WO2021214913A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2021214913A1
WO2021214913A1 PCT/JP2020/017328 JP2020017328W WO2021214913A1 WO 2021214913 A1 WO2021214913 A1 WO 2021214913A1 JP 2020017328 W JP2020017328 W JP 2020017328W WO 2021214913 A1 WO2021214913 A1 WO 2021214913A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
notch
discharge hole
refrigerant
cylinder
Prior art date
Application number
PCT/JP2020/017328
Other languages
French (fr)
Japanese (ja)
Inventor
明人 及川
勝俊 辰己
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/017328 priority Critical patent/WO2021214913A1/en
Publication of WO2021214913A1 publication Critical patent/WO2021214913A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • This disclosure relates to a compressor that compresses a refrigerant.
  • a rotary compressor is known as a compressor that compresses and discharges a fluid such as a refrigerant.
  • a rotary type compressor an electric motor portion is provided in the upper part inside the closed container, and a compression mechanism portion is provided in the lower part inside the inside of the container.
  • the motor unit has a stator fixed to a container and a rotor that rotates when electric power is supplied to the stator. Then, the rotational force of the motor unit is transmitted to the compression mechanism unit by the rotating shaft fixed to the rotor.
  • the compression mechanism unit mainly has a cylinder fixed to the container and a piston attached to the inside of the cylinder and rotating eccentrically.
  • the compressor has a bearing that supports the rotating shaft. Then, the rotation of the rotating shaft causes the piston to rotate eccentrically, and the volume of the compression chamber formed between the cylinder and the piston is reduced, so that the refrigerant is compressed. Further, the refrigerating machine oil is stored in the bottom of the container, and the rotation of the rotating shaft takes the function of the centrifugal pump, and the refrigerating machine oil is sucked up into the oil passage formed in the axial direction inside the rotating shaft. Then, the refrigerating machine oil is supplied to each sliding portion of the compressor through an oil supply hole formed in the radial direction inside the rotating shaft.
  • the bearing is covered with a discharge muffler, and the compressed refrigerant is discharged from the discharge port provided in the bearing into the space between the bearing and the discharge muffler, and then from the gas hole formed in the discharge muffler. , Is discharged inside the container.
  • Patent Document 1 discloses a rotary compressor in which a discharge hole for discharging a refrigerant from a compression chamber formed in a cylinder is formed in a bearing.
  • the discharge hole of Patent Document 1 is inclined so that the edge portion of the communication portion communicating with the compression chamber extends along the axial direction, and the edge portion of the valve seat portion connected to the communication portion extends from the communication portion. That is, the inner peripheral generatrix from the inner bottom to the top of the valve seat is a straight line inclined from the inside to the outside in the radial direction.
  • Patent Document 1 attempts to facilitate the discharge of the refrigerant from the discharge holes.
  • a discharge notch connected to a discharge hole is cut out on the inner peripheral surface of the cylinder.
  • the notch direction of the discharge notch is inclined from the inner wall of the cylinder toward the discharge hole.
  • This disclosure is made to solve the above-mentioned problems, and provides a compressor that reduces pressure loss and suppresses a decrease in compression efficiency.
  • the compressor according to the present disclosure is fixed to the container, an electric motor portion provided inside the container, a rotating shaft fixed to the electric motor portion and driven to rotate by the electric motor portion, and fixed to the inner wall of the container to be formed inside.
  • An annular cylinder with a notch for discharging the refrigerant compressed by the compression chamber and an annular cylinder mounted on the cylinder to support the rotating shaft, and a compression chamber is formed together with the cylinder and connected to the discharge notch.
  • a bearing having a discharge hole extending along the notch direction of the discharge notch for discharging the refrigerant is provided.
  • the discharge hole extends along the notch direction of the discharge notch. Therefore, the refrigerant flowing along the discharge notch smoothly flows out into the discharge hole without colliding. Therefore, the pressure loss can be reduced and the decrease in compression efficiency can be suppressed.
  • FIG. 5 is an enlarged cross-sectional view showing a state in which the discharge hole in the first embodiment is viewed in the direction of the rotation axis. It is sectional drawing which shows the discharge notch and the discharge hole in the comparative example. FIG. 5 is an enlarged cross-sectional view showing a state in which the discharge hole in the comparative example is viewed in the direction of the rotation axis. It is sectional drawing which shows the discharge notch and the discharge hole in Embodiment 2.
  • FIG. FIG. 5 is an enlarged cross-sectional view showing a state in which the discharge hole in the second embodiment is viewed in the direction of the rotation axis.
  • FIG. 1 is a circuit diagram showing an air conditioner 1 according to the first embodiment.
  • the air conditioner 1 is a device for adjusting the air in the indoor space, and includes an outdoor unit 2 and an indoor unit 3 capable of communicating with the outdoor unit 2.
  • the outdoor unit 2 is provided with a compressor 6, a flow path switching device 7, an outdoor heat exchanger 8, an outdoor blower 9, and an expansion unit 10.
  • the indoor unit 3 is provided with an indoor heat exchanger 11 and an indoor blower 12.
  • the compressor 6, the flow path switching device 7, the outdoor heat exchanger 8, the expansion unit 10, and the indoor heat exchanger 11 are connected by a refrigerant pipe 5, and a refrigerant circuit 4 through which the refrigerant flows is configured.
  • the compressor 6 sucks in the refrigerant in a low temperature and low pressure state, compresses the sucked refrigerant into a refrigerant in a high temperature and high pressure state, and discharges the refrigerant.
  • the flow path switching device 7 switches the direction in which the refrigerant flows in the refrigerant circuit 4, and is, for example, a four-way valve.
  • the outdoor heat exchanger 8 exchanges heat between, for example, outdoor air and a refrigerant.
  • the outdoor heat exchanger 8 acts as a condenser during the cooling operation and as an evaporator during the heating operation.
  • the outdoor blower 9 is a device that sends outdoor air to the outdoor heat exchanger 8.
  • the expansion unit 10 is a pressure reducing valve or an expansion valve that decompresses and expands the refrigerant.
  • the expansion unit 10 is, for example, an electronic expansion valve whose opening degree is adjusted.
  • the indoor heat exchanger 11 exchanges heat between, for example, indoor air and a refrigerant.
  • the indoor heat exchanger 11 acts as an evaporator during the cooling operation and as a condenser during the heating operation.
  • the indoor blower 12 is a device that sends indoor air to the indoor heat exchanger 11.
  • cooling operation Next, the operation mode of the air conditioner 1 will be described.
  • the cooling operation In the cooling operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high temperature and high pressure gas state.
  • the high-temperature and high-pressure gas-state refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the outdoor heat exchanger 8 acting as a condenser, and in the outdoor heat exchanger 8, the outdoor blower. It exchanges heat with the outdoor air sent by No. 9 and condenses and liquefies.
  • the condensed liquid refrigerant flows into the expansion section 10 and is expanded and depressurized in the expansion section 10 to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the indoor heat exchanger 11 that acts as an evaporator, and in the indoor heat exchanger 11, heat is exchanged with the indoor air sent by the indoor blower 12 to evaporate and gasify. do. At this time, the indoor air is cooled, and cooling is performed indoors. The evaporated low-temperature and low-pressure gas-like refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
  • the heating operation In the heating operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high-temperature and high-pressure gas state.
  • the high-temperature and high-pressure gas-state refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the indoor heat exchanger 11 acting as a condenser, and in the indoor heat exchanger 11, the indoor blower It exchanges heat with the indoor air sent by No. 12 and condenses and liquefies. At this time, the indoor air is warmed and heating is performed in the room.
  • the condensed liquid refrigerant flows into the expansion section 10 and is expanded and depressurized in the expansion section 10 to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the outdoor heat exchanger 8 that acts as an evaporator, and in the outdoor heat exchanger 8, heat is exchanged with the outdoor air sent by the outdoor blower 9 and evaporates to gasify. do.
  • the evaporated low-temperature and low-pressure gas-like refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
  • FIG. 2 is a cross-sectional view showing the compressor 6 in the first embodiment.
  • the compressor 6 compresses the refrigerant, and as shown in FIG. 2, the container 20, the discharge pipe 22, the suction unit 23, the motor unit 24, the compression mechanism unit 30, the rotary shaft 25, and the like. It includes an oil separator 26, a bearing 40, a sub-bearing 50, a discharge muffler 27, and a sub-discharge muffler 28.
  • the compressor 6 is a rotary type compressor, and is a two-cylinder type compressor having two cylinders 31.
  • the container 20 is a hermetically sealed container that constitutes the outer shell of the compressor 6, and an oil sump 21 for collecting refrigerating machine oil is formed at the lower portion.
  • the refrigerating machine oil is supplied to each sliding portion of the compressor 6 to lubricate each sliding portion.
  • the discharge pipe 22 is provided in the upper part of the container 20 and discharges the compressed refrigerant to the outside of the container 20.
  • the suction unit 23 sucks the refrigerant into the container 20, and has a suction pipe 23a, a suction muffler 23b, and two outlet pipes 23c.
  • the suction pipe 23a is connected to an accumulator (not shown) or the like, and introduces the refrigerant flowing in from the accumulator or the like into the suction muffler 23b.
  • the suction muffler 23b is connected to the suction pipe 23a, separates and stores the liquid-state refrigerant among the refrigerants flowing in from the suction pipe 23a, and distributes the gas-state refrigerant to each outlet pipe 23c.
  • the two outlet pipes 23c are each connected to the suction muffler 23b, and the refrigerant flowing in from the suction muffler 23b is introduced into the compression mechanism unit 30.
  • the electric motor unit 24 is provided in the upper part of the inside of the container 20, and the rotation frequency is changed by inverter control or the like, and has a stator 24a and a rotor 24b.
  • the stator 24a has a cylindrical shape, and its outer peripheral surface is fixed to the inner wall of the container 20.
  • a coil (not shown) to which power is supplied from an external power source (not shown) is wound around the stator 24a.
  • the rotor 24b has a cylindrical shape and is arranged at intervals on the inner peripheral portion of the stator 24a. The rotor 24b rotates by supplying electric power to the stator 24a.
  • FIG. 3 is a cross-sectional view showing the compression mechanism portion 30 according to the first embodiment.
  • the compression mechanism unit 30 is provided in the lower part inside the container 20 and compresses the refrigerant.
  • the compression mechanism unit 30 connects the upper first compression unit 30a, the lower second compression unit 30b, the first compression unit 30a, and the second compression unit 30b. It has an intermediate partition plate 34. Since the first compression unit 30a and the second compression unit 30b have the same configuration, the first compression unit 30a will be described with reference to FIG. As shown in FIG. 3, the first compression unit 30a has a cylinder 31, a piston 32, and a vane 33.
  • FIG. 4 is a cross-sectional view showing the discharge notch 31d and the discharge hole 47 according to the first embodiment, and is an enlarged view of the vicinity of the discharge portion 43 in FIG.
  • the cylinder 31 is fixed to the inner wall of the container 20 and has an annular shape in which a suction hole 31a through which the sucked refrigerant passes and a compression hole 31c connected to the suction hole 31a are formed. It is a member. Further, the cylinder 31 is formed with a vane groove 31b to which the vane 33 is attached. Further, the cylinder 31 is formed with a discharge notch 31d for discharging the compressed refrigerant.
  • the discharge notch 31d is inclined by, for example, 45 ° with respect to the axial direction of the rotating shaft 25.
  • the discharge notch 31d is formed at a position at an angle ⁇ with respect to the extending direction of the vane 33 (see FIG. 5).
  • the piston 32 is an annular member that is inserted into the compression hole 31c of the cylinder 31 and has an insertion hole 32a into which the rotating shaft 25 is inserted.
  • the piston 32 forms a compression chamber 35 for compressing the refrigerant with the cylinder 31.
  • the axial end of the peripheral edge of the insertion hole 32a of the piston 32 is a chamfered chamfered portion 32b.
  • the eccentric portion 25b of the rotating shaft 25 is inserted into the insertion hole 32a of the piston 32. As a result, the piston 32 rotates eccentrically with the rotation of the rotation shaft 25.
  • the vane 33 is a rod-shaped member extending in the longitudinal direction.
  • the vane 33 is attached to the vane groove 31b formed in the cylinder 31 and presses the piston 32 to partition the compression chamber 35.
  • the intermediate partition plate 34 is a plate-shaped member that connects the first compression portion 30a and the second compression portion 30b.
  • the rotating shaft 25 is a columnar member provided in the center of the container 20 inside the container 20, and connects the motor unit 24 and the compression mechanism unit 30.
  • the rotating shaft 25 has an eccentric portion 25b that is inserted into the insertion hole 32a of the piston 32.
  • the eccentric portion 25b is composed of a first eccentric portion 25c and a second eccentric portion 25d.
  • the first eccentric portion 25c and the second eccentric portion 25d are columnar members thicker than the rotating shaft 25, respectively, and the center point is eccentric from the center point of the rotating shaft 25. That is, when the rotation shaft 25 rotates, the first eccentric portion 25c and the second eccentric portion 25d rotate eccentrically around the center point of the rotation shaft 25. In this way, the rotating shaft 25 is connected to the electric motor unit 24 and driven to rotate, and the rotational force of the electric motor unit 24 is transmitted to the piston 32 via the eccentric portion 25b.
  • the first eccentric portion 25c and the second eccentric portion 25d are arranged at positions symmetrical with respect to the center point of the rotation axis 25 in the top view.
  • An oil passage 25a extending in the axial direction is formed inside the rotating shaft 25.
  • the oil suctioned from the oil sump 21 flows through the oil passage 25a.
  • a plurality of oil supply holes (not shown) connected to the oil passage 25a and extending in the radial direction from the oil passage 25a are formed. Refrigerating machine oil is introduced into each sliding portion through the oil supply hole and lubricates each sliding portion.
  • the oil separator 26 is a disk-shaped member having a diameter larger than that of the rotating shaft 25, and is fitted in the upper part of the rotating shaft 25.
  • the oil separator 26 closes the flow path to collide and separate the refrigerant and the refrigerating machine oil.
  • the oil separator 26 drops the separated refrigerating machine oil to the lower part of the container 20 and guides only the refrigerant to the discharge pipe 22.
  • the oil separator 26 includes an upper oil separator 26a provided at the uppermost end of the rotating shaft 25 and a lower oil separator provided below the upper oil separator 26a. It has 26b and.
  • the bearing 40 is a cylindrical member, and has a base 41 mounted on the upper surface of the cylinder 31 of the first compression portion 30a and a base 41 having a diameter smaller than that of the base 41. It has a cylindrical portion 42 extending in the axial direction from the inner peripheral edge portion of the above.
  • a discharge portion 43 is provided at the base portion 41 of the bearing 40.
  • the discharge unit 43 has a valve seat 44, a discharge valve 45, and a stationary valve 46.
  • the valve seat 44 is a portion where a discharge hole 47 connected to the discharge notch 31d formed in the cylinder 31 is formed.
  • the discharge valve 45 is a leaf spring provided on the valve seat 44 and opens and closes the discharge hole 47.
  • the discharge valve 45 opens the discharge hole 47 when the pressure in the discharge hole 47 becomes equal to or higher than a predetermined pressure.
  • the stationary valve 46 presses the discharge valve 45. When the pressure in the discharge hole 47 of the static valve 46 becomes equal to or higher than a predetermined pressure, the force pushed by the discharge valve 45 is strengthened to release the holding of the discharge valve 45.
  • FIG. 5 is an enlarged cross-sectional view showing a state in which the discharge hole 47 according to the first embodiment is viewed in the direction of the rotation axis. Next, the discharge hole 47 will be described in detail.
  • FIG. 5 is a diagram showing a discharge hole 47 when the center of the piston 32 is closest to the center of the discharge hole 47 in the eccentric rotation of the piston 32.
  • the outer wire on the discharge valve 45 side in the discharge hole 47 is referred to as the valve side outer wire 48
  • the outer wire on the cylinder 31 side in the discharge hole 47 is referred to as the cylinder side outer wire 49.
  • the valve-side outer line 48 is displaced outward from the cylinder-side outer line 49.
  • the discharge hole 47 is formed at a position at an angle ⁇ with respect to the extending direction of the vane 33.
  • both the outer edge portion 47a and the inner edge portion 47b of the discharge hole 47 are inclined at an inclination angle ⁇ with respect to the axial direction of the rotation shaft 25.
  • the inclination angle ⁇ is in a range of 15 ° or more and 45 ° or less in the phase direction in which the center of the piston 32 is closest to the center of the discharge hole 47.
  • the discharge notch 31d is inclined by, for example, 45 ° with respect to the axial direction of the rotating shaft 25. That is, the discharge hole 47 is connected to the discharge notch 31d and extends in the notch direction of the discharge notch 31d.
  • the cylinder-side outer wire 49 of the discharge hole 47 overlaps with the chamfered portion 32b of the piston 32. That is, the discharge portion 43 is formed with a communication portion 247c in which the chamfered portion 32b of the piston 32 and the discharge hole 247 communicate with each other.
  • the sub-bearing 50 is a cylindrical member, and has a sub-base 51 provided below the piston 32 of the second compression portion 30b and a sub-base 51 having a diameter smaller than that of the sub-base 51. It has a sub-cylinder portion 52 extending in the axial direction from the inner peripheral edge portion of the above. By inserting the rotating shaft 25 into the inner peripheral portions of the sub-base portion 51 and the sub-cylinder portion 52, the rotating shaft 25 is rotatably supported.
  • the sub-bearing 50 is also provided with the sub-discharge unit 53, but since the configuration of the sub-discharge unit 53 is the same as that of the discharge unit 43, the description thereof will be omitted.
  • the discharge muffler 27 is a dome-shaped member having a hollow portion, which is attached to the upper surface of the base portion 41 which is a part of the bearing 40 and suppresses noise amplified by resonance generated in the space inside the container 20. Is. A hole into which the rotating shaft 25 is inserted is formed in the center of the discharge muffler 27.
  • the sub-discharge muffler 28 is a dome-shaped member that covers the sub-base 51 and the bottom of the rotating shaft 25, which are a part of the sub-bearing 50, and emits noise amplified by resonance generated in the space inside the container 20. It suppresses.
  • the first eccentric portion 25c and the second eccentric portion 25d are arranged at positions symmetrical with respect to the center point of the rotation axis 25 in the top view. Therefore, the phase angle between the piston 32 into which the first eccentric portion 25c is inserted and the piston 32 into which the second eccentric portion 25d is inserted is 180 ° out of phase. Therefore, the shaft load is reduced, the reliability of the compressor 6 is improved, the torque fluctuation is reduced, and the vibration in the rotational direction is reduced.
  • the compressed refrigerant which is in a high temperature and high pressure state, reaches the discharge hole 47 of the bearing 40 through the discharge notch 31d of the cylinder 31.
  • the discharge valve 45 presses the static valve 46, and when the static valve 46 opens, the refrigerant flows out from the discharge valve 45 into the space between the discharge muffler 27 and the bearing 40. do.
  • the outflowing refrigerant flows from the discharge muffler 27 into the container 20 and reaches the discharge pipe 22 through the gap of the motor unit 24.
  • the refrigerant that has reached the discharge pipe 22 is discharged into the refrigerant circuit 4 through the discharge pipe 22.
  • the sliding portion is, for example, a portion where the rotating shaft 25 and the piston 32 are in contact, a portion where the rotating shaft 25 and the bearing 40 are in contact, and the like.
  • the sliding portion is a portion where the rotating shaft 25 and the auxiliary bearing 50 are in contact with each other, a portion where the rotating shaft 25 and the intermediate plate 6c are in contact with each other, and the like.
  • the sliding portion includes a portion where the piston 32 and the cylinder 31 contact, a portion where the piston 32 and the bearing 40 contact, a portion where the piston 32 and the auxiliary bearing 50 contact, and the piston 32 and the intermediate partition plate 34. It is the part that comes into contact. As a result, damage to the members due to direct contact between the members is prevented, and leakage of the refrigerant is also prevented.
  • the discharge hole 47 extends along the notch direction of the discharge notch 31d. Therefore, the refrigerant flowing along the discharge notch 31d smoothly flows out into the discharge hole 47 without colliding. Therefore, the pressure loss can be reduced and the decrease in compression efficiency can be suppressed. As described above, the discharge hole 47 and the discharge notch 31d have the effect of rectifying the refrigerant.
  • the discharge hole 47 is inclined at an inclination angle ⁇ in a range of 15 ° or more and 45 ° or less toward the phase direction in which the center of the piston 32 is closest to the center of the discharge hole 47 with respect to the axial direction of the rotation shaft 25. ing.
  • the inclination angle ⁇ is less than 15 °, the effect of reducing the pressure loss cannot be sufficiently obtained.
  • the inclination angle ⁇ is larger than 45 °, the flow field is separated and a loss due to pressure resistance occurs.
  • the inclination angle ⁇ is 15 ° or more and 45 ° or less, the pressure loss at the bending position where the discharge notch 31d and the discharge hole 47 are connected can be reduced. Therefore, it is possible to suppress a decrease in the compression efficiency of the compressor 6.
  • FIG. 6 is a cross-sectional view showing a discharge notch 31d and a discharge hole 247 in a comparative example.
  • the compressor 206 in the comparative example of the compressor 6 of the first embodiment will be described.
  • the cylinder 31 is formed with a discharge notch 31d for discharging the compressed refrigerant.
  • the discharge notch 31d is inclined by, for example, 45 ° with respect to the axial direction of the rotating shaft 25.
  • the bearing 40 is a cylindrical member, and has a base portion 41 attached to the upper surface of the cylinder 31 of the first compression portion 30a and an inner peripheral edge portion of the base portion 41 having a diameter smaller than that of the base portion 41. It has a cylinder portion 42 extending in the axial direction from the cylinder portion 42.
  • a discharge portion 43 is provided at the base 41 of the bearing 40.
  • the discharge unit 43 has a valve seat 44, a discharge valve 45, and a stationary valve 46.
  • the valve seat 44 is a portion where a discharge hole 247 connected to a discharge notch 31d formed in the cylinder 31 is formed.
  • the discharge valve 45 is a leaf spring provided on the valve seat 44 and opens and closes the discharge hole 247.
  • the discharge valve 45 opens the discharge hole 247 when the pressure of the discharge hole 247 becomes equal to or higher than a predetermined pressure.
  • the stationary valve 46 presses the discharge valve 45. When the pressure of the discharge hole 247 of the stationary valve 46 becomes equal to or higher than a predetermined pressure, the force pushed by the discharge valve 45 is increased, and the holding of the discharge valve 45 is released.
  • FIG. 7 is an enlarged cross-sectional view showing a state in which the discharge hole 247 in the comparative example is viewed in the direction of the rotation axis.
  • FIG. 7 is a diagram showing a discharge hole 247 when the center of the piston 32 is closest to the center of the discharge hole 247 in the eccentric rotation of the piston 32.
  • the outer wire on the discharge valve 45 side in the discharge hole 247 is referred to as the valve side outer wire 48
  • the outer wire on the cylinder 31 side in the discharge hole 247 is referred to as the cylinder side outer wire 49.
  • the valve-side outer line 48 coincides with the cylinder-side outer line 49.
  • the discharge hole 247 extends in the axial direction of the rotating shaft 25 as shown in FIGS. 6 and 7.
  • the discharge notch 31d is inclined by, for example, 45 ° with respect to the axial direction of the rotating shaft 25.
  • the portion where the discharge notch 31d and the discharge hole 247 are connected is bent. Therefore, the refrigerant flowing along the inclined discharge notch 31d collides with the inner surface of the discharge hole 247 along the axial direction. Therefore, a pressure loss occurs and the compression efficiency is lowered.
  • the discharge hole 47 extends along the notch direction of the discharge notch 31d. Therefore, the refrigerant flowing along the discharge notch 31d smoothly flows out into the discharge hole 47 without colliding. Therefore, the pressure loss can be reduced and the decrease in compression efficiency can be suppressed.
  • FIG. 8 is a cross-sectional view showing the discharge notch 31d and the discharge hole 147 according to the second embodiment.
  • the shape of the discharge hole 147 in the compressor 106 is different from that of the first embodiment.
  • the same parts as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
  • the outer edge portion 147a extends along the notch direction of the discharge notch 31d
  • the inner edge portion 147b extends in the notch direction of the discharge notch 31d with respect to the center line of the discharge hole 147. It extends in the direction of line symmetry.
  • FIG. 9 is an enlarged cross-sectional view showing a state in which the discharge hole 147 in the second embodiment is viewed in the direction of the rotation axis.
  • FIG. 9 is a diagram showing a discharge hole 147 when the center of the piston 32 is closest to the center of the discharge hole 147 in the eccentric rotation of the piston 32.
  • the outer wire on the discharge valve 45 side in the discharge hole 147 is referred to as the valve side outer wire 48
  • the outer wire on the cylinder 31 side in the discharge hole 147 is referred to as the cylinder side outer wire 49.
  • the valve-side outer wire 48 is located on the outer side of the entire circumference of the cylinder-side outer wire 49.
  • the outer edge portion 147a is in the axial direction of the rotating shaft 25, and the center of the piston 32 is in the phase direction closest to the center of the discharge hole 147. It is tilted at an inclination angle ⁇ in the range of 15 ° or more and 45 ° or less. Further, the discharge hole 147 is inclined at an inclination angle ⁇ in a range of 15 ° or more and 45 ° or less with respect to the axial direction of the rotation shaft 25 in a direction in which the inner edge portion 147b is line-symmetrical with the notch direction of the discharge notch 31d. There is. That is, the discharge hole 147 has a shape in which the diameter is tapered from the discharge notch 31d.
  • the outer edge portion 147a extends along the notch direction of the discharge notch 31d, and the inner edge portion 147b is the discharge notch 31d with respect to the center line of the discharge hole 147. It extends in the direction of line symmetry with the notch direction. Therefore, as shown in FIG. 9, a communication portion 247c in which the chamfered portion 32b of the piston 32 and the discharge hole 147 communicate with each other is not formed.
  • the communication unit 247c will be described.
  • the cylinder-side outer wire 49 of the discharge hole 247 of the compressor 206 according to the comparative example overlaps with the chamfered portion 32b of the piston 32. That is, the discharge portion 43 is formed with a communication portion 247c in which the chamfered portion 32b of the piston 32 and the discharge hole 247 communicate with each other. Since the chamfered portion 32b has the same pressure as the pressure inside the container 20, the pressure is relatively lower than that inside the compression chamber 35 after the compression step. Therefore, the refrigerant discharged from the compression chamber 35 through the discharge hole 247 may leak through the communication portion 247c. Therefore, it is desired to reduce the leakage loss by making the area of the communication portion 247c as small as possible in order to secure the compression efficiency of the compressor 206.
  • the outer edge portion 147a extends along the notch direction of the discharge notch 31d
  • the inner edge portion 147b extends in the notch direction of the discharge notch 31d with respect to the center line of the discharge hole 147. Since it extends in the direction of line symmetry with, the communication portion 247c is not formed. Therefore, the leakage loss of the refrigerant can be reduced. Therefore, it is possible to suppress a decrease in the compression efficiency of the compressor 106 due to refrigerant leakage.
  • the discharge hole 147 is inclined in a range of 15 ° or more and 45 ° or less in the phase direction in which the outer edge portion 147a is closest to the center of the discharge hole 147 with respect to the axial direction of the rotation shaft 25. It is tilted at an angle ⁇ .
  • the inclination angle ⁇ is less than 15 °, the effect of reducing the pressure loss cannot be sufficiently obtained.
  • the inclination angle ⁇ is larger than 45 °, the flow field is separated and a loss due to pressure resistance occurs.
  • the inclination angle ⁇ is 15 ° or more and 45 ° or less, the pressure loss at the bending position where the discharge notch 31d and the discharge hole 147 are connected can be reduced. Therefore, it is possible to suppress a decrease in the compression efficiency of the compressor 106.
  • the outer edge portion 47a of the discharge hole 47 extends along the notch direction of the discharge notch 31d, so that the refrigerant flowing along the discharge notch 31d is smooth without collision. Can flow out into the discharge hole 47. Further, since the inner edge portion 47b of the discharge hole 47 extends in a direction line-symmetrical with the notch direction of the discharge cutout 31d, a communication portion 247c in which the chamfered portion 32b of the piston 32 and the discharge hole 47 communicate with each other is formed. Not done. Therefore, in the second embodiment, it is possible to suppress the occurrence of the communication portion 247c that may occur when the discharge hole 47 extends in the notch direction of the discharge notch 31d.

Abstract

A compressor including: a container; an electric motor provided inside the container; a rotating shaft fixed to the electric motor and rotationally driven by the electric motor; an annular cylinder that is fixed to an inner wall of the container and has a discharge cutout which is formed in the cylinder and through which a refrigerant compressed by a compression chamber formed inside the container is discharged; and a bearing that is placed on the cylinder to support the rotating shaft and form the compression chamber together with the cylinder and has a discharge port formed therein that is connected to the discharge cutout and extends along the cutout direction of the discharge cutout in which the refrigerant is discharged.

Description

圧縮機Compressor
 本開示は、冷媒を圧縮する圧縮機に関する。 This disclosure relates to a compressor that compresses a refrigerant.
 従来、冷媒といった流体を圧縮して吐出する圧縮機として、ロータリ式の圧縮機が知られている。ロータリ式の圧縮機は、密閉された容器の内部の上部に電動機部が設けられ、容器の内部の下部に圧縮機構部が設けられている。電動機部は、容器に固定された固定子と、固定子に電力が供給されることにより回転する回転子とを有している。そして、回転子に固定された回転軸によって、電動機部の回転力が圧縮機構部に伝達される。圧縮機構部は、主に、容器に固定されたシリンダと、シリンダの内部に取り付けられ偏心回転するピストンとを有している。 Conventionally, a rotary compressor is known as a compressor that compresses and discharges a fluid such as a refrigerant. In the rotary type compressor, an electric motor portion is provided in the upper part inside the closed container, and a compression mechanism portion is provided in the lower part inside the inside of the container. The motor unit has a stator fixed to a container and a rotor that rotates when electric power is supplied to the stator. Then, the rotational force of the motor unit is transmitted to the compression mechanism unit by the rotating shaft fixed to the rotor. The compression mechanism unit mainly has a cylinder fixed to the container and a piston attached to the inside of the cylinder and rotating eccentrically.
 また、圧縮機は、回転軸を支持する軸受を有している。そして、回転軸が回転することによって、ピストンが偏心回転し、シリンダとピストンとの間に形成された圧縮室の容積が縮小することによって、冷媒が圧縮される。また、容器の底部には冷凍機油が貯留されており、回転軸の回転が遠心ポンプの機能を担って、回転軸の内部に軸方向に形成された油通路に冷凍機油が吸い上げられる。そして、冷凍機油は、回転軸の内部に径方向に形成された給油孔を通って、圧縮機の各摺動部に供給されている。軸受は、吐出マフラで覆われており、圧縮された冷媒は、軸受に設けられた吐出ポートから、軸受と吐出マフラとの間の空間に排出され、その後、吐出マフラに形成されたガス穴から、容器の内部に排出される。 In addition, the compressor has a bearing that supports the rotating shaft. Then, the rotation of the rotating shaft causes the piston to rotate eccentrically, and the volume of the compression chamber formed between the cylinder and the piston is reduced, so that the refrigerant is compressed. Further, the refrigerating machine oil is stored in the bottom of the container, and the rotation of the rotating shaft takes the function of the centrifugal pump, and the refrigerating machine oil is sucked up into the oil passage formed in the axial direction inside the rotating shaft. Then, the refrigerating machine oil is supplied to each sliding portion of the compressor through an oil supply hole formed in the radial direction inside the rotating shaft. The bearing is covered with a discharge muffler, and the compressed refrigerant is discharged from the discharge port provided in the bearing into the space between the bearing and the discharge muffler, and then from the gas hole formed in the discharge muffler. , Is discharged inside the container.
 特許文献1には、シリンダ内に形成された圧縮室から冷媒が吐出する吐出孔が、軸受に形成されたロータリ圧縮機が開示されている。特許文献1の吐出孔は、圧縮室と連通する連通部の縁部が軸方向に沿って延び、連通部に接続された弁座部の縁部が連通部から拡がるように傾斜している。即ち、弁座部の内側底部から頂部に至る内周側母線が、径方向の内側から外側に傾斜した直線となっている。これにより、特許文献1は、吐出孔から冷媒が吐出されることを円滑化しようとするものである。なお、特許文献1のようなロータリ圧縮機において、概して、シリンダの内周面は、吐出孔に接続される吐出切り欠きが切り欠かれている。吐出切り欠きの切欠方向は、シリンダの内壁から吐出孔に向かって傾斜している。 Patent Document 1 discloses a rotary compressor in which a discharge hole for discharging a refrigerant from a compression chamber formed in a cylinder is formed in a bearing. The discharge hole of Patent Document 1 is inclined so that the edge portion of the communication portion communicating with the compression chamber extends along the axial direction, and the edge portion of the valve seat portion connected to the communication portion extends from the communication portion. That is, the inner peripheral generatrix from the inner bottom to the top of the valve seat is a straight line inclined from the inside to the outside in the radial direction. As a result, Patent Document 1 attempts to facilitate the discharge of the refrigerant from the discharge holes. In a rotary compressor as in Patent Document 1, generally, a discharge notch connected to a discharge hole is cut out on the inner peripheral surface of the cylinder. The notch direction of the discharge notch is inclined from the inner wall of the cylinder toward the discharge hole.
特開2011-43084号公報Japanese Unexamined Patent Publication No. 2011-43084
 しかしながら、特許文献1に開示されたロータリ圧縮機は、吐出切り欠きと吐出孔とが接続される部分が屈曲している。このため、傾斜する吐出切り欠きに沿って流れる冷媒は、軸方向に沿う吐出孔の内面に衝突する。従って、圧力損失が生じ、圧縮効率の低下を招く。 However, in the rotary compressor disclosed in Patent Document 1, the portion where the discharge notch and the discharge hole are connected is bent. Therefore, the refrigerant flowing along the inclined discharge notch collides with the inner surface of the discharge hole along the axial direction. Therefore, a pressure loss occurs and the compression efficiency is lowered.
 本開示は、上記のような課題を解決するためになされたもので、圧力損失を減らして圧縮効率の低下を抑制する圧縮機を提供するものである。 This disclosure is made to solve the above-mentioned problems, and provides a compressor that reduces pressure loss and suppresses a decrease in compression efficiency.
 本開示に係る圧縮機は、容器と、容器の内部に設けられた電動機部と、電動機部に固定され、電動機部によって回転駆動する回転軸と、容器の内壁に固定され、内部に形成された圧縮室によって圧縮された冷媒を吐出する吐出切り欠きが切り欠かれた環状のシリンダと、シリンダに載置されて回転軸を支持すると共に、シリンダと共に圧縮室を形成し、吐出切り欠きに接続され冷媒を吐出する吐出切り欠きの切欠方向に沿って延びる吐出孔が形成された軸受と、を備える。 The compressor according to the present disclosure is fixed to the container, an electric motor portion provided inside the container, a rotating shaft fixed to the electric motor portion and driven to rotate by the electric motor portion, and fixed to the inner wall of the container to be formed inside. An annular cylinder with a notch for discharging the refrigerant compressed by the compression chamber and an annular cylinder mounted on the cylinder to support the rotating shaft, and a compression chamber is formed together with the cylinder and connected to the discharge notch. A bearing having a discharge hole extending along the notch direction of the discharge notch for discharging the refrigerant is provided.
 本開示によれば、吐出孔が吐出切り欠きの切欠方向に沿って延びている。このため、吐出切り欠きに沿って流れる冷媒は、衝突せずに円滑に吐出孔に流出する。従って、圧力損失を減らすことができ、圧縮効率の低下を抑制することができる。 According to the present disclosure, the discharge hole extends along the notch direction of the discharge notch. Therefore, the refrigerant flowing along the discharge notch smoothly flows out into the discharge hole without colliding. Therefore, the pressure loss can be reduced and the decrease in compression efficiency can be suppressed.
実施の形態1に係る空気調和機を示す回路図である。It is a circuit diagram which shows the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る圧縮機を示す断面図である。It is sectional drawing which shows the compressor which concerns on Embodiment 1. FIG. 実施の形態1における圧縮機構部を示す断面図である。It is sectional drawing which shows the compression mechanism part in Embodiment 1. 実施の形態1における吐出切り欠き及び吐出孔を示す断面図である。It is sectional drawing which shows the discharge notch and the discharge hole in Embodiment 1. FIG. 実施の形態1における吐出孔を回転軸方向にみた状態を示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing a state in which the discharge hole in the first embodiment is viewed in the direction of the rotation axis. 比較例における吐出切り欠き及び吐出孔を示す断面図である。It is sectional drawing which shows the discharge notch and the discharge hole in the comparative example. 比較例における吐出孔を回転軸方向にみた状態を示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing a state in which the discharge hole in the comparative example is viewed in the direction of the rotation axis. 実施の形態2における吐出切り欠き及び吐出孔を示す断面図である。It is sectional drawing which shows the discharge notch and the discharge hole in Embodiment 2. FIG. 実施の形態2における吐出孔を回転軸方向にみた状態を示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing a state in which the discharge hole in the second embodiment is viewed in the direction of the rotation axis.
 以下、本開示の圧縮機の実施の形態について、図面を参照しながら説明する。なお、本開示は、以下に説明する実施の形態によって限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の説明において、本開示の理解を容易にするために方向を表す用語を適宜用いるが、これは本開示を説明するためのものであって、これらの用語は本開示を限定するものではない。方向を表す用語としては、例えば、「上」、「下」、「右」、「左」、「前」又は「後」等が挙げられる。なお、一部の図面において、断面図のハッチングを一部省略している。 Hereinafter, embodiments of the compressor of the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the embodiments described below. Further, in the following drawings including FIG. 1, the relationship between the sizes of the constituent members may differ from the actual one. In the following description, directional terms will be used as appropriate to facilitate understanding of the present disclosure, but these terms are for the purpose of explaining the present disclosure and limit the present disclosure. is not it. Examples of the term indicating the direction include "top", "bottom", "right", "left", "front", "rear", and the like. In some drawings, hatching of the cross-sectional view is partially omitted.
実施の形態1.
 図1は、実施の形態1に係る空気調和機1を示す回路図である。図1に示すように、空気調和機1は、室内空間の空気を調整する装置であり、室外機2と、室外機2と通信可能な室内機3とを備えている。室外機2には、圧縮機6、流路切替装置7、室外熱交換器8、室外送風機9及び膨張部10が設けられている。室内機3には、室内熱交換器11及び室内送風機12が設けられている。
Embodiment 1.
FIG. 1 is a circuit diagram showing an air conditioner 1 according to the first embodiment. As shown in FIG. 1, the air conditioner 1 is a device for adjusting the air in the indoor space, and includes an outdoor unit 2 and an indoor unit 3 capable of communicating with the outdoor unit 2. The outdoor unit 2 is provided with a compressor 6, a flow path switching device 7, an outdoor heat exchanger 8, an outdoor blower 9, and an expansion unit 10. The indoor unit 3 is provided with an indoor heat exchanger 11 and an indoor blower 12.
 圧縮機6、流路切替装置7、室外熱交換器8、膨張部10及び室内熱交換器11が冷媒配管5により接続されて、冷媒が流れる冷媒回路4が構成されている。圧縮機6は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。流路切替装置7は、冷媒回路4において冷媒が流れる方向を切り替えるものであり、例えば四方弁である。室外熱交換器8は、例えば室外空気と冷媒との間で熱交換するものである。室外熱交換器8は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。 The compressor 6, the flow path switching device 7, the outdoor heat exchanger 8, the expansion unit 10, and the indoor heat exchanger 11 are connected by a refrigerant pipe 5, and a refrigerant circuit 4 through which the refrigerant flows is configured. The compressor 6 sucks in the refrigerant in a low temperature and low pressure state, compresses the sucked refrigerant into a refrigerant in a high temperature and high pressure state, and discharges the refrigerant. The flow path switching device 7 switches the direction in which the refrigerant flows in the refrigerant circuit 4, and is, for example, a four-way valve. The outdoor heat exchanger 8 exchanges heat between, for example, outdoor air and a refrigerant. The outdoor heat exchanger 8 acts as a condenser during the cooling operation and as an evaporator during the heating operation.
 室外送風機9は、室外熱交換器8に室外空気を送る機器である。膨張部10は、冷媒を減圧して膨張する減圧弁又は膨張弁である。膨張部10は、例えば開度が調整される電子式膨張弁である。室内熱交換器11は、例えば室内空気と冷媒との間で熱交換するものである。室内熱交換器11は、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。室内送風機12は、室内熱交換器11に室内空気を送る機器である。 The outdoor blower 9 is a device that sends outdoor air to the outdoor heat exchanger 8. The expansion unit 10 is a pressure reducing valve or an expansion valve that decompresses and expands the refrigerant. The expansion unit 10 is, for example, an electronic expansion valve whose opening degree is adjusted. The indoor heat exchanger 11 exchanges heat between, for example, indoor air and a refrigerant. The indoor heat exchanger 11 acts as an evaporator during the cooling operation and as a condenser during the heating operation. The indoor blower 12 is a device that sends indoor air to the indoor heat exchanger 11.
 (運転モード、冷房運転)
 次に、空気調和機1の運転モードについて説明する。先ず、冷房運転について説明する。冷房運転において、圧縮機6に吸入された冷媒は、圧縮機6によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機6から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置7を通過して、凝縮器として作用する室外熱交換器8に流入し、室外熱交換器8において、室外送風機9によって送られる室外空気と熱交換されて凝縮して液化する。凝縮された液状態の冷媒は、膨張部10に流入し、膨張部10において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する室内熱交換器11に流入し、室内熱交換器11において、室内送風機12によって送られる室内空気と熱交換されて蒸発してガス化する。このとき、室内空気が冷やされ、室内において冷房が実施される。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置7を通過して、圧縮機6に吸入される。
(Operation mode, cooling operation)
Next, the operation mode of the air conditioner 1 will be described. First, the cooling operation will be described. In the cooling operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high temperature and high pressure gas state. The high-temperature and high-pressure gas-state refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the outdoor heat exchanger 8 acting as a condenser, and in the outdoor heat exchanger 8, the outdoor blower. It exchanges heat with the outdoor air sent by No. 9 and condenses and liquefies. The condensed liquid refrigerant flows into the expansion section 10 and is expanded and depressurized in the expansion section 10 to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the indoor heat exchanger 11 that acts as an evaporator, and in the indoor heat exchanger 11, heat is exchanged with the indoor air sent by the indoor blower 12 to evaporate and gasify. do. At this time, the indoor air is cooled, and cooling is performed indoors. The evaporated low-temperature and low-pressure gas-like refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
 (運転モード、暖房運転)
 次に、暖房運転について説明する。暖房運転において、圧縮機6に吸入された冷媒は、圧縮機6によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機6から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置7を通過して、凝縮器として作用する室内熱交換器11に流入し、室内熱交換器11において、室内送風機12によって送られる室内空気と熱交換されて凝縮して液化する。このとき、室内空気が暖められ、室内において暖房が実施される。凝縮された液状態の冷媒は、膨張部10に流入し、膨張部10において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する室外熱交換器8に流入し、室外熱交換器8において、室外送風機9によって送られる室外空気と熱交換されて蒸発してガス化する。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置7を通過して、圧縮機6に吸入される。
(Operation mode, heating operation)
Next, the heating operation will be described. In the heating operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high-temperature and high-pressure gas state. The high-temperature and high-pressure gas-state refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the indoor heat exchanger 11 acting as a condenser, and in the indoor heat exchanger 11, the indoor blower It exchanges heat with the indoor air sent by No. 12 and condenses and liquefies. At this time, the indoor air is warmed and heating is performed in the room. The condensed liquid refrigerant flows into the expansion section 10 and is expanded and depressurized in the expansion section 10 to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the outdoor heat exchanger 8 that acts as an evaporator, and in the outdoor heat exchanger 8, heat is exchanged with the outdoor air sent by the outdoor blower 9 and evaporates to gasify. do. The evaporated low-temperature and low-pressure gas-like refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
 図2は、実施の形態1における圧縮機6を示す断面図である。次に、圧縮機6について詳細に説明する。圧縮機6は、冷媒を圧縮するものであり、図2に示すように、容器20と、吐出管22と、吸入部23と、電動機部24と、圧縮機構部30と、回転軸25と、油分離器26と、軸受40と、副軸受50と、吐出マフラ27と、副吐出マフラ28とを備えている。本実施の形態1において、圧縮機6は、ロータリ式の圧縮機であり、シリンダ31を2つ有する2シリンダ型の圧縮機である。 FIG. 2 is a cross-sectional view showing the compressor 6 in the first embodiment. Next, the compressor 6 will be described in detail. The compressor 6 compresses the refrigerant, and as shown in FIG. 2, the container 20, the discharge pipe 22, the suction unit 23, the motor unit 24, the compression mechanism unit 30, the rotary shaft 25, and the like. It includes an oil separator 26, a bearing 40, a sub-bearing 50, a discharge muffler 27, and a sub-discharge muffler 28. In the first embodiment, the compressor 6 is a rotary type compressor, and is a two-cylinder type compressor having two cylinders 31.
 (容器20、吐出管22)
 容器20は、圧縮機6の外殻を構成する密閉されたものであり、冷凍機油が溜まる油溜り21が下部に形成されている。ここで、冷凍機油は、圧縮機6の各摺動部に供給されて各摺動部を潤滑するものである。吐出管22は、容器20の上部に設けられ、圧縮された冷媒を容器20の外部に吐出するものである。
(Container 20, discharge pipe 22)
The container 20 is a hermetically sealed container that constitutes the outer shell of the compressor 6, and an oil sump 21 for collecting refrigerating machine oil is formed at the lower portion. Here, the refrigerating machine oil is supplied to each sliding portion of the compressor 6 to lubricate each sliding portion. The discharge pipe 22 is provided in the upper part of the container 20 and discharges the compressed refrigerant to the outside of the container 20.
 (吸入部23)
 吸入部23は、冷媒を容器20の内部に吸入するものであり、吸入管23aと、吸入マフラ23bと、2つの出口管23cとを有している。吸入管23aは、アキュムレータ(図示せず)等に接続され、アキュムレータ等から流入する冷媒を吸入マフラ23bに導入するものである。吸入マフラ23bは、吸入管23aに接続され、吸入管23aから流入した冷媒のうち、液状態の冷媒を分離して貯留し、ガス状態の冷媒を各出口管23cに分配するものである。2つの出口管23cは、それぞれ吸入マフラ23bに接続され、吸入マフラ23bから流入した冷媒を圧縮機構部30に導入するものである。
(Inhalation unit 23)
The suction unit 23 sucks the refrigerant into the container 20, and has a suction pipe 23a, a suction muffler 23b, and two outlet pipes 23c. The suction pipe 23a is connected to an accumulator (not shown) or the like, and introduces the refrigerant flowing in from the accumulator or the like into the suction muffler 23b. The suction muffler 23b is connected to the suction pipe 23a, separates and stores the liquid-state refrigerant among the refrigerants flowing in from the suction pipe 23a, and distributes the gas-state refrigerant to each outlet pipe 23c. The two outlet pipes 23c are each connected to the suction muffler 23b, and the refrigerant flowing in from the suction muffler 23b is introduced into the compression mechanism unit 30.
 (電動機部24)
 電動機部24は、容器20の内部の上部に設けられ、インバータ制御等によって回転周波数が変化するものであり、固定子24aと回転子24bとを有している。固定子24aは、円筒形状をなしており、外周面が容器20の内壁に固定されている。固定子24aには、外部の電源(図示せず)から電力が供給されるコイル(図示せず)が巻回されている。回転子24bは、円筒形状をなしており、固定子24aの内周部に間隔を空けて配置されている。回転子24bは、固定子24aに電力が供給されることによって回転する。
(Motor unit 24)
The electric motor unit 24 is provided in the upper part of the inside of the container 20, and the rotation frequency is changed by inverter control or the like, and has a stator 24a and a rotor 24b. The stator 24a has a cylindrical shape, and its outer peripheral surface is fixed to the inner wall of the container 20. A coil (not shown) to which power is supplied from an external power source (not shown) is wound around the stator 24a. The rotor 24b has a cylindrical shape and is arranged at intervals on the inner peripheral portion of the stator 24a. The rotor 24b rotates by supplying electric power to the stator 24a.
 (圧縮機構部30)
 図3は、実施の形態1における圧縮機構部30を示す断面図である。図2に示すように、圧縮機構部30は、容器20の内部の下部に設けられ、冷媒を圧縮するものである。本実施の形態1では、圧縮機構部30は、上方の第1の圧縮部30aと、下方の第2の圧縮部30bと、第1の圧縮部30aと第2の圧縮部30bとを接続する中間仕切板34とを有している。第1の圧縮部30aと第2の圧縮部30bとは、同じ構成であるため、図3では、第1の圧縮部30aについて説明する。図3に示すように、第1の圧縮部30aは、シリンダ31と、ピストン32と、ベーン33とを有している。
(Compression mechanism unit 30)
FIG. 3 is a cross-sectional view showing the compression mechanism portion 30 according to the first embodiment. As shown in FIG. 2, the compression mechanism unit 30 is provided in the lower part inside the container 20 and compresses the refrigerant. In the first embodiment, the compression mechanism unit 30 connects the upper first compression unit 30a, the lower second compression unit 30b, the first compression unit 30a, and the second compression unit 30b. It has an intermediate partition plate 34. Since the first compression unit 30a and the second compression unit 30b have the same configuration, the first compression unit 30a will be described with reference to FIG. As shown in FIG. 3, the first compression unit 30a has a cylinder 31, a piston 32, and a vane 33.
 (シリンダ31)
 図4は、実施の形態1における吐出切り欠き31d及び吐出孔47を示す断面図であり、図2における吐出部43付近を拡大した図である。図3及び図4に示すように、シリンダ31は、容器20の内壁に固定され、吸入された冷媒が通過する吸入穴31aと吸入穴31aに接続された圧縮孔31cとが形成された環状の部材である。また、シリンダ31には、ベーン33が取り付けられるベーン溝31bが形成されている。更に、シリンダ31には、圧縮された冷媒を吐出する吐出切り欠き31dが形成されている。吐出切り欠き31dは、回転軸25の軸方向に対して例えば45°傾斜している。吐出切り欠き31dは、ベーン33の延びる方向に対し角度θの位置に形成されている(図5参照)。
(Cylinder 31)
FIG. 4 is a cross-sectional view showing the discharge notch 31d and the discharge hole 47 according to the first embodiment, and is an enlarged view of the vicinity of the discharge portion 43 in FIG. As shown in FIGS. 3 and 4, the cylinder 31 is fixed to the inner wall of the container 20 and has an annular shape in which a suction hole 31a through which the sucked refrigerant passes and a compression hole 31c connected to the suction hole 31a are formed. It is a member. Further, the cylinder 31 is formed with a vane groove 31b to which the vane 33 is attached. Further, the cylinder 31 is formed with a discharge notch 31d for discharging the compressed refrigerant. The discharge notch 31d is inclined by, for example, 45 ° with respect to the axial direction of the rotating shaft 25. The discharge notch 31d is formed at a position at an angle θ with respect to the extending direction of the vane 33 (see FIG. 5).
 (ピストン32)
 ピストン32は、シリンダ31の圧縮孔31cに挿入され、内部に回転軸25が挿入される挿入孔32aが形成された環状の部材である。ピストン32は、シリンダ31との間に冷媒を圧縮する圧縮室35を形成する。ピストン32の挿入孔32aの周縁部の軸方向端部は、面取りされた面取部32bとなっている。なお、ピストン32の挿入孔32aには、回転軸25の偏心部25bが挿入されている。これにより、ピストン32は、回転軸25の回転に伴って、偏心回転する。
(Piston 32)
The piston 32 is an annular member that is inserted into the compression hole 31c of the cylinder 31 and has an insertion hole 32a into which the rotating shaft 25 is inserted. The piston 32 forms a compression chamber 35 for compressing the refrigerant with the cylinder 31. The axial end of the peripheral edge of the insertion hole 32a of the piston 32 is a chamfered chamfered portion 32b. The eccentric portion 25b of the rotating shaft 25 is inserted into the insertion hole 32a of the piston 32. As a result, the piston 32 rotates eccentrically with the rotation of the rotation shaft 25.
 (ベーン33)
 ベーン33は、長手方向に延びる棒状の部材である。ベーン33は、シリンダ31に形成されたベーン溝31bに取り付けられ、ピストン32を押圧して圧縮室35を仕切るものである。
(Vane 33)
The vane 33 is a rod-shaped member extending in the longitudinal direction. The vane 33 is attached to the vane groove 31b formed in the cylinder 31 and presses the piston 32 to partition the compression chamber 35.
 (中間仕切板34)
 中間仕切板34は、図2に示すように、第1の圧縮部30aと第2の圧縮部30bとを接続する板状の部材である。
(Intermediate partition plate 34)
As shown in FIG. 2, the intermediate partition plate 34 is a plate-shaped member that connects the first compression portion 30a and the second compression portion 30b.
 (回転軸25)
 回転軸25は、図2に示すように、容器20の内部に容器20の中央に設けられた円柱状の部材であり、電動機部24と圧縮機構部30とを接続するものである。回転軸25は、ピストン32の挿入孔32aに挿入される偏心部25bを有している。本実施の形態1では、偏心部25bは、第1の偏心部25cと第2の偏心部25dとから構成されている。第1の偏心部25c及び第2の偏心部25dは、それぞれ回転軸25よりも太い円柱状の部材であり、中心点が、回転軸25の中心点から偏心している。即ち、第1の偏心部25c及び第2の偏心部25dは、回転軸25が回転すると、回転軸25の中心点を中心として、偏心回転する。このように、回転軸25は、電動機部24に接続され回転駆動するものであり、電動機部24の回転力を、偏心部25bを介してピストン32に伝達するものである。
(Rotating shaft 25)
As shown in FIG. 2, the rotating shaft 25 is a columnar member provided in the center of the container 20 inside the container 20, and connects the motor unit 24 and the compression mechanism unit 30. The rotating shaft 25 has an eccentric portion 25b that is inserted into the insertion hole 32a of the piston 32. In the first embodiment, the eccentric portion 25b is composed of a first eccentric portion 25c and a second eccentric portion 25d. The first eccentric portion 25c and the second eccentric portion 25d are columnar members thicker than the rotating shaft 25, respectively, and the center point is eccentric from the center point of the rotating shaft 25. That is, when the rotation shaft 25 rotates, the first eccentric portion 25c and the second eccentric portion 25d rotate eccentrically around the center point of the rotation shaft 25. In this way, the rotating shaft 25 is connected to the electric motor unit 24 and driven to rotate, and the rotational force of the electric motor unit 24 is transmitted to the piston 32 via the eccentric portion 25b.
 なお、第1の偏心部25cと第2の偏心部25dとは、上面視において、回転軸25の中心点に対して点対称の位置に配置されている。回転軸25の内部には、軸方向に延びる油通路25aが形成されている。油通路25aは、油溜り21から吸い上げられた油が流通するものである。また、回転軸25の内部には、油通路25aに接続され、油通路25aから径方向に延びる給油孔(図示せず)が複数形成されている。冷凍機油は、給油孔を通って、各摺動部に導入され、各摺動部を潤滑する。 The first eccentric portion 25c and the second eccentric portion 25d are arranged at positions symmetrical with respect to the center point of the rotation axis 25 in the top view. An oil passage 25a extending in the axial direction is formed inside the rotating shaft 25. The oil suctioned from the oil sump 21 flows through the oil passage 25a. Further, inside the rotating shaft 25, a plurality of oil supply holes (not shown) connected to the oil passage 25a and extending in the radial direction from the oil passage 25a are formed. Refrigerating machine oil is introduced into each sliding portion through the oil supply hole and lubricates each sliding portion.
 (油分離器26)
 油分離器26は、回転軸25より径が大きい円盤状の部材であり、回転軸25の上部に嵌め込まれている。油分離器26は、冷凍機油を含むガス状の冷媒が、吐出管22に向かって上昇する際、その流路を塞いで、冷媒と冷凍機油とを衝突分離させる。これにより、油分離器26は、分離した冷凍機油を容器20の下部に落下させ、冷媒のみを吐出管22に導く。なお、本実施の形態1では、油分離器26は、回転軸25の最上端部に設けられた上側油分離器26aと、上側油分離器26aよりも下方に設けられた下側油分離器26bとを有する。
(Oil separator 26)
The oil separator 26 is a disk-shaped member having a diameter larger than that of the rotating shaft 25, and is fitted in the upper part of the rotating shaft 25. When the gaseous refrigerant containing the refrigerating machine oil rises toward the discharge pipe 22, the oil separator 26 closes the flow path to collide and separate the refrigerant and the refrigerating machine oil. As a result, the oil separator 26 drops the separated refrigerating machine oil to the lower part of the container 20 and guides only the refrigerant to the discharge pipe 22. In the first embodiment, the oil separator 26 includes an upper oil separator 26a provided at the uppermost end of the rotating shaft 25 and a lower oil separator provided below the upper oil separator 26a. It has 26b and.
 (軸受40)
 軸受40は、図2及び図4に示すように、円筒状の部材であり、第1の圧縮部30aのシリンダ31の上面に載置された基部41と、基部41よりも細径で基部41の内周縁部から軸方向に延びる筒部42とを有している。基部41及び筒部42の内周部に回転軸25が挿入されることにより、回転軸25が回転自在に支持されている。
(Bearing 40)
As shown in FIGS. 2 and 4, the bearing 40 is a cylindrical member, and has a base 41 mounted on the upper surface of the cylinder 31 of the first compression portion 30a and a base 41 having a diameter smaller than that of the base 41. It has a cylindrical portion 42 extending in the axial direction from the inner peripheral edge portion of the above. By inserting the rotating shaft 25 into the inner peripheral portions of the base portion 41 and the tubular portion 42, the rotating shaft 25 is rotatably supported.
 図4に示すように、軸受40の基部41には、吐出部43が設けられている。吐出部43は、弁座44と、吐出バルブ45と、静止バルブ46とを有している。弁座44は、シリンダ31に形成された吐出切り欠き31dに接続される吐出孔47が形成される部分である。吐出バルブ45は、弁座44に設けられる板バネであり、吐出孔47を開閉するものである。吐出バルブ45は、吐出孔47の圧力が所定の圧力以上となると、吐出孔47を開く。静止バルブ46は、吐出バルブ45を押さえるものである。静止バルブ46は、吐出孔47の圧力が所定の圧力以上となると、吐出バルブ45に押される力が強まって、吐出バルブ45の押さえを解除する。 As shown in FIG. 4, a discharge portion 43 is provided at the base portion 41 of the bearing 40. The discharge unit 43 has a valve seat 44, a discharge valve 45, and a stationary valve 46. The valve seat 44 is a portion where a discharge hole 47 connected to the discharge notch 31d formed in the cylinder 31 is formed. The discharge valve 45 is a leaf spring provided on the valve seat 44 and opens and closes the discharge hole 47. The discharge valve 45 opens the discharge hole 47 when the pressure in the discharge hole 47 becomes equal to or higher than a predetermined pressure. The stationary valve 46 presses the discharge valve 45. When the pressure in the discharge hole 47 of the static valve 46 becomes equal to or higher than a predetermined pressure, the force pushed by the discharge valve 45 is strengthened to release the holding of the discharge valve 45.
 (吐出孔47)
 図5は、実施の形態1における吐出孔47を回転軸方向にみた状態を示す拡大断面図である。次に、吐出孔47について詳細に説明する。図5は、ピストン32の偏心回転において、ピストン32の中心が吐出孔47の中心に最接近したときの吐出孔47を示す図である。図5において、吐出孔47における吐出バルブ45側の外郭線をバルブ側外郭線48と呼称し、吐出孔47におけるシリンダ31側の外郭線をシリンダ側外郭線49と呼称する。図5に示すように、バルブ側外郭線48は、シリンダ側外郭線49よりも外側にずれている。吐出孔47は、ベーン33の延びる方向に対し角度θの位置に形成されている。
(Discharge hole 47)
FIG. 5 is an enlarged cross-sectional view showing a state in which the discharge hole 47 according to the first embodiment is viewed in the direction of the rotation axis. Next, the discharge hole 47 will be described in detail. FIG. 5 is a diagram showing a discharge hole 47 when the center of the piston 32 is closest to the center of the discharge hole 47 in the eccentric rotation of the piston 32. In FIG. 5, the outer wire on the discharge valve 45 side in the discharge hole 47 is referred to as the valve side outer wire 48, and the outer wire on the cylinder 31 side in the discharge hole 47 is referred to as the cylinder side outer wire 49. As shown in FIG. 5, the valve-side outer line 48 is displaced outward from the cylinder-side outer line 49. The discharge hole 47 is formed at a position at an angle θ with respect to the extending direction of the vane 33.
 このように、吐出孔47は、図4及び図5に示すように、外側縁部47a及び内側縁部47bのいずれもが回転軸25の軸方向に対し、傾斜角度αで傾斜している。傾斜角度αは、ピストン32の中心が吐出孔47の中心に最接近する位相方向に向かって15°以上45°以下の範囲である。ここで、吐出切り欠き31dは、回転軸25の軸方向に対して例えば45°傾斜している。即ち、吐出孔47は、吐出切り欠き31dに接続され、吐出切り欠き31dの切欠方向に向かって延びている。なお、吐出孔47のシリンダ側外郭線49は、ピストン32の面取部32bと重なっている。即ち、吐出部43には、ピストン32の面取部32bと吐出孔247とが連通する連通部247cが形成されている。 As described above, as shown in FIGS. 4 and 5, both the outer edge portion 47a and the inner edge portion 47b of the discharge hole 47 are inclined at an inclination angle α with respect to the axial direction of the rotation shaft 25. The inclination angle α is in a range of 15 ° or more and 45 ° or less in the phase direction in which the center of the piston 32 is closest to the center of the discharge hole 47. Here, the discharge notch 31d is inclined by, for example, 45 ° with respect to the axial direction of the rotating shaft 25. That is, the discharge hole 47 is connected to the discharge notch 31d and extends in the notch direction of the discharge notch 31d. The cylinder-side outer wire 49 of the discharge hole 47 overlaps with the chamfered portion 32b of the piston 32. That is, the discharge portion 43 is formed with a communication portion 247c in which the chamfered portion 32b of the piston 32 and the discharge hole 247 communicate with each other.
 (副軸受50)
 副軸受50は、図2に示すように、円筒状の部材であり、第2の圧縮部30bのピストン32の下部に設けられた副基部51と、副基部51よりも細径で副基部51の内周縁部から軸方向に延びる副筒部52とを有している。副基部51及び副筒部52の内周部に回転軸25が挿入されることにより、回転軸25が回転自在に支持されている。なお、副軸受50にも、副吐出部53が設けられているが、副吐出部53の構成は吐出部43の構成と同様であるため、説明を省略する。
(Auxiliary bearing 50)
As shown in FIG. 2, the sub-bearing 50 is a cylindrical member, and has a sub-base 51 provided below the piston 32 of the second compression portion 30b and a sub-base 51 having a diameter smaller than that of the sub-base 51. It has a sub-cylinder portion 52 extending in the axial direction from the inner peripheral edge portion of the above. By inserting the rotating shaft 25 into the inner peripheral portions of the sub-base portion 51 and the sub-cylinder portion 52, the rotating shaft 25 is rotatably supported. The sub-bearing 50 is also provided with the sub-discharge unit 53, but since the configuration of the sub-discharge unit 53 is the same as that of the discharge unit 43, the description thereof will be omitted.
 (吐出マフラ27、副吐出マフラ28)
 吐出マフラ27は、中空部を有するドーム状の部材であり、軸受40の一部である基部41の上面に取り付けられ、容器20の内部の空間において発生する共振によって増幅される騒音を抑制するものである。なお、吐出マフラ27の中心には回転軸25が挿入される穴が形成されている。副吐出マフラ28は、ドーム状の部材であり、副軸受50の一部である副基部51及び回転軸25の底部を覆って、容器20の内部の空間において発生する共振によって増幅される騒音を抑制するものである。
(Discharge muffler 27, secondary discharge muffler 28)
The discharge muffler 27 is a dome-shaped member having a hollow portion, which is attached to the upper surface of the base portion 41 which is a part of the bearing 40 and suppresses noise amplified by resonance generated in the space inside the container 20. Is. A hole into which the rotating shaft 25 is inserted is formed in the center of the discharge muffler 27. The sub-discharge muffler 28 is a dome-shaped member that covers the sub-base 51 and the bottom of the rotating shaft 25, which are a part of the sub-bearing 50, and emits noise amplified by resonance generated in the space inside the container 20. It suppresses.
 (圧縮機6の動作)
 次に、本実施の形態1に係る圧縮機6の動作について説明する。固定子24aに電力が供給されると、回転子24bが回転する。これにより、回転子24bに固定された回転軸25が回転し、回転軸25の偏心部25bが偏心回転する。偏心部25bが偏心回転すると、偏心部25bが挿入されたピストン32が、シリンダ31の圧縮孔31cの内部で偏心回転する。また、シリンダ31に取り付けられたベーン33は、ベーン溝31bに出入りすることによって移動するため、ピストン32の偏心回転を妨げることなく、圧縮室35を仕切る。圧縮室35は、ピストン32の偏心回転によって、容積が徐々に減少していき、これにより、圧縮室35の内部の冷媒が圧縮される。
(Operation of compressor 6)
Next, the operation of the compressor 6 according to the first embodiment will be described. When power is supplied to the stator 24a, the rotor 24b rotates. As a result, the rotating shaft 25 fixed to the rotor 24b rotates, and the eccentric portion 25b of the rotating shaft 25 rotates eccentrically. When the eccentric portion 25b rotates eccentrically, the piston 32 into which the eccentric portion 25b is inserted rotates eccentrically inside the compression hole 31c of the cylinder 31. Further, since the vane 33 attached to the cylinder 31 moves by moving in and out of the vane groove 31b, it partitions the compression chamber 35 without hindering the eccentric rotation of the piston 32. The volume of the compression chamber 35 gradually decreases due to the eccentric rotation of the piston 32, whereby the refrigerant inside the compression chamber 35 is compressed.
 なお、本実施の形態1では、第1の偏心部25cと第2の偏心部25dとが、上面視において、回転軸25の中心点に対して点対称の位置に配置されている。このため、第1の偏心部25cが挿入されたピストン32と第2の偏心部25dが挿入されたピストン32との位相角が180°ずれている。従って、軸負荷が小さくなって圧縮機6の信頼性が向上し、またトルク変動が小さくなって回転方向の振動が低減する。 In the first embodiment, the first eccentric portion 25c and the second eccentric portion 25d are arranged at positions symmetrical with respect to the center point of the rotation axis 25 in the top view. Therefore, the phase angle between the piston 32 into which the first eccentric portion 25c is inserted and the piston 32 into which the second eccentric portion 25d is inserted is 180 ° out of phase. Therefore, the shaft load is reduced, the reliability of the compressor 6 is improved, the torque fluctuation is reduced, and the vibration in the rotational direction is reduced.
 (冷媒の流れ)
 次に、圧縮機6における冷媒の流れについて説明する。吸入管23aから吸入された冷媒は、吸入マフラ23bによってガス状態の冷媒と液状態の冷媒とに分離される。そして、ガス状態の冷媒のみが、出口管23cを通って、シリンダ31に形成された吸入穴31aに流入する。吸入穴31aに流入した冷媒は、圧縮室35に流出する。そして、偏心回転するピストン32によって、圧縮室35の容積が連続的に減少していき、冷媒が圧縮される。
(Refrigerant flow)
Next, the flow of the refrigerant in the compressor 6 will be described. The refrigerant sucked from the suction pipe 23a is separated into a gas state refrigerant and a liquid state refrigerant by the suction muffler 23b. Then, only the gas-state refrigerant flows into the suction hole 31a formed in the cylinder 31 through the outlet pipe 23c. The refrigerant that has flowed into the suction hole 31a flows out to the compression chamber 35. Then, the volume of the compression chamber 35 is continuously reduced by the eccentric rotating piston 32, and the refrigerant is compressed.
 圧縮されて高温且つ高圧の状態となった冷媒は、シリンダ31の吐出切り欠き31dをとおって軸受40の吐出孔47に至る。吐出孔47の圧力が所定の圧力以上になると、吐出バルブ45が静止バルブ46を押圧し、静止バルブ46が開くと、吐出バルブ45から吐出マフラ27と軸受40との間の空間に冷媒が流出する。流出した冷媒は、吐出マフラ27から容器20内に流れ、電動機部24の隙間をとおって吐出管22に至る。吐出管22に至った冷媒は、吐出管22をとおって冷媒回路4内に吐出される。 The compressed refrigerant, which is in a high temperature and high pressure state, reaches the discharge hole 47 of the bearing 40 through the discharge notch 31d of the cylinder 31. When the pressure in the discharge hole 47 exceeds a predetermined pressure, the discharge valve 45 presses the static valve 46, and when the static valve 46 opens, the refrigerant flows out from the discharge valve 45 into the space between the discharge muffler 27 and the bearing 40. do. The outflowing refrigerant flows from the discharge muffler 27 into the container 20 and reaches the discharge pipe 22 through the gap of the motor unit 24. The refrigerant that has reached the discharge pipe 22 is discharged into the refrigerant circuit 4 through the discharge pipe 22.
 (冷凍機油の流れ)
 次に、圧縮機6における冷凍機油の流れについて説明する。油溜り21に貯留する冷凍機油は、回転軸25の回転が遠心ポンプの機能を担って、回転軸25の内部に形成された油通路25aに吸い上げられる。油通路25aを通る冷凍機油は、各給油孔を通って、各摺動部に流入する。そして、冷凍機油は、各摺動部を潤滑する。
(Flow of refrigerating machine oil)
Next, the flow of refrigerating machine oil in the compressor 6 will be described. The refrigerating machine oil stored in the oil sump 21 is sucked up by the oil passage 25a formed inside the rotating shaft 25, with the rotation of the rotating shaft 25 taking on the function of a centrifugal pump. The refrigerating machine oil passing through the oil passage 25a flows into each sliding portion through each oil supply hole. Then, the refrigerating machine oil lubricates each sliding portion.
 ここで、摺動部は、例えば回転軸25とピストン32とが接触する部分、回転軸25と軸受40とが接触する部分等である。また、摺動部は、回転軸25と副軸受50とが接触する部分、回転軸25と中間板6cとが接触する部分等である。更に、摺動部は、ピストン32とシリンダ31とが接触する部分、ピストン32と軸受40とが接触する部分、ピストン32と副軸受50とが接触する部分及びピストン32と中間仕切板34とが接触する部分等である。これにより、部材同士が直接接触することによる部材の損傷を防止し、冷媒が漏れることも防止している。 Here, the sliding portion is, for example, a portion where the rotating shaft 25 and the piston 32 are in contact, a portion where the rotating shaft 25 and the bearing 40 are in contact, and the like. The sliding portion is a portion where the rotating shaft 25 and the auxiliary bearing 50 are in contact with each other, a portion where the rotating shaft 25 and the intermediate plate 6c are in contact with each other, and the like. Further, the sliding portion includes a portion where the piston 32 and the cylinder 31 contact, a portion where the piston 32 and the bearing 40 contact, a portion where the piston 32 and the auxiliary bearing 50 contact, and the piston 32 and the intermediate partition plate 34. It is the part that comes into contact. As a result, damage to the members due to direct contact between the members is prevented, and leakage of the refrigerant is also prevented.
 本実施の形態1によれば、吐出孔47が吐出切り欠き31dの切欠方向に沿って延びている。このため、吐出切り欠き31dに沿って流れる冷媒は、衝突せずに円滑に吐出孔47に流出する。従って、圧力損失を減らすことができ、圧縮効率の低下を抑制することができる。このように、吐出孔47及び吐出切り欠き31dは、冷媒を整流する効果を奏する。 According to the first embodiment, the discharge hole 47 extends along the notch direction of the discharge notch 31d. Therefore, the refrigerant flowing along the discharge notch 31d smoothly flows out into the discharge hole 47 without colliding. Therefore, the pressure loss can be reduced and the decrease in compression efficiency can be suppressed. As described above, the discharge hole 47 and the discharge notch 31d have the effect of rectifying the refrigerant.
 また、吐出孔47は、回転軸25の軸方向に対し、ピストン32の中心が吐出孔47の中心に最接近する位相方向に向かって15°以上45°以下の範囲の傾斜角度αで傾斜している。傾斜角度αが15°未満の場合、圧力損失を低減する効果を十分に得られない。また、傾斜角度αが45°より大きい場合、流れ場が剥離することによって圧力抵抗による損失が生じる。本実施の形態1は、傾斜角度αが15°以上45°以下であるため、吐出切り欠き31dと吐出孔47とが接続する曲がり位置における圧力損失を低減することができる。従って、圧縮機6の圧縮効率の低下を抑制することができる。 Further, the discharge hole 47 is inclined at an inclination angle α in a range of 15 ° or more and 45 ° or less toward the phase direction in which the center of the piston 32 is closest to the center of the discharge hole 47 with respect to the axial direction of the rotation shaft 25. ing. When the inclination angle α is less than 15 °, the effect of reducing the pressure loss cannot be sufficiently obtained. Further, when the inclination angle α is larger than 45 °, the flow field is separated and a loss due to pressure resistance occurs. In the first embodiment, since the inclination angle α is 15 ° or more and 45 ° or less, the pressure loss at the bending position where the discharge notch 31d and the discharge hole 47 are connected can be reduced. Therefore, it is possible to suppress a decrease in the compression efficiency of the compressor 6.
 図6は、比較例における吐出切り欠き31d及び吐出孔247を示す断面図である。ここで、本実施の形態1の圧縮機6の比較例における圧縮機206について説明する。図6に示すように、シリンダ31には、圧縮された冷媒を吐出する吐出切り欠き31dが形成されている。吐出切り欠き31dは、回転軸25の軸方向に対して例えば45°傾斜している。 FIG. 6 is a cross-sectional view showing a discharge notch 31d and a discharge hole 247 in a comparative example. Here, the compressor 206 in the comparative example of the compressor 6 of the first embodiment will be described. As shown in FIG. 6, the cylinder 31 is formed with a discharge notch 31d for discharging the compressed refrigerant. The discharge notch 31d is inclined by, for example, 45 ° with respect to the axial direction of the rotating shaft 25.
 軸受40は、図6に示すように、円筒状の部材であり、第1の圧縮部30aのシリンダ31の上面に取り付けられた基部41と、基部41よりも細径で基部41の内周縁部から軸方向に延びる筒部42とを有している。基部41及び筒部42の内周部に回転軸25が挿入されることにより、回転軸25が回転自在に支持されている。 As shown in FIG. 6, the bearing 40 is a cylindrical member, and has a base portion 41 attached to the upper surface of the cylinder 31 of the first compression portion 30a and an inner peripheral edge portion of the base portion 41 having a diameter smaller than that of the base portion 41. It has a cylinder portion 42 extending in the axial direction from the cylinder portion 42. By inserting the rotating shaft 25 into the inner peripheral portions of the base portion 41 and the tubular portion 42, the rotating shaft 25 is rotatably supported.
 軸受40の基部41には、吐出部43が設けられている。吐出部43は、弁座44と、吐出バルブ45と、静止バルブ46とを有している。弁座44は、シリンダ31に形成された吐出切り欠き31dに接続される吐出孔247が形成される部分である。吐出バルブ45は、弁座44に設けられる板バネであり、吐出孔247を開閉するものである。吐出バルブ45は、吐出孔247の圧力が所定の圧力以上となると、吐出孔247を開く。静止バルブ46は、吐出バルブ45を押さえるものである。静止バルブ46は、吐出孔247の圧力が所定の圧力以上となると、吐出バルブ45に押される力が強まって、吐出バルブ45の押さえを解除する。 A discharge portion 43 is provided at the base 41 of the bearing 40. The discharge unit 43 has a valve seat 44, a discharge valve 45, and a stationary valve 46. The valve seat 44 is a portion where a discharge hole 247 connected to a discharge notch 31d formed in the cylinder 31 is formed. The discharge valve 45 is a leaf spring provided on the valve seat 44 and opens and closes the discharge hole 247. The discharge valve 45 opens the discharge hole 247 when the pressure of the discharge hole 247 becomes equal to or higher than a predetermined pressure. The stationary valve 46 presses the discharge valve 45. When the pressure of the discharge hole 247 of the stationary valve 46 becomes equal to or higher than a predetermined pressure, the force pushed by the discharge valve 45 is increased, and the holding of the discharge valve 45 is released.
 図7は、比較例における吐出孔247を回転軸方向にみた状態を示す拡大断面図である。図7は、ピストン32の偏心回転において、ピストン32の中心が吐出孔247の中心に最接近したときの吐出孔247を示す図である。図7において、吐出孔247における吐出バルブ45側の外郭線をバルブ側外郭線48と呼称し、吐出孔247におけるシリンダ31側の外郭線をシリンダ側外郭線49と呼称する。図7に示すように、バルブ側外郭線48は、シリンダ側外郭線49と一致している。このように、吐出孔247は、図6及び図7に示すように、回転軸25の軸方向に延びている。ここで、吐出切り欠き31dは、回転軸25の軸方向に対して例えば45°傾斜している。 FIG. 7 is an enlarged cross-sectional view showing a state in which the discharge hole 247 in the comparative example is viewed in the direction of the rotation axis. FIG. 7 is a diagram showing a discharge hole 247 when the center of the piston 32 is closest to the center of the discharge hole 247 in the eccentric rotation of the piston 32. In FIG. 7, the outer wire on the discharge valve 45 side in the discharge hole 247 is referred to as the valve side outer wire 48, and the outer wire on the cylinder 31 side in the discharge hole 247 is referred to as the cylinder side outer wire 49. As shown in FIG. 7, the valve-side outer line 48 coincides with the cylinder-side outer line 49. As described above, the discharge hole 247 extends in the axial direction of the rotating shaft 25 as shown in FIGS. 6 and 7. Here, the discharge notch 31d is inclined by, for example, 45 ° with respect to the axial direction of the rotating shaft 25.
 以上説明したとおり、比較例における圧縮機206は、吐出切り欠き31dと吐出孔247とが接続される部分が屈曲している。このため、傾斜する吐出切り欠き31dに沿って流れる冷媒は、軸方向に沿う吐出孔247の内面に衝突する。従って、圧力損失が生じ、圧縮効率の低下を招く。 As described above, in the compressor 206 in the comparative example, the portion where the discharge notch 31d and the discharge hole 247 are connected is bent. Therefore, the refrigerant flowing along the inclined discharge notch 31d collides with the inner surface of the discharge hole 247 along the axial direction. Therefore, a pressure loss occurs and the compression efficiency is lowered.
 これに対し、本実施の形態1に係る圧縮機6は、吐出孔47が吐出切り欠き31dの切欠方向に沿って延びている。このため、吐出切り欠き31dに沿って流れる冷媒は、衝突せずに円滑に吐出孔47に流出する。従って、圧力損失を減らすことができ、圧縮効率の低下を抑制することができる。 On the other hand, in the compressor 6 according to the first embodiment, the discharge hole 47 extends along the notch direction of the discharge notch 31d. Therefore, the refrigerant flowing along the discharge notch 31d smoothly flows out into the discharge hole 47 without colliding. Therefore, the pressure loss can be reduced and the decrease in compression efficiency can be suppressed.
実施の形態2.
 図8は、実施の形態2における吐出切り欠き31d及び吐出孔147を示す断面図である。本実施の形態2は、圧縮機106において、吐出孔147の形状が、実施の形態1と相違する。本実施の形態2では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 2.
FIG. 8 is a cross-sectional view showing the discharge notch 31d and the discharge hole 147 according to the second embodiment. In the second embodiment, the shape of the discharge hole 147 in the compressor 106 is different from that of the first embodiment. In the second embodiment, the same parts as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
 図8に示すように、吐出孔147は、外側縁部147aが吐出切り欠き31dの切欠方向に沿って延び、吐出孔147の中心線に対し、内側縁部147bが吐出切り欠き31dの切欠方向と線対称の方向に延びている。 As shown in FIG. 8, in the discharge hole 147, the outer edge portion 147a extends along the notch direction of the discharge notch 31d, and the inner edge portion 147b extends in the notch direction of the discharge notch 31d with respect to the center line of the discharge hole 147. It extends in the direction of line symmetry.
 図9は、実施の形態2における吐出孔147を回転軸方向にみた状態を示す拡大断面図である。図9は、ピストン32の偏心回転において、ピストン32の中心が吐出孔147の中心に最接近したときの吐出孔147を示す図である。図9において、吐出孔147における吐出バルブ45側の外郭線をバルブ側外郭線48と呼称し、吐出孔147におけるシリンダ31側の外郭線をシリンダ側外郭線49と呼称する。図9に示すように、バルブ側外郭線48は、シリンダ側外郭線49の全周において外側に位置している。 FIG. 9 is an enlarged cross-sectional view showing a state in which the discharge hole 147 in the second embodiment is viewed in the direction of the rotation axis. FIG. 9 is a diagram showing a discharge hole 147 when the center of the piston 32 is closest to the center of the discharge hole 147 in the eccentric rotation of the piston 32. In FIG. 9, the outer wire on the discharge valve 45 side in the discharge hole 147 is referred to as the valve side outer wire 48, and the outer wire on the cylinder 31 side in the discharge hole 147 is referred to as the cylinder side outer wire 49. As shown in FIG. 9, the valve-side outer wire 48 is located on the outer side of the entire circumference of the cylinder-side outer wire 49.
 このように、吐出孔147は、図8及び図9に示すように、外側縁部147aが回転軸25の軸方向に対し、ピストン32の中心が吐出孔147の中心に最接近する位相方向に向かって15°以上45°以下の範囲の傾斜角度βで傾斜している。また、吐出孔147は、内側縁部147bが吐出切り欠き31dの切欠方向と線対称の方向において回転軸25の軸方向に対し、15°以上45°以下の範囲の傾斜角度βで傾斜している。即ち、吐出孔147は、吐出切り欠き31dからテーパ状に拡径された形状をなしている。 As described above, in the discharge hole 147, as shown in FIGS. 8 and 9, the outer edge portion 147a is in the axial direction of the rotating shaft 25, and the center of the piston 32 is in the phase direction closest to the center of the discharge hole 147. It is tilted at an inclination angle β in the range of 15 ° or more and 45 ° or less. Further, the discharge hole 147 is inclined at an inclination angle β in a range of 15 ° or more and 45 ° or less with respect to the axial direction of the rotation shaft 25 in a direction in which the inner edge portion 147b is line-symmetrical with the notch direction of the discharge notch 31d. There is. That is, the discharge hole 147 has a shape in which the diameter is tapered from the discharge notch 31d.
 本実施の形態2によれば、吐出孔147は、外側縁部147aが吐出切り欠き31dの切欠方向に沿って延び、吐出孔147の中心線に対し、内側縁部147bが吐出切り欠き31dの切欠方向と線対称の方向に延びている。このため、図9に示すように、ピストン32の面取部32bと吐出孔147とが連通する連通部247cが形成されない。 According to the second embodiment, in the discharge hole 147, the outer edge portion 147a extends along the notch direction of the discharge notch 31d, and the inner edge portion 147b is the discharge notch 31d with respect to the center line of the discharge hole 147. It extends in the direction of line symmetry with the notch direction. Therefore, as shown in FIG. 9, a communication portion 247c in which the chamfered portion 32b of the piston 32 and the discharge hole 147 communicate with each other is not formed.
 ここで、連通部247cについて説明する。図7に示すように、比較例に係る圧縮機206の吐出孔247のシリンダ側外郭線49は、ピストン32の面取部32bと重なっている。即ち、吐出部43には、ピストン32の面取部32bと吐出孔247とが連通する連通部247cが形成されている。面取部32bは、容器20内の圧力と等圧であるため、圧縮工程後の圧縮室35内よりも相対的に低圧である。このため、圧縮室35から吐出孔247をとおって吐出された冷媒が、連通部247cをとおって漏れるおそれがある。そこで、連通部247cの面積を可及的に小さくして漏れ損失を低減することが、圧縮機206の圧縮効率を確保する上で望まれている。 Here, the communication unit 247c will be described. As shown in FIG. 7, the cylinder-side outer wire 49 of the discharge hole 247 of the compressor 206 according to the comparative example overlaps with the chamfered portion 32b of the piston 32. That is, the discharge portion 43 is formed with a communication portion 247c in which the chamfered portion 32b of the piston 32 and the discharge hole 247 communicate with each other. Since the chamfered portion 32b has the same pressure as the pressure inside the container 20, the pressure is relatively lower than that inside the compression chamber 35 after the compression step. Therefore, the refrigerant discharged from the compression chamber 35 through the discharge hole 247 may leak through the communication portion 247c. Therefore, it is desired to reduce the leakage loss by making the area of the communication portion 247c as small as possible in order to secure the compression efficiency of the compressor 206.
 本実施の形態2は、吐出孔147は、外側縁部147aが吐出切り欠き31dの切欠方向に沿って延び、吐出孔147の中心線に対し、内側縁部147bが吐出切り欠き31dの切欠方向と線対称の方向に延びているため、連通部247cが形成されない。従って、冷媒の漏れ損失を低減することができる。よって、冷媒漏れに起因する圧縮機106の圧縮効率の低下を抑制することができる。 In the second embodiment, in the discharge hole 147, the outer edge portion 147a extends along the notch direction of the discharge notch 31d, and the inner edge portion 147b extends in the notch direction of the discharge notch 31d with respect to the center line of the discharge hole 147. Since it extends in the direction of line symmetry with, the communication portion 247c is not formed. Therefore, the leakage loss of the refrigerant can be reduced. Therefore, it is possible to suppress a decrease in the compression efficiency of the compressor 106 due to refrigerant leakage.
 また、吐出孔147は、外側縁部147aが回転軸25の軸方向に対し、ピストン32の中心が吐出孔147の中心に最接近する位相方向に向かって15°以上45°以下の範囲の傾斜角度βで傾斜している。傾斜角度βが15°未満の場合、圧力損失を低減する効果を十分に得られない。また、傾斜角度βが45°より大きい場合、流れ場が剥離することによって圧力抵抗による損失が生じる。本実施の形態2は、傾斜角度βが15°以上45°以下であるため、吐出切り欠き31dと吐出孔147とが接続する曲がり位置における圧力損失を低減することができる。従って、圧縮機106の圧縮効率の低下を抑制することができる。 Further, the discharge hole 147 is inclined in a range of 15 ° or more and 45 ° or less in the phase direction in which the outer edge portion 147a is closest to the center of the discharge hole 147 with respect to the axial direction of the rotation shaft 25. It is tilted at an angle β. When the inclination angle β is less than 15 °, the effect of reducing the pressure loss cannot be sufficiently obtained. Further, when the inclination angle β is larger than 45 °, the flow field is separated and a loss due to pressure resistance occurs. In the second embodiment, since the inclination angle β is 15 ° or more and 45 ° or less, the pressure loss at the bending position where the discharge notch 31d and the discharge hole 147 are connected can be reduced. Therefore, it is possible to suppress a decrease in the compression efficiency of the compressor 106.
 このように、本実施の形態2は、吐出孔47の外側縁部47aが吐出切り欠き31dの切欠方向に沿って延びることによって、吐出切り欠き31dに沿って流れる冷媒は、衝突せずに円滑に吐出孔47に流出することができる。また、吐出孔47の内側縁部47bが吐出切り欠き31dの切欠方向と線対称の方向に延びていることによって、ピストン32の面取部32bと吐出孔47とが連通する連通部247cが形成されない。従って、本実施の形態2は、吐出孔47が吐出切り欠き31dの切欠方向に向かって延びる場合に生じ得る連通部247cの発生を抑えることができる。 As described above, in the second embodiment, the outer edge portion 47a of the discharge hole 47 extends along the notch direction of the discharge notch 31d, so that the refrigerant flowing along the discharge notch 31d is smooth without collision. Can flow out into the discharge hole 47. Further, since the inner edge portion 47b of the discharge hole 47 extends in a direction line-symmetrical with the notch direction of the discharge cutout 31d, a communication portion 247c in which the chamfered portion 32b of the piston 32 and the discharge hole 47 communicate with each other is formed. Not done. Therefore, in the second embodiment, it is possible to suppress the occurrence of the communication portion 247c that may occur when the discharge hole 47 extends in the notch direction of the discharge notch 31d.
 1 空気調和機、2 室外機、3 室内機、4 冷媒回路、5 冷媒配管、6 圧縮機、7 流路切替装置、8 室外熱交換器、9 室外送風機、10 膨張部、11 室内熱交換器、12 室内送風機、20 容器、21 油溜り、22 吐出管、23 吸入部、23a 吸入管、23b 吸入マフラ、23c 出口管、24 電動機部、24a 固定子、24b 回転子、25 回転軸、25a 油通路、25b 偏心部、25c 第1の偏心部、25d 第2の偏心部、26 油分離器、26a 上側油分離器、26b 下側油分離器、27 吐出マフラ、28 副吐出マフラ、30 圧縮機構部、30a 第1の圧縮部、30b 第2の圧縮部、31 シリンダ、31a 吸入穴、31b ベーン溝、31c 圧縮孔、31d 吐出切り欠き、32 ピストン、32a 挿入孔、32b 面取部、33 ベーン、34 中間仕切板、35 圧縮室、40 軸受、41 基部、42 筒部、43 吐出部、44 弁座、45 吐出バルブ、46 静止バルブ、47 吐出孔、47a 外側縁部、47b 内側縁部、48 バルブ側外郭線、49 シリンダ側外郭線、50 副軸受、51 副基部、52 副筒部、53 副吐出部、106 圧縮機、147 吐出孔、147a 外側縁部、147b 内側縁部、206 圧縮機、247 吐出孔、247c 連通部。 1 air conditioner, 2 outdoor unit, 3 indoor unit, 4 refrigerant circuit, 5 refrigerant piping, 6 compressor, 7 flow path switching device, 8 outdoor heat exchanger, 9 outdoor blower, 10 expansion part, 11 indoor heat exchanger , 12 indoor blower, 20 container, 21 oil sump, 22 discharge pipe, 23 suction part, 23a suction pipe, 23b suction muffler, 23c outlet pipe, 24 motor part, 24a stator, 24b rotor, 25 rotating shaft, 25a oil Passage, 25b eccentric part, 25c first eccentric part, 25d second eccentric part, 26 oil separator, 26a upper oil separator, 26b lower oil separator, 27 discharge muffler, 28 sub-discharge muffler, 30 compressor Part, 30a 1st compression part, 30b 2nd compression part, 31 cylinder, 31a suction hole, 31b vane groove, 31c compression hole, 31d discharge notch, 32 piston, 32a insertion hole, 32b chamfer, 33 vane , 34 Intermediate partition plate, 35 compression chamber, 40 bearing, 41 base, 42 cylinder, 43 discharge, 44 valve seat, 45 discharge valve, 46 static valve, 47 discharge hole, 47a outer edge, 47b inner edge, 48 Valve side outer wire, 49 Cylinder side outer wire, 50 Sub-bearing, 51 Sub-base, 52 Sub-cylinder, 53 Sub-discharge, 106 Compressor, 147 Discharge hole, 147a Outer edge, 147b Inner edge, 206 Compression Machine, 247 discharge hole, 247c communication part.

Claims (3)

  1.  容器と、
     前記容器の内部に設けられた電動機部と、
     前記電動機部に固定され、前記電動機部によって回転駆動する回転軸と、
     前記容器の内壁に固定され、内部に形成された圧縮室によって圧縮された冷媒を吐出する吐出切り欠きが切り欠かれた環状のシリンダと、
     前記シリンダに載置されて前記回転軸を支持すると共に、前記シリンダと共に前記圧縮室を形成し、前記吐出切り欠きに接続され前記冷媒を吐出する前記吐出切り欠きの切欠方向に沿って延びる吐出孔が形成された軸受と、
     を備える圧縮機。
    With the container
    The motor unit provided inside the container and
    A rotating shaft fixed to the motor unit and driven to rotate by the motor unit,
    An annular cylinder fixed to the inner wall of the container and notched with a discharge notch for discharging the refrigerant compressed by the compression chamber formed inside.
    A discharge hole that is mounted on the cylinder to support the rotating shaft, forms the compression chamber together with the cylinder, is connected to the discharge notch, and extends along the notch direction of the discharge notch to discharge the refrigerant. The formed bearing and
    Compressor equipped with.
  2.  前記吐出孔は、
     外側縁部が前記吐出切り欠きの切欠方向に沿って延び、
     前記吐出孔の中心線に対し、内側縁部が前記吐出切り欠きの切欠方向と線対称の方向に延びる
     請求項1記載の圧縮機。
    The discharge hole is
    The outer edge extends along the notch direction of the discharge notch,
    The compressor according to claim 1, wherein the inner edge portion extends in a direction line-symmetrical with the notch direction of the discharge notch with respect to the center line of the discharge hole.
  3.  前記シリンダの内部に設けられ、前記回転軸によって回転駆動するピストンを更に備え、
     前記吐出孔は、
     前記回転軸の軸方向に対し、前記ピストンの中心が前記吐出孔の中心に最接近する位相方向に向かって15°以上45°以下の範囲で傾斜している
     請求項1又は2記載の圧縮機。
    A piston provided inside the cylinder and driven to rotate by the rotating shaft is further provided.
    The discharge hole is
    The compressor according to claim 1 or 2, wherein the center of the piston is inclined in a range of 15 ° or more and 45 ° or less toward the phase direction closest to the center of the discharge hole with respect to the axial direction of the rotation shaft. ..
PCT/JP2020/017328 2020-04-22 2020-04-22 Compressor WO2021214913A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/017328 WO2021214913A1 (en) 2020-04-22 2020-04-22 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/017328 WO2021214913A1 (en) 2020-04-22 2020-04-22 Compressor

Publications (1)

Publication Number Publication Date
WO2021214913A1 true WO2021214913A1 (en) 2021-10-28

Family

ID=78270477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017328 WO2021214913A1 (en) 2020-04-22 2020-04-22 Compressor

Country Status (1)

Country Link
WO (1) WO2021214913A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134380A (en) * 1984-07-27 1986-02-18 Toshiba Corp Rotary compressor
JPS62156181U (en) * 1986-03-27 1987-10-03
JPS63183292A (en) * 1987-01-23 1988-07-28 Hitachi Ltd Enclosed rotary compressor
JPH03217686A (en) * 1990-01-23 1991-09-25 Mitsubishi Heavy Ind Ltd Rotary compressor
JP2005188421A (en) * 2003-12-26 2005-07-14 Daikin Ind Ltd Compressor
WO2011135817A1 (en) * 2010-04-28 2011-11-03 パナソニック株式会社 Rotary compressor
JP2014040827A (en) * 2012-07-25 2014-03-06 Daikin Ind Ltd Compressor
JP2019027372A (en) * 2017-07-31 2019-02-21 ダイキン工業株式会社 Compressor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134380A (en) * 1984-07-27 1986-02-18 Toshiba Corp Rotary compressor
JPS62156181U (en) * 1986-03-27 1987-10-03
JPS63183292A (en) * 1987-01-23 1988-07-28 Hitachi Ltd Enclosed rotary compressor
JPH03217686A (en) * 1990-01-23 1991-09-25 Mitsubishi Heavy Ind Ltd Rotary compressor
JP2005188421A (en) * 2003-12-26 2005-07-14 Daikin Ind Ltd Compressor
WO2011135817A1 (en) * 2010-04-28 2011-11-03 パナソニック株式会社 Rotary compressor
JP2014040827A (en) * 2012-07-25 2014-03-06 Daikin Ind Ltd Compressor
JP2019027372A (en) * 2017-07-31 2019-02-21 ダイキン工業株式会社 Compressor

Similar Documents

Publication Publication Date Title
CN101008389B (en) Sealed rotary compressor and refrigerating circulation device comprising same
US11592022B2 (en) Scroll compressor and refrigeration cycle device
JP4980412B2 (en) Scroll compressor
JP6568841B2 (en) Hermetic rotary compressor and refrigeration air conditioner
US11466687B2 (en) Rotary compressor and refrigeration cycle apparatus
WO2021084607A1 (en) Scroll compressor and refrigeration cycle device
WO2021214913A1 (en) Compressor
WO2023084722A1 (en) Compressor and refrigeration cycle device
US20210207601A1 (en) Rotary compressor and refrigeration cycle apparatus
US11821664B2 (en) Rotary compressor and refrigeration cycle apparatus
JP2003161280A (en) Rotary compressor
JP2012122452A (en) Two-stage compressor
JP6773932B1 (en) Compressor and air conditioner
CN218816980U (en) Rotor type compressor and air conditioner
WO2022149225A1 (en) Compressor
JP7358674B1 (en) Compressors and air conditioners
JP6749526B1 (en) Outdoor unit and refrigeration cycle device
JP7357178B1 (en) Compressors and air conditioners
CN218816979U (en) Compressor and air conditioner
JP6710348B1 (en) Compressor and air conditioner equipped with this compressor
JP7003319B1 (en) Compressor and heat exchange system
WO2023152799A1 (en) Compressor and refrigeration cycle device with said compressor
WO2022118383A1 (en) Compressor and refrigeration cycle device
JP5217869B2 (en) Two-stage compressor
WO2021106198A1 (en) Compressor and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP