WO2021215173A1 - 測定装置、撮像制御方法 - Google Patents
測定装置、撮像制御方法 Download PDFInfo
- Publication number
- WO2021215173A1 WO2021215173A1 PCT/JP2021/011766 JP2021011766W WO2021215173A1 WO 2021215173 A1 WO2021215173 A1 WO 2021215173A1 JP 2021011766 W JP2021011766 W JP 2021011766W WO 2021215173 A1 WO2021215173 A1 WO 2021215173A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- imaging
- light
- control unit
- measuring device
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 148
- 238000003384 imaging method Methods 0.000 title claims description 225
- 238000005259 measurement Methods 0.000 title abstract description 85
- 230000008569 process Effects 0.000 claims abstract description 117
- 238000006243 chemical reaction Methods 0.000 claims abstract description 87
- 238000001514 detection method Methods 0.000 claims abstract description 69
- 239000012530 fluid Substances 0.000 claims abstract description 60
- 238000012545 processing Methods 0.000 claims description 65
- 230000006870 function Effects 0.000 claims description 34
- 230000000694 effects Effects 0.000 abstract description 6
- 210000004027 cell Anatomy 0.000 description 61
- 230000004048 modification Effects 0.000 description 35
- 238000012986 modification Methods 0.000 description 35
- 238000004140 cleaning Methods 0.000 description 32
- 238000005516 engineering process Methods 0.000 description 27
- 244000005700 microbiome Species 0.000 description 25
- 239000007788 liquid Substances 0.000 description 20
- 229920000426 Microplastic Polymers 0.000 description 19
- 238000002347 injection Methods 0.000 description 19
- 239000007924 injection Substances 0.000 description 19
- 238000010586 diagram Methods 0.000 description 16
- 238000004364 calculation method Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 238000001228 spectrum Methods 0.000 description 12
- 229920003023 plastic Polymers 0.000 description 11
- 239000004033 plastic Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000013535 sea water Substances 0.000 description 9
- 238000005286 illumination Methods 0.000 description 8
- 238000010191 image analysis Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000000691 measurement method Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000013473 artificial intelligence Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 210000004081 cilia Anatomy 0.000 description 2
- 210000003495 flagella Anatomy 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 241000282994 Cervidae Species 0.000 description 1
- 241000238578 Daphnia Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000255969 Pieris brassicae Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000002772 conduction electron Substances 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
- G01N15/1433—Signal processing using image recognition
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1425—Optical investigation techniques, e.g. flow cytometry using an analyser being characterised by its control arrangement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1468—Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle
- G01N15/147—Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle the analysis being performed on a sample stream
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
- G06T7/74—Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
- G06V10/14—Optical characteristics of the device performing the acquisition or on the illumination arrangements
- G06V10/143—Sensing or illuminating at different wavelengths
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/25—Determination of region of interest [ROI] or a volume of interest [VOI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/60—Extraction of image or video features relating to illumination properties, e.g. using a reflectance or lighting model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
- G06V10/751—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/05—Underwater scenes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
- G06V20/698—Matching; Classification
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/10—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
- H04N23/13—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/56—Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/61—Control of cameras or camera modules based on recognised objects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/80—Camera processing pipelines; Components thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/40—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
- H04N25/44—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array
- H04N25/443—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array by reading pixels from selected 2D regions of the array, e.g. for windowing or digital zooming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/77—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
- H04N25/772—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
- H04N25/773—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters comprising photon counting circuits, e.g. single photon detection [SPD] or single photon avalanche diodes [SPAD]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/01—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N2015/0042—Investigating dispersion of solids
- G01N2015/0053—Investigating dispersion of solids in liquids, e.g. trouble
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1765—Method using an image detector and processing of image signal
- G01N2021/177—Detector of the video camera type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
- G01N21/45—Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
- G01N21/453—Holographic interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/53—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
- G01N21/534—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6486—Measuring fluorescence of biological material, e.g. DNA, RNA, cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
- G01N33/1893—Water using flow cells
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/07—Target detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/10—Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
- H04N25/11—Arrangement of colour filter arrays [CFA]; Filter mosaics
- H04N25/13—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
- H04N25/135—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/703—SSIS architectures incorporating pixels for producing signals other than image signals
- H04N25/707—Pixels for event detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/77—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
Definitions
- This technology relates to a measuring device for performing measurement based on an image taken on an object contained in a fluid, such as plankton contained in water, and a technical field of an imaging control method thereof.
- Patent Document 1 there is a technique for solving this problem by equipping an autonomous submersible (Autonomous Underwater Vehicle: AUV) or an underwater drone with a microorganism measuring device equipped with an automatic identification function. rice field.
- AUV Autonomous Underwater Vehicle
- Patent Document 2 the presence or absence of microorganisms in a sample is detected by detecting weak light excited by microorganisms when irradiated with a predetermined light such as laser light, and the sample is triggered by the detection of microorganisms. Is disclosed to perform imaging of. According to the method of Patent Document 2, it is not necessary to constantly perform imaging for measurement regardless of the presence or absence of microorganisms in the sample, and power saving can be achieved.
- a single (single pixel) photomultiplier tube is used as a light receiving sensor for detecting the presence or absence of microorganisms, and the return light from the microorganisms is detected in the single pixel.
- Imaging will be performed accordingly. Specifically, imaging is performed according to the detection of return light having a specific wavelength in a single pixel. Since the start condition of imaging is simply to detect the return light of a specific wavelength, there is a high possibility that it will react with other than microorganisms, and there is a difficulty in detecting the presence or absence of microorganisms. If the detection accuracy of the presence or absence of microorganisms is low, it may occur that the image is taken even when the microorganisms are not present in the sample, and it becomes difficult to save power.
- This technology was made in view of the above circumstances, and aims to save power in a measuring device that measures an object in a fluid, such as a measuring device for microorganisms in water.
- the first measuring device includes a light emitting unit that emits light to a fluid, a light receiving unit that obtains a light receiving signal by performing photoelectric conversion of incident light by a plurality of pixels using an electron avalanche phenomenon, and the light receiving signal.
- the control unit includes a control unit that detects an object in the fluid and executes an imaging operation of the object on condition that the object is detected.
- the object is not always imaged, but the detection of the object based on the light receiving signal of the light receiving unit is used as a trigger to reduce the power consumption related to the imaging.
- the presence or absence can be detected based on the received signals of a plurality of pixels.
- the light receiving unit has a SPAD element as a photoelectric conversion element. This eliminates the need to use a large-sized and high-power-consumption photoelectric conversion element such as a photomultiplier tube for the light receiving portion.
- the control unit is configured to perform the detection process of the object based on the image characteristics of the light receiving reaction portion in the light receiving unit.
- the "image feature of the light-receiving reaction portion" referred to here is, for example, the image size and position of the light-receiving reaction portion, the wavelength of the received light, the value of the light-receiving signal, and the like. It means a feature of an image composed of the above pixels.
- the control unit when the image feature of the light receiving reaction portion does not match the specified image feature, the control unit relates to the imaging range corresponding to the light receiving reaction portion. It is conceivable that the configuration is such that imaging is not performed. As a result, it is possible to prevent an object other than an object having a designated image feature from being imaged indiscriminately.
- control unit is configured to detect the pixel position and the image size of the light receiving reaction portion as the image feature. This makes it possible to specify the pixel range in which the object is captured, that is, the pixel range in which the image should be taken, for the image sensor that images the object.
- the control unit performs an imaging operation only on a part of the pixel range in which the object is captured by the imaging sensor that images the object. It is conceivable that the configuration is controlled. As a result, the power consumption related to the imaging can be reduced as compared with the case where the imaging operation is performed for the entire pixel range of the imaging sensor.
- control unit is configured to match the captured image and the template image for the part of the pixel range. By performing matching based on the captured image, it is possible to appropriately identify the type of the object.
- the control unit identifies the class of the object captured in the captured image for the part of the pixel range, and the template image prepared for each class. It is conceivable that the matching is performed using the template image of the identified class. By performing image matching after narrowing down the classes in this way, it is possible to improve the efficiency of the image matching process.
- the control unit captures an image of a part of the pixel range in a reference frame which is a predetermined frame after the object is detected based on the received signal.
- a bounding box is set as a range surrounding the object from the image, and an ROI that includes the bounding box and is a larger area than the bounding box is set.
- the frame is set.
- the ROI set in the immediately preceding frame it is conceivable to set the bounding box of the object and set the ROI based on the bounding box. This makes it possible to track the object even when the object moves in the captured image.
- the sensor that functions as the light receiving unit and the image sensor that images the object under the control of the control unit are configured as separate bodies. Can be considered.
- existing sensors can be diverted as a sensor that functions as a light receiving unit (a sensor that performs photoelectric conversion using an electron avalanche phenomenon) and an image sensor that images an object.
- the first measuring device is configured to include a single sensor having a function as the light receiving unit and a function of imaging the object based on the control of the control unit. Can be considered.
- the sensor is a separate body, it is necessary to provide a spectroscopic means for distributing the light from the fluid to each sensor, but the integrated sensor eliminates the need to provide such a spectroscopic means.
- the first measuring device includes a flow cell in which the fluid is sampled with respect to the internal flow path, and the control unit receives the flow path with respect to the flow path after the imaging operation is completed. It is conceivable that the flow cell is washed by inflowing a fluid different from the fluid as a sample. As a result, it is possible to prevent the occurrence of erroneous measurement such as the measured object being measured again.
- control unit is configured to perform detection processing of the object based on the received light signal after the inflow of the other fluid into the flow path. Can be considered. This makes it possible to confirm the presence or absence of an object remaining after cleaning.
- the imaging control method includes at least a light emitting unit that emits light to a fluid and a light receiving unit that obtains a light receiving signal by performing photoelectric conversion of incident light by a plurality of pixels using an electron avalanche phenomenon.
- An imaging control method for an apparatus which is an imaging control method in which an object detection process in the fluid is performed based on the received light signal, and an imaging operation of the object is executed on condition that the object is detected. Is. Even with such an imaging control method, the same operation as that of the first measuring device according to the present technology can be obtained.
- the second measuring device includes a light emitting unit that emits light to the fluid, an image sensor that obtains a light receiving signal by performing photoelectric conversion of the incident light by a plurality of pixels, and the light receiving signal in the fluid.
- the control unit is provided with a control unit that causes the image pickup sensor to execute an imaging operation of the object on condition that the object is detected in the above-mentioned object.
- the imaging operation is controlled so that the imaging operation is performed only for a part of the pixel range in which the object is captured. According to the above configuration, it is possible to reduce the power consumption related to the imaging by performing the imaging of the object as a trigger, instead of constantly imaging the object. In addition, the power consumption related to imaging can be reduced as compared with the case where the imaging operation is performed for the entire pixel range of the imaging sensor.
- control unit can be configured to match the captured image and the template image for the part of the pixel range. By performing matching based on the captured image, it is possible to appropriately identify the type of the object.
- control unit identifies the class of the object captured in the captured image for the part of the pixel range, and is prepared for each class. It is possible to configure the matching by using the template image of the identified class among the template images. By performing image matching after narrowing down the classes in this way, it is possible to improve the efficiency of the image matching process.
- the measuring device 1 is a device that measures an object contained in a fluid taken in as a sample, such as a microorganism contained in seawater. Specifically, the measuring device 1 of this example takes in seawater, lake water, or the like as a sample, and measures an object such as plankton contained in the sample.
- the measurement is a concept including at least one of the identification of the number, type, or feature of the object, or the recording or storage of the captured image of the object.
- FIG. 1 is a diagram for explaining an example of a device form of the measuring device 1.
- the measuring device 1 may take, for example, a towed type towed by a ship navigating on the sea or a lake, or an installed type installed in the sea or lake water.
- a device form as a submersible type installed in a submersible that navigates in the sea or lake water can be adopted.
- FIG. 2 is a block diagram showing an example of the internal configuration of the measuring device 1.
- the measuring device 1 includes a sample container 2, a cleaning liquid container 3, a sample switching unit 4, a flow cell 5, a sample discharging unit 6, a front light source 7, a rear light source 8, a detection light source 9, and a SPAD (Single Photon Avalanche Diode). It includes a sensor 10, an image sensor 11, a half mirror 12, a mirror 13, a lens 14, a lens 15, a control unit 16, a storage unit 17, and a communication unit 18.
- SPAD Single Photon Avalanche Diode
- the sample container 2 is a container for accommodating a fluid as a sample (seawater or lake water in this example), and accommodates a sample taken in from the outside of the apparatus through the sample intake port Mi.
- the cleaning liquid container 3 is a container that houses a cleaning liquid for cleaning the flow path in the flow cell 5.
- the sample switching unit 4 switches the fluid flowing into the flow path in the flow cell 5 between the sample from the sample container 2 and the cleaning liquid from the cleaning liquid container 3.
- the flow cell 5 functions as a sample accommodating portion, and the fluid as a sample is sampled with respect to the flow path formed inside. As will be described later, when the sample switching unit 4 is switched to the cleaning liquid container 3, the cleaning liquid flows into the flow path of the flow cell 5.
- the sample discharge unit 6 has a pump for discharging the fluid, and when the pump is driven, the fluid in the flow path of the flow cell 5 is discharged through the sample discharge port Mo located outside the device.
- the flow path from the sample container 2 to the sample discharging section 6 via the sample switching section 4 ⁇ the flow cell 5 and the sample discharging section 6 from the cleaning liquid container 3 via the sample switching section 4 ⁇ the flow cell 5 Each of the flow paths leading to the flow path is a consistent flow path, and the inflow of the sample from the sample container 2 to the flow cell 5 and the inflow of the cleaning liquid from the cleaning liquid container 3 to the flow cell 5 are performed by driving the pump of the sample discharge unit 6.
- the front light source 7 is used as a light source for illuminating the fluid in the flow cell 5 corresponding to the time of imaging by the image sensor 11.
- the "front surface” here means a surface on the image sensor 11 side with reference to the position of the flow cell 5.
- the front light source 7 is an annular light source, which prevents the image sensor 11 from interfering with the image pickup, and illuminates the sample from the diagonal side from the front side of the flow cell 5.
- the rear light source 8 is used as a light source for illuminating the fluid in the flow cell 5 in response to imaging by the image sensor 11, and is located on the opposite side of the flow cell 5 from the front light source 7. There is.
- FIG. 3 shows an example of an image captured by the back light source 8 when illuminated
- FIG. 4 shows an example of an image captured when illuminated by the front light source 7.
- the rear light source 8 is used for bright field imaging.
- the light transmitted through the sample is received by the image sensor 11, which is the same as the method used in a general microscope. Since the illumination light is directly incident on the lens 15, the background becomes bright.
- the front light source 7 is used for dark field imaging. Light is applied from the oblique side of the sample, and the scattered light and the reflected light of the object are received by the image sensor 11. Even if it is a transparent object, the contrast is high and it can be measured finely. In this case, since the illumination light does not directly enter the lens 15, the background becomes dark.
- the detection light source 9 emits light for detecting an object with respect to the sample sampled in the flow cell 5.
- this detection light source 9 for example, a semiconductor laser or the like is used.
- the light emitted from the detection light source 9 is reflected by the half mirror 12 and irradiates the fluid sampled in the flow path in the flow cell 5.
- the SPAD sensor 10 functions as a sensor for detecting an object in the fluid in the flow cell 5.
- a pixel array in which a plurality of photodetected pixels are arranged is used in order to detect weak light of microorganisms and particles.
- SPAD can be considered as one of the technologies for this photodetector pixel.
- avalanche amplification occurs when one photon enters the PN junction region of a high electric field in a state where a voltage larger than the breakdown voltage is applied.
- the presence / absence, position, size, etc. of the microorganism or particle in the flow cell 5 can be specified.
- the SPAD sensor 10 has a SPAD element that performs photoelectric conversion of incident light by utilizing an electron avalanche phenomenon.
- the electron avalanche phenomenon in a SPAD element is a kind of phenomenon known as the internal photoelectric effect.
- the internal photoelectric effect is a phenomenon in which conduction electrons inside a substance increase when a semiconductor or an insulator is irradiated with light.
- a SPAD element is an element having a light receiving resolution in photon units. In other words, it is an element that can identify the presence or absence of light reception in photon units.
- the SPAD sensor 10 in this example has a configuration in which a plurality of pixels having a SPAD element are arranged two-dimensionally. Light emitted from an object in the fluid in the flow cell 5 is incident on the SPAD sensor 10 through the half mirror 12, the mirror 13, and the lens 14.
- the image sensor 11 is configured as an image sensor of, for example, a CCD (Charge Coupled Device) type or a CMOS (Complementary Metal Oxide Semiconductor) type, and a plurality of pixels having a photoelectric conversion element are arranged two-dimensionally.
- the photoelectric conversion element included in each pixel of the image sensor 11 does not perform photoelectric conversion using the electron avalanche phenomenon, and a photoelectric conversion element used in general imaging such as a photodiode is adopted. That is, it is a photoelectric conversion element having a lower light receiving resolution than the SPAD element.
- the image pickup sensor 11 performs imaging (imaging including at least the flow path in the image pickup field of view) for the flow path in the flow cell 5. Light (image light) from the flow cell 5 passes through the half mirror 12 and enters the image sensor 11 through the lens 15.
- the control unit 16 is configured to include, for example, a microcomputer having a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory), and controls the entire measuring device 1. For example, the control unit 16 performs switching control of the sample switching unit 4, light emission drive control of the front light source 7 and the rear light source 8, pump drive control in the sample discharge unit 6, light emission drive control of the detection light source 9, and the like. Further, the control unit 16 performs a process of reading data stored in the storage unit 17, a process of storing the data in the storage unit 17, and exchanging various data with an external device via the communication unit 18.
- the storage unit 17 is composed of a non-volatile memory.
- the communication unit 18 performs wired or wireless data communication with an external device. Further, the control unit 16 of this example performs detection processing of an object based on the received signal by the SPAD sensor 10, various image analysis processing based on the image captured by the image pickup sensor 11, and the like, but these processes will be described later. I will explain it again.
- FIG. 5 is an explanatory diagram of a detection process of an object in a sample.
- the detection light source 9 is made to emit light to irradiate the sample with the detection light.
- the fluid as a sample is moved in the discharge direction (direction of the sample discharge port Mo) in the flow path of the flow cell 5. That is, the pump of the sample discharge unit 6 is driven, and the fluid is gradually moved in the discharge direction.
- the SPAD sensor 10 does not receive the return light from the object.
- the object appears in the field of view as shown in FIG. 5B, the return light from the object based on the light emitted from the detection light source 9 is received by the SPAD sensor 10.
- this return light becomes light excited from phytoplankton by a fluorescence reaction based on the irradiation light of the detection light source 9.
- the object is zooplankton, the return light is scattered light generated by the zooplankton based on the irradiation light of the detection light source 9.
- the image pickup operation is performed by the image pickup sensor 11. That is, when the return light is not received, the image pickup operation by the image pickup sensor 11 is not performed to reduce the power consumption related to the image pickup.
- the SPAD sensor 10 as the light receiving part of the return light, the light receiving part can be made smaller and the power consumption can be reduced as compared with the case where the light receiving part uses the conventional photomultiplier tube.
- the influence of noise caused by the dark current should be considered.
- the following method is adopted for the detection process of the object based on the received signal of the SPAD sensor 10.
- FIG. 6 shows an example of noise caused by dark current.
- noise is randomly generated in one independent pixel. Therefore, in this example, as illustrated in FIG. 7, when light reception is recognized in a region of a plurality of adjacent pixels, a method of discriminating the region as a light receiving region of the return light from the object is adopted.
- FIG. 7A shows an example of a light receiving region of the return light from the phytoplankton (black-painted pixels in the figure), and
- FIG. 7B shows an example of the light receiving region of the return light from the zooplankton.
- the image pickup is performed using the image pickup sensor 11.
- noise countermeasures can be taken by causing the detection light source 9 to emit pulse light (blinking light emission) and synchronizing the light receiving timing of the SPAD sensor 10 with this.
- definition information I1 information for defining the object to be measured (hereinafter referred to as "definition information I1") is set in advance for the measuring device 1. 8 and 9 show an example of definition information I1.
- the definition information I1 can be information including the class particle name, size, wavelength component, and image data of the object, as illustrated in FIG. 8, for example.
- the class particle name for example, if the object is plankton, information on the specific name is defined.
- the size information is information indicating the size classification of the object, and is information having a range such as "20 ⁇ m to 40 ⁇ m" in the figure.
- the wavelength component information is information that defines the wavelength component of the return light according to the irradiation light of the detection light source 9.
- the image data is image data (image data) of an object. As this image data, it is possible to use the data actually captured for one individual of the object, or it is possible to use the representative image data obtained by machine learning from the captured images of a plurality of individuals.
- the definition information I1 in addition to the information in which a specific object is specified as shown in FIG. 8, the information may be information in which only some features are specified as illustrated in FIG. ..
- FIG. 9 shows an example of definition information I1 in which only the size of the object to be measured and the wavelength component are specified.
- these definition information I1 are stored in, for example, the storage unit 17 shown in FIG.
- FIG. 10 shows an example in which a different wavelength filter is provided for each pixel of the SPAD sensor 10.
- the pixel indicated by "A” is a pixel provided with a wavelength filter having a wavelength of 550 nm (hereinafter referred to as "pixel A")
- the pixel indicated by "B” is a pixel provided with a wavelength filter having a wavelength of 600 nm (hereinafter referred to as "pixel").
- Pixels indicated by “B”) and “C” are pixels provided with a wavelength filter having a wavelength of 650 nm (hereinafter referred to as “pixel C"), and pixels indicated by “D” are pixels provided with a wavelength filter having a wavelength of 700 nm. (Hereinafter referred to as "pixel D").
- the A pixel, the B pixel, the C pixel, and the D pixel are arranged so as to exist every other pixel in each of the horizontal direction (row direction) and the vertical direction (column direction). There is. With such a configuration, it is possible to specify which wavelength light is received at which pixel position.
- FIG. 11 shows a configuration example corresponding to the case where a plurality of SPAD sensors 10 are used.
- the SPAD sensor 10 composed of only A pixel (550 nm), the SPAD sensor 10 composed of only B pixel (600 nm), and C.
- the optical system is configured so as to disperse the return light from the flow cell 5 side and guide it to the light receiving surface of each SPAD sensor 10.
- FIG. 12 schematically shows an example of a received image received by the SPAD sensor 10.
- the white and hazy substantially circular portions (three locations in the illustrated example) schematically represent the light receiving portion.
- two white circles exemplify the correspondence between the size of the light receiving surface of the SPAD sensor 10 and the actual size of the subject. Specifically, the small white circles represent the size of 20 ⁇ m, and the large white circles represent the size of 40 ⁇ m.
- the light-receiving image shown in FIG. 12 exemplifies the light-receiving image obtained by the SPAD sensor 10 without a wavelength filter.
- FIG. 13 shows the light receiving reaction when the SPAD sensor 10 in which the A, B, C, and D pixels are mixed and arranged as shown in FIG. 10 is subjected to the light receiving operation for the same subject as in the case of FIG.
- An example of a pixel (shown in black in the figure) is shown.
- FIG. 13 illustrates a case where a light receiving reaction occurs at three places similar to the case of FIG. 12 as a result of performing the light receiving operation for the same subject as in the case of FIG.
- the definition information I1 shown in FIG. 8 is set as the definition information I1 of the object
- the size of the object is 20 nm to 40 nm
- the wavelength component is 650 nm ⁇ 10 nm.
- the light receiving reaction is obtained with a single B pixel and a single D pixel, respectively, but these light receiving reaction regions are different from the wavelength conditions in the definition information I1 and are different from the adjacent multiple pixels. Since the condition of is not satisfied, it is not determined to be the light receiving region of the object.
- there is a region where a light receiving reaction is obtained at a plurality of adjacent C pixels (wavelength 650 nm). Specifically, the light receiving reaction region of the C pixel is set to the region of 3 ⁇ 3 9 pixels.
- the light receiving reaction region is set as the light receiving region of the object. Judge that there is.
- Such determination of the light receiving region of the object can be similarly performed when a plurality of SPAD sensors 10 are used as shown in FIG. 11 above. Specifically, when the light receiving operation is performed on the same subject as in the case of FIG. 12, each SPAD sensor 10 can obtain the light receiving reaction as illustrated in FIG. 14, but the light receiving reaction in the SPAD sensor 10 having only B pixels is obtained. Since the region and the light-receiving reaction region in the SPAD sensor 10 having only D pixels are different from the wavelength conditions in the definition information I1 and do not satisfy the conditions with a plurality of adjacent pixels, they are not determined to be the light-receiving regions of the object.
- the light receiving region (light receiving reaction region) of the object determined according to the conditions based on the definition information I1 as described above is referred to as "light receiving region Ats”.
- FIGS. 10 and 11 show an example in which wavelength filters are provided in all the pixels of the SPAD sensor 10, pixels in which no wavelength filter is not provided may be mixed.
- the light receiving region Ats is specified based on the light received image by the SPAD sensor 10 (that is, the existence of an object matching the size and wavelength conditions of the object is recognized).
- the image pickup operation is performed by the image pickup sensor 11.
- the definition information I1 includes the image data of the object as shown in FIG. 8, it is determined whether or not the definition information I1 is the object based on the image captured by the image sensor 11 and the image data. ..
- FIG. 15 is a diagram for explaining a determination process of an object based on such a captured image.
- FIG. 15A illustrates the relationship between the light receiving region Ats on the SPAD sensor 10 and the imaging region Ati on the imaging sensor 11.
- the imaging region Ati means a pixel region of the imaging sensor 11 that can capture the same subject as the subject captured in the light receiving region Ats.
- the image of the imaging region Ati specified from the light receiving region Ats is compared with the target image data (that is, the image data included in the definition information) as shown in FIG. 15B. I do.
- the target image data that is, the image data included in the definition information
- a final determination result is obtained that the subject captured in the imaging region Ati (that is, the subject captured in the light receiving region Ats) is the object.
- the measurement setting information I2 is information that defines various conditions related to the measurement of the object. Specifically, the measurement setting information I2 of this example is assumed to include the following information. That is, "measurement execution condition”, “sample injection speed”, “imaging rule”, and "lighting setting”.
- the "measurement execution condition" is information that defines the conditions related to the execution of the measurement, and is, for example, information such as "measurement for 10 minutes at a depth of 200 m" or "measurement for 5 minutes at an electrical conductivity of 80 mS / cm or more". ..
- the electrical conductivity is an index of the content of minerals in water.
- the electrical conductivity can be used when investigating the relationship between the mineral content and the inhabiting microorganisms. For example, when measuring microorganisms in a mineral-rich part, the electrical conductivity conditions as in the above example are used.
- Set When electrical conductivity is used as the measurement condition, a sensor for detecting the electrical conductivity of seawater or lake water is externally attached to the measuring device 1. The detection information by the external sensor is input to the control unit 16 via the communication unit 18 shown in FIG.
- the “sample injection rate” is information that defines the injection rate of the sample into the flow cell 5, and is, for example, information such as "0.5 ml / min”.
- the “imaging rule” is information that defines a rule for imaging an object using the imaging sensor 11, and is, for example, information such as "still image imaging” or "moving image imaging".
- the image pickup rule of the moving image it is also possible to use information for designating the end condition of the moving image imaging and the frame rate, such as "imaging at 20 fps until the object exits the flow cell 5".
- the “illumination setting” is information that defines the illumination used when imaging an object using the image sensor 11, and in this example, it is defined information for the front light source 7 and the rear light source 8 described above. For example, it is information such as "dark field imaging (front light source 7)" and “bright field imaging (rear light source 8)". As for the illumination at the time of imaging, both the illumination at the time of imaging, both the illumination at the time of imaging, both the
- Such measurement setting information I2 is stored in, for example, a storage unit 17, and the measuring device 1 measures an object according to the measurement setting information I2.
- the power consumption related to the imaging is reduced by performing the imaging using the imaging sensor 11 with the detection of the object based on the received signal by the SPAD sensor 10 as a trigger.
- the imaging operation of the object is performed only on the imaging region Ati.
- the imaging operation that starts in response to the identification of the light receiving region Ats based on the received image received by the SPAD sensor 10
- an imaging operation using all the pixels of the imaging sensor 11 is performed.
- the image pickup operation is performed using only the image pickup area Ati obtained from the light receiving area Ats.
- the imaging operation for measurement is performed only for a part of the necessary pixel range, and the power consumption can be reduced.
- the measurement of an object is a concept including the identification of the number, type, and characteristics of the object as described above, but when appropriately specifying (counting) the number for each type of the object, the imaging field of view is used.
- the objects detected in the above it is important to appropriately manage the counted objects and the uncounted objects. Therefore, in this example, once the object is recognized, tracking is performed until the frame is out of the imaging field of view so that duplicate counting is not performed.
- FIG. 16 is an explanatory diagram for tracking an object in the embodiment.
- the frame F1 shown in FIG. 16A means a frame at a stage where the imaging region Ati is specified from the light receiving region Ats as described in FIG. 15A above.
- the imaging operation is performed only for the imaging region Ati.
- the image in the imaging region Ati is subjected to image comparison (image matching) with the image data in the definition information I1.
- image matching image matching
- the bounding box 20 as a range surrounding the area of the object is calculated.
- the ROI 21 is calculated by, for example, enlarging (ax ⁇ by) the vertical and horizontal sizes (xx y) of the bounding box 20.
- the enlargement scales a and b can be set separately in the vertical and horizontal directions, and the enlargement ratio may be fixed or variable.
- the frame F2 shown in FIG. 16C is the next frame of the frame F1.
- the imaging operation is performed only for the ROI 21 calculated in the frame F1 which is the previous frame.
- the position of the object in the frame F2 is shifted to the right of the paper surface from the position in the frame F1. Since the ROI 21 is calculated as an enlarged range of the vertical and horizontal sizes of the bounding box 20, it is possible to capture the object in the ROI 21 in the frame F2 as shown in the figure.
- the captured image of the ROI21 calculated in the previous frame is subjected to image recognition processing of the object in the image, for example, by performing image analysis based on the image data of the definition information I1, and the object is recognized.
- the bounding box 20 is calculated.
- the ROI 21 is calculated for the newly calculated bounding box 20 (FIG. 16D).
- the imaging operation is performed only for the ROI 21 calculated in the frame F2 in this way. Also in this case, since the ROI 21 is in the range in which the vertical and horizontal sizes of the bounding box 20 are expanded, the object can be captured in the ROI 21 even when the object moves in a certain direction.
- the captured image of ROI21 calculated in the previous frame is subjected to image analysis to perform object recognition processing, and the bounding box 20 for the recognized object is calculated and the bounding box 20 is calculated.
- the ROI 21 is calculated based on the calculated bounding box 20.
- the above tracking method can be rephrased as the following method. That is, in the reference frame (frame F1 in this example), which is a predetermined frame after the object is detected based on the received signal by the SPAD sensor 10, the bounding box 20 is set as a range surrounding the object, and the bounding box 20 is set.
- the ROI 21 which includes the bounding box 20 and is a larger area than the bounding box 20 is set, and in the frame after the reference frame, the bounding of the object is set in the ROI 21 set in the immediately preceding frame.
- the ROI 21 based on the bounding box 20 is set.
- the captured image required for each frame for tracking the object is only the captured image of ROI21. Therefore, in this example, the imaging operation is performed only for the ROI 21 calculated in the immediately preceding frame in each frame as described above. As a result, when tracking an object to prevent erroneous counting, it is possible to reduce the power consumption related to imaging for tracking.
- the ROI 21 is not limited to the rectangular area.
- semantic segmentation that is, the result of object area detection at the pixel level, may be used to calculate ROI 21 with a shape other than a rectangle.
- the measuring device 1 also performs a process related to cleaning the flow cell 5 using the cleaning liquid contained in the cleaning liquid container 3 shown in FIG. 2, which will be described again with reference to the flowchart of FIG.
- FIG. 17 is a flowchart showing a processing flow from the start of measurement to the end of measurement.
- the processes shown in FIGS. 17 to 19 are executed by the control unit 16 shown in FIG. 2 based on a program stored in a predetermined storage device such as a built-in ROM.
- step S101 the control unit 16 waits for the measurement start condition to be satisfied. That is, it waits until the condition specified in the "measurement execution condition" in the above-mentioned measurement setting information I2 is satisfied.
- the case where the depth and electrical conductivity conditions are specified is illustrated as an example of the "measurement execution condition", but these depths and electrical conductivity are input to the measuring device 1 from an external sensor. .. Specifically, the input is performed via the communication unit 18.
- step S102 the control unit 16 proceeds to step S102 to perform the sample injection start process. That is, by controlling the sample switching unit 4 shown in FIG. 2 to be switched to the sample container 2 side and instructing the drive of the pump in the sample discharge unit 6, the injection of the sample into the flow cell 5 is started. .. At this time, the driving of the pump is executed according to the information of "sample injection speed" in the measurement setting information I2 described above.
- step S103 the control unit 16 performs a process of turning on the detection light source 9, and in the next step S104, gives a light receiving instruction to the SPAD sensor 10. That is, the SPAD sensor 10 is made to execute a light receiving operation for obtaining a light receiving image for one sheet. Then, in step S105 following step S104, the control unit 16 performs a process of turning off the detection light source 9, and acquires a received image in the next step S106.
- step S107 the control unit 16 determines whether or not there is a light receiving region (that is, the light receiving region Ats described above) that matches the conditions.
- a light receiving region that is, the light receiving region Ats described above
- the control unit 16 determines whether or not there is a light receiving region (that is, the light receiving region Ats described above) that matches the conditions.
- the condition that the light receiving reaction region can be obtained by adjacent multiple pixels, but also the light receiving region when the conditions of the wavelength and the size defined in the definition information I1 are satisfied. Determined as Ats.
- step S107 If it is determined in step S107 that there is no light receiving region that matches the conditions, the control unit 16 returns to step S103. As a result, the light irradiation by the detection light source 9 and the light receiving operation by the SPAD sensor 10 are repeatedly executed until the light receiving region Ats is determined.
- step S107 If it is determined in step S107 that there is a light receiving region that matches the conditions, the control unit 16 proceeds to step S108 to calculate the imaging region Ati. That is, the imaging region Ati is calculated based on the light receiving region Ats. Then, in step S109 following step S108, the control unit 16 causes the image pickup sensor 11 to perform partial imaging of the image pickup region Ati.
- This partial imaging that is, the imaging operation targeting only the imaging region Ati, is, for example, an imaging operation in which the reading of the accumulated charge signal is executed for only a part of the pixel range as the imaging region Ati. Can be considered.
- the partial imaging may be an imaging operation in which the A / D conversion of the charge signal read from each pixel is executed for only a part of the pixels.
- the imaging operation targeting a partial pixel range is not the entire pixel range but a partial pixel range for at least a part of the processing from the start of light reception to the acquisition of the captured image signal by the digital signal. It means that the processing is limited to.
- the lighting control is performed according to the information of "lighting setting" in the measurement setting information I2 described above.
- the illumination control in the partial imaging in step S109 may be controlled according to the designated information separately from the measurement setting information I2.
- step S110 following step S109 the control unit 16 performs a process of acquiring a partially captured image from the image sensor 11, and in the next step S111, matches with the target template image. That is, as described with reference to FIG. 15B above, an image comparison is performed between the partially captured image of the imaging region Ati and the image data in the definition information I1, and the subject captured in the imaging region Ati is defined in the definition information I1. Performs a determination process of whether or not the object is an object.
- step S112 the control unit 16 determines whether or not the particle is a target particle. That is, based on the result of the matching process in step S111, it is determined whether or not the subject captured in the imaging region Ati is an object. If it is determined in step S112 that the particle is not a target particle (that is, it is not an object), the control unit 16 returns to step S103. That is, when it is determined that the subject captured in the imaging region Ati is not an object, the light receiving operation by the SPAD sensor 10 is performed again.
- step S112 determines whether the subject captured in the imaging region Ati is an object
- the control unit 16 proceeds to step S113 and performs imaging control according to the imaging rule specified in the measurement setting. That is, as the control of the image sensor 11, the control is performed according to the information of the "imaging rule" in the measurement setting information I2.
- the information of the "imaging rule” includes, for example, information such as “still image imaging” and “moving image imaging”, and information such as "imaging at 20 fps until the object exits the flow cell 5". Can be set.
- the lighting control during the imaging operation executed in step S113 is performed according to the information of "lighting setting" in the measurement setting information I2.
- step S114 the control unit 16 determines whether or not the imaging end condition is satisfied.
- the imaging end condition here is a condition specified from the information specified as the above-mentioned "imaging rule". For example, in the case of "still image imaging", imaging of a still image is a condition for ending imaging, and in the case of moving image imaging, if “imaging at 20 fps until the object exits the flow cell 5", the object is imaged.
- the imaging end condition is to frame out from the field of view (imaging range) of the sensor 11. If the imaging end condition is not satisfied, the control unit 16 re-executes the process of step S113.
- the control unit 16 proceeds to step S115 to determine whether or not the measurement end condition is satisfied.
- the measurement end condition is a condition specified from the information specified as the "measurement execution condition" in the measurement setting information I2. For example, “measurement for 10 minutes every 200 m in depth” is specified as the "measurement execution condition”. In this case, the measurement end condition is 10 minutes after the measurement start condition is satisfied. If the measurement end condition is not satisfied, the control unit 16 returns to step S103.
- step S116 executes the injection stop process. That is, the pump of the sample discharge unit 6 is stopped, and the sample injection into the flow cell 5 is stopped. Then, the control unit 16 executes the cleaning process in the following step S117, and ends the series of processes shown in FIG. The cleaning process in step S117 will be described again.
- FIG. 18 is a flowchart illustrating a processing procedure for realizing tracking of an object.
- the tracking process shown in FIG. 18 as a measurement of the object, when counting the number of the objects in the flow cell 5, the once recognized object is framed so that the counted objects are not counted twice. It is conceivable to perform it as a process for tracking until it goes out. Alternatively, from the viewpoint of reducing power consumption related to imaging, it is conceivable that the process shown in FIG. 18 is executed as a process at the time of imaging when moving image imaging is specified as the "imaging rule".
- step S201 the control unit 16 recognizes the object region of the partially captured image of the imaging region Ati.
- the image acquired in step S110 of FIG. 17 is used.
- step S201 the region of the object captured in this partially captured image is recognized.
- step S202 following step S201 the control unit 16 calculates the bounding box 20. That is, the bounding box 20 described with reference to FIG. 16 is calculated based on the region of the object recognized in the partially captured image.
- step S203 the control unit 16 calculates ROI21 and waits for the next frame in step S204.
- control unit 16 After waiting for the next frame in step S204, the control unit 16 causes partial imaging of ROI 21 to be executed in step S205. That is, the image sensor 11 is made to perform partial imaging of the ROI 21 calculated in step S203.
- step S206 following step S205 the control unit 16 performs the object recognition process in the ROI 21. That is, the recognition process of the object in the partially captured image of ROI21 is performed by performing image analysis based on the image data of the definition information I1.
- step S207 the control unit 16 determines whether or not the object has been recognized. If the object is recognized in step S207, the control unit 16 returns to step S202. As a result, if the object is recognized in the ROI 21 calculated in the previous frame, a new bounding box 20 and ROI 21 for the object are calculated in the next frame.
- step S207 the control unit 16 ends the series of processes shown in FIG. In this case, the tracking of the object is terminated when the object is lost, but it is also possible to restart the tracking when the object is recognized again within a predetermined frame from the lost object. be.
- FIG. 18 shows processing for one object, but when corresponding to a plurality of objects, the processes of steps S201 to S207 are executed for each object for which the light receiving region Ats is specified. do it.
- FIG. 19 is a flowchart of the cleaning process (S117) shown in FIG.
- the control unit 16 performs a process of switching to the cleaning liquid container 3 in step S121. That is, the sample switching unit 4 is instructed to switch from the sample container 2 to the cleaning liquid container 3.
- step S122 following step S121 the control unit 16 drives the pump of the sample discharge unit 6 to start the injection of the cleaning liquid from the cleaning liquid container 3 into the flow cell 5 as the injection start process, and stops the injection in the next step S123. Wait for the condition to be met.
- the injection stop condition here, for example, it is conceivable that a certain time elapses from the start of injection, a predetermined amount or more of the cleaning liquid is injected into the flow cell 5, and the like.
- the cleaning conditions such as the injection stop condition may be variably set by the setting information such as the measurement setting information I2.
- control unit 16 When the injection stop condition is satisfied, the control unit 16 performs a process of stopping the drive of the pump of the sample discharge unit 6 as the injection stop process of step S124, and proceeds to step S125.
- Steps S125 to S128 are processes for obtaining a received image received by the SPAD sensor 10 for the washed flow cell 5.
- the control unit 16 turns on the detection light source 9, gives a light receiving instruction to the SPAD sensor 10 in step S126, and turns off the detection light source 9 in step S127.
- the control unit 16 acquires the received image received by the SPAD sensor 10.
- step S129 the control unit 16 determines whether or not there is a light receiving region that meets the conditions. That is, it is determined whether or not there is a light receiving region Ats that matches the wavelength and size conditions specified in the definition information I1 in the light receiving image. This corresponds to determining whether or not an object corresponding to the object remains in the flow cell 5. If it is determined in step S129 that there is a light receiving region that matches the conditions, the control unit 16 returns to step S122. As a result, if an object remains in the flow cell 5 even after cleaning, the flow cell 5 is re-cleaned.
- step S129 determines whether there is no light receiving region that matches the conditions. If it is determined in step S129 that there is no light receiving region that matches the conditions, the control unit 16 proceeds to step S130 to execute a process of switching to the sample container 2, and then ends a series of processes shown in FIG.
- the measurement of the object has been mentioned to specify the number and size, but the measurement may be a process of specifying the characteristics of the object.
- the shape features flagella, cilia, tactile sensation, feet, eyes, presence or absence of body segments, number, etc.
- structural features presence or absence of cells, whether they are unicellular or multicellular
- the presence or absence of movement, the presence or absence of chloroplasts, etc. can be specified by image analysis of the captured image.
- the specified information can be stored in the storage unit 17 or the like as the measurement result information. For example, it is conceivable to store the feature information about the shape and structure as described above.
- the received image received by the SPAD sensor 10 return light (fluorescence, reflection, scattered light) from the object is detected, and it is also conceivable to store information indicating a wavelength component of these return light.
- the measurement result can be stored for each type of the specified object.
- the detection information by the external sensor can be stored together with the information of these measurement results. For example, when the above-mentioned depth and electrical conductivity information is used, it is conceivable to store the external sensor information together with the measurement result information.
- the SPAD sensor 10 and the image sensor 11 can have structures as shown in FIGS. 20 to 22.
- FIG. 20 shows the SPAD sensor 10 and the imaging sensor 11 formed on separate substrates.
- FIG. 21 shows a SPAD sensor 10 and an imaging sensor 11 formed on a common substrate.
- FIG. 22 shows a functional unit as the SPAD sensor 10 and a functional unit as the image pickup sensor 11 formed in a common semiconductor chip.
- the SPAD sensor 10 and the image sensor 11 are formed on separate substrates as shown in FIG. 20, in the measuring device 1, the SPAD sensor 10 and the image sensor 11 are arranged in parallel (the light receiving surfaces of each other are parallel). There is no need to arrange). Therefore, a configuration in which the mirror 13 as shown in FIG. 23 is omitted can be adopted.
- a single sensor having a function as a SPAD sensor 10 and a function as an image sensor 11 that is, a function of imaging an object based on the control of the control unit 16.
- 24 and 25 show examples of such a single sensor.
- a pixel G10 having a SPAD element as a photoelectric conversion element and a pixel G11 used in the image sensor 11 are mixed in the same pixel array unit.
- the pixel G11 can be rephrased as a pixel having a photoelectric conversion element having a light receiving resolution lower than that of the SPAD element.
- the example of FIG. 25 is an example of using a pixel Gmx having both the function of the pixel G10 and the function of the pixel G11 described above.
- a plurality of pixels Gmx are arranged two-dimensionally as shown in the figure.
- the pixel Gmx can be rephrased as a pixel having a photoelectric conversion element capable of both detecting the amount of light with a resolution in photon units and detecting the amount of light with a resolution in normal imaging as a photoelectric conversion element. can.
- a sensor that functions as a light receiving unit a sensor that performs photoelectric conversion using an electron avalanche phenomenon
- an object Since it is possible to divert existing sensors as the imaging sensors for imaging, it is not necessary to develop and use a new sensor, and in that respect, the cost of the measuring device 1 can be reduced.
- FIG. 26 is a block diagram showing an internal configuration example of the image pickup sensor 11A as a modified example.
- the image pickup sensor 11A has an image processing function for the captured image data as well as a function of generating the captured image data.
- the image sensor 11A is provided with an object detection function by image analysis, and is a device that can be called an intelligent array sensor.
- the image sensor 11A includes a pixel array unit 31, an ADC (Analog to Digital Converter) / pixel selector 32, a buffer 33, a logic unit 34, a memory 35, an interface (I / F) unit 36, and a calculation unit 37.
- ADC Analog to Digital Converter
- the ADC / pixel selector 32, the buffer 33, the logic unit 34, the memory 35, the interface (I / F) unit 36, and the calculation unit 37 can communicate with each other via the bus 30.
- the pixel array unit 31 is configured by two-dimensionally arranging a plurality of pixels having a photoelectric conversion element such as the pixel G11 described above.
- An electric signal photoelectrically converted by the pixel array unit 31 is input to the ADC / pixel selector 32.
- the ADC / pixel selector 32 digitizes an electrical signal as an input analog signal and outputs an image signal (image data) as digital data. Further, the ADC / pixel selector 32 has a pixel selection function for the pixels (photoelectric conversion element) of the pixel array unit 31. As a result, it is possible to acquire the photoelectric conversion signal and output it as digital data only for the selected pixel in the pixel array unit 31.
- the ADC / pixel selector 32 normally outputs the photoelectric conversion signal to digital data for all the effective pixels constituting the image of one frame, but outputs the photoelectric conversion signal to digital data only for the selected pixel. It is also possible to do it. For example, such an ADC / pixel selector 32 can realize partial imaging of the imaging region Ati described above.
- Image data is acquired in frame units by the ADC / pixel selector 32, and the image data of each frame is temporarily stored in the buffer 33, read out at an appropriate timing, and used for processing by the logic unit 34.
- the logic unit 34 can perform various necessary signal processing (image signal processing) on each input frame image signal. For example, the logic unit 34 can adjust the image quality by processing such as color correction, gamma correction, color gradation processing, gain processing, and contour enhancement processing. Further, the logic unit 34 may perform processing for changing the data size, such as data compression processing, resolution conversion, and frame rate conversion. Parameters used for each process are set for each process performed by the logic unit 34. For example, there are setting values such as color and brightness correction coefficients, gain values, compression rates, and frame rates. The logic unit 34 performs necessary processing using the parameters set for each processing. In the present embodiment, the calculation unit 37 may set these parameters.
- the image data processed by the logic unit 34 is stored in a memory 35 configured by, for example, a DRAM (Dynamic Random Access Memory) or the like.
- the image data stored in the memory 35 is transmitted and output to the outside (for example, the control unit 16) by the interface unit 36 at a required timing.
- the arithmetic unit 37 is configured to include, for example, a microcomputer having a CPU, ROM, RAM, and the like.
- the calculation unit 37 exchanges instructions and data with respect to each unit of the ADC / pixel selector 32, the buffer 33, the logic unit 34, the memory 35, and the interface (I / F) unit 36 via the bus 30.
- the ADC / pixel selector 32 is subjected to a process of instructing the pixel range for digitally outputting the photoelectric conversion signal.
- various parameters are instructed to the logic unit 34 as needed.
- the calculation unit 37 has a function as an image processing unit 37a.
- the image processing unit 37a is, for example, a processing unit having AI (Artificial Intelligence), and can perform object detection processing in captured image data and recognition processing for the detected object.
- AI Artificial Intelligence
- the "object” here refers to an object that can be detected for the purpose of recognition from an image. What kind of object is to be detected differs depending on the application of the measuring device 1, etc., but any object may be the object referred to here. Animals including humans, moving objects (automobiles, bicycles, aircraft, etc.), natural objects (vegetables, plants, etc.), industrial products / parts, structures, facilities, mountains, seas, rivers, stars , Sun, clouds, etc. can be any object.
- the class here is information representing the category of an object, for example, "person”, “car”, “airplane”, “ship”, “truck”, “bird”, “cat”, “dog”, “deer”, “frog”, “horse”. It is a classification of objects to be identified, such as.
- the image processing by the calculation unit 37 as illustrated above is a process that is not normally performed in the image sensor. Therefore, it can be said that the image pickup sensor 11A performs more intelligent processing as compared with a normal image sensor, and in that sense, it can be called an intelligent array sensor.
- the process related to image recognition among the processes of the control unit 16 described above can be carried out on the image sensor 11A side.
- the matching process in step S111 and the determination process in step S112 based on the matching process can be performed by using the image processing unit 37a in the image sensor 11A.
- the tracking process of the object shown in FIG. 18 can also be performed by using the image processing unit 37a.
- the image data used for the object recognition process is stored in a storage device (for example, a memory 35) in the image sensor 11A.
- the image processing unit 37a is also used for these processes. It is conceivable to use it.
- the information of the measurement result is stored in a storage device in the image sensor 11A such as the memory 35, and the calculation unit 37 passes through the interface unit 36 in response to a request from the outside (for example, the control unit 16). It is also possible to take a configuration of outputting.
- the matching process of step S111 is performed by using the image processing unit 37a
- the matching process using the class identification function by AI can also be performed.
- the AI is configured so that a plurality of classes such as "phytoplankton” and "zooplankton” can be identified as the class of the object.
- a template image used for the matching process each of them is prepared (for example, stored in a memory 35 or the like).
- the image processing unit 37a performs a class identification process using AI on the captured image of the image pickup area Ati to identify the class of the object captured in the image pickup area Ati.
- a template image corresponding to the identified class is selected, image matching is performed using the selected template image, and it is determined whether or not the object in the imaging region Ati is an object.
- image matching After performing image matching after narrowing down the classes in this way, it is possible to improve the efficiency of the image matching process.
- the matching process using such class identification can also be performed by the control unit 16.
- the embodiment is not limited to the specific example described above, and configurations as various modified examples can be adopted.
- an organism such as plankton is mainly exemplified, but the object may be an abiotic object.
- the lighting device 1B corresponding to the case where microplastic floating in seawater or the like is detected as an object will be described.
- FIG. 27 shows an example of the internal configuration of the lighting device 1B as a modified example.
- microplastics that float in seawater can be roughly classified into chip type and fiber type by shape. Then, each of these chip type and fiber type microplastics can be further classified according to the material.
- the material type of microplastic include material types such as polyethylene, phenol, polycarbonate, polystyrene, and polypropylene.
- the material type of microplastic include material types such as polyethylene, phenol, polycarbonate, polystyrene, and polypropylene.
- the material type of microplastic include material types such as polyethylene, phenol, polycarbonate, polystyrene, and polypropylene.
- the chip type the polyethylene material and the phenol material can be distinguished, and the same polystyrene material but the chip type and the fiber type can be distinguished.
- the detection light source 9B capable of emitting light including the wavelength component of the near infrared light is used instead of the detection light source 9.
- the SPAD sensor 10 the SPAD sensor 10B having sensitivity to near infrared light is used.
- the detection light source 9B can be configured by, for example, a tungsten halogen lamp, a semiconductor laser, or the like.
- the image sensor 11 the image sensor 11B having sensitivity to near infrared light is used.
- control unit 16B is provided instead of the control unit 16 in order to detect the microplastic and recognize the object.
- the microplastic has a peculiar distribution as a power spectrum distribution of reflected light (distribution of reflected light intensity with respect to wavelength) in the near infrared region.
- This peculiar power spectrum distribution is referred to as "characteristic power spectrum”. Therefore, regarding the light-receiving reaction portion of the SPAD sensor 10B, the light-receiving reaction portion is microscopic by determining whether or not the power spectrum distribution of the reflected light in the near-infrared region has a distribution as a characteristic power spectrum of the microplastic. It can be determined whether or not it is a light receiving reaction portion (light receiving region) of plastic.
- the SPAD sensor 10B used is provided with wavelength filters for different wavelengths in the near infrared region.
- wavelength filters for different wavelengths are alternately arranged.
- the pattern of the power spectrum distribution of the reflected light of the microplastic differs depending on the material type.
- the determination of the material type based on such a power spectrum distribution pattern is performed based on the image captured by the image sensor 11B. Therefore, the image sensor 11B, like the SPAD sensor 10B, is configured so that the difference in the wavelength of the reflected light can be discriminated with respect to the near infrared light. Specifically, wavelength filters having different wavelengths in the near-infrared region are alternately arranged as shown in the example of FIG.
- step S301 the control unit 16B performs a process of excluding from the near-infrared light receiving region Ats, which does not have the characteristic power spectrum of the plastic.
- the SPAD sensor 10B wavelength filters having different wavelengths are provided for each pixel in the near infrared region. Therefore, in the light receiving region Ats in this case, the reflected light power for each different wavelength in the near infrared region is applied. Detectable.
- step S301 it is possible to determine whether or not the plastic has a characteristic power spectrum based on the reflected light power for each wavelength. By excluding those that do not have the characteristic power spectrum of plastic from the light receiving region Ats of near infrared light from the target, imaging is not performed in the imaging range corresponding to the light receiving region Ats.
- step S302 following step S301 the control unit 16B calculates the corresponding imaging region Ati for the target light receiving region Ats. That is, the corresponding imaging region Ati is calculated for the light receiving region Ats determined to have the characteristic power spectrum of the plastic in step S301. Then, in step S303 following step S302, the control unit 16B determines the shape type of the plastic based on the partially captured image of the imaging region Ati. That is, the above-mentioned chip type and fiber type are determined. Needless to say, in executing the process of step S303, the control unit 16B instructs the imaging unit 11B to execute partial imaging of the imaging region Ati.
- the determination of the shape type in step S303 can be performed by image analysis of the partially captured image. For example, the shape type can be determined by matching with the image data in the definition information I1 set in advance for each target plastic.
- step S304 the control unit 16B determines the type of plastic material by power spectrum analysis.
- the imaging sensor 11B is provided with wavelength filters having different wavelengths for each pixel in the near-infrared region, in this case, the imaging region Ati detects the reflected light power for each different wavelength in the near-infrared region. It is possible.
- the plastic material type is determined based on the reflected light power for each wavelength and the preset characteristic power spectrum for each target plastic material.
- step S305 following step S304 the control unit 16B determines the size of the plastic by image analysis. For the determination of this size, it is conceivable to determine the size having a range such as 20 ⁇ m to 40 ⁇ m.
- control unit 16B ends a series of processes shown in FIG. 28.
- FIG. 28 illustrates the process related to the measurement of microplastic
- the process related to the measurement of microorganisms such as plankton can be performed together with the process shown in FIG. 28. That is, the processing related to the measurement of microorganisms as shown in FIGS. 17 and 18 above is also performed.
- the wavelength band of the return light may be close to the wavelength band of the return light from the microplastic depending on the type of the target microorganism.
- the light receiving region Ats specified as the light receiving region for the microorganism can be excluded from the detection target of the microplastic.
- the imaging region Ati it is also possible to exclude the imaging region Ati in which the characteristics of microorganisms such as the presence of cilia and flagella are recognized from the measurement target of the microplastic.
- the image pickup sensor 11A described with reference to FIG. 26 can also be applied to the measuring device 1B.
- the image processing unit 37a executes the shape type determination process in step S303, the material type determination process in step S304, and the size determination process in step S305. Further, when the tracking process is performed on the microplastic, the tracking process can also be executed by the image processing unit 37a.
- FIG. 29 is a block diagram showing an internal configuration example of the measuring device 1C as a second modified example that enables measurement of an object without using the flow cell 5.
- the difference from the measuring device 1 shown in FIG. 2 is that the flow cell 5 is omitted and the configuration related to the uptake and discharge of the sample into the flow cell 5, specifically, the sample container 2 and the cleaning liquid container 3 (sample).
- ToF Time Of Flight
- the range shown as the "capable distance range” schematically represents the distance range in which the image capture sensor 11 can capture an image.
- the imageable distance range is defined as at least a range (range of depth of field) in which the image is captured by the image sensor 11.
- the distance calculation unit 25 is provided to calculate the distance to the target object, and the image pickup is executed by the image pickup sensor 11 on the condition that the object is located within the image capture distance range. ..
- FIG. 30 is a flowchart showing the flow of processing from the start of measurement to the end of measurement in the second modification.
- the process of FIG. 30 is executed by the control unit 16C based on a program stored in a predetermined storage device such as a built-in ROM.
- step S102 The differences from the processing shown in FIG. 17 are that the processing for starting sample injection in step S102 was omitted, the determination processing in step S151 was inserted between steps S107 and S108, and the injection in step S116. The point is that the stop process and the cleaning process of S117 are omitted.
- step S151 the control unit 16C determines whether or not there is a light receiving region within the imageable distance range. That is, it is determined whether or not there is a light receiving region within the imageable distance range in the light receiving region Ats specified in step S107. Specifically, the control unit 16C acquires information on the distance to the light receiving region Ats specified in step S107 based on the distance information (depth image) obtained by the distance calculation unit 25, and the distance is the imageable distance range. Whether or not the value is within the distance range defined as is determined for all the specified light receiving region Ats.
- control unit 16C obtains a determination result that there is a light receiving region within the imageable distance range, and if not, the control unit 16C is within the imageable distance range. Obtain a determination result that there is no light receiving area.
- control unit 16C If it is determined that there is no light receiving region within the imageable distance range, the control unit 16C returns to step S103. That is, if there is no light receiving region Ats within the imageable distance range, the image pickup sensor 11 does not perform imaging. On the other hand, if it is determined that there is a light receiving region within the imageable distance range, the control unit 16C proceeds to step S108. As a result, imaging is performed by the imaging sensor 11 on condition that there is a light receiving region Ats within the image pickup distance range, and appropriate measurement can be performed in a configuration in which the flow cell 5 is omitted.
- step S108 the processing after step S108 is performed on the light receiving region Ats within the imageable distance range.
- FIG. 31 is a block diagram showing an internal configuration example of the measuring device 1D as a third modification. The difference from the measuring device 1C shown in FIG. 29 is that the slit light source 26 is provided instead of the detection light source 9, and the distance calculation unit 25 is omitted.
- the slit light source 26 emits slit light Ls that illuminates the imageable distance range.
- the slit light source 26 for example, a semiconductor laser, an LED (Light Emitting Diode), or the like can be considered.
- the reflected light can be detected only from the object located within the imageable distance range. Therefore, it is not necessary to obtain the distance to the object in order to determine whether the object is located within the imageable distance range as in the second modification, and the distance calculation unit 25 can be omitted.
- control unit 16D performs the detection light source control process (steps S103 and S105) instead of the detection light source 9 in the series of processes shown in FIG. 30 above.
- the slit light source 26 is targeted and the determination process of step S151, that is, the determination process of whether or not there is a light receiving region within the imageable distance range is not executed.
- FIG. 32 is a block diagram showing an internal configuration example of the measuring device 1E as a fourth modification.
- the flow cell 5 and the configuration related to the uptake and discharge of the sample into the flow cell 5 are omitted.
- a control unit 16E is provided in place of the control unit 16.
- a light source 27, a collimation lens 40, a beam splitter 41, a beam coupling element 42, a mirror 43, and a mirror 44 are provided as an optical system for realizing a digital holographic microscope.
- a semiconductor laser is used as the light source 27, and the coherent light emitted from the light source 27 passes through the beam splitter 41 through the collimation lens 40 and is partially incident on the beam coupling element 42 as object light. After a part of the light is reflected by the beam splitter 41, it is incident on the beam coupling element 42 as reference light through the mirrors 43 and 44 as shown in the figure.
- the beam coupling element 42 transmits the incident object light, couples the reference light incident through the mirror 44 on the same optical axis as the object light, and emits the light to the half mirror 12. As shown in the drawing, a part of the coupled light incident on the half mirror 12 is transmitted and guided to the image pickup sensor 11, and the other part is reflected and guided to the SPAD sensor 10.
- Digital holographic technology captures the pattern of interference fringes between object light and reference light with an image sensor (imaging sensor 11), and calculates the diffraction phenomenon of light from the captured interference fringe pattern to obtain three-dimensional information on the object. It is a technology to obtain.
- the depth of field is relatively shallow, and the depth of field of an objective lens for imaging fine particles such as plankton is about 1 mm. Therefore, if an attempt is made to directly image seawater in the vertical direction while diving, it is necessary to perform imaging a large number of times while changing the depth.
- a digital holographic microscope can realize a deep depth of field of about 100 times that of a lens imaging method using an objective lens. Therefore, when imaging while moving a certain volume, the number of imagings can be significantly reduced as compared with a general microscope.
- the light emitted by the light source 27 is used for detecting the object using the SPAD sensor 10.
- the control unit 16E turns on the light source 27 in response to the determination that there is a light receiving region Ats that matches the conditions based on the light receiving signal of the SPAD sensor 10, and controls to execute the imaging operation by the imaging sensor 11. I do.
- the light for detecting an object using the SPAD sensor 10 it is possible to use light from a light source provided separately from the light source 27 instead of the light emitted by the light source 27.
- the fifth modification is a modification related to object measurement based on an image captured by the image sensor 11.
- the object region is recognized based on the partially captured image of the imaging region Ati (S201)
- the bounding box 20 is calculated based on the recognized object region (S202: see FIG. 16), and the calculated bounding is calculated.
- the ROI 21 was calculated based on the box 20 (S203)
- the ROI 21 was partially imaged in the next frame (S205)
- the object recognition process in the ROI 21 was performed (S206).
- the image resolution may be different depending on the size of the ROI 21 calculated in step S203 (that is, the ROI 21 calculated in the previous frame).
- FIG. 33 shows an example in which zooplankton Pm and phytoplankton Pp are imaged as an example of an image captured by the image sensor 11, and FIG. 34 shows ROI-1 which is an ROI 21 calculated for zooplankton Pm. ROI-2, which is the ROI21 calculated for phytoplankton Pp, is illustrated.
- zooplankton Pm is larger than phytoplankton Pp.
- zooplankton Pm such as Daphnia pulexum has a body length of about 2 mm to 3.5 mm
- phytoplankton Pp such as Sebonekeisou has a body length of about 0.06 mm.
- the image resolution in the partial imaging of ROI21 performed in the next frame is controlled to be higher than when it is large.
- the image resolution is maximized (that is, no thinning) for ROI-2 of the small phytoplankton Pp, and the image resolution is 1 for the ROI-1 of the large zooplankton Pm.
- step S206 it is possible to recognize an object having a large ROI21 size even if the image resolution is slightly low, but for an object having a small ROI21 size. If the image resolution is lowered, recognition may become impossible. Therefore, in this example, when the size of the ROI 21 is small as described above, the image resolution in the partial imaging of the ROI 21 performed in the next frame is higher than when the size of the ROI 21 is large. As a result, it is possible to reduce the burden of recognition processing on an object having a large size of ROI 21 and prevent the accuracy of recognition processing from being lowered on an object having a small size of ROI 21. In other words, it is possible to achieve both reduction of the recognition processing load and prevention of deterioration of recognition processing accuracy.
- the measurement of objects having different sizes is performed by using the objective lens for each size of the object. It can be done at the same time without any changes.
- FIG. 35 is a block diagram showing an internal configuration example of the measuring device 1F as a sixth modification. The difference from the measuring device 1 shown in FIG. 2 is that the SPAD sensor 10, the mirror 13, and the lens 14 are omitted, and the control unit 16F is provided in place of the control unit 16.
- the SPAD sensor 10 When it is possible to detect an object based on a weak return light from an object such as excitation light due to a fluorescence reaction of phytoplankton, the SPAD sensor 10 is capable of detecting the weak return light. It is necessary to use. However, when a return light having a light intensity sufficiently stronger than the fluorescence reaction can be obtained, such as scattered light of zooplankton, the SPAD sensor 10 is unnecessary, and the return light is detected by the image sensor 11 (image sensor). It is possible to do. Therefore, in the sixth modification, the SPAD sensor 10 is omitted, and the image sensor 11 is used to perform the detection process of the object.
- FIG. 36 is a flowchart showing the flow of processing from the start of measurement to the end of measurement in the sixth modification.
- the process of FIG. 36 is executed by the control unit 16F based on a program stored in a predetermined storage device such as a built-in ROM.
- step S161 The difference from the processing shown in FIG. 17 is that the light receiving instruction processing in step S161 is performed instead of the light receiving instruction processing in step S104. Specifically, the control unit 16F gives a light receiving instruction to the image sensor 11 in step S161. As a result, the determination process of step S107, that is, the determination process of whether or not there is a light receiving region that matches the conditions, is performed based on the received image (captured image) by the image sensor 11.
- the image sensor 11 can be configured as a vision sensor that reads out the received signal of the pixel where the event occurs only when the event occurs.
- the vision sensor is a sensor called DVS (Dynamic Vision Sensor) or EVS (Event-based Vision Sensor).
- a plurality of pixels having photoelectric conversion elements are arranged in two dimensions, and a detection circuit that detects an address event in real time is a pixel. It is an asynchronous image sensor provided for each.
- the address event is an event that occurs for each address assigned to each of a plurality of pixels arranged in two dimensions.
- the event here means, for example, that the current value based on the electric charge generated in the photoelectric conversion element or the amount of change thereof exceeds a certain threshold value.
- the vision sensor detects the presence or absence of an address event for each pixel, and when the occurrence of an address event is detected, the vision sensor reads a pixel signal as pixel data from the pixel of the corresponding address.
- a vision sensor since pixel data is read out to pixels in which the occurrence of an address event is detected, it is more than a synchronous image sensor that reads out all pixels at a predetermined frame rate. Very high-speed reading is possible, and the amount of data read as one frame is small. Therefore, by using the vision sensor, it is possible to detect the movement of the object more quickly, and the frequency of the reading operation can be reduced, so that the power consumption can be reduced.
- control unit 16F in the sixth modification also matches the captured image and the template image for a part of the pixel range in which the object is captured (from step S108). See S111). At this time, the control unit 16F identifies the class of the object captured in the captured image for the part of the pixel range as described in the modified example of FIG. 26, and the template image prepared for each class is identified. Matching can also be performed using the template image of the identified class.
- control unit 16F in the sixth modification also performs the process for realizing the tracking of the object described in FIG. 18 and the like. Specifically, the bounding box 20 is calculated, the ROI 21 is calculated based on the bounding box 20, and the object recognition process in the ROI 21 is performed.
- the sixth modification has been described as an application example to the type using the flow cell 5, but the type in which the flow cell 5 is omitted as in the second and third modifications described above and the fourth modification are the same. It is also possible to adopt a type of configuration to which a digital holographic microscope is applied.
- the SPAD sensor adopts a configuration in which a plurality of pixels are arranged one-dimensionally. You can also.
- the SPAD sensor can be a single pixel sensor.
- the first measuring device of the embodiment (1, 1B, 16C, 16D, 16E) has a light emitting unit (detection light source 9, 9B, slit light source 26) that emits light to the fluid and incident light.
- the light receiving unit (SPAD sensors 10 and 10B) that obtains a light receiving signal by performing photoelectric conversion using the electron avalanche phenomenon with a plurality of pixels, and the target object is detected in the fluid based on the light receiving signal. It is provided with a control unit (16, 16B, 16C, 16D, 16E) for executing an imaging operation of an object on condition that it is detected.
- the object is not always imaged, but the detection of the object based on the light receiving signal of the light receiving unit is used as a trigger to reduce the power consumption related to the imaging.
- the presence or absence can be detected based on the received signals of a plurality of pixels. Therefore, it is possible to improve the detection accuracy of the presence or absence of the object, and it is possible to save the power consumption of the measuring device.
- By reducing the power consumption of the measuring device it is possible to reduce the size of the battery as a power source, and thereby the measuring device can be miniaturized.
- the light receiving unit has a SPAD element as a photoelectric conversion element. This eliminates the need to use a large-sized and high-power-consumption photoelectric conversion element such as a photomultiplier tube for the light receiving portion. Therefore, the light receiving unit can be miniaturized and the power can be saved, and the measuring device can be miniaturized and the power can be saved.
- the control unit performs the detection process of the object based on the image characteristics of the light receiving reaction portion in the light receiving unit (S107 in FIG. 17 and S301 in FIG. 28). See).
- the "image feature of the light-receiving reaction portion" referred to here is, for example, the image size and position of the light-receiving reaction portion, the wavelength of the received light, the value of the light-receiving signal, and the like. It means a feature of an image composed of the above pixels. Based on such image features of the light-receiving reaction portion, it is possible to appropriately estimate whether or not the light-receiving reaction portion captures an object.
- the control unit when the image feature of the light receiving reaction portion does not match the specified image feature, the control unit takes an image of the imaging range corresponding to the light receiving reaction portion. Is prevented from being done. As a result, it is possible to prevent an object other than an object having a designated image feature from being imaged indiscriminately. Therefore, it is possible to reduce the power consumption related to imaging, and it is possible to reduce the power consumption of the measuring device.
- the control unit detects the pixel position and the image size of the light receiving reaction portion as image features (see FIGS. 12 to 14 and the like). This makes it possible to specify the pixel range in which the object is captured, that is, the pixel range in which the image should be taken, for the image sensor that images the object. Therefore, it is possible to prevent an object other than an object having a designated image feature from being imaged indiscriminately, and it is possible to reduce power consumption related to imaging.
- the control unit performs an imaging operation only for a part of the pixel range in which the object is captured by the imaging sensors (11, 11B) that image the object. It is controlled so that it can be used. As a result, the power consumption related to the imaging can be reduced as compared with the case where the imaging operation is performed for the entire pixel range of the imaging sensor. Therefore, the power saving of the measuring device can be achieved.
- the control unit matches the captured image and the template image for a part of the pixel range (see S111 in FIG. 17). By performing matching based on the captured image, it is possible to appropriately identify the type of the object. Therefore, it is possible to improve the accuracy of the object measurement by improving the recognition accuracy of the object.
- control unit identifies the class of the object captured in the captured image for a part of the pixel range, and identifies the template image prepared for each class. Matching is performed using the template image of the class. By performing image matching after narrowing down the classes in this way, it is possible to improve the efficiency of the image matching process.
- the control unit receives the object from the captured image of a part of the pixel range in the reference frame which is a predetermined frame after the object is detected based on the received signal.
- a bounding box (20) is set as a range surrounding the frame, and an ROI (21) that includes the bounding box and is larger than the bounding box is set.
- the bounding box of the object is set and the ROI based on the bounding box is set (see FIG. 16). This makes it possible to track the object even when the object moves in the captured image.
- the captured image required for each frame for tracking the object is only the captured image of the ROI. Therefore, when tracking an object to prevent erroneous counting, the imaging range for tracking can be narrowed down to only the ROI, and the power consumption related to imaging for tracking can be reduced.
- the sensor that functions as the light receiving unit and the imaging sensor that images the object under the control of the control unit are separated (FIGS. 20 to 22). See).
- existing sensors can be diverted as a sensor that functions as a light receiving unit (a sensor that performs photoelectric conversion using an electron avalanche phenomenon) and an image sensor that images an object. Therefore, it is not necessary to develop and use a new sensor, and the cost of the measuring device can be reduced.
- the first measuring device as the embodiment includes a single sensor having a function as a light receiving unit and a function of imaging an object based on the control of the control unit (FIGS. 24 and 24). 25).
- the sensor is a separate body, it is necessary to provide a spectroscopic means for distributing the light from the fluid to each sensor, but the integrated sensor eliminates the need to provide such a spectroscopic means. Therefore, the number of optical components can be reduced, and the measuring device can be miniaturized.
- a flow cell (5) in which the fluid is sampled with respect to the internal flow path is provided, and the control unit is provided with respect to the flow path after the end of the imaging operation.
- a fluid different from the fluid as the sample is allowed to flow in to wash the flow cell (see FIG. 19).
- the control unit performs detection processing of the object based on the received light signal after the inflow of another fluid into the flow path (S123 to S129 in FIG. 19). See). This makes it possible to confirm the presence or absence of an object remaining after cleaning. Therefore, if there is a residue of the object, it is possible to perform a countermeasure process for preventing erroneous measurement, such as re-cleaning the flow cell, and it is possible to enhance the effect of preventing the occurrence of erroneous measurement.
- the imaging control method of the embodiment includes at least a light emitting unit that emits light to a fluid and a light receiving unit that obtains a light receiving signal by performing photoelectric conversion of the incident light by a plurality of pixels using an electron avalanche phenomenon.
- This is an imaging control method of a measuring device, which is an imaging control method in which an object is detected in a fluid based on a light receiving signal, and an imaging operation of the object is executed on condition that the object is detected. Even with such an imaging control method, the same operations and effects as those of the first measuring device as the above-described embodiment can be obtained.
- the second measuring device (1F) as an embodiment is a light emitting unit (for example, a detection light source 9) that emits light to a fluid, and an imaging sensor that obtains a received signal by performing photoelectric conversion of incident light with a plurality of pixels. (For example, 11) and a control unit (16F) that detects an object in the fluid based on the received signal and causes the image sensor to perform an imaging operation of the object on condition that the object is detected. ), And the control unit controls the imaging operation of the object so that the imaging operation is performed only for a part of the pixel range in which the object is captured.
- the power consumption related to imaging can be reduced as compared with the case where the imaging operation is performed for the entire pixel range of the imaging sensor. Therefore, the power saving of the measuring device can be achieved.
- control unit matches the captured image and the template image for a part of the pixel range. By performing matching based on the captured image, it is possible to appropriately identify the type of the object. Therefore, it is possible to improve the accuracy of the object measurement by improving the recognition accuracy of the object.
- control unit identifies the class of the object captured in the captured image for a part of the pixel range, and the template image prepared for each class is identified. Matching is performed using the template image of the identified class.
- the present technology can also adopt the following configurations.
- a light emitting part that emits light to a fluid
- a light receiving part that obtains a light receiving signal by performing photoelectric conversion of the incident light using the electron avalanche phenomenon
- a measuring device including a control unit that performs detection processing of an object in the fluid based on the received light signal and executes an imaging operation of the object on condition that the object is detected.
- the measuring device according to (1) above wherein the light receiving unit has a SPAD element as a photoelectric conversion element.
- the control unit The measuring device according to (1) or (2) above, wherein the detection process of the object is performed based on the image characteristics of the light receiving reaction portion in the light receiving portion.
- the control unit The measuring device according to (3) above, wherein if the image feature of the light receiving reaction portion does not match the designated image feature, the imaging range corresponding to the light receiving reaction portion is not imaged. (5) The control unit The measuring device according to any one of (3) or (4) above, which detects the pixel position and image size of the light receiving reaction portion as the image feature. (6) The control unit The measuring device according to any one of (1) to (5) above, wherein the imaging sensor that captures an image of the object controls the imaging operation so that the imaging operation is performed only in a part of the pixel range in which the object is captured. (7) The control unit The measuring device according to (6) above, which matches an captured image and a template image for a part of the pixel range.
- the control unit Class identification of an object captured in the captured image for a part of the pixel range is performed, and the matching is performed using the template image of the identified class among the template images prepared for each class (7). ).
- the control unit In the reference frame, which is a predetermined frame after the object is detected based on the received light signal, a bounding box is set as a range surrounding the object from the captured image of the partial pixel range, and the bounding is performed. Set the ROI, which is a larger area than the bounding box, including the box. In the frame after the reference frame, the bounding box of the object is set in the ROI set in the immediately preceding frame, and the ROI based on the bounding box is set from the above (6).
- the measuring device according to (8).
- the control unit The measuring device according to (12), wherein after the inflow of the other fluid into the flow path, the object is detected based on the received signal.
- An imaging control method in which an object detection process in the fluid is performed based on the received light signal, and an imaging operation of the object is executed on condition that the object is detected.
- a light emitting part that emits light to a fluid
- An imaging sensor that obtains a received signal by performing photoelectric conversion of incident light with multiple pixels
- a control unit that performs detection processing of an object in the fluid based on the received light signal and causes the image sensor to execute an imaging operation of the object on condition that the object is detected is provided.
- the control unit A measuring device that controls the imaging operation of the object so that the imaging operation is performed only for a part of the pixel range in which the object is captured.
- the control unit The measuring device according to (15), wherein the captured image and the template image for a part of the pixel range are matched.
- the control unit Class identification of an object captured in the captured image for a part of the pixel range is performed, and the matching is performed using the template image of the identified class among the template images prepared for each class. ).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Evolutionary Computation (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本技術に係る測定装置は、流体に対し光を発する発光部と、入射光について複数の画素により電子雪崩現象を利用した光電変換を行って受光信号を得る受光部と、受光信号に基づいて流体中における対象物の検出処理を行い、対象物が検出されたことを条件として対象物の撮像動作を実行させる制御部とを備える。
Description
本技術は、例えば水中に含まれるプランクトン等、流体中に含まれる対象物について撮像画像に基づく測定を行うための測定装置とその撮像制御方法の技術分野に関する。
従来、水中の微生物測定では、水深度別に採水器で採取した試料を陸上で検査するという方式が採られていた。そのため、手間がかかり、また即時性に欠けるものであった。
そこで、例えば下記特許文献1のように、自律型潜水艇(Autonomous Underwater Vehicle:AUV)や水中ドローンに自動識別機能が搭載された微生物測定装置を搭載することで、この問題を解決する技術はあった。
しかしながら、この特許文献1の手法では、試料をフローセルに通した後、試料内での微生物の有無に関わらず撮像と識別を行っている。そのため、撮像に多くの消費電力を要するという課題があった。
探査艇のスペースの制限や搭載バッテリの容量は限られているため、測定装置はできるだけ小型で省電力稼働することが要請される。
探査艇のスペースの制限や搭載バッテリの容量は限られているため、測定装置はできるだけ小型で省電力稼働することが要請される。
下記特許文献2には、例えばレーザ光等の所定の光を照射した際に微生物が励起する微弱光を検知することで試料中における微生物有無を検出し、微生物が検出されたことをトリガとして試料の撮像を行うことが開示されている。この特許文献2の手法によれば、測定のための撮像を試料中の微生物有無に拘わらず常時行う必要がなくなり、省電力化を図ることができる。
しかしながら、特許文献2の手法では、微生物の有無を検出するための受光センサとして単体の(単画素の)光電子増倍管が用いられており、単画素において微生物からの戻り光が検出されることに応じて撮像が行われることになる。具体的には、単画素において特定波長の戻り光が検出されたことに応じて撮像が行われる。撮像の開始条件が単に特定波長の戻り光が検出されることとされているので、微生物以外に反応してしまう可能性が高く、微生物有無の検出精度に難があった。微生物有無の検出精度が低いことによっては、試料中に微生物が存在しない場合にまで撮像が行われてしまうといったことが生じ得るものとなり、省電力化を図ることが困難となる。
本技術は上記事情に鑑み為されたものであり、例えば水中微生物の測定装置等、流体中の対象物について測定を行う測定装置に関して省電力化を図ることを目的とする。
本技術に係る第一の測定装置は、流体に対し光を発する発光部と、入射光について複数の画素により電子雪崩現象を利用した光電変換を行って受光信号を得る受光部と、前記受光信号に基づいて前記流体中における対象物の検出処理を行い、前記対象物が検出されたことを条件として前記対象物の撮像動作を実行させる制御部と、を備えるものである。
上記構成によれば、対象物の撮像を常時行うのではなく、受光部の受光信号に基づき対象物が検出されたことをトリガとして行うことにより撮像に係る消費電力削減を図るにあたり、対象物の有無を複数画素の受光信号に基づき検出することが可能とされる。
上記構成によれば、対象物の撮像を常時行うのではなく、受光部の受光信号に基づき対象物が検出されたことをトリガとして行うことにより撮像に係る消費電力削減を図るにあたり、対象物の有無を複数画素の受光信号に基づき検出することが可能とされる。
上記した本技術に係る第一の測定装置においては、前記受光部は、光電変換素子としてSPAD素子を有する構成とすることが考えられる。
これにより、受光部に光電子増倍管のような大型且つ大消費電力の光電変換素子を用いる必要がなくなる。
これにより、受光部に光電子増倍管のような大型且つ大消費電力の光電変換素子を用いる必要がなくなる。
上記した本技術に係る第一の測定装置においては、前記制御部は、前記対象物の検出処理を前記受光部における受光反応部分の画像的特徴に基づいて行う構成とすることが考えられる。
ここで言う「受光反応部分の画像的特徴」とは、例えば受光反応部分の画サイズや位置、受光した光の波長や受光信号の値等、受光反応部分としての、受光反応のあった少なくとも1以上の画素で構成される画像についての特徴を意味する。
ここで言う「受光反応部分の画像的特徴」とは、例えば受光反応部分の画サイズや位置、受光した光の波長や受光信号の値等、受光反応部分としての、受光反応のあった少なくとも1以上の画素で構成される画像についての特徴を意味する。
上記した本技術に係る第一の測定装置においては、前記制御部は、前記受光反応部分の画像的特徴が指定された画像的特徴に一致しない場合は当該受光反応部分に対応した撮像範囲についての撮像が行われないようにする構成とすることが考えられる。
これにより、指定された画像的特徴を有する物体以外が無闇に撮像されてしまうことの防止を図ることが可能となる。
これにより、指定された画像的特徴を有する物体以外が無闇に撮像されてしまうことの防止を図ることが可能となる。
上記した本技術に係る第一の測定装置においては、前記制御部は、前記画像的特徴として、前記受光反応部分の画素位置及び画サイズを検出する構成とすることが考えられる。
これにより、対象物の撮像を行う撮像センサについて、対象物が捉えられる画素範囲、すなわち撮像を行うべき画素範囲を特定することが可能となる。
これにより、対象物の撮像を行う撮像センサについて、対象物が捉えられる画素範囲、すなわち撮像を行うべき画素範囲を特定することが可能となる。
上記した本技術に係る第一の測定装置においては、前記制御部は、前記対象物の撮像を行う撮像センサにおいて、前記対象物が捉えられる一部の画素範囲についてのみ撮像動作が行われるように制御する構成とすることが考えられる。
これにより、撮像センサにおける全画素範囲について撮像動作を行う場合よりも撮像に係る消費電力の削減が図られる。
これにより、撮像センサにおける全画素範囲について撮像動作を行う場合よりも撮像に係る消費電力の削減が図られる。
上記した本技術に係る第一の測定装置においては、前記制御部は、前記一部の画素範囲についての撮像画像とテンプレート画像とのマッチングを行う構成とすることが考えられる。
撮像画像に基づくマッチングを行うことで、対象物の種類の識別を適切に行うことが可能となる。
撮像画像に基づくマッチングを行うことで、対象物の種類の識別を適切に行うことが可能となる。
上記した本技術に係る第一の測定装置においては、前記制御部は、前記一部の画素範囲についての撮像画像内に捉えられた物体のクラス識別を行い、クラスごとに用意された前記テンプレート画像のうち識別したクラスの前記テンプレート画像を用いて前記マッチングを行う構成とすることが考えられる。
このようにクラスを絞った上で画像マッチングを行うことで、画像マッチング処理の効率化を図ることが可能とされる。
このようにクラスを絞った上で画像マッチングを行うことで、画像マッチング処理の効率化を図ることが可能とされる。
上記した本技術に係る第一の測定装置においては、前記制御部は、前記受光信号に基づき前記対象物が検出された以降の所定のフレームである基準フレームにおいて、前記一部の画素範囲の撮像画像から前記対象物を囲う範囲としてのバウンディングボックスを設定すると共に、前記バウンディングボックスを内包し前記バウンディングボックスよりも大サイズの領域であるROIを設定し、前記基準フレームよりも後のフレームにおいては、直前のフレームにおいて設定された前記ROI内において、前記対象物の前記バウンディングボックスを設定すると共に、該バウンディングボックスに基づく前記ROIを設定する構成とすることが考えられる。
これにより、対象物が撮像画像内を移動する場合であっても対象物をトラッキング(追尾)することが可能となる。
これにより、対象物が撮像画像内を移動する場合であっても対象物をトラッキング(追尾)することが可能となる。
上記した本技術に係る第一の測定装置においては、前記受光部として機能するセンサと、前記制御部の制御に基づき前記対象物の撮像を行う撮像センサとが別体とされた構成とすることが考えられる。
これにより、受光部として機能するセンサ(電子雪崩現象を利用した光電変換を行うセンサ)、対象物の撮像を行う撮像センサとして、それぞれ既存のセンサを流用することが可能となる。
これにより、受光部として機能するセンサ(電子雪崩現象を利用した光電変換を行うセンサ)、対象物の撮像を行う撮像センサとして、それぞれ既存のセンサを流用することが可能となる。
上記した本技術に係る第一の測定装置においては、前記受光部としての機能と前記制御部の制御に基づき前記対象物の撮像を行う機能とを有する単一のセンサを備えた構成とすることが考えられる。
センサを別体とする場合には、流体からの光を各センサに分配するための分光手段を設けることを要するが、一体センサとすることで、そのような分光手段を設ける必要がなくなる。
センサを別体とする場合には、流体からの光を各センサに分配するための分光手段を設けることを要するが、一体センサとすることで、そのような分光手段を設ける必要がなくなる。
上記した本技術に係る第一の測定装置においては、内部の流路に対して前記流体がサンプリングされるフローセルを備え、前記制御部は、前記撮像動作の終了後において、前記流路に対して試料としての前記流体とは別の流体を流入させて前記フローセルを洗浄させる構成とすることが考えられる。
これにより、測定済みとなった対象物が再度測定されてしまう等の誤測定の発生防止を図ることが可能となる。
これにより、測定済みとなった対象物が再度測定されてしまう等の誤測定の発生防止を図ることが可能となる。
上記した本技術に係る第一の測定装置においては、前記制御部は、前記流路に対する前記別の流体の流入後において、前記受光信号に基づいて前記対象物の検出処理を行う構成とすることが考えられる。
これにより、洗浄後に残留している対象物の有無を確認することが可能となる。
これにより、洗浄後に残留している対象物の有無を確認することが可能となる。
本技術に係る撮像制御方法は、流体に対し光を発する発光部と、入射光について複数の画素により電子雪崩現象を利用した光電変換を行って受光信号を得る受光部と、を少なくとも備えた測定装置の撮像制御方法であって、前記受光信号に基づいて前記流体中における対象物の検出処理を行い、前記対象物が検出されたことを条件として前記対象物の撮像動作を実行させる撮像制御方法である。
このような撮像制御方法によっても、上記した本技術に係る第一の測定装置と同様の作用が得られる。
このような撮像制御方法によっても、上記した本技術に係る第一の測定装置と同様の作用が得られる。
本技術に係る第二の測定装置は、流体に対し光を発する発光部と、入射光について複数の画素により光電変換を行って受光信号を得る撮像センサと、前記受光信号に基づいて前記流体中における対象物の検出処理を行い、前記対象物が検出されたことを条件として、前記撮像センサに前記対象物の撮像動作を実行させる制御部と、を備え、前記制御部は、前記対象物の撮像動作として、前記対象物が捉えられる一部の画素範囲のみについての撮像動作が行われるように制御するものである。
上記構成によれば、対象物の撮像を常時行うのではなく、受光信号に基づき対象物が検出されたことをトリガとして行うことにより撮像に係る消費電力削減を図ることが可能となる。また、撮像センサにおける全画素範囲について撮像動作を行う場合よりも撮像に係る消費電力の削減が図られる。
上記構成によれば、対象物の撮像を常時行うのではなく、受光信号に基づき対象物が検出されたことをトリガとして行うことにより撮像に係る消費電力削減を図ることが可能となる。また、撮像センサにおける全画素範囲について撮像動作を行う場合よりも撮像に係る消費電力の削減が図られる。
また、上記した本技術に係る第二の測定装置においては、前記制御部は、前記一部の画素範囲についての撮像画像とテンプレート画像とのマッチングを行う構成とすることが可能である。
撮像画像に基づくマッチングを行うことで、対象物の種類の識別を適切に行うことが可能となる。
撮像画像に基づくマッチングを行うことで、対象物の種類の識別を適切に行うことが可能となる。
さらに、上記した本技術に係る第二の測定装置においては、前記制御部は、前記一部の画素範囲についての撮像画像内に捉えられた物体のクラス識別を行い、クラスごとに用意された前記テンプレート画像のうち識別したクラスの前記テンプレート画像を用いて前記マッチングを行う構成とすることが可能である。
このようにクラスを絞った上で画像マッチングを行うことで、画像マッチング処理の効率化を図ることが可能となる。
このようにクラスを絞った上で画像マッチングを行うことで、画像マッチング処理の効率化を図ることが可能となる。
以下、実施形態を次の順序で説明する。
<1.測定装置の構成>
<2.実施形態としての測定手法>
<3.処理手順>
<4.センサ構造について>
<5.撮像センサについて>
<6.変形例>
[6-1.第一変形例]
[6-2.第二変形例]
[6-3.第三変形例]
[6-4.第四変形例]
[6-5.第五変形例]
[6-6.第六変形例]
<7.実施形態のまとめ>
<8.本技術>
<1.測定装置の構成>
<2.実施形態としての測定手法>
<3.処理手順>
<4.センサ構造について>
<5.撮像センサについて>
<6.変形例>
[6-1.第一変形例]
[6-2.第二変形例]
[6-3.第三変形例]
[6-4.第四変形例]
[6-5.第五変形例]
[6-6.第六変形例]
<7.実施形態のまとめ>
<8.本技術>
<1.測定装置の構成>
先ず、本技術に係る実施形態としての測定装置1の構成について説明する。
測定装置1は、例えば海水中に含まれる微生物等、試料として取り込んだ流体中に含まれる対象物についての測定を行う装置とされる。具体的に、本例の測定装置1は、海水や湖水等を試料として取り込み、試料中に含まれるプランクトン等の対象物について測定を行う。ここでの測定とは、対象物の数、種類、もしくは特徴の特定、又は対象物の撮像画像の記録や記憶の少なくとも何れかを含む概念である。
先ず、本技術に係る実施形態としての測定装置1の構成について説明する。
測定装置1は、例えば海水中に含まれる微生物等、試料として取り込んだ流体中に含まれる対象物についての測定を行う装置とされる。具体的に、本例の測定装置1は、海水や湖水等を試料として取り込み、試料中に含まれるプランクトン等の対象物について測定を行う。ここでの測定とは、対象物の数、種類、もしくは特徴の特定、又は対象物の撮像画像の記録や記憶の少なくとも何れかを含む概念である。
図1は、測定装置1の装置形態の例を説明するための図である。
図示のように測定装置1としては、例えば海上や湖上を航行する船舶により曳航される曳航型や、海中や湖水中に設置される設置型としての装置形態を採り得る。或いは、海中や湖水中を航行する潜水艇内に設置される潜水艇型としての装置形態を採り得る。
図示のように測定装置1としては、例えば海上や湖上を航行する船舶により曳航される曳航型や、海中や湖水中に設置される設置型としての装置形態を採り得る。或いは、海中や湖水中を航行する潜水艇内に設置される潜水艇型としての装置形態を採り得る。
図2は、測定装置1の内部構成例を示したブロック図である。
図示のように測定装置1は、試料容器2、洗浄液容器3、試料切替部4、フローセル5、試料排出部6、前面光源7、背面光源8、検出用光源9、SPAD(Single Photon Avalanche Diode)センサ10、撮像センサ11、ハーフミラー12、ミラー13、レンズ14、レンズ15、制御部16、記憶部17、及び通信部18を備えている。
図示のように測定装置1は、試料容器2、洗浄液容器3、試料切替部4、フローセル5、試料排出部6、前面光源7、背面光源8、検出用光源9、SPAD(Single Photon Avalanche Diode)センサ10、撮像センサ11、ハーフミラー12、ミラー13、レンズ14、レンズ15、制御部16、記憶部17、及び通信部18を備えている。
試料容器2は、試料としての流体(本例では海水や湖水)を収容する容器とされ、試料取込口Miを介して装置外部より取り込まれた試料が収容される。
洗浄液容器3は、フローセル5内の流路を洗浄するための洗浄液を収容する容器とされる。
試料切替部4は、フローセル5内の流路に流入させる流体を試料容器2からの試料と洗浄液容器3からの洗浄液との間で切替える。
洗浄液容器3は、フローセル5内の流路を洗浄するための洗浄液を収容する容器とされる。
試料切替部4は、フローセル5内の流路に流入させる流体を試料容器2からの試料と洗浄液容器3からの洗浄液との間で切替える。
フローセル5は、試料の収容部として機能し、内部に形成された流路に対して試料としての流体がサンプリングされる。なお、後述するように試料切替部4が洗浄液容器3側に切替えられた状態では、フローセル5の流路には洗浄液が流入する。
試料排出部6は、流体排出用のポンプを有し、該ポンプが駆動されることでフローセル5の流路内における流体を装置外部に位置された試料排出口Moを介して排出する。
ここで、本例では、試料容器2から試料切替部4→フローセル5を介して試料排出部6に至る流路と、洗浄液容器3から試料切替部4→フローセル5を介して試料排出部6に至る流路はそれぞれ一貫した流路とされ、試料容器2からフローセル5に対する試料の流入、及び洗浄液容器3からフローセル5に対する洗浄液の流入は試料排出部6のポンプを駆動することで行われる。
ここで、本例では、試料容器2から試料切替部4→フローセル5を介して試料排出部6に至る流路と、洗浄液容器3から試料切替部4→フローセル5を介して試料排出部6に至る流路はそれぞれ一貫した流路とされ、試料容器2からフローセル5に対する試料の流入、及び洗浄液容器3からフローセル5に対する洗浄液の流入は試料排出部6のポンプを駆動することで行われる。
前面光源7は、撮像センサ11による撮像時に対応してフローセル5内の流体を照明するための光源とされる。ここでの「前面」とは、フローセル5の位置を基準として、撮像センサ11側の面を意味している。本例では、前面光源7は環状の光源とされ、撮像センサ11による撮像の妨げとなることの防止が図られると共に、フローセル5の前面側から試料に対し斜め側方からの照明を行う。
背面光源8は、前面光源7と同様、撮像センサ11による撮像時に対応してフローセル5内の流体を照明するための光源とされ、フローセル5を境に前面光源7とは逆側に位置されている。
背面光源8は、前面光源7と同様、撮像センサ11による撮像時に対応してフローセル5内の流体を照明するための光源とされ、フローセル5を境に前面光源7とは逆側に位置されている。
ここで、前面光源7と背面光源8の役割について説明しておく。
図3は、背面光源8による照明時の撮像画像の例を、図4は前面光源7による照明時の撮像画像の例をそれぞれ示している。
背面光源8は、明視野撮像に用いられる。試料を透過した光を撮像センサ11で受光するもので、一般的な顕微鏡で用いられている手法と同様である。照明光はレンズ15に直接入射するため、背景は明るくなる。
一方、前面光源7は、暗視野撮像に用いられる。試料の斜め側方から光を当てて、対象物の散乱光、反射光を撮像センサ11で受光する。透明な対象であってもコントラストを高く、微細に測定することができる。この場合、照明光はレンズ15に直接入射しないので背景は暗くなる。
図3は、背面光源8による照明時の撮像画像の例を、図4は前面光源7による照明時の撮像画像の例をそれぞれ示している。
背面光源8は、明視野撮像に用いられる。試料を透過した光を撮像センサ11で受光するもので、一般的な顕微鏡で用いられている手法と同様である。照明光はレンズ15に直接入射するため、背景は明るくなる。
一方、前面光源7は、暗視野撮像に用いられる。試料の斜め側方から光を当てて、対象物の散乱光、反射光を撮像センサ11で受光する。透明な対象であってもコントラストを高く、微細に測定することができる。この場合、照明光はレンズ15に直接入射しないので背景は暗くなる。
図2において、検出用光源9は、フローセル5にサンプリングされた試料に対して対象物を検出するための光を発する。この検出用光源9には、例えば半導体レーザ等が用いられる。図示のように検出用光源9より発せられた光は、ハーフミラー12で反射されて、フローセル5内の流路にサンプリングされた流体に照射される。
SPADセンサ10は、フローセル5内の流体中における対象物を検出するためのセンサとして機能する。実施形態の測定装置1では、微生物や粒子の微弱な光を検出するために、光検出画素を複数配列した画素アレイを用いる。この光検出画素の技術の一つとしてSPADが考えられる。SPADは、降伏電圧よりも大きい電圧を印加した状態で高電界のPN接合領域へ1個の光子が入るとアバランシェ増幅が発生する。その際に瞬間的に電流が流れた画素の位置とタイミングを検出することで微生物や粒子のフローセル5内での有無、位置、サイズ等を特定することができる。
SPADセンサ10は、入射光について電子雪崩現象を利用した光電変換を行うSPAD素子を有している。SPAD素子における電子雪崩現象は、内部光電効果として知られる現象の一種である。内部光電効果は、半導体や絶縁体に光を照射すると物質内部の伝導電子が増加する現象である。
公知のようにSPAD素子は、受光分解能がフォトン単位とされた素子である。換言すれば、受光の有無をフォトン単位で識別可能な素子である。
SPADセンサ10は、入射光について電子雪崩現象を利用した光電変換を行うSPAD素子を有している。SPAD素子における電子雪崩現象は、内部光電効果として知られる現象の一種である。内部光電効果は、半導体や絶縁体に光を照射すると物質内部の伝導電子が増加する現象である。
公知のようにSPAD素子は、受光分解能がフォトン単位とされた素子である。換言すれば、受光の有無をフォトン単位で識別可能な素子である。
本例におけるSPADセンサ10は、SPAD素子を有する画素が二次元に複数配列された構成を有する。
SPADセンサ10には、フローセル5内の流体中における対象物から発せられた光がハーフミラー12、ミラー13、及びレンズ14を介して入射する。
SPADセンサ10には、フローセル5内の流体中における対象物から発せられた光がハーフミラー12、ミラー13、及びレンズ14を介して入射する。
撮像センサ11は、例えばCCD(Charge Coupled Device)型やCMOS(Complementary Metal Oxide Semiconductor)型等によるイメージセンサとして構成され、光電変換素子を有する画素が二次元に複数配列されている。撮像センサ11の各画素が有する光電変換素子は、電子雪崩現象を利用した光電変換を行うものではなく、例えばフォトダイオード等の一般的なイメージングで用いられる光電変換素子が採用されている。すなわち、SPAD素子よりも受光解像度の低い光電変換素子である。
撮像センサ11は、フローセル5内の流路を対象とした撮像(撮像視野内に少なくとも該流路を含む撮像)を行う。撮像センサ11には、フローセル5からの光(像光)がハーフミラー12を透過しレンズ15を介して入射する。
撮像センサ11は、フローセル5内の流路を対象とした撮像(撮像視野内に少なくとも該流路を含む撮像)を行う。撮像センサ11には、フローセル5からの光(像光)がハーフミラー12を透過しレンズ15を介して入射する。
制御部16は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、及びRAM( Random Access Memory)を有するマイクロコンピュータを備えて構成され、測定装置1の全体制御を行う。例えば、制御部16は、試料切替部4の切替制御、前面光源7や背面光源8の発光駆動制御、試料排出部6におけるポンプの駆動制御、検出用光源9の発光駆動制御等を行う。
また、制御部16は、記憶部17に記憶されたデータの読み出し処理や記憶部17にデータを記憶させる処理、及び通信部18を介した外部機器との間での各種データのやりとりを行う。例えば、記憶部17は、不揮発性メモリで構成される。通信部18は、外部機器との間で有線又は無線によるデータ通信を行う。
また、本例の制御部16は、SPADセンサ10による受光信号に基づく対象物の検出処理や、撮像センサ11による撮像画像に基づく各種の画像解析処理等を行うが、これらの処理については以降で改めて説明する。
また、制御部16は、記憶部17に記憶されたデータの読み出し処理や記憶部17にデータを記憶させる処理、及び通信部18を介した外部機器との間での各種データのやりとりを行う。例えば、記憶部17は、不揮発性メモリで構成される。通信部18は、外部機器との間で有線又は無線によるデータ通信を行う。
また、本例の制御部16は、SPADセンサ10による受光信号に基づく対象物の検出処理や、撮像センサ11による撮像画像に基づく各種の画像解析処理等を行うが、これらの処理については以降で改めて説明する。
<2.実施形態としての測定手法>
実施形態としての測定手法について説明する。
図5は、試料中における対象物の検出処理についての説明図である。
先ず、図5Aに示すように、フローセル5に試料としての流体がサンプリングされた状態で、検出用光源9を発光させて試料に対する検出用光の照射を行う。
ここで、測定時には、フローセル5の流路内において、試料としての流体が排出方向(試料排出口Moの方向)に向けて移動される。すなわち、試料排出部6のポンプが駆動されて、流体が排出方向に向けて徐々に移動される。
実施形態としての測定手法について説明する。
図5は、試料中における対象物の検出処理についての説明図である。
先ず、図5Aに示すように、フローセル5に試料としての流体がサンプリングされた状態で、検出用光源9を発光させて試料に対する検出用光の照射を行う。
ここで、測定時には、フローセル5の流路内において、試料としての流体が排出方向(試料排出口Moの方向)に向けて移動される。すなわち、試料排出部6のポンプが駆動されて、流体が排出方向に向けて徐々に移動される。
図5Aに示すように、試料内の対象物が視野内に現れていない状態では、SPADセンサ10において対象物からの戻り光は受光されない。
一方、図5Bのように対象物が視野内に現れると、検出用光源9から照射された光に基づく対象物からの戻り光がSPADセンサ10において受光される。
ここで、この戻り光は、対象物が植物プランクトンであれば、検出用光源9の照射光に基づく蛍光反応によって植物プランクトンから励起された光となる。また、対象物が動物プランクトンの場合、該戻り光は、検出用光源9の照射光に基づき動物プランクトンで生じる散乱光となる。
一方、図5Bのように対象物が視野内に現れると、検出用光源9から照射された光に基づく対象物からの戻り光がSPADセンサ10において受光される。
ここで、この戻り光は、対象物が植物プランクトンであれば、検出用光源9の照射光に基づく蛍光反応によって植物プランクトンから励起された光となる。また、対象物が動物プランクトンの場合、該戻り光は、検出用光源9の照射光に基づき動物プランクトンで生じる散乱光となる。
本実施形態の測定手法では、このように試料に対する検出用光の照射を行った結果、試料側からの戻り光がSPADセンサ10で受光された場合に、撮像センサ11による撮像動作を行う。すなわち、戻り光が受光されない場合には撮像センサ11による撮像動作を行わないことで、撮像に係る消費電力の削減を図るものである。
このとき、戻り光の受光部としてSPADセンサ10を用いることで、従来の光電子増倍管を用いる受光部とする場合よりも受光部の小型化、及び低消費電力化が図られる。
このとき、戻り光の受光部としてSPADセンサ10を用いることで、従来の光電子増倍管を用いる受光部とする場合よりも受光部の小型化、及び低消費電力化が図られる。
ここで、対象物からの戻り光の受光有無を適切に判別する上では、暗電流に起因したノイズによる影響を考慮すべきである。
このようなノイズの影響を適切に排除するため、本例では、SPADセンサ10の受光信号に基づく対象物の検出処理について以下のような手法を採用している。
このようなノイズの影響を適切に排除するため、本例では、SPADセンサ10の受光信号に基づく対象物の検出処理について以下のような手法を採用している。
図6は、暗電流に起因したノイズの例を示している。
図示のようにノイズは、独立した1画素でランダムに生じるものとなる。
このため、本例では、図7に例示するように、隣接する複数画素の領域で受光が認められた場合に、その領域を対象物からの戻り光の受光領域として判別する手法を採る。
図7Aでは、植物プランクトンからの戻り光の受光領域(図中、黒塗りの画素)の例を、図7Bでは、動物プランクトンからの戻り光の受光領域の例を示している。
これらの図のように対象物からの戻り光の受光が認められた場合に、撮像センサ11を用いた撮像を行う。
なお、ノイズの影響排除にあたっては、検出用光源9をパルス発光(点滅発光)させ、SPADセンサ10の受光タイミングをこれに同期させることによるノイズ対策を行うこともできる。
図示のようにノイズは、独立した1画素でランダムに生じるものとなる。
このため、本例では、図7に例示するように、隣接する複数画素の領域で受光が認められた場合に、その領域を対象物からの戻り光の受光領域として判別する手法を採る。
図7Aでは、植物プランクトンからの戻り光の受光領域(図中、黒塗りの画素)の例を、図7Bでは、動物プランクトンからの戻り光の受光領域の例を示している。
これらの図のように対象物からの戻り光の受光が認められた場合に、撮像センサ11を用いた撮像を行う。
なお、ノイズの影響排除にあたっては、検出用光源9をパルス発光(点滅発光)させ、SPADセンサ10の受光タイミングをこれに同期させることによるノイズ対策を行うこともできる。
ここで、測定装置1に対しては、測定の対象物を定義する情報(以下「定義情報I1」と表記する)が予め設定される。
図8、図9は、定義情報I1の例を示している。
定義情報I1としては、例えば図8に例示するように、対象物のクラス粒子名、サイズ、波長成分、及びイメージデータを含む情報とすることができる。クラス粒子名は、例えば対象物がプランクトンであれば、その具体的な名称の情報が定められる。サイズの情報は、対象物のサイズ分類を示す情報であり、例えば図示の「20μmから40μm」のように範囲を持った情報とする。また、波長成分の情報は、検出用光源9の照射光に応じた戻り光の波長成分を定義した情報である。イメージデータは、対象物のイメージデータ(画像データ)である。このイメージデータについては、対象物の一つの個体について実際に撮像されたデータを用いることもできるし、複数個体の撮像画像から機械学習により求めた代表的なイメージデータを用いることもできる。
図8、図9は、定義情報I1の例を示している。
定義情報I1としては、例えば図8に例示するように、対象物のクラス粒子名、サイズ、波長成分、及びイメージデータを含む情報とすることができる。クラス粒子名は、例えば対象物がプランクトンであれば、その具体的な名称の情報が定められる。サイズの情報は、対象物のサイズ分類を示す情報であり、例えば図示の「20μmから40μm」のように範囲を持った情報とする。また、波長成分の情報は、検出用光源9の照射光に応じた戻り光の波長成分を定義した情報である。イメージデータは、対象物のイメージデータ(画像データ)である。このイメージデータについては、対象物の一つの個体について実際に撮像されたデータを用いることもできるし、複数個体の撮像画像から機械学習により求めた代表的なイメージデータを用いることもできる。
また、定義情報I1としては、図8のように具体的な対象物を指定した情報とする以外にも、図9に例示するように、幾つかの特徴のみを指定した情報とすることもできる。
図9では、測定の対象物としたい物体のサイズ、及び波長成分のみを指定した定義情報I1の例を示している。
図9では、測定の対象物としたい物体のサイズ、及び波長成分のみを指定した定義情報I1の例を示している。
測定装置1において、これらの定義情報I1は、例えば図2に示した記憶部17に記憶される。
図8、図9に示したような定義情報I1に従って試料中における対象物の有無を検出するにあたっては、SPADセンサ10において、受光した光の波長を識別可能であることを要する。
このような波長識別機能を実現するためのSPADセンサ10の構成を図10、図11を参照して説明する。
図10は、SPADセンサ10の画素ごとに異なる波長フィルタを設けた例である。
図中、「A」と示す画素は波長550nmの波長フィルタを設けた画素(以下「画素A」と表記する)、「B」と示す画素は波長600nmの波長フィルタを設けた画素(以下「画素B」と表記する)、「C」と示す画素は波長650nmの波長フィルタを設けた画素(以下「画素C」と表記する)、「D」と示す画素は波長700nmの波長フィルタを設けた画素(以下「画素D」と表記する)である。この場合のSPADセンサ10では、A画素、B画素、C画素、D画素のそれぞれが、横方向(行方向)、縦方向(列方向)のそれぞれにおいて1画素おきに存在するように配置されている。
このような構成により、何れの波長による光を何れの画素位置で受光したかを特定することができる。
このような波長識別機能を実現するためのSPADセンサ10の構成を図10、図11を参照して説明する。
図10は、SPADセンサ10の画素ごとに異なる波長フィルタを設けた例である。
図中、「A」と示す画素は波長550nmの波長フィルタを設けた画素(以下「画素A」と表記する)、「B」と示す画素は波長600nmの波長フィルタを設けた画素(以下「画素B」と表記する)、「C」と示す画素は波長650nmの波長フィルタを設けた画素(以下「画素C」と表記する)、「D」と示す画素は波長700nmの波長フィルタを設けた画素(以下「画素D」と表記する)である。この場合のSPADセンサ10では、A画素、B画素、C画素、D画素のそれぞれが、横方向(行方向)、縦方向(列方向)のそれぞれにおいて1画素おきに存在するように配置されている。
このような構成により、何れの波長による光を何れの画素位置で受光したかを特定することができる。
図11は、SPADセンサ10を複数用いる場合に対応した構成例を示している。
図11A、図11B、図11C、図11Dの各図に示すように、A画素(550nm)のみで構成されたSPADセンサ10と、B画素(600nm)のみで構成されたSPADセンサ10と、C画素(650nm)のみで構成されたSPADセンサ10と、D画素(700nm)のみで構成されたSPADセンサ10とを用いる。この場合は、フローセル5側からの戻り光を分光して各SPADセンサ10の受光面に導くように光学系を構成する。
図11A、図11B、図11C、図11Dの各図に示すように、A画素(550nm)のみで構成されたSPADセンサ10と、B画素(600nm)のみで構成されたSPADセンサ10と、C画素(650nm)のみで構成されたSPADセンサ10と、D画素(700nm)のみで構成されたSPADセンサ10とを用いる。この場合は、フローセル5側からの戻り光を分光して各SPADセンサ10の受光面に導くように光学系を構成する。
図12は、SPADセンサ10による受光画像の例を模式的に示している。図中、白く霞んだ略円形の部分(図示の例では3カ所)が受光部分を模式的に表している。また、図中では、二つの白丸により、SPADセンサ10の受光面のサイズと被写体の実際のサイズとの対応関係を例示している。具体的に、小さい白丸は20μm、大きい白丸は40μmのサイズを表している。
ここで、図12に示す受光画像は、波長フィルタなしのSPADセンサ10による受光画像を例示している。
ここで、図12に示す受光画像は、波長フィルタなしのSPADセンサ10による受光画像を例示している。
図13は、先の図10に示したようにA、B、C、D画素を混合配置したSPADセンサ10について、図12の場合と同一の被写体を対象に受光動作を行った場合における受光反応画素(図中、黒色で表す)の例を示している。
この図13では、図12の場合と同一の被写体を対象として受光動作を行ったことに伴い、図12の場合と同様の3カ所に受光反応が生じた場合を例示している。
ここで、対象物の定義情報I1として、例えば図8に示した定義情報I1が設定されていた場合、対象物のサイズは20nmから40nm、波長成分は650nm±10nmである。図中では、単一のB画素、及び単一のD画素でそれぞれ受光反応が得られているが、これらの受光反応領域については、定義情報I1における波長条件と異なり、また隣接した複数画素との条件も満たさないため、対象物の受光領域とは判定しない。
一方、図中では、隣接する複数のC画素(波長650nm)で受光反応が得られている領域が存在している。具体的に、このC画素の受光反応領域は、3×3=9画素分の領域とされている。ここでは説明上、該3×3=9画素分の領域は、実際の被写体サイズ換算で20μm以上40μm以下のサイズの領域であるとする。
このように、受光反応領域が隣接する複数画素の領域であるとの条件を満たし、且つ定義情報で定められたサイズ及び波長成分の条件を満たす場合、該受光反応領域を対象物の受光領域であると判定する。
この図13では、図12の場合と同一の被写体を対象として受光動作を行ったことに伴い、図12の場合と同様の3カ所に受光反応が生じた場合を例示している。
ここで、対象物の定義情報I1として、例えば図8に示した定義情報I1が設定されていた場合、対象物のサイズは20nmから40nm、波長成分は650nm±10nmである。図中では、単一のB画素、及び単一のD画素でそれぞれ受光反応が得られているが、これらの受光反応領域については、定義情報I1における波長条件と異なり、また隣接した複数画素との条件も満たさないため、対象物の受光領域とは判定しない。
一方、図中では、隣接する複数のC画素(波長650nm)で受光反応が得られている領域が存在している。具体的に、このC画素の受光反応領域は、3×3=9画素分の領域とされている。ここでは説明上、該3×3=9画素分の領域は、実際の被写体サイズ換算で20μm以上40μm以下のサイズの領域であるとする。
このように、受光反応領域が隣接する複数画素の領域であるとの条件を満たし、且つ定義情報で定められたサイズ及び波長成分の条件を満たす場合、該受光反応領域を対象物の受光領域であると判定する。
このような対象物の受光領域の判定は、先の図11のように複数のSPADセンサ10を用いる場合にも同様に行うことができる。
具体的に、図12の場合と同一被写体について受光動作を行った場合、各SPADセンサ10では、それぞれ図14に例示するような受光反応が得られるが、B画素のみのSPADセンサ10における受光反応領域、及びD画素のみのSPADセンサ10における受光反応領域はそれぞれ定義情報I1における波長条件と異なり且つ隣接した複数画素との条件も満たさないため、対象物の受光領域とは判定しない。
C画素のみのSPADセンサ10における受光反応領域については、図中に示す2×2=4画素の領域サイズが実際の被写体サイズ換算での20μm以上40μm以下のサイズであれば、定義情報I1における波長及びサイズの条件を満たすものとなり、また、隣接した複数画素との条件も満たすため、該受光反応領域を対象物の受光領域と判定することができる。
具体的に、図12の場合と同一被写体について受光動作を行った場合、各SPADセンサ10では、それぞれ図14に例示するような受光反応が得られるが、B画素のみのSPADセンサ10における受光反応領域、及びD画素のみのSPADセンサ10における受光反応領域はそれぞれ定義情報I1における波長条件と異なり且つ隣接した複数画素との条件も満たさないため、対象物の受光領域とは判定しない。
C画素のみのSPADセンサ10における受光反応領域については、図中に示す2×2=4画素の領域サイズが実際の被写体サイズ換算での20μm以上40μm以下のサイズであれば、定義情報I1における波長及びサイズの条件を満たすものとなり、また、隣接した複数画素との条件も満たすため、該受光反応領域を対象物の受光領域と判定することができる。
以下、上記のような定義情報I1に基づく条件に従って判定される対象物の受光領域(受光反応領域)のことを「受光領域Ats」と表記する。
なお、図10及び図11では、SPADセンサ10の全画素に波長フィルタを設ける例を示したが、一部に波長フィルタを設けない画素が混在してもよい。
本例においては、上記のようにSPADセンサ10による受光画像に基づいて受光領域Atsが特定された(つまり対象物のサイズ・波長条件にマッチする物体の存在が認められた)ことに応じて、撮像センサ11による撮像動作を行う。
この際、定義情報I1が図8のように対象物のイメージデータを含んでいる場合には、撮像センサ11による撮像画像と該イメージデータとに基づき、対象物であるか否かの判定を行う。
図15は、このような撮像画像に基づく対象物の判定処理を説明するための図である。
図15Aは、SPADセンサ10上の受光領域Atsと、撮像センサ11上の撮像領域Atiとの関係を例示している。ここで、撮像領域Atiは、受光領域Atsで捉えた被写体と同一の被写体を捉えることのできる撮像センサ11の画素領域を意味するものである。
図15Aは、SPADセンサ10上の受光領域Atsと、撮像センサ11上の撮像領域Atiとの関係を例示している。ここで、撮像領域Atiは、受光領域Atsで捉えた被写体と同一の被写体を捉えることのできる撮像センサ11の画素領域を意味するものである。
撮像画像に基づく対象物の判定処理では、受光領域Atsから特定される撮像領域Atiの画像について、図15Bに示すようにターゲットとなるイメージデータ(つまり定義情報に含まれるイメージデータ)との画像比較を行う。この画像比較の結果、イメージデータとの一致が確認されれば、撮像領域Atiで捉えた被写体(つまり受光領域Atsで捉えた被写体)が対象物であるとの最終的な判定結果を得る。
本例では、対象物であると判定された被写体については、予め定められた測定設定情報I2に基づく撮像動作を行う。
測定設定情報I2は、対象物の測定に係る各種条件を定めた情報である。具体的に、本例の測定設定情報I2は、次の各情報を含むものとされる。すなわち、「測定実行条件」「試料注入速度」「撮像ルール」「照明設定」である。
測定設定情報I2は、対象物の測定に係る各種条件を定めた情報である。具体的に、本例の測定設定情報I2は、次の各情報を含むものとされる。すなわち、「測定実行条件」「試料注入速度」「撮像ルール」「照明設定」である。
「測定実行条件」は、測定の実行に係る条件を定義した情報であり、例えば「深度200mごとに10分測定」や「電気伝導度80mS/cm以上で5分測定」などの情報とされる。
ここで、電気伝導度は、水中におけるミネラルの含有度合いについての指標となる。電気伝導度は、ミネラルの含有度と生息する微生物の関係を調査する際に用いることができ、例えばミネラルの多い部分での微生物測定を行う場合には上記例のような電気伝導度の条件を設定する。
測定条件に電気伝導度を用いる場合、測定装置1には海水や湖水の電気伝導度を検出するためのセンサが外付けされる。外付けされたセンサによる検出情報は、図2に示した通信部18を介して制御部16に入力される。
ここで、電気伝導度は、水中におけるミネラルの含有度合いについての指標となる。電気伝導度は、ミネラルの含有度と生息する微生物の関係を調査する際に用いることができ、例えばミネラルの多い部分での微生物測定を行う場合には上記例のような電気伝導度の条件を設定する。
測定条件に電気伝導度を用いる場合、測定装置1には海水や湖水の電気伝導度を検出するためのセンサが外付けされる。外付けされたセンサによる検出情報は、図2に示した通信部18を介して制御部16に入力される。
「試料注入速度」は、フローセル5への試料の注入速度を定義した情報であり、例えば「0.5ml/min」などの情報とされる。
「撮像ルール」は、撮像センサ11を用いた対象物の撮像に係るルールを定義した情報であり、例えば「静止画撮像」や「動画撮像」などの情報とされる。ここで、動画の撮像ルールに関しては、例えば「対象物がフローセル5から出るまでの間20fpsで撮像する」のように動画撮像の終了条件やフレームレートを指定する情報とすることもできる。
「照明設定」は、撮像センサ11を用いた対象物の撮像時に用いる照明を定義する情報であり、本例では、前述した前面光源7、背面光源8についての定義情報とされる。例えば、「暗視野撮像(前面光源7)」「明視野撮像(背面光源8)」などの情報とされる。なお、撮像時の照明については、前面光源7と背面光源8の双方を用いることもできる。
「撮像ルール」は、撮像センサ11を用いた対象物の撮像に係るルールを定義した情報であり、例えば「静止画撮像」や「動画撮像」などの情報とされる。ここで、動画の撮像ルールに関しては、例えば「対象物がフローセル5から出るまでの間20fpsで撮像する」のように動画撮像の終了条件やフレームレートを指定する情報とすることもできる。
「照明設定」は、撮像センサ11を用いた対象物の撮像時に用いる照明を定義する情報であり、本例では、前述した前面光源7、背面光源8についての定義情報とされる。例えば、「暗視野撮像(前面光源7)」「明視野撮像(背面光源8)」などの情報とされる。なお、撮像時の照明については、前面光源7と背面光源8の双方を用いることもできる。
このような測定設定情報I2は、例えば記憶部17に記憶されており、測定装置1ではこの測定設定情報I2に従って対象物の測定を行う。
ここで、測定装置1では、SPADセンサ10による受光信号に基づき対象物が検出されたことをトリガとして撮像センサ11を用いた撮像を行うことで、撮像に係る消費電力の削減を図るものとしているが、本例では、さらなる消費電力削減を図るべく、対象物の撮像動作を、撮像領域Atiのみを対象として行う。
具体的に、図15の例で言えば、SPADセンサ10による受光画像に基づき受光領域Atsが特定されたことに応じて開始する撮像動作について、撮像センサ11の全画素を用いた撮像動作を行うのではなく、受光領域Atsから求まる撮像領域Atiのみを用いた撮像動作を行う。
これにより、測定のための撮像動作は必要な一部の画素範囲のみを対象として行われるものとなり、消費電力の削減を図ることができる。
具体的に、図15の例で言えば、SPADセンサ10による受光画像に基づき受光領域Atsが特定されたことに応じて開始する撮像動作について、撮像センサ11の全画素を用いた撮像動作を行うのではなく、受光領域Atsから求まる撮像領域Atiのみを用いた撮像動作を行う。
これにより、測定のための撮像動作は必要な一部の画素範囲のみを対象として行われるものとなり、消費電力の削減を図ることができる。
ところで、対象物の測定としては、前述のように対象物の数や種類、特徴の特定を含む概念となるが、対象物の種類ごとにその数を適切に特定する(カウントする)にあたっては、撮像視野内で検出された対象物について、カウント済みとなった対象物と未カウントの対象物とを適切に管理することが肝要となる。
そこで、本例では、一度認識された対象物については、撮像視野外にフレームアウトするまでトラッキングを行うようにし、重複カウントが行われないようにする。
そこで、本例では、一度認識された対象物については、撮像視野外にフレームアウトするまでトラッキングを行うようにし、重複カウントが行われないようにする。
図16は、実施形態における対象物のトラッキングについての説明図である。
先ず、図16Aに示すフレームF1は、先の図15Aで説明したように受光領域Atsから撮像領域Atiが特定された段階でのフレームを意味する。先の説明から理解されるように、フレームF1では、撮像領域Atiのみを対象として撮像動作が行われる。そして、図15Bで説明したように、撮像領域Atiの画像については定義情報I1におけるイメージデータとの画像比較(画像マッチング)が行われる。
この画像マッチングにより対象物が認識された場合、図16Aに示すように、対象物のエリアを囲う範囲としてのバウンディングボックス20を算出する。
先ず、図16Aに示すフレームF1は、先の図15Aで説明したように受光領域Atsから撮像領域Atiが特定された段階でのフレームを意味する。先の説明から理解されるように、フレームF1では、撮像領域Atiのみを対象として撮像動作が行われる。そして、図15Bで説明したように、撮像領域Atiの画像については定義情報I1におけるイメージデータとの画像比較(画像マッチング)が行われる。
この画像マッチングにより対象物が認識された場合、図16Aに示すように、対象物のエリアを囲う範囲としてのバウンディングボックス20を算出する。
そして、バウンディングボックスを算出すると、図16Bに示すように、該バウンディングボックスに基づくROI(Region Of Interest:関心領域)21を算出する。
このROI21は、例えばバウンディングボックス20の縦横サイズ(x×y)を拡大(ax×by)して計算される。拡大の縮尺a,bは縦横別に設定でき、拡大率は固定でもよいし可変でもよい。
このROI21は、例えばバウンディングボックス20の縦横サイズ(x×y)を拡大(ax×by)して計算される。拡大の縮尺a,bは縦横別に設定でき、拡大率は固定でもよいし可変でもよい。
図16Cに示すフレームF2は、フレームF1の次フレームである。
フレームF2については、前フレームであるフレームF1で算出したROI21のみを対象として撮像動作を行う。このとき、対象物が紙面の右方向に徐々に移動していくものとすると、フレームF2における対象物の位置は、フレームF1における位置よりも紙面右方向にずれたものとなるが、このとき、ROI21がバウンディングボックス20の縦横サイズを拡大した範囲として算出されることで、図示のようにフレームF2において、ROI21内に対象物を捉えることが可能となる。
フレームF2については、前フレームであるフレームF1で算出したROI21のみを対象として撮像動作を行う。このとき、対象物が紙面の右方向に徐々に移動していくものとすると、フレームF2における対象物の位置は、フレームF1における位置よりも紙面右方向にずれたものとなるが、このとき、ROI21がバウンディングボックス20の縦横サイズを拡大した範囲として算出されることで、図示のようにフレームF2において、ROI21内に対象物を捉えることが可能となる。
フレームF2では、このように前フレームで算出されたROI21の撮像画像について、例えば定義情報I1のイメージデータに基づく画像解析を行う等して、画像内における対象物の認識処理を行い、対象物のバウンディングボックス20を算出する。
そして、フレームF2では、このように新たに算出したバウンディングボックス20について、ROI21を算出する(図16D)。
そして、フレームF2では、このように新たに算出したバウンディングボックス20について、ROI21を算出する(図16D)。
図16Eに示すフレームF3では、このようにフレームF2において算出されたROI21のみを対象とした撮像動作を行う。この場合も、ROI21がバウンディングボックス20の縦横サイズを拡大した範囲とされていることで、対象物が或る方向に移動する場合であっても対象物をROI21内に捉えることが可能となる。
図示は省略するが、フレームF3以降においても、前フレームで算出されたROI21の撮像画像について画像解析を行って対象物の認識処理を行い、認識された対象物についてのバウンディングボックス20の算出、及び算出したバウンディングボックス20に基づくROI21の算出を行う。
図示は省略するが、フレームF3以降においても、前フレームで算出されたROI21の撮像画像について画像解析を行って対象物の認識処理を行い、認識された対象物についてのバウンディングボックス20の算出、及び算出したバウンディングボックス20に基づくROI21の算出を行う。
上記のようなトラッキング手法は、次のような手法であると換言できる。すなわち、SPADセンサ10による受光信号に基づき対象物が検出された以降の所定のフレームである基準フレーム(本例ではフレームF1)において、対象物を囲う範囲としてのバウンディングボックス20を設定すると共に、該バウンディングボックス20を内包し該バウンディングボックス20よりも大サイズの領域であるROI21を設定し、さらに、基準フレームよりも後のフレームにおいては、直前のフレームにおいて設定されたROI21内において、対象物のバウンディングボックス20を設定すると共に、該バウンディングボックス20に基づくROI21を設定する、というものである。
このような手法とすることで、対象物が撮像画像内を移動する場合であっても対象物をトラッキングすることが可能となる。
このとき、対象物のトラッキングにあたり各フレームで必要となる撮像画像は、ROI21の撮像画像のみとなる。このため、本例では、上記のように各フレームにおいて直前フレームで算出したROI21のみを対象として撮像動作を行うものとしている。このことで、誤カウント防止のために対象物を追尾する場合において、追尾のための撮像に係る消費電力の削減を図ることができる。
このような手法とすることで、対象物が撮像画像内を移動する場合であっても対象物をトラッキングすることが可能となる。
このとき、対象物のトラッキングにあたり各フレームで必要となる撮像画像は、ROI21の撮像画像のみとなる。このため、本例では、上記のように各フレームにおいて直前フレームで算出したROI21のみを対象として撮像動作を行うものとしている。このことで、誤カウント防止のために対象物を追尾する場合において、追尾のための撮像に係る消費電力の削減を図ることができる。
なお、上記説明では、バウンディングボックス20を拡大した矩形の領域をROI21とする例を述べたが、ROI21は矩形の領域に限られるものではない。
例えば、セマンティックセグメンテーション、すなわち画素レベルでの物体エリア検出結果を用いて、矩形以外の形状によるROI21を計算してもよい。
例えば、セマンティックセグメンテーション、すなわち画素レベルでの物体エリア検出結果を用いて、矩形以外の形状によるROI21を計算してもよい。
ここで、測定装置1では、図2に示した洗浄液容器3に収容された洗浄液を用いたフローセル5の洗浄に係る処理も行われるが、これについては図19のフローチャートにより改めて説明する。
<3.処理手順>
続いて、上記により説明した実施形態としての測定手法を実現するために実行すべき具体的な処理手順の例を図17から図19のフローチャートを参照して説明する。
図17は、測定開始から測定終了までの処理の流れを示したフローチャートである。
なお、図17から図19に示す処理は、図2に示した制御部16が例えば内蔵するROM等の所定の記憶装置に記憶されたプログラムに基づき実行する。
続いて、上記により説明した実施形態としての測定手法を実現するために実行すべき具体的な処理手順の例を図17から図19のフローチャートを参照して説明する。
図17は、測定開始から測定終了までの処理の流れを示したフローチャートである。
なお、図17から図19に示す処理は、図2に示した制御部16が例えば内蔵するROM等の所定の記憶装置に記憶されたプログラムに基づき実行する。
図17において、ステップS101で制御部16は、測定開始条件の成立を待機する。すなわち、前述した測定設定情報I2における「測定実行条件」で指定された条件が成立するまで待機する。なお、先の説明では「測定実行条件」の例として深度や電気伝導度の条件が指定される場合を例示したが、これら深度や電気伝導度は、測定装置1に外付けのセンサから入力する。具体的には、通信部18を介して入力する。
測定開始条件が成立した場合、制御部16はステップS102に進んで試料注入開始処理を行う。すなわち、図2に示した試料切替部4を試料容器2側に切替える制御を行うと共に、試料排出部6におけるポンプの駆動を指示することで、フローセル5に対する試料の注入が開始されるようにする。このとき、ポンプの駆動については、先に説明した測定設定情報I2における「試料注入速度」の情報に従って実行させる。
ステップS102に続くステップS103で制御部16は、検出用光源9をONとする処理を行い、次のステップS104で、SPADセンサ10に対する受光指示を行う。すなわち、SPADセンサ10に1枚分の受光画像を得るための受光動作を実行させる。そして、ステップS104に続くステップS105で制御部16は、検出用光源9をOFFとする処理を行い、次のステップS106で受光画像を取得する。
ステップS106に続くステップS107で制御部16は、条件に合致する受光領域(つまり前述した受光領域Ats)があるか否かを判定する。先の説明から理解されるように、本例では、隣接した複数画素で受光反応領域が得られるという条件のみでなく、定義情報I1で定義された波長やサイズの条件を満たす場合に、受光領域Atsと判定する。
ステップS107において、条件に合致する受光領域がないと判定した場合、制御部16はステップS103に戻る。これにより、受光領域Atsが判定されるまで、検出用光源9による光照射とSPADセンサ10による受光動作が繰り返し実行される。
ステップS107において、条件に合致する受光領域があると判定した場合、制御部16はステップS108に進み、撮像領域Atiを計算する。すなわち、受光領域Atsに基づき撮像領域Atiを計算する。
そして、ステップS108に続くステップS109で制御部16は、撮像センサ11に撮像領域Atiの部分撮像を実行させる。この部分撮像、すなわち撮像領域Atiのみを対象とした撮像動作としては、例えば、蓄積された電荷信号の読み出しを撮像領域Atiとしての一部画素範囲のみを対象として実行するという形態の撮像動作とすることが考えられる。或いは、部分撮像は、各画素から読み出した電荷信号のA/D変換を一部画素のみを対象として実行するという形態の撮像動作とすることもできる。
本実施形態において、一部画素範囲を対象とした撮像動作とは、受光開始からデジタル信号による撮像画像信号が得られるまでの間の少なくとも一部の処理について、全画素範囲ではなく一部画素範囲に限定した処理を行うことを意味する。
そして、ステップS108に続くステップS109で制御部16は、撮像センサ11に撮像領域Atiの部分撮像を実行させる。この部分撮像、すなわち撮像領域Atiのみを対象とした撮像動作としては、例えば、蓄積された電荷信号の読み出しを撮像領域Atiとしての一部画素範囲のみを対象として実行するという形態の撮像動作とすることが考えられる。或いは、部分撮像は、各画素から読み出した電荷信号のA/D変換を一部画素のみを対象として実行するという形態の撮像動作とすることもできる。
本実施形態において、一部画素範囲を対象とした撮像動作とは、受光開始からデジタル信号による撮像画像信号が得られるまでの間の少なくとも一部の処理について、全画素範囲ではなく一部画素範囲に限定した処理を行うことを意味する。
なお、ステップS109の部分撮像について、照明の制御については、先に説明した測定設定情報I2における「照明設定」の情報に従って行うことが考えられる。或いは、ステップS109の部分撮像での照明制御については、測定設定情報I2とは別途の指定情報に従った制御とすることもできる。
ステップS109に続くステップS110で制御部16は、撮像センサ11より部分撮像画像を取得する処理を行い、次のステップS111でターゲットテンプレート画像とのマッチングを行う。すなわち、先の図15Bで説明したように、撮像領域Atiについての部分撮像画像と、定義情報I1におけるイメージデータとの画像比較を行い、撮像領域Atiで捉えた被写体が、定義情報I1で定義された対象物であるか否かの判定処理を行う。
ステップS111に続くステップS112で制御部16は、ターゲット粒子であるか否かの判定を行う。すなわち、ステップS111のマッチング処理の結果に基づき、撮像領域Atiで捉えた被写体が対象物であるか否かの判定を行う。
ステップS112において、ターゲット粒子でない(つまり対象物でない)と判定した場合、制御部16はステップS103に戻る。つまり、撮像領域Atiで捉えた被写体が対象物でないと判定された場合は、SPADセンサ10による受光動作が再度行われる。
ステップS112において、ターゲット粒子でない(つまり対象物でない)と判定した場合、制御部16はステップS103に戻る。つまり、撮像領域Atiで捉えた被写体が対象物でないと判定された場合は、SPADセンサ10による受光動作が再度行われる。
一方、ステップS112において、撮像領域Atiで捉えた被写体が対象物であると判定した場合、制御部16はステップS113に進み、測定設定で指定された撮像ルールに従った撮像制御を行う。すなわち、撮像センサ11の制御として、測定設定情報I2における「撮像ルール」の情報に従った制御を行う。前述のように「撮像ルール」の情報としては、例えば「静止画撮像」や「動画撮像」などの情報や、「対象物がフローセル5から出るまでの間20fpsで撮像する」のような情報が設定され得る。
ここで、ステップS113で実行させる撮像動作時の照明制御については、測定設定情報I2における「照明設定」の情報に従って行う。
ここで、ステップS113で実行させる撮像動作時の照明制御については、測定設定情報I2における「照明設定」の情報に従って行う。
ステップS113に続くステップS114で制御部16は、撮像終了条件が成立したか否かを判定する。ここでの撮像終了条件は、上記の「撮像ルール」として指定された情報から特定される条件となる。例えば、「静止画撮像」であれば、静止画を撮像したことが撮像終了条件となり、動画撮像に関して「対象物がフローセル5から出るまでの間20fpsで撮像する」であれば、対象物が撮像センサ11の視野(撮像可能範囲)からフレームアウトすることが撮像終了条件となる。
撮像終了条件が成立していなければ、制御部16はステップS113の処理を再度実行する。
撮像終了条件が成立していなければ、制御部16はステップS113の処理を再度実行する。
一方、撮像終了条件が成立した場合、制御部16はステップS115に進んで測定終了条件が成立したか否かを判定する。測定終了条件は、測定設定情報I2における「測定実行条件」として指定された情報から特定される条件であり、例えば、「測定実行条件」として「深度200mごとに10分測定」が指定されている場合には、測定開始条件の成立から10分の経過が測定終了条件となる。
測定終了条件が成立していなければ、制御部16はステップS103に戻る。
測定終了条件が成立していなければ、制御部16はステップS103に戻る。
一方、測定終了条件が成立していれば、制御部16はステップS116に進み注入停止処理を実行する。すなわち、試料排出部6のポンプを停止させて、フローセル5への試料注入を停止させる。
そして、制御部16は、続くステップS117で洗浄処理を実行し、図17に示す一連の処理を終える。
なお、ステップS117の洗浄処理については改めて説明する。
そして、制御部16は、続くステップS117で洗浄処理を実行し、図17に示す一連の処理を終える。
なお、ステップS117の洗浄処理については改めて説明する。
図18は、対象物のトラッキングを実現するための処理手順を例示したフローチャートである。
ここで、この図18に示すトラッキングの処理は、対象物の測定として、フローセル5内の対象物の数をカウントする際に、カウント済みの対象物が重複カウントされないように、一度認識した対象物をフレームアウトするまでの間追尾するための処理として行うことが考えられる。
或いは、撮像に係る消費電力削減の観点では、図18に示す処理は、「撮像ルール」として動画撮像が指定された場合の撮像時の処理として実行することも考えられる。
ここで、この図18に示すトラッキングの処理は、対象物の測定として、フローセル5内の対象物の数をカウントする際に、カウント済みの対象物が重複カウントされないように、一度認識した対象物をフレームアウトするまでの間追尾するための処理として行うことが考えられる。
或いは、撮像に係る消費電力削減の観点では、図18に示す処理は、「撮像ルール」として動画撮像が指定された場合の撮像時の処理として実行することも考えられる。
先ず、ステップS201で制御部16は、撮像領域Atiの部分撮像画像について、物体領域の認識を行う。撮像領域Atiの部分撮像画像は、図17のステップS110で取得したものを用いる。ステップS201の処理では、この部分撮像画像内に捉えられている対象物の領域を認識する。
ステップS201に続くステップS202で制御部16は、バウンディングボックス20の算出を行う。すなわち、部分撮像画像内で認識した対象物の領域に基づき、図16で説明したバウンディングボックス20を算出する。
ステップS202に続くステップS203で制御部16は、ROI21の算出を行い、ステップS204で次のフレームを待機する。
ステップS204で次のフレームを待機した後、制御部16はステップS205でROI21の部分撮像を実行させる。すなわち、撮像センサ11にステップS203で算出したROI21についての部分撮像を実行させる。
ステップS205に続くステップS206で制御部16は、ROI21内の対象物認識処理を行う。すなわち、定義情報I1のイメージデータに基づく画像解析を行う等して、ROI21の部分撮像画像内における対象物の認識処理を行う。
ステップS206に続くステップS207で制御部16は、対象物が認識されたか否かを判定する。ステップS207において、対象物が認識されていれば、制御部16はステップS202に戻る。これにより、前フレームで算出されたROI21内に対象物が認識されれば、次のフレームにおいて対象物についての新たなバウンディングボックス20及びROI21の算出が行われる。
一方、ステップS207において対象物が認識されなければ、制御部16は図18に示す一連の処理を終える。
なお、ここでは対象物がロストしたことに応じて該対象物のトラッキングを終了する例としたが、ロストからの所定フレーム以内に該対象物を再度認識した場合にトラッキングを再開することも可能である。
なお、ここでは対象物がロストしたことに応じて該対象物のトラッキングを終了する例としたが、ロストからの所定フレーム以内に該対象物を再度認識した場合にトラッキングを再開することも可能である。
なお、図18は、一つの対象物を対象とした処理としたが、複数の対象物に対応する場合には、受光領域Atsが特定された対象物ごとに、ステップS201からS207の処理を実行すればよい。
また、図17の処理については、フローセル5内を試料が一定方向に移動していく関係から、或る時点では撮像視野内に捉えられていなかった対象物が、その後の別時点において撮像視野内に捉えられるということもあり、そのような事態への対応が可能な処理とすることも考えられる。具体的にその場合には、ステップS102の試料注入開始後、ステップS103からS107の処理を例えば一定時間ごとに実行することが考えられる。新たな受光領域Atsが特定された場合は、その受光領域Atsに対応する撮像領域Atiを特定し、該撮像領域Atiについて部分撮像が行われるようにする。
図19は、図17に示した洗浄処理(S117)のフローチャートである。
先ず、制御部16はステップS121で、洗浄液容器3に切替える処理を行う。すなわち、試料切替部4に試料容器2から洗浄液容器3への切替えを指示する。
先ず、制御部16はステップS121で、洗浄液容器3に切替える処理を行う。すなわち、試料切替部4に試料容器2から洗浄液容器3への切替えを指示する。
ステップS121に続くステップS122で制御部16は、注入開始処理として、試料排出部6のポンプを駆動させて洗浄液容器3からフローセル5への洗浄液の注入を開始させ、次のステップS123で、注入停止条件の成立を待機する。ここでの注入停止条件としては、例えば注入開始からの一定時間経過や、フローセル5に対し洗浄液を所定量以上注入したこと等の条件とすることが考えられる。なお、この注入停止条件のような洗浄に係る条件については、測定設定情報I2のような設定情報により可変的に設定可能とされてもよい。
注入停止条件が成立した場合、制御部16はステップS124の注入停止処理として、試料排出部6のポンプの駆動を停止させる処理を行い、ステップS125に処理を進める。
ステップS125からステップS128は、洗浄後のフローセル5について、SPADセンサ10による受光画像を得るための処理となる。先ず、ステップS125で制御部16は、検出用光源9をONとさせ、ステップS126でSPADセンサ10に対する受光指示を行い、ステップS127で検出用光源9をOFFとさせる。そして、次のステップS128で制御部16は、SPADセンサ10による受光画像を取得する。
ステップS128に続くステップS129で制御部16は、条件に合致する受光領域があるか否かを判定する。すなわち、受光画像において、定義情報I1で指定された波長及びサイズの条件と合致する受光領域Atsがあるか否かを判定する。これは、対象物に相当する物体がフローセル5内に残存しているか否かを判定していることに相当する。
ステップS129において、条件に合致する受光領域があると判定した場合、制御部16はステップS122に戻る。これにより、洗浄後もフローセル5内に物体が残存している場合には、フローセル5の再洗浄が行われる。
ステップS129において、条件に合致する受光領域があると判定した場合、制御部16はステップS122に戻る。これにより、洗浄後もフローセル5内に物体が残存している場合には、フローセル5の再洗浄が行われる。
一方、ステップS129において、条件に合致する受光領域がないと判定した場合、制御部16はステップS130に進んで試料容器2に切替える処理を実行した後、図19に示す一連の処理を終える。
ここで、図示は省略するが、対象物の測定については、数やサイズを特定することについて言及したが、該測定については、対象物の特徴を特定する処理とすることもできる。例えば、対象物=プランクトンの例であれば、形状的特徴(鞭毛・繊毛・触覚・足・眼・体節の有無や数等)や、構造的特徴(細胞の有無、単細胞か多細胞かの別、動きの有無、葉緑体の有無等)を撮像画像の画像解析により特定することが考えられる。
また、測定においては、特定した情報を測定結果情報として記憶部17などに記憶することができる。例えば、上記のような形状や構造についての特徴情報を記憶することが考えられる。また、SPADセンサ10による受光画像では、対象物からの戻り光(蛍光、反射、散乱する光)が検出されるが、これら戻り光についての波長成分を示す情報を記憶することも考えられる。
また、測定結果の記憶については、特定した対象物の種別ごとに行うことができる。
さらに、これらの測定結果の情報と共に、外部センサによる検出情報を記憶することもできる。例えば、上述した深度や電気伝導度の情報を用いる場合には、それらの外部センサ情報を測定結果情報と共に記憶することが考えられる。
また、測定においては、特定した情報を測定結果情報として記憶部17などに記憶することができる。例えば、上記のような形状や構造についての特徴情報を記憶することが考えられる。また、SPADセンサ10による受光画像では、対象物からの戻り光(蛍光、反射、散乱する光)が検出されるが、これら戻り光についての波長成分を示す情報を記憶することも考えられる。
また、測定結果の記憶については、特定した対象物の種別ごとに行うことができる。
さらに、これらの測定結果の情報と共に、外部センサによる検出情報を記憶することもできる。例えば、上述した深度や電気伝導度の情報を用いる場合には、それらの外部センサ情報を測定結果情報と共に記憶することが考えられる。
<4.センサ構造について>
SPADセンサ10、撮像センサ11については、図20から図22に示すような構造を採ることができる。
図20は、SPADセンサ10、撮像センサ11をそれぞれ別基板上に形成したものである。
図21は、共通の基板上にSPADセンサ10と撮像センサ11を形成したものである。
図22は、共通の半導体チップ内にSPADセンサ10としての機能部と撮像センサ11としての機能部を形成したものである。
SPADセンサ10、撮像センサ11については、図20から図22に示すような構造を採ることができる。
図20は、SPADセンサ10、撮像センサ11をそれぞれ別基板上に形成したものである。
図21は、共通の基板上にSPADセンサ10と撮像センサ11を形成したものである。
図22は、共通の半導体チップ内にSPADセンサ10としての機能部と撮像センサ11としての機能部を形成したものである。
ここで、図20に示すようにSPADセンサ10、撮像センサ11をそれぞれ別基板上に形成した場合、測定装置1においては、SPADセンサ10と撮像センサ11を平行配置(互いの受光面が平行となる配置)する必要がなくなる。
このため、図23に示すようなミラー13を省略した構成を採ることができる。
このため、図23に示すようなミラー13を省略した構成を採ることができる。
また、SPADセンサ10としての機能と、撮像センサ11としての機能(つまり制御部16の制御に基づき対象物の撮像を行う機能)とを有する単一のセンサを用いることもできる。
図24、図25は、そのような単一のセンサの例を示している。
図24の例は、光電変換素子としてSPAD素子を有する画素G10と、撮像センサ11で用いられる画素G11とを同一の画素アレイ部に混在させたものである。ここで、画素G11は、SPAD素子よりも受光分解能が低い光電変換素子を有する画素と換言できる。
図24、図25は、そのような単一のセンサの例を示している。
図24の例は、光電変換素子としてSPAD素子を有する画素G10と、撮像センサ11で用いられる画素G11とを同一の画素アレイ部に混在させたものである。ここで、画素G11は、SPAD素子よりも受光分解能が低い光電変換素子を有する画素と換言できる。
図25の例は、上記した画素G10の機能と画素G11の機能の双方を持ち合わせた画素Gmxを用いる例である。この場合のセンサでは、図示のように画素Gmxが二次元に複数配列される。
ここで、画素Gmxは、光電変換素子として、フォトン単位での分解能による光量検出と通常のイメージングにおける分解能での光量検出の双方を行うことが可能な光電変換素子を有した画素と換言することができる。
ここで、画素Gmxは、光電変換素子として、フォトン単位での分解能による光量検出と通常のイメージングにおける分解能での光量検出の双方を行うことが可能な光電変換素子を有した画素と換言することができる。
図22や図21の例のようにSPADセンサ10と撮像センサ11が別体とされる場合には、受光部として機能するセンサ(電子雪崩現象を利用した光電変換を行うセンサ)、対象物の撮像を行う撮像センサとして、それぞれ既存のセンサを流用することが可能となるため、新たなセンサを開発して用いる必要がなく、その点において、測定装置1のコスト削減を図ることができる。
一方、図24や図25の例のように単一センサとして構成する場合には、センサを別体とする場合に必要とされる分光手段(ハーフミラー12)を設ける必要がなくなるため、光学部品についての部品点数の削減を図ることができ、測定装置1の小型化を図ることができる。
<5.撮像センサについて>
図26は、変形例としての撮像センサ11Aの内部構成例を示したブロック図である。
撮像センサ11Aは、撮像画像データの生成機能と共に、撮像画像データについての画像処理機能を有するものである。具体的に、撮像センサ11Aは、画像解析による物体検出機能を備えるものとし、インテリジェントアレイセンサと呼ぶことのできる装置とされる。
図26は、変形例としての撮像センサ11Aの内部構成例を示したブロック図である。
撮像センサ11Aは、撮像画像データの生成機能と共に、撮像画像データについての画像処理機能を有するものである。具体的に、撮像センサ11Aは、画像解析による物体検出機能を備えるものとし、インテリジェントアレイセンサと呼ぶことのできる装置とされる。
図示のように撮像センサ11Aは、画素アレイ部31、ADC(Analog to Digital Converter)/ピクセルセレクタ32、バッファ33、ロジック部34、メモリ35、インタフェース(I/F)部36、及び演算部37を備えている。
ADC/ピクセルセレクタ32、バッファ33、ロジック部34、メモリ35、インタフェース(I/F)部36、及び演算部37の各部は、バス30を介して互いにデータ通信を行うことが可能とされる。
ADC/ピクセルセレクタ32、バッファ33、ロジック部34、メモリ35、インタフェース(I/F)部36、及び演算部37の各部は、バス30を介して互いにデータ通信を行うことが可能とされる。
画素アレイ部31は、前述した画素G11等、光電変換素子を有する画素が二次元に複数配列されて構成されている。
ADC/ピクセルセレクタ32には、画素アレイ部31によって光電変換された電気信号が入力される。ADC/ピクセルセレクタ32は、入力したアナログ信号としての電気信号をデジタルデータ化し、デジタルデータとしての画像信号(画像データ)を出力する。
また、ADC/ピクセルセレクタ32は、画素アレイ部31の画素(光電変換素子)に対するピクセル選択の機能を持つ。これにより、画素アレイ部31における選択した画素のみについて、光電変換信号を取得してデジタルデータ化して出力することが可能とされている。つまりADC/ピクセルセレクタ32は、通常は1フレームの画像を構成する有効な画素の全てについて光電変換信号のデジタルデータ化出力を行うが、選択した画素のみについての光電変換信号のデジタルデータ化出力を行うことも可能とされている。
例えば、このようなADC/ピクセルセレクタ32により、前述した撮像領域Atiについての部分撮像を実現することができる。
ADC/ピクセルセレクタ32には、画素アレイ部31によって光電変換された電気信号が入力される。ADC/ピクセルセレクタ32は、入力したアナログ信号としての電気信号をデジタルデータ化し、デジタルデータとしての画像信号(画像データ)を出力する。
また、ADC/ピクセルセレクタ32は、画素アレイ部31の画素(光電変換素子)に対するピクセル選択の機能を持つ。これにより、画素アレイ部31における選択した画素のみについて、光電変換信号を取得してデジタルデータ化して出力することが可能とされている。つまりADC/ピクセルセレクタ32は、通常は1フレームの画像を構成する有効な画素の全てについて光電変換信号のデジタルデータ化出力を行うが、選択した画素のみについての光電変換信号のデジタルデータ化出力を行うことも可能とされている。
例えば、このようなADC/ピクセルセレクタ32により、前述した撮像領域Atiについての部分撮像を実現することができる。
ADC/ピクセルセレクタ32によって、フレーム単位で画像データが取得されるが、この各フレームの画像データはバッファ33に一時記憶され、適切なタイミングで読み出されてロジック部34の処理に供される。
ロジック部34では、入力される各フレーム画像信号に対して各種必要な信号処理(画像信号処理)を行うことが可能とされる。
例えばロジック部34では、色補正、ガンマ補正、色階調処理、ゲイン処理、輪郭強調処理等の処理により画質調整を行うことが可能とされる。またロジック部34ではデータ圧縮処理、解像度変換、フレームレート変換など、データサイズを変更する処理を行うことも考えられる。
これらロジック部34で行われる各処理については、それぞれの処理に用いるパラメータが設定される。例えば色や輝度の補正係数、ゲイン値、圧縮率、フレームレートなどの設定値がある。ロジック部34では、それぞれの処理について設定されたパラメータを用いて必要な処理を行う。本実施形態では、これらのパラメータを演算部37が設定する場合がある。
ロジック部34では、入力される各フレーム画像信号に対して各種必要な信号処理(画像信号処理)を行うことが可能とされる。
例えばロジック部34では、色補正、ガンマ補正、色階調処理、ゲイン処理、輪郭強調処理等の処理により画質調整を行うことが可能とされる。またロジック部34ではデータ圧縮処理、解像度変換、フレームレート変換など、データサイズを変更する処理を行うことも考えられる。
これらロジック部34で行われる各処理については、それぞれの処理に用いるパラメータが設定される。例えば色や輝度の補正係数、ゲイン値、圧縮率、フレームレートなどの設定値がある。ロジック部34では、それぞれの処理について設定されたパラメータを用いて必要な処理を行う。本実施形態では、これらのパラメータを演算部37が設定する場合がある。
ロジック部34で処理された画像データは例えばDRAM(Dynamic Random Access Memory)等で構成されたメモリ35に記憶される。
メモリ35に記憶された画像データは、必要なタイミングでインタフェース部36により外部(例えば、制御部16)に送信出力される。
メモリ35に記憶された画像データは、必要なタイミングでインタフェース部36により外部(例えば、制御部16)に送信出力される。
演算部37は、例えばCPU、ROM、RAMなどを有したマイクロコンピュータを備えて構成される。演算部37は、バス30を介してADC/ピクセルセレクタ32、バッファ33、ロジック部34、メモリ35、インタフェース(I/F)部36の各部に対する指示やデータのやりとりを行う。例えば、ADC/ピクセルセレクタ32に対し、光電変換信号のデジタルデータ化出力を行う画素範囲を指示する処理を行う。また、必要に応じてロジック部34に対する各種パラメータの指示等も行う。
また、演算部37は、画像処理部37aとしての機能を有する。この画像処理部37aは、例えばAI(Artificial Intelligence)を有する処理部とされ、撮像画像データ中における物体の検出処理や、検出物体についての認識処理を行うことが可能とされる。
ここで言う「物体」とは、画像からの認識を目的として検出対象となり得る物体のことを指す。どのような物体が検出対象とされるかは測定装置1の用途等に応じて異なるが、あらゆる物体が、ここで言う物体とされる可能性がある。あくまで一部であるが例示すると、人を含む動物、移動体(自動車、自転車、航空機等)、自然物(野菜、植物等)、工業製品/部品、建造物、施設、山、海、川、星、太陽、雲など、あらゆる物体が該当する可能性がある。
また、画像処理部37aによる物体の認識処理では、検出物体についてのクラス分類を行うことが可能とされる。ここでのクラスとは、物体のカテゴリを表す情報であり、例えば「人」「自動車」「飛行機」「船」「トラック」「鳥」「猫」「犬」「鹿」「蛙」「馬」などのように、識別すべき物体をクラス分けしたものである。
ここで言う「物体」とは、画像からの認識を目的として検出対象となり得る物体のことを指す。どのような物体が検出対象とされるかは測定装置1の用途等に応じて異なるが、あらゆる物体が、ここで言う物体とされる可能性がある。あくまで一部であるが例示すると、人を含む動物、移動体(自動車、自転車、航空機等)、自然物(野菜、植物等)、工業製品/部品、建造物、施設、山、海、川、星、太陽、雲など、あらゆる物体が該当する可能性がある。
また、画像処理部37aによる物体の認識処理では、検出物体についてのクラス分類を行うことが可能とされる。ここでのクラスとは、物体のカテゴリを表す情報であり、例えば「人」「自動車」「飛行機」「船」「トラック」「鳥」「猫」「犬」「鹿」「蛙」「馬」などのように、識別すべき物体をクラス分けしたものである。
ここで、上記で例示したような演算部37による画像処理は、通常イメージセンサ内では行わなかった処理である。そのため、撮像センサ11Aは、通常のイメージセンサと比較してよりインテリジェントな処理を行うものと言うことができ、その意味で、インテリジェントアレイセンサと呼ぶことができる。
上記のような撮像センサ11Aを用いた場合、前述した制御部16の処理のうち、少なくとも画像認識に係る処理については、撮像センサ11A側で担うこともできる。
具体的に、図17で示した処理のうち、ステップS111のマッチング処理や該マッチング処理に基づくステップS112の判定処理については、撮像センサ11Aにおける画像処理部37aを用いて行うことができる。また、図18に示した対象物のトラッキング処理についても、画像処理部37aを用いて行うことができる。
具体的に、図17で示した処理のうち、ステップS111のマッチング処理や該マッチング処理に基づくステップS112の判定処理については、撮像センサ11Aにおける画像処理部37aを用いて行うことができる。また、図18に示した対象物のトラッキング処理についても、画像処理部37aを用いて行うことができる。
ここで、これらの処理を画像処理部37aを用いて行う場合、対象物の認識処理に用いるイメージデータは、撮像センサ11A内の記憶装置(例えばメモリ35)に記憶させておく。
また、撮像画像に基づく対象物の測定として、前述のように対象物の種類ごとに数をカウントする処理や特徴情報を抽出する処理を行う場合には、それらの処理についても画像処理部37aを用いて行うことが考えられる。その場合、測定結果の情報は、例えばメモリ35等の撮像センサ11A内の記憶装置に記憶しておき、外部(例えば制御部16)からの要求に応じて演算部37がインタフェース部36を介して出力するという構成を採ることもできる。
また、撮像画像に基づく対象物の測定として、前述のように対象物の種類ごとに数をカウントする処理や特徴情報を抽出する処理を行う場合には、それらの処理についても画像処理部37aを用いて行うことが考えられる。その場合、測定結果の情報は、例えばメモリ35等の撮像センサ11A内の記憶装置に記憶しておき、外部(例えば制御部16)からの要求に応じて演算部37がインタフェース部36を介して出力するという構成を採ることもできる。
また、画像処理部37aを用いてステップS111のマッチング処理を行う場合には、AIによるクラス識別機能を利用したマッチング処理とすることもできる。その場合、AIとしては、物体のクラスとして、例えば「植物性プランクトン」や「動物性プランクトン」等の複数のクラスを識別可能に構成しておく。また、マッチング処理に用いるテンプレート画像としては、それらクラスごとにそれぞれ用意しておく(例えば、メモリ35等に記憶しておく)。その上で、画像処理部37aは、ステップS111のマッチング処理として、撮像領域Atiの撮像画像に対しAIを用いたクラス識別処理を行って、撮像領域Atiに捉えられた物体のクラスを識別する。そして、識別したクラスに応じたテンプレート画像を選択し、選択したテンプレート画像を用いた画像マッチングを行い、撮像領域Atiにおける物体が対象物であるか否かの判定を行う。
このようにクラスを絞った上で画像マッチングを行うことで、画像マッチング処理の効率化を図ることができる。
なお、このようなクラス識別を併用したマッチング処理は、制御部16において行うこともできる。
このようにクラスを絞った上で画像マッチングを行うことで、画像マッチング処理の効率化を図ることができる。
なお、このようなクラス識別を併用したマッチング処理は、制御部16において行うこともできる。
<6.変形例>
[6-1.第一変形例]
ここで、実施形態としては上記により説明した具体例に限定されるものではなく、多様な変形例としての構成を採り得る。
例えば、上記では、測定の対象物の例として、主にプランクトン等の生物を例示したが、対象物としては非生物とする場合もあり得る。以下では一例として、海水中などに浮遊するマイクロプラスチックを対象物として検出する場合に対応した照明装置1Bについて説明する。
図27に、変形例としての照明装置1Bの内部構成例を示す。
[6-1.第一変形例]
ここで、実施形態としては上記により説明した具体例に限定されるものではなく、多様な変形例としての構成を採り得る。
例えば、上記では、測定の対象物の例として、主にプランクトン等の生物を例示したが、対象物としては非生物とする場合もあり得る。以下では一例として、海水中などに浮遊するマイクロプラスチックを対象物として検出する場合に対応した照明装置1Bについて説明する。
図27に、変形例としての照明装置1Bの内部構成例を示す。
先ず、前提として、海水中等を浮遊するマイクロプラスチックについては、形状で大別すると、チップ型とファイバー型とに区分できる。そして、これらチップ型、ファイバー型それぞれのマイクロプラスチックについては、さらにその素材により区分を行うことができる。具体的に、マイクロプラスチックの素材種類としては、例えばポリエチレン、フェノール、ポリカーボネート、ポリスチレン、ポリプロピレン等の素材種類を挙げることができる。例えば、チップ型においてポリエチレン素材とフェノール素材とを区別したり、同じポリスチレン素材であるがチップ型とファイバー型とを区分したりすることができる。
これらのマイクロプラスチックは、近赤外光(波長780nmから2000nm程度)に対して反応を示す(つまり反射光が生じる)ものとなる。このため、マイクロプラスチックの検出を行うにあたっては、検出用光源9に代えて、近赤外光の波長成分を含む光を出射可能な検出用光源9Bを用いる。また、SPADセンサ10については、近赤外光に対する感度を有するSPADセンサ10Bを用いる。ここで、検出用光源9Bについては、例えばタングステンハロゲンランプや半導体レーザ等で構成することができる。
また、撮像センサ11についても、近赤外光に対する感度を有する撮像センサ11Bを用いる。
また、撮像センサ11についても、近赤外光に対する感度を有する撮像センサ11Bを用いる。
また、測定装置1Bにおいては、マイクロプラスチックを対象とした検出や対象物の認識を行うため、制御部16に代えて制御部16Bが設けられる。
ここで、マイクロプラスチックは、近赤外領域において、反射光のパワースペクトル分布(波長に対する反射光強度の分布)として特有の分布を有する。この特有のパワースペクトル分布のことを「特徴パワースペクトル」と表記する。
このため、SPADセンサ10Bにおける受光反応部分について、近赤外領域における反射光のパワースペクトル分布がマイクロプラスチックの特徴パワースペクトルとしての分布をもつか否かを判定することで、該受光反応部分がマイクロプラスチックの受光反応部分(受光領域)であるか否かを判定できる。
このため、SPADセンサ10Bにおける受光反応部分について、近赤外領域における反射光のパワースペクトル分布がマイクロプラスチックの特徴パワースペクトルとしての分布をもつか否かを判定することで、該受光反応部分がマイクロプラスチックの受光反応部分(受光領域)であるか否かを判定できる。
この際、スペクトル分布を検出可能とするために、SPADセンサ10Bとしては、近赤外領域におけるそれぞれ異なる波長についての波長フィルタが設けられたものを用いる。例えば、図10で例示したように異なる波長についての波長フィルタを交互に配置したものを用いる。
また、マイクロプラスチックは、その素材種別によって、反射光のパワースペクトル分布のパターンが異なる。本例では、このようなパワースペクトル分布のパターンに基づく素材種別の判定は、撮像センサ11Bの撮像画像に基づき行うものとする。
このため、撮像センサ11Bについても、SPADセンサ10Bと同様に、近赤外光について、反射光の波長の違いを識別可能に構成する。具体的には、近赤外領域のそれぞれ異なる波長の波長フィルタを図10の例のように交互に配置したものを用いる。
このため、撮像センサ11Bについても、SPADセンサ10Bと同様に、近赤外光について、反射光の波長の違いを識別可能に構成する。具体的には、近赤外領域のそれぞれ異なる波長の波長フィルタを図10の例のように交互に配置したものを用いる。
以上の前提を踏まえた上で、マイクロプラスチック測定のための処理を図28のフローチャートを参照して説明する。
なお、この図では、既に検出用光源9Bを点灯させた状態でのSPADセンサ10Bによる受光動作が行われ、その受光画像が制御部16によって取得されていることを前提とする。
なお、この図では、既に検出用光源9Bを点灯させた状態でのSPADセンサ10Bによる受光動作が行われ、その受光画像が制御部16によって取得されていることを前提とする。
図28において、制御部16BはステップS301で、近赤外光の受光領域Atsのうち、プラスチックの特徴パワースペクトルを持たないものを対象から除外する処理を行う。
前述のようにSPADセンサ10Bでは近赤外領域について、画素単位で異なる波長の波長フィルタが設けられているため、この場合の受光領域Atsでは、近赤外領域の異なる波長ごとの反射光パワーを検出可能とされる。ステップS301では、このような波長ごとの反射光パワーに基づいて、プラスチックの特徴パワースペクトルを持つか否かの判定を行うことができる。
近赤外光の受光領域Atsのうち、プラスチックの特徴パワースペクトルを持たないものを対象から除外することで、該受光領域Atsに対応した撮像範囲については撮像が行われないものとなる。
前述のようにSPADセンサ10Bでは近赤外領域について、画素単位で異なる波長の波長フィルタが設けられているため、この場合の受光領域Atsでは、近赤外領域の異なる波長ごとの反射光パワーを検出可能とされる。ステップS301では、このような波長ごとの反射光パワーに基づいて、プラスチックの特徴パワースペクトルを持つか否かの判定を行うことができる。
近赤外光の受光領域Atsのうち、プラスチックの特徴パワースペクトルを持たないものを対象から除外することで、該受光領域Atsに対応した撮像範囲については撮像が行われないものとなる。
ステップS301に続くステップS302で制御部16Bは、対象の受光領域Atsについて、対応する撮像領域Atiを計算する。すなわち、ステップS301でプラスチックの特徴パワースペクトルを持つと判定した受光領域Atsについて、対応する撮像領域Atiを計算する。
そして、ステップS302に続くステップS303で制御部16Bは、撮像領域Atiの部分撮像画像に基づき、プラスチックの形状種類を判定する。すなわち、前述したチップ型、ファイバー型の判定を行うものである。なお、ステップS303の処理を実行するにあたり、制御部16Bは撮像部11Bに対し撮像領域Atiの部分撮像の実行指示を行うことは言うまでもない。
ステップS303における形状種類の判定は、部分撮像画像についての画像解析により行うことができる。例えば、形状種類の判定は、予め対象とするプラスチックごとに設定された定義情報I1におけるイメージデータとのマッチングにより行うことができる。
そして、ステップS302に続くステップS303で制御部16Bは、撮像領域Atiの部分撮像画像に基づき、プラスチックの形状種類を判定する。すなわち、前述したチップ型、ファイバー型の判定を行うものである。なお、ステップS303の処理を実行するにあたり、制御部16Bは撮像部11Bに対し撮像領域Atiの部分撮像の実行指示を行うことは言うまでもない。
ステップS303における形状種類の判定は、部分撮像画像についての画像解析により行うことができる。例えば、形状種類の判定は、予め対象とするプラスチックごとに設定された定義情報I1におけるイメージデータとのマッチングにより行うことができる。
ステップS303に続くステップS304で制御部16Bは、パワースペクトル分析により、プラスチックの素材種類を判定する。前述のように撮像センサ11Bでは近赤外領域について画素単位で異なる波長の波長フィルタが設けられているため、この場合の撮像領域Atiでは、近赤外領域の異なる波長ごとの反射光パワーを検出可能とされる。ステップS304では、このような波長ごとの反射光パワーと、予め設定された対象とするプラスチックの素材ごとの特徴パワースペクトルとに基づいて、プラスチックの素材種類の判定を行う。
ステップS304に続くステップS305で制御部16Bは、画像解析によりプラスチックのサイズを判定する。このサイズの判定は、例えば20μmから40μm等、範囲を持ったサイズについての判定を行うことが考えられる。
ステップS305の処理を実行したことに応じ、制御部16Bは図28に示す一連の処理を終える。
なお、図28では、マイクロプラスチックの測定に係る処理を例示したが、この図28の処理と共に、プランクトン等の微生物の測定に係る処理を併せて行うことができる。すなわち、先の図17や図18に示したような微生物の測定に係る処理を併せて行うものである。
ここで、微生物とマイクロプラスチックの双方の測定を行う場合、対象とする微生物の種類によっては、その戻り光の波長帯がマイクロプラスチックからの戻り光の波長帯と近接する場合もあり得る。そのような場合には、対象物の検出精度を上げるべく、微生物についての受光領域として特定された受光領域Atsを、マイクロプラスチックの検出対象から除外するということもできる。
また、撮像画像に基づく測定について、例えば繊毛や鞭毛の存在がある等、微生物の特徴が認められた撮像領域Atiをマイクロプラスチックの測定対象から除外するということもできる。
また、撮像画像に基づく測定について、例えば繊毛や鞭毛の存在がある等、微生物の特徴が認められた撮像領域Atiをマイクロプラスチックの測定対象から除外するということもできる。
なお、上記のような変形例としての測定装置1Bにおいても、図18で説明したような対象物のトラッキング処理を行うことが可能である。すなわち、マイクロプラスチックとしての対象物についてトラッキング処理を行うことが可能である。
また、測定装置1Bについても、図26で説明した撮像センサ11Aの適用が可能である。その場合、ステップS303の形状種類の判定処理やステップS304の素材種類の判定処理、ステップS305のサイズ判定処理を、画像処理部37aによって実行することが考えられる。また、マイクロプラスチックについてトラッキング処理を行う場合は、該トラッキング処理についても画像処理部37aで実行することが可能である。
[6-2.第二変形例]
上記では、対象物の測定にあたり試料としての海水をフローセル5にサンプリングする例を挙げたが、対象物の測定にあたりフローセル5を用いることは必須ではない。
図29は、フローセル5を用いずに対象物の測定を可能とする第二変形例としての測定装置1Cの内部構成例を示したブロック図である。
先の図2に示した測定装置1との相違点は、フローセル5が省略された点と、フローセル5に対する試料の取り込みや排出に係る構成、具体的には試料容器2、洗浄液容器3(試料取込口Miを含む)、試料切替部4、及び試料排出部6(試料排出口Moを含む)が省略された点と、背面光源8が省略された点である。また、SPADセンサ10の受光信号に基づき受光反応部分までの距離を計算する距離計算部25が追加された点と、制御部16に代えて制御部16Cが設けられた点とが測定装置1の場合と異なる。
ここで、距離計算部25は、SPADセンサ10の受光信号に基づき例えば直接ToF(Time Of Flight)方式により距離の計算を行う。
上記では、対象物の測定にあたり試料としての海水をフローセル5にサンプリングする例を挙げたが、対象物の測定にあたりフローセル5を用いることは必須ではない。
図29は、フローセル5を用いずに対象物の測定を可能とする第二変形例としての測定装置1Cの内部構成例を示したブロック図である。
先の図2に示した測定装置1との相違点は、フローセル5が省略された点と、フローセル5に対する試料の取り込みや排出に係る構成、具体的には試料容器2、洗浄液容器3(試料取込口Miを含む)、試料切替部4、及び試料排出部6(試料排出口Moを含む)が省略された点と、背面光源8が省略された点である。また、SPADセンサ10の受光信号に基づき受光反応部分までの距離を計算する距離計算部25が追加された点と、制御部16に代えて制御部16Cが設けられた点とが測定装置1の場合と異なる。
ここで、距離計算部25は、SPADセンサ10の受光信号に基づき例えば直接ToF(Time Of Flight)方式により距離の計算を行う。
図示のように測定装置1Cにおいては、検出用光源9より発せられハーフミラー12で反射された光が、光透過窓Mtを介して測定装置1Cの外部に存在する海水としての試料に照射される。図中、「撮像可能距離範囲」として示す範囲は、撮像センサ11による画像撮像が可能とされる距離範囲を模式的に表している。撮像可能距離範囲は、少なくとも撮像センサ11による画像撮像においてフォーカスが合う範囲(被写界深度の範囲)として定められる。
SPADセンサ10の受光信号に基づき対象物が検出された場合であっても、該対象物が存在する位置が撮像可能距離範囲外の位置であった場合には、該対象物について撮像センサ11による適切な撮像画像を得ることができず、測定を適切に行うことが困難となる。
そこで、第二変形例では、距離計算部25を設けて対象物までの距離を計算し、対象物が撮像可能距離範囲に位置していることをトリガ条件として、撮像センサ11による撮像を実行させる。
そこで、第二変形例では、距離計算部25を設けて対象物までの距離を計算し、対象物が撮像可能距離範囲に位置していることをトリガ条件として、撮像センサ11による撮像を実行させる。
図30は、第二変形例における測定開始から測定終了までの処理の流れを示したフローチャートである。なお、図30の処理は、制御部16Cが例えば内蔵するROM等の所定の記憶装置に記憶されたプログラムに基づき実行する。
図17に示した処理との相違点は、ステップS102の試料注入開始の処理が省略された点、ステップS107とS108との間にステップS151の判定処理が挿入された点、及びステップS116の注入停止処理とS117の洗浄処理とが省略された点である。
ステップS151で制御部16Cは、撮像可能距離範囲内の受光領域があるか否かを判定する。すなわち、ステップS107で特定された受光領域Atsのうち、撮像可能距離範囲内の受光領域があるか否かを判定する。具体的に、制御部16Cは、距離計算部25によって得られる距離情報(デプス画像)に基づき、ステップS107で特定された受光領域Atsまでの距離の情報を取得し、該距離が撮像可能距離範囲として定められた距離範囲内の値となっているか否かを、特定された全ての受光領域Atsについて判定する。距離が撮像可能距離範囲内の受光領域Atsが一つでも存在すれば、制御部16Cは撮像可能距離範囲内の受光領域があるとの判定結果を得、そうでない場合は撮像可能距離範囲内の受光領域がないとの判定結果を得る。
撮像可能距離範囲内の受光領域がないと判定した場合、制御部16CはステップS103に戻る。すなわち、撮像可能距離範囲内の受光領域Atsがない場合は、撮像センサ11による撮像は行われない。
一方、撮像可能距離範囲内の受光領域があると判定した場合、制御部16CはステップS108に処理を進める。これにより、撮像可能距離範囲内の受光領域Atsがあることを条件として、撮像センサ11による撮像が行われるようになり、フローセル5を省略した構成において、適切な測定を行うことができる。
一方、撮像可能距離範囲内の受光領域があると判定した場合、制御部16CはステップS108に処理を進める。これにより、撮像可能距離範囲内の受光領域Atsがあることを条件として、撮像センサ11による撮像が行われるようになり、フローセル5を省略した構成において、適切な測定を行うことができる。
なお、第二変形例において、ステップS108以降の処理は、撮像可能距離範囲内の受光領域Atsを対象として行われることは言うまでもない。
[6-3.第三変形例]
第三変形例は、第二変形例のようにフローセル5を省略した構成を採る場合において、対象物の検出用光としてスリット光を用いるものである。
図31は、第三変形例としての測定装置1Dの内部構成例を示したブロック図である。
図29に示した測定装置1Cとの相違点は、検出用光源9に代えてスリット光源26が設けられた点と、距離計算部25が省略された点である。
第三変形例は、第二変形例のようにフローセル5を省略した構成を採る場合において、対象物の検出用光としてスリット光を用いるものである。
図31は、第三変形例としての測定装置1Dの内部構成例を示したブロック図である。
図29に示した測定装置1Cとの相違点は、検出用光源9に代えてスリット光源26が設けられた点と、距離計算部25が省略された点である。
図示のようにスリット光源26は、撮像可能距離範囲を照明するスリット光Lsを発する。なお、スリット光源26には、例えば半導体レーザやLED(Light Emitting Diode)等を用いることが考えられる。
上記のようなスリット光Lsを用いることで、撮像可能距離範囲内に位置する対象物からのみ反射光が検出されるようになる。このため、第二変形例のように対象物が撮像可能距離範囲内に位置するかを判定するために、対象物までの距離を求める必要がなくなり、距離計算部25を省略することができる。
制御部16Dは、第二変形例における制御部16Cと比較して、先の図30に示した一連の処理のうち、検出用光源の制御処理(ステップS103やS105)を検出用光源9ではなくスリット光源26を対象として行う点と、ステップS151の判定処理、すなわち撮像可能距離範囲内の受光領域があるか否かの判定処理を実行しない点が異なるものとなる。
[6-4.第四変形例]
第四変形例は、撮像センサ11による撮像系にデジタルホログラフィック顕微鏡を適用したものである。
図32は、第四変形例としての測定装置1Eの内部構成例を示したブロック図である。
先の図2に示した測定装置1と比較して、測定装置1Eにおいては、フローセル5、及びフローセル5に対する試料の取り込みや排出に係る構成(試料容器2、洗浄液容器3、試料切替部4、試料排出部6)、及び前面光源7、背面光源8、及び検出用光源9が省略されている。また、制御部16に代えて制御部16Eが設けられる。
第四変形例は、撮像センサ11による撮像系にデジタルホログラフィック顕微鏡を適用したものである。
図32は、第四変形例としての測定装置1Eの内部構成例を示したブロック図である。
先の図2に示した測定装置1と比較して、測定装置1Eにおいては、フローセル5、及びフローセル5に対する試料の取り込みや排出に係る構成(試料容器2、洗浄液容器3、試料切替部4、試料排出部6)、及び前面光源7、背面光源8、及び検出用光源9が省略されている。また、制御部16に代えて制御部16Eが設けられる。
測定装置1Eにおいては、デジタルホログラフィック顕微鏡を実現するための光学系として、光源27、コリメーションレンズ40、ビームスプリッタ41、ビーム結合素子42、ミラー43、及びミラー44が設けられている。
光源27には、例えば半導体レーザが用いられ、光源27から発せられたコヒーレント光はコリメーションレンズ40を介し、一部がビームスプリッタ41を透過して物体光としてビーム結合素子42に入射し、他の一部がビームスプリッタ41で反射された後、参照光として図示のようにミラー43、44を介してビーム結合素子42に入射する。
ビーム結合素子42は、入射した物体光を透過すると共に、ミラー44を介して入射した参照光を物体光と同一光軸上に結合してハーフミラー12に対して出射する。
図示のようにハーフミラー12に入射した結合光は、一部が透過して撮像センサ11側に導かれ、他の一部が反射してSPADセンサ10側に導かれる。
光源27には、例えば半導体レーザが用いられ、光源27から発せられたコヒーレント光はコリメーションレンズ40を介し、一部がビームスプリッタ41を透過して物体光としてビーム結合素子42に入射し、他の一部がビームスプリッタ41で反射された後、参照光として図示のようにミラー43、44を介してビーム結合素子42に入射する。
ビーム結合素子42は、入射した物体光を透過すると共に、ミラー44を介して入射した参照光を物体光と同一光軸上に結合してハーフミラー12に対して出射する。
図示のようにハーフミラー12に入射した結合光は、一部が透過して撮像センサ11側に導かれ、他の一部が反射してSPADセンサ10側に導かれる。
デジタルホログラフィック技術は、物体光と参照光との干渉縞のパターンをイメージセンサ(撮像センサ11)で撮像し、撮像された干渉縞パターンから光の回折現象を計算することで物体の三次元情報を得る技術である。
一般的な顕微鏡では、被写界深度が比較的浅く、例えばプランクトン等の微粒子を撮像するための対物レンズの被写界深度は1mm程度とされている。そのため、潜水しながら鉛直方向に直接海水を撮像しようとすると、深度を変化させながら非常に多くの回数、撮像を行うことを要する。
一方、デジタルホログラフィック顕微鏡は、対物レンズを用いたレンズ結像方式に対して100倍程度の深い被写界深度を実現することができる。従って、一定体積を移動しながら撮像する際に一般的な顕微鏡と比較して撮像回数を大幅に削減することができる。
一方、デジタルホログラフィック顕微鏡は、対物レンズを用いたレンズ結像方式に対して100倍程度の深い被写界深度を実現することができる。従って、一定体積を移動しながら撮像する際に一般的な顕微鏡と比較して撮像回数を大幅に削減することができる。
図32に示す例では、SPADセンサ10を用いた対象物の検出に、光源27が発する光を用いるものとしている。この場合、制御部16Eは、SPADセンサ10の受光信号に基づき条件に合致する受光領域Atsがあると判定したことに応じて、光源27を点灯させて、撮像センサ11による撮像動作を実行させる制御を行う。
なお、SPADセンサ10を用いた対象物検出のための光については、光源27が発する光ではなく、光源27とは別途に設けた光源からの光を用いることも可能である。
なお、SPADセンサ10を用いた対象物検出のための光については、光源27が発する光ではなく、光源27とは別途に設けた光源からの光を用いることも可能である。
[6-5.第五変形例]
第五変形例は、撮像センサ11による撮像画像に基づく対象物測定に係る変形例である。
先の図18では、撮像領域Atiの部分撮像画像に基づいて物体領域を認識し(S201)、認識した対象物の領域に基づきバウンディングボックス20を算出し(S202:図16参照)、算出したバウンディングボックス20に基づきROI21を算出し(S203)し、次のフレームにおいてROI21の部分撮像を行い(S205)、ROI21内の対象物認識処理を行う(S206)ことについて言及した。
このような一連の処理において、ステップS205で行うROI21の部分撮像については、ステップS203で算出したROI21(つまり前フレームで算出したROI21)のサイズに応じて、画像解像度を異ならせることもできる。
第五変形例は、撮像センサ11による撮像画像に基づく対象物測定に係る変形例である。
先の図18では、撮像領域Atiの部分撮像画像に基づいて物体領域を認識し(S201)、認識した対象物の領域に基づきバウンディングボックス20を算出し(S202:図16参照)、算出したバウンディングボックス20に基づきROI21を算出し(S203)し、次のフレームにおいてROI21の部分撮像を行い(S205)、ROI21内の対象物認識処理を行う(S206)ことについて言及した。
このような一連の処理において、ステップS205で行うROI21の部分撮像については、ステップS203で算出したROI21(つまり前フレームで算出したROI21)のサイズに応じて、画像解像度を異ならせることもできる。
図33及び図34を参照し、具体例を説明する。
図33は、撮像センサ11による撮像画像の例として、動物プランクトンPmと植物プランクトンPpとが撮像された例を示しており、図34は、動物プランクトンPmについて算出されたROI21であるROI-1、植物プランクトンPpについて算出されたROI21であるROI-2をそれぞれ例示している。
図33は、撮像センサ11による撮像画像の例として、動物プランクトンPmと植物プランクトンPpとが撮像された例を示しており、図34は、動物プランクトンPmについて算出されたROI21であるROI-1、植物プランクトンPpについて算出されたROI21であるROI-2をそれぞれ例示している。
一般に、動物プランクトンPmは植物プランクトンPpと比較して大型である。例えば、ミナミヒゲミジンコ等の動物プランクトンPmは、体長が2mmから3.5mm程度であるのに対し、セボネケイソウ等の植物プランクトンPpの体長は0.06mm程度である。
第五変形例では、算出されたROI21のサイズが小さい場合は大きい場合よりも、次フレームで行うROI21の部分撮像における画像解像度を高くする制御を行う。具体的に、図34の例では、サイズの小さい植物プランクトンPpのROI-2については、画像解像度を最大(つまり間引き無し)とし、サイズの大きい動物プランクトンPmのROI-1については画像解像度を1/9に間引き(3×3=9画素から代表の1画素のみを抽出)した解像度としている。
ここで、ステップS206(図18)の対象物認識処理について、ROI21のサイズが大きい物体については、画像解像度が多少低くても認識を行うことは可能であるが、ROI21のサイズが小さい物体については、画像解像度を低くしてしまうと認識を行うことが不能となる虞がある。
このため本例では、上記のようにROI21のサイズが小さい場合は大きい場合よりも、次フレームで行うROI21の部分撮像における画像解像度を高くするものとしている。これにより、ROI21のサイズが大きい物体についての認識処理負担の軽減を図りながら、ROI21のサイズが小さい物体について、認識処理の精度が低下してしまうことの防止を図ることができる。換言すれば、認識処理負担の軽減と認識処理精度の低下防止との両立を図ることができる。
このため本例では、上記のようにROI21のサイズが小さい場合は大きい場合よりも、次フレームで行うROI21の部分撮像における画像解像度を高くするものとしている。これにより、ROI21のサイズが大きい物体についての認識処理負担の軽減を図りながら、ROI21のサイズが小さい物体について、認識処理の精度が低下してしまうことの防止を図ることができる。換言すれば、認識処理負担の軽減と認識処理精度の低下防止との両立を図ることができる。
ここで、図33及び図34を参照して分かるように、これまでに説明した実施形態としての測定手法によれば、サイズの異なる対象物についての測定を、対象物のサイズごとに対物レンズを変更することなく同時に行うことができるものである。
[6-6.第六変形例]
第六変形例は、これまでSPADセンサ10を用いて行っていた対象物の検出を、撮像センサ11を用いて行うようにするものである。
図35は、第六変形例としての測定装置1Fの内部構成例を示したブロック図である。
図2に示した測定装置1との相違点は、SPADセンサ10、ミラー13、及びレンズ14が省略された点と、制御部16に代えて制御部16Fが設けられた点である。
第六変形例は、これまでSPADセンサ10を用いて行っていた対象物の検出を、撮像センサ11を用いて行うようにするものである。
図35は、第六変形例としての測定装置1Fの内部構成例を示したブロック図である。
図2に示した測定装置1との相違点は、SPADセンサ10、ミラー13、及びレンズ14が省略された点と、制御部16に代えて制御部16Fが設けられた点である。
植物プランクトンの蛍光反応による励起光のような対象物からの微弱な戻り光を元に対象物検出を行うことを可能とする場合には、微弱な戻り光を検出可能とするためにSPADセンサ10を用いることを要する。
しかしながら、動物プランクトンの散乱光のように、蛍光反応よりも十分に光強度の強い戻り光が得られる場合には、SPADセンサ10は不要であり、撮像センサ11(イメージセンサ)により戻り光検出を行うことが可能である。そこで、第六変形例では、SPADセンサ10を省略し、撮像センサ11を用いて対象物の検出処理を行う。
しかしながら、動物プランクトンの散乱光のように、蛍光反応よりも十分に光強度の強い戻り光が得られる場合には、SPADセンサ10は不要であり、撮像センサ11(イメージセンサ)により戻り光検出を行うことが可能である。そこで、第六変形例では、SPADセンサ10を省略し、撮像センサ11を用いて対象物の検出処理を行う。
図36は、第六変形例における測定開始から測定終了までの処理の流れを示したフローチャートである。図36の処理は、制御部16Fが例えば内蔵するROM等の所定の記憶装置に記憶されたプログラムに基づき実行する。
図17に示した処理との相違点は、ステップS104の受光指示処理に代えて、ステップS161の受光指示処理を行う点である。
具体的に、制御部16FはステップS161で、撮像センサ11に対する受光指示を行う。これにより、撮像センサ11による受光画像(撮像画像)に基づき、ステップS107の判定処理、すなわち条件に合致する受光領域があるか否かの判定処理が行われる。
具体的に、制御部16FはステップS161で、撮像センサ11に対する受光指示を行う。これにより、撮像センサ11による受光画像(撮像画像)に基づき、ステップS107の判定処理、すなわち条件に合致する受光領域があるか否かの判定処理が行われる。
なお、撮像センサ11については、イベントが発生した場合にのみイベントの発生画素の受光信号を読み出すビジョンセンサとしての構成を採ることができる。ビジョンセンサは、DVS(Dynamic Vision Sensor)やEVS(Event-based Vision Sensor)と呼ばれるセンサであり、光電変換素子を有する画素が二次元に複数配列され、アドレスイベントをリアルタイムに検出する検出回路が画素毎に設けられた非同期型のイメージセンサである。アドレスイベントとは、二次元配列された複数の画素それぞれに割り当てられたアドレスごとに発生するイベントである。ここでのイベントとは、例えば、光電変換素子で発生した電荷に基づく電流値、又はその変化量がある一定の閾値を超えたこと等である。ビジョンセンサは、画素毎にアドレスイベントの発生有無を検出し、アドレスイベントの発生が検出された場合、該当するアドレスの画素から画素信号を画素データとして読み出す。
上記のようなビジョンセンサでは、アドレスイベントの発生が検出された画素に対して画素データの読み出しが実行されるため、所定のフレームレートで全画素に対して読み出しを行う同期型のイメージセンサよりも非常に高速な読み出しが可能であり、且つ、1フレーム分として読み出されるデータ量も小さい。そのため、ビジョンセンサを用いることで、より迅速に対象物の動きを検出することが可能となり、また、読み出し動作の頻度も低減できるため消費電力を低減することも可能となる。
上記のようなビジョンセンサでは、アドレスイベントの発生が検出された画素に対して画素データの読み出しが実行されるため、所定のフレームレートで全画素に対して読み出しを行う同期型のイメージセンサよりも非常に高速な読み出しが可能であり、且つ、1フレーム分として読み出されるデータ量も小さい。そのため、ビジョンセンサを用いることで、より迅速に対象物の動きを検出することが可能となり、また、読み出し動作の頻度も低減できるため消費電力を低減することも可能となる。
ここで、図36を参照して分かるように、第六変形例における制御部16Fとしても、対象物が捉えられる一部の画素範囲についての撮像画像とテンプレート画像とのマッチングを行う(ステップS108からS111を参照)。このとき、制御部16Fは、図26の変形例において説明したように、該一部の画素範囲についての撮像画像内に捉えられた物体のクラス識別を行い、クラスごとに用意されたテンプレート画像のうち識別したクラスのテンプレート画像を用いてマッチングを行うこともできる。
また、図示による説明は省略するが、第六変形例における制御部16Fとしても、図18等で説明した対象物のトラッキングを実現するための処理を行う。具体的には、バウンディングボックス20の算出や、バウンディングボックス20に基づくROI21の算出を行って、ROI21内における対象物の認識処理等を行うものである。
なお、上記では第六変形例について、フローセル5を用いるタイプへの適用例を説明したが、前述した第二、第三変形例のようにフローセル5を省略したタイプや第四変形例のようなデジタルホログラフィック顕微鏡を適用したタイプの構成を採ることもできる。
ここで、これまでの説明では、SPADセンサ(10又は10B)について画素が二次元に複数配列された例を説明したが、SPADセンサは、複数の画素が一次元に配列された構成を採ることもできる。或いは、SPADセンサは、単一画素によるセンサとすることもできる。
<7.実施形態のまとめ>
上記のように実施形態の第一の測定装置(同1、1B,16C,16D,16E)は、流体に対し光を発する発光部(検出用光源9,9B,スリット光源26)と、入射光について複数の画素により電子雪崩現象を利用した光電変換を行って受光信号を得る受光部(SPADセンサ10、10B)と、受光信号に基づいて流体中における対象物の検出処理を行い、対象物が検出されたことを条件として対象物の撮像動作を実行させる制御部(同16,16B,16C,16D,16E)と、を備えている。
上記構成によれば、対象物の撮像を常時行うのではなく、受光部の受光信号に基づき対象物が検出されたことをトリガとして行うことにより撮像に係る消費電力削減を図るにあたり、対象物の有無を複数画素の受光信号に基づき検出することが可能とされる。
従って、対象物の有無の検出精度向上を図ることが可能となり、測定装置の省電力化を図ることができる。
測定装置の省電力化が図られることで、電源としてのバッテリの小型化を図ることが可能となり、それにより測定装置の小型化を図ることができる。
上記のように実施形態の第一の測定装置(同1、1B,16C,16D,16E)は、流体に対し光を発する発光部(検出用光源9,9B,スリット光源26)と、入射光について複数の画素により電子雪崩現象を利用した光電変換を行って受光信号を得る受光部(SPADセンサ10、10B)と、受光信号に基づいて流体中における対象物の検出処理を行い、対象物が検出されたことを条件として対象物の撮像動作を実行させる制御部(同16,16B,16C,16D,16E)と、を備えている。
上記構成によれば、対象物の撮像を常時行うのではなく、受光部の受光信号に基づき対象物が検出されたことをトリガとして行うことにより撮像に係る消費電力削減を図るにあたり、対象物の有無を複数画素の受光信号に基づき検出することが可能とされる。
従って、対象物の有無の検出精度向上を図ることが可能となり、測定装置の省電力化を図ることができる。
測定装置の省電力化が図られることで、電源としてのバッテリの小型化を図ることが可能となり、それにより測定装置の小型化を図ることができる。
また、実施形態としての第一の測定装置においては、受光部は、光電変換素子としてSPAD素子を有している。
これにより、受光部に光電子増倍管のような大型且つ大消費電力の光電変換素子を用いる必要がなくなる。
従って、受光部の小型化及び省電力化を図ることができ、測定装置の小型化及び省電力化を図ることができる。
これにより、受光部に光電子増倍管のような大型且つ大消費電力の光電変換素子を用いる必要がなくなる。
従って、受光部の小型化及び省電力化を図ることができ、測定装置の小型化及び省電力化を図ることができる。
さらに、実施形態としての第一の測定装置においては、制御部は、対象物の検出処理を受光部における受光反応部分の画像的特徴に基づいて行っている(図17のS107や図28のS301を参照)。
ここで言う「受光反応部分の画像的特徴」とは、例えば受光反応部分の画サイズや位置、受光した光の波長や受光信号の値等、受光反応部分としての、受光反応のあった少なくとも1以上の画素で構成される画像についての特徴を意味する。
このような受光反応部分の画像的特徴に基づき、受光反応部分が対象物を捉えたものであるか否かの推定を適切に行うことができる。
ここで言う「受光反応部分の画像的特徴」とは、例えば受光反応部分の画サイズや位置、受光した光の波長や受光信号の値等、受光反応部分としての、受光反応のあった少なくとも1以上の画素で構成される画像についての特徴を意味する。
このような受光反応部分の画像的特徴に基づき、受光反応部分が対象物を捉えたものであるか否かの推定を適切に行うことができる。
さらにまた、実施形態としての第一の測定装置においては、制御部は、受光反応部分の画像的特徴が指定された画像的特徴に一致しない場合は当該受光反応部分に対応した撮像範囲についての撮像が行われないようにしている。
これにより、指定された画像的特徴を有する物体以外が無闇に撮像されてしまうことの防止を図ることが可能となる。
従って、撮像に係る消費電力の削減を図ることができ、測定装置の省電力化を図ることができる。
これにより、指定された画像的特徴を有する物体以外が無闇に撮像されてしまうことの防止を図ることが可能となる。
従って、撮像に係る消費電力の削減を図ることができ、測定装置の省電力化を図ることができる。
また、実施形態としての第一の測定装置においては、制御部は、画像的特徴として、受光反応部分の画素位置及び画サイズを検出している(図12から図14等を参照)。
これにより、対象物の撮像を行う撮像センサについて、対象物が捉えられる画素範囲、すなわち撮像を行うべき画素範囲を特定することが可能となる。
従って、指定された画像的特徴を有する物体以外が無闇に撮像されてしまうことの防止を図ることができ、撮像に係る消費電力の削減を図ることができる。
これにより、対象物の撮像を行う撮像センサについて、対象物が捉えられる画素範囲、すなわち撮像を行うべき画素範囲を特定することが可能となる。
従って、指定された画像的特徴を有する物体以外が無闇に撮像されてしまうことの防止を図ることができ、撮像に係る消費電力の削減を図ることができる。
さらに、実施形態としての第一の測定装置においては、制御部は、対象物の撮像を行う撮像センサ(同11、11B)において、対象物が捉えられる一部の画素範囲についてのみ撮像動作が行われるように制御している。
これにより、撮像センサにおける全画素範囲について撮像動作を行う場合よりも撮像に係る消費電力の削減が図られる。
従って、測定装置の省電力化を図ることができる。
これにより、撮像センサにおける全画素範囲について撮像動作を行う場合よりも撮像に係る消費電力の削減が図られる。
従って、測定装置の省電力化を図ることができる。
さらにまた、実施形態としての第一の測定装置においては、制御部は、一部の画素範囲についての撮像画像とテンプレート画像とのマッチングを行っている(図17のS111を参照)。
撮像画像に基づくマッチングを行うことで、対象物の種類の識別を適切に行うことが可能となる。
従って、対象物の認識精度向上により対象物測定の正確性向上を図ることができる。
撮像画像に基づくマッチングを行うことで、対象物の種類の識別を適切に行うことが可能となる。
従って、対象物の認識精度向上により対象物測定の正確性向上を図ることができる。
また、実施形態としての第一の測定装置においては、制御部は、一部の画素範囲についての撮像画像内に捉えられた物体のクラス識別を行い、クラスごとに用意されたテンプレート画像のうち識別したクラスのテンプレート画像を用いてマッチングを行っている。
このようにクラスを絞った上で画像マッチングを行うことで、画像マッチング処理の効率化を図ることができる。
このようにクラスを絞った上で画像マッチングを行うことで、画像マッチング処理の効率化を図ることができる。
また、実施形態としての第一の測定装置においては、制御部は、受光信号に基づき対象物が検出された以降の所定のフレームである基準フレームにおいて、一部の画素範囲の撮像画像から対象物を囲う範囲としてのバウンディングボックス(同20)を設定すると共に、バウンディングボックスを内包しバウンディングボックスよりも大サイズの領域であるROI(同21)を設定し、基準フレームよりも後のフレームにおいては、直前のフレームにおいて設定されたROI内において、対象物のバウンディングボックスを設定すると共に、該バウンディングボックスに基づくROIを設定している(図16を参照)。
これにより、対象物が撮像画像内を移動する場合であっても対象物をトラッキング(追尾)することが可能となる。
このとき、対象物のトラッキングにあたり各フレームで必要となる撮像画像は、ROIの撮像画像のみとなる。このため、誤カウント防止のために対象物を追尾する場合において、追尾のための撮像範囲をROIのみに絞ることが可能となり、追尾のための撮像に係る消費電力の削減を図ることができる。
これにより、対象物が撮像画像内を移動する場合であっても対象物をトラッキング(追尾)することが可能となる。
このとき、対象物のトラッキングにあたり各フレームで必要となる撮像画像は、ROIの撮像画像のみとなる。このため、誤カウント防止のために対象物を追尾する場合において、追尾のための撮像範囲をROIのみに絞ることが可能となり、追尾のための撮像に係る消費電力の削減を図ることができる。
さらに、実施形態としての第一の測定装置においては、受光部として機能するセンサと、制御部の制御に基づき対象物の撮像を行う撮像センサとが別体とされている(図20から図22を参照)。
これにより、受光部として機能するセンサ(電子雪崩現象を利用した光電変換を行うセンサ)、対象物の撮像を行う撮像センサとして、それぞれ既存のセンサを流用することが可能となる。
従って、新たなセンサを開発して用いる必要がなく、測定装置のコスト削減を図ることができる。
これにより、受光部として機能するセンサ(電子雪崩現象を利用した光電変換を行うセンサ)、対象物の撮像を行う撮像センサとして、それぞれ既存のセンサを流用することが可能となる。
従って、新たなセンサを開発して用いる必要がなく、測定装置のコスト削減を図ることができる。
さらにまた、実施形態としての第一の測定装置においては、受光部としての機能と制御部の制御に基づき対象物の撮像を行う機能とを有する単一のセンサを備えている(図24、図25を参照)。
センサを別体とする場合には、流体からの光を各センサに分配するための分光手段を設けることを要するが、一体センサとすることで、そのような分光手段を設ける必要がなくなる。
従って、光学部品についての部品点数の削減を図ることができ、測定装置の小型化を図ることができる。
センサを別体とする場合には、流体からの光を各センサに分配するための分光手段を設けることを要するが、一体センサとすることで、そのような分光手段を設ける必要がなくなる。
従って、光学部品についての部品点数の削減を図ることができ、測定装置の小型化を図ることができる。
また、実施形態としての第一の測定装置においては、内部の流路に対して流体がサンプリングされるフローセル(同5)を備え、制御部は、撮像動作の終了後において、流路に対して試料としての流体とは別の流体を流入させてフローセルを洗浄させている(図19を参照)。
これにより、測定済みとなった対象物が再度測定されてしまう等の誤測定の発生防止を図ることが可能となる。
従って、対象物の測定精度向上を図ることができる。
これにより、測定済みとなった対象物が再度測定されてしまう等の誤測定の発生防止を図ることが可能となる。
従って、対象物の測定精度向上を図ることができる。
さらに、実施形態としての第一の測定装置においては、制御部は、流路に対する別の流体の流入後において、受光信号に基づいて対象物の検出処理を行っている(図19のS123からS129を参照)。
これにより、洗浄後に残留している対象物の有無を確認することが可能となる。
従って、対象物の残留がある場合にはフローセルを再洗浄する等、誤測定防止のための対応処理を行うことが可能となり、誤測定の発生防止効果を高めることができる。
これにより、洗浄後に残留している対象物の有無を確認することが可能となる。
従って、対象物の残留がある場合にはフローセルを再洗浄する等、誤測定防止のための対応処理を行うことが可能となり、誤測定の発生防止効果を高めることができる。
また、実施形態の撮像制御方法は、流体に対し光を発する発光部と、入射光について複数の画素により電子雪崩現象を利用した光電変換を行って受光信号を得る受光部と、を少なくとも備えた測定装置の撮像制御方法であって、受光信号に基づいて流体中における対象物の検出処理を行い、対象物が検出されたことを条件として対象物の撮像動作を実行させる撮像制御方法である。
このような撮像制御方法によっても、上記した実施形態としての第一の測定装置と同様の作用及び効果を得ることができる。
このような撮像制御方法によっても、上記した実施形態としての第一の測定装置と同様の作用及び効果を得ることができる。
実施形態としての第二の測定装置(同1F)は、流体に対し光を発する発光部(例えば検出用光源9)と、入射光について複数の画素により光電変換を行って受光信号を得る撮像センサ(例えば同11)と、受光信号に基づいて流体中における対象物の検出処理を行い、対象物が検出されたことを条件として、撮像センサに対象物の撮像動作を実行させる制御部(同16F)と、を備え、制御部は、対象物の撮像動作として、対象物が捉えられる一部の画素範囲のみについての撮像動作が行われるように制御するものである。
上記構成によれば、対象物の撮像を常時行うのではなく、受光信号に基づき対象物が検出されたことをトリガとして行うことにより撮像に係る消費電力削減を図ることが可能となる。また、撮像センサにおける全画素範囲について撮像動作を行う場合よりも撮像に係る消費電力の削減が図られる。
従って、測定装置の省電力化を図ることができる。
上記構成によれば、対象物の撮像を常時行うのではなく、受光信号に基づき対象物が検出されたことをトリガとして行うことにより撮像に係る消費電力削減を図ることが可能となる。また、撮像センサにおける全画素範囲について撮像動作を行う場合よりも撮像に係る消費電力の削減が図られる。
従って、測定装置の省電力化を図ることができる。
また、上記した実施形態としての第二の測定装置においては、制御部は、一部の画素範囲についての撮像画像とテンプレート画像とのマッチングを行っている。
撮像画像に基づくマッチングを行うことで、対象物の種類の識別を適切に行うことが可能となる。
従って、対象物の認識精度向上により対象物測定の正確性向上を図ることができる。
撮像画像に基づくマッチングを行うことで、対象物の種類の識別を適切に行うことが可能となる。
従って、対象物の認識精度向上により対象物測定の正確性向上を図ることができる。
さらに、上記した実施形態としての第二の測定装置においては、制御部は、一部の画素範囲についての撮像画像内に捉えられた物体のクラス識別を行い、クラスごとに用意されたテンプレート画像のうち識別したクラスのテンプレート画像を用いてマッチングを行っている。
このようにクラスを絞った上で画像マッチングを行うことで、画像マッチング処理の効率化を図ることができる。
このようにクラスを絞った上で画像マッチングを行うことで、画像マッチング処理の効率化を図ることができる。
なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。
<8.本技術>
本技術は以下のような構成も採ることができる。
(1)
流体に対し光を発する発光部と、
入射光について電子雪崩現象を利用した光電変換を行って受光信号を得る受光部と、
前記受光信号に基づいて前記流体中における対象物の検出処理を行い、前記対象物が検出されたことを条件として前記対象物の撮像動作を実行させる制御部と、を備える
測定装置。
(2)
前記受光部は、光電変換素子としてSPAD素子を有する
前記(1)に記載の測定装置。
(3)
前記制御部は、
前記対象物の検出処理を前記受光部における受光反応部分の画像的特徴に基づいて行う
前記(1)又は(2)に記載の測定装置。
(4)
前記制御部は、
前記受光反応部分の画像的特徴が指定された画像的特徴に一致しない場合は当該受光反応部分に対応した撮像範囲についての撮像が行われないようにする
前記(3)に記載の測定装置。
(5)
前記制御部は、
前記画像的特徴として、前記受光反応部分の画素位置及び画サイズを検出する
前記(3)又は(4)の何れかに記載の測定装置。
(6)
前記制御部は、
前記対象物の撮像を行う撮像センサにおいて、前記対象物が捉えられる一部の画素範囲についてのみ撮像動作が行われるように制御する
前記(1)から(5)の何れかに記載の測定装置。
(7)
前記制御部は、
前記一部の画素範囲についての撮像画像とテンプレート画像とのマッチングを行う
前記(6)に記載の測定装置。
(8)
前記制御部は、
前記一部の画素範囲についての撮像画像内に捉えられた物体のクラス識別を行い、クラスごとに用意された前記テンプレート画像のうち識別したクラスの前記テンプレート画像を用いて前記マッチングを行う
前記(7)に記載の測定装置。
(9)
前記制御部は、
前記受光信号に基づき前記対象物が検出された以降の所定のフレームである基準フレームにおいて、前記一部の画素範囲の撮像画像から前記対象物を囲う範囲としてのバウンディングボックスを設定すると共に、前記バウンディングボックスを内包し前記バウンディングボックスよりも大サイズの領域であるROIを設定し、
前記基準フレームよりも後のフレームにおいては、直前のフレームにおいて設定された前記ROI内において、前記対象物の前記バウンディングボックスを設定すると共に、該バウンディングボックスに基づく前記ROIを設定する
前記(6)から(8)に記載の測定装置。
(10)
前記受光部として機能するセンサと、前記制御部の制御に基づき前記対象物の撮像を行う撮像センサとが別体とされた
前記(1)から(9)の何れかに記載の測定装置。
(11)
前記受光部としての機能と前記制御部の制御に基づき前記対象物の撮像を行う機能とを有する単一のセンサを備えた
前記(1)から(9)の何れかに記載の測定装置。
(12)
内部の流路に対して前記流体がサンプリングされるフローセルを備え、
前記制御部は、
前記撮像動作の終了後において、
前記流路に対して試料としての前記流体とは別の流体を流入させて前記フローセルを洗浄させる
前記(1)から(11)の何れかに記載の測定装置。
(13)
前記制御部は、
前記流路に対する前記別の流体の流入後において、前記受光信号に基づいて前記対象物の検出処理を行う
前記(12)に記載の測定装置。
(14)
流体に対し光を発する発光部と、入射光について複数の画素により電子雪崩現象を利用した光電変換を行って受光信号を得る受光部と、を少なくとも備えた測定装置の撮像制御方法であって、
前記受光信号に基づいて前記流体中における対象物の検出処理を行い、前記対象物が検出されたことを条件として前記対象物の撮像動作を実行させる
撮像制御方法。
(15)
流体に対し光を発する発光部と、
入射光について複数の画素により光電変換を行って受光信号を得る撮像センサと、
前記受光信号に基づいて前記流体中における対象物の検出処理を行い、前記対象物が検出されたことを条件として、前記撮像センサに前記対象物の撮像動作を実行させる制御部と、を備え、
前記制御部は、
前記対象物の撮像動作として、前記対象物が捉えられる一部の画素範囲のみについての撮像動作が行われるように制御する
測定装置。
(16)
前記制御部は、
前記一部の画素範囲についての撮像画像とテンプレート画像とのマッチングを行う
前記(15)に記載の測定装置。
(17)
前記制御部は、
前記一部の画素範囲についての撮像画像内に捉えられた物体のクラス識別を行い、クラスごとに用意された前記テンプレート画像のうち識別したクラスの前記テンプレート画像を用いて前記マッチングを行う
前記(16)に記載の測定装置。
本技術は以下のような構成も採ることができる。
(1)
流体に対し光を発する発光部と、
入射光について電子雪崩現象を利用した光電変換を行って受光信号を得る受光部と、
前記受光信号に基づいて前記流体中における対象物の検出処理を行い、前記対象物が検出されたことを条件として前記対象物の撮像動作を実行させる制御部と、を備える
測定装置。
(2)
前記受光部は、光電変換素子としてSPAD素子を有する
前記(1)に記載の測定装置。
(3)
前記制御部は、
前記対象物の検出処理を前記受光部における受光反応部分の画像的特徴に基づいて行う
前記(1)又は(2)に記載の測定装置。
(4)
前記制御部は、
前記受光反応部分の画像的特徴が指定された画像的特徴に一致しない場合は当該受光反応部分に対応した撮像範囲についての撮像が行われないようにする
前記(3)に記載の測定装置。
(5)
前記制御部は、
前記画像的特徴として、前記受光反応部分の画素位置及び画サイズを検出する
前記(3)又は(4)の何れかに記載の測定装置。
(6)
前記制御部は、
前記対象物の撮像を行う撮像センサにおいて、前記対象物が捉えられる一部の画素範囲についてのみ撮像動作が行われるように制御する
前記(1)から(5)の何れかに記載の測定装置。
(7)
前記制御部は、
前記一部の画素範囲についての撮像画像とテンプレート画像とのマッチングを行う
前記(6)に記載の測定装置。
(8)
前記制御部は、
前記一部の画素範囲についての撮像画像内に捉えられた物体のクラス識別を行い、クラスごとに用意された前記テンプレート画像のうち識別したクラスの前記テンプレート画像を用いて前記マッチングを行う
前記(7)に記載の測定装置。
(9)
前記制御部は、
前記受光信号に基づき前記対象物が検出された以降の所定のフレームである基準フレームにおいて、前記一部の画素範囲の撮像画像から前記対象物を囲う範囲としてのバウンディングボックスを設定すると共に、前記バウンディングボックスを内包し前記バウンディングボックスよりも大サイズの領域であるROIを設定し、
前記基準フレームよりも後のフレームにおいては、直前のフレームにおいて設定された前記ROI内において、前記対象物の前記バウンディングボックスを設定すると共に、該バウンディングボックスに基づく前記ROIを設定する
前記(6)から(8)に記載の測定装置。
(10)
前記受光部として機能するセンサと、前記制御部の制御に基づき前記対象物の撮像を行う撮像センサとが別体とされた
前記(1)から(9)の何れかに記載の測定装置。
(11)
前記受光部としての機能と前記制御部の制御に基づき前記対象物の撮像を行う機能とを有する単一のセンサを備えた
前記(1)から(9)の何れかに記載の測定装置。
(12)
内部の流路に対して前記流体がサンプリングされるフローセルを備え、
前記制御部は、
前記撮像動作の終了後において、
前記流路に対して試料としての前記流体とは別の流体を流入させて前記フローセルを洗浄させる
前記(1)から(11)の何れかに記載の測定装置。
(13)
前記制御部は、
前記流路に対する前記別の流体の流入後において、前記受光信号に基づいて前記対象物の検出処理を行う
前記(12)に記載の測定装置。
(14)
流体に対し光を発する発光部と、入射光について複数の画素により電子雪崩現象を利用した光電変換を行って受光信号を得る受光部と、を少なくとも備えた測定装置の撮像制御方法であって、
前記受光信号に基づいて前記流体中における対象物の検出処理を行い、前記対象物が検出されたことを条件として前記対象物の撮像動作を実行させる
撮像制御方法。
(15)
流体に対し光を発する発光部と、
入射光について複数の画素により光電変換を行って受光信号を得る撮像センサと、
前記受光信号に基づいて前記流体中における対象物の検出処理を行い、前記対象物が検出されたことを条件として、前記撮像センサに前記対象物の撮像動作を実行させる制御部と、を備え、
前記制御部は、
前記対象物の撮像動作として、前記対象物が捉えられる一部の画素範囲のみについての撮像動作が行われるように制御する
測定装置。
(16)
前記制御部は、
前記一部の画素範囲についての撮像画像とテンプレート画像とのマッチングを行う
前記(15)に記載の測定装置。
(17)
前記制御部は、
前記一部の画素範囲についての撮像画像内に捉えられた物体のクラス識別を行い、クラスごとに用意された前記テンプレート画像のうち識別したクラスの前記テンプレート画像を用いて前記マッチングを行う
前記(16)に記載の測定装置。
1,1B,1C,1D,1E,1F 測定装置
2 試料容器
3 洗浄液容器
4 試料切替部
5 フローセル
6 試料排出部
7 前面光源
8 背面光源
9,9B 検出用光源
10,10B SPADセンサ
11,11A,10B 撮像センサ
12 ハーフミラー
13 ミラー
14,15 レンズ
16、16B,16C,16D,16E,16F 制御部
17 記憶部
18 通信部
Mi 試料取込口
Mo 試料排出口
20 バウンディングボックス
21 ROI
G10、G11、Gmx 画素
30 バス
31 画素アレイ部
32 ADC/ピクセルセレクタ
33 バッファ
34 ロジック部
35 メモリ
36 インタフェース部
37 演算部
37a 画像処理部
2 試料容器
3 洗浄液容器
4 試料切替部
5 フローセル
6 試料排出部
7 前面光源
8 背面光源
9,9B 検出用光源
10,10B SPADセンサ
11,11A,10B 撮像センサ
12 ハーフミラー
13 ミラー
14,15 レンズ
16、16B,16C,16D,16E,16F 制御部
17 記憶部
18 通信部
Mi 試料取込口
Mo 試料排出口
20 バウンディングボックス
21 ROI
G10、G11、Gmx 画素
30 バス
31 画素アレイ部
32 ADC/ピクセルセレクタ
33 バッファ
34 ロジック部
35 メモリ
36 インタフェース部
37 演算部
37a 画像処理部
Claims (17)
- 流体に対し光を発する発光部と、
入射光について複数の画素により電子雪崩現象を利用した光電変換を行って受光信号を得る受光部と、
前記受光信号に基づいて前記流体中における対象物の検出処理を行い、前記対象物が検出されたことを条件として前記対象物の撮像動作を実行させる制御部と、を備える
測定装置。 - 前記受光部は、光電変換素子としてSPAD素子を有する
請求項1に記載の測定装置。 - 前記制御部は、
前記対象物の検出処理を前記受光部における受光反応部分の画像的特徴に基づいて行う
請求項1に記載の測定装置。 - 前記制御部は、
前記受光反応部分の画像的特徴が指定された画像的特徴に一致しない場合は当該受光反応部分に対応した撮像範囲についての撮像が行われないようにする
請求項3に記載の測定装置。 - 前記制御部は、
前記画像的特徴として、前記受光反応部分の画素位置及び画サイズを検出する
請求項3に記載の測定装置。 - 前記制御部は、
前記対象物の撮像を行う撮像センサにおいて、前記対象物が捉えられる一部の画素範囲についてのみ撮像動作が行われるように制御する
請求項1に記載の測定装置。 - 前記制御部は、
前記一部の画素範囲についての撮像画像とテンプレート画像とのマッチングを行う
請求項6に記載の測定装置。 - 前記制御部は、
前記一部の画素範囲についての撮像画像内に捉えられた物体のクラス識別を行い、クラスごとに用意された前記テンプレート画像のうち識別したクラスの前記テンプレート画像を用いて前記マッチングを行う
請求項7に記載の測定装置。 - 前記制御部は、
前記受光信号に基づき前記対象物が検出された以降の所定のフレームである基準フレームにおいて、前記一部の画素範囲の撮像画像から前記対象物を囲う範囲としてのバウンディングボックスを設定すると共に、前記バウンディングボックスを内包し前記バウンディングボックスよりも大サイズの領域であるROIを設定し、
前記基準フレームよりも後のフレームにおいては、直前のフレームにおいて設定された前記ROI内において、前記対象物の前記バウンディングボックスを設定すると共に、該バウンディングボックスに基づく前記ROIを設定する
請求項6に記載の測定装置。 - 前記受光部として機能するセンサと、前記制御部の制御に基づき前記対象物の撮像を行う撮像センサとが別体とされた
請求項1に記載の測定装置。 - 前記受光部としての機能と前記制御部の制御に基づき前記対象物の撮像を行う機能とを有する単一のセンサを備えた
請求項1に記載の測定装置。 - 内部の流路に対して前記流体がサンプリングされるフローセルを備え、
前記制御部は、
前記撮像動作の終了後において、
前記流路に対して試料としての前記流体とは別の流体を流入させて前記フローセルを洗浄させる
請求項1に記載の測定装置。 - 前記制御部は、
前記流路に対する前記別の流体の流入後において、前記受光信号に基づいて前記対象物の検出処理を行う
請求項12に記載の測定装置。 - 流体に対し光を発する発光部と、入射光について複数の画素により電子雪崩現象を利用した光電変換を行って受光信号を得る受光部と、を少なくとも備えた測定装置の撮像制御方法であって、
前記受光信号に基づいて前記流体中における対象物の検出処理を行い、前記対象物が検出されたことを条件として前記対象物の撮像動作を実行させる
撮像制御方法。 - 流体に対し光を発する発光部と、
入射光について複数の画素により光電変換を行って受光信号を得る撮像センサと、
前記受光信号に基づいて前記流体中における対象物の検出処理を行い、前記対象物が検出されたことを条件として、前記撮像センサに前記対象物の撮像動作を実行させる制御部と、を備え、
前記制御部は、
前記対象物の撮像動作として、前記対象物が捉えられる一部の画素範囲のみについての撮像動作が行われるように制御する
測定装置。 - 前記制御部は、
前記一部の画素範囲についての撮像画像とテンプレート画像とのマッチングを行う
請求項15に記載の測定装置。 - 前記制御部は、
前記一部の画素範囲についての撮像画像内に捉えられた物体のクラス識別を行い、クラスごとに用意された前記テンプレート画像のうち識別したクラスの前記テンプレート画像を用いて前記マッチングを行う
請求項16に記載の測定装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/911,423 US20230102792A1 (en) | 2020-04-22 | 2021-03-22 | Measuring device and imaging control method |
EP21791874.7A EP4141393A4 (en) | 2020-04-22 | 2021-03-22 | MEASURING DEVICE AND IMAGING CONTROL METHOD |
CN202180028705.2A CN115398202A (zh) | 2020-04-22 | 2021-03-22 | 测量装置和成像控制方法 |
KR1020227033754A KR20230002344A (ko) | 2020-04-22 | 2021-03-22 | 측정 장치, 촬상 제어 방법 |
JP2022516904A JPWO2021215173A1 (ja) | 2020-04-22 | 2021-03-22 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-075926 | 2020-04-22 | ||
JP2020075926 | 2020-04-22 | ||
JP2020-160639 | 2020-09-25 | ||
JP2020160639 | 2020-09-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021215173A1 true WO2021215173A1 (ja) | 2021-10-28 |
Family
ID=78270609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/011766 WO2021215173A1 (ja) | 2020-04-22 | 2021-03-22 | 測定装置、撮像制御方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230102792A1 (ja) |
EP (1) | EP4141393A4 (ja) |
JP (1) | JPWO2021215173A1 (ja) |
KR (1) | KR20230002344A (ja) |
CN (1) | CN115398202A (ja) |
TW (1) | TW202210794A (ja) |
WO (1) | WO2021215173A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023112532A1 (ja) * | 2021-12-15 | 2023-06-22 | ソニーグループ株式会社 | 測定装置、測定方法、プログラム |
WO2023223851A1 (ja) * | 2022-05-16 | 2023-11-23 | ソニーグループ株式会社 | 生体試料分析システム、情報処理装置、情報処理方法及び生体試料分析方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230177417A1 (en) * | 2021-12-03 | 2023-06-08 | Motorola Solutions, Inc. | System and meethod for underwater object detection with law enforcement alert and external agency notification |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06194299A (ja) * | 1992-12-24 | 1994-07-15 | Canon Inc | フローセル装置 |
US20100053614A1 (en) * | 2008-02-11 | 2010-03-04 | Jeys Thomas H | Method and apparatus for detecting and discriminating particles in a fluid |
JP2016095259A (ja) | 2014-11-17 | 2016-05-26 | 横河電機株式会社 | プランクトン測定システムおよびプランクトン測定方法 |
US20170082530A1 (en) | 2015-09-21 | 2017-03-23 | Fluid Imaging Technologies, Inc. | System And Method For Monitoring Particles In A Fluid Using Ratiometric Cytometry |
US20170116748A1 (en) * | 2014-06-09 | 2017-04-27 | Siemens Aktiengesellschaft | Landmark Detection with Spatial and Temporal Constraints in Medical Imaging |
WO2020080139A1 (ja) * | 2018-10-19 | 2020-04-23 | ソニー株式会社 | センサ装置、パラメータ設定方法 |
-
2021
- 2021-03-22 US US17/911,423 patent/US20230102792A1/en active Pending
- 2021-03-22 EP EP21791874.7A patent/EP4141393A4/en active Pending
- 2021-03-22 JP JP2022516904A patent/JPWO2021215173A1/ja active Pending
- 2021-03-22 CN CN202180028705.2A patent/CN115398202A/zh active Pending
- 2021-03-22 WO PCT/JP2021/011766 patent/WO2021215173A1/ja unknown
- 2021-03-22 KR KR1020227033754A patent/KR20230002344A/ko active Search and Examination
- 2021-04-15 TW TW110113526A patent/TW202210794A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06194299A (ja) * | 1992-12-24 | 1994-07-15 | Canon Inc | フローセル装置 |
US20100053614A1 (en) * | 2008-02-11 | 2010-03-04 | Jeys Thomas H | Method and apparatus for detecting and discriminating particles in a fluid |
US20170116748A1 (en) * | 2014-06-09 | 2017-04-27 | Siemens Aktiengesellschaft | Landmark Detection with Spatial and Temporal Constraints in Medical Imaging |
JP2016095259A (ja) | 2014-11-17 | 2016-05-26 | 横河電機株式会社 | プランクトン測定システムおよびプランクトン測定方法 |
US20170082530A1 (en) | 2015-09-21 | 2017-03-23 | Fluid Imaging Technologies, Inc. | System And Method For Monitoring Particles In A Fluid Using Ratiometric Cytometry |
WO2020080139A1 (ja) * | 2018-10-19 | 2020-04-23 | ソニー株式会社 | センサ装置、パラメータ設定方法 |
Non-Patent Citations (3)
Title |
---|
FRANCE SCOPAOLO, MATTIOLI DELLAROCCA: "Real-Time Fluorescence Lifetime Actuation for Cell Sorting using a CMOS SPAD Silicon Photomultiplier", OPTICS LETTERS, vol. 41, no. 4, 2016, pages 673 - 676, XP055390551, DOI: http://dx.doi.org/10.1364/OL.41.000673 * |
MAI, HANNING: "Flow cytometry visualization, real- time processing with a CMOS SPAD array, high-speed hardware implementation algorithm", PROC. OF SPIE, vol. 11243, 17 February 2020 (2020-02-17), pages 1 - 7, XP060128510, DOI: 10.1117/12.2544759 * |
See also references of EP4141393A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023112532A1 (ja) * | 2021-12-15 | 2023-06-22 | ソニーグループ株式会社 | 測定装置、測定方法、プログラム |
WO2023223851A1 (ja) * | 2022-05-16 | 2023-11-23 | ソニーグループ株式会社 | 生体試料分析システム、情報処理装置、情報処理方法及び生体試料分析方法 |
Also Published As
Publication number | Publication date |
---|---|
US20230102792A1 (en) | 2023-03-30 |
EP4141393A1 (en) | 2023-03-01 |
KR20230002344A (ko) | 2023-01-05 |
JPWO2021215173A1 (ja) | 2021-10-28 |
CN115398202A (zh) | 2022-11-25 |
EP4141393A4 (en) | 2023-11-01 |
TW202210794A (zh) | 2022-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021215173A1 (ja) | 測定装置、撮像制御方法 | |
US10337997B2 (en) | System for rapid assessment of water quality and harmful algal bloom toxins | |
US10222688B2 (en) | Continuous particle imaging and classification system | |
CN100541407C (zh) | 指点设备及指点设备中用于光学导航的集成电路 | |
KR101296780B1 (ko) | 레이저를 이용한 장애물 감지장치 및 방법. | |
CA3042392C (en) | Apparatus for detecting sea mines | |
JP2010085194A (ja) | 試料分析装置 | |
EP3705913B1 (en) | Lidar imaging apparatus for a motor vehicle | |
CN114270210A (zh) | 靠近焦平面的窗口遮挡成像器 | |
KR101761128B1 (ko) | 바이오센서용 형광광학계 | |
JPH1073528A (ja) | 撮像機能付きフローサイトメータ | |
Lunven et al. | In situ video and fluorescence analysis (VFA) of marine particles: applications to phytoplankton ecological studies. | |
CN105044730B (zh) | 瑞利散射海洋激光雷达系统 | |
WO2008088249A1 (en) | Apparatus for determining positions of objects contained in a sample | |
EP4332878A1 (en) | Optical image processing method, machine learning method, trained model, machine learning preprocessing method, optical image processing module, optical image processing program, and optical image processing system | |
WO2023082374A1 (zh) | 一种凝视型快速高光谱脉冲激光雷达系统 | |
CN113155781B (zh) | 一种非接触式检测系统 | |
Zhang et al. | Mask-guided deep learning fishing net detection and recognition based on underwater range gated laser imaging | |
CN110192101A (zh) | 观察装置及观察方法 | |
JP2011137836A (ja) | 水分検出装置、生体中水分検出装置、自然産物中水分検出装置、および製品・材料中水分検出装置 | |
JP5500617B2 (ja) | 対象物検出方法及びライダー装置、環境測定方法 | |
He et al. | Underwater LIDAR imaging in highly turbid waters | |
JP2005055429A (ja) | 顕微鏡システムで弱い蛍光放射を検出するための検知器と方法 | |
JP2004325202A (ja) | レーザレーダ装置 | |
US20240276104A1 (en) | Measurement device, measurement method, program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21791874 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022516904 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021791874 Country of ref document: EP Effective date: 20221122 |