WO2021213783A1 - Strömungsmaschine mit einem kühlkanal und verfahren zum betreiben derselben - Google Patents

Strömungsmaschine mit einem kühlkanal und verfahren zum betreiben derselben Download PDF

Info

Publication number
WO2021213783A1
WO2021213783A1 PCT/EP2021/058147 EP2021058147W WO2021213783A1 WO 2021213783 A1 WO2021213783 A1 WO 2021213783A1 EP 2021058147 W EP2021058147 W EP 2021058147W WO 2021213783 A1 WO2021213783 A1 WO 2021213783A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
housing
air
turbomachine
inlet
Prior art date
Application number
PCT/EP2021/058147
Other languages
English (en)
French (fr)
Inventor
Tobias Reinhard OTT
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2021213783A1 publication Critical patent/WO2021213783A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/005Cooling of pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Definitions

  • the invention relates to a turbo machine with the features of the Oberbe handle of claim 1.
  • the turbo machine can be used in particular for air supply of fuel cell systems.
  • the invention relates to a method for operating such a flow machine.
  • Fuel cell systems require oxygen, which in a fuel cell of the system reacts with hydrogen to form water or water vapor. In this way, electrical power is generated by electrochemical conversion that can be used as drive energy, for example to drive a vehicle.
  • Ambient air which is fed to the fuel cell by means of an air compression system, is usually used as the oxygen source, since the process requires a certain air mass flow and a certain pressure level.
  • the air compression system therefore usually comprises a high-speed turbo machine with at least one compressor wheel arranged on a shaft and driven by an electric motor. For energy recovery, a turbine wheel can be arranged on the shaft, to which moist air flowing out is fed.
  • Fluid flow machines which supply air to fuel cell systems, usually have foil air bearings in order to keep the system free of oil. Foil air bearings, however, generate air friction losses and are therefore cooled with the aid of additional air. To this end, around 5 to 10% of the compressed air is usually diverted for cooling. This branched off amount of air is then no longer available for the process in the fuel cell. and thus reduces the efficiency of the turbomachine. In order for the branched air to be able to provide cooling at all, it is cooled itself beforehand. For this purpose, the cooling air is usually branched off behind a charge air cooler of the fuel cell system. The additional cooling requirement must be taken into account when designing the charge air cooler. In addition, an additional line must be provided by means of which the cooling air can be fed to the flow machine.
  • the present invention is based on the object of proposing an alternative cooling concept for a turbo machine that contributes to an optimization of the cooling or the cooling performance.
  • a fluid flow machine for supplying air to a fuel cell system, comprising at least one impeller firmly connected to a shaft and an electric motor for driving the shaft.
  • the shaft is rotatably mounted in a housing via at least two radial bearings and one axial bearing.
  • the housing has at least one inlet for a cooling channel which divides into several cooling paths within the housing.
  • a cooling medium preferably air
  • Each component of the turbomachine that leads to an input of heat during operation can thus be supplied or cooled with cooling medium via its own cooling path.
  • the division of the cooling channel into several cooling paths increases the efficiency of the cooling of the turbomachine in this way.
  • air is used as the cooling medium, some of the air previously compressed with the aid of the turbo machine can be introduced into the cooling channel via the inlet provided in the housing.
  • the inlet is preferably arranged in the vicinity of an outlet via which the compressed air flows out of the flow machine. This enables short conduction paths inside or outside the turbomachine.
  • the inlet into the housing or into the cooling duct is preferably also in an outer circumferential area of the turbo machine.
  • the compressed air branched off for cooling is then preferably guided from the radially outside to the radially inside again via the inlet arranged on the outer circumference and the cooling duct.
  • the cooling duct is preferably divided into a plurality of cooling paths upstream of a winding of the electric motor in the direction of flow. At least one cooling path can then be guided in the direction of the winding. At least one further cooling path can then be led to a location within the housing that is also exposed to heat input.
  • the cooling channel be divided into several cooling paths upstream of the radial and axial bearings in the direction of flow. At least one cooling path can then be led in the direction of the radial and axial bearings, with the division into several cooling paths making it possible to cool one bearing in each case by a separate cooling path.
  • At least two cooling paths run at least in sections in mutually opposite axial directions.
  • a cooling path can be divided into two cooling paths that run in two opposite directions.
  • a first radial bearing can be supplied with cooling medium via the first cooling path and a second radial bearing can be supplied with cooling medium via the second cooling path.
  • a cooling path can be led from a radial bearing to an axial bearing.
  • At least one radial bearing and one axial bearing can thus be supplied with cooling medium via a common cooling path. Since there are usually two axial bearings, the second axial bearing can be connected to a further cooling path. It is also proposed that at least two cooling paths be brought together again within the housing. In this way, the cooling medium present in the cooling paths can be led out of the housing again via a common outlet.
  • two cooling paths are brought together downstream of at least one axial bearing.
  • the two cooling paths can be run in parallel. In this way, two thrust bearings arranged opposite one another can be cooled via separate cooling paths.
  • At least one valve for coordinating the mass flows is integrated in the cooling paths.
  • the mass flows can be controlled, in particular throttled, with the aid of the at least one valve.
  • the mass flows can be optimally adapted to the respective requirements.
  • the efficiency of the cooling can be increased further.
  • At least one valve is preferably arranged in the area of the inlet provided in the housing and / or in the area of an outlet for the cooling medium.
  • the inlet and / or the outlet are preferably or is arranged on the outer circumference of the housing.
  • air can be supplied to the inlet from the outside as a cooling medium, which air has previously been compressed with the aid of the turbomachine.
  • a line can be connected to the outlet, via which the cooling medium that leaves the turbo machine is directed in the direction of the fuel cell exhaust gas. If the turbo machine has a turbine, the cooling medium is preferably fed into the exhaust gas downstream of the turbine.
  • a heat exchanger in particular an air-water heat exchanger, for example a so-called pin-fin cooler, is advantageously integrated into the housing in the area of the inlet.
  • the cooling medium preferably air
  • an external heat exchanger can also be used to pre-cool the cooling medium.
  • the inlet into the housing is connected to the external heat exchanger via a corresponding line.
  • a method for operating a turbomachine is proposed, with the help of which air is compressed. Part of the compressed air is branched off to cool the turbo machine and is introduced via an inlet into a cooling channel which is formed in a housing of the turbo machine.
  • the compressed air is cooled with the aid of a heat exchanger, in particular an air-water heat exchanger, before it is introduced into the cooling channel or into several cooling paths into which the cooling channel is divided within the housing.
  • a heat exchanger in particular an air-water heat exchanger
  • the intended cooling of the air serving as the cooling medium increases the cooling performance and thus the efficiency of the cooling.
  • the heat exchanger provided for cooling the air can be a heat exchanger integrated into the flow machine or an external heat exchanger.
  • the integrated heat exchanger has the advantage that line lengths are saved.
  • a turbo machine designed according to the invention can be operated, since it has a plurality of cooling paths formed in the housing.
  • a turbo machine according to the invention can have a heat exchanger which is integrated into the housing, so that the proposed cooling of the air serving as the cooling medium can be implemented with the aid of this heat exchanger.
  • the mass flows be coordinated with the aid of at least one valve integrated in the cooling channel and / or in at least one cooling path.
  • the coordination of the mass flows enables the flow machine to be cooled as required.
  • the turbo machine 1 shown is used to supply air to a fuel cell system (not shown). It comprises a shaft 2 and an impeller 3 connected to the shaft 2 in a rotationally fixed manner. Air is supplied to the impeller 3 via an intake port 16. The impeller 2 is therefore flown against axially. The air is guided radially outward via the impeller 3, where it is compressed.
  • the shaft 2 is rotatably supported by two radial bearings 5 and two axial bearings 6 arranged at an axial distance from one another.
  • the drive of the shaft 2 takes place with the aid of an electric motor 4.
  • the electric motor 4 is supported by a turbine 17, which comprises a turbine wheel 18 that is connected to the shaft 2 in a rotationally fixed manner.
  • the electric motor 4 has a winding 11 and a permanent magnet 15.
  • the winding 11 is accommodated in a housing 7 of the turbomachine 1.
  • the permanent magnet 15 is integrated into the shaft 2.
  • waste heat is generated, especially in the loading area of the electric motor 4 and the radial and axial bearings 5, 6.
  • the electric motor 4 and the bearings 5, 6 are therefore cooled with the aid of a cooling medium.
  • Previously compressed air is used as the cooling medium, which is branched off downstream of the impeller 3 and fed via an inlet 8 to a cooling channel 9 formed in the housing 1.
  • a heat exchanger 14 for cooling the air is integrated into the cooling channel 9. Via a valve 12, the cooled air can be introduced in a targeted manner into the cooling channel 9 downstream of the heat exchanger 14, which shortly thereafter is divided into several cooling paths 10.1, 10.2, 10.3, 10.4.
  • a first cooling path 10.1 extends first in the axial and then in the radial direction up to a first axial bearing 6. From there, the first cooling path 10.1 leads past the axial bearing 6 to the radially outward direction. The first cooling path 10.1 is therefore used to cool at least one axial bearing 6.
  • a second cooling path 10.2 leads past the winding 11 of the electric motor 4 radially inward to the shaft 2, so that the winding 11 is primarily cooled via this. In the area of the shaft 2, the second cooling path 10.2 is divided into the cooling paths 10.3 and 10.4, which run in opposite axial directions as far as the two radial bearings 5.
  • the cooling path 10.3 thus cools the left radial bearing 5.
  • the cooling path 10.4 cools the right radial bearing 5.
  • both cooling paths 10.3, 10.4 are re-established. which is guided radially outward, the cooling path 10.3 being guided past the further Axialla ger 6.
  • the cooling path 10.3 merges with the first cooling path 10.1, so that the air serving as the cooling medium can be discharged from the housing 1 via a common outlet 13.
  • the air present in the cooling path 10.4 is discharged via a further outlet 13.
  • a further valve 12 is provided in the area of this outlet 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Die Erfindung betrifft eine Strömungsmaschine (1) zur Luftversorgung eines Brennstoffzellensystems, umfassend mindestens ein mit einer Welle (2) drehfest verbundenes Laufrad (3) sowie einen Elektromotor (4) zum Antreiben der Welle (2), wobei die Welle (2) über mindestens zwei Radiallager (5) und ein Axiallager (6) in einem Gehäuse (7) drehbar gelagert ist. Erfindungsgemäß weist das Gehäuse (7) mindestens einen Einlass (8) für einen Kühlkanal (9) auf, der sich innerhalb des Gehäuses (7) in mehrere Kühlpfade (10.1, 10.2, 10.3, 10.4) aufteilt. Die Erfindung betrifft ferner ein Verfahren zum Betreiben einer Strömungsmaschine (1).

Description

Beschreibung
Titel:
STRÖMUNGSMASCHINE MIT EINEM KÜHLKANAL UND VERFAHREN ZUM BETREIBEN DERSELBEN
Die Erfindung betrifft eine Strömungsmaschine mit den Merkmalen des Oberbe griffs des Anspruchs 1. Die Strömungsmaschine kann insbesondere zur Luftver sorgung von Brennstoffzellensystemen eingesetzt werden. Darüber hinaus be trifft die Erfindung ein Verfahren zum Betreiben einer derartigen Strömungsma schine.
Stand der Technik
Brennstoffzellensysteme benötigen Sauerstoff, der in einer Brennstoffzelle des Systems mit Wasserstoff zu Wasser bzw. Wasserdampf reagiert. Auf diese Wei se wird durch elektrochemische Wandlung eine elektrische Leistung erzeugt, die als Antriebsenergie, beispielsweise zum Antrieb eines Fahrzeugs, genutzt wer den kann. Als Sauerstoffquelle dient üblicherweise Umgebungsluft, die der Brennstoffzelle mittels eines Luftverdichtungssystems zugeführt wird, da der Pro zess einen bestimmten Luftmassenstrom und ein bestimmtes Druckniveau erfor dert. Das Luftverdichtungssystem umfasst daher in der Regel eine hochdrehende Strömungsmaschine mit mindestens einem auf einer Welle angeordneten Ver dichterrad, das elektromotorisch angetrieben wird. Zur Energierückgewinnung kann auf der Welle ein Turbinenrad angeordnet sein, dem abströmende feuchte Luft zugeführt wird.
Strömungsmaschinen, die der Luftversorgung von Brennstoffzellensysteme die nen, weisen in der Regel Folienluftlager auf, um das System ölfrei zu halten. Fo lienluftlager erzeugen jedoch Luftreibungsverluste und werden daher mit Hilfe von zusätzlicher Luft gekühlt. Hierzu werden üblicherweise etwa 5 bis 10 % der verdichteten Luft für die Kühlung abgezweigt. Diese abgezweigte Luftmenge steht anschließend für den Prozess in der Brennstoffzelle nicht mehr zur Verfü- gung und setzt somit den Wirkungsgrad der Strömungsmaschine herab. Damit die abgezweigte Luft überhaupt Kühlleistung erbringen kann, wird sie zuvor sel ber gekühlt. In der Regel wird hierzu die Kühlluft hinter einem Ladeluftkühler des Brennstoffzellensystems abgezweigt. Der zusätzliche Kühlbedarf muss bei der Auslegung des Ladeluftkühlers berücksichtigt werden. Zudem muss eine zusätz liche Leitung vorgesehen werden, mittels welches die Kühlluft der Strömungsma schine zugeführt werden kann.
Ausgehend von dem vorstehend genannten Stand der Technik liegt der vorlie genden Erfindung die Aufgabe zugrunde, ein alternatives Kühlkonzept für eine Strömungsmaschine vorzuschlagen, das zu einer Optimierung der Kühlung bzw. der Kühlleistung beiträgt.
Zur Lösung der Aufgabe werden die Strömungsmaschine mit den Merkmalen des Anspruchs 1 sowie das Verfahren mit den Merkmalen des Anspruchs 9 vorge schlagen. Vorteilhafte Weiterbildungen der Erfindung sind den jeweiligen Unter ansprüchen zu entnehmen.
Offenbarung der Erfindung
Vorgeschlagen wird eine Strömungsmaschine zur Luftversorgung eines Brenn stoffzellensystems, umfassend mindestens ein mit einer Welle fest verbundenes Laufrad sowie einen Elektromotor zum Antreiben der Welle. Die Welle ist dabei über mindestens zwei Radiallager und ein Axiallager in einem Gehäuse drehbar gelagert. Erfindungsgemäß weist das Gehäuse mindestens einen Einlass für ei nen Kühlkanal auf, der sich innerhalb des Gehäuses in mehrere Kühlpfade auf teilt.
Über den Einlass wird dem Kühlkanal ein Kühlmedium, vorzugsweise Luft, zuge führt, das über die mehreren Kühlpfade dorthin geführt werden kann, wo im Be trieb der Strömungsmaschine der Wärmeeintrag in das Gehäuse am größten ist. Somit kann jeder Komponente der Strömungsmaschine, die im Betrieb zu einem Wärmeeintrag führt, über einen eigenen Kühlpfad mit Kühlmedium versorgt bzw. gekühlt werden. Die Aufteilung des Kühlkanals in mehrere Kühlpfade steigert auf diese Weise die Effizienz der Kühlung der Strömungsmaschine. Sofern Luft als Kühlmedium verwendet wird, kann ein Teil der zuvor mit Hilfe der Strömungsmaschine verdichteten Luft über den im Gehäuse vorgesehenen Ein lass in den Kühlkanal eingeleitet werden. Der Einlass ist hierzu bevorzugt in der Nähe eines Auslasses angeordnet, über den die verdichtete Luft aus der Strö mungsmaschine abströmt. Dies ermöglicht kurze Leitungswege innerhalb oder außerhalb der Strömungsmaschine. Da in der Regel das Verdichterrad axial an geströmt wird und die Luft über das Verdichterrad nach radial außen abströmt, liegt vorzugsweise der Einlass in das Gehäuse bzw. in den Kühlkanal ebenfalls in einem Außenumfangsbereich der Strömungsmaschine. Über den außenumfang seitig angeordneten Einlass und den Kühlkanal wird dann vorzugsweise die zum Kühlen abgezweigte verdichtete Luft von radial außen wieder nach radial innen geführt.
Bevorzugt teilt sich der Kühlkanal in Strömungsrichtung stromaufwärts einer Wicklung des Elektromotors in mehrere Kühlpfade auf. Zumindest ein Kühlpfad kann dann in Richtung der Wicklung geführt werden. Zumindest ein weiterer Kühlpfad kann dann an einen Ort innerhalb des Gehäuses geführt werden, der ebenfalls durch Wärmeeintrag belastet wird.
Ferner wird vorgeschlagen, dass sich der Kühlkanal in Strömungsrichtung strom aufwärts der Radial-und Axiallager in mehrere Kühlpfade aufteilt. Zumindest ein Kühlpfad kann dann in Richtung der Radial-und Axiallager geführt werden, wobei durch die Aufteilung in mehrere Kühlpfade jeweils ein Lager durch einen separa ten Kühlpfad gekühlt werden kann.
Gemäß einer bevorzugten Ausführungsform der Erfindung verlaufen mindestens zwei Kühlpfade zumindest abschnittsweise in einander entgegengesetzte axiale Richtungen. D.h., dass ein Kühlpfad sich in zwei Kühlpfade aufteilen kann, die in zwei einander entgegengesetzte Richtungen verlaufen. Über den ersten Kühl pfad kann ein erstes Radiallager und über den zweiten Kühlpfad kann ein zwei tes Radiallager mit Kühlmedium versorgt werden. Von einem Radiallager aus kann ein Kühlpfad bis zu einem Axiallager geführt werden. Zumindest ein Radial lager und ein Axiallager können somit über einen gemeinsamen Kühlpfad mit Kühlmedium versorgt werden. Da in der Regel zwei Axiallager vorhanden sind, kann das zweite Axiallager an einen weiteren Kühlpfad angebunden sein. Des Weiteren wird vorgeschlagen, dass mindestens zwei Kühlpfade innerhalb des Gehäuses wieder zusammengeführt werden. Auf diese Weise kann das in den Kühlpfaden vorhandene Kühlmedium über einen gemeinsamen Auslass aus dem Gehäuse wieder herausgeführt werden.
Vorzugsweise werden zwei Kühlpfade stromabwärts mindestens eines Axialla gers zusammengeführt. Vor dem Zusammenführen können die beiden Kühlpfade parallel geführt werden. Auf diese Weise können zwei gegenüberliegend ange ordnete Axiallager über separate Kühlpfade gekühlt werden.
In Weiterbildung der Erfindung wird vorgeschlagen, dass in den Kühlpfaden min destens ein Ventil zur Abstimmung der Massenströme integriert ist. Mit Hilfe des mindestens einen Ventils können die Massenströme gesteuert, insbesondere gedrosselt werden. Auf diese Weise können die Massenströme dem jeweiligen Bedarf optimal angepasst werden. Im Ergebnis kann somit die Effizienz der Küh lung weiter gesteigert werden. Bevorzugt ist mindestens ein Ventil im Bereich des im Gehäuse vorgesehenen Einlasses und/oder im Bereich eines Auslasses für das Kühlmedium angeordnet.
Bevorzugt sind bzw. ist der Einlass und/oder der Auslass außenumfangseitig im Gehäuse angeordnet. Dem Einlass kann auf diese Weise von außen Luft als Kühlmedium zugeführt werden, die zuvor mit Hilfe der Strömungsmaschine ver dichtet worden ist. An den Auslass kann eine Leitung angeschlossen sein, über welche Kühlmedium, das die Strömungsmaschine verlässt, in Richtung Brenn- stoffzellen-Abgas geleitet wird. Sofern die Strömungsmaschine eine Turbine auf weist, wird vorzugsweise das Kühlmedium stromabwärts der Turbine in das Ab gas eingespeist.
Vorteilhafterweise ist im Bereich des Einlasses ein Wärmetauscher, insbesonde re ein Luft- Wasser- Wärmetauscher, beispielsweise ein sogenannter Pin- Fin Küh ler, in das Gehäuse integriert. Mithilfe des Wärmetauschers kann das Kühlmedi um, vorzugsweise Luft, vorab gekühlt werden, um die Kühlleistung zu optimieren. Alternativ zu einem integrierten Wärmetauscher kann auch ein externer Wärme tauscher zum Vorkühlen des Kühlmediums verwendet werden. In diesem Fall ist der Einlass in das Gehäuse über eine entsprechende Leitung mit dem externen Wärmetauscher verbunden. Des Weiteren wird ein Verfahren zum Betreiben einer Strömungsmaschine vor geschlagen, mit deren Hilfe Luft verdichtet wird. Ein Teil der verdichteten Luft wird zum Kühlen der Strömungsmaschine abgezweigt und über einen Einlass in einen Kühlkanal eingeleitet, der in einem Gehäuse der Strömungsmaschine aus gebildet ist. Erfindungsgemäß wird die verdichtete Luft mit Hilfe eines Wärmetau schers, insbesondere eines Luft-Wasser-Wärmetauschers, gekühlt bevor sie in den Kühlkanal oder in mehrere Kühlpfade eingeleitet wird, in die sich der Kühlka nal innerhalb des Gehäuses aufteilt. Die vorgesehene Kühlung der als Kühlmedi um dienenden Luft erhöht die Kühlleistung und damit die Effizienz der Kühlung. Der zum Kühlen der Luft vorgesehene Wärmetauscher kann ein in die Strö mungsmaschine integrierter Wärmetauscher oder ein externer Wärmetauscher sein. Der integrierte Wärmetauscher besitzt den Vorteil, dass Leitungslängen eingespart werden.
Mit Hilfe des erfindungsgemäßen Verfahrens kann insbesondere eine erfin dungsgemäß ausgebildete Strömungsmaschine betrieben werden, da diese mehrere im Gehäuse ausgebildete Kühlpfade aufweist. Zudem kann eine erfin dungsgemäße Strömungsmaschine einen Wärmetauscher aufweisen, der in das Gehäuse integriert ist, so dass mit Hilfe dieses Wärmetauschers die vorgeschla gene Kühlung der als Kühlmedium dienenden Luft realisiert werden kann.
In Weiterbildung des Verfahrens wird vorgeschlagen, dass mit Hilfe mindestens eines in den Kühlkanal und/oder in mindestens einen Kühlpfad integrierten Ven tils eine Abstimmung der Massenströme vorgenommen wird. Die Abstimmung Massenströme ermöglicht eine bedarfsgerechte Kühlung der Strömungsmaschi ne.
Die Erfindung wird nachfolgend anhand der beiliegenden Zeichnung näher erläu tert. Diese zeigt einen schematischen Längsschnitt durch eine erfindungsgemä ße Strömungsmaschine, wobei lediglich die obere Hälfte der Strömungsmaschi ne wiedergegeben ist. Ausführliche Beschreibung der Zeichnung
Die dargestellte Strömungsmaschine 1 dient der Luftversorgung eines Brenn stoffzellensystems (nicht dargestellt). Sie umfasst eine Welle 2 und ein drehfest mit der Welle 2 verbundenes Laufrad 3. Über einen Ansaugstutzen 16 wird dem Laufrad 3 Luft zugeführt. Das Laufrad 2 wird demnach axial angeströmt. Die Luft wird über das Laufrad 3 nach radial außen geführt, wobei sie verdichtet wird.
Die Welle 2 ist über zwei in einem axialen Abstand zueinander angeordnete Ra diallager 5 und zwei Axiallager 6 drehbar gelagert. Der Antrieb der Welle 2 erfolgt mit Hilfe eines Elektromotors 4. Der Elektromotor 4 wird dabei von einer Turbi ne 17 unterstützt, die ein mit der Welle 2 drehfest verbundenes Turbinenrad 18 umfasst. Der Elektromotor 4 weist eine Wicklung 11 und einen Permanentmag neten 15 auf. Die Wicklung 11 ist in einem Gehäuse 7 der Strömungsmaschine 1 aufgenommen. Der Permanentmagnet 15 ist in die Welle 2 integriert.
Im Betrieb der Strömungsmaschine 1 entsteht Abwärme, insbesondere im Be reich des Elektromotors 4 sowie der Radial- und Axiallager 5, 6. Der Elektromo tor 4 und die Lager 5, 6 werden daher mit Hilfe eines Kühlmediums gekühlt. Als Kühlmedium wird zuvor verdichtete Luft verwendet, die stromabwärts des Lauf rads 3 abgezweigt und über einen Einlass 8 einem im Gehäuse 1 ausgebildeten Kühlkanal 9 zugeführt wird. In den Kühlkanal 9 ist ein Wärmetauscher 14 zur Kühlung der Luft integriert. Über ein Ventil 12 kann die gekühlte Luft gezielt in den Kühlkanal 9 stromabwärts des Wärmetauschers 14 eingeleitet werden, der sich kurz darauf in mehrere Kühlpfade 10.1, 10.2, 10.3, 10.4 aufteilt. Ein erster Kühlpfad 10.1 erstreckt sich zunächst in axialer, dann in radialer Richtung bis zu einem ersten Axiallager 6. Von dort führt der erste Kühlpfad 10.1 am Axiallager 6 vorbei nach radial außen. Der erste Kühlpfad 10.1 dient demnach der Kühlung mindestens eines Axiallagers 6. Ein zweiter Kühlpfad 10.2 führt an der Wick lung 11 des Elektromotors 4 vorbei nach radial innen bis zur Welle 2, so dass hierüber vorrangig die Wicklung 11 gekühlt wird. Im Bereich der Welle 2 teilt sich der zweite Kühlpfad 10.2 in die Kühlpfade 10.3 und 10.4 auf, die in einander ent gegengesetzte axiale Richtungen bis zu den beiden Radiallagern 5 verlaufen.
Der Kühlpfad 10.3 kühlt somit das linke Radiallager 5. Der Kühlpfad 10.4 kühlt das rechte Radiallager 5. Anschließend werden beide Kühlpfade 10.3, 10.4 wie- der nach radial außen geführt, wobei der Kühlpfad 10.3 an dem weiteren Axialla ger 6 vorbeigeführt wird. Stromabwärts des Axiallagers 6 bzw. der Axiallager 6 wird der Kühlpfad 10.3 mit dem ersten Kühlpfad 10.1 zusammengeführt, so dass die als Kühlmedium dienende Luft über einen gemeinsamen Auslass 13 aus dem Gehäuse 1 abgeführt werden kann. Die im Kühlpfad 10.4 vorhandene Luft wird über einen weiteren Auslass 13 abgeführt. Zur Steuerung der Luftmassenströme ist im Bereich dieses Auslasses 13 ein weiteres Ventil 12 vorgesehen.

Claims

Ansprüche
1. Strömungsmaschine (1) zur Luftversorgung eines Brennstoffzellensystems, umfassend mindestens ein mit einer Welle (2) drehfest verbundenes Laufrad (3) sowie einen Elektromotor (4) zum Antreiben der Welle (2), wobei die Welle (2) über mindestens zwei Radiallager (5) und ein Axiallager (6) in einem Gehäu se (7) drehbar gelagert ist, dadurch gekennzeichnet, dass das Gehäuse (7) mindestens einen Einlass (8) für einen Kühlkanal (9) aufweist, der sich innerhalb des Gehäuses (7) in mehrere Kühlpfade (10.1, 10.2, 10.3, 10.4) aufteilt.
2. Strömungsmaschine (1) nach Anspruch 1, dadurch gekennzeichnet, dass sich der Kühlkanal (9) in Strömungsrichtung stromaufwärts einer Wicklung (11) des Elektromotors (4) in mehrere Kühlpfa de (10.1, 10.2) aufteilt.
3. Strömungsmaschine (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sich der Kühlkanal (9) in Strömungsrichtung stromaufwärts der Radial- und Axiallager (5, 6) in mehrere Kühlpfade (10.3, 10.4) aufteilt.
4. Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens zwei Kühlpfade (10.3, 10. 4) zumin dest abschnittsweise in einander entgegengesetzte axiale Richtungen verlaufen.
5. Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens zwei Kühlpfade (10.1, 10.3) inner halb des Gehäuses (7) wieder zusammengeführt werden, vorzugsweise strom abwärts mindestens eines Axiallagers (6).
6. Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in den Kühlpfaden (10.1, 10.2, 10.3, 10.4) min destens ein Ventil (12) zur Abstimmung der Massenströme integriert ist, wobei vorzugsweise mindestens ein Ventil (12) im Bereich des Einlasses (8) und/oder im Bereich eines Auslasses (13) angeordnet ist.
7. Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Einlass (8) und/oder der Auslass (13) au ßenumfangseitig im Gehäuse (7) angeordnet sind bzw. ist.
8. Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Bereich des Einlasses (8) ein Wärmetau scher (14), insbesondere ein Luft-Wasser-Wärmetauscher, in das Gehäuse (7) integriert ist.
9. Verfahren zum Betreiben einer Strömungsmaschine (1), mit deren Hilfe Luft verdichtet wird, wobei ein Teil der verdichteten Luft zum Kühlen der Strömungs maschine (1) abgezweigt und über einen Einlass (8) in einen Kühlkanal (9) ein geleitet wird, der in einem Gehäuse (7) der Strömungsmaschine (1) ausgebildet ist, dadurch gekennzeichnet, dass die verdichtete Luft mit Hilfe eines Wärmetau schers (14), insbesondere eines Luft-Wasser-Wärmetauschers, gekühlt wird, be vor sie in den Kühlkanal (9) oder in mehrere Kühlpfade (10.1, 10.2, 10.3, 10.4) eingeleitet wird, in die sich der Kühlkanal (9) innerhalb des Gehäuses (7) aufteilt.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass mit Hilfe mindestens eines in den Kühlkanal (9) und/oder in mindestens einen Kühlpfad (10.4) integrierten Ventils (12) eine Ab stimmung der Massenströme vorgenommen wird.
PCT/EP2021/058147 2020-04-23 2021-03-29 Strömungsmaschine mit einem kühlkanal und verfahren zum betreiben derselben WO2021213783A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020205172.0A DE102020205172A1 (de) 2020-04-23 2020-04-23 Strömungsmaschine, Verfahren zum Betreiben einer Strömungsmaschine
DE102020205172.0 2020-04-23

Publications (1)

Publication Number Publication Date
WO2021213783A1 true WO2021213783A1 (de) 2021-10-28

Family

ID=75362615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/058147 WO2021213783A1 (de) 2020-04-23 2021-03-29 Strömungsmaschine mit einem kühlkanal und verfahren zum betreiben derselben

Country Status (2)

Country Link
DE (1) DE102020205172A1 (de)
WO (1) WO2021213783A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614062A (zh) * 2022-04-07 2022-06-10 珠海格力电器股份有限公司 燃料电池极板、双极板、燃料电池电堆和交通工具
DE102022206141A1 (de) 2022-06-20 2023-12-21 Mahle International Gmbh Fluidpumpe

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022206140A1 (de) 2022-06-20 2023-12-21 Mahle International Gmbh Fluidpumpe
DE102022122047A1 (de) 2022-08-31 2024-02-29 Zf Cv Systems Global Gmbh Strömungsmaschinenanordnung, Brennstoffzellensystem und Fahrzeug, insbesondere Nutzfahrzeug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120107105A1 (en) * 2009-07-13 2012-05-03 Gerard Korenblik Turbocompressor assembly with a cooling system
WO2019087869A1 (ja) * 2017-11-01 2019-05-09 株式会社Ihi 遠心圧縮機
WO2019145065A1 (de) * 2018-01-25 2019-08-01 Robert Bosch Gmbh Turbomaschine, insbesondere für ein brennstoffzellensystem, brennstoffzellensystem, verfahren zum betrieb einer turbomaschine und verfahren zum betrieb eines brennstoffzellensystems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120107105A1 (en) * 2009-07-13 2012-05-03 Gerard Korenblik Turbocompressor assembly with a cooling system
WO2019087869A1 (ja) * 2017-11-01 2019-05-09 株式会社Ihi 遠心圧縮機
US20200256343A1 (en) * 2017-11-01 2020-08-13 Ihi Corporation Centrifugal compressor with heat exchanger
WO2019145065A1 (de) * 2018-01-25 2019-08-01 Robert Bosch Gmbh Turbomaschine, insbesondere für ein brennstoffzellensystem, brennstoffzellensystem, verfahren zum betrieb einer turbomaschine und verfahren zum betrieb eines brennstoffzellensystems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614062A (zh) * 2022-04-07 2022-06-10 珠海格力电器股份有限公司 燃料电池极板、双极板、燃料电池电堆和交通工具
CN114614062B (zh) * 2022-04-07 2024-04-16 珠海格力电器股份有限公司 燃料电池极板、双极板、燃料电池电堆和交通工具
DE102022206141A1 (de) 2022-06-20 2023-12-21 Mahle International Gmbh Fluidpumpe

Also Published As

Publication number Publication date
DE102020205172A1 (de) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2021213783A1 (de) Strömungsmaschine mit einem kühlkanal und verfahren zum betreiben derselben
DE60029886T2 (de) Einrichtung und Methode zur Kühlung von rotierenden Komponenten bei Turbinen
DE102009025805B4 (de) Kühlkreislauf zur Verwendung bei der Turbinenschaufelkühlung
EP2600015B1 (de) Turboverdichter, Brennstoffzellensystem
EP0235642B1 (de) Einrichtung zur Belüftung von Rotorbauteilen für Verdichter von Gasturbinentriebwerken
EP2179143B1 (de) Spaltkühlung zwischen brennkammerwand und turbinenwand einer gasturbinenanlage
DE102013222067B4 (de) Ölablenker und Ölabdichtsystem
EP2108784A2 (de) Strömungsmaschine mit Fluid-Injektorbaugruppe
EP1736635A2 (de) Luftführungssystem zwischen Verdichter und Turbine eines Gasturbinentriebwerks
CN107420200A (zh) 用于轴承垫的气体分配迷宫件
WO2016091348A1 (de) Strömungsmaschine für einen energiewandler, insbesondere eine brennstoffzelle
DE102012013048A1 (de) Strömungsmaschine für einen Energiewandler sowie Brennstoffzelleneinrichtung mit einer solchen Strömungsmaschine
DE2741063A1 (de) Gasturbinentriebwerk
DE102012221298A1 (de) Ladeeinrichtung eines Antriebsaggregats
DE102011119879A1 (de) Fluidenergiemaschine, insbesondere für einen Abgasturbolader eines Kraftwagens
DE102008057729A1 (de) Abgasturbolader
DE102007050916A1 (de) Verfahren und Vorrichtung zum Zusammenbau von Gasturbinen-Triebwerken
WO2012107483A1 (de) Abgasturbolader mit gekühltem turbinengehäuse und gekühltem lagergehäuse und gemeinsamer kühlmittelzufuhr
DE102008051980A1 (de) Luftversorgungsvorrichtung für eine Brennstoffzelle
DE102016120682A1 (de) Zapfluftsystem eines Flugtriebwerks und Verfahren zum Bereitstellen von Zapfluft in einem Flugtriebwerk
WO2021069143A1 (de) Strömungsmaschine, verfahren zum betreiben einer strömungsmaschine
DE102010053497A1 (de) Abgasturbolader, insbesondere für eine Verbrennungskraftmaschine
DE102016004936B4 (de) Elektrische Maschine
DE102007017844B4 (de) Abgasturbolader, Brennkraftmaschine mit diesem Abgasturbolader und Verfahren zum Regeln des Ladedrucks des Abgasturboladers
WO2021063566A1 (de) Axial-gaslager

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21716142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21716142

Country of ref document: EP

Kind code of ref document: A1