辉度的效果,但是对于目前的车载产品而言,较大的显示视角才能满足汽车前座的左、右侧观看需求;而对于AR(Augmented Reality)或VR(virtual reality)等产品而言,则需要较大的显示视角才能满足超近距离的观看需求。显然,一般以正视角出光的显示器已经无法满足新的显示需求。
发明内容
因此,本揭露的目的在于提供一种光学膜片,其可应用至背光模组及显示装置中,以使背光模组与显示装置能够以不同方向的视角出光。
根据本揭露的上述目的,提出一种光学膜片。此光学膜片配置以接收并导引光线。光学膜片包括本体以及多个光学结构。本体具有出光面、光学面、第一侧面以及第二侧面,其中出光面与光学面相对,且第一侧面与第二侧面分别连接于光学面的相对两个侧边。光学结构设置在光学面的第 一区上,光线在光学膜片中被光学结构导引而由出光面出光。每一个光学结构具有第一表面及第二表面。第一表面相对于光学面倾斜且与光学面具有第一夹角,其中第一表面为受光面。第二表面连接于第一表面,其中第二表面相对于光学面倾斜且与光学面具有第二夹角。其中,第一夹角与第二夹角皆为锐角,且光学结构的第一夹角沿着第一侧面朝向第二侧面的第一方向渐变。
依据本揭露的一实施例,上述的光学膜片为转向膜片(turning film)。光学面还包含第二区,且第二区设有光学结构,其中第一区与第二区沿着第一方向排列,第一区连接于第一侧面,且第二区连接于第二侧面。其中,设置在第一区中的光学结构的第一夹角沿着第一方向逐渐变大。设置在第二区中的光学结构的第一夹角沿着第一方向逐渐变大。
依据本揭露的一实施例,上述的光学膜片为导光膜片。第一区从第一侧面延伸至第二侧面。设置在第一区的光学结构的第一夹角沿着第一方向逐渐变大。
依据本揭露的一实施例,上述的光学结构的尺寸或高度随着光学结构与第一侧面的距离的增加而增加。
依据本揭露的一实施例,上述的光学结构之间的间距随着光学结构与第一侧面的距离的增加而减少。
依据本揭露的一实施例,上述的光学结构沿着第一方向排列,且每一个光学结构为沿着第二方向延伸的条状结构,其中第二方向垂直于第一方向。
根据本揭露的上述目的,另提出一种背光模组。此背光模组包含前述的光学膜片以及光源。其中,光源配置以提供进入至光学膜片中的光线。
根据本揭露的上述目的,提出另一种背光模组。此背光模组包含导光膜片、光源以及前述的光学膜片。其中,光学膜片设置在导光膜片的上方。光源所提供的光线通过导光膜片而从导光膜片的出光面出光后,能够从光学膜片的光学结构的第一表面进入光学膜片中,而被第二表面反射以从光学膜片的出光面出光。
根据本揭露的上述目的,提出另一种背光模组。此背光模组包含前述 的光学膜片、光源以及转向膜片。光源邻设于光学膜片的第一侧面。转向膜片设置在光学膜片的上方。光源所提供的光线能够从第一侧面进入光学膜片中,进入光学膜片的光线能够被光学膜片的光学结构的第一表面反射而从光学膜片的出光面射出,进而进入转向膜片中。
根据本揭露的上述目的,另提出一种显示装置。此显示装置包含前述的背光模组以及显示面板。显示面板设置在背光模组的前方。
由上述可知,本揭露的优点在于通过在光学膜片上设置具有倾斜角度渐变的受光面的光学结构,来改变光源所产生的光线在通过光学膜片后的出光角度,以产生不同方向的视角,故特别适用于目前的车载显示装置、AR/VR显示装置等产品。也就是说,通过本揭露的光学膜片的设计可使背光模组的出光视角范围明显增加,可以充分满足汽车前座的左、右侧观看需求或AR/VR的超近距离的观看需求,进而符合各类产品的使用需求。
附图说明
为了更完整地了解实施例及其优点,现在参照附图做出下列描述,其中:
图1是绘示习知的背光模组的装置示意图;
图2是绘示依照本揭露的第一实施方式的背光模组的装置示意图;
图3A及图3B分别是依照本揭露的第一实施方式的背光模组的不同区域的出光视角示意图及出光模拟图;
图4是分别利用习知的逆棱镜片与本揭露的第一实施例的光学膜片所产生的出光模拟图;
图5是绘示依照本揭露的第二实施方式的背光模组的装置示意图;
图6是绘示依照本揭露的第三实施方式的背光模组的装置示意图;以及
图7是绘示依照本揭露的实施方式的显示装置的装置示意图。
具体实施方式
请参照图2,其是绘示依照本揭露的第一实施方式的背光模组的装置 示意图。本实施方式的背光模组200主要包含光源210、导光膜片220以及光学膜片230。导光膜片220包含入光面221以及连接于入光面221的出光面222。光源210邻设于入光面221,以提供进入至导光膜片220中的光线。光学膜片230设置在导光膜片220的出光面222的上方,主要用以将来自导光膜片220的光线转换成不同方向的光线而射出。在一实施例中,光学膜片230为转向膜片(turning film)。
如图2所示,光学膜片230主要包含本体231以及多个光学结构232。本体231具有出光面231a、光学面231b、第一侧面231c以及第二侧面231d。其中,本体231的出光面231a与光学面231b相对,且第一侧面231c与第二侧面231d分别连接于光学面231b的相对两个侧边。光学结构232设置在本体231的光学面231b上,且从导光膜片220射出的光线在进入光学膜片230后,可被光学膜片230的光学结构232引导而从光学膜片230的出光面231a出光。
请一并参照图3A,其是依照本揭露的第一实施方式的背光模组的不同区域的出光视角示意图。在本实施例中,光学膜片230的光学面231b具有第一区A1及第二区A2。第一区A1及第二区A2沿着第一侧面231c朝向第二侧面231d的第一方向D1排列,且第一区A1连接于第一侧面231c,且第二区A2连接于第二侧面231d。光学结构232沿着第一方向D1排列在第一区A1及第二区A2中。在本实施例中,每一个光学结构232为沿着第二方向D2延伸的条状结构。其中,第一方向D1垂直于第二方向D2。
如图2及图3A所示,在本实施例中,每一个光学结构232具有第一表面232a以及连接于第一表面232a的第二表面232b,其中第一表面232a为受光面。在本实施例中,「受光面」定义为从导光膜片220射出的光线在进入光学膜片230时,第一次接触到的表面。如图2所示,第一表面232a相对于光学面231b倾斜,且第一表面232a与光学面231b之间具有第一夹角α1。同样地,第二表面232b相对于光学面231b倾斜,且第二表面232b与光学面231b之间具有第二夹角α2。其中,每一个光学结构232的第一夹角α1与第二夹角α2皆为锐角。在本实施例中,这些光学结构 232的第一夹角α1沿着第一方向D1渐变。在本实施例中,设置在第一区A1中的光学结构232的第一夹角α1沿着第一方向D1逐渐变大,且设置在第二区A2中的光学结构232的第一夹角α1同样是沿着第一方向D1逐渐变大。其中,设置在第一区A1中的光学结构232与设置在第二区A2中的光学结构232的形状以第一区A1与第二区A2的交界线B1为中心对称。
请再次参照图2及图3A所示,光源210所提供的光线通过导光膜片220而从导光膜片220的出光面222出光后,可从光学膜片230的光学结构232的第一表面232a进入光学膜片230中,而被光学结构232的第二表面232b反射以从光学膜片230的出光面231a出光。具体而言,光线L1经较靠近第一侧面231c的光学结构232作用后,可朝向-Y的方向偏斜出光。光线L2经较靠近第二侧面231d的光学结构232作用后,可朝向+Y的方向偏斜出光。光线L3经位于光学膜片230的中间位置处的光学结构232作用后,则可以正视角出光。请同时参照图3A及图3B所示,其中图3B是依照本揭露的第一实施方式的背光模组的不同区域的出光仿真图。图3B示出了距离光源210较近的区域C的仿真图显示浅灰色色块向下偏移,这表示出光能量朝向-Y方向偏移;距离光源210较远的区域A的仿真图显示浅灰色色块向上偏移,这表示出光能量朝向+Y方向集中;位于中间位置处的区域B、D、E的仿真图显示浅灰色色块仍位于中心,这表示这些区域仍为正视角出光。
另请参照图3A至图4,其中图4为分别利用习知的逆棱镜片与本揭露的第一实施例的光学膜片所产生的出光模拟图。如图4所示,利用本揭露的第一实施例的光学膜片230可使得光线从背光模组200的中间位置(例如区域B)朝向靠近光源210的区域(例如区域C)出光的视角逐渐增大负向角度(-Y方向)。同样地,利用本揭露的第一实施例的光学膜片可使得光线从背光模组200的中间位置(例如区域B)朝向远离光源210的区域(例如区域A)出光的视角逐渐增大正向角度(+Y方向)。而当使用习知的逆棱镜片(例如图1的棱镜片130)时,光线从背光模组的不同区域出光的视角约为1度。显然地,利用本揭露的光学膜片230可使背光模组200产生+Y方向偏斜与-Y方向偏斜的视角,而对于X方向的各个 位置,其视角或辉度则不会产生大幅变化。因此,当本揭露的背光模组200应用于车载产品时,对于汽车前座的左、右侧观看需求而言,本揭露的背光模组200的X方向可以对应于使用者的垂直方向(上下方向),而本揭露的背光模组200的Y方向则可对应于使用者的水平方向(左右方向),故可使得背光模组200的出光视角朝向左右方向扩大,但是不会过度牺牲垂直方向的辉度。当本揭露的背光模组200应用于AR或VR产品时,为满足AR或VR产品的超近距离下的观看需求,本揭露的背光模组200的X方向可以对应于观看者的眼球的水平方向(左右方向),本揭露的背光模组200的Y方向则对应于观看者的眼球的垂直方向(上下方向),使得背光模组200的出光视角可以朝向上下方向扩大,再经过通镜聚焦至眼球。
在本揭露中,光学膜片亦可有不同的设计。请参照图5,其是绘示依照本揭露的第二实施方式的背光模组的装置示意图。本实施方式的背光模组300主要包含光源310、光学膜片320以及转向膜片330。在本实施例中,光学膜片320是导光膜片,也就是一般在侧入式背光模组中所采用的导光板,光学膜片320主要包含本体321以及多个光学结构322。本体321具有出光面321a、光学面321b、第一侧面321c以及第二侧面321d。其中,本体321的出光面321a与光学面321b相对,且第一侧面321c与第二侧面321d分别连接于光学面321b的相对两个侧边。光学结构322设置在本体321的光学面321b上。光源310邻设于本体321的第一侧面321c,故光源310所提供的光线从第一侧面321c进入光学膜片320后,可从光学膜片320的出光面321a出光而进入转向膜片330中。
如图5所示,光学结构322沿着第一侧面321c朝向第二侧面321d的第一方向D3排列在光学面321b上。在一实施例中,光学结构322可为沿着与第一方向D3垂直的第二方向延伸的条状结构。每一个光学结构322具有第一表面322a以及连接于第一表面322a的第二表面322b,其中第一表面322a为受光面。在本实施例中,「受光面」定义为从光线在进入光学膜片320后,第一次接触到的表面,而由于光源310位于光学膜片320的左侧,光源310由左向右发出光线,所以光学膜片320的「受光面」就会 以光学结构322中的面向左侧的右侧表面(也就是第一表面322a)为主。倘若光源310设置在光学膜片320的右侧时,则光学膜片320的「受光面」就会以光学结构322中的面向右侧的左侧表面(也就是第二表面322b)为主。如图5所示,第一表面322a相对于光学面321b倾斜,且第一表面322a与光学面321b之间具有第一夹角β1。同样地,第二表面322b相对于光学面321b倾斜,且第二表面322b与光学面321b之间具有第二夹角β2,而且每一个光学结构322的第一夹角β1与第二夹角β2皆为锐角。在本实施例中,这些光学结构322的第一夹角β1沿着第一方向D3渐变。在本实施例中,光学结构322的第一夹角β1沿着第一方向D3逐渐变大。
如图5所示,光源310所提供的光线可从第一侧面321c进入光学膜片320中,进入光学膜片320的光线可被光学膜片320的光学结构322的第一表面322a反射而从光学膜片320的出光面321a射出,进而进入转向膜片330中。具体而言,光线L4经较靠近第一侧面321c的光学结构322作用而进入转向膜片330后,可朝向-Y的方向偏斜出光。光线L5经较靠近第二侧面321d的光学结构232作用而进入转向膜片330后,可朝向+Y的方向偏斜出光。光线L6经位于光学膜片320的中间位置处的光学结构322作用而进入转向膜片330后,则可以正视角出光。由此可知,利用本揭露的光学膜片320可使背光模组300产生朝向+Y方向偏斜与-Y方向偏斜的视角。
另请参照图6,其是绘示依照本揭露的第三实施方式的背光模组的装置示意图。本实施方式的背光模组400的光学膜片420的结构与图5的光学膜片320的结构大致上相同,差异仅在于本实施方式的光学膜片420的光学结构422具有不同的排列方式。如图6所示,背光模组400主要包含光源410、光学膜片420以及转向膜片430。其中,本实施例的光学膜片420为导光膜片,其主要包含本体421以及设置在本体421上的多个光学结构422。其中,本体421具有第一侧面421a、第二侧面421b、出光面421c以及光学面421d,第一侧面421a定义为入光面,且光源410邻设于第一侧面421a。光学结构422设置在光学面421d上。其中,每一个光学结构422具有第一表面422a以及连接于第一表面422a的第二表面422b, 其中第一表面422a为受光面。在本实施例中,第一表面422a相对于光学面421d倾斜,且这些光学结构422的第一表面422a的倾斜程度沿着第一侧面421a朝向第二侧面421b的方向渐变。借此,光源410所提供的光线可从第一侧面421a进入光学膜片420中,进入光学膜片420的光线可被光学膜片420的光学结构422的第一表面422a反射而从光学膜片420的出光面421c射出,进而进入转向膜片430中。具体而言,光线L7经较靠近第一侧面421a的光学结构422作用而进入转向膜片430后,可朝向-Y的方向偏斜出光。光线L8经较靠近第二侧面421b的光学结构422作用而进入转向膜片430后,可朝向+Y的方向偏斜出光。光线L8经位于光学膜片420中间的光学结构422作用而进入转向膜片430后,则可以正视角出光。由此可知,利用本揭露的光学膜片420可使背光模组400产生朝向+Y方向偏斜与-Y方向偏斜的视角。
请继续参照图6,在本实施例中,光学结构422之间的间距随着光学结构422与第一侧面421a的距离的增加而减少。也就是说,远离第一侧面421a的光学结构422之间的间距P2小于靠近第一侧面421a的光学结构422之间的间距P1。由此,借由远离第一侧面421a的光学结构422排列较密集的设计,可提升光学膜片420在远离第一侧面421a的位置处的出光量,进而增加光学膜片420整体的出光均匀度。在一些实施例中,光学结构422的尺寸或高度可随着光学结构422与第一侧面421a的距离的增加而增加。举例而言,较远离第一侧面421a的光学结构422的高度H2大于较靠近第一侧面421a的光学结构422的高度H1,同样可达到提升光学膜片420在远离第一侧面421a的位置处的出光量的目的。
另请参照图7,其是绘示依照本揭露的实施方式的显示装置的装置示意图。本实施方式的显示装置500包含如图2所示的背光模组200以及显示面板510。显示面板510设置在背光模组200的前方。借此,显示装置500通过背光模组200中的光学膜片230的设计,同样可达到产生不同的出光视角的目的,故在此不再赘述。要说明的是,本案实施例以图2所示的背光模组200应用于显示装置500中仅用来示范说明而并非用以限制本揭露。前述其他实施例的背光模组(例如图5所示的背光模组300或图6 所示的背光模组400)均可应用于显示装置中,以产生同样的效果。
由上述本揭露实施方式可知,本揭露的优点在于通过在光学膜片上设置具有倾斜角度渐变的受光面的光学结构,来改变光源所产生的光线在通过光学膜片后的出光角度,以产生不同方向的视角,故特别适用于目前的车载显示装置、AR/VR显示装置等产品。也就是说,通过本揭露的光学膜片的设计可使背光模组的出光视角范围明显增加,可以充分满足汽车前座的左、右侧观看需求或AR/VR的超近距离的观看需求,进而符合各类产品的使用需求。
以上所述仅为本揭露的较佳实施例,应当不能以此限定本揭露的实施范围。即大凡依本揭露的权利要求范围及说明书内容所作的简单的等效变化与修饰,皆仍属本揭露的专利涵盖范围。
【附图标记列表】
100  背光模组
110  光源
120  导光板
130  棱镜片
200  背光模组
210  光源
220  导光膜片
221  入光面
222  出光面
230  光学膜片
231  本体
231a 出光面
231b 光学面
231c 第一侧面
231d 第二侧面
232  光学结构
232a 第一表面
232b  第二表面
300   背光模组
310   光源
320   光学膜片
321   本体
321a  出光面
321b  光学面
321c  第一侧面
321d  第二侧面
322   光学结构
322a  第一表面
322b  第二表面
330   转向膜片
400   背光模组
410   光源
420   光学膜片
421   本体
421a  第一侧面
421b  第二侧面
421c  出光面
421d  光学面
422   光学结构
422a  第一表面
422b  第二表面
500   显示装置
510   显示面板
A     区域
B     区域
C     区域
D    区域
E    区域
A1   第一区
A2   第二区
B1   交界线
D1   第一方向
D2   第二方向
D3   第一方向
H1   高度
H2   高度
L1   光线
L2   光线
L3   光线
L4   光线
L5   光线
L6   光线
L7   光线
L8   光线
L9   光线
P1   间距
P2   间距
α1  第一夹角
α2  第二夹角
β1  第一夹角
β2  第二夹角

Claims (10)

  1. 一种光学膜片,其配置以接收并导引光线,其中,所述光学膜片包括:
    本体,其具有出光面、光学面、第一侧面以及第二侧面,其中,所述出光面与所述光学面相对,且所述第一侧面与所述第二侧面分别连接于所述光学面的相对两个侧边;以及
    多个光学结构,其设置在所述光学面的第一区上,所述光线在所述光学膜片中被所述光学结构导引而由所述出光面出光,其中,每一所述光学结构具有:
    第一表面,其相对于所述光学面倾斜且与所述光学面具有第一夹角,其中,所述第一表面为受光面;以及
    第二表面,其连接于所述第一表面,其中,所述第二表面相对于所述光学面倾斜且与所述光学面具有第二夹角;
    其中,所述第一夹角与所述第二夹角皆为锐角且所述光学结构的所述第一夹角沿着所述第一侧面朝向所述第二侧面的第一方向渐变。
  2. 根据权利要求1所述的光学膜片,其中,
    所述光学膜片为转向膜片;
    所述光学面还包含第二区,且所述第二区设有所述光学结构,其中所述第一区与所述第二区沿着所述第一方向排列,所述第一区连接于所述第一侧面,且所述第二区连接于所述第二侧面;以及
    设置在所述第一区与所述第二区中的所述光学结构的所述第一夹角沿着所述第一方向逐渐变大。
  3. 根据权利要求1所述的光学膜片,其中,
    所述光学膜片为导光膜片;
    所述第一区从所述第一侧面延伸至所述第二侧面;
    设置在所述第一区中的所述光学结构的所述第一夹角沿着所述第一方向逐渐变大。
  4. 根据权利要求3所述的光学膜片,其中,所述光学结构的尺寸或高 度随着所述光学结构与所述第一侧面的距离的增加而增加。
  5. 根据权利要求3所述的光学膜片,其中,所述光学结构之间的间距随着所述光学结构与所述第一侧面的距离的增加而减少。
  6. 根据权利要求1至5中任一项所述的光学膜片,其中,所述光学结构沿着所述第一方向排列,且每一所述光学结构为沿着第二方向延伸的条状结构,其中,所述第二方向垂直于所述第一方向。
  7. 一种背光模组,包含:
    根据权利要求1至6中任一项所述的光学膜片;以及
    光源,其配置以提供进入至所述光学膜片中的光线。
  8. 一种背光模组,包含:
    导光膜片,其包含入光面以及连接于所述入光面的出光面;
    光源,其邻设于所述入光面;以及
    根据权利要求1或2所述的光学膜片,其设置在所述导光膜片的上方;
    其中,所述光源所提供的光线通过所述导光膜片而从所述导光膜片的所述出光面出光后,能够从所述光学膜片的所述光学结构的所述第一表面进入所述光学膜片中,而被所述第二表面反射以从所述光学膜片的所述出光面出光。
  9. 一种背光模组,包含:
    根据权利要求3至5中任一项所述的光学膜片;
    光源,其邻设于所述光学膜片的所述第一侧面;以及
    转向膜片,其设置在所述光学膜片的上方;
    其中,所述光源提供的光线能够从所述第一侧面进入所述光学膜片中,进入所述光学膜片的光线能够被所述光学膜片的所述光学结构的所述第一表面反射而从所述光学膜片的所述出光面射出,进而进入所述转向膜片中。
  10. 一种显示装置,包含:
    根据权利要求7至9中任一项所述的背光模组;以及
    显示面板,其设置在所述背光模组的前方。
PCT/CN2020/087478 2020-04-28 2020-04-28 光学膜片、背光模组及显示装置 WO2021217414A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080007083.0A CN113853539B (zh) 2020-04-28 2020-04-28 光学膜片、背光模组及显示装置
PCT/CN2020/087478 WO2021217414A1 (zh) 2020-04-28 2020-04-28 光学膜片、背光模组及显示装置
TW109117722A TWI768354B (zh) 2020-04-28 2020-05-27 背光模組及顯示裝置
US17/446,169 US11531154B2 (en) 2020-04-28 2021-08-27 Backlight module and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/087478 WO2021217414A1 (zh) 2020-04-28 2020-04-28 光学膜片、背光模组及显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/446,169 Continuation US11531154B2 (en) 2020-04-28 2021-08-27 Backlight module and display device

Publications (1)

Publication Number Publication Date
WO2021217414A1 true WO2021217414A1 (zh) 2021-11-04

Family

ID=78331586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087478 WO2021217414A1 (zh) 2020-04-28 2020-04-28 光学膜片、背光模组及显示装置

Country Status (4)

Country Link
US (1) US11531154B2 (zh)
CN (1) CN113853539B (zh)
TW (1) TWI768354B (zh)
WO (1) WO2021217414A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220221780A1 (en) * 2019-05-30 2022-07-14 Appotronics Corporation Limited Projection screen

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11086129B2 (en) * 2018-02-21 2021-08-10 Valve Corporation Head-mounted display with narrow angle backlight
WO2022073223A1 (zh) * 2020-10-10 2022-04-14 瑞仪(广州)光电子器件有限公司 反射结构、背光模组及显示装置
CN216748370U (zh) * 2021-12-31 2022-06-14 中强光电股份有限公司 背光模块及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5971559A (en) * 1994-08-12 1999-10-26 Enplas Corporation Surface light source device
CN1444078A (zh) * 2002-03-11 2003-09-24 株式会社西铁城电子 用于显示器的发光面板
CN1779518A (zh) * 2004-11-18 2006-05-31 清华大学 导光板和背光模组
US20130070477A1 (en) * 2011-09-21 2013-03-21 Minebea Co., Ltd. Spread illuminating apparatus
CN108469642A (zh) * 2018-03-29 2018-08-31 京东方科技集团股份有限公司 一种棱镜膜、背光模组及显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7322731B2 (en) * 2005-06-24 2008-01-29 3M Innovative Properties Company Color mixing illumination light unit and system using same
TWM299304U (en) 2006-05-10 2006-10-11 Taiwan Nano Electro Opt Tech Improved structure of light guide plate
US7876489B2 (en) * 2006-06-05 2011-01-25 Pixtronix, Inc. Display apparatus with optical cavities
TWI363900B (en) * 2007-10-04 2012-05-11 Ind Tech Res Inst Light guiding film
TWM334359U (en) 2007-12-18 2008-06-11 Wintek Corp Back light module and liquid crystal display
TW201133082A (en) * 2010-03-18 2011-10-01 Coretronic Corp Backlight module, stereo display apparatus, and beam splitting film
US20130222768A1 (en) * 2012-02-28 2013-08-29 3M Innovative Properties Company Shaped rear projection screen with shaped fresnel lens sheet
US20190004237A1 (en) * 2015-08-12 2019-01-03 Dai Nippon Printing Co., Ltd Optical sheet, surface light source device and display device
US10495879B1 (en) * 2016-09-27 2019-12-03 Meta View, Inc. Apparatuses, methods and systems for wearable displays
CN108345139B (zh) * 2017-01-25 2022-04-22 中强光电股份有限公司 视角可切换显示装置
TWI683133B (zh) * 2017-06-02 2020-01-21 宏碁股份有限公司 虛擬實境顯示裝置
JP6981090B2 (ja) * 2017-08-09 2021-12-15 大日本印刷株式会社 導光板、面光源装置及び表示装置
CN207586464U (zh) * 2017-08-14 2018-07-06 瑞仪光电(南京)有限公司 背光模块及显示设备
TWI665479B (zh) * 2018-01-26 2019-07-11 光耀科技股份有限公司 導光膜及具有該導光膜的背光模組
WO2020029004A1 (zh) * 2018-08-06 2020-02-13 瑞仪(广州)光电子器件有限公司 导光板、背光模组及显示装置
CN208580221U (zh) * 2018-08-06 2019-03-05 瑞仪光电股份有限公司 导光板、背光模组及显示装置
CN109031508B (zh) * 2018-08-17 2020-06-16 京东方科技集团股份有限公司 发光模组及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5971559A (en) * 1994-08-12 1999-10-26 Enplas Corporation Surface light source device
CN1444078A (zh) * 2002-03-11 2003-09-24 株式会社西铁城电子 用于显示器的发光面板
CN1779518A (zh) * 2004-11-18 2006-05-31 清华大学 导光板和背光模组
US20130070477A1 (en) * 2011-09-21 2013-03-21 Minebea Co., Ltd. Spread illuminating apparatus
CN108469642A (zh) * 2018-03-29 2018-08-31 京东方科技集团股份有限公司 一种棱镜膜、背光模组及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220221780A1 (en) * 2019-05-30 2022-07-14 Appotronics Corporation Limited Projection screen
US11892765B2 (en) * 2019-05-30 2024-02-06 Appotronics Corporation Limited Projection screen

Also Published As

Publication number Publication date
TWI768354B (zh) 2022-06-21
TW202141143A (zh) 2021-11-01
CN113853539A (zh) 2021-12-28
US11531154B2 (en) 2022-12-20
US20220035093A1 (en) 2022-02-03
CN113853539B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2021217414A1 (zh) 光学膜片、背光模组及显示装置
WO2018029892A1 (ja) ヘッドアップディスプレイ装置およびその映像表示装置
TW300283B (zh)
US8373630B2 (en) Display device
CN108431670A (zh) 用于成像定向背光源的表面特征结构
JP2018018706A (ja) 照明装置およびヘッドアップディスプレイ装置
JP2009110765A (ja) 面光源装置及び液晶表示装置
JP2009104112A (ja) 表示装置
TWI421549B (zh) 導光板及背光模組
JPH10106327A (ja) 面光源素子およびそれを用いた表示装置
CN108463667A (zh) 广角成像定向背光源
TWI439735B (zh) 柱狀透鏡陣列之裝置及其背光模組
CN211955885U (zh) 光学膜片、背光模组及显示装置
WO2012046700A1 (ja) 導光板、照明装置、及び、液晶表示装置
US20140056029A1 (en) Backlight module
WO2021153358A1 (ja) 車両用情報表示システム及び情報表示システム
TWI699499B (zh) 背光裝置
KR20180006694A (ko) 헤드업 디스플레이 장치에서의 백라이트 유닛
TWI830653B (zh) 光學膜片、光學膜片組、背光模組及顯示裝置
JP5636884B2 (ja) 導光板、バックライトユニット、表示装置、及び導光板の製造方法
CN217467227U (zh) 光学膜片、光学膜片组、背光模组及显示装置
JPWO2018139157A1 (ja) 照明装置およびヘッドアップディスプレイ装置
WO2020073445A1 (zh) 柔性显示装置及其背光模块
US20210109348A1 (en) Head-up display
CN220455555U (zh) 背光模组及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933705

Country of ref document: EP

Kind code of ref document: A1