WO2021215806A1 - 광학계 및 이를 포함하는 카메라 모듈 - Google Patents

광학계 및 이를 포함하는 카메라 모듈 Download PDF

Info

Publication number
WO2021215806A1
WO2021215806A1 PCT/KR2021/004973 KR2021004973W WO2021215806A1 WO 2021215806 A1 WO2021215806 A1 WO 2021215806A1 KR 2021004973 W KR2021004973 W KR 2021004973W WO 2021215806 A1 WO2021215806 A1 WO 2021215806A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
optical system
lenses
zoom optical
Prior art date
Application number
PCT/KR2021/004973
Other languages
English (en)
French (fr)
Inventor
심주용
김태경
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to EP21793804.2A priority Critical patent/EP4141508A4/en
Priority to JP2022564379A priority patent/JP2023522432A/ja
Priority to CN202180039243.4A priority patent/CN115698814A/zh
Priority to US17/920,222 priority patent/US20230176347A1/en
Publication of WO2021215806A1 publication Critical patent/WO2021215806A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144111Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged ++-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+

Definitions

  • the embodiment relates to an optical system and a camera module including the same.
  • an auto-focusing function is also required for the camera module in the portable terminal.
  • a magnification may be increased by digital processing in the process of converting external light into a digital image or a digital image. According to this, it is possible to zoom only at a predetermined magnification such as 1x, 3x, 5x, etc., and as the magnification increases, the resolution decreases and digital degradation occurs.
  • An object of the present invention is to provide a zoom optical system and a camera module including the same.
  • a zoom optical system includes a first lens group, a second lens group, a third lens group, and a fourth lens group sequentially arranged from an object side to an image side, and the first
  • Each of the lens group to the fourth lens group includes at least two lenses, the second lens group and the third lens group are movable, and an effective focal length (EFL) at a wide angle length) is defined by the following equation.
  • EFL wide means an effective focal length of the zoom optical system at a wide angle
  • H imageD means a half value of the diagonal length of the image sensor pixel area.
  • the first lens group includes two or more lenses
  • the second lens group includes two or more lenses
  • the third lens group includes two or more lenses
  • the fourth lens group includes two lenses.
  • An effective focal length (EFL) in a telephoto may be defined by the following equation.
  • EFL tele means an effective focal length of the zoom optical system in telephoto
  • H imageD means half the diagonal length of the image sensor pixel area.
  • the movement stroke of the second lens group may be defined by the following equation.
  • TTL Total Track Length
  • STOKE 2 means the movement stroke of the second lens group
  • the movement stroke of the third lens group may be defined by the following equation.
  • TTL Total Track Length
  • STOKE 3 means the movement stroke of the third lens group
  • a lens disposed on the image side of the two lenses included in the first lens group may have a positive refractive power, and a lens disposed on the water side of the two lenses included in the first lens group may have a negative refractive power.
  • At least two lenses included in the second lens group may have an Abbe's number defined by the following equation.
  • ABBE 3 denotes the Abbe number of the lens disposed on the water side among the two lenses included in the second lens group
  • ABBE 4 denotes the Abbe number of the lens disposed on the image side of the two lenses included in the second lens group. The Abbe number of the lens.
  • the second lens group may include at least one of a glass lens and a plastic lens.
  • the maximum diameters of the plurality of lenses included in the first lens group and the fourth lens group and the maximum diameters of the plurality of lenses included in the second lens group and the third lens group may be defined by the following equation can
  • APER fix denotes the maximum diameter of the lenses included in the first lens group and the fourth lens group that are fixed groups
  • APER mov denotes the maximum diameter of the lenses included in the second lens group and the third lens group that are moving groups. It may mean the maximum diameter.
  • the chief ray angle (CRA) may be greater than -10 degrees and less than 10 degrees.
  • It may further include a right-angle prism disposed at the front end of the first lens group.
  • a zoom optical system includes a first lens group, a second lens group, a third lens group, and a fourth lens group sequentially arranged from an object side to an image side, and the first
  • Each of the lens group to the fourth lens group includes at least two lenses, the second lens group and the third lens group are movable, and the effective focal length (EFL) in telephoto is ) is defined by the following equation.
  • EFL tele means an effective focal length of the zoom optical system in telephoto
  • H imageD means half the diagonal length of the image sensor pixel area.
  • a zoom optical system includes a first lens group, a second lens group, a third lens group, and a fourth lens group sequentially arranged from an object side to an image side, and
  • the first lens group and the fourth lens group are fixed, the second lens group and the third lens group are movable, the second lens group performs a zoom function, and the third lens group performs a focusing function and the second lens group includes a first lens and a second lens, and an Abbe's number difference between the first lens and the second lens is 10 or more.
  • a zoom optical system includes a first lens group, a second lens group, a third lens group, and a fourth lens group sequentially arranged from an object side to an image side, and
  • the first lens group and the fourth lens group are fixed, the second lens group and the third lens group are movable, the second lens group performs a zoom function, and the third lens group performs a focusing function
  • the image side surface of the first lens disposed closest to the image side surface among the lenses included in the first lens group is concave
  • the second lens disposed closest to the water side surface among the lenses included in the second lens group is concave.
  • an optical system capable of zooming at a low magnification as well as a high magnification, and a camera module including the same.
  • the optical system according to an embodiment of the present invention can continuously adjust zoom, and can maintain high resolution even at high magnification.
  • FIG. 1 shows a zoom optical system according to an embodiment of the present invention.
  • FIG. 2A is a cross-sectional view at a wide angle of a zoom optical system according to an embodiment of the present invention.
  • FIG. 2B is a cross-sectional view in a middle mode of a zoom optical system according to an embodiment of the present invention.
  • 2C is a cross-sectional view in a telephoto view of a zoom optical system according to an embodiment of the present invention.
  • Figure 3a is a measurement of spherical aberration (Longitudinal Spherical Aberration), astigmatic field curves and distortion for light of wavelengths of 435 nm, 486 nm, 546 nm, 587 nm, and 656 nm at a wide angle of the optical system according to the embodiment; It is a graph.
  • spherical aberration Longitudinal Spherical Aberration
  • 3B is a graph of measuring spherical aberration, astigmatism, and distortion aberration for light having wavelengths of 435 nm, 486 nm, 546 nm, 587 nm, and 656 nm in the intermediate mode of the optical system according to the embodiment.
  • FIG. 3c is a graph of measuring spherical aberration, astigmatism and distortion aberration for light having wavelengths of 435 nm, 486 nm, 546 nm, 587 nm, and 656 nm in the telephoto of the optical system according to the embodiment.
  • 4A is a diffraction MTF graph at a wide angle of an optical system according to an embodiment.
  • 4B is a diffraction MTF graph in the intermediate mode of the optical system according to the embodiment.
  • 4C is a diffraction MTF graph in telephoto of an optical system according to an embodiment.
  • FIG. 5 is a graph of measuring relative illumination of a zoom optical system according to an embodiment of the present invention.
  • FIG. 6 shows a part of a mobile terminal to which a camera module according to an embodiment of the present invention is applied.
  • the singular form may also include the plural form unless otherwise specified in the phrase, and when it is described as "at least one (or more than one) of A and (and) B, C", it is combined with A, B, C It may include one or more of all possible combinations.
  • a component when it is described that a component is 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also with the component It may also include a case of 'connected', 'coupled' or 'connected' due to another element between the other elements.
  • a first lens group 100 , a second lens group 200 , and a third lens are sequentially arranged from an object side to an image side. It includes a group 300 and a fourth lens group 400 .
  • a right-angle prism may be further disposed at the front end of the first lens group 100 .
  • the zoom optical system includes a right-angle prism sequentially arranged from the object side to the image side, the first lens group 100 , the second lens group 200 , the third lens group 300 and the fourth The lens group 400 may be included.
  • the first lens group 100 includes a plurality of lenses.
  • the first lens group 100 may include at least two or more lenses.
  • it may be difficult to correct the resolution at the maximum magnification, and when three or more lenses are included, the overall size of the zoom optical system may increase.
  • One lens group 100 may include two lenses.
  • the first lens group 100 is fixed to the image side.
  • the first lens group 100 is fixed to the surface of the sensor 10 . That is, the plurality of lenses are fixed with respect to the image side.
  • the first lens group 100 includes three lenses, the two lenses may be fixed to the image side.
  • the second lens group 200 includes a plurality of lenses.
  • the second lens group 200 may include at least two or more lenses.
  • the two lens group 200 may include two lenses.
  • the second lens group 200 is movable.
  • the plurality of lenses included in the second lens group 200 are movable together along the central axis of the lenses.
  • the two lenses included in the second lens group 200 are movable together along the central axis of the lenses.
  • the second lens group 200 preferably includes two lenses.
  • the focal length may be continuously adjusted according to the movement of the second lens group 200 .
  • the magnification may be continuously adjusted according to the movement of the second lens group 200 .
  • the second lens group 200 may serve as a zooming group.
  • the third lens group 300 includes a plurality of lenses.
  • the third lens group 300 may include at least two or more lenses in the first lens group 300 .
  • the third lens group 300 includes one lens, it may be difficult to correct the resolution at the maximum magnification, and when three or more lenses are included, the overall size of the zoom optical system may increase.
  • the three lens group 300 may include two lenses.
  • the third lens group 300 is movable.
  • the plurality of lenses included in the third lens group 300 are movable together along the central axis of the lenses.
  • the two lenses included in the third lens group 300 are movable together along the central axis of the lenses.
  • the third lens group 300 includes three or more lenses, the size and weight of the third lens group 300 may increase, and driving power may increase during movement. Accordingly, the third lens group 300 preferably includes two lenses.
  • the focus may be adjusted according to the movement of the third lens group 300 .
  • the third lens group 300 may serve as a focusing group.
  • the fourth lens group 400 includes a plurality of lenses.
  • the fourth lens group 400 includes at least two or more lenses.
  • the four lens group 400 may include two lenses.
  • the fourth lens group 400 is fixed to the image side.
  • the fourth lens group 400 is fixed to the surface of the sensor 10 . That is, the plurality of lenses are fixed with respect to the image side.
  • one lens 410 may be fixed to the image side.
  • the filter 20 and the image sensor 10 may be sequentially disposed at the rear end of the fourth lens group 400 .
  • the filter 20 may be an IR (infrared) filter.
  • the filter 20 may block near-infrared rays, for example, light having a wavelength of 700 nm to 1100 nm from light incident into the camera module.
  • the image sensor 10 may be connected to the printed circuit board by a wire (wire).
  • the filter 20 may include a foreign object prevention filter and an IR filter sequentially arranged from the object side to the upper side.
  • a foreign material preventing filter it is possible to prevent foreign substances generated during the movement of the third lens group 300 from flowing into the IR filter or the image sensor 10 .
  • the magnification of the zoom optical system may be changed according to the movement of the second lens group 200 and the third lens group 300 .
  • the magnification of the zoom optical system may continuously increase or decrease between 5 times and 10 times according to the movement of the second lens group 200 and the third lens group 300 .
  • the zoom optical system may have a magnification of 5 times in a wide angle, and may have a magnification of 10 times in a telephoto.
  • the meaning of continuously increasing or decreasing the magnification may mean that the magnification does not increase or decrease digitally intermittently, but linearly increase or decrease.
  • the second lens group 200 and the third lens group 300 may move independently, respectively. For example, when moving from a wide angle to a telephoto, the distance between the second lens group 200 and the third lens group 300 increases from a movement start point (wide angle) to a predetermined point, and then from a predetermined point to a movement end point You can gradually get closer to (telephoto).
  • the zoom optical system may represent an effective focal length in a telephoto as shown in Equation 1 below.
  • EFL tele means an effective focal length of the zoom optical system in telephoto
  • H imageD means half the diagonal length of the image sensor pixel area.
  • the unit may be [mm].
  • the image sensor pixel area may mean an area in which pixels receiving light from the image sensor are arranged.
  • the image sensor pixel area may be an area excluding a circuit area that converts light received from the entire area of the image sensor into an electric signal, a housing part according to packaging, and the like.
  • an effective focal length at a wide angle may be expressed by Equation 2 below.
  • EFL wide means an effective focal length of the zoom optical system at a wide angle
  • H imageD means a half value of the diagonal length of the image sensor pixel area.
  • the movement stroke may mean a distance that the lens group can move by the driving unit.
  • a movement stroke of the second lens group 200 may be expressed by Equation 3 below.
  • TTL Total Track Length
  • STOKE 2 may mean a movement stroke of the second lens group 200 .
  • the unit may be [mm].
  • a movement stroke of the third lens group 300 may be expressed by Equation 4 below.
  • TTL may mean a distance from the image sensor surface to the first surface of the zoom optical system.
  • STOKE 3 may mean a movement stroke of the third lens group 300 .
  • the unit may be [mm].
  • the size of the driving unit for moving the second lens group 200 and the third lens group 300 increases, there is a problem in that it is difficult to mount in the portable terminal.
  • the size of the driving unit can be reduced, so that the camera module can be miniaturized.
  • the Abbe number may refer to a value obtained by quantifying a property related to light dispersion of a lens.
  • the plurality of lenses included in the second lens group 200 may have different Abbe numbers.
  • the Abbe's number of the two lenses included in the second lens group 200 may be expressed as Equation 5 below.
  • ABBE 3 denotes the Abbe number of the lens disposed on the water side among the two lenses included in the second lens group 200
  • ABBE 4 denotes the two lenses included in the second lens group 200 . It may mean the Abbe number of the lens disposed on the middle image side. According to an embodiment, ABBE 3 may mean the Abbe's number of the third lens 210 , and ABBE 4 may mean the Abbe's number of the fourth lens 220 .
  • the zoom optical system according to the embodiment of the present invention can remove chromatic aberration by disposing two lenses having an Abbe's number different from each other by a predetermined value or more in the second lens group 200 .
  • the apertures of the second lens group 200 and the third lens group 300 are larger than the apertures of the first lens group 100 and the fourth lens group 400 .
  • can be small This can be expressed as Equation 6 below.
  • APER fix means the maximum diameter of lenses included in the first lens group 100 and the fourth lens group 400 that are fixed groups
  • APER mov is the second lens group 200 and the third lens group that are moving groups. It may mean the maximum diameter of the lens included in 300 .
  • APER fix is the diameter of the first lens 110 .
  • APER mov may mean the diameter of the third lens 210 . have.
  • the second lens group 200 and the third lens group ( 300) can be reduced. Accordingly, it is possible to reduce power consumption when the second lens group 200 and the third lens group 300, which are the moving groups, move.
  • the plurality of lenses included in the first to fourth lens groups 100 to 400 may be lenses to which the D-cut technique is applied.
  • the plurality of lenses included in the first to fourth lens groups 100 to 400 may be D-cut lenses in which upper and lower portions are cut.
  • portions of the ribs and the effective diameter may be cut from the upper and lower portions, or only the ribs may be cut without cutting the effective diameter.
  • the second lens group 200 and the third lens group may include lenses in which a value obtained by dividing the effective diameter major axis length by the effective diameter minor axis length is 1. That is, the major axis length of the effective diameter may be the same as the minor axis length of the effective diameter.
  • the third lens 210 the fourth lens 220 , the fifth lens 310 , and the sixth lens 320 , only the upper and lower ribs may be cut and the effective diameter may not be cut.
  • the volume of the lens increases due to the height in the vertical direction. The volume of the lens can be reduced.
  • the first lens group 100 may include a plurality of lenses having different refractive powers.
  • a lens disposed on the upper side may have positive (+) refractive power.
  • a lens disposed on the water side may have negative (-) refractive power.
  • the first lens group 100 may include the first lens 110 and the second lens 120 sequentially arranged from the water side to the image side. Among them, the first lens 110 may have a positive refractive power, and the second lens 120 may have a negative refractive power.
  • the first to fourth lens groups 100 to 400 may include plastic lenses.
  • all of the plurality of lenses included in the fourth lens group 400 may be made of a plastic material or a glass material.
  • the fourth lens group 400 may include a glass lens.
  • a lens disposed on the water side may be a glass material
  • a lens disposed on the image side may be a plastic material.
  • the glass lens may be a glass mold lens manufactured by a glass mold method.
  • the zoom optical system may have a chief ray angle (CRA) greater than -10 degrees and less than 10 degrees.
  • the angle of the light beam incident on the image sensor 10, ie, the upper surface, may be greater than -10 degrees and less than 10 degrees. That is, the CRA of the zoom optical system according to the embodiment of the present invention may have any one of values between -10 degrees and 10 degrees. Since the angle of the light beam incident on the image sensor 10 is small, the degree of freedom in sensor selection may be increased, and a zoom optical system having a more compact size may be obtained.
  • CRA chief ray angle
  • FIG. 2A is a cross-sectional view at a wide angle of a zoom optical system according to an embodiment of the present invention
  • FIG. 2B is a cross-sectional view in a middle mode of a zoom optical system according to an embodiment of the present invention
  • FIG. 2C is a cross-sectional view in a telephoto of a zoom optical system according to an embodiment of the present invention.
  • Tables 1 and 2 below show optical characteristics of lenses included in a zoom optical system according to an embodiment of the present invention
  • Tables 3 and 4 are conic constants and aspheric surfaces of lenses included in a zoom optical system according to an embodiment of the present invention. represents the coefficient.
  • the first lens group 100, the second lens group 200, and the third are sequentially arranged from the object side to the image side. It includes a lens group 300 and a fourth lens group 400 .
  • the first lens group 100 includes a first lens 110 and a second lens 120 sequentially arranged from the object side to the image side.
  • the second lens group 200 includes a third lens 210 and a fourth lens 220 sequentially arranged from the object side to the image side.
  • the third lens group 300 includes a fifth lens 310 and a sixth lens 320 sequentially arranged from the object side to the image side.
  • the fourth lens group 400 includes a seventh lens 410 and an eighth lens 420.
  • thickness (mm) represents the distance from each lens surface to the next lens surface.
  • the thickness described on the water side 112 of the first lens 110 represents the distance from the water side 112 to the image side 114 of the first lens 110 .
  • the thickness described on the water-side surface 112 of the first lens 110 represents a distance between the center of curvature of the water-side surface 112 and the center of curvature of the image-side surface 114 in the first lens 110 .
  • the thickness described on the image side surface 114 of the first lens 110 represents a distance from the image side surface 114 of the first lens 110 to the water side surface 122 of the second lens 120 . Specifically, the thickness described on the image side surface 114 of the first lens 110 is between the center of curvature of the image side surface 114 of the first lens 110 and the center of curvature of the water side surface 122 of the second lens 120 . indicates the distance.
  • the thickness described on the image side surface 124 of the second lens 120 represents a distance from the image side surface 124 of the second lens 120 to the water side surface 212 of the third lens 210 .
  • the thickness described on the image side surface 124 of the second lens 120 is between the center of curvature of the image side surface 124 of the second lens 120 and the center of curvature of the water side surface 212 of the third lens 210 . indicates the distance.
  • the thickness described on the image side surface 124 of the second lens 120 may change.
  • the thickness described on the image side surface 124 of the second lens 120 may have a value between the shortest distance and the longest distance. Referring to Table 1, the thickness described on the image side 124 of the second lens 120 may have the longest distance (5.710263206) in the wide angle.
  • the thickness described on the image side 124 of the second lens 120 may have a value (2.806912311) between the shortest distance and the longest distance in the intermediate mode.
  • the thickness described on the image side 124 of the second lens 120 may have the shortest distance (0.20028764) in the telephoto. This is the same as the thickness described on the upper surface 224 of the fourth lens 220 and the thickness described on the upper surface 324 of the sixth lens 320 .
  • the Abbe's number difference between the third lens 210 and the fourth lens 220 included in the second lens group 200 is 10 or more.
  • the Abbe's number of the third lens 210 is 56.17
  • the Abbe's number of the fourth lens 220 is 19.24
  • the Abbe's number difference between the two lenses is approximately 37, so it has a difference value of 10 or more. Able to know.
  • any one of the seventh lens 410 and the eighth lens 420 included in the fourth lens group 400 is a glass lens.
  • the seventh lens 410 is a glass mold lens
  • the eighth lens 420 is a plastic lens.
  • each surface of the first to eighth lenses 110 to 420 may be implemented in a convex or concave shape.
  • the first lens 110 may be a lens in which the water side surface 112 is convex toward the object side.
  • the first lens 110 may be a lens in which the image side surface 114 is convex toward the object side.
  • the second lens 120 may be a lens in which the water side surface 122 is concave toward the object side.
  • the second lens 120 may be a lens in which the image side surface 124 is convex toward the object side.
  • the third lens 210 may be a lens in which the water side surface 212 is convex toward the object side.
  • the third lens 210 may be a lens in which the image side surface 214 is concave toward the object side.
  • the fourth lens 220 may be a lens in which the water side surface 222 is concave toward the object side.
  • the fourth lens 220 may be a lens in which the image side surface 224 is concave toward the object side.
  • the center of curvature of the water side 212 of the third lens 210 is the second 2 It may be located closer to the image side than both ends of the image side surface 124 of the lens 120 .
  • the fifth lens 310 may be a lens in which the water side surface 312 is convex toward the object side.
  • the fifth lens 310 may be a lens in which the image side surface 314 is convex toward the object side.
  • the sixth lens 320 may be a lens in which the water side surface 322 is concave toward the object side.
  • the sixth lens 320 may be a lens in which the image side surface 324 is convex toward the object side.
  • the seventh lens 410 may be a lens in which the water side surface 412 is concave toward the object side.
  • the seventh lens 410 may be a lens in which the image side surface 414 is convex toward the object.
  • the eighth lens 420 may be a lens in which the water side surface 422 is convex toward the object side.
  • the eighth lens 420 may be a lens in which the image side surface 424 is concave toward the object side.
  • the zoom optical system may have a wide angle (eg, 5x magnification).
  • the zoom optical system may have a wide angle.
  • the zoom optical system may have an intermediate mode.
  • the zoom optical system may have an intermediate mode.
  • the zoom optical system may have a telephoto (eg, 10x magnification).
  • the zoom optical system may have a telephoto.
  • the distance between adjacent lens groups may change.
  • the distance between the first lens group 100 and the second lens group 200 may be changed from d1a through d1b to d1c.
  • the distance d1a between the first lens group 100 and the second lens group 200 in the wide angle is 5.710263206 [mm].
  • the distance d1b between the first lens group 100 and the second lens group 200 is 2.806912311 [mm].
  • the distance d1c between the first lens group 100 and the second lens group 200 is 0.20028764 [mm].
  • the distance between the first lens group 100 and the second lens group 200 is from 5.710263206 [mm] to 2.806912311 [mm] to 0.20028764 [mm] can be changed. That is, in the process of changing the magnification from the wide angle to the telephoto, the distance between the first lens group 100 and the second lens group 200 may gradually decrease (d1a>d1b>d1c). That is, in the process of changing the magnification from the wide angle to the telephoto, the increase in the distance between the first lens group 100 and the second lens group 200 may gradually decrease.
  • the distance between the second lens group 200 and the third lens group 300 may be changed from d2a through d2b to d2c.
  • the distance d2a between the second lens group 200 and the third lens group 300 in the wide angle is 0.674684273 [mm].
  • the distance d2b between the second lens group 200 and the third lens group 300 is 0.310740064 [mm].
  • the distance d1c between the second lens group 200 and the third lens group 300 is 0.2 [mm].
  • the distance between the second lens group 200 and the third lens group 300 is from 0.674684273 [mm] to 0.310740064 [mm] through 0.2 [mm] can be changed. That is, in the process of changing the magnification from the wide angle to the telephoto, the distance between the second lens group 200 and the third lens group 300 may decrease (d2a>d2b>d2c). In this case, in the process of changing the magnification from the wide angle to the telephoto, an increase in the distance between the second lens group 200 and the third lens group 300 may decrease.
  • the distance between the third lens group 300 and the fourth lens group 400 may be changed from d3a through d3b to d3c.
  • the distance d3a between the third lens group 300 and the fourth lens group 400 in the wide angle is 1.237063216 [mm].
  • the distance d3b between the third lens group 300 and the fourth lens group 400 is 4.50435832 [mm].
  • the distance d3c between the third lens group 300 and the fourth lens group 400 is 7.221723054 [mm].
  • the distance between the third lens group 300 and the fourth lens group 400 is 7.221723054 from 1.237063216 [mm] to 4.50435832 [mm] and then 7.221723054 [mm] can be changed. That is, in the process of changing the magnification from the wide angle to the telephoto, the distance between the third lens group 300 and the fourth lens group 400 may gradually increase (d3a ⁇ d3b ⁇ d3c). However, in the process of changing the magnification from the wide angle to the telephoto, the increase in the distance between the third lens group 300 and the fourth lens group 400 may gradually decrease.
  • the second lens group 200 and the third lens group 300 may have different moving speeds.
  • the magnification of the zoom optical system may be continuously adjusted from 5x magnification to 10x magnification.
  • Spherical aberration represents spherical aberration according to each wavelength
  • astigmatism represents the aberration characteristics of tangential plane and sagital plane according to the height of the image plane
  • distortion aberration indicates the degree of distortion according to the height of the image plane. indicates.
  • Figure 3a is a measurement of spherical aberration (Longitudinal Spherical Aberration), astigmatic field curves and distortion for light of wavelengths of 435 nm, 486 nm, 546 nm, 587 nm, and 656 nm at a wide angle of the optical system according to the embodiment; It is a graph.
  • spherical aberration Longitudinal Spherical Aberration
  • 3B is a graph of measuring spherical aberration, astigmatism, and distortion aberration for light having wavelengths of 435 nm, 486 nm, 546 nm, 587 nm, and 656 nm in the intermediate mode of the optical system according to the embodiment.
  • FIG. 3c is a graph of measuring spherical aberration, astigmatism and distortion aberration for light having wavelengths of 435 nm, 486 nm, 546 nm, 587 nm, and 656 nm in the telephoto of the optical system according to the embodiment.
  • the spherical aberration is within -0.05 [mm] to 0.1 [mm] from the center to the end of the image sensor regardless of the wavelength. Specifically, it can be seen that the spherical aberration is within approximately -0.04 [mm] to 0.04 [mm] in the wide mode, and the spherical aberration is within the range of -0.03 [mm] to 1 [mm] in the middle mode. In telephoto, it can be seen that the spherical aberration is within the range of 435 [nm], but other than -0.05 [mm] to 0.05 [mm].
  • the astigmatism is within -0.04 [mm] to 0.01 [mm] from the center to the end of the image sensor regardless of the wavelength. Specifically, it can be seen that in the wide mode, the astigmatism is within approximately -0.02 [mm] to 0 [mm], and in the middle mode, the astigmatism is within the range of -0.02 [mm] to 0.01 [mm]. It can be seen that the astigmatism in the telephoto is within approximately -0.04 [mm] to 0 [mm].
  • the distortion aberration is within -2 [%] to 0 [%] from the center to the end of the image sensor regardless of the wavelength. Specifically, it can be seen that the distortion aberration is within approximately -1 [%] to 0 [%] in the wide mode, and the distortion aberration is within the range of -1.5 [%] to 0 [%] in the middle mode. It can be seen that the distortion aberration in telephoto is within approximately -2 [%] to 0 [%].
  • MTF Modulation Transfer Function
  • 4A is a diffraction MTF graph at a wide angle of an optical system according to an embodiment.
  • 4B is a diffraction MTF graph in the intermediate mode of the optical system according to the embodiment.
  • 4C is a diffraction MTF graph in telephoto of an optical system according to an embodiment.
  • the zoom optical system according to an embodiment of the present invention has a value close to the diffraction limit, which is a limit value, near a defocusing position 0 [mm] in each of the wide angle, medium mode, and telephoto. can be seen to have
  • FIG. 5 is a graph of measuring relative illumination of a zoom optical system according to an embodiment of the present invention.
  • the zoom optical system shows a relative illuminance value of 50% or more in the wide angle (zoom position 1), the intermediate mode (zoom position 2), and the telephoto (zoom position 3).
  • the relative illuminance value is 80% or more in the entire area, and in the case of the wide angle, the relative illuminance value is 80% or more from 0 to 1.6 [mm].
  • the optical system according to the embodiment of the present invention has excellent aberration characteristics.
  • the zoom optical system according to an embodiment of the present invention may be applied to a camera module.
  • a camera module including a zoom optical system according to an embodiment of the present invention may be embedded in a portable terminal and may be applied together with a main camera module.
  • the camera module according to an embodiment of the present invention may include an image sensor, a filter disposed on the image sensor, and a zoom optical system disposed on the filter. It may include a lens group 100 , a second lens group 200 , a third lens group 300 , and a fourth lens group 400 .
  • the portable terminal in which the camera module including the zoom optical system according to the embodiment of the present invention is embedded may be a smartphone, a tablet PC, a laptop computer, a PDA, or the like.
  • the optical system according to an embodiment of the present invention may be applied to a camera module.
  • FIG. 6 shows a part of a mobile terminal to which a camera module according to an embodiment of the present invention is applied.
  • the camera module including the zoom optical system 1000 may be embedded in a portable terminal and may be applied together with the main camera module 1100 .
  • the zoom optical system 1000 includes the first lens group 100, the second lens group 200, the third lens group 300 and the fourth lens group 400 described above,
  • the first lens group 100 , the second lens group 200 , the third lens group 300 , and the fourth lens group 400 may be sequentially disposed in the lateral direction of the portable terminal due to thickness restrictions of the portable terminal. have.
  • a right-angle prism may be further disposed at the front end of the first lens group 100 .
  • the portable terminal in which the camera module including the zoom optical system according to the embodiment of the present invention is embedded may be a smartphone, a tablet PC, a laptop computer, a PDA, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

본 발명의 실시예에 따른 줌 광학계는 물체(object)측으로부터 상(image)측으로 순차적으로 배열되는 제1 렌즈군, 제2 렌즈군, 제3 렌즈군 및 제4 렌즈군을 포함하고, 제1 렌즈군 내지 제4 렌즈군은 각각 적어도 2매의 렌즈를 포함하고, 상기 제2 렌즈군 및 상기 제3 렌즈군은 이동 가능하고, 와이드 앵글(wide angle)에서의 유효 초점 거리(EFL, effective focal length)는 아래의 수학식에 의해 정의된다. 여기서, EFL wide는 와이드 앵글에서 줌 광학계의 유효 초점 거리를 의미하고, H imageD는 이미지 센서 픽셀 영역의 대각 길이의 절반 값을 의미한다.

Description

광학계 및 이를 포함하는 카메라 모듈
실시 예는 광학계 및 이를 포함하는 카메라 모듈에 관한 것이다.
휴대 단말에 내장되는 카메라 모듈의 성능이 발달함에 따라, 휴대 단말 내 카메라 모듈에도 오토포커싱 기능이 요구되고 있다.
휴대 단말 내 카메라 모듈이 오토포커싱 기능을 가지기 위하여, 외부 광을 디지털 이미지 또는 디지털 영상으로 변경하는 과정에서 디지털 처리에 의하여 배율을 높일 수 있다. 이에 따르면, 1배, 3배, 5배 등과 같이 소정의 정해진 배율로만 줌이 가능하며, 배율이 높아짐에 따라 해상도가 떨어지고, 디지털 열화가 발생하는 문제가 있다.
한편, 휴대 단말 내 카메라 모듈이 오토포커싱 기능을 가지기 위하여, 렌즈를 이동시켜 렌즈와 이미지 센서 사이의 간격을 조절하는 기술이 시도되고 있다. 다만, 휴대 단말 내 좁은 공간 내에서 이동 가능한 광학계의 설계가 용이하지 않은 실정이다.
본 발명이 이루고자 하는 기술적 과제는 줌(zoom) 광학계 및 이를 포함하는 카메라 모듈을 제공하는 데 있다.
실시 예에서 해결하고자 하는 과제는 이에 한정되는 것은 아니며, 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 포함된다고 할 것이다.
본 발명의 실시예에 따른 줌 광학계는 물체(object)측으로부터 상(image)측으로 순차적으로 배열되는 제1 렌즈군, 제2 렌즈군, 제3 렌즈군 및 제4 렌즈군을 포함하고, 제1 렌즈군 내지 제4 렌즈군은 각각 적어도 2매의 렌즈를 포함하고, 상기 제2 렌즈군 및 상기 제3 렌즈군은 이동 가능하고, 와이드 앵글(wide angle)에서의 유효 초점 거리(EFL, effective focal length)는 아래의 수학식에 의해 정의된다.
Figure PCTKR2021004973-appb-img-000001
여기서, EFL wide는 와이드 앵글에서 줌 광학계의 유효 초점 거리를 의미하고, H imageD는 이미지 센서 픽셀 영역의 대각 길이의 절반 값을 의미한다.
상기 제1 렌즈군은 2매 이상의 렌즈를 포함하고, 상기 제2 렌즈군은 2매 이상의 렌즈를 포함하고, 상기 제3 렌즈군은 2매 이상의 렌즈를 포함하고, 상기 제4 렌즈군은 2매의 렌즈를 포함할 수 있다.
텔레포토(telephoto)에서의 유효 초점 거리(EFL, effective focal length)는 아래의 수학식에 의해 정의될 수 있다.
Figure PCTKR2021004973-appb-img-000002
여기서, EFL tele는 텔레포토에서 줌 광학계의 유효 초점 거리를 의미하고, H imageD는 이미지 센서 픽셀 영역의 대각 길이의 절반 값을 의미한다.
와이드 앵글(wide angle)에서 텔레포토(telephoto)로 주밍(zooming) 시 상기 제2 렌즈군의 이동 스트로크는 아래의 수학식에 의해 정의될 수 있다.
Figure PCTKR2021004973-appb-img-000003
여기서, TTL(Total Track Length)은 이미지 센서면으로부터 줌 광학계의 첫번째 면까지의 거리를 의미하고, STOKE 2는 제2 렌즈군의 이동 스트로크를 의미한다.
와이드 앵글(wide angle)에서 텔레포토(telephoto)로 주밍(zooming) 시 상기 제3 렌즈군의 이동 스트로크는 아래의 수학식에 의해 정의될 수 있다.
Figure PCTKR2021004973-appb-img-000004
여기서, TTL(Total Track Length)은 이미지 센서면으로부터 줌 광학계의 첫번째 면까지의 거리를 의미하고, STOKE 3는 제3 렌즈군의 이동 스트로크를 의미한다.
상기 제1 렌즈군에 포함된 2매의 렌즈 중 상측에 배치된 렌즈는 양의 굴절력을 가지고, 상기 제1 렌즈군에 포함된 2매의 렌즈 중 물측에 배치된 렌즈는 음의 굴절력을 가질 수 있다.
상기 제2 렌즈군에 포함된 적어도 2매의 렌즈는 아래의 수학식에 의해 정의되는 아베수를 가질 수 있다.
Figure PCTKR2021004973-appb-img-000005
여기서, ABBE 3는 제2 렌즈군에 포함된 2매의 렌즈 중 물측면에 배치된 렌즈의 아베수를 의미하고, ABBE 4는 제2 렌즈군에 포함된 2매의 렌즈 중 상측면에 배치된 렌즈의 아베수를 의미한다.
상기 제2 렌즈군은, 글래스 렌즈 또는 플라스틱 렌즈 중 적어도 하나를 포함할 수 있다.
상기 제1 렌즈군 및 상기 제4 렌즈군에 포함된 복수의 렌즈의 최대 직경과 상기 제2 렌즈군 및 상기 제3 렌즈군에 포함된 복수의 렌즈의 최대 직경은 아래의 수학식에 의해 정의될 수 있다.
Figure PCTKR2021004973-appb-img-000006
여기서, APER fix는 고정군인 상기 제1 렌즈군 및 상기 제4 렌즈군에 포함된 렌즈의 최대 직경을 의미하고, APER mov는 이동군인 상기 제2 렌즈군 및 상기 제3 렌즈군에 포함된 렌즈의 최대 직경을 의미할 수 있다.
CRA(chief ray angle)는 -10도보다 크고 10도 보다 작을 수 있다.
상기 제1 렌즈군의 전단에 배치된 직각 프리즘을 더 포함할 수 있다.
본 발명의 실시예에 따른 줌 광학계는 물체(object)측으로부터 상(image)측으로 순차적으로 배열되는 제1 렌즈군, 제2 렌즈군, 제3 렌즈군 및 제4 렌즈군을 포함하고, 제1 렌즈군 내지 제4 렌즈군은 각각 적어도 2매의 렌즈를 포함하고, 상기 제2 렌즈군 및 상기 제3 렌즈군은 이동 가능하고, 텔레포토(telephoto)에서의 유효 초점 거리(EFL, effective focal length)는 아래의 수학식에 의해 정의된다.
Figure PCTKR2021004973-appb-img-000007
여기서, EFL tele는 텔레포토에서 줌 광학계의 유효 초점 거리를 의미하고, H imageD는 이미지 센서 픽셀 영역의 대각 길이의 절반 값을 의미한다.
본 발명의 실시예에 따른 줌 광학계는 물체(object)측으로부터 상(image)측으로 순차적으로 배열되는 제1 렌즈군, 제2 렌즈군, 제3 렌즈군 및 제4 렌즈군을 포함하고, 상기 제1 렌즈군 및 상기 제4 렌즈군은 고정되고, 상기 제2 렌즈군 및 상기 제3 렌즈군은 이동 가능하고, 상기 제2 렌즈군은 줌 기능을 수행하고, 상기 제3 렌즈군은 포커싱 기능을 수행하고, 상기 제2 렌즈군은 제1 렌즈와 제2 렌즈를 포함하고, 상기 제1 렌즈와 상기 제2 렌즈의 아베수 차이는 10 이상이다.
본 발명의 실시예에 따른 줌 광학계는 물체(object)측으로부터 상(image)측으로 순차적으로 배열되는 제1 렌즈군, 제2 렌즈군, 제3 렌즈군 및 제4 렌즈군을 포함하고, 상기 제1 렌즈군 및 상기 제4 렌즈군은 고정되고, 상기 제2 렌즈군 및 상기 제3 렌즈군은 이동 가능하고, 상기 제2 렌즈군은 줌 기능을 수행하고, 상기 제3 렌즈군은 포커싱 기능을 수행하고, 상기 제1 렌즈군에 포함된 렌즈 중 상측면에 가장 인접하여 배치된 제1 렌즈의 상측면이 오목하고, 상기 제2 렌즈군에 포함된 렌즈 중 물측면에 가장 인접하여 배치된 제2 렌즈의 물측면이 볼록하며, 상기 제1 렌즈군과 상기 제2 렌즈군 사이의 거리가 최소거리일 때, 상기 제2 렌즈의 물측면의 곡률 중심이 상기 제1 렌즈의 상측면의 양 끝단보다 상측에 가깝게 위치한다.
본 발명의 실시예에 따르면, 저배율뿐만 아니라, 고배율로 줌 기능이 가능한 광학계 및 이를 포함하는 카메라 모듈을 얻을 수 있다. 본 발명의 실시예에 따른 광학계는 연속적인 줌 조절이 가능하며, 고배율에서도 높은 해상도를 유지할 수 할 수 있다.
도 1은 본 발명의 실시예에 따른 줌 광학계를 나타낸다.
도 2a는 본 발명의 실시예에 따른 줌 광학계의 와이드 앵글(wide angle)에서의 단면도이다.
도 2b는 본 발명의 실시예에 따른 줌 광학계의 중간 모드(middle mode)에서의 단면도이다.
도 2c는 본 발명의 실시예에 따른 줌 광학계의 텔레포토(telephoto)에서의 단면도이다.
도 3a는 실시예에 따른 광학계의 와이드 앵글에서 435nm, 486nm, 546nm, 587nm, 656nm 파장의 빛에 대한 구면수차(Longitudinal Spherical Aberration), 비점수차(Astigmatic Field Curves) 및 왜곡수차(Distortion)를 측정한 그래프이다.
도 3b는 실시예에 따른 광학계의 중간 모드에서 435nm, 486nm, 546nm, 587nm, 656nm 파장의 빛에 대한 구면수차, 비점수차 및 왜곡수차를 측정한 그래프이다.
도 3c는 실시예에 따른 광학계의 텔레포토에서 435nm, 486nm, 546nm, 587nm, 656nm 파장의 빛에 대한 구면수차, 비점수차 및 왜곡수차를 측정한 그래프이다.
도 4a는 실시예에 따른 광학계의 와이드 앵글에서의 diffraction MTF 그래프이다.
도 4b는 실시예에 따른 광학계의 중간 모드에서의 diffraction MTF 그래프이다.
도 4c는 실시예에 따른 광학계의 텔레포토에서의 diffraction MTF 그래프이다.
도 5는 본 발명의 실시예에 따른 줌 광학계의 상대 조도(relative illumination)를 측정한 그래프이다.
도 6은 본 발명의 한 실시예에 따른 카메라 모듈이 적용되는 휴대 단말의 일부를 나타낸다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C 중 적어도 하나(또는 한 개 이상)"로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합' 또는 '접속' 되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 "상(위) 또는 하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위) 또는 하(아래)"으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다. 도 1은 본 발명의 실시예에 따른 줌 광학계를 나타낸다.
도 1을 참조하면, 본 발명의 실시예에 따른 줌 광학계는 물체(object)측으로부터 상(image)측으로 순차적으로 배열되는 제1 렌즈군(100), 제2 렌즈군(200), 제3 렌즈군(300) 및 제4 렌즈군(400)을 포함한다. 제1 렌즈군(100)의 전단에는 직각 프리즘이 더 배치될 수 있다. 이 경우, 줌 광학계는 물체(object)측으로부터 상(image)측으로 순차적으로 배열되는 직각 프리즘, 제1 렌즈군(100), 제2 렌즈군(200), 제3 렌즈군(300) 및 제4 렌즈군(400)을 포함할 수 있다.
본 발명의 실시예에 따르면, 제1 렌즈군(100)은 복수 매의 렌즈를 포함한다. 제1 렌즈군(100)은 적어도 2매 이상의 렌즈를 포함할 수 있다. 제1 렌즈군(100)이 1매의 렌즈를 포함할 경우 최대 배율에서의 해상력 보정이 어려울 수 있고, 3매 이상의 렌즈를 포함할 경우 줌 광학계의 전체적인 사이즈가 커질 수 있는바, 바람직하게는 제1 렌즈군(100)은 2매의 렌즈를 포함할 수 있다.
제1 렌즈군(100)은 상측에 대해 고정된다. 제1 렌즈군(100)은 센서(10)면에 대해 고정된다. 즉, 복수 매의 렌즈는 상측에 대해 고정된다. 제1 렌즈군(100)이 3매의 렌즈를 포함하는 경우, 2매의 렌즈는 상측에 대해 고정될 수 있다.
제2 렌즈군(200)은 복수 매의 렌즈를 포함한다. 제2 렌즈군(200)은 적어도 2매 이상의 렌즈를 포함할 수 있다. 제2 렌즈군(200)이 1매의 렌즈를 포함할 경우 최대 배율에서의 해상력 보정이 어려울 수 있고, 3매 이상의 렌즈를 포함할 경우 줌 광학계의 전체적인 사이즈가 커질 수 있는바, 바람직하게는 제2 렌즈군(200)은 2매의 렌즈를 포함할 수 있다.
제2 렌즈군(200)은 이동 가능하다. 제2 렌즈군(200)에 포함된 복수 매의 렌즈는 렌즈의 중심축을 따라 함께 이동 가능하다. 제2 렌즈군(200)에 포함된 2매의 렌즈는 렌즈의 중심축을 따라 함께 이동 가능하다. 제2 렌즈군(200)이 3매 이상의 렌즈를 포함할 경우, 제2 렌즈군(200)의 사이즈 및 무게가 늘어나게 되며, 이동 시 구동 전력이 높아질 수 있다. 따라서, 제2 렌즈군(200)은 2매의 렌즈를 포함하는 것이 바람직하다. 제2 렌즈군(200)의 이동에 따라 초점거리가 연속적으로 조정될 수 있다. 제2 렌즈군(200)의 이동에 따라 배율이 연속적으로 조정될 수 있다. 이에 따라, 제2 렌즈군(200)은 줌밍(zooming)군의 역할을 수행할 수 있다.
제3 렌즈군(300)은 복수 매의 렌즈를 포함한다. 제3 렌즈군(300)은 제1 렌즈군(300)은 적어도 2매 이상의 렌즈를 포함할 수 있다. 제3 렌즈군(300)이 1매의 렌즈를 포함할 경우 최대 배율에서의 해상력 보정이 어려울 수 있고, 3매 이상의 렌즈를 포함할 경우 줌 광학계의 전체적인 사이즈가 커질 수 있는바, 바람직하게는 제3 렌즈군(300)은 2매의 렌즈를 포함할 수 있다.
제3 렌즈군(300)은 이동 가능하다. 제3 렌즈군(300)에 포함된 복수 매의 렌즈는 렌즈의 중심축을 따라 함께 이동 가능하다. 제3 렌즈군(300)에 포함된 2매의 렌즈는 렌즈의 중심축을 따라 함께 이동 가능하다. 제3 렌즈군(300)이 3매 이상의 렌즈를 포함할 경우, 제3 렌즈군(300)의 사이즈 및 무게가 늘어나게 되며, 이동 시 구동 전력이 높아질 수 있다. 따라서, 제3 렌즈군(300)은 2매의 렌즈를 포함하는 것이 바람직하다. 제3 렌즈군(300)의 이동에 따라 초점이 조정될 수 있다. 제3 렌즈군(300)은 포커싱(focusing)군의 역할을 수행할 수 있다.
제4 렌즈군(400)은 복수 매의 렌즈를 포함한다. 제4 렌즈군(400)은 적어도 2매 이상의 렌즈를 포함한다. 제4 렌즈군(400)이 1매의 렌즈를 포함할 경우 최대 배율에서의 해상력 보정이 어려울 수 있고, 3매 이상의 렌즈를 포함할 경우 줌 광학계의 전체적인 사이즈가 커질 수 있는바, 바람직하게는 제4 렌즈군(400)은 2매의 렌즈를 포함할 수 있다.
제4 렌즈군(400)은 상측에 대해 고정된다. 제4 렌즈군(400)은 센서(10)면에 대해 고정된다. 즉, 복수 매의 렌즈는 상측에 대해 고정된다. 제4 렌즈군(400)이 1매의 렌즈를 포함하는 경우, 1매의 렌즈(410)는 상측에 대해 고정될 수 있다.
본 발명의 실시예에 따르면, 제4 렌즈군(400)의 후단에 필터(20) 및 이미지 센서(10)가 순차적으로 배치될 수 있다. 이때, 필터(20)는 IR(infrared) 필터일 수 있다. 이에 따라, 필터(20)는 카메라 모듈 내에 입사되는 광으로부터 근적외선, 예를 들면 파장이 700nm 내지 1100nm인 빛을 차단할 수 있다. 그리고, 이미지 센서(10)는 와이어(wire)에 의하여 인쇄회로기판과 연결될 수 있다.
필터(20)는 물체측으로부터 상측으로 순차적으로 배치되는 이물 방지용 필터 및 IR 필터를 포함할 수도 있다. 필터(20)가 이물 방지용 필터를 포함하는 경우, 제3 렌즈군(300)이 이동하는 과정에서 발생한 이물질이 IR 필터 또는 이미지 센서(10)로 유입되는 것을 방지할 수 있다.
제2 렌즈군(200) 및 제3 렌즈군(300)의 이동에 따라 줌 광학계의 배율이 변할 수 있다. 예를 들어, 줌 광학계의 배율은 제2 렌즈군(200) 및 제3 렌즈군(300)의 이동에 따라 5배 내지 10배 사이에서 연속적으로 증가하거나 감소할 수 있다. 실시예에 따르면, 와이드 앵글에서 줌 광학계는 5배의 배율을 가질 수 있고, 텔레포토에서 10배의 배율을 가질 수 있다. 한편, 배율이 연속적으로 증가하거나 감소한다는 것의 의미는 배율이 디지털적으로 단속적으로 증가하거나 감소하는 것이 아니라, 선형적으로 증가하거나 감소한다는 것을 의미할 수 있다.
제2 렌즈군(200) 및 제3 렌즈군(300)은 각각 독립적으로 이동할 수 있다. 예를 들어, 와이드 앵글에서 텔레포토로 이동시 제2 렌즈군(200)과 제3 렌즈군(300) 사이의 거리는 이동 시작 지점(와이드 앵글)부터 소정의 지점까지는 멀어지다가 소정의 지점부터 이동 종료 지점(텔레포토)까지 점차 가까워질 수 있다.
본 발명의 실시예에 따른 줌 광학계의 유효 초점 거리(EFL, Effective Focal Length)에 대해 살펴보도록 한다.
줌 광학계는 텔레포토(telephoto)에서의 유효 초점 거리를 아래의 수학식 1과 같이 나타낼 수 있다.
Figure PCTKR2021004973-appb-img-000008
여기서, EFL tele는 텔레포토에서 줌 광학계의 유효 초점 거리를 의미하고, H imageD는 이미지 센서 픽셀 영역의 대각 길이의 절반 값을 의미한다. 단위는 [mm]일 수 있다. 이미지 센서 픽셀 영역이란 이미지 센서에서 빛을 수광하는 픽셀이 어레이된 영역을 의미할 수 있다. 이미지 센서 픽셀 영역이란 이미지 센서의 전체 영역에서 수광한 빛을 전기 신호로 변환하는 회로 영역, 패키징에 따른 하우징 부분 등을 제외한 영역일 수 있다.
줌 광학계는 와이드 앵글(wide angle)에서의 유효 초점 거리를 아래의 수학식 2와 같이 나타낼 수 있다.
Figure PCTKR2021004973-appb-img-000009
여기서, EFL wide는 와이드 앵글에서 줌 광학계의 유효 초점 거리를 의미하고, H imageD는 이미지 센서 픽셀 영역의 대각 길이의 절반 값을 의미한다.
본 발명의 실시예에 따른 줌 광학계의 이동 스트로크에 대해 살펴보도록 한다. 이동 스트로크는 구동부에 의하여 렌즈군이 이동 가능한 거리를 의미할 수 있다.
제2 렌즈군(200)의 이동 스트로크(stroke)는 아래의 수학식 3과 같이 나타낼 수 있다.
Figure PCTKR2021004973-appb-img-000010
여기서, TTL(Total Track Length)은 이미지 센서면으로부터 줌 광학계의 첫번째 면까지의 거리를 의미할 수 있다. 예를 들어, TTL은 제1 렌즈군(100)에서 물측에 가장 가까운 일면부터 빛이 입사되는 이미지 센서(10)의 상부면까지의 거리를 의미할 수 있다. 본 명세서에서 전장 거리와 혼용될 수 있다. STOKE 2는 제2 렌즈군(200)의 이동 스트로크를 의미할 수 있다. 단위는 [mm]일 수 있다.
제3 렌즈군(300)의 이동 스트로크(stroke)는 아래의 수학식 4와 같이 나타낼 수 있다.
Figure PCTKR2021004973-appb-img-000011
여기서, TTL은 이미지 센서면으로부터 줌 광학계의 첫번째 면까지의 거리를 의미할 수 있다. STOKE 3은 제3 렌즈군(300)의 이동 스트로크를 의미할 수 있다. 단위는 [mm]일 수 있다.
이동 스트로크가 클 경우, 제2 렌즈군(200) 및 제3 렌즈군(300)을 이동시키기 위한 구동부의 크기가 커지게 되므로 휴대 단말 내에 탑재하기 어려운 문제가 있다. 하지만, 이동 스트로크를 TTL 대비 약 1/5 내지 1/3로 구현함으로 구동부의 크기를 작게 구현할 수 있어 카메라 모듈의 소형화가 가능하다.
본 발명의 실시예에 따른 줌 광학계의 아베수에 대해 살펴보도록 한다. 아베수(abbe number)란 렌즈의 빛 분산에 관한 성질을 수치화한 값을 의미할 수 있다.
제2 렌즈군(200)에 포함된 복수의 렌즈는 아베수가 상이할 수 있다. 제2 렌즈군(200)이 2매의 렌즈를 포함하는 경우, 제2 렌즈군(200)에 포함된 2매의 렌즈의 아베수는 아래의 수학식 5와 같이 나타낼 수 있다.
Figure PCTKR2021004973-appb-img-000012
여기서, ABBE 3는 제2 렌즈군(200)에 포함된 2매의 렌즈 중 물측면에 배치된 렌즈의 아베수를 의미하고, ABBE 4는 제2 렌즈군(200)에 포함된 2매의 렌즈 중 상측면에 배치된 렌즈의 아베수를 의미할 수 있다. 실시예에 따르면, ABBE 3는 제3 렌즈(210)의 아베수를 의미하고, ABBE 4는 제4 렌즈(220)의 아베수를 의미할 수 있다.
본 발명의 실시예에 따른 줌 광학계는 제2 렌즈군(200)에서 아베수가 일정값 이상 차이나는 2매의 렌즈를 배치함으로써 색수차를 제거할 수 있다.
본 발명의 실시예에 따른 줌 광학계의 렌즈의 구경(Aperture)에 대해 살펴보도록 한다.
본 발명의 실시예에 따르면, 제2 렌즈군(200) 및 제3 렌즈군(300)의 구경(Aperture)은 제1 렌즈군(100) 및 제4 렌즈군(400)의 구경(Aperture)보다 작을 수 있다. 이는 아래의 수학식 6과 같이 나타낼 수 있다.
Figure PCTKR2021004973-appb-img-000013
여기서, APER fix는 고정군인 제1 렌즈군(100) 및 제4 렌즈군(400)에 포함된 렌즈의 최대 직경을 의미하고, APER mov는 이동군인 제2 렌즈군(200) 및 제3 렌즈군(300)에 포함된 렌즈의 최대 직경을 의미할 수 있다. 예를 들어, 고정군인 제1 렌즈군(100) 및 제4 렌즈군(400)에 포함된 렌즈 중 제1 렌즈(110)의 직경이 가장 큰 경우, APER fix는 제1 렌즈(110)의 직경을 의미할 수 있다. 이동군인 제2 렌즈군(200) 및 제3 렌즈군(300)에 포함된 렌즈 중 제3 렌즈(210)의 직경이 가장 큰 경우, APER mov는 제3 렌즈(210)의 직경을 의미할 수 있다.
제2 렌즈군(200) 및 제3 렌즈군(300)의 구경을 제1 렌즈군(100) 및 제4 렌즈군(400)보다 작게 구현함으로써 제2 렌즈군(200) 및 제3 렌즈군(300)의 무게를 감소시킬 수 있다. 이에 따라, 이동군인 제2 렌즈군(200) 및 제3 렌즈군(300)의 이동시 소비전력을 감소시킬 수 있다.
본 발명의 실시예에 따르면, 제1 내지 제4 렌즈군(100 내지 400)에 포함된 복수의 렌즈는 D-cut 기법이 적용된 렌즈일 수 있다. 제1 내지 제4 렌즈군(100 내지 400)에 포함된 복수의 렌즈는 상측부 및 하측부의 일부가 절단된 D-cut 렌즈일 수 있다. 이때, 복수의 렌즈는 상측부 및 하측부는 리브와 유효경의 일부가 절단되거나 유효경의 절단 없이 리브만이 절단될 수 있다. 일 실시예에 따르면, 제2 렌즈군(200) 및 제3 렌즈군은 유효경 장축 길이를 유효경 단축 길이로 나눈 값이 1인 렌즈를 포함할 수 있다. 즉, 유효경의 장축 길이와 유효경의 단축 길이가 동일할 수 있다. 예를 들어, 제3 렌즈(210), 제4 렌즈(220), 제5 렌즈(310) 및 제6 렌즈(320)의 경우 상측부 및 하측부의 리브만 절단되고 유효경은 절단되지 않을 수 있다. 원형타입 렌즈의 경우 세로 방향의 높이로 인해 렌즈의 부피가 커지는 문제점이 있으나, 본 발명의 실시예와 같이 복수의 렌즈 상측부 및 하측부에 D-cut을 적용함으로써 세로 방향의 높이를 낮출 수 있어 렌즈의 부피를 줄일 수 있다.
본 발명의 실시예에 따르면, 제1 렌즈군(100)은 서로 다른 굴절력을 가진 복수의 렌즈를 포함할 수 있다. 제1 렌즈군(100)에 포함된 복수의 렌즈 중 상측에 배치된 렌즈는 양(+)의 굴절력을 가질 수 있다. 제1 렌즈군(100)에 포함된 복수의 렌즈 중 물측에 배치된 렌즈는 음(-)의 굴절력을 가질 수 있다. 실시예에 따르면, 제1 렌즈군(100)은 물측에서 상측으로 순차적으로 배치된 제1 렌즈(110) 및 제2 렌즈(120)를 포함할 수 있다. 이 중 제1 렌즈(110)는 양의 굴절력을 가질 수 있고, 제2 렌즈(120)는 음의 굴절력을 가질 수 있다.
본 발명의 실시예에 따르면, 제1 내지 제4 렌즈군(100 내지 400)은 플라스틱 렌즈를 포함할 수 있다. 예를 들어, 제4 렌즈군(400)에 포함된 복수의 렌즈는 모두 플라스틱 소재이거나 글래스 소재일 수 있다. 제4 렌즈군(400)은 글래스 렌즈를 포함할 수 있다. 예를 들어, 제4 렌즈군(400)에 포함된 복수의 렌즈 중 물측에 배치된 렌즈는 글래스 소재이고, 상측에 배치된 렌즈는 플라스틱 소재일 수 있다. 이때, 글래스 렌즈는 글래스 몰드(glass mold) 방식에 의해 제조된 글래스 몰드 렌즈일 수 있다.
본 발명의 실시예에 따르면, 줌 광학계는 CRA(chief ray angle)가 -10도보다 크고 10도보다 작을 수 있다. 이미지 센서(10), 즉 상면에 입사되는 광선의 각도는 -10도보다 크고 10도보다 작을 수 있다. 즉, 본 발명의 실시예에 따른 줌 광학계의 CRA는 -10도에서 10도 사이의 값 중에 어느 하나의 값을 가질 수 있다. 이미지 센서(10)에 입사되는 광선의 각도가 작아 센서 선택의 자유도가 높아질 수 있으며, 더욱 컴팩트한 사이즈의 줌 광학계를 얻을 수 있다.
도 2a는 본 발명의 실시예에 따른 줌 광학계의 와이드 앵글(wide angle)에서의 단면도이고, 도 2b는 본 발명의 실시예에 따른 줌 광학계의 중간 모드(middle mode)에서의 단면도이고, 도 2c는 본 발명의 실시예에 따른 줌 광학계의 텔레포토(telephoto)에서의 단면도이다.
아래의 표 1 및 표 2는 본 발명의 실시예에 따른 줌 광학계에 포함된 렌즈의 광학 특성을 나타내고, 표 3 및 4는 본 발명의 실시예에 따른 줌 광학계에 포함된 렌즈의 코닉 상수 및 비구면 계수를 나타낸다.
렌즈 No.
렌즈면 No. 곡률반경(R, mm) 두께(mm) 물질 굴절률
제1 렌즈 112 7.42245092 1.97362944 플라스틱 1.66134
 
114 49.31590248 2.082822984
제2 렌즈 122 -124.0409329 1 플라스틱 1.67134
 
124 4.815611127 5.710263206(2.806912311, 0.20028764)
제3 렌즈 212 4.616306343 2.247298365 플라스틱 1.54408
 
214 -4.463980269 0.2
제4 렌즈 222 -5.124947342 2 플라스틱 1.67134
 
224 -8.385590704 0.674684273(0.310740064, 0.2)
제5 렌즈 312 -634.5886811 1.55415146 플라스틱 1.54408
 
314 7.078785422 1.179802065
제6 렌즈 322 -16.26842968 1.002238235 플라스틱 1.54408
 
324 5.154984909 1.237063216(4.50435832, 7.221723054)
제7 렌즈 412 -13.25096355 0.667336888 글래스 몰드 1.85135
 
414 13.95039874 0.3
제8 렌즈 422 7.858670469 2.658209637 플라스틱 1.67134
424 -4.591793946 0.2
필터 22 1E+18 0.340277838
24 1E+18 0.972222394
센서 10 1E+18 0
렌즈 No. 렌즈면 No. 아베수 형상 반구경(semi-aperture)
제1 렌즈 112 20.37  볼록 3.3
114 볼록 3.022139604
제2 렌즈 122 19.24  오목 2.521031035
124 볼록 2.368990701
제3 렌즈 212 56.17  볼록 2.4
214 오목 2.4
제4 렌즈 222 19.24  오목 2.296715617
224 오목 2.214224529
제5 렌즈 312 56.17  볼록 2.071201808
314 볼록 1.878704659
제6 렌즈 322 56.17  오목 1.764515869
324 볼록 1.976714601
제7 렌즈 412 40.1  오목 2.641459484
414 볼록 3.070686289
제8 렌즈 422 19.24 볼록 3.359693539
424 오목 3.50734391
필터 22 3.195463733
24 3.140429724
센서 10 2.903552314
렌즈면 No. 코닉상수(K) A B C D
112 0 0.000293737 6.95524E-06 -2.04886E-07 2.54133E-08
114 0 0.000625781 -1.98889E-05 -5.90125E-07 9.10657E-08
122 0 -0.00303865 7.41528E-05 3.38744E-06 2.32426E-07
124 0 -0.004642737 0.000100784 1.06259E-05 -6.51357E-07
212 0 -0.000672328 -7.33028E-05 -1.54612E-05 -1.68735E-06
214 0 0.003599099 -3.27895E-05 -2.03348E-05 4.30616E-08
222 0 0.000914868 0.000290656 6.07841E-07 1.13285E-06
224 0 0.001230947 0.000155511 2.25242E-05 -3.34835E-06
312 0 0.000830232 0.00022879 -9.45614E-05 1.53938E-05
314 0 -0.010676313 0.000592962 -0.000318687 4.4005E-05
322 0 -0.040211004 0.002806002 -0.000352148 9.76791E-05
324 0 -0.029111039 0.005185642 -0.000539334 3.75913E-05
412 0 -0.006673112 -0.000456779 -6.89284E-07 1.12705E-05
414 0 -0.00648599 -0.000269829 9.9912E-06 2.44288E-06
422 0 -0.001856843 0.000387894 -3.92728E-05 2.47402E-07
424 0 0.000832702 0.000564575 -6.36048E-06 -1.38964E-06
렌즈면 No. E F G H J
112 -2.15666E-10 1.6379E-10 0 0 0
114 8.9785E-09 -2.365E-10 0 0 0
122 1.92498E-08 -4.04404E-09 0 0 0
124 -9.87068E-09 9.44622E-10 0 0 0
212 1.88101E-07 -6.98355E-08 0 0 0
214 -6.59668E-08 -6.58479E-09 0 0 0
222 1.06861E-07 -5.29812E-10 0 0 0
224 7.79089E-07 -5.16153E-08 0 0 0
312 -6.77597E-07 5.2442E-08 0 0 0
314 1.30454E-06 -1.33203E-15 0 0 0
322 6.25312E-15 2.04106E-16 0 0 0
324 -6.71573E-14 -1.49767E-15 0 0 0
412 -1.33473E-07 -9.2372E-08 0 0 0
414 -5.97115E-08 -1.14911E-08 0 0 0
422 2.02276E-07 -1.34349E-08 0 0 0
424 -1.05608E-07 7.32181E-09 0 0 0
도 2a 내지 도 2c 및 표 1 내지 4를 참조하면, 줌 광학계는 물체(object)측으로부터 상(image)측으로 순차적으로 배열되는 제1 렌즈군(100), 제2 렌즈군(200), 제3 렌즈군(300) 및 제4 렌즈군(400)을 포함한다. 제1 렌즈군(100)은 물체측으로부터 상측으로 순차적으로 배열되는 제1 렌즈(110) 및 제2 렌즈(120)를 포함한다. 제2 렌즈군(200)은 물체측으로부터 상측으로 순차적으로 배열되는 제3 렌즈(210) 및 제4 렌즈(220)를 포함한다. 제3 렌즈군(300)은 물체측으로부터 상측으로 순차적으로 배열되는 제5 렌즈(310) 및 제6 렌즈(320)를 포함한다. 제4 렌즈군(400)은 제7 렌즈(410) 및 제8 렌즈(420)를 포함한다.표 1에서, 두께(mm)는 각 렌즈면에서 다음 렌즈면까지의 거리를 나타낸다.
예들 들어, 제1 렌즈(110)의 물측면(112)에 기재된 두께는 제1 렌즈(110)의 물측면(112)에서 상측면(114)까지의 거리를 나타낸다. 구체적으로, 제1 렌즈(110)의 물측면(112)에 기재된 두께는 제1 렌즈(110)에서 물측면(112)의 곡률 중심과 상측면(114)의 곡률 중심 사이의 거리를 나타낸다.
제1 렌즈(110)의 상측면(114)에 기재된 두께는 제1 렌즈(110)의 상측면(114)에서 제2 렌즈(120)의 물측면(122)까지의 거리를 나타낸다. 구체적으로, 제1 렌즈(110)의 상측면(114)에 기재된 두께는 제1 렌즈(110) 상측면(114)의 곡률 중심과 제2 렌즈(120) 물측면(122)의 곡률 중심 사이의 거리를 나타낸다.
제2 렌즈(120)의 상측면(124)에 기재된 두께는 제2 렌즈(120)의 상측면(124)에서 제3 렌즈(210)의 물측면(212)까지의 거리를 나타낸다. 구체적으로, 제2 렌즈(120)의 상측면(124)에 기재된 두께는 제2 렌즈(120) 상측면(124)의 곡률 중심과 제3 렌즈(210) 물측면(212)의 곡률 중심 사이의 거리를 나타낸다.
이때, 제2 렌즈군(200)이 와이드 앵글에서 텔레포토로 주밍(zooming)하는 과정에서 이동하므로, 제2 렌즈(120)의 상측면(124)에 기재된 두께는 변할 수 있다. 제2 렌즈(120)의 상측면(124)에 기재된 두께는 최단 거리에서 최장 거리 사이의 값을 가질 수 있다. 표 1을 참조하면, 제2 렌즈(120)의 상측면(124)에 기재된 두께는 와이드 앵글에서 최장 거리(5.710263206)를 가질 수 있다. 제2 렌즈(120)의 상측면(124)에 기재된 두께는 중간 모드에서 최단 거리와 최장 거리 사이의 값(2.806912311)을 가질 수 있다. 제2 렌즈(120)의 상측면(124)에 기재된 두께는 텔레포토에서 최단 거리(0.20028764)를 가질 수 있다. 이는 제4 렌즈(220)의 상측면(224)에 기재된 두께 및 제6 렌즈(320)의 상측면(324)에 기재된 두께 역시 동일하다.
표 1을 참조하면, 제2 렌즈군(200)에 포함된 제3 렌즈(210) 제4 렌즈(220)의 아베수 차이값은 10 이상임을 알 수 있다. 구체적으로, 제3 렌즈(210)의 아베수는 56.17이고, 제4 렌즈(220)의 아베수는 19.24인바, 두 렌즈의 아베수 차이값은 대략 37정도가 되므로, 10이상의 차이값을 가짐을 알 수 있다.
표 1을 참조하면, 제4 렌즈군(400)에 포함된 제7 렌즈(410) 및 제8 렌즈(420) 중 어느 하나는 글래스 렌즈임을 알 수 있다. 구체적으로 제7 렌즈(410)는 글래스 몰드 렌즈이고, 제8 렌즈(420)는 플라스틱 렌즈임을 알 수 있다.
표 2를 참조하면, 제1 내지 제8 렌즈(110 내지 420)의 각 면은 볼록 또는 오목한 형상으로 구현될 수 있다.
제1 렌즈(110)는 물측면(112)이 물체측으로 볼록한 렌즈일 수 있다. 제1 렌즈(110)는 상측면(114)이 물체측으로 볼록한 렌즈일 수 있다. 제2 렌즈(120)는 물측면(122)이 물체측으로 오목한 렌즈일 수 있다. 제2 렌즈(120)는 상측면(124)이 물체측으로 볼록한 렌즈일 수 있다.
제3 렌즈(210)는 물측면(212)이 물체측으로 볼록한 렌즈일 수 있다. 제3 렌즈(210)는 상측면(214)이 물체측으로 오목한 렌즈일 수 있다. 제4 렌즈(220)는 물측면(222)이 물체측으로 오목한 렌즈일 수 있다. 제4 렌즈(220)는 상측면(224)이 물체측으로 오목한 렌즈일 수 있다. 한편, 제1 렌즈군(100)과 제2 렌즈군(200) 사이의 거리가 최소거리일 때(즉, 텔레포토에서), 제3 렌즈(210)의 물측면(212)의 곡률 중심은 제2 렌즈(120)의 상측면(124) 양 끝단보다 상측에 가깝게 위치할 수 있다.
제5 렌즈(310)는 물측면(312)이 물체측으로 볼록한 렌즈일 수 있다. 제5 렌즈(310)는 상측면(314)이 물체측으로 볼록한 렌즈일 수 있다. 제6 렌즈(320)는 물측면(322)이 물체측으로 오목한 렌즈일 수 있다. 제6 렌즈(320)는 상측면(324)이 물체측으로 볼록한 렌즈일 수 있다.
제7 렌즈(410)는 물측면(412)이 물체측으로 오목한 렌즈일 수 있다. 제7 렌즈(410)는 상측면(414)이 물체측으로 볼록한 렌즈일 수 있다. 제8 렌즈(420)는 물측면(422)이 물체측으로 볼록한 렌즈일 수 있다. 제8 렌즈(420)는 상측면(424)이 물체측으로 오목한 렌즈일 수 있다.
도 2a를 참조하면, 제1 렌즈군(100)과 제2 렌즈군(200) 간의 거리가 d1a이고, 제2 렌즈군(200)과 제3 렌즈군(300) 간의 거리가 d2a이고, 제3 렌즈군(300)과 제4 렌즈군(400) 간의 거리가 d3a인 경우, 줌 광학계는 와이드 앵글(예를 들어, 5배 배율)을 가질 수 있다. 즉, 제2 렌즈(120) 상측면(124)의 곡률 중심과 제3 렌즈(210) 물측면(212)의 곡률 중심 사이의 거리가 d1a이고, 제4 렌즈(220) 상측면(224)의 곡률 중심과 제5 렌즈(310) 물측면(312)의 곡률 중심 사이의 거리가 d2a이고, 제6 렌즈(320) 상측면(324)의 곡률 중심과 제7 렌즈(410) 물측면(412)의 곡률 중심 사이의 거리가 d3a인 경우, 줌 광학계는 와이드 앵글을 가질 수 있다.
도 2b에서 제1 렌즈군(100)과 제2 렌즈군(200) 간의 거리가 d1b이고, 제2 렌즈군(200)과 제3 렌즈군(300) 간의 거리가 d2b이고, 제3 렌즈군(300)과 제4 렌즈군(400) 간의 거리가 d3b인 경우, 줌 광학계는 중간 모드를 가질 수 있다. 즉, 제2 렌즈(120) 상측면(124)의 곡률 중심과 제3 렌즈(210) 물측면(212)의 곡률 중심 사이의 거리가 d1b이고, 제4 렌즈(220) 상측면(224)의 곡률 중심과 제5 렌즈(310) 물측면(312)의 곡률 중심 사이의 거리가 d2b이고, 제6 렌즈(320) 상측면(324)의 곡률 중심과 제7 렌즈(410) 물측면(412)의 곡률 중심 사이의 거리가 d3b인 경우, 줌 광학계는 중간 모드를 가질 수 있다.
도 2c에서 제1 렌즈군(100)과 제2 렌즈군(200) 간의 거리가 d1c이고, 제2 렌즈군(200)과 제3 렌즈군(300) 간의 거리가 d2c이고, 제3 렌즈군(300)과 제4 렌즈군(400) 간의 거리가 d3c인 경우, 줌 광학계는 텔레포토(예를 들어, 10배 배율)을 가질 수 있다. 즉, 제2 렌즈(120) 상측면(124)의 곡률 중심과 제3 렌즈(210) 물측면(212)의 곡률 중심 사이의 거리가 d1c이고, 제4 렌즈(220) 상측면(224)의 곡률 중심과 제5 렌즈(310) 물측면(312)의 곡률 중심 사이의 거리가 d2c이고, 제6 렌즈(320) 상측면(324)의 곡률 중심과 제7 렌즈(410) 물측면(412)의 곡률 중심 사이의 거리가 d3c인 경우, 줌 광학계는 텔레포토를 가질 수 있다.
와이드 앵글에서 텔레포토로 배율이 변하는 과정에서, 인접한 렌즈군 사이의 거리가 변할 수 있다.
제1 렌즈군(100)과 제2 렌즈군(200) 사이의 거리는 d1a에서 d1b를 거쳐 d1c로 변할 수 있다. 표 1을 참조하면, 와이드 앵글에서 제1 렌즈군(100)과 제2 렌즈군(200) 사이의 거리(d1a)는 5.710263206[mm]이다. 중간 모드에서 제1 렌즈군(100)과 제2 렌즈군(200) 사이의 거리(d1b)는 2.806912311[mm]이다. 텔레포토에서 제1 렌즈군(100)과 제2 렌즈군(200) 사이의 거리(d1c)는 0.20028764[mm]이다. 이와 같이, 와이드 앵글에서 중간 모드를 거쳐 텔레포토로 배율이 변화는 과정에서, 제1 렌즈군(100)과 제2 렌즈군(200) 사이의 거리는 5.710263206[mm]에서 2.806912311[mm]를 거쳐 0.20028764[mm]로 변할 수 있다. 즉, 와이드 앵글에서 텔레포토로 배율이 변하는 과정에서, 제1 렌즈군(100)과 제2 렌즈군(200) 사이의 거리는 점차 감소할 수 있다(d1a>d1b>d1c). 즉, 와이드 앵글에서 텔레포토로 배율이 변하는 과정에서, 제1 렌즈군(100)과 제2 렌즈군(200) 사이의 거리의 증가량은 점차 감소할 수 있다.
제2 렌즈군(200)과 제3 렌즈군(300) 간의 거리는 d2a에서 d2b를 거쳐 d2c로 변할 수 있다. 표 1을 참조하면, 와이드 앵글에서 제2 렌즈군(200)과 제3 렌즈군(300) 사이의 거리(d2a)는 0.674684273[mm]이다. 중간 모드에서 제2 렌즈군(200)과 제3 렌즈군(300) 사이의 거리(d2b)는 0.310740064[mm]이다. 텔레포토에서 제2 렌즈군(200)과 제3 렌즈군(300) 사이의 거리(d1c)는 0.2[mm]이다. 이와 같이, 와이드 앵글에서 중간 모드를 거쳐 텔레포토로 배율이 변화는 과정에서, 제2 렌즈군(200)과 제3 렌즈군(300) 사이의 거리는 0.674684273[mm]에서 0.310740064[mm]를 거쳐 0.2[mm]로 변할 수 있다. 즉, 와이드 앵글에서 텔레포토로 배율이 변하는 과정에서, 제2 렌즈군(200)과 제3 렌즈군(300) 사이의 거리는 감소할 수 있다(d2a>d2b>d2c). 이때, 와이드 앵글에서 텔레포토로 배율이 변하는 과정에서, 제2 렌즈군(200)과 제3 렌즈군(300) 사이의 거리의 증가량은 감소할 수 있다.
제3 렌즈군(300)과 제4 렌즈군(400) 간의 거리는 d3a에서 d3b를 거쳐 d3c로 변할 수 있다. 표 1을 참조하면, 와이드 앵글에서 제3 렌즈군(300)과 제4 렌즈군(400) 사이의 거리(d3a)는 1.237063216[mm]이다. 중간 모드에서 제3 렌즈군(300)과 제4 렌즈군(400) 사이의 거리(d3b)는 4.50435832[mm]이다. 텔레포토에서 제3 렌즈군(300)과 제4 렌즈군(400) 사이의 거리(d3c)는 7.221723054[mm]이다. 이와 같이, 와이드 앵글에서 중간 모드를 거쳐 텔레포토로 배율이 변화는 과정에서, 제3 렌즈군(300)과 제4 렌즈군(400) 사이의 거리는 1.237063216[mm]에서 4.50435832[mm]를 거쳐 7.221723054[mm]로 변할 수 있다. 즉, 와이드 앵글에서 텔레포토로 배율이 변하는 과정에서, 제3 렌즈군(300)과 제4 렌즈군(400) 사이의 거리는 점차 증가할 수 있다(d3a<d3b<d3c). 다만, 와이드 앵글에서 텔레포토로 배율이 변하는 과정에서, 제3 렌즈군(300)과 제4 렌즈군(400) 사이의 거리의 증가량은 점차 감소할 수 있다.
이와 같이, 제2 렌즈군(200) 및 제3 렌즈군(300)은 서로 이동하는 속도가 상이할 수 있다.
제2 렌즈군(200)과 제3 렌즈군(300)을 이동시킴에 따라 줌 광학계의 배율이 5배 배율로부터 10배 배율까지 연속적으로 조정될 수 있다.
다음으로, 도 3a 내지 도 3c를 통해 본 발명의 실시예에 따른 줌 광학계의 구면수차, 비점수차 및 왜곡수차를 시뮬레이션 결과를 살펴보도록 한다. 구면수차는 각 파장에 따른 구면수차를 나타내고, 비점수차는 상면의 높이에 따른 탄젠셜면(tangential plane)과 새지털면(sagital plane)의 수차특성을 나타내며, 왜곡수차는 상면의 높이에 따른 왜곡도를 나타낸다.
도 3a는 실시예에 따른 광학계의 와이드 앵글에서 435nm, 486nm, 546nm, 587nm, 656nm 파장의 빛에 대한 구면수차(Longitudinal Spherical Aberration), 비점수차(Astigmatic Field Curves) 및 왜곡수차(Distortion)를 측정한 그래프이다.
도 3b는 실시예에 따른 광학계의 중간 모드에서 435nm, 486nm, 546nm, 587nm, 656nm 파장의 빛에 대한 구면수차, 비점수차 및 왜곡수차를 측정한 그래프이다.
도 3c는 실시예에 따른 광학계의 텔레포토에서 435nm, 486nm, 546nm, 587nm, 656nm 파장의 빛에 대한 구면수차, 비점수차 및 왜곡수차를 측정한 그래프이다.
도 3a 내지 도 3c를 참조하면, 구면수차가 파장에 관계없이 이미지 센서의 중심에서 끝단까지 -0.05[mm] 내지 0.1[mm]이내에 있음을 알 수 있다. 구체적으로, 와이드 모드에서 구면수차는 대략 -0.04[mm]에서 0.04[mm] 이내이고, 중간 모드에서 구면수차는 -0.03[mm] 내지 1[mm] 이내임을 알 수 있다. 텔레포토에서 구면수차는 435[nm] 파장이 범위를 벗어나기는 하지만, 이외에는 -0.05[mm] 내지 0.05[mm] 이내에 있음을 알 수 있다.
도 3a 내지 도 3c를 참조하면, 비점수차가 파장에 관계없이 이미지 센서의 중심에서 끝단까지 -0.04[mm] 내지 0.01[mm]이내에 있음을 알 수 있다. 구체적으로, 와이드 모드에서 비점수차는 대략 -0.02[mm]에서 0[mm] 이내이고, 중간 모드에서 비점수차는 -0.02[mm] 내지 0.01[mm] 이내임을 알 수 있다. 텔레포토에서 비점수차는 대략 -0.04[mm] 내지 0[mm] 이내에 있음을 알 수 있다.
도 3a 내지 도 3c를 참조하면, 왜곡수차가 파장에 관계없이 이미지 센서의 중심에서 끝단까지 -2[%] 내지 0[%]이내에 있음을 알 수 있다. 구체적으로, 와이드 모드에서 왜곡수차는 대략 -1[%]에서 0[%] 이내이고, 중간 모드에서 왜곡수차는 -1.5[%] 내지 0[%] 이내임을 알 수 있다. 텔레포토에서 왜곡수차는 대략 -2[%] 내지 0[%] 이내에 있음을 알 수 있다.
다음으로, 도 4a 내지 도 4c를 통해 본 발명의 실시예에 따른 줌 광학계의 MTF 시뮬레이션 결과를 살펴보도록 한다. MTF(Modulation Transfer Function)란 광학계의 성능 측정방법 중 하나를 의미한다.
도 4a는 실시예에 따른 광학계의 와이드 앵글에서의 diffraction MTF 그래프이다. 도 4b는 실시예에 따른 광학계의 중간 모드에서의 diffraction MTF 그래프이다. 도 4c는 실시예에 따른 광학계의 텔레포토에서의 diffraction MTF 그래프이다.
도 4a 내지 도 4c를 참조하면, 본 발명의 실시예에 따른 줌 광학계는 와이드 앵글, 중간 모드 및 텔레포토 각각에서 디포커싱 위치(defocusing position) 0[mm] 근처에서는 한계값인 diffraction limit에 근접한 값을 가짐을 알 수 있다.
도 5는 본 발명의 실시예에 따른 줌 광학계의 상대 조도(relative illumination)를 측정한 그래프이다.
도 5를 참조하면, 본 발명의 실시예에 따른 줌 광학계는 와이드 앵글(zoom position 1), 중간 모드(zoom position 2), 텔레포토(zoom position 3) 전체에서 50% 이상의 상대 조도 값을 보이고 있음을 알 수 있다. 중간 모드와 텔레포토에서는 전체 영역에서 80% 이상의 상대 조도 값을 보이며, 와이드 앵글의 경우에도 0에서 1.6[mm]까지는 80% 이상의 상대 조도 값을 보임을 알 수 있다.
상기의 실시예들을 통해 살펴본 것처럼, 본 발명의 실시예에 따른 광학계는 수차 특성이 우수함을 알 수 있다.
한편, 본 발명의 실시예에 따른 줌 광학계는 카메라 모듈에 적용될 수 있다. 본 발명의 한 실시예에 따른 줌 광학계를 포함하는 카메라 모듈은 휴대 단말 내에 내장될 수 있으며, 메인 카메라 모듈과 함께 적용될 수 있다. 본 발명의 실시예에 따른 카메라 모듈은 이미지 센서, 이미지 센서 상에 배치된 필터, 그리고 필터 상에 배치된 줌 광학계를 포함할 수 있으며, 본 발명의 실시예에 따른 줌 광학계는 상기에서 설명한 제1 렌즈군(100), 제2 렌즈군(200), 제3 렌즈군(300) 및 제4 렌즈군(400)을 포함할 수 있다. 본 발명의 실시예에 따른 줌 광학계를 포함하는 카메라 모듈이 내장된 휴대 단말은 스마트폰, 태블릿 PC, 랩탑(laptop) 컴퓨터, PDA 등일 수 있다. 본 발명의 실시예에 따른 광학계는 카메라 모듈에 적용될 수 있다.
도 6은 본 발명의 한 실시예에 따른 카메라 모듈이 적용되는 휴대 단말의 일부를 나타낸다.
도 6을 참조하면, 본 발명의 한 실시예에 따른 줌 광학계(1000)를 포함하는 카메라 모듈은 휴대 단말 내에 내장될 수 있으며, 메인 카메라 모듈(1100)과 함께 적용될 수 있다.
본 발명의 실시예에 따른 줌 광학계(1000)는 앞서 설명한 제1 렌즈군(100), 제2 렌즈군(200), 제3 렌즈군(300) 및 제4 렌즈군(400)을 포함하며, 제1 렌즈군(100), 제2 렌즈군(200), 제3 렌즈군(300) 및 제4 렌즈군(400)은 휴대 단말의 두께 제약으로 인하여 휴대 단말의 측면 방향으로 순차적으로 배치될 수 있다. 이를 위하여, 전술한 바와 같이, 제1 렌즈군(100)의 전단에는 직각 프리즘이 더 배치될 수 있다. 줌 광학계가 휴대 단말기의 두께 방향으로 배치될 때, 즉 줌 광학계에 포함된 렌즈들의 렌즈면이 휴대 단말의 두께 방향으로 배치될 때, 줌 광학계에 포함된 렌즈들의 직경 사이즈를 줄임으로써, 휴대 단말의 두께를 줄일 수 있다. 이에 따라, 휴대 단말 내에도 렌즈가 이동하여 연속적으로 배율 조정이 가능한 줌 광학계가 내장될 수 있다.
본 발명의 실시예에 따른 줌 광학계를 포함하는 카메라 모듈이 내장된 휴대 단말은 스마트폰, 태블릿 PC, 랩탑(laptop) 컴퓨터, PDA 등일 수 있다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 물체(object)측으로부터 상(image)측으로 순차적으로 배열되는 제1 렌즈군, 제2 렌즈군, 제3 렌즈군 및 제4 렌즈군을 포함하고,
    제1 렌즈군 내지 제4 렌즈군은 각각 적어도 2매의 렌즈를 포함하고,
    상기 제2 렌즈군 및 상기 제3 렌즈군은 이동 가능하고,
    와이드 앵글(wide angle)에서의 유효 초점 거리(EFL, effective focal length)는 아래의 수학식에 의해 정의되는 줌 광학계;
    Figure PCTKR2021004973-appb-img-000014
    여기서, EFL wide는 와이드 앵글에서 줌 광학계의 유효 초점 거리를 의미하고, H imageD는 이미지 센서 픽셀 영역의 대각 길이의 절반 값을 의미한다.
  2. 제1항에 있어서,
    상기 제1 렌즈군은 2매 이상의 렌즈를 포함하고,
    상기 제2 렌즈군은 2매 이상의 렌즈를 포함하고,
    상기 제3 렌즈군은 2매 이상의 렌즈를 포함하고,
    상기 제4 렌즈군은 2매의 이상의 렌즈를 포함하는 줌 광학계.
  3. 제1항에 있어서,
    텔레포토(telephoto)에서의 유효 초점 거리(EFL, effective focal length)는 아래의 수학식에 의해 정의되는 줌 광학계;
    Figure PCTKR2021004973-appb-img-000015
    여기서, EFL tele는 텔레포토에서 줌 광학계의 유효 초점 거리를 의미하고, H imageD는 이미지 센서 픽셀 영역의 대각 길이의 절반 값을 의미한다.
  4. 제1항에 있어서,
    와이드 앵글(wide angle)에서 텔레포토(telephoto)로 주밍(zooming) 시 상기 제2 렌즈군의 이동 스트로크는 아래의 수학식에 의해 정의되는 줌 광학계;
    Figure PCTKR2021004973-appb-img-000016
    여기서, TTL(Total Track Length)은 이미지 센서면으로부터 줌 광학계의 첫번째 면까지의 거리를 의미하고, STOKE 2는 제2 렌즈군의 이동 스트로크를 의미한다.
  5. 제1항에 있어서,
    와이드 앵글(wide angle)에서 텔레포토(telephoto)로 주밍(zooming) 시 상기 제3 렌즈군의 이동 스트로크는 아래의 수학식에 의해 정의되는 줌 광학계;
    Figure PCTKR2021004973-appb-img-000017
    여기서, TTL(Total Track Length)은 이미지 센서면으로부터 줌 광학계의 첫번째 면까지의 거리를 의미하고, STOKE 3는 제3 렌즈군의 이동 스트로크를 의미한다.
  6. 제1항에 있어서,
    상기 제1 렌즈군에 포함된 2매의 렌즈 중 상측에 배치된 렌즈는 양의 굴절력을 가지고,
    상기 제1 렌즈군에 포함된 2매의 렌즈 중 물측에 배치된 렌즈는 음의 굴절력을 가지는 줌 광학계.
  7. 제6항에 있어서,
    상기 제2 렌즈군에 포함된 적어도 2매의 렌즈는 아래의 수학식에 의해 정의되는 아베수를 가지는 줌 광학계;
    Figure PCTKR2021004973-appb-img-000018
    여기서, ABBE 3는 제2 렌즈군에 포함된 2매의 렌즈 중 물측면에 배치된 렌즈의 아베수를 의미하고, ABBE 4는 제2 렌즈군에 포함된 2매의 렌즈 중 상측면에 배치된 렌즈의 아베수를 의미한다.
  8. 제7항에 있어서,
    상기 제2 렌즈군은,
    글래스 렌즈 또는 플라스틱 렌즈 중 적어도 하나를 포함하는 줌 광학계.
  9. 제1항에 있어서,
    상기 제1 렌즈군 및 상기 제4 렌즈군에 포함된 복수의 렌즈의 최대 직경과 상기 제2 렌즈군 및 상기 제3 렌즈군에 포함된 복수의 렌즈의 최대 직경은 아래의 수학식에 의해 정의되는 줌 광학계;
    Figure PCTKR2021004973-appb-img-000019
    여기서, APER fix는 고정군인 상기 제1 렌즈군 및 상기 제4 렌즈군에 포함된 렌즈의 최대 직경을 의미하고, APER mov는 이동군인 상기 제2 렌즈군 및 상기 제3 렌즈군에 포함된 렌즈의 최대 직경을 의미할 수 있다.
  10. 제1항에 있어서,
    CRA(chief ray angle)는 -10도보다 크고 10도보다 작은 줌 광학계.
PCT/KR2021/004973 2020-04-21 2021-04-21 광학계 및 이를 포함하는 카메라 모듈 WO2021215806A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21793804.2A EP4141508A4 (en) 2020-04-21 2021-04-21 OPTICAL SYSTEM AND CAMERA MODULE INCLUDING SAME
JP2022564379A JP2023522432A (ja) 2020-04-21 2021-04-21 光学系およびこれを含むカメラモジュール
CN202180039243.4A CN115698814A (zh) 2020-04-21 2021-04-21 光学系统以及包括该光学系统的相机模块
US17/920,222 US20230176347A1 (en) 2020-04-21 2021-04-21 Optical system and camera module comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200048018A KR20210129911A (ko) 2020-04-21 2020-04-21 광학계 및 이를 포함하는 카메라 모듈
KR10-2020-0048018 2020-04-21

Publications (1)

Publication Number Publication Date
WO2021215806A1 true WO2021215806A1 (ko) 2021-10-28

Family

ID=78231392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004973 WO2021215806A1 (ko) 2020-04-21 2021-04-21 광학계 및 이를 포함하는 카메라 모듈

Country Status (6)

Country Link
US (1) US20230176347A1 (ko)
EP (1) EP4141508A4 (ko)
JP (1) JP2023522432A (ko)
KR (1) KR20210129911A (ko)
CN (1) CN115698814A (ko)
WO (1) WO2021215806A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114488494A (zh) * 2021-11-25 2022-05-13 中国科学院西安光学精密机械研究所 一种制冷型中波红外两档变倍光学系统
US11644651B2 (en) 2020-07-31 2023-05-09 Largan Precision Co., Ltd. Image capturing lens system, image capturing unit and electronic device including eight lenses of +−+−++−+, +−+−+−+ or +−−+−−+− refractive powers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112925088B (zh) * 2021-02-03 2022-09-13 广州立景创新科技有限公司 变焦镜头模块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920022034A (ko) * 1991-05-21 1992-12-19 오오가 노리오 줌 렌즈
KR20100082785A (ko) * 2007-12-04 2010-07-19 블랙아이 옵틱스, 엘엘씨 고정 그룹의 리퀴드 렌즈를 가진 텔레포토 타입의 줌 렌즈
JP2011197302A (ja) * 2010-03-18 2011-10-06 Nikon Corp 変倍光学系、光学機器、変倍光学系の製造方法
KR20150007848A (ko) * 2013-07-12 2015-01-21 엘지이노텍 주식회사 텔레센트릭 광학계 및 이를 포함하는 카메라 모듈
WO2019012794A1 (ja) * 2017-07-12 2019-01-17 オリンパス株式会社 撮像ユニット

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594688B2 (ja) * 1976-03-11 1984-01-31 キヤノン株式会社 ズ−ムレンズ
JP6238123B2 (ja) * 2013-11-05 2017-11-29 株式会社リコー ズームレンズおよびカメラ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920022034A (ko) * 1991-05-21 1992-12-19 오오가 노리오 줌 렌즈
KR20100082785A (ko) * 2007-12-04 2010-07-19 블랙아이 옵틱스, 엘엘씨 고정 그룹의 리퀴드 렌즈를 가진 텔레포토 타입의 줌 렌즈
JP2011197302A (ja) * 2010-03-18 2011-10-06 Nikon Corp 変倍光学系、光学機器、変倍光学系の製造方法
KR20150007848A (ko) * 2013-07-12 2015-01-21 엘지이노텍 주식회사 텔레센트릭 광학계 및 이를 포함하는 카메라 모듈
WO2019012794A1 (ja) * 2017-07-12 2019-01-17 オリンパス株式会社 撮像ユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4141508A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644651B2 (en) 2020-07-31 2023-05-09 Largan Precision Co., Ltd. Image capturing lens system, image capturing unit and electronic device including eight lenses of +−+−++−+, +−+−+−+ or +−−+−−+− refractive powers
CN114488494A (zh) * 2021-11-25 2022-05-13 中国科学院西安光学精密机械研究所 一种制冷型中波红外两档变倍光学系统

Also Published As

Publication number Publication date
US20230176347A1 (en) 2023-06-08
EP4141508A4 (en) 2024-05-08
EP4141508A1 (en) 2023-03-01
KR20210129911A (ko) 2021-10-29
JP2023522432A (ja) 2023-05-30
CN115698814A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2021215806A1 (ko) 광학계 및 이를 포함하는 카메라 모듈
WO2017082480A1 (en) Tele-lens and imaging device
WO2013133660A1 (en) Zoom lens and photographing apparatus including the same
WO2015005611A1 (en) Photographing lens and electronic apparatus including the same
WO2017160095A1 (ko) 촬영 렌즈 광학계
WO2017160093A1 (ko) 촬영 렌즈 광학계
WO2013065972A1 (en) Imaging lens
WO2017164607A1 (ko) 렌즈 광학계 및 촬상 장치
WO2022124850A1 (ko) 광학계 및 이를 포함하는 카메라 모듈
WO2012086890A1 (en) Zoom lens system
WO2021246545A1 (en) Lens optical system
WO2013058534A1 (en) Imaging lens
WO2017164605A1 (ko) 촬영 렌즈 광학계
WO2014142438A1 (en) Telephoto zoom lens system and electronic apparatus including the same
WO2022035219A1 (ko) 광학계
WO2016105074A1 (ko) 렌즈 광학계
WO2021201568A1 (ko) 광학계 및 이를 포함하는 카메라 모듈
WO2020141902A1 (ko) 광학계 및 이를 포함하는 카메라 모듈
WO2021071320A1 (ko) 촬상 렌즈
WO2022050723A1 (ko) 광학계 및 이를 포함하는 카메라 모듈
WO2022164196A1 (ko) 광학계 및 이를 포함하는 카메라 모듈
WO2023018233A1 (ko) 광학계 및 이를 포함하는 카메라 모듈
WO2022035134A1 (ko) 광학계
WO2021215807A1 (ko) 광학계 및 이를 포함하는 카메라 모듈
WO2021101158A1 (ko) 광학계 및 이를 포함하는 카메라 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022564379

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021793804

Country of ref document: EP

Effective date: 20221121