WO2021215123A1 - Dimming element - Google Patents

Dimming element Download PDF

Info

Publication number
WO2021215123A1
WO2021215123A1 PCT/JP2021/008305 JP2021008305W WO2021215123A1 WO 2021215123 A1 WO2021215123 A1 WO 2021215123A1 JP 2021008305 W JP2021008305 W JP 2021008305W WO 2021215123 A1 WO2021215123 A1 WO 2021215123A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode group
metal
substrate
surface roughness
Prior art date
Application number
PCT/JP2021/008305
Other languages
French (fr)
Japanese (ja)
Inventor
小川 正太郎
小杉 直貴
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021215123A1 publication Critical patent/WO2021215123A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor

Definitions

  • This disclosure relates to a dimming element.
  • Patent Document 1 a polymer-dispersed liquid crystal film is disposed on the display surface of the display means, and polarized light that transmits one polarized light between the display surface of the display means and the polymer-dispersed liquid crystal film and reflects another polarized light.
  • a display device on which a film is arranged is disclosed.
  • the reflected light reflected by the polarizing film can be scattered by the polymer-dispersed liquid crystal film to make the white turbid state of the polymer-dispersed liquid crystal film whiter.
  • the present disclosure is devised in view of the above-mentioned conventional circumstances, and provides a dimming element capable of improving convenience by switching between a transparent display when the on-board device is used and a white display when the on-board device is not in use. With the goal.
  • the present disclosure is a dimming element mounted on a display device, the first electrode having translucency, the second electrode arranged in parallel facing the first electrode, and the first electrode.
  • a power source that switches between a metal-containing electrolytic solution arranged between the second electrode and a metal-precipitated state and a non-precipitated state on the first electrode depending on whether or not a voltage is applied to the electrolytic solution.
  • the first electrode has a surface roughness of at least a region where the metal is deposited is 0.1 to 4.0 ⁇ m, and the power supply is in the precipitated state when the display device is not in use.
  • a dimming element that displays a region in white and makes the region transparently displayed in the non-precipitated state when the display device is used.
  • the present disclosure discloses a dimming element mounted on a display device, the first electrode having translucency, the second electrode arranged in parallel facing the first electrode, and the first electrode.
  • the present disclosure it is possible to improve convenience by switching between a transparent display when the on-board device is used and a white display when the on-board device is not in use.
  • the figure which shows the cross-sectional line of an EC element The figure explaining the structural example of the EC element which concerns on Embodiment 1.
  • a dimming element that is, an EC element
  • a transparent display when the on-board device is used and a higher-quality white display when not in use to further improve convenience
  • FIG. 1 is a diagram illustrating a structural example of the EC element 100 according to the first embodiment.
  • the arrow K shown in FIG. 1 indicates the direction of the line of sight of the user (for example, the user of the EC element).
  • the metal OB1 shown in FIG. 1 is in a precipitated state, and a metal thin film is formed on the surface of the first electrode group 110.
  • the EC element 100 is mounted on a video display surface of a display device (hereinafter, referred to as "mounted device") such as a television receiver or a display device.
  • mounted device such as a television receiver or a display device.
  • the EC element 100 is in a transparent state (that is, transparent display) when the mounted device is used (viewing), and is switched to a precipitation state (white display) when the mounted device is not used (not viewed).
  • the EC element 100 includes a first electrode group 110, a first substrate 111, a first electrode connection portion 112, a second electrode group 210, a second substrate 211, and a second electrode connection.
  • the unit 212, the electrolytic solution EL1, the spacer 300, and the EC element drive circuit 500 are included.
  • the first electrode group 110 is a conductive film having translucency, and is, for example, a transparent electrode such as ITO (Indium Tin Oxide).
  • the first electrode group 110 is not limited to ITO, and may be a transparent electrode (conductive film) made of, for example, zinc oxide or tin oxide.
  • the first substrate 111 is formed by using an insulating material such as glass or resin.
  • the first substrate 111 is, for example, a rectangular plate having translucency, and is provided on the first electrode group 110 so as to face the second substrate 211.
  • the first electrode connection portion 112 connects between the first electrode group 110 and the EC element drive circuit 500.
  • the first electrode connecting portion 112 does not come into contact with the electrolytic solution EL1 and is connected to an exposed portion between the spacer 300 and each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N (see FIG. 2).
  • NS connects between the first electrode group 110 and the EC element drive circuit 500.
  • the first electrode connecting portion 112 does not come into contact with the electrolytic solution EL1 and is connected to an exposed portion between the spacer 300 and each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N (see FIG. 2).
  • NS NS.
  • the second electrode group 210 is a conductive film having translucency, and is, for example, a transparent electrode such as ITO (Indium Tin Oxide).
  • the second electrode group 210 is not limited to ITO, and may be a transparent conductive film made of, for example, zinc oxide or tin oxide.
  • the second substrate 211 is formed by using an insulating material such as glass or resin.
  • the second substrate 211 is, for example, a rectangular plate having translucency, and is provided on the second electrode group 210 so as to face the first substrate 111.
  • the second electrode connection portion 212 connects between the second electrode group 210 and the EC element drive circuit 500.
  • the second electrode connecting portion 212 is connected to each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N that are not in contact with the electrolytic solution EL1 and are exposed to the outside between the spacer 300 (see FIG. 2). It is connected to the exposed part between.
  • the electrolytic solution EL1 is provided in the space formed by the first electrode group 110, the second electrode group 210, and the spacer 300.
  • the electrolytic solution EL1 is a solution containing a metal OB1 in a metal ion state and having electrical conductivity.
  • the electrolytic solution EL1 is, for example, a solution containing silver.
  • the metal OB1 contained in the electrolytic solution EL1 is deposited on either the first electrode group 110 or the second electrode group 210 depending on the electric field generated by the voltage applied to the first electrode group 110 and the second electrode group 210. do.
  • the precipitated metal OB1 forms a metal thin film on the surface of either one of the first electrode group 110 and the second electrode group 210.
  • the electrode on which the metal OB1 is deposited changes according to the polarity of the voltage applied by the EC element drive circuit 500 described later.
  • the metal OB1 is deposited on the surface of the first electrode group 110 to form a metal thin film having a surface roughness (that is, unevenness) corresponding to the surface roughness Rz of the first electrode group 110. ing.
  • the metal OB1 is not limited to the silver described above.
  • the metal OB1 may be another metal containing a noble metal such as aluminum, platinum, chromium or gold.
  • the metal OB1 is a metal having a predetermined reflectance with respect to light, and functions as a mirror (reflection state) at the time of precipitation.
  • the EC element 100 according to the first embodiment described above assumes that the user sees the first substrate 111 from the arrow K shown in FIG. Therefore, the second electrode group 210 and the second substrate 211 may be opaque.
  • the second substrate 211 may be a silicon substrate or the like.
  • the second electrode group 210 may be a metal electrode such as copper.
  • the EC element 100 according to the first embodiment assumes that the user sees the first substrate 111 from the direction of the arrow K shown in FIG. 1 as an example, but the user sees the first substrate 111 in the Z direction (second substrate 211).
  • the second substrate 211 may be viewed from (direction toward the first substrate 111).
  • the spacer 300 is formed by applying a resin material such as a thermosetting resin in a ring shape and curing the spacer 300.
  • the spacer 300 is provided in an annular shape along the peripheral edges of the first electrode group 110 and the second electrode group 210 arranged so as to face each other.
  • the spacer 300 has an exposed portion in which one end of the first electrode group 110 can be connected to the first electrode connecting portion 112 and one end of the second electrode group 210 can be connected to the second electrode connecting portion 212. It is provided except.
  • the EC element drive circuit 500 is a power supply unit for applying a voltage to the first electrode group 110 and the second electrode group 210.
  • the EC element drive circuit 500 is connected to each of the first electrode connecting portion 112 and the second electrode connecting portion 212 via a lead wire, and applies a voltage to the first electrode group 110 and the second electrode group 210, respectively.
  • the EC element drive circuit 500 controls an electrode that deposits the metal OB1 according to the polarity of the voltage applied to each of the first electrode group 110 and the second electrode group 210.
  • the optical state of the EC element 100 includes a transparent state and a precipitation state (reflection state).
  • the operation method when the EC element 100 switches the optical state from the transparent state to the precipitation state (reflection state) by the precipitation and dissolution of the metal OB1 will be described.
  • an operation method in which the operation of depositing the metal OB1 on the first electrode group 110 side is set to a precipitation state (reflection state) will be described, but the electrode on which the metal OB1 is deposited is not limited.
  • the EC element drive circuit 500 applies a voltage to the EC element 100 so that the first electrode group 110 has a low potential and the second electrode group 210 has a high potential. At this time, the direction of the electric field generated by the applied voltage of the EC element drive circuit 500 is the direction from the second electrode group 210 to the first electrode group 110.
  • the metal OB1 contained in the electrolytic solution EL1 is, for example, silver ion in a dissolved state.
  • the metal OB1 precipitates on the surface of the first electrode group 110 (the electrode on the low potential side) to obtain a surface roughness corresponding to the surface roughness Rz of the first electrode group 110.
  • Form a metal thin film for example, a silver thin film
  • the deposited metal OB1 has a predetermined reflectance and functions as a mirror (reflection state) or when viewed from the direction of arrow K, and receives incident light incident on the deposited metal OB1. Diffuse reflection.
  • the EC element 100 looks white when viewed from the user (direction of arrow K).
  • the second electrode group 210 and the second substrate 211 are translucent and are not opaque, the EC element 100 also looks white when viewed from the Z direction.
  • the EC element 100 according to the first embodiment is incident on the metal OB1 deposited on the surface of the first electrode group 110 even when the user views the EC element 100 from the direction opposite to the arrow K direction.
  • the light is diffusely reflected, and the region of the first electrode group 110 (that is, the region of the second electrode group 210) appears white.
  • the EC element drive circuit 500 is controlled by a control signal input from the EC element drive circuit control unit 400, which will be described later.
  • the EC element drive circuit 500 switches the optical state of the EC element 100 from the transparent state to the precipitation state (reflection state) based on the input control signal. Further, the EC element drive circuit 500 continues to apply the voltage when the operation is maintained in the precipitation state (reflection state).
  • the EC element drive circuit 500 stops applying a voltage in order to dissolve the deposited metal OB1 again. As a result, the metal OB1 deposited on the surface of the first electrode group 110 returns to the ionic state.
  • the EC element drive circuit 500 applies a voltage having the opposite polarity to the second electrode group 210 so that the metal OB1 is deposited in the state where the metal OB1 has returned to the ionic state, the EC element 100 has the first electrode group 110. Is switched to the transparent state, and a predetermined color based on the applied voltage can be displayed on the second electrode group 210.
  • the EC element drive circuit 500 When switching the EC element 100 to the transparent state in a shorter time, the EC element drive circuit 500 applies a voltage having the opposite polarity. Specifically, the EC element drive circuit 500 applies a voltage to the EC element 100 so that the first electrode group 110 has a high potential and the second electrode group 210 has a low potential. As a result, in the EC element drive circuit 500, the metal OB1 starts to precipitate on the second electrode group 210 side, and the metal OB1 deposited on the first electrode group 110 side can be dissolved in a shorter time.
  • the EC element drive circuit 500 can maintain the formation speed of the metal thin film of the metal OB1 in the first electrode group 110 and switch the optical state of the EC element 100 between the transparent state and the precipitation state.
  • FIG. 2 is a diagram illustrating a structural example of the dimmer 1000 according to the first embodiment.
  • the dimmer 1000 includes an EC element 100, an EC element drive circuit control unit 400, and an EC element drive circuit 500.
  • the EC element 100 shown in FIG. 2 the arrangement of the plurality of first electrodes 110a, 110b, 110c, ..., 110N and the plurality of second electrodes 210a, 210b, 210c, ..., 210N can be seen.
  • the first electrode connecting portion 112, the second electrode connecting portion 212, the electrolytic solution EL1 and the spacer 300 are not shown.
  • the first electrode group 110 composed of each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N and the plurality of second electrodes 210a, 210b, 210c, ..., 210N, respectively.
  • the EC element 100 composed of the second electrode group 210 and the EC element 100 including the second electrode group 210 is shown, the number of the first electrode and the second electrode constituting the EC element 100 is not limited to a plurality of elements.
  • the EC element 100 may be configured to include, for example, one first electrode and one second electrode.
  • the EC element 100 includes a first electrode group 110 composed of each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N, and a second electrode group 110 composed of each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N. It is composed of an electrode group 210, an electrolytic solution EL1, and a spacer 300.
  • the metal OB1 is deposited in each of the plurality of intersecting regions of the first electrode group 110 and the second electrode group 210 according to the applied voltage to form a metal thin film.
  • Each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N and each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N are arranged orthogonally to each other.
  • the plurality of first electrodes 110a, 110b, 110c, ..., 110N, and the plurality of second electrodes 210a, 210b, 210c, ..., 210N are not limited to the above-mentioned orthogonal arrangements, and are not limited to the above-mentioned orthogonal arrangements, for example, 120 °. They may be arranged at an angle.
  • the shape of the metal OB1 deposited in each of the plurality of intersecting regions of the first electrode group 110 and the second electrode group 210 is not limited to a square shape, and may be a quadrangle such as a rhombus.
  • the EC element drive circuit control unit 400 includes a processor (not shown) and a memory (not shown).
  • the processor is configured by using, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), or an FPGA (Field Programmable Gate Array).
  • the processor (not shown) of the EC element drive circuit control unit 400 performs various processes and controls in cooperation with the memory. Specifically, the processor refers to the program and data stored in the memory and executes the program to realize the function of the EC element drive circuit control unit 400.
  • the processor has a first electrode group 110 and a second electrode group 210 included in the EC element 100 by the EC element drive circuit 500 based on a control signal indicating a used state or an unused state of the mounted device transmitted from the mounted device.
  • a control signal for controlling the timing of changing the voltage applied to each of the above, the applied voltage value, and the like is output to the EC element drive circuit 500.
  • the processor changes the polarity and current value of the current applied to each of the first electrode group 110 and the second electrode group 210 included in the EC element 100 by changing the applied voltage value, and changes the EC element 100 when the on-board device is used.
  • the EC element 100 is switched to the transparent state (transparent display) and the EC element 100 is switched to the precipitation state (white display) when the mounted device is not in use.
  • the memory (not shown) of the EC element drive circuit control unit 400 operates, for example, a RAM (Random Access Memory) as a work memory used when processing the EC element drive circuit control unit 400 and the operation of the EC element drive circuit control unit 400. It has a ROM (Read Only Memory) for storing the specified program and data. Data or information generated or acquired by the processor is temporarily stored in the RAM. A program that defines the operation of the EC element drive circuit control unit 400 (for example, the method of driving the EC element 100 executed by the EC element drive circuit 500 according to the first embodiment) is written in the ROM.
  • ROM Read Only Memory
  • the EC element drive circuit 500 is connected to each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N via the first electrode connection unit 112 based on the control signal output from the EC element drive circuit control unit 400. A voltage is applied, and a voltage is applied to each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N via the second electrode connecting portion 212.
  • FIG. 3 is a diagram showing a cross-sectional line of the EC element 100.
  • the BB cross-sectional line is a cross-sectional view of the EC element 100 with the longitudinal direction as a cut end at the center position in the width direction of the first electrode 110a.
  • the BB cross section shown by the BB cross section is equal to the cross-sectional view of the center position in the width direction of each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N constituting the first electrode group 110.
  • the width direction described above is the direction in which the plurality of first electrodes 110a, 110b, 110c, ..., 110N are arranged in parallel, or the plurality of second electrodes 210a, 210b, 210c, ..., 210N are arranged in parallel. Yes, it is the lateral direction of each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N and the plurality of second electrodes 210a, 210b, 210c, ..., 210N formed in a rectangular shape.
  • the X direction shown in FIG. 3 indicates the longitudinal direction in the first electrode group 110 of the EC element 100 or the width direction in the second electrode group 210.
  • the Y direction shown in FIG. 3 indicates the width direction of the first electrode group 110 of the EC element 100 or the longitudinal direction of the second electrode group 210.
  • FIG. 4 is a three-dimensional perspective view of the EC element 100
  • FIG. 5 is a cross-sectional view of the EC element 100 in the BB cross section.
  • FIG. 4 is a diagram illustrating a structural example of the EC element 100 according to the first embodiment.
  • FIG. 5 is a diagram illustrating a structural example of the EC element 100 in the BB cross section.
  • the Z direction shown in FIG. 4 indicates a direction in which the first electrode group 110 and the second electrode group 210 face each other.
  • a part of the three-dimensional perspective view of the EC element 100 will be used for easy explanation.
  • Each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N constituting the first electrode group 110 has a predetermined gap and is arranged in parallel in the Y direction.
  • the first electrode group 110 includes an exposed portion at an end portion in the ⁇ X direction.
  • the first electrode connecting portion 112 is connected to the exposed portion, and a voltage is applied by the EC element drive circuit 500.
  • the first electrode connection portion 112 is omitted.
  • the first substrate 111 is integrally provided on the surface of the first electrode group 110 in the direction opposite to the surface facing the second electrode group 210 (hereinafter, Z direction) so as to cover the first electrode group 110.
  • Each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N constituting the second electrode group 210 has a predetermined gap and is arranged in parallel in the X direction facing the first electrode group 110. ..
  • the second electrode group 210 includes an exposed portion at an end portion in the Y direction.
  • the second electrode connecting portion 212 is connected to the exposed portion, and a voltage is applied by the EC element drive circuit 500.
  • the second electrode connection portion 212 is omitted.
  • the second substrate 211 is integrally provided on the surface of the second electrode group 210 in the direction opposite to the direction facing the first electrode group 110 (hereinafter, -Z direction) so as to cover the second electrode group 210.
  • the spacer 300 is of the first electrode group 110 and the second electrode group 210, except for the exposed portion provided at one end of the first electrode group 110 and the exposed portion provided at one end of the second electrode group 210. It is provided in an annular shape along the peripheral edge. Note that the spacer 300 is omitted in FIG.
  • the electrolytic solution EL1 is provided in the space formed by the first electrode group 110, the second electrode group 210, and the spacer 300.
  • FIG. 6 is a diagram illustrating an example of a manufacturing procedure of the first substrate 111 and the first electrode group 110 according to the first embodiment.
  • FIG. 6 shows an example of the first substrate 111 and the first electrode group 110
  • the second substrate 211 and the second electrode group 210 may have the same configuration
  • the first substrate 111 and the second electrode group 210 may have the same configuration.
  • the substrate 211 and the first electrode group 110 and the second electrode group 210 may have the same configuration.
  • Rz 0.1 to 4.0 ⁇ m of the surface on the side in contact with the first electrode group 110.
  • Step St11 shows the manufacturing procedure of the first substrate 111.
  • the first substrate 111 has a region in contact with the first electrode group 110 and a region in contact with the first electrode group 110 and the electrolytic solution EL1 (that is, by a known processing method (for example, sandblasting, chemical etching, etc.)).
  • Step St12 shows the manufacturing procedure of the first electrode group 110.
  • the first electrode group 110 is formed by being sputtered and laminated on the first substrate 111.
  • Step St13 shows the state of the metal OB1 deposited on the surface of the first electrode group 110.
  • the incident light incident on the surface of the first electrode group 110 is diffusely reflected (each of the plurality of reflected lights shown in the enlarged view of the main part M) on the precipitation surface of the metal OB1.
  • the surface roughness is Rz ⁇ 0.1 ⁇ m
  • the incident light incident on the surface of the first electrode group 110 is not diffusely reflected because the surface of the metal OB1 becomes smooth. That is, in such a case, the EC element 100 does not display white, and the precipitated metal OB1 (for example, silver, aluminum, platinum, chromium, gold, etc.) forms a thin film (mirror surface).
  • the precipitated metal OB1 for example, silver, aluminum, platinum, chromium, gold, etc.
  • the incident light incident on the surface of the first electrode group 110 becomes stray light because it is not diffusely reflected in the K direction in which the user is present as the surface roughness is larger. That is, in such a case, the EC element 100 is displayed in gray due to color unevenness.
  • the present embodiment there is a method of imparting nanoparticles made of ITO, IZO, titanium oxide, NiO or the like on a transparent electrode, and the production is carried out by this method.
  • metal is deposited in the gap between the imparted particles, so that light from the outside enters the gap and becomes stray light, which makes it difficult to display white.
  • the EC element 100 can realize a higher quality white display when not in use, it can be used for other purposes such as a space partition and a wall.
  • the second electrode group 210 and the second substrate 211 are translucent and are not opaque, the EC element 100 also looks white when viewed from the Z direction, so that a wall, a door, or a wall or a door in the space It has a structure that is more suitable not only for harmony with interiors, but also for other purposes such as space partitions and walls.
  • FIG. 7 is a diagram illustrating an example of a manufacturing procedure of the first substrate 111AA and the first electrode group 110AA according to the first modification of the first embodiment.
  • FIG. 7 shows an example of the first substrate 111AA and the first electrode group 110AA
  • the second substrate 211 (not shown) and the second electrode group 210 (not shown) may have the same configuration.
  • the first substrate 111AA and the second substrate 211, and the first electrode group 110AA and the second electrode group 210 may have the same configuration.
  • the first substrate 111AA according to the first modification of the first embodiment is formed so that the surface on the side in contact with the first electrode group 110AA is substantially flat.
  • Steps St21 to St22 show the manufacturing procedure of the first electrode group 110AA.
  • the first electrode group 110AA is formed by being sputtered and laminated on the first substrate 111AA (St21).
  • Step St23 shows the state of the metal OB1 deposited on the surface of the first electrode group 110AA.
  • the metal OB1 is deposited, the incident light incident on the surface of the first electrode group 110AA is diffusely reflected on the precipitation surface of the metal OB1.
  • the EC element 100 according to the first modification of the first embodiment can diffuse and reflect the incident light incident on the precipitation surface of the metal OB1 in a wider range, so that a higher quality white display can be realized.
  • the EC element 100 can realize a higher quality white display when not in use, so that the harmony with the wall, door, interior, etc. on which the mounting device is installed can be enhanced.
  • the EC element 100 can realize a higher quality white display when not in use, it can be used for other purposes such as a space partition and a wall.
  • the EC element 100 When the second electrode group 210 and the second substrate 211 are translucent and are not opaque, the EC element 100 also looks white when viewed from the Z direction, so that a wall, a door, or a wall or a door in the space It has a structure that is more suitable not only for harmony with interiors, but also for other purposes such as space partitions and walls.
  • FIG. 8 is a diagram illustrating an example of a manufacturing procedure of the first substrate 111BB and the first electrode group 110BB according to the second modification of the first embodiment.
  • FIG. 8 shows an example of the first substrate 111BB and the first electrode group 110BB
  • the second substrate 211 (not shown) and the second electrode group 210 (not shown) may have the same configuration.
  • the first substrate 111BB and the second substrate 211, and the first electrode group 110BB and the second electrode group 210 may have the same configuration.
  • the first substrate 111BB according to the second modification of the first embodiment is formed so that the surface on the side in contact with the first electrode group 110BB is substantially flat.
  • Step St31 shows the manufacturing procedure of the first electrode group 110BB.
  • the first electrode group 110BB is formed by being sputtered according to a predetermined film forming method and film forming conditions and laminated on the first substrate 111BB.
  • the predetermined film forming method referred to here is, for example, a film forming method using a CVD (Chemical Vapor Deposition) method, and enables a transparent conductive film such as a SnO 2 film to be formed.
  • Step St32 shows the state of the metal OB1 deposited on the surface of the first electrode group 110BB.
  • the metal OB1 is deposited, the incident light incident on the surface of the first electrode group 110BB is diffusely reflected on the precipitation surface of the metal OB1.
  • the EC element 100 according to the second modification of the first embodiment can diffuse and reflect the incident light incident on the precipitation surface of the metal OB1 in a wider range, so that a higher quality white display can be realized.
  • the EC element 100 can realize a higher quality white display when not in use, so that the harmony with the wall, door, interior, or the like in the space can be enhanced.
  • the EC element 100 can realize a higher quality white display when not in use, it can be used for other purposes such as a space partition and a wall.
  • the second electrode group 210 and the second substrate 211 are translucent and not opaque, the EC element 100 also looks white when viewed from the Z direction, so that the wall on which the mounting device is installed is installed. It has a configuration that is more suitable not only for harmony with doors or interiors, but also for other uses such as space partitions, walls and the like.
  • the EC element 100 As described above, the EC element 100 according to the first embodiment, the first modification of the first embodiment and the second modification of the first embodiment is mounted on a mounting device (an example of a display device, not shown).
  • the EC element 100 includes a first electrode group 110, 110AA, 110BB having translucency, a second electrode group 210 arranged in parallel facing the first electrode group 110, 110AA, 110BB, and a first electrode group.
  • the EC element drive circuit 500 (an example of a power source) for switching between a deposited state and a non-precipitated state of the metal OB1 of the above is provided.
  • the surface roughness of at least the region where the metal OB1 is deposited is 0.1 to 4.0 ⁇ m. Further, the EC element drive circuit 500 displays the region where the metal OB1 is deposited in a white state when the mounted device is not in use, and displays the region where the metal OB1 is deposited in a non-precipitated state when the mounted device is in use. ..
  • the first electrode group 110, 110AA, 110BB described above is not limited to the example in which each of the plurality of first electrodes is included, and may be composed of, for example, one first electrode. .. Similarly, the second electrode group 210 may be composed of one second electrode.
  • the first electrode group 110 in the EC element 100 according to the first embodiment is arranged on the first electrode 110a, ... (An example of the first electrode layer) on which the metal OB1 is deposited and the first electrode 110a.
  • the first substrate 111 is provided.
  • the surface roughness of at least the region where the metal OB1 is deposited on the surface of the first substrate 111 on the side in contact with the first electrodes 110a, ... Is 0.1 to 4.0 ⁇ m.
  • the first electrodes 110a, ... are formed on the first substrate 111 formed so that the surface roughness of the region is 0.1 to 4.0 ⁇ m. As a result, it can be manufactured more easily.
  • the first electrode 110a is formed on the first substrate 111 in which the surface roughness of the region corresponding to the region where the metal OB1 is deposited is 0.1 to 4.0 ⁇ m.
  • the first electrode 110a is formed on the first substrate 111 in which the surface roughness of the region corresponding to the region where the metal OB1 is deposited is 0.1 to 4.0 ⁇ m.
  • the first electrode groups 110, 110AA, 110BB according to the first embodiment, the first modification of the first embodiment, and the second modification of the first embodiment come into contact with the first substrates 111, 111AA, 111BB.
  • the surface roughness of at least the region where the metal OB1 is deposited is 0.1 to 4.0 ⁇ m on the surface opposite to the side facing the surface.
  • the surface roughness of the first electrodes 110a, ... In the first electrode group 110BB according to the second modification of the first embodiment is 0.1 in the region where at least the metal OB1 is deposited under predetermined film forming conditions. It is formed to be about 4.0 ⁇ m.
  • the EC element 100 includes the first electrode groups 110, 110AA, 110BB having translucency.
  • a metal arranged between the second electrode group 210 arranged in parallel with the first electrode groups 110, 110AA, 110BB and the first electrode groups 110, 110AA, 110BB and the second electrode group 210.
  • the electrolytic solution EL1 containing the mixture is provided.
  • the surface roughness of at least the region where the metal OB1 is deposited is 0.1 to 4.0 ⁇ m.
  • This disclosure is useful as a dimming element that can improve convenience by switching between a transparent display when the on-board device is used and a white display when the on-board device is not in use.

Abstract

A dimming element comprises: a first electrode having translucency; a second electrode arranged to face the first electrode and parallel thereto; an electrolytic solution arranged between the first electrode and the second electrode and including a metal; and a power supply that switches between a metal precipitation state and a metal non-precipitation state on the first electrode depending on whether a voltage is applied to the electrolytic solution, wherein the first electrode has a surface roughness of 0.1-4.0 µm on at least a region where the metal is precipitated, and the power supply switches to the precipitation state to display the region in white when the display device is not in use, and switches to the non-precipitation state to display the region as transparent when the display device is in use.

Description

調光素子Dimming element
 本開示は、調光素子に関する。 This disclosure relates to a dimming element.
 特許文献1には、表示手段の表示面に高分子分散液晶フィルムが配設され、表示手段の表示面に高分子分散液晶フィルムとの間に一の偏光を透過し他の偏光を反射する偏光フィルムが配設された表示装置が開示されている。特許文献1では、偏光フィルムにより反射された反射光を高分子分散液晶フィルムで散乱させて、高分子分散液晶フィルムの白濁状態をより白くできる。 In Patent Document 1, a polymer-dispersed liquid crystal film is disposed on the display surface of the display means, and polarized light that transmits one polarized light between the display surface of the display means and the polymer-dispersed liquid crystal film and reflects another polarized light. A display device on which a film is arranged is disclosed. In Patent Document 1, the reflected light reflected by the polarizing film can be scattered by the polymer-dispersed liquid crystal film to make the white turbid state of the polymer-dispersed liquid crystal film whiter.
日本国特開2019-158955号公報Japanese Patent Application Laid-Open No. 2019-158955
 本開示は、上述した従来の事情に鑑みて案出され、搭載機器の使用時の透明表示と搭載機器の未使用時の白色表示とを切り替え、利便性を向上できる調光素子を提供することを目的とする。 The present disclosure is devised in view of the above-mentioned conventional circumstances, and provides a dimming element capable of improving convenience by switching between a transparent display when the on-board device is used and a white display when the on-board device is not in use. With the goal.
 本開示は、表示装置に搭載される調光素子であって、透光性を有する第1電極と、前記第1電極と対向して並列に配置された第2電極と、前記第1電極と前記第2電極との間に配置された、金属を含む電解液と、前記電解液への電圧印加の有無に応じて、前記第1電極への前記金属の析出状態および非析出状態を切り替える電源と、を備え、前記第1電極は、少なくとも前記金属が析出する領域の表面粗さが0.1~4.0μmであり、前記電源は、前記表示装置の未使用時には前記析出状態にして前記領域を白色表示させ、前記表示装置の使用時には前記非析出状態にして前記領域を透明表示させる、調光素子を提供する。 The present disclosure is a dimming element mounted on a display device, the first electrode having translucency, the second electrode arranged in parallel facing the first electrode, and the first electrode. A power source that switches between a metal-containing electrolytic solution arranged between the second electrode and a metal-precipitated state and a non-precipitated state on the first electrode depending on whether or not a voltage is applied to the electrolytic solution. The first electrode has a surface roughness of at least a region where the metal is deposited is 0.1 to 4.0 μm, and the power supply is in the precipitated state when the display device is not in use. Provided is a dimming element that displays a region in white and makes the region transparently displayed in the non-precipitated state when the display device is used.
 また、本開示は、表示装置に搭載される調光素子であって、透光性を有する第1電極と、前記第1電極と対向して並列に配置された第2電極と、前記第1電極と前記第2電極との間に配置された、金属を含む電解液と、を備え、前記第1電極は、少なくとも前記金属が析出する領域の表面粗さが0.1~4.0μmである、調光素子を提供する。 Further, the present disclosure discloses a dimming element mounted on a display device, the first electrode having translucency, the second electrode arranged in parallel facing the first electrode, and the first electrode. An electrolytic solution containing a metal, which is arranged between the electrode and the second electrode, is provided, and the first electrode has a surface roughness of at least a region where the metal is deposited at 0.1 to 4.0 μm. Provide a dimming element.
 本開示によれば、搭載機器の使用時の透明表示と搭載機器の未使用時の白色表示とを切り替え、利便性を向上できる。 According to the present disclosure, it is possible to improve convenience by switching between a transparent display when the on-board device is used and a white display when the on-board device is not in use.
実施の形態1に係るEC素子の構造例を説明する図The figure explaining the structural example of the EC element which concerns on Embodiment 1. 実施の形態1に係る調光装置の構造例を説明する図The figure explaining the structural example of the dimming apparatus which concerns on Embodiment 1. EC素子の断面線を示す図The figure which shows the cross-sectional line of an EC element 実施の形態1に係るEC素子の構造例を説明する図The figure explaining the structural example of the EC element which concerns on Embodiment 1. B-B断面におけるEC素子の構造例を説明する図The figure explaining the structural example of the EC element in the BB cross section. 実施の形態1に係る第1基板および第1電極群の製造手順例を説明する図The figure explaining the manufacturing procedure example of the 1st substrate and the 1st electrode group which concerns on Embodiment 1. 実施の形態1の変形例1に係る第1基板および第1電極群の製造手順例を説明する図The figure explaining the manufacturing procedure example of the 1st substrate and 1st electrode group which concerns on modification 1 of Embodiment 1. 実施の形態1の変形例2に係る第1基板および第1電極群の製造手順例を説明する図The figure explaining the manufacturing procedure example of the 1st substrate and the 1st electrode group which concerns on the modification 2 of Embodiment 1.
(実施の形態1の内容に至る経緯)
 近年、未使用時(つまり、非表示時)の表示装置に白色を表示させ、表示装置が設置された、例えば、空間内の壁、扉またはインテリアなどとの調和を高めたいという要望がある。しかし、特許文献1で使用される高分子分散液晶フィルム(PDLC:Polymer Dispersed Liquid Crystal)を用いた表示装置は、未使用時に白濁色(不透明な白色)が表示されるため、空間内の壁、扉またはインテリアなどとの調和に欠けるという課題があった。また、近年テレビジョン受像機の大型化が進んでいるが、未使用時のテレビジョン受像機のディスプレイ部分は黒いので空間が狭く感じられることがあった。このため、従来の表示装置では使用時と未使用時とで表示を使い分けることが考慮されていないので、利便性に欠けることがあった。
(Background to the contents of the first embodiment)
In recent years, there has been a demand for displaying white on an unused (that is, non-displaying) display device and enhancing harmony with a wall, door, interior, or the like in which the display device is installed, for example. However, the display device using the polymer dispersed liquid crystal film (PDLC: Polymer Dispersed Liquid Crystal) used in Patent Document 1 displays a cloudy color (opaque white) when not in use, so that the wall in the space, There was a problem that it lacked harmony with the door or interior. Further, in recent years, the size of the television receiver has been increasing, but the display portion of the television receiver when not in use is black, so that the space may be felt to be small. For this reason, the conventional display device does not take into consideration the proper use of the display depending on whether it is used or not, which may result in lack of convenience.
 そこで、以下の各実施の形態においては、搭載機器の使用時に透明表示と未使用時により高品位な白色表示を切り替え、利便性をより向上できる調光素子(つまり、EC素子)の例を説明する。 Therefore, in each of the following embodiments, an example of a dimming element (that is, an EC element) that can switch between a transparent display when the on-board device is used and a higher-quality white display when not in use to further improve convenience will be described. do.
 以下、適宜図面を参照しながら、本開示に係る調光素子の構成および作用を具体的に開示した各実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるものであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 Hereinafter, each embodiment in which the configuration and operation of the dimming element according to the present disclosure are specifically disclosed will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of already well-known matters and duplicate explanations for substantially the same configuration may be omitted. This is to avoid unnecessary redundancy of the following description and to facilitate the understanding of those skilled in the art. It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
(実施の形態1)
 図1を参照して、実施の形態1に係るEC(エレクトロクロミック)素子100の構造について説明する。図1は、実施の形態1に係るEC素子100の構造例を説明する図である。図1に示す矢印Kは、ユーザ(例えば、EC素子の利用者)の視線の向きを示す。また、図1に示す金属OB1は、析出した状態であり、第1電極群110の表面に金属薄膜を形成している。
(Embodiment 1)
The structure of the EC (electrochromic) element 100 according to the first embodiment will be described with reference to FIG. FIG. 1 is a diagram illustrating a structural example of the EC element 100 according to the first embodiment. The arrow K shown in FIG. 1 indicates the direction of the line of sight of the user (for example, the user of the EC element). Further, the metal OB1 shown in FIG. 1 is in a precipitated state, and a metal thin film is formed on the surface of the first electrode group 110.
 実施の形態1に係るEC素子100は、例えばテレビジョン受像機、ディスプレイ装置などの表示装置(以降、「搭載装置」と表記)における映像表示面に搭載される。EC素子100は、搭載装置の使用(視聴)時には透明状態(つまり、透明表示)になり、搭載装置の未使用(未視聴)時には析出状態(白色表示)に切り替わる。 The EC element 100 according to the first embodiment is mounted on a video display surface of a display device (hereinafter, referred to as "mounted device") such as a television receiver or a display device. The EC element 100 is in a transparent state (that is, transparent display) when the mounted device is used (viewing), and is switched to a precipitation state (white display) when the mounted device is not used (not viewed).
 図1に示すように、EC素子100は、第1電極群110と、第1基板111と、第1電極接続部112と、第2電極群210と、第2基板211と、第2電極接続部212と、電解液EL1と、スペーサ300と、EC素子駆動回路500と、を含んで構成される。 As shown in FIG. 1, the EC element 100 includes a first electrode group 110, a first substrate 111, a first electrode connection portion 112, a second electrode group 210, a second substrate 211, and a second electrode connection. The unit 212, the electrolytic solution EL1, the spacer 300, and the EC element drive circuit 500 are included.
 第1電極群110は、透光性を有する導電膜であり、例えば、ITO(Indium Tin Oxide)などの透明電極である。なお、第1電極群110は、ITOに限らず、例えば酸化亜鉛または酸化スズ等を材料とする透明電極(導電膜)であってもよい。第1電極群110は、第1基板111との接触面と、電解液EL1と接触し、金属OB1が析出する面とが表面粗さRz=0.1~4.0μmを有して形成される。 The first electrode group 110 is a conductive film having translucency, and is, for example, a transparent electrode such as ITO (Indium Tin Oxide). The first electrode group 110 is not limited to ITO, and may be a transparent electrode (conductive film) made of, for example, zinc oxide or tin oxide. The first electrode group 110 is formed so that the contact surface with the first substrate 111 and the surface with which the metal OB1 is deposited in contact with the electrolytic solution EL1 have a surface roughness Rz = 0.1 to 4.0 μm. NS.
 第1基板111は、ガラスまたは樹脂などの絶縁性を有する材料を用いて形成される。第1基板111は、例えば透光性を有する矩形状の板体であり、第1電極群110上に第2基板211と互いに対向して設けられる。第1基板111は、第1電極群110と接触する面が表面粗さRz=0.1~4.0μmを有して形成される。 The first substrate 111 is formed by using an insulating material such as glass or resin. The first substrate 111 is, for example, a rectangular plate having translucency, and is provided on the first electrode group 110 so as to face the second substrate 211. The first substrate 111 is formed with a surface in contact with the first electrode group 110 having a surface roughness Rz = 0.1 to 4.0 μm.
 第1電極接続部112は、第1電極群110とEC素子駆動回路500との間を接続する。第1電極接続部112は、電解液EL1と接触せず、かつスペーサ300と複数の第1電極110a,110b,110c,…,110Nのそれぞれ(図2参照)との間の露出部に接続される。 The first electrode connection portion 112 connects between the first electrode group 110 and the EC element drive circuit 500. The first electrode connecting portion 112 does not come into contact with the electrolytic solution EL1 and is connected to an exposed portion between the spacer 300 and each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N (see FIG. 2). NS.
 第2電極群210は、透光性を有する導電膜であり、例えば、ITO(Indium Tin Oxide)などの透明電極である。なお、第2電極群210は、ITOに限らず、例えば酸化亜鉛または酸化スズ等を材料とする透明導電膜であってもよい。 The second electrode group 210 is a conductive film having translucency, and is, for example, a transparent electrode such as ITO (Indium Tin Oxide). The second electrode group 210 is not limited to ITO, and may be a transparent conductive film made of, for example, zinc oxide or tin oxide.
 第2基板211は、ガラスまたは樹脂などの絶縁性を有する材料を用いて形成される。第2基板211は、例えば透光性を有する矩形状の板体であり、第2電極群210上に第1基板111と互いに対向して設けられる。 The second substrate 211 is formed by using an insulating material such as glass or resin. The second substrate 211 is, for example, a rectangular plate having translucency, and is provided on the second electrode group 210 so as to face the first substrate 111.
 第2電極接続部212は、第2電極群210とEC素子駆動回路500との間を接続する。第2電極接続部212は、電解液EL1と接触せず、かつスペーサ300との間の外部に露出した複数の第2電極210a,210b,210c,…,210Nのそれぞれ(図2参照)との間の露出部に接続される。 The second electrode connection portion 212 connects between the second electrode group 210 and the EC element drive circuit 500. The second electrode connecting portion 212 is connected to each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N that are not in contact with the electrolytic solution EL1 and are exposed to the outside between the spacer 300 (see FIG. 2). It is connected to the exposed part between.
 電解液EL1は、第1電極群110、第2電極群210およびスペーサ300によって形成された空間内に備えられる。電解液EL1は、金属イオン状態にある金属OB1を含み、電気伝導性を有する溶液である。電解液EL1は、例えば銀を含む溶液である。電解液EL1に含まれる金属OB1は、第1電極群110および第2電極群210に印加された電圧によって生じる電界に応じて、第1電極群110または第2電極群210のいずれか一方に析出する。析出した金属OB1は、第1電極群110または第2電極群210のいずれかの一方の面の表面に金属薄膜を形成する。金属OB1が析出する電極は、後述するEC素子駆動回路500によって印加される電圧の極性に応じて変化する。図1において、金属OB1は、第1電極群110の表面に析出して、第1電極群110が有する表面粗さRzに対応する表面粗さ(つまり、凹凸)を有した金属薄膜を形成している。 The electrolytic solution EL1 is provided in the space formed by the first electrode group 110, the second electrode group 210, and the spacer 300. The electrolytic solution EL1 is a solution containing a metal OB1 in a metal ion state and having electrical conductivity. The electrolytic solution EL1 is, for example, a solution containing silver. The metal OB1 contained in the electrolytic solution EL1 is deposited on either the first electrode group 110 or the second electrode group 210 depending on the electric field generated by the voltage applied to the first electrode group 110 and the second electrode group 210. do. The precipitated metal OB1 forms a metal thin film on the surface of either one of the first electrode group 110 and the second electrode group 210. The electrode on which the metal OB1 is deposited changes according to the polarity of the voltage applied by the EC element drive circuit 500 described later. In FIG. 1, the metal OB1 is deposited on the surface of the first electrode group 110 to form a metal thin film having a surface roughness (that is, unevenness) corresponding to the surface roughness Rz of the first electrode group 110. ing.
 なお、金属OB1は、上述した銀に限らない。金属OB1は、例えばアルミニウム、プラチナ、クロムあるいは金等の貴金属を含む他の金属であってよい。金属OB1は、光に対して所定の反射率を有する金属であり、析出時にミラー(反射状態)として機能する。 The metal OB1 is not limited to the silver described above. The metal OB1 may be another metal containing a noble metal such as aluminum, platinum, chromium or gold. The metal OB1 is a metal having a predetermined reflectance with respect to light, and functions as a mirror (reflection state) at the time of precipitation.
 また、上述した本実施の形態1に係るEC素子100は、ユーザが図1に示す矢印Kから第1基板111を見ることを想定している。このため、第2電極群210および第2基板211は、不透明であってもよい。例えば、第2基板211は、シリコン基板などでもよい。また、同様に、第2電極群210は、銅などの金属電極でもよい。なお、本実施の形態1に係るEC素子100は、一例としてユーザが図1に示す矢印Kの方向から第1基板111を見ることを想定しているが、ユーザがZ方向(第2基板211から第1基板111へ向かう方向)から第2基板211を見る構成であってもよい。このような場合、第2電極群210は、第2基板211との接触面と、電解液EL1と接触し、金属OB1が析出する面とが表面粗さRz=0.1~4.0μmを有して形成されてよい。また、同様に、第2基板211は、第2電極群210と接触する面が表面粗さRz=0.1~4.0μmを有して形成されてよい。 Further, the EC element 100 according to the first embodiment described above assumes that the user sees the first substrate 111 from the arrow K shown in FIG. Therefore, the second electrode group 210 and the second substrate 211 may be opaque. For example, the second substrate 211 may be a silicon substrate or the like. Similarly, the second electrode group 210 may be a metal electrode such as copper. The EC element 100 according to the first embodiment assumes that the user sees the first substrate 111 from the direction of the arrow K shown in FIG. 1 as an example, but the user sees the first substrate 111 in the Z direction (second substrate 211). The second substrate 211 may be viewed from (direction toward the first substrate 111). In such a case, in the second electrode group 210, the contact surface with the second substrate 211 and the surface with which the metal OB1 is deposited in contact with the electrolytic solution EL1 have a surface roughness Rz = 0.1 to 4.0 μm. May be formed with. Similarly, the second substrate 211 may be formed with a surface in contact with the second electrode group 210 having a surface roughness Rz = 0.1 to 4.0 μm.
 スペーサ300は、例えば、熱硬化性樹脂などの樹脂材料を環状に塗布して、硬化させて形成される。スペーサ300は、対向して配置される第1電極群110および第2電極群210のそれぞれの周縁に沿って、環状に設けられる。なお、スペーサ300は、第1電極群110の一方の端部が第1電極接続部112と、第2電極群210の一方の端部が第2電極接続部212とそれぞれ接続可能な露出部を除いて設けられる。 The spacer 300 is formed by applying a resin material such as a thermosetting resin in a ring shape and curing the spacer 300. The spacer 300 is provided in an annular shape along the peripheral edges of the first electrode group 110 and the second electrode group 210 arranged so as to face each other. The spacer 300 has an exposed portion in which one end of the first electrode group 110 can be connected to the first electrode connecting portion 112 and one end of the second electrode group 210 can be connected to the second electrode connecting portion 212. It is provided except.
 EC素子駆動回路500は、第1電極群110および第2電極群210に電圧を印加するための電源部である。EC素子駆動回路500は、リード線を介して、第1電極接続部112および第2電極接続部212のそれぞれに接続され、第1電極群110および第2電極群210に電圧を印加する。EC素子駆動回路500は、第1電極群110および第2電極群210のそれぞれに印加する電圧の極性に応じて金属OB1を析出させる電極を制御する。 The EC element drive circuit 500 is a power supply unit for applying a voltage to the first electrode group 110 and the second electrode group 210. The EC element drive circuit 500 is connected to each of the first electrode connecting portion 112 and the second electrode connecting portion 212 via a lead wire, and applies a voltage to the first electrode group 110 and the second electrode group 210, respectively. The EC element drive circuit 500 controls an electrode that deposits the metal OB1 according to the polarity of the voltage applied to each of the first electrode group 110 and the second electrode group 210.
 以下、本実施の形態1に係るEC素子100の光学状態の動作方法について説明する。EC素子100の光学状態として、透明状態とおよび析出状態(反射状態)がある。 Hereinafter, a method of operating the optical state of the EC element 100 according to the first embodiment will be described. The optical state of the EC element 100 includes a transparent state and a precipitation state (reflection state).
 まず、EC素子100が、金属OB1の析出および溶解によって光学状態を透明状態から析出状態(反射状態)に切替える際の動作方法について説明する。なお、以下の説明においては、金属OB1が第1電極群110側に析出する動作を析出状態(反射状態)とした動作方法について説明するが、金属OB1が析出する電極について限定するものではない。 First, the operation method when the EC element 100 switches the optical state from the transparent state to the precipitation state (reflection state) by the precipitation and dissolution of the metal OB1 will be described. In the following description, an operation method in which the operation of depositing the metal OB1 on the first electrode group 110 side is set to a precipitation state (reflection state) will be described, but the electrode on which the metal OB1 is deposited is not limited.
 EC素子駆動回路500は、第1電極群110が低電位となり第2電極群210が高電位となるようにEC素子100に電圧を印加する。このとき、EC素子駆動回路500の印加電圧によって生じる電界の向きは、第2電極群210から第1電極群110に向かう方向となる。 The EC element drive circuit 500 applies a voltage to the EC element 100 so that the first electrode group 110 has a low potential and the second electrode group 210 has a high potential. At this time, the direction of the electric field generated by the applied voltage of the EC element drive circuit 500 is the direction from the second electrode group 210 to the first electrode group 110.
 電解液EL1に含まれる金属OB1は、溶解した状態において、例えば銀イオンである。金属OB1は、EC素子100に電圧が印加されると第1電極群110(低電位側の電極)の表面に析出して、第1電極群110の表面粗さRzに対応する表面粗さを有する金属薄膜(例えば、銀薄膜)を形成する。析出した金属OB1(例えば、銀薄膜)は、所定の反射率を有しており、矢印K方向から見た場合にミラー(反射状態)あるいはとして機能し、析出した金属OB1に入射する入射光を拡散反射する。これにより、EC素子100は、ユーザ(矢印Kの方向)から見て白色に見える。なお、第2電極群210および第2基板211が透光性を有し、かつ不透明でない場合、EC素子100は、Z方向から見ても同様に白色に見える。 The metal OB1 contained in the electrolytic solution EL1 is, for example, silver ion in a dissolved state. When a voltage is applied to the EC element 100, the metal OB1 precipitates on the surface of the first electrode group 110 (the electrode on the low potential side) to obtain a surface roughness corresponding to the surface roughness Rz of the first electrode group 110. Form a metal thin film (for example, a silver thin film) to have. The deposited metal OB1 (for example, a silver thin film) has a predetermined reflectance and functions as a mirror (reflection state) or when viewed from the direction of arrow K, and receives incident light incident on the deposited metal OB1. Diffuse reflection. As a result, the EC element 100 looks white when viewed from the user (direction of arrow K). When the second electrode group 210 and the second substrate 211 are translucent and are not opaque, the EC element 100 also looks white when viewed from the Z direction.
 なお、本実施の形態1に係るEC素子100は、ユーザが矢印K方向と反対方向からEC素子100を見る場合であっても、第1電極群110の表面に析出した金属OB1に入射する入射光が拡散反射され、第1電極群110の領域(つまり、第2電極群210の領域)が白色に見える。 The EC element 100 according to the first embodiment is incident on the metal OB1 deposited on the surface of the first electrode group 110 even when the user views the EC element 100 from the direction opposite to the arrow K direction. The light is diffusely reflected, and the region of the first electrode group 110 (that is, the region of the second electrode group 210) appears white.
 EC素子駆動回路500は、後述するEC素子駆動回路制御部400から入力される制御信号によって制御される。EC素子駆動回路500は、入力される制御信号に基づいてEC素子100の光学状態を透明状態から析出状態(反射状態)に切替える。また、EC素子駆動回路500は、析出状態(反射状態)のまま動作を維持する場合には、電圧の印加を継続する。 The EC element drive circuit 500 is controlled by a control signal input from the EC element drive circuit control unit 400, which will be described later. The EC element drive circuit 500 switches the optical state of the EC element 100 from the transparent state to the precipitation state (reflection state) based on the input control signal. Further, the EC element drive circuit 500 continues to apply the voltage when the operation is maintained in the precipitation state (reflection state).
 次に、EC素子100が金属OB1の析出および溶解によって光学状態を析出状態(反射状態)から透明状態に切替える際の動作方法について説明する。 Next, an operation method when the EC element 100 switches the optical state from the precipitation state (reflection state) to the transparent state by precipitation and dissolution of the metal OB1 will be described.
 EC素子駆動回路500は、析出した金属OB1を再度溶解させるために電圧の印加を停止する。これにより、第1電極群110の表面に析出した金属OB1はイオン状態に戻る。金属OB1がイオン状態に戻った状態でEC素子駆動回路500が第2電極群210に金属OB1が析出するように逆の極性を有する電圧を印加した場合、EC素子100は、第1電極群110が透明状態に切替わるとともに、第2電極群210に印加電圧に基づく所定の色を表示することができる。 The EC element drive circuit 500 stops applying a voltage in order to dissolve the deposited metal OB1 again. As a result, the metal OB1 deposited on the surface of the first electrode group 110 returns to the ionic state. When the EC element drive circuit 500 applies a voltage having the opposite polarity to the second electrode group 210 so that the metal OB1 is deposited in the state where the metal OB1 has returned to the ionic state, the EC element 100 has the first electrode group 110. Is switched to the transparent state, and a predetermined color based on the applied voltage can be displayed on the second electrode group 210.
 EC素子100をより短時間で透明状態に切替える場合、EC素子駆動回路500は、逆の極性を有する電圧を印加する。具体的には、EC素子駆動回路500は、第1電極群110を高電位、かつ第2電極群210を低電位とする電圧をEC素子100に印加する。これにより、EC素子駆動回路500は、金属OB1が第2電極群210側に析出を開始し、第1電極群110側に析出した金属OB1をより短時間で溶解させることができる。 When switching the EC element 100 to the transparent state in a shorter time, the EC element drive circuit 500 applies a voltage having the opposite polarity. Specifically, the EC element drive circuit 500 applies a voltage to the EC element 100 so that the first electrode group 110 has a high potential and the second electrode group 210 has a low potential. As a result, in the EC element drive circuit 500, the metal OB1 starts to precipitate on the second electrode group 210 side, and the metal OB1 deposited on the first electrode group 110 side can be dissolved in a shorter time.
 これにより、EC素子駆動回路500は、第1電極群110における金属OB1の金属薄膜の形成速度を維持して、EC素子100の光学状態を透明状態と析出状態とに切替えることができる。 Thereby, the EC element drive circuit 500 can maintain the formation speed of the metal thin film of the metal OB1 in the first electrode group 110 and switch the optical state of the EC element 100 between the transparent state and the precipitation state.
 次に、図2を参照して、実施の形態1に係る調光装置1000の構造例について説明する。図2は、実施の形態1に係る調光装置1000の構造例を説明する図である。調光装置1000は、EC素子100と、EC素子駆動回路制御部400と、EC素子駆動回路500と、を含んで構成される。なお、図2に示すEC素子100は、複数の第1電極110a,110b,110c,…,110Nのそれぞれおよび複数の第2電極210a,210b,210c,…,210Nのそれぞれの配置の様子を分かりやすくするために、第1電極接続部112、第2電極接続部212、電解液EL1およびスペーサ300を図示していない。 Next, a structural example of the dimmer 1000 according to the first embodiment will be described with reference to FIG. FIG. 2 is a diagram illustrating a structural example of the dimmer 1000 according to the first embodiment. The dimmer 1000 includes an EC element 100, an EC element drive circuit control unit 400, and an EC element drive circuit 500. In the EC element 100 shown in FIG. 2, the arrangement of the plurality of first electrodes 110a, 110b, 110c, ..., 110N and the plurality of second electrodes 210a, 210b, 210c, ..., 210N can be seen. For the sake of simplicity, the first electrode connecting portion 112, the second electrode connecting portion 212, the electrolytic solution EL1 and the spacer 300 are not shown.
 なお、図2には、複数の第1電極110a,110b,110c,…,110Nのそれぞれにより構成される第1電極群110と、複数の第2電極210a,210b,210c,…,210Nのそれぞれにより構成される第2電極群210と、を含んで構成されるEC素子100の例を示すが、EC素子100を構成する第1電極および第2電極の枚数は複数枚に限定されない。EC素子100は、例えば、1枚の第1電極と1枚の第2電極とを含んで構成されてもよい。 In addition, in FIG. 2, the first electrode group 110 composed of each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N and the plurality of second electrodes 210a, 210b, 210c, ..., 210N, respectively. Although an example of the EC element 100 composed of the second electrode group 210 and the EC element 100 including the second electrode group 210 is shown, the number of the first electrode and the second electrode constituting the EC element 100 is not limited to a plurality of elements. The EC element 100 may be configured to include, for example, one first electrode and one second electrode.
 EC素子100は、複数の第1電極110a,110b,110c,…,110Nのそれぞれからなる第1電極群110と、複数の第2電極210a,210b,210c,…,210Nのそれぞれからなる第2電極群210と、電解液EL1と、スペーサ300と、によって構成される。EC素子100は、印加電圧に応じて第1電極群110および第2電極群210の複数の交差する領域のそれぞれに金属OB1が析出して、金属薄膜を形成する。 The EC element 100 includes a first electrode group 110 composed of each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N, and a second electrode group 110 composed of each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N. It is composed of an electrode group 210, an electrolytic solution EL1, and a spacer 300. In the EC element 100, the metal OB1 is deposited in each of the plurality of intersecting regions of the first electrode group 110 and the second electrode group 210 according to the applied voltage to form a metal thin film.
 複数の第1電極110a,110b,110c,…,110Nのそれぞれと複数の第2電極210a,210b,210c,…,210Nのそれぞれとは、直交して配置される。なお、複数の第1電極110a,110b,110c,…,110Nのそれぞれ、および複数の第2電極210a,210b,210c,…,210Nのそれぞれは、上述した直交配置に限らず、例えば120°の角度を成して配置されてもよい。言い換えると、第1電極群110および第2電極群210の複数の交差する領域のそれぞれに析出する金属OB1の形状は、正方形状に限らず、例えばひし形などの四角形であってもよい。 Each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N and each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N are arranged orthogonally to each other. The plurality of first electrodes 110a, 110b, 110c, ..., 110N, and the plurality of second electrodes 210a, 210b, 210c, ..., 210N are not limited to the above-mentioned orthogonal arrangements, and are not limited to the above-mentioned orthogonal arrangements, for example, 120 °. They may be arranged at an angle. In other words, the shape of the metal OB1 deposited in each of the plurality of intersecting regions of the first electrode group 110 and the second electrode group 210 is not limited to a square shape, and may be a quadrangle such as a rhombus.
 EC素子駆動回路制御部400は、プロセッサ(不図示)とメモリ(不図示)とを備えて構成される。プロセッサは、例えばCPU(Central Processing Unit)、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)またはFPGA(Field Programmable Gate Array)を用いて構成される。 The EC element drive circuit control unit 400 includes a processor (not shown) and a memory (not shown). The processor is configured by using, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), or an FPGA (Field Programmable Gate Array).
 EC素子駆動回路制御部400のプロセッサ(不図示)は、メモリと協働して、各種の処理および制御を行う。具体的には、プロセッサは、メモリに保持されたプログラムおよびデータを参照し、そのプログラムを実行することにより、EC素子駆動回路制御部400の機能を実現する。例えば、プロセッサは、搭載装置から送信される搭載装置の使用状態または未使用状態を示す制御信号に基づいて、EC素子駆動回路500によってEC素子100が備える第1電極群110および第2電極群210のそれぞれに印加する電圧を変更するタイミングおよび印加電圧値などを制御するための制御信号をEC素子駆動回路500に出力する。プロセッサは、印加する電圧値の変更によりEC素子100が備える第1電極群110および第2電極群210のそれぞれに印加する電流の極性および電流値を変更し、搭載装置の使用時にはEC素子100を透明状態(透明表示)に、搭載装置の未使用時にはEC素子100を析出状態(白色表示)に切替える。 The processor (not shown) of the EC element drive circuit control unit 400 performs various processes and controls in cooperation with the memory. Specifically, the processor refers to the program and data stored in the memory and executes the program to realize the function of the EC element drive circuit control unit 400. For example, the processor has a first electrode group 110 and a second electrode group 210 included in the EC element 100 by the EC element drive circuit 500 based on a control signal indicating a used state or an unused state of the mounted device transmitted from the mounted device. A control signal for controlling the timing of changing the voltage applied to each of the above, the applied voltage value, and the like is output to the EC element drive circuit 500. The processor changes the polarity and current value of the current applied to each of the first electrode group 110 and the second electrode group 210 included in the EC element 100 by changing the applied voltage value, and changes the EC element 100 when the on-board device is used. The EC element 100 is switched to the transparent state (transparent display) and the EC element 100 is switched to the precipitation state (white display) when the mounted device is not in use.
 EC素子駆動回路制御部400のメモリ(不図示)は、例えばEC素子駆動回路制御部400の処理時に用いられるワークメモリとしてのRAM(Random Access Memory)と、EC素子駆動回路制御部400の動作を規定したプログラムおよびデータを格納するROM(Read Only Memory)とを有する。RAMには、プロセッサにより生成あるいは取得されたデータもしくは情報が一時的に保存される。ROMには、EC素子駆動回路制御部400の動作(例えば、実施の形態1に係るEC素子駆動回路500により実行されるEC素子100の駆動方法)を規定するプログラムが書き込まれている。 The memory (not shown) of the EC element drive circuit control unit 400 operates, for example, a RAM (Random Access Memory) as a work memory used when processing the EC element drive circuit control unit 400 and the operation of the EC element drive circuit control unit 400. It has a ROM (Read Only Memory) for storing the specified program and data. Data or information generated or acquired by the processor is temporarily stored in the RAM. A program that defines the operation of the EC element drive circuit control unit 400 (for example, the method of driving the EC element 100 executed by the EC element drive circuit 500 according to the first embodiment) is written in the ROM.
 EC素子駆動回路500は、EC素子駆動回路制御部400から出力された制御信号に基づいて、第1電極接続部112を介して複数の第1電極110a,110b,110c,…,110Nのそれぞれに電圧を印加し、第2電極接続部212を介して複数の第2電極210a,210b,210c,…,210Nのそれぞれに電圧を印加する。 The EC element drive circuit 500 is connected to each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N via the first electrode connection unit 112 based on the control signal output from the EC element drive circuit control unit 400. A voltage is applied, and a voltage is applied to each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N via the second electrode connecting portion 212.
 図3は、EC素子100の断面線を示す図である。B-B断面線は、第1電極110aの幅方向の中央位置において長手方向を切り口としたEC素子100の断面図である。B-B断面線によって示されるB-B断面は、第1電極群110を構成する複数の第1電極110a,110b,110c,…,110Nのそれぞれの幅方向の中央位置の断面図に等しい。 FIG. 3 is a diagram showing a cross-sectional line of the EC element 100. The BB cross-sectional line is a cross-sectional view of the EC element 100 with the longitudinal direction as a cut end at the center position in the width direction of the first electrode 110a. The BB cross section shown by the BB cross section is equal to the cross-sectional view of the center position in the width direction of each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N constituting the first electrode group 110.
 なお、上述した幅方向とは、複数の第1電極110a,110b,110c,…,110Nのそれぞれ、または複数の第2電極210a,210b,210c,…,210Nのそれぞれの並列配置される方向であり、矩形状に形成される複数の第1電極110a,110b,110c,…,110Nのそれぞれおよび複数の第2電極210a,210b,210c,…,210Nのそれぞれの電極の短手方向である。 The width direction described above is the direction in which the plurality of first electrodes 110a, 110b, 110c, ..., 110N are arranged in parallel, or the plurality of second electrodes 210a, 210b, 210c, ..., 210N are arranged in parallel. Yes, it is the lateral direction of each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N and the plurality of second electrodes 210a, 210b, 210c, ..., 210N formed in a rectangular shape.
 また、図3に示すX方向は、EC素子100の第1電極群110における長手方向または第2電極群210における幅方向を示す。また図3に示すY方向は,EC素子100の第1電極群110における幅方向または第2電極群210における長手方向を示す。 Further, the X direction shown in FIG. 3 indicates the longitudinal direction in the first electrode group 110 of the EC element 100 or the width direction in the second electrode group 210. The Y direction shown in FIG. 3 indicates the width direction of the first electrode group 110 of the EC element 100 or the longitudinal direction of the second electrode group 210.
 次に、図4および図5を参照してEC素子100の構造例について説明する。図4はEC素子100の立体斜視図であり、図5はB-B断面におけるEC素子100の断面図である。 Next, a structural example of the EC element 100 will be described with reference to FIGS. 4 and 5. FIG. 4 is a three-dimensional perspective view of the EC element 100, and FIG. 5 is a cross-sectional view of the EC element 100 in the BB cross section.
 図4は、実施の形態1に係るEC素子100の構造例を説明する図である。図5は、B-B断面におけるEC素子100の構造例を説明する図である。図4に示すZ方向は、第1電極群110と第2電極群210とが対向する方向を示す。なお、図4では、説明を分かりやすくするためにEC素子100の立体斜視図の一部を用いて説明する。 FIG. 4 is a diagram illustrating a structural example of the EC element 100 according to the first embodiment. FIG. 5 is a diagram illustrating a structural example of the EC element 100 in the BB cross section. The Z direction shown in FIG. 4 indicates a direction in which the first electrode group 110 and the second electrode group 210 face each other. In FIG. 4, a part of the three-dimensional perspective view of the EC element 100 will be used for easy explanation.
 第1電極群110を構成する複数の第1電極110a,110b,110c,…,110Nのそれぞれは、所定の空隙を有してY方向に並列に配置される。第1電極群110は、-X方向における端部に露出部を備える。第1電極群110は、露出部に第1電極接続部112が接続されて、EC素子駆動回路500によって電圧を印加される。なお、図4および図5において、第1電極接続部112は省略されている。 Each of the plurality of first electrodes 110a, 110b, 110c, ..., 110N constituting the first electrode group 110 has a predetermined gap and is arranged in parallel in the Y direction. The first electrode group 110 includes an exposed portion at an end portion in the −X direction. In the first electrode group 110, the first electrode connecting portion 112 is connected to the exposed portion, and a voltage is applied by the EC element drive circuit 500. In addition, in FIG. 4 and FIG. 5, the first electrode connection portion 112 is omitted.
 第1基板111は、第1電極群110において第2電極群210と対向する面と反対方向(以下、Z方向)の面に、第1電極群110を覆うように一体に設けられる。 The first substrate 111 is integrally provided on the surface of the first electrode group 110 in the direction opposite to the surface facing the second electrode group 210 (hereinafter, Z direction) so as to cover the first electrode group 110.
 第2電極群210を構成する複数の第2電極210a,210b,210c,…,210Nのそれぞれは、所定の空隙を有して第1電極群110と対向してX方向に並列に配置される。第2電極群210は、Y方向における端部に露出部を備える。第2電極群210は、露出部に第2電極接続部212が接続されて、EC素子駆動回路500によって電圧を印加される。なお、図4および図5において、第2電極接続部212は省略されている。 Each of the plurality of second electrodes 210a, 210b, 210c, ..., 210N constituting the second electrode group 210 has a predetermined gap and is arranged in parallel in the X direction facing the first electrode group 110. .. The second electrode group 210 includes an exposed portion at an end portion in the Y direction. In the second electrode group 210, the second electrode connecting portion 212 is connected to the exposed portion, and a voltage is applied by the EC element drive circuit 500. In addition, in FIG. 4 and FIG. 5, the second electrode connection portion 212 is omitted.
 第2基板211は、第2電極群210において第1電極群110と対向する方向と反対方向(以下、-Z方向)の面に、第2電極群210を覆うように一体に設けられる。 The second substrate 211 is integrally provided on the surface of the second electrode group 210 in the direction opposite to the direction facing the first electrode group 110 (hereinafter, -Z direction) so as to cover the second electrode group 210.
 スペーサ300は、第1電極群110一方の端部に備えられる露出部と第2電極群210一方の端部に備えられる露出部とを除いて、第1電極群110および第2電極群210の周縁に沿って、環状に設けられる。なお、図4においてはスペーサ300を省略している。 The spacer 300 is of the first electrode group 110 and the second electrode group 210, except for the exposed portion provided at one end of the first electrode group 110 and the exposed portion provided at one end of the second electrode group 210. It is provided in an annular shape along the peripheral edge. Note that the spacer 300 is omitted in FIG.
 電解液EL1は、第1電極群110、第2電極群210およびスペーサ300によって形成された空間内に備えられる。 The electrolytic solution EL1 is provided in the space formed by the first electrode group 110, the second electrode group 210, and the spacer 300.
 図6を参照して、実施の形態1に係るEC素子100が備える第1基板111および第1電極群110の構造について説明する。図6は、実施の形態1に係る第1基板111および第1電極群110の製造手順例を説明する図である。なお、図6では、第1基板111および第1電極群110の例を示すが、第2基板211および第2電極群210も同様の構成を有してよいし、第1基板111および第2基板211と、第1電極群110および第2電極群210とが同様の構成を有してもよい。 With reference to FIG. 6, the structures of the first substrate 111 and the first electrode group 110 included in the EC element 100 according to the first embodiment will be described. FIG. 6 is a diagram illustrating an example of a manufacturing procedure of the first substrate 111 and the first electrode group 110 according to the first embodiment. Although FIG. 6 shows an example of the first substrate 111 and the first electrode group 110, the second substrate 211 and the second electrode group 210 may have the same configuration, and the first substrate 111 and the second electrode group 210 may have the same configuration. The substrate 211 and the first electrode group 110 and the second electrode group 210 may have the same configuration.
 実施の形態1に係る第1基板111は、第1電極群110に接触する側の面の表面粗さRz=0.1~4.0μmを有して形成される。ここで、本実施の形態1に係る第1基板111および第1電極群110の製造方法について説明する。 The first substrate 111 according to the first embodiment is formed to have a surface roughness Rz = 0.1 to 4.0 μm of the surface on the side in contact with the first electrode group 110. Here, a method for manufacturing the first substrate 111 and the first electrode group 110 according to the first embodiment will be described.
 ステップSt11は、第1基板111の製造手順を示す。第1基板111は、公知の加工方法(例えば、サンドブラスト加工、ケミカルエッチング加工など)により、第1電極群110と接触する領域、かつ第1電極群110と電解液EL1とが接触する領域(つまり、金属OB1が析出する析出可能範囲)に対応する領域が表面粗さRz=0.1~4.0μmを有するように形成される。なお、表面粗さRz=0.1~4.0μmを有する領域は、少なくとも金属OB1が析出する析出可能範囲に対応する領域であって、複数の第1電極110a,110b,110c,…,110Nのそれぞれと第1電極接続部112との接触部分(露出部)およびスペーサ300との接触部分以外の領域であればよい。 Step St11 shows the manufacturing procedure of the first substrate 111. The first substrate 111 has a region in contact with the first electrode group 110 and a region in contact with the first electrode group 110 and the electrolytic solution EL1 (that is, by a known processing method (for example, sandblasting, chemical etching, etc.)). The region corresponding to the depositable range in which the metal OB1 is precipitated) is formed so as to have a surface roughness Rz = 0.1 to 4.0 μm. The region having a surface roughness Rz = 0.1 to 4.0 μm is a region corresponding to at least a depositable range in which the metal OB1 is deposited, and a plurality of first electrodes 110a, 110b, 110c, ..., 110N. It may be a region other than the contact portion (exposed portion) between each of the above and the first electrode connecting portion 112 and the contact portion with the spacer 300.
 ステップSt12は、第1電極群110の製造手順を示す。第1電極群110は、スパッタリングされて、第1基板111上に積層されて形成される。これにより、第1電極群110は、第1基板111のうち表面粗さRz=0.1~4.0μmを有する領域に対応して、金属OB1が析出する析出可能範囲に対応する領域が表面粗さRz=0.1~4.0μmを有するように、矩形状に形成される。 Step St12 shows the manufacturing procedure of the first electrode group 110. The first electrode group 110 is formed by being sputtered and laminated on the first substrate 111. As a result, in the first electrode group 110, the region corresponding to the region of the first substrate 111 having the surface roughness Rz = 0.1 to 4.0 μm and the region where the metal OB1 is precipitated can be surfaced. It is formed in a rectangular shape so as to have a roughness Rz = 0.1 to 4.0 μm.
 ステップSt13は、第1電極群110の表面に析出した金属OB1の様子を示す。EC素子駆動回路500により電圧が印加されると、電解液EL1中に溶解する金属OB1は、第1電極群110の表面に析出し、表面粗さRz=0.1~4.0μmを有する金属薄膜を形成する。金属OB1が析出すると、第1電極群110の表面に入射する入射光は、金属OB1の析出面で拡散反射(要部Mの拡大図に示す複数の反射光のそれぞれ)される。 Step St13 shows the state of the metal OB1 deposited on the surface of the first electrode group 110. When a voltage is applied by the EC element drive circuit 500, the metal OB1 dissolved in the electrolytic solution EL1 is deposited on the surface of the first electrode group 110, and the metal has a surface roughness Rz = 0.1 to 4.0 μm. Form a thin film. When the metal OB1 is deposited, the incident light incident on the surface of the first electrode group 110 is diffusely reflected (each of the plurality of reflected lights shown in the enlarged view of the main part M) on the precipitation surface of the metal OB1.
 なお、表面粗さがRz<0.1μmの場合、第1電極群110の表面に入射する入射光は、金属OB1の表面が滑らかになるため、拡散反射されなくなる。つまり、このような場合、EC素子100は、白色表示とならず、析出した金属OB1(例えば銀、アルミニウム、プラチナ、クロムあるいは金等)が薄膜(鏡面)を形成する。 When the surface roughness is Rz <0.1 μm, the incident light incident on the surface of the first electrode group 110 is not diffusely reflected because the surface of the metal OB1 becomes smooth. That is, in such a case, the EC element 100 does not display white, and the precipitated metal OB1 (for example, silver, aluminum, platinum, chromium, gold, etc.) forms a thin film (mirror surface).
 一方、表面粗さがRz>4.0μmの場合、第1電極群110の表面に入射する入射光は、表面粗さが大きいほど、ユーザがいるK方向に拡散反射されなくなって迷光となる。つまり、このような場合、EC素子100は、色ムラが発生してグレー表示となる。 On the other hand, when the surface roughness is Rz> 4.0 μm, the incident light incident on the surface of the first electrode group 110 becomes stray light because it is not diffusely reflected in the K direction in which the user is present as the surface roughness is larger. That is, in such a case, the EC element 100 is displayed in gray due to color unevenness.
 また、上述の製造方法により製造された第1基板111は、表面粗さがRz=0.1~4.0μmに形成されることにより、例えば、すりガラスのような外観となるため、透明でなくなる。しかし、このような第1基板111を備えるEC素子100は、第1基板111と第2基板211との間に封入された電解液EL1によって第1基板111の表面粗さRz=0.1~4.0μmが埋められて、表面粗さがRz=0の第1基板111として機能するため、図1に示すK方向において透明となる。 Further, the first substrate 111 manufactured by the above-mentioned manufacturing method is not transparent because the surface roughness is formed to Rz = 0.1 to 4.0 μm, so that the first substrate 111 has an appearance like frosted glass, for example. .. However, in the EC element 100 provided with such a first substrate 111, the surface roughness Rz of the first substrate 111 is 0.1 to 0.1 due to the electrolytic solution EL1 sealed between the first substrate 111 and the second substrate 211. Since 4.0 μm is filled and the surface roughness functions as the first substrate 111 with Rz = 0, it becomes transparent in the K direction shown in FIG.
 さらに、所定の表面粗さの実現には、本実施の形態の他に透明電極上にITO、IZO、酸化チタン、NiO等を材料とするナノ粒子を付与する方法があるが、この方法で製造された透明電極は、付与された粒子と粒子との隙間で金属が析出するため、外部からの光がこの隙間に入射して迷光となり、白色表示とすることは困難である。 Further, in order to realize a predetermined surface roughness, in addition to the present embodiment, there is a method of imparting nanoparticles made of ITO, IZO, titanium oxide, NiO or the like on a transparent electrode, and the production is carried out by this method. In the transparent electrode, metal is deposited in the gap between the imparted particles, so that light from the outside enters the gap and becomes stray light, which makes it difficult to display white.
 以上により、実施の形態1に係るEC素子100は、搭載された表示装置の使用時において、EC素子100の光学状態が透明状態(つまり、金属OB1が非析出の状態)で透明表示を実現できる。また、EC素子100は、表面粗さがRz=0.1~4.0μmの第1電極群110の表面に析出した金属OB1の析出面に入射する入射光をより広い範囲に拡散反射できるため、より高品位な白色表示を実現できる。これにより、EC素子100は、未使用時により高品位な白色表示を実現できるため、搭載装置が設置された壁、扉またはインテリアなどとの調和を高めることができる。さらに、EC素子100は、未使用時により高品位な白色表示を実現できるため、例えば空間のパーティション、壁などの他の用途に利用できる。なお、第2電極群210および第2基板211が透光性を有し、かつ不透明でない場合、EC素子100は、Z方向から見ても同様に白色に見えるため、空間内の壁、扉またはインテリアなどとの調和だけでなく、例えば空間のパーティション、壁などの他の用途での利用により適する構成を有する。 As described above, the EC element 100 according to the first embodiment can realize a transparent display in a transparent state (that is, a state in which the metal OB1 is not deposited) in the optical state of the EC element 100 when the mounted display device is used. .. Further, since the EC element 100 can diffuse and reflect the incident light incident on the deposited surface of the metal OB1 deposited on the surface of the first electrode group 110 having a surface roughness of Rz = 0.1 to 4.0 μm in a wider range. , A higher quality white display can be realized. As a result, the EC element 100 can realize a higher quality white display when not in use, so that the harmony with the wall, door, interior, etc. on which the mounting device is installed can be enhanced. Further, since the EC element 100 can realize a higher quality white display when not in use, it can be used for other purposes such as a space partition and a wall. When the second electrode group 210 and the second substrate 211 are translucent and are not opaque, the EC element 100 also looks white when viewed from the Z direction, so that a wall, a door, or a wall or a door in the space It has a structure that is more suitable not only for harmony with interiors, but also for other purposes such as space partitions and walls.
(実施の形態1の変形例1)
 実施の形態1に係るEC素子100は、第1基板111および第1電極群110の一部の面が表面粗さRz=0.1~4.0μmを有して形成されることにより、第1電極群110の表面に析出する金属OB1が表面粗さRz=0.1~4.0μmを有するように析出する構成について説明した。実施の形態1の変形例1に係るEC素子100では、第1電極群110AAの一部の面が表面粗さRz=0.1~4.0μmを有して形成されることにより、第1電極群110AAの表面に析出する金属OB1が表面粗さRz=0.1~4.0μmを有するように析出する構成について説明する。
(Modification 1 of Embodiment 1)
The EC element 100 according to the first embodiment is formed by forming a part of the surfaces of the first substrate 111 and the first electrode group 110 with a surface roughness Rz = 0.1 to 4.0 μm. The configuration in which the metal OB1 deposited on the surface of the 1 electrode group 110 is deposited so as to have a surface roughness Rz = 0.1 to 4.0 μm has been described. In the EC element 100 according to the first modification of the first embodiment, a part of the surface of the first electrode group 110AA is formed with a surface roughness Rz = 0.1 to 4.0 μm, whereby the first electrode group is formed. A configuration will be described in which the metal OB1 deposited on the surface of the electrode group 110AA is deposited so as to have a surface roughness Rz = 0.1 to 4.0 μm.
 図7を参照して、実施の形態1の変形例1に係るEC素子100が備える第1基板111AAおよび第1電極群110AAの構造について説明する。図7は、実施の形態1の変形例1に係る第1基板111AAおよび第1電極群110AAの製造手順例を説明する図である。なお、図7では、第1基板111AAおよび第1電極群110AAの例を示すが、第2基板211(不図示)および第2電極群210(不図示)も同様の構成を有してよいし、第1基板111AAおよび第2基板211と、第1電極群110AAおよび第2電極群210とが同様の構成を有してもよい。 With reference to FIG. 7, the structures of the first substrate 111AA and the first electrode group 110AA included in the EC element 100 according to the first modification of the first embodiment will be described. FIG. 7 is a diagram illustrating an example of a manufacturing procedure of the first substrate 111AA and the first electrode group 110AA according to the first modification of the first embodiment. Although FIG. 7 shows an example of the first substrate 111AA and the first electrode group 110AA, the second substrate 211 (not shown) and the second electrode group 210 (not shown) may have the same configuration. , The first substrate 111AA and the second substrate 211, and the first electrode group 110AA and the second electrode group 210 may have the same configuration.
 実施の形態1の変形例1に係る第1基板111AAは、第1電極群110AAと接触する側の面が略平面となるように形成される。 The first substrate 111AA according to the first modification of the first embodiment is formed so that the surface on the side in contact with the first electrode group 110AA is substantially flat.
 ステップSt21~St22は、第1電極群110AAの製造手順を示す。第1電極群110AAは、スパッタリングされて、第1基板111AA上に積層されて形成される(St21)。第1基板111AA上に積層された第1電極群110AAは、例えば、サンドブラスト、ケミカルエッチングなどの手法により、電解液EL1と接触する領域(つまり、金属OB1が析出する析出可能範囲)が表面粗さRz=0.1~4.0μmを有するように形成される(St22)。なお、表面粗さRz=0.1~4.0μmを有する領域は、少なくとも金属OB1が析出する析出可能範囲に対応する領域であって、第1電極群110AAと第1電極接続部112との接触部分(露出部)およびスペーサ300との接触部分以外の領域であればよい。 Steps St21 to St22 show the manufacturing procedure of the first electrode group 110AA. The first electrode group 110AA is formed by being sputtered and laminated on the first substrate 111AA (St21). The first electrode group 110AA laminated on the first substrate 111AA has a surface roughness in a region in contact with the electrolytic solution EL1 (that is, a precipitateable range in which the metal OB1 is deposited) by, for example, a technique such as sandblasting or chemical etching. It is formed so as to have Rz = 0.1 to 4.0 μm (St22). The region having a surface roughness Rz = 0.1 to 4.0 μm is a region corresponding to at least a depositable range in which the metal OB1 is precipitated, and is a region of the first electrode group 110AA and the first electrode connecting portion 112. It may be an area other than the contact portion (exposed portion) and the contact portion with the spacer 300.
 ステップSt23は、第1電極群110AAの表面に析出した金属OB1の様子を示す。EC素子駆動回路500により電圧が印加されると、電解液EL1中に溶解する金属OB1は、第1電極群110AAの表面に析出し、表面粗さRz=0.1~4.0μmを有する金属薄膜を形成する。金属OB1が析出すると、第1電極群110AAの表面に入射する入射光は、金属OB1の析出面で拡散反射される。 Step St23 shows the state of the metal OB1 deposited on the surface of the first electrode group 110AA. When a voltage is applied by the EC element drive circuit 500, the metal OB1 dissolved in the electrolytic solution EL1 is deposited on the surface of the first electrode group 110AA, and the metal has a surface roughness Rz = 0.1 to 4.0 μm. Form a thin film. When the metal OB1 is deposited, the incident light incident on the surface of the first electrode group 110AA is diffusely reflected on the precipitation surface of the metal OB1.
 以上により、実施の形態1の変形例1に係るEC素子100は、金属OB1の析出面に入射する入射光をより広い範囲に拡散反射できるため、より高品位な白色表示を実現できる。これにより、EC素子100は、未使用時により高品位な白色表示を実現できるため、搭載装置が設置された壁、扉またはインテリアなどとの調和を高めることができる。さらに、EC素子100は、未使用時により高品位な白色表示を実現できるため、例えば空間のパーティション、壁などの他の用途に利用できる。なお、第2電極群210および第2基板211が透光性を有し、かつ不透明でない場合、EC素子100は、Z方向から見ても同様に白色に見えるため、空間内の壁、扉またはインテリアなどとの調和だけでなく、例えば空間のパーティション、壁などの他の用途での利用により適する構成を有する。 As described above, the EC element 100 according to the first modification of the first embodiment can diffuse and reflect the incident light incident on the precipitation surface of the metal OB1 in a wider range, so that a higher quality white display can be realized. As a result, the EC element 100 can realize a higher quality white display when not in use, so that the harmony with the wall, door, interior, etc. on which the mounting device is installed can be enhanced. Further, since the EC element 100 can realize a higher quality white display when not in use, it can be used for other purposes such as a space partition and a wall. When the second electrode group 210 and the second substrate 211 are translucent and are not opaque, the EC element 100 also looks white when viewed from the Z direction, so that a wall, a door, or a wall or a door in the space It has a structure that is more suitable not only for harmony with interiors, but also for other purposes such as space partitions and walls.
(実施の形態1の変形例2)
 実施の形態1に係るEC素子100は、第1基板111および第1電極群110の一部の面が表面粗さRz=0.1~4.0μmを有して形成されることにより、第1電極群110の表面に析出する金属OB1が表面粗さRz=0.1~4.0μmを有するように析出する構成について説明した。実施の形態1の変形例2に係るEC素子100では、第1電極群110BBの一部の面が表面粗さRz=0.1~4.0μmを有して形成されることにより、第1電極群110BBの表面に析出する金属OB1が表面粗さRz=0.1~4.0μmを有するように析出する構成について説明する。
(Modification 2 of Embodiment 1)
The EC element 100 according to the first embodiment is formed by forming a part of the surfaces of the first substrate 111 and the first electrode group 110 with a surface roughness Rz = 0.1 to 4.0 μm. The configuration in which the metal OB1 deposited on the surface of the 1 electrode group 110 is deposited so as to have a surface roughness Rz = 0.1 to 4.0 μm has been described. In the EC element 100 according to the second modification of the first embodiment, a part of the surface of the first electrode group 110BB is formed with a surface roughness Rz = 0.1 to 4.0 μm, whereby the first electrode group is formed. A configuration will be described in which the metal OB1 deposited on the surface of the electrode group 110BB is deposited so as to have a surface roughness Rz = 0.1 to 4.0 μm.
 図8を参照して、実施の形態1の変形例2に係るEC素子100が備える第1基板111BBおよび第1電極群110BBの構造について説明する。図8は、実施の形態1の変形例2に係る第1基板111BBおよび第1電極群110BBの製造手順例を説明する図である。なお、図8では、第1基板111BBおよび第1電極群110BBの例を示すが、第2基板211(不図示)および第2電極群210(不図示)も同様の構成を有してよいし、第1基板111BBおよび第2基板211と、第1電極群110BBおよび第2電極群210とが同様の構成を有してもよい。 With reference to FIG. 8, the structures of the first substrate 111BB and the first electrode group 110BB included in the EC element 100 according to the second modification of the first embodiment will be described. FIG. 8 is a diagram illustrating an example of a manufacturing procedure of the first substrate 111BB and the first electrode group 110BB according to the second modification of the first embodiment. Although FIG. 8 shows an example of the first substrate 111BB and the first electrode group 110BB, the second substrate 211 (not shown) and the second electrode group 210 (not shown) may have the same configuration. , The first substrate 111BB and the second substrate 211, and the first electrode group 110BB and the second electrode group 210 may have the same configuration.
 実施の形態1の変形例2に係る第1基板111BBは、第1電極群110BBと接触する側の面が略平面となるように形成される。 The first substrate 111BB according to the second modification of the first embodiment is formed so that the surface on the side in contact with the first electrode group 110BB is substantially flat.
 ステップSt31は、第1電極群110BBの製造手順を示す。第1電極群110BBは、所定の成膜方法および成膜条件によりスパッタリングされて、第1基板111BB上に積層されて形成される。ここでいう所定の成膜方法は、例えば、CVD(Chemical Vapor Deposition)法を用いた成膜方法であって、SnO膜などの透明導電膜を成膜可能にする。 Step St31 shows the manufacturing procedure of the first electrode group 110BB. The first electrode group 110BB is formed by being sputtered according to a predetermined film forming method and film forming conditions and laminated on the first substrate 111BB. The predetermined film forming method referred to here is, for example, a film forming method using a CVD (Chemical Vapor Deposition) method, and enables a transparent conductive film such as a SnO 2 film to be formed.
 第1電極群110BBは、電解液EL1と接触する領域(つまり、金属OB1が析出する析出可能範囲)が表面粗さRz=0.1~4.0μmを有するように形成される。なお、表面粗さRz=0.1~4.0μmを有する領域は、少なくとも金属OB1が析出する析出可能範囲に対応する領域であって、第1電極群110BBと第1電極接続部112との接触部分(露出部)およびスペーサ300との接触部分以外の領域であればよい。 The first electrode group 110BB is formed so that the region in contact with the electrolytic solution EL1 (that is, the precipitateable range in which the metal OB1 precipitates) has a surface roughness Rz = 0.1 to 4.0 μm. The region having a surface roughness Rz = 0.1 to 4.0 μm is a region corresponding to at least a depositable range in which the metal OB1 is precipitated, and is a region of the first electrode group 110BB and the first electrode connecting portion 112. It may be an area other than the contact portion (exposed portion) and the contact portion with the spacer 300.
 ステップSt32は、第1電極群110BBの表面に析出した金属OB1の様子を示す。EC素子駆動回路500により電圧が印加されると、電解液EL1中に溶解する金属OB1は、第1電極群110BBの表面に析出し、表面粗さRz=0.1~4.0μmを有する金属薄膜を形成する。金属OB1が析出すると、第1電極群110BBの表面に入射する入射光は、金属OB1の析出面で拡散反射される。 Step St32 shows the state of the metal OB1 deposited on the surface of the first electrode group 110BB. When a voltage is applied by the EC element drive circuit 500, the metal OB1 dissolved in the electrolytic solution EL1 is deposited on the surface of the first electrode group 110BB, and the metal has a surface roughness Rz = 0.1 to 4.0 μm. Form a thin film. When the metal OB1 is deposited, the incident light incident on the surface of the first electrode group 110BB is diffusely reflected on the precipitation surface of the metal OB1.
 以上により、実施の形態1の変形例2に係るEC素子100は、金属OB1の析出面に入射する入射光をより広い範囲に拡散反射できるため、より高品位な白色表示を実現できる。これにより、EC素子100は、未使用時により高品位な白色表示を実現できるため、空間内の壁、扉またはインテリアなどとの調和を高めることができる。さらに、EC素子100は、未使用時により高品位な白色表示を実現できるため、例えば空間のパーティション、壁などの他の用途に利用できる。なお、第2電極群210および第2基板211が透光性を有し、かつ不透明でない場合、EC素子100は、Z方向から見ても同様に白色に見えるため、搭載装置が設置された壁、扉またはインテリアなどとの調和だけでなく、例えば空間のパーティション、壁などの他の用途での利用により適する構成を有する。 As described above, the EC element 100 according to the second modification of the first embodiment can diffuse and reflect the incident light incident on the precipitation surface of the metal OB1 in a wider range, so that a higher quality white display can be realized. As a result, the EC element 100 can realize a higher quality white display when not in use, so that the harmony with the wall, door, interior, or the like in the space can be enhanced. Further, since the EC element 100 can realize a higher quality white display when not in use, it can be used for other purposes such as a space partition and a wall. When the second electrode group 210 and the second substrate 211 are translucent and not opaque, the EC element 100 also looks white when viewed from the Z direction, so that the wall on which the mounting device is installed is installed. It has a configuration that is more suitable not only for harmony with doors or interiors, but also for other uses such as space partitions, walls and the like.
 以上により、実施の形態1、実施の形態1の変形例1および実施の形態1の変形例2に係るEC素子100は、搭載装置(表示装置の一例、不図示)に搭載される。EC素子100は、透光性を有する第1電極群110,110AA,110BBと、第1電極群110,110AA,110BBと対向して並列に配置された第2電極群210と、第1電極群110,110AA,110BBと第2電極群210との間に配置された、金属を含む電解液EL1と、電解液EL1への電圧印加の有無に応じて、第1電極群110,110AA,110BBへの金属OB1の析出状態および非析出状態を切り替えるEC素子駆動回路500(電源の一例)と、を備える。第1電極群110,110AA,110BBは、少なくとも金属OB1が析出する領域の表面粗さが0.1~4.0μmである。また、EC素子駆動回路500は、搭載装置の未使用時には析出状態にして金属OB1が析出する領域を白色表示させ、搭載装置の使用時には非析出状態にして金属OB1が析出する領域を透明表示させる。なお、上述した第1電極群110,110AA,110BBは、複数枚の第1の電極のそれぞれを含んで構成される例に限定されず、例えば、1枚の第1電極により構成されてもよい。同様に、第2電極群210は、1枚の第2電極により構成されてもよい。 As described above, the EC element 100 according to the first embodiment, the first modification of the first embodiment and the second modification of the first embodiment is mounted on a mounting device (an example of a display device, not shown). The EC element 100 includes a first electrode group 110, 110AA, 110BB having translucency, a second electrode group 210 arranged in parallel facing the first electrode group 110, 110AA, 110BB, and a first electrode group. To the first electrode group 110, 110AA, 110BB depending on the presence or absence of voltage application to the electrolytic solution EL1 containing metal and the electrolytic solution EL1 arranged between 110, 110AA, 110BB and the second electrode group 210. The EC element drive circuit 500 (an example of a power source) for switching between a deposited state and a non-precipitated state of the metal OB1 of the above is provided. In the first electrode groups 110, 110AA and 110BB, the surface roughness of at least the region where the metal OB1 is deposited is 0.1 to 4.0 μm. Further, the EC element drive circuit 500 displays the region where the metal OB1 is deposited in a white state when the mounted device is not in use, and displays the region where the metal OB1 is deposited in a non-precipitated state when the mounted device is in use. .. The first electrode group 110, 110AA, 110BB described above is not limited to the example in which each of the plurality of first electrodes is included, and may be composed of, for example, one first electrode. .. Similarly, the second electrode group 210 may be composed of one second electrode.
 これにより、実施の形態1に係るEC素子100は、搭載機器の使用時の透明表示と搭載機器の未使用時の白色表示とを切り替え、利便性を向上できる。また、EC素子100は、金属OB1が析出する領域を表面粗さRz=0.1~4.0μmに形成することにより、搭載装置の未使用時に析出させた金属OB1の析出面に入射する入射光をより広い範囲に拡散反射して、より高品位な白色表示を実現できる。したがって、EC素子100は、搭載装置の未使用時には白色表示となるため、搭載装置が設置された壁、扉またはインテリアなどとの調和を高めることができる。 As a result, the EC element 100 according to the first embodiment can switch between a transparent display when the mounted device is used and a white display when the mounted device is not in use, and can improve convenience. Further, the EC element 100 forms a region where the metal OB1 is deposited at a surface roughness Rz = 0.1 to 4.0 μm, so that the EC element 100 is incident on the precipitation surface of the metal OB1 which is deposited when the mounting device is not in use. Light can be diffusely reflected over a wider range to achieve a higher quality white display. Therefore, since the EC element 100 is displayed in white when the mounting device is not in use, it is possible to improve the harmony with the wall, door, interior, or the like on which the mounting device is installed.
 また、以上により、実施の形態1に係るEC素子100における第1電極群110は、金属OB1が析出する第1電極110a,…(第1電極層の一例)と、第1電極110a上に配置された第1基板111と、を備える。これにより、実施の形態1に係るEC素子100は、金属OB1が析出する領域を表面粗さRz=0.1~4.0μmに形成することにより、搭載装置の未使用時に析出させた金属OB1の析出面に入射する入射光をより広い範囲に拡散反射して、より高品位な白色表示を実現できる。したがって、EC素子100は、搭載機器の使用時の透明表示と搭載機器の未使用時の白色表示とを切り替え、利便性を向上できる。 Further, as described above, the first electrode group 110 in the EC element 100 according to the first embodiment is arranged on the first electrode 110a, ... (An example of the first electrode layer) on which the metal OB1 is deposited and the first electrode 110a. The first substrate 111 is provided. As a result, in the EC element 100 according to the first embodiment, the region where the metal OB1 is deposited is formed to have a surface roughness Rz = 0.1 to 4.0 μm, so that the metal OB1 deposited when the mounting device is not used. It is possible to realize a higher quality white display by diffusing and reflecting the incident light incident on the precipitation surface in a wider range. Therefore, the EC element 100 can switch between a transparent display when the mounted device is used and a white display when the mounted device is not in use, and can improve convenience.
 また、以上により第1基板111は、第1電極110a,…と接触する側の面のうち少なくとも金属OB1が析出する領域の表面粗さが0.1~4.0μmである。これにより、実施の形態1に係る第1電極群110は、領域の表面粗さが0.1~4.0μmに形成された第1基板111上に第1電極110a,…を成膜されることにより、より容易に製造可能である。 Further, as described above, the surface roughness of at least the region where the metal OB1 is deposited on the surface of the first substrate 111 on the side in contact with the first electrodes 110a, ... Is 0.1 to 4.0 μm. As a result, in the first electrode group 110 according to the first embodiment, the first electrodes 110a, ... Are formed on the first substrate 111 formed so that the surface roughness of the region is 0.1 to 4.0 μm. As a result, it can be manufactured more easily.
 また、以上により、実施の形態1に係るEC素子100は、第1基板111の表面粗さは、サンドブラスト加工により、Rz=0.1~4.0μmに形成される。これにより、実施の形態1に係るEC素子100は、金属OB1が析出する領域に対応する領域の表面粗さが0.1~4.0μmに形成された第1基板111上に第1電極110a,…を成膜することで、第1電極110a,…における金属OB1が析出する領域の表面粗さをより容易にRz=0.1~4.0μmに形成することができる。 Further, as described above, in the EC element 100 according to the first embodiment, the surface roughness of the first substrate 111 is formed to Rz = 0.1 to 4.0 μm by sandblasting. As a result, in the EC element 100 according to the first embodiment, the first electrode 110a is formed on the first substrate 111 in which the surface roughness of the region corresponding to the region where the metal OB1 is deposited is 0.1 to 4.0 μm. By forming the film, the surface roughness of the region where the metal OB1 is deposited on the first electrodes 110a, ... Can be more easily formed at Rz = 0.1 to 4.0 μm.
 また、以上により、実施の形態1に係る第1基板111の表面粗さは、ケミカルエッチング加工により、Rz=0.1~4.0μmに形成される。これにより、実施の形態1に係るEC素子100は、金属OB1が析出する領域に対応する領域の表面粗さが0.1~4.0μmに形成された第1基板111上に第1電極110a,…を成膜することで、第1電極110a,…における金属OB1が析出する領域の表面粗さをより容易にRz=0.1~4.0μmに形成することができる。 Further, as described above, the surface roughness of the first substrate 111 according to the first embodiment is formed to Rz = 0.1 to 4.0 μm by the chemical etching process. As a result, in the EC element 100 according to the first embodiment, the first electrode 110a is formed on the first substrate 111 in which the surface roughness of the region corresponding to the region where the metal OB1 is deposited is 0.1 to 4.0 μm. By forming the film, the surface roughness of the region where the metal OB1 is deposited on the first electrodes 110a, ... Can be more easily formed at Rz = 0.1 to 4.0 μm.
 また、以上により、実施の形態1、実施の形態1の変形例1および実施の形態1の変形例2に係る第1電極群110,110AA,110BBは、第1基板111,111AA,111BBと接触する側と反対の面のうち少なくとも金属OB1が析出する領域の表面粗さが0.1~4.0μmである。これにより、EC素子100は、金属OB1が析出する領域を表面粗さRz=0.1~4.0μmに形成することにより、搭載装置の未使用時に析出させた金属OB1の析出面に入射する入射光をより広い範囲に拡散反射して、より高品位な白色表示を実現できる。したがって、EC素子100は、搭載装置の未使用時には白色表示となるため、搭載装置が設置された壁、扉またはインテリアなどとの調和を高めることができる。 Further, as described above, the first electrode groups 110, 110AA, 110BB according to the first embodiment, the first modification of the first embodiment, and the second modification of the first embodiment come into contact with the first substrates 111, 111AA, 111BB. The surface roughness of at least the region where the metal OB1 is deposited is 0.1 to 4.0 μm on the surface opposite to the side facing the surface. As a result, the EC element 100 forms a region where the metal OB1 is deposited at a surface roughness Rz = 0.1 to 4.0 μm, so that the EC element 100 is incident on the deposited surface of the metal OB1 deposited when the mounting device is not in use. It is possible to realize a higher quality white display by diffusely reflecting the incident light over a wider range. Therefore, since the EC element 100 is displayed in white when the mounting device is not in use, it is possible to improve the harmony with the wall, door, interior, or the like on which the mounting device is installed.
 また、以上により、実施の形態1の変形例1に係る第1電極群110AAにおける第1電極110a,…は、サンドブラスト加工により、表面粗さがRz=0.1~4.0μmに形成される。これにより、実施の形態1の変形例1に係る第1電極群110AAは、金属OB1が析出する領域を平面状に形成された後、サンドブラスト加工されて、表面粗さがRz=0.1~4.0μmに形成される。 Further, as described above, the surface roughness of the first electrodes 110a, ... In the first electrode group 110AA according to the first modification of the first embodiment is formed to Rz = 0.1 to 4.0 μm by sandblasting. .. As a result, the first electrode group 110AA according to the first modification of the first embodiment is sandblasted after forming a flat region where the metal OB1 is deposited, and has a surface roughness of Rz = 0.1 to It is formed to 4.0 μm.
 また、以上により、実施の形態1の変形例1に係る第1電極群110AAにおける第1電極110a,…は、ケミカルエッチング加工により、表面粗さがRz=0.1~4.0μmに形成される。これにより、実施の形態1の変形例1に係る第1電極群110AAは、金属OB1が析出する領域を平面状に形成された後、ケミカルエッチング加工されて、表面粗さがRz=0.1~4.0μmに形成される。 Further, as described above, the surface roughness of the first electrodes 110a, ... In the first electrode group 110AA according to the first modification of the first embodiment is formed to Rz = 0.1 to 4.0 μm by chemical etching processing. NS. As a result, the first electrode group 110AA according to the first modification of the first embodiment is subjected to chemical etching after forming a flat region where the metal OB1 is deposited, and has a surface roughness of Rz = 0.1. It is formed to ~ 4.0 μm.
 また、以上により、実施の形態1の変形例2に係る第1電極群110BBにおける第1電極110a,…の表面粗さは、所定の成膜条件により少なくとも金属OB1が析出する領域が0.1~4.0μmとなるように形成される。これにより、実施の形態1の変形例2に係る第1電極群110BBは、所定の成膜条件に基づいて、表面粗さがRz=0.1~4.0μmに形成される。 Further, as described above, the surface roughness of the first electrodes 110a, ... In the first electrode group 110BB according to the second modification of the first embodiment is 0.1 in the region where at least the metal OB1 is deposited under predetermined film forming conditions. It is formed to be about 4.0 μm. As a result, the first electrode group 110BB according to the second modification of the first embodiment has a surface roughness of Rz = 0.1 to 4.0 μm based on predetermined film forming conditions.
 また、以上により、実施の形態1、実施の形態1の変形例1および実施の形態1の変形例2に係るEC素子100は、透光性を有する第1電極群110,110AA,110BBと、第1電極群110,110AA,110BBと対向して並列に配置された第2電極群210と、第1電極群110,110AA,110BBと第2電極群210との間に配置された、金属を含む電解液EL1と、を備える。第1電極群110,110AA,110BBは、少なくとも金属OB1が析出する領域の表面粗さが0.1~4.0μmである。これにより、実施の形態1に係るEC素子100は、搭載機器の使用時の透明表示と搭載機器の未使用時の白色表示とを切り替え、利便性を向上できる。また、EC素子100は、金属OB1が析出する領域を表面粗さRz=0.1~4.0μmに形成することにより、搭載装置の未使用時に析出させた金属OB1の析出面に入射する入射光をより広い範囲に拡散反射して、より高品位な白色表示を実現できる。したがって、EC素子100は、搭載装置の未使用時には白色表示となるため、搭載装置が設置された壁、扉またはインテリアなどとの調和を高めることができる。 Further, as described above, the EC element 100 according to the first embodiment, the first modification of the first embodiment and the second modification of the first embodiment includes the first electrode groups 110, 110AA, 110BB having translucency. A metal arranged between the second electrode group 210 arranged in parallel with the first electrode groups 110, 110AA, 110BB and the first electrode groups 110, 110AA, 110BB and the second electrode group 210. The electrolytic solution EL1 containing the mixture is provided. In the first electrode groups 110, 110AA and 110BB, the surface roughness of at least the region where the metal OB1 is deposited is 0.1 to 4.0 μm. As a result, the EC element 100 according to the first embodiment can switch between a transparent display when the mounted device is used and a white display when the mounted device is not used, and can improve convenience. Further, the EC element 100 forms a region where the metal OB1 is deposited at a surface roughness Rz = 0.1 to 4.0 μm, so that the EC element 100 is incident on the precipitation surface of the metal OB1 which is deposited when the mounting device is not in use. Light can be diffusely reflected over a wider range to achieve a higher quality white display. Therefore, since the EC element 100 is displayed in white when the mounting device is not in use, it is possible to improve the harmony with the wall, door, interior, or the like on which the mounting device is installed.
 以上、添付図面を参照しながら各種の実施の形態について説明したが、本開示はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても本開示の技術的範囲に属すると了解される。また、発明の趣旨を逸脱しない範囲において、上述した各種の実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the attached drawings, the present disclosure is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications, modifications, substitutions, additions, deletions, and equality within the scope of the claims. It is understood that it belongs to the technical scope of the present disclosure. Further, each component in the various embodiments described above may be arbitrarily combined as long as the gist of the invention is not deviated.
 なお、本出願は、2020年4月24日出願の日本特許出願(特願2020-077775)に基づくものであり、その内容は本出願の中に参照として援用される。 Note that this application is based on a Japanese patent application filed on April 24, 2020 (Japanese Patent Application No. 2020-07775), the contents of which are incorporated herein by reference.
 本開示は、搭載機器の使用時の透明表示と搭載機器の未使用時の白色表示とを切り替え、利便性を向上できる調光素子として有用である。 This disclosure is useful as a dimming element that can improve convenience by switching between a transparent display when the on-board device is used and a white display when the on-board device is not in use.
100 EC素子
110,110AA,110BB 第1電極群
111,111AA,111BB 第1基板
210 第2電極群
211 第2基板
300 スペーサ
400 EC素子駆動回路制御部
500 EC素子駆動回路
EL1 電解液
OB1 金属
100 EC element 110, 110AA, 110BB 1st electrode group 111, 111AA, 111BB 1st substrate 210 2nd electrode group 211 2nd substrate 300 Spacer 400 EC element drive circuit control unit 500 EC element drive circuit EL1 Electrolyte OB1 Metal

Claims (10)

  1.  表示装置に搭載される調光素子であって、
     透光性を有する第1電極と、
     前記第1電極と対向して並列に配置された第2電極と、
     前記第1電極と前記第2電極との間に配置された、金属を含む電解液と、
     前記電解液への電圧印加の有無に応じて、前記第1電極への前記金属の析出状態および非析出状態を切り替える電源と、を備え、
     前記第1電極は、少なくとも前記金属が析出する領域の表面粗さが0.1~4.0μmであり、
     前記電源は、前記表示装置の未使用時には前記析出状態にして前記領域を白色表示させ、前記表示装置の使用時には前記非析出状態にして前記領域を透明表示させる、
     調光素子。
    A dimming element mounted on a display device.
    The first electrode with translucency and
    A second electrode arranged in parallel facing the first electrode and
    An electrolytic solution containing a metal, which is arranged between the first electrode and the second electrode,
    A power source for switching between a deposited state and a non-precipitated state of the metal on the first electrode is provided according to the presence or absence of voltage application to the electrolytic solution.
    The first electrode has a surface roughness of at least the region where the metal is deposited is 0.1 to 4.0 μm.
    When the display device is not in use, the power supply is in the precipitated state to display the region in white, and when the display device is in use, the region is displayed in the non-precipitated state in a transparent manner.
    Dimming element.
  2.  前記第1電極は、
     前記金属が析出する第1電極層と、
     前記第1電極層上に配置された第1基板と、を有する、
     請求項1に記載の調光素子。
    The first electrode is
    The first electrode layer on which the metal is deposited and
    It has a first substrate arranged on the first electrode layer.
    The dimming element according to claim 1.
  3.  前記第1基板は、前記第1電極層と接触する側の面のうち少なくとも前記金属が析出する領域の表面粗さが0.1~4.0μmである、
     請求項2に記載の調光素子。
    The surface roughness of at least the region where the metal is deposited on the surface of the first substrate in contact with the first electrode layer is 0.1 to 4.0 μm.
    The dimming element according to claim 2.
  4.  前記第1基板の表面粗さは、サンドブラスト加工により、0.1~4.0μmに形成される、
     請求項3に記載の調光素子。
    The surface roughness of the first substrate is formed to 0.1 to 4.0 μm by sandblasting.
    The dimming element according to claim 3.
  5.  前記第1基板の表面粗さは、ケミカルエッチング加工により、0.1~4.0μmに形成される、
     請求項3に記載の調光素子。
    The surface roughness of the first substrate is formed to 0.1 to 4.0 μm by chemical etching processing.
    The dimming element according to claim 3.
  6.  前記第1電極層は、前記第1基板と接触する側と反対の面のうち少なくとも前記金属が析出する領域の表面粗さが0.1~4.0μmである、
     請求項2に記載の調光素子。
    The surface roughness of at least the region where the metal is deposited on the surface opposite to the side in contact with the first substrate of the first electrode layer is 0.1 to 4.0 μm.
    The dimming element according to claim 2.
  7.  前記第1電極層の表面粗さは、サンドブラスト加工により、0.1~4.0μmに形成される、
     請求項6に記載の調光素子。
    The surface roughness of the first electrode layer is formed to 0.1 to 4.0 μm by sandblasting.
    The dimming element according to claim 6.
  8.  前記第1電極層の表面粗さは、ケミカルエッチング加工により、0.1~4.0μmに形成される、
     請求項6に記載の調光素子。
    The surface roughness of the first electrode layer is formed to 0.1 to 4.0 μm by chemical etching.
    The dimming element according to claim 6.
  9.  前記第1電極層の表面粗さは、所定の成膜条件により前記第1電極の少なくとも前記領域が0.1~4.0μmに形成される、
     請求項6に記載の調光素子。
    The surface roughness of the first electrode layer is such that at least the region of the first electrode is formed to 0.1 to 4.0 μm under predetermined film forming conditions.
    The dimming element according to claim 6.
  10.  表示装置に搭載される調光素子であって、
     透光性を有する第1電極と、
     前記第1電極と対向して並列に配置された第2電極と、
     前記第1電極と前記第2電極との間に配置された、金属を含む電解液と、を備え、
     前記第1電極は、少なくとも前記金属が析出する領域の表面粗さが0.1~4.0μmである、
     調光素子。
    A dimming element mounted on a display device.
    The first electrode with translucency and
    A second electrode arranged in parallel facing the first electrode and
    An electrolytic solution containing a metal, which is arranged between the first electrode and the second electrode, is provided.
    The first electrode has a surface roughness of at least the region where the metal is deposited is 0.1 to 4.0 μm.
    Dimming element.
PCT/JP2021/008305 2020-04-24 2021-03-03 Dimming element WO2021215123A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-077775 2020-04-24
JP2020077775 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021215123A1 true WO2021215123A1 (en) 2021-10-28

Family

ID=78270491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008305 WO2021215123A1 (en) 2020-04-24 2021-03-03 Dimming element

Country Status (1)

Country Link
WO (1) WO2021215123A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244444A (en) * 1993-02-18 1994-09-02 Hitachi Ltd Light confining structure and photodetector using structure thereof
US20040140198A1 (en) * 2003-01-15 2004-07-22 Jun-Sik Cho Method of forming ITO film
JP2008169406A (en) * 2007-01-09 2008-07-24 Stanley Electric Co Ltd Method for producing molding subjected to ornamental treatment, and molding
JP2018180456A (en) * 2017-04-20 2018-11-15 スタンレー電気株式会社 Liquid crystal display device
WO2019065538A1 (en) * 2017-09-29 2019-04-04 スタンレー電気株式会社 Optical device and method for driving same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244444A (en) * 1993-02-18 1994-09-02 Hitachi Ltd Light confining structure and photodetector using structure thereof
US20040140198A1 (en) * 2003-01-15 2004-07-22 Jun-Sik Cho Method of forming ITO film
JP2008169406A (en) * 2007-01-09 2008-07-24 Stanley Electric Co Ltd Method for producing molding subjected to ornamental treatment, and molding
JP2018180456A (en) * 2017-04-20 2018-11-15 スタンレー電気株式会社 Liquid crystal display device
WO2019065538A1 (en) * 2017-09-29 2019-04-04 スタンレー電気株式会社 Optical device and method for driving same

Similar Documents

Publication Publication Date Title
US11221536B2 (en) Electrochromic device
CN104460169A (en) Electrode plate, and electrochromic plate, electrochromic mirror and display device using the same
US20100110522A1 (en) Display device using electrochromism and methods of driving the same
WO2007027377A2 (en) Electrode with transparent series resistance for uniform switching of optical modulation devices
JP2007506150A (en) Electrophoretic micromechanical display with discrete controllable bistable transflective device
EP1668408A1 (en) Switchable transflector and transflective display
JP2002542513A (en) Transmission / reflection switchable display device
TW200807074A (en) Multistable reflective liquid crystal device
CN102981324B (en) A kind of semi-transparent semi-reflecting blue-phase liquid crystal display panel and liquid crystal display device
JPS6275619A (en) Glare-proof mirror
WO2021136008A1 (en) Liquid crystal cell and electronic apparatus
CN115343870A (en) Display panel with switchable wide and narrow viewing angles, display device and driving method
WO2021215123A1 (en) Dimming element
JP2018180351A (en) Electro-optical device and display device
US20070070489A1 (en) Display device with suspended anisometric particles
JP6807687B2 (en) Lighting device and liquid crystal display device
TWI337683B (en) Liquid crystal display device
JP6235841B2 (en) Liquid crystal display
TWI354170B (en) In-plane switching mode liquid crystal display dev
CN108873400A (en) Display device and width visual angle display methods
CN210666262U (en) Display panel and display device
TW200540491A (en) Suspended particle devices
CN111542781B (en) Visual range adjusting device, driving method thereof, visual range adjusting device and display device
CN114740644A (en) Display panel and display terminal
JPH08262207A (en) Light reflecting plate, light reflecting plate for reflection type liquid crystal display device, and light-reflecting electrode plate for reflection type liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21793558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP