WO2021063566A1 - Axial-gaslager - Google Patents

Axial-gaslager Download PDF

Info

Publication number
WO2021063566A1
WO2021063566A1 PCT/EP2020/072002 EP2020072002W WO2021063566A1 WO 2021063566 A1 WO2021063566 A1 WO 2021063566A1 EP 2020072002 W EP2020072002 W EP 2020072002W WO 2021063566 A1 WO2021063566 A1 WO 2021063566A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial
gas
bearing
cooling
cooling gas
Prior art date
Application number
PCT/EP2020/072002
Other languages
English (en)
French (fr)
Inventor
Felix FOERSTER
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2021063566A1 publication Critical patent/WO2021063566A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/042Sliding-contact bearings for exclusively rotary movement for axial load only with flexible leaves to create hydrodynamic wedge, e.g. axial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1005Construction relative to lubrication with gas, e.g. air, as lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/002Cooling of bearings of fluid bearings

Definitions

  • the invention relates to an axial gas bearing with at least one gas bearing gap which is used to form a load-bearing gas film between an axial bearing disk and a support surface.
  • An axial bearing designed as an air bearing with a spring foil and a cover foil is known from the American patent application US 2012/0207414 A1. Because of the foils used, such air bearings are also referred to as foil bearings.
  • the object of the invention is to functionally improve an axial gas bearing with at least one gas bearing gap which serves to form a supporting gas film between an axial bearing disk and a support surface.
  • an axial gas bearing with at least one gas bearing gap which serves to form a supporting gas film between an axial bearing disk and a support surface
  • the object is achieved by means of impingement cooling.
  • the axial bearing disk which is formed, for example, on a rotor, rotates about an axis of rotation. With the aid of bearing elements such as foils, this rotary movement generates a gas flow in the gas bearing gap which runs essentially in the circumferential direction and which builds up the supporting gas film between the axial bearing disk and the support surface.
  • the gas for the supporting gas film is for example via appropriate Openings supplied. The design and arrangement of these openings is known and will not be further explained here.
  • the gas is, for example, air.
  • the thrust gas bearing is therefore also referred to as an axial air bearing.
  • the term axial refers to the axis of rotation of the rotor. Axial means in the direction or parallel to the axis of rotation of the rotor.
  • the impingement cooling enables particularly efficient cooling of the axial gas bearing in a simple manner. Impingement cooling itself has been known for a long time, for example from German patent DE 2338841 C3. In this patent, impingement cooling is used to cool a hollow blade of a gas turbine.
  • a preferred exemplary embodiment of the axial gas bearing is characterized in that the impingement cooling comprises at least one cooling gas nozzle through which cooling gas is supplied.
  • the cooling gas is, for example, air.
  • the cooling gas is particularly advantageously supplied via a plurality of cooling gas nozzles.
  • the cooling gas nozzles are preferably evenly distributed in a circumferential direction.
  • gas is supplied via the cooling gas nozzle.
  • the cooling air gas is fed through the cooling gas nozzle at high speed in order to cool the axial bearing disk, which heats up strongly when the axial gas bearing is in operation.
  • Another preferred exemplary embodiment of the axial gas bearing is characterized in that the cooling gas nozzle is arranged radially outside the axial bearing disk.
  • the flow against the axial bearing disk on the outside of the rotor is at a high exit speed of the cooling gas nozzle.
  • the hot gas film flowing in the circumferential direction can be mixed on the rotor surface, whereby the heat transfer is effectively improved.
  • Another preferred exemplary embodiment of the axial gas bearing is characterized in that the cooling gas nozzle is designed and arranged in such a way that the cooling gas impinges directly on an outer surface of the axial bearing disk.
  • the desired cooling is advantageously created directly where the cold cooling gas is required.
  • heat is withdrawn more efficiently than the gas, which is rather hot during operation, on its way through appropriate lines and housing bodies with conventional thrust gas bearings. Due to the associated effective use of the cooling gas, the amount of cooling gas required can be reduced, which has a positive effect on the efficiency of a machine equipped with the axial gas bearing.
  • Another preferred exemplary embodiment of the axial gas bearing is characterized in that at least one cooling gas path runs from the cooling gas nozzle along a cover film and / or a spring film of the axial gas bearing designed as a film bearing.
  • the axial gas bearing designed as a film bearing particularly advantageously comprises at least two cover and spring films, between which the axial bearing disk is axially supported.
  • Another preferred embodiment of the axial gas bearing is characterized in that the cooling gas nozzle is designed and arranged in such a way that a cooling gas flow entering through the cooling gas nozzle mixes with the supporting gas film between the axial bearing disk and the support surface. The resulting turbulence improves the cooling of the axial gas bearing particularly effectively during operation.
  • the cooling gas nozzle has a special cooling gas nozzle geometry.
  • the special cooling gas nozzle geometry is advantageously designed as a Lavalle nozzle geometry.
  • the special cooling gas geometry can be introduced directly into a housing body.
  • the special cooling gas geometry can, however, also be embodied in an insert body, which in turn is pressed or screwed into a housing body.
  • the cooling gas nozzle geometry can be aligned radially.
  • the cooling gas geometry can, however, also be employed at an angle, preferably against the direction of rotation of the rotor, in order to increase a desired turbulence between the incoming cooling gas flow and the supporting gas film between the axial bearing disk and the support surface.
  • the cooling gas nozzle is formed in an annular body which is arranged in the axial direction between two support bodies.
  • the ring body and the support bodies are housing bodies which are used to represent a housing of the axial gas bearing.
  • the housing of the axial gas bearing is integrated, for example, into a housing of an air compressor which comprises a rotor which is supported with the aid of at least one previously described axial gas bearing.
  • the ring body simplifies the production of the cooling gas nozzles.
  • the multi-part design of the housing of the axial gas bearing simplifies the assembly of the same.
  • the ring body can be made in one piece or in several pieces.
  • Another preferred embodiment of the axial gas bearing is characterized in that the cooling gas exits through at least one annular gap between a rotor and at least one support body.
  • the pressures at the outlet of the cooling gas can be adjusted via a downstream fluidic resistance.
  • desired pressure differences can be set between the entering cooling gas, the cooling gas inside the axial gas bearing and at the outlet of the cooling gas.
  • the invention further relates to a cooling gas nozzle, an axial bearing disk, a rotor, an annular body, a support body and / or a film for an axial gas bearing described above.
  • the named parts can be traded separately.
  • the axial gas bearing described above is preferably used in an air compressor or air compressor for the axial bearing of a rotor.
  • the air compressor or air compressor is preferably used in a fuel cell system in order to compress a gas, in particular air, which is then fed to a fuel cell.
  • the invention also relates to a method for operating an axial gas bearing described above.
  • FIG. 1 shows an axial gas bearing in a schematic sectional illustration
  • FIG. 2 shows a schematic sectional illustration of a compressor with a rotor which is supported so that it can rotate radially and axially by three bearings;
  • FIG. 3 shows a schematic representation of a fuel cell system with an air compressor, as shown in FIG.
  • a fuel cell system 1 is shown schematically in FIG. Fuel cell systems are known per se, for example from the German patent application DE 10 2012 224052 A1.
  • the fuel cell system 1 comprises a fuel cell 3, which is only indicated by a dashed rectangle.
  • the fuel cell 3 comprises at least one stack 2, which is shown with a valve symbol as an alternative.
  • An arrow 4 indicates an air mass flow which is supplied to the fuel cell 3 via an air supply device 5 designed as an air compressor.
  • An arrow 6 indicates a compressed air mass flow 6, from which a cooling air mass flow 7 is branched off.
  • the cooling air mass flow 7 is also only indicated by an arrow and is part of a cooling air path 19 via which cooling air is supplied to the air compressor 5 via a cooling air inlet 23.
  • the cooling air supplied via the cooling air path 19 is used, for example, to cool air bearings with which a shaft of the air compressor 5 is rotatably supported.
  • the cooling air mass flow 7 represents a loss in the compressed air mass flow 6, since the branched cooling air mass flow 7 is no longer available in the stack 2 of the fuel cell 3. Since the cooling air mass flow 7 is provided via the air compressor 5 for internal cooling, energy, in particular electrical energy, is necessary to generate it. This energy has a negative effect on the overall efficiency of an electric drive machine of a motor vehicle that is driven via the fuel cell system 1.
  • the remaining air mass flow 6 is supplied to the fuel cell 3 via an air supply line 8.
  • the fuel cell 3 is a galvanic cell which converts the chemical reaction energy of a fuel supplied via a fuel supply line (not shown) and an oxidizing agent into electrical energy.
  • the oxidizing agent is the air that is supplied to the fuel cell 3 via the air supply line 8.
  • the fuel can preferably be hydrogen or methane or methanol. Accordingly, water vapor and carbon dioxide are produced as exhaust gas.
  • the exhaust gas is discharged in the form of an exhaust gas mass flow 10 via an exhaust line 9, as indicated by an arrow 10.
  • the exhaust gas mass flow 10 is discharged via an exhaust gas turbine 11 to an exhaust gas outlet 12, which is indicated by an arrow.
  • the air compressor 5 is arranged in the air supply line 8.
  • the exhaust gas turbine 11 is arranged in the exhaust gas line 9.
  • the air compressor 5 and the exhaust gas turbine 11 are mechanically connected via a shaft.
  • the shaft can be driven electrically by an electric motor 14.
  • the exhaust gas turbine 11 serves to support the electric motor 14 in driving the air compressor 5.
  • the air compressor 5, the exhaust gas turbine 11, the shaft and the electric motor 14 together form a turbo compressor 15, which is also referred to as a turbo machine.
  • the fuel cell system 1 further comprises a bypass line 13 in which a bypass valve 16 is arranged. Via the bypass line 13 with the bypass valve 16, a bypass air mass flow 17 for lowering the pressure of the air supply line 8, bypassing the stack 2 of the fuel cell 3, can be discharged into the exhaust line 9. This is advantageous, for example, in order to bring about a pressure reduction in the air mass flow supplied to the fuel cell 3 via the air supply line 8.
  • the fuel cell system 1 further comprises an intercooler 18, which is indicated by a dashed rectangle.
  • the intercooler 18 serves to cool the compressed air mass flow 6 before the cooling air mass flow 7 is branched off via the cooling air path 19.
  • a compressor 100 of a fuel cell system is shown schematically in FIG.
  • the compressor 100 comprises a housing 101 in which an electric motor 102 is arranged.
  • the electric motor 102 is used to drive a rotor 103 of the compressor 100.
  • the rotor 103 of the compressor 100 is mounted radially in the housing 101 with the aid of two radial gas bearings 104, 105.
  • An axial gas bearing 106 is used for the axial mounting of the rotor 103.
  • a compressor wheel 107 is attached to the end of the rotor 103 on the left in FIG.
  • the compressor wheel 107 is used to compress air that is provided in the fuel cell system when the compressor wheel 107 is driven by the electric motor 102 via the rotor 103.
  • the radial gas bearings 104, 105; 106 each comprise a housing body 108, 109; 110.
  • the rotor 103 comprises two rotor sections, which are also referred to as rotor bodies 111, 112, with which the rotor 103 is mounted radially in the radial gas bearings 104, 105.
  • the rotor 103 also includes a rotor collar, which is also referred to as the rotor body 113. Via the rotor body 113, the rotor 103 is axially supported in the housing 101 by the axial gas bearing 106.
  • the rotor body 113 is also referred to as a thrust bearing disk.
  • an axial gas bearing 30 is shown schematically in section.
  • the axial gas bearing 30 is an exemplary embodiment of the axial gas bearing denoted by 106 in FIG.
  • the axial gas bearing 30 comprises a rotor 31 which corresponds to the rotor 103 in FIG.
  • the rotor 31 comprises a rotor body 32 which is integrally connected to an axial bearing disk 33.
  • the rotor 31 with the rotor body 32 and the axial bearing disk 33 can be rotated about an axis of rotation 34, as indicated in FIG. 1 by an arrow 35.
  • the axial gas bearing 30 is integrated into a housing body 36 of an air compressor, as is shown schematically in FIG. 2, for example.
  • a bearing housing 37 of the axial gas bearing 30 is built onto the housing body 36.
  • the bearing housing 37 of the axial gas bearing 30 comprises two support bodies 38, 39.
  • annular body 40 and an additional annular body 41 are arranged in the axial direction.
  • a dashed line 50 indicates at least one fastening means with which the bearing housing 37 of the axial gas bearing 30 is attached to the housing body 36.
  • a cooling gas nozzle 42 with a special cooling gas nozzle geometry 51 is integrated into the ring body 40.
  • An arrow 43 indicates cooling air to which a pressure p1 is applied.
  • Another arrow 44 indicates that the cooling air strikes an outer surface 52 of the axial bearing disk 33 as a free jet at a pressure p2.
  • cooling air paths are indicated in FIG. 1 by dashed arrows 45.
  • the cooling air entering through the cooling gas nozzle 42 mixes or swirls with air, which in a known manner in the bearing housing 37 of the axial gas bearing 30 to form a supporting gas film between the axial bearing disk 33 and support surfaces 48, 49, which are on the support bodies 38, 39 are formed and facing each other.
  • a spring foil 53 and a cover foil 54 are arranged between the axial bearing disk 33 and the support surface 48.
  • a spring foil 55 and a cover foil 56 are arranged between the axial bearing disk 33 and the support surface 49.
  • the foils 53 to 56 like the gas bearing gaps 58, 59, are only shown schematically and in a greatly simplified manner in FIG.
  • Gas, in particular air, to form the supporting gas film in the gas bearing gaps 58, 59 is drawn into the gas bearing gaps 58, 59 through interruptions or bores in the foils 53 to 56, for example.
  • the gas supply for forming the supporting gas film in the gas bearing gaps 58, 59 is not shown in FIG.
  • Dashed arrows 46, 47 in FIG. 1 indicate how the air exits through annular gaps 61, 62 between rotor 31 and support bodies 38, 39.
  • the exiting cooling air is subjected to pressures p3 and p4.
  • a supporting gas film builds up in each of the gas bearing gaps 58, 59 between the cover foils 54, 56 and the axial bearing disk 33.
  • the spring foils 53, 54 which are supported on the support bodies 38, 39, are arranged between the cover foils 54, 56 and the support surfaces 48, 49.
  • An axial distance between the support bodies 38, 39 and thus a bearing play of the axial gas bearing 30 can be set via the additional ring body 41.
  • at least one of the support bodies 38, 39 which are also referred to as support plates, can be combined with the ring body 40 and / or the additional ring body 41 to form one component.
  • Cooling gas in particular cooling air, is directed radially or slightly obliquely onto the outer surface 52 or outer edge of the axial bearing disk 33 via the cooling gas nozzle 42, preferably via a plurality of cooling gas nozzles.
  • at least one cooling gas nozzle can also be integrated in the additional ring body 41 and / or in at least one of the support bodies 38, 39.
  • the cooling gas nozzle 42 is supplied with the pressure p1.
  • the pressure p1 is released via the cooling gas nozzle 42 to the pressure level p2 at the outer diameter of the axial bearing disk 33.
  • the cooling air flow is then divided according to the pressures p3 and p4 along the cooling air paths 45 on the two bearing sides and flows through the two gas bearing gaps 58, 59 before it exits between the rotor 31 and the support bodies 38, 39.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Support Of The Bearing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Die Erfindung betrifft ein Axial-Gaslager (30) mit mindestens einem Gaslagerspalt (58,59), der zur Ausbildung eines tragenden Gasfilms zwischen einer Axiallagerscheibe (33) und einer Stützfläche (48,49) dient. Das Axial-Gaslager (30) ist durch eine Prallkühlung (60) funktionell verbessert.

Description

Beschreibung
Titel
Axial-Gaslager
Die Erfindung betrifft ein Axial-Gaslager mit mindestens einem Gaslagerspalt, der zur Ausbildung eines tragenden Gasfilms zwischen einer Axiallagerscheibe und einer Stützfläche dient.
Stand der Technik
Aus der amerikanischen Offenlegungsschrift US 2012/0207414 Al ist ein als Luftlager ausgeführtes Axiallager mit einer Federfolie und einer Deckfolie bekannt. Aufgrund der verwendeten Folien werden derartige Luftlager auch als Folienlager bezeichnet.
Offenbarung der Erfindung
Aufgabe der Erfindung ist es, ein Axial-Gaslager mit mindestens einem Gaslagerspalt, der zur Ausbildung eines tragenden Gasfilms zwischen einer Axiallagerscheibe und einer Stützfläche dient, funktionell zu verbessern.
Die Aufgabe ist bei einem Axial-Gaslager mit mindestens einem Gaslagerspalt, der zur Ausbildung eines tragenden Gasfilms zwischen einer Axiallagerscheibe und einer Stützfläche dient, durch eine Prallkühlung gelöst. Im Betrieb des Axial- Gaslagers dreht sich die Axiallagerscheibe, die zum Beispiel an einem Rotor ausgebildet ist, um eine Drehachse. Durch diese Drehbewegung wird unter Zuhilfenahme von Lagerelementen, wie Folien, in dem Gaslagerspalt eine im Wesentlichen in Umfangsrichtung verlaufende Gasströmung erzeugt, die den tragenden Gasfilm zwischen der Axiallagerscheibe und der Stützfläche aufbaut. Das Gas für den tragenden Gasfilm wird zum Beispiel über entsprechende Öffnungen zugeführt. Die Ausführung und Anordnung dieser Öffnungen ist bekannt und hier nicht weiter erläutert. Bei dem Gas handelt es sich um Beispiel um Luft. Daher wird das Axial-Gaslager auch als Axial-Luftlager bezeichnet. Der Begriff axial bezieht sich auf die Drehachse des Rotors. Axial bedeutet in Richtung oder parallel zur Drehachse des Rotors. Durch die Prallkühlung wird auf einfache Art und Weise eine besonders effiziente Kühlung des Axial-Gaslagers ermöglicht. Die Prallkühlung an sich ist schon lange bekannt, zum Beispiel aus der deutschen Patentschrift DE 2338841 C3. In dieser Patentschrift wird die Prallkühlung zum Kühlen einer Hohlschaufel einer Gasturbine genutzt.
Ein bevorzugtes Ausführungsbeispiel des Axial-Gaslagers ist dadurch gekennzeichnet, dass die Prallkühlung mindestens eine Kühlgasdüse umfasst, durch die Kühlgas zugeführt wird. Bei dem Kühlgas handelt es sich zum Beispiel um Luft. Das Kühlgas wird besonders vorteilhaft über mehrere Kühlgasdüsen zugeführt. Die Kühlgasdüsen sind in einer Umfangsrichtung vorzugsweise gleichmäßig verteilt angeordnet. Über die Kühlgasdüse wird zusätzlich zu dem Gas, das zur Ausbildung des tragenden Gasfilms dient, Gas zugeführt. Durch die Kühlgasdüse wird das Kühlluftgas mit hoher Geschwindigkeit zugeführt, um die sich im Betrieb des Axial-Gaslagers stark erwärmende Axiallagerscheibe zu kühlen.
Ein weiteres bevorzugtes Ausführungsbeispiel des Axial-Gaslagers ist dadurch gekennzeichnet, dass die Kühlgasdüse radial außerhalb der Axiallagerscheibe angeordnet ist. Dadurch wird die Axiallagerscheibe an einer Rotoraußenseite mit einer hohen Austrittsgeschwindigkeit der Kühlgasdüse angeströmt. So kann der in Umfangsrichtung strömende heiße Gasfilm an der Rotoroberfläche durchmischt werden, wodurch der Wärmeübergang wirksam verbessert wird.
Ein weiteres bevorzugtes Ausführungsbeispiel des Axial-Gaslagers ist dadurch gekennzeichnet, dass die Kühlgasdüse so ausgeführt und angeordnet ist, dass das Kühlgas direkt auf eine Außenfläche der Axiallagerscheibe prallt. Durch das Entspannen des Kühlluftgases direkt im Axial-Gaslager entsteht die gewünschte Abkühlung vorteilhaft unmittelbar dort, wo das kalte Kühlgas benötigt wird. Zusätzlich wird dem im Betrieb eher heißen Gas zuvor auf dem Weg durch entsprechende Leitungen und Gehäusekörper effizienter Wärme entzogen als bei herkömmlichen Axial-Gaslagern. Durch die damit verbundene effektive Nutzung des Kühlgases kann die Menge des benötigten Kühlgases reduziert werden, was sich positiv auf den Wirkungsgrad einer mit dem Axial-Gaslager ausgestatteten Maschine auswirkt.
Ein weiteres bevorzugtes Ausführungsbeispiel des Axial-Gaslagers ist dadurch gekennzeichnet, dass mindestens ein Kühlgaspfad von der Kühlgasdüse an einer Deckfolie und/oder einer Federfolie des als Folienlager ausgeführten Axial- Gaslagers entlang verläuft. Besonders vorteilhaft umfasst das als Folienlager ausgeführte Axial-Gaslager mindestens zwei Deck- und Federfolien, zwischen denen die Axiallagerscheibe axial gelagert ist.
Ein weiteres bevorzugtes Ausführungsbeispiel des Axial-Gaslagers ist dadurch gekennzeichnet, dass die Kühlgasdüse so ausgeführt und angeordnet ist, dass sich ein durch die Kühlgasdüse eintretender Kühlgasstrom mit dem tragenden Gasfilm zwischen der Axiallagerscheibe und der Stützfläche vermischt. Dabei entstehende Verwirbelungen verbessern die Kühlung des Axial-Gaslagers im Betrieb besonders effektiv.
Ein weiteres bevorzugtes Ausführungsbeispiel des Axial-Gaslagers ist dadurch gekennzeichnet, dass die Kühlgasdüse eine spezielle Kühlgasdüsengeometrie aufweist. Die spezielle Kühlgasdüsengeometrie ist vorteilhaft als Lavalle- Düsengeometrie ausgeführt. Die spezielle Kühlgasgeometrie kann direkt in einen Gehäusekörper eingebracht werden. Die spezielle Kühlgasgeometrie kann aber auch in einem Einsatzkörper ausgebildet sein, der wiederum in einen Gehäusekörper eingepresst oder eingeschraubt wird. Die Kühlgasdüsengeometrie kann radial ausgerichtet sein. Die Kühlgasgeometrie kann aber auch in einem Winkel, vorzugsweise entgegen einer Rotordreh richtung, angestellt sein, um eine gewünschte Verwirbelung zwischen dem eintretenden Kühlgasstrom und dem tragenden Gasfilm zwischen der Axiallagerscheibe und der Stützfläche zu vergrößern.
Ein weiteres bevorzugtes Ausführungsbeispiel des Axial-Gaslagers ist dadurch gekennzeichnet, dass die Kühlgasdüse in einem Ringkörper ausgebildet ist, der in axialer Richtung zwischen zwei Stützkörpern angeordnet ist. Bei dem Ringkörper und den Stützkörpern handelt es sich um Gehäusekörper, die zur Darstellung eines Gehäuses des Axial-Gaslagers dienen. Das Gehäuse des Axial-Gaslagers ist zum Beispiel in ein Gehäuse eines Luftverdichters integriert, der einen Rotor umfasst, der mit Hilfe mindestens eines vorab beschriebenen Axial-Gaslagers gelagert wird. Der Ringkörper vereinfacht die Herstellung der Kühlgasdüsen. Darüber hinaus vereinfacht die mehrteilige Ausführung des Gehäuses des Axial-Gaslagers die Montage desselben. Der Ringkörper kann einteilig oder mehrteilig ausgeführt sein.
Ein weiteres bevorzugtes Ausführungsbeispiel des Axial-Gaslagers ist dadurch gekennzeichnet, dass das Kühlgas durch mindestens einen Ringspalt zwischen einem Rotor und mindestens einem Stützkörper austritt. Die Drücke am Austritt des Kühlgases können über einen nachgeschalteten fluidischen Widerstand eingestellt werden. In Kombination mit der Größe eines Eintrittsquerschnitts der Kühlgasdüse können gewünschte Druckdifferenzen zwischen dem eintretenden Kühlgas, dem Kühlgas in Inneren des Axial-Gaslagers und am Austritt des Kühlgases eingestellt werden.
Die Erfindung betrifft des Weiteren eine Kühlgasdüse, eine Axiallagerscheibe, einen Rotor, einen Ringkörper, einen Stützkörper und/oder eine Folie für ein vorab beschriebenes Axial-Gaslager. Die genannten Teile sind separat handelbar.
Das vorab beschriebene Axial-Gaslager wird vorzugsweise in einem Luftverdichter oder Luftkompressor zur axialen Lagerung eines Rotors verwendet. Der Luftverdichter oder Luftkompressor wiederum wird vorzugsweise in einem Brennstoffzellensystem verwendet, um ein Gas, insbesondere Luft, zu verdichten, die dann einer Brennstoffzelle zugeführt wird.
Die Erfindung betrifft des Weiteren ein Verfahren zum Betreiben eines vorab beschriebenen Axial-Gaslagers.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung verschiedene Ausführungsbeispiele im Einzelnen beschrieben sind. Kurze Beschreibung der Zeichnung Es zeigen:
Figur 1 ein Axial-Gaslager in einer schematischen Schnittdarstellung;
Figur 2 eine schematische Schnittdarstellung eines Verdichters mit einem Rotor, der durch drei Lager radial und axial drehbar gelagert ist; und
Figur 3 eine schematische Darstellung eines Brennstoffzellensystems mit einem Luftverdichter, wie er in Figur 2 dargestellt ist.
Beschreibung der Ausführungsbeispiele
In Figur 3 ist ein Brennstoffzellensystem 1 schematisch dargestellt. Brennstoffzellensysteme an sich sind bekannt, zum Beispiel aus der deutschen Offenlegungsschrift DE 10 2012 224052 Al. Das Brennstoffzellensystem 1 umfasst eine Brennstoffzelle 3, die nur durch ein gestricheltes Rechteck angedeutet ist. Die Brennstoffzelle 3 umfasst mindestens einen Stack 2, der ersatzweise mit einem Ventilsymbol dargestellt ist.
Durch einen Pfeil 4 ist ein Luftmassenstrom angedeutet, der über eine als Luftverdichter ausgeführte Luftzuführvorrichtung 5 der Brennstoffzelle 3 zugeführt wird. Durch einen Pfeil 6 ist ein verdichteter Luftmassenstrom 6 angedeutet, von dem ein Kühlluftmassenstrom 7 abgezweigt wird. Der Kühlluftmassenstrom 7 ist ebenfalls nur durch einen Pfeil angedeutet und ist Teil eines Kühlluftpfades 19, über welchen dem Luftverdichter 5 über einen Kühllufteintritt 23 Kühlluft zugeführt wird.
Die über den Kühlluftpfad 19 zugeführte Kühlluft dient zum Beispiel zur Kühlung von Luftlagern, mit denen eine Welle des Luftverdichters 5 drehbar gelagert ist. Der Kühlluftmassenstrom 7 stellt einen Verlust im verdichteten Luftmassenstrom 6 dar, da der abgezweigte Kühlluftmassenstrom 7 nicht mehr im Stack 2 der Brennstoffzelle 3 verfügbar ist. Da der Kühlluftmassenstrom 7 über den Luftverdichter 5 zur internen Kühlung bereitgestellt wird, ist Energie, insbesondere elektrische Energie, notwendig, um ihn zu erzeugen. Diese Energie wirkt sich negativ auf den Gesamtwirkungsgrad einer elektrischen Antriebsmaschine eines Kraftfahrzeugs aus, das über das Brennstoffzellensystem 1 angetrieben wird.
Der verbleibende Luftmassenstrom 6 wird über eine Luftzuführleitung 8 der Brennstoffzelle 3 zugeführt. Die Brennstoffzelle 3 ist eine galvanische Zelle, die chemische Reaktionsenergie eines über eine nicht gezeigte Brennstoffzuführungsleitung zugeführten Brennstoffs und eines Oxidationsmittels in elektrische Energie wandelt.
Das Oxidationsmittel ist die Luft, die über die Luftzuführleitung 8 der Brennstoffzelle 3 zugeführt wird. Der Brennstoff kann vorzugsweise Wasserstoff oder Methan oder Methanol sein. Entsprechend entsteht als Abgas Wasserdampf und Kohlendioxid. Das Abgas wird in Form eines Abgasmassenstroms 10 über eine Abgasleitung 9 abgeführt, wie durch einen Pfeil 10 angedeutet ist.
Der Abgasmassenstrom 10 wird über eine Abgasturbine 11 zu einem Abgasaustritt 12 abgeführt, der durch einen Pfeil angedeutet ist. Der Luftverdichter 5 ist in der Luftzuführleitung 8 angeordnet. Die Abgasturbine 11 ist in der Abgasleitung 9 angeordnet. Der Luftverdichter 5 und die Abgasturbine 11 sind über eine Welle mechanisch verbunden.
Die Welle ist durch einen Elektromotor 14 elektrisch antreibbar. Die Abgasturbine 11 dient der Unterstützung des Elektromotors 14 beim Antreiben des Luftverdichters 5. Der Luftverdichter 5, die Abgasturbine 11, die Welle und der Elektromotor 14 bilden zusammen einen Turboverdichter 15, der auch als Turbomaschine bezeichnet wird.
Das Brennstoffzellensystem 1 umfasst des Weiteren eine Bypassleitung 13, in der ein Bypassventil 16 angeordnet ist. Über die Bypassleitung 13 mit dem Bypassventil 16 kann ein Bypassluftmassenstrom 17 zur Druckabsenkung von der Luftzuführleitung 8 unter Umgehung des Stacks 2 der Brennstoffzelle 3 in die Abgasleitung 9 abgeführt werden. Das ist zum Beispiel vorteilhaft, um eine Druckabsenkung in dem über die Luftzuführleitung 8 der Brennstoffzelle 3 zugeführten Luftmassenstrom zu bewirken.
Das Brennstoffzellensystem 1 umfasst des Weiteren einen Zwischenkühler 18, der durch ein gestricheltes Rechteck angedeutet ist. Der Zwischenkühler 18 dient dazu, den verdichteten Luftmassenstrom 6 zu kühlen, bevor der Kühlluftmassenstrom 7 über den Kühlluftpfad 19 abgezweigt wird.
In Figur 2 ist ein Verdichter 100 eines Brennstoffzellensystems schematisch dargestellt. Der Verdichter 100 umfasst ein Gehäuse 101, in welchem ein Elektromotor 102 angeordnet ist. Der Elektromotor 102 dient zum Antrieb eines Rotors 103 des Verdichters 100.
Der Rotor 103 des Verdichters 100 ist mit Hilfe von zwei Radial-Gaslagern 104, 105 radial in dem Gehäuse 101 gelagert. Zur axialen Lagerung des Rotors 103 dient ein Axial-Gaslager 106.
An dem in Figur 2 linken Ende des Rotors 103 ist ein Verdichterrad 107 angebracht. Das Verdichterrad 107 dient zur Verdichtung von Luft, die in dem Brennstoffzellensystem bereitgestellt wird, wenn das Verdichterrad 107 über den Rotor 103 durch den Elektromotor 102 angetrieben wird.
Die Radial-Gaslager 104, 105; 106 umfassen jeweils einen Gehäusekörper 108, 109; 110. Der Rotor 103 umfasst zwei Rotorabschnitte, die auch als Rotorkörper 111, 112 bezeichnet werden, mit denen der Rotor 103 in den Radial-Gaslagern 104, 105 radial gelagert ist.
Der Rotor 103 umfasst darüber hinaus einen Rotorbund, der auch als Rotorkörper 113 bezeichnet wird. Über den Rotorkörper 113 ist der Rotor 103 durch das Axial-Gaslager 106 axial in dem Gehäuse 101 gelagert. Der Rotorkörper 113 wird auch als Axiallagerscheibe bezeichnet. In Figur 1 ist ein Axial-Gaslager 30 im Schnitt schematisch dargestellt. Das Axial- Gaslager 30 ist ein Ausführungsbeispiel des in Figur 2 mit 106 bezeichneten Axial-Gaslagers. Das Axial-Gaslager 30 umfasst einen Rotor 31, der dem Rotor 103 in Figur 2 entspricht.
Der Rotor 31 umfasst einen Rotorkörper 32, der einstückig mit einer Axiallagerscheibe 33 verbunden ist. Der Rotor 31 mit dem Rotorkörper 32 und der Axiallagerscheibe 33 ist um eine Drehachse 34 drehbar, wie in Figur 1 durch einen Pfeil 35 angedeutet ist.
Das Axial-Gaslager 30 ist in einen Gehäusekörper 36 eines Luftverdichters integriert, wie er zum Beispiel in Figur 2 schematisch dargestellt ist. An den Gehäusekörper 36 ist ein Lagergehäuse 37 des Axial-Gaslagers 30 angebaut. Das Lagergehäuse 37 des Axial-Gaslagers 30 umfasst zwei Stützkörper 38, 39.
Zwischen den Stützkörpern 38 und 39 sind in axialer Richtung ein Ringkörper 40 und ein Zusatzringkörper 41 angeordnet. Durch eine gestrichelte Linie 50 ist mindestens ein Befestigungsmittel angedeutet, mit dem das Lagergehäuse 37 des Axial-Gaslagers 30 an den Gehäusekörper 36 angebaut ist.
In den Ringkörper 40 ist eine Kühlgasdüse 42 mit einer speziellen Kühlgasdüsen geometrie 51 integriert. Durch einen Pfeil 43 ist Kühlluft angedeutet, die mit einem Druck pl beaufschlagt ist. Durch einen weiteren Pfeil 44 ist angedeutet, dass die Kühlluft mit einem Druck p2 als Freistrahl auf eine Außenfläche 52 der Axiallagerscheibe 33 aufprallt.
Mit der Kühlgasdüse 42 wird eine effektive Prallkühlung 60 in dem Lagergehäuse 37 realisiert. Durch gestrichelte Pfeile 45 sind in Figur 1 Kühlluftpfade angedeutet. Die durch die Kühlgasdüse 42 eintretende Kühlluft mischt sich beziehungsweise verwirbelt mit Luft, die in an sich bekannter Art und Weise in dem Lagergehäuse 37 des Axial-Gaslagers 30 zur Ausbildung eines tragenden Gasfilms zwischen der Axiallagerscheibe 33 und Stützflächen 48, 49, die an den Stützkörpern 38, 39 ausgebildet und einander zugewandt sind. Zwischen der Axiallagerscheibe 33 und der Stützfläche 48 sind eine Federfolie 53 und eine Deckfolie 54 angeordnet. Analog sind zwischen der Axiallagerscheibe 33 und der Stützfläche 49 eine Federfolie 55 und eine Deckfolie 56 angeordnet. Die Folien 53 bis 56 sind in Figur 1 ebenso wie Gaslagerspalte 58, 59 nur schematisch und stark vereinfacht dargestellt.
Gas, insbesondere Luft, zur Ausbildung des tragenden Gasfilms in den Gaslagerspalten 58, 59 wird zum Beispiel durch Unterbrechungen oder Bohrungen in den Folien 53 bis 56 in die Gaslagerspalte 58, 59 hineingezogen. Die Gaszufuhr zur Ausbildung des tragenden Gasfilms in den Gaslagerspalten 58, 59 ist in Figur 1 nicht dargestellt.
Durch gestrichelte Pfeile 46, 47 ist in Figur 1 angedeutet, wie die Luft durch Ringspalte 61, 62 zwischen dem Rotor 31 und den Stützkörpern 38, 39 austritt. Die austretende Kühlluft ist mit Drücken p3 und p4 beaufschlagt.
Im Betrieb des Axial-Gaslagers 30 baut sich in den Gaslagerspalten 58, 59 zwischen den Deckfolien 54, 56 und der Axiallagerscheibe 33 jeweils ein tragender Gasfilm auf. Zwischen den Deckfolien 54, 56 und den Stützflächen 48, 49 sind die Federfolien 53, 54 angeordnet, die sich an den Stützkörpern 38, 39 abstützen.
Über den Zusatzringkörper 41 kann ein axialer Abstand zwischen den Stützkörpern 38, 39 und damit ein Lagerspiel des Axial-Gaslagers 30 eingestellt werden. Je nach Ausführung kann auch mindestens einer der Stützkörper 38, 39, die auch als Stützplatten bezeichnet werden, mit dem Ringkörper 40 und/oder dem Zusatzringkörper 41 zu einem Bauteil vereint werden.
Über die Kühlgasdüse 42, vorzugsweise über mehrere Kühlgasdüsen, wird Kühlgas, insbesondere Kühlluft, radial oder leicht schräg auf die Außenfläche 52 oder Außenkante der Axiallagerscheibe 33 gerichtet. Anders als dargestellt, kann mindestens eine Kühlgasdüse auch in den Zusatzringkörper 41 und/oder in mindestens einen der Stützkörper 38, 39 integriert werden. Zur Realisierung der Prallkühlung 60 wird die Kühlgasdüse 42 mit dem Druck pl versorgt. Der Druck pl wird über die Kühlgasdüse 42 auf das Druckniveau p2 am Außendurchmesser der Axiallagerscheibe 33 entspannt. Der Kühlluftstrom teilt sich dann entsprechend den Drücken p3 und p4 entlang der Kühlluftpfade 45 auf die beiden Lagerseiten auf und durchströmt die beiden Gaslagerspalte 58, 59, bevor er zwischen dem Rotor 31 und den Stützkörpern 38, 39 austritt.

Claims

Ansprüche
1. Axial-Gaslager (30) mit mindestens einem Gaslagerspalt (58,59), der zur Ausbildung eines tragenden Gasfilms zwischen einer Axiallagerscheibe (33) und einer Stützfläche (48,49) dient, gekennzeichnet durch eine Prallkühlung (60).
2. Axial-Gaslager nach Anspruch 1, dadurch gekennzeichnet, dass die Prallkühlung (60) mindestens eine Kühlgasdüse (42) umfasst, durch die Kühlgas (43,44) zugeführt wird.
3. Axial-Gaslager nach Anspruch 2, dadurch gekennzeichnet, dass die Kühlgasdüse (42) radial außerhalb der Axiallagerscheibe (33) angeordnet ist.
4. Axial-Gaslager nach einem der Ansprüche 2 bis 3, dadurch gekennzeichnet, dass die Kühlgasdüse (42) so ausgeführt und angeordnet ist, dass das Kühlgas (43,44) direkt auf eine Außenfläche (52) der Axiallagerscheibe (33) prallt.
5. Axial-Gaslager nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass mindestens ein Kühlgaspfad (45) von der Kühlgasdüse (42) an einer Deckfolie (54,56) und/oder einer Federfolie (53,55) des als Folienlager ausgeführten Axial-Gaslagers (30) entlang verläuft.
6. Axial-Gaslager nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die Kühlgasdüse (42) so ausgeführt und angeordnet ist, dass sich ein durch die Kühlgasdüse (42) eintretender Kühlgasstrom mit dem tragenden Gasfilm zwischen der Axiallagerscheibe (33) und der Stützfläche (48,49) vermischt.
7. Axial-Gaslager nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass die Kühlgasdüse (42) eine spezielle Kühlgasdüsengeometrie (51) aufweist.
8. Axial-Gaslager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kühlgasdüse (42) in einem Ringkörper (40) ausgebildet ist, der in axialer Richtung zwischen zwei Stützkörpern (38,39) angeordnet ist.
9. Axial-Gaslager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Kühlgas (46,47) durch mindestens einen Ringspalt (61,62) zwischen einem Rotor (31) und mindestens einem Stützkörper (38,39) austritt.
10. Kühlgasdüse (42), Axiallagerscheibe (33), Rotor (31), Ringkörper (40),
Stützkörper (38,39) und/oder Folie (53-56) für ein Axial-Gaslager (30) nach einem der vorhergehenden Ansprüche.
PCT/EP2020/072002 2019-10-02 2020-08-05 Axial-gaslager WO2021063566A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019215219.8A DE102019215219A1 (de) 2019-10-02 2019-10-02 Axial-Gaslager
DE102019215219.8 2019-10-02

Publications (1)

Publication Number Publication Date
WO2021063566A1 true WO2021063566A1 (de) 2021-04-08

Family

ID=71950645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/072002 WO2021063566A1 (de) 2019-10-02 2020-08-05 Axial-gaslager

Country Status (2)

Country Link
DE (1) DE102019215219A1 (de)
WO (1) WO2021063566A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022211190A1 (de) 2022-10-21 2024-05-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verdichter und Verfahren zum Betreiben eines Verdichters

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6286303B1 (en) * 1999-11-18 2001-09-11 Allied Signal, Inc. Impingement cooled foil bearings in a gas turbine engine
WO2004055398A1 (en) * 2002-12-18 2004-07-01 Pratt & Whitney Canada Corp. Compliant support for increased load capacity axial thrust bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6286303B1 (en) * 1999-11-18 2001-09-11 Allied Signal, Inc. Impingement cooled foil bearings in a gas turbine engine
WO2004055398A1 (en) * 2002-12-18 2004-07-01 Pratt & Whitney Canada Corp. Compliant support for increased load capacity axial thrust bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022211190A1 (de) 2022-10-21 2024-05-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verdichter und Verfahren zum Betreiben eines Verdichters

Also Published As

Publication number Publication date
DE102019215219A1 (de) 2021-04-08

Similar Documents

Publication Publication Date Title
EP3456945B1 (de) Getriebe mit einem ölverteilungssystem
EP2329555B1 (de) Luftversorgungseinrichtung für einen brennstoffzellenstapel, brennstoffzellensystem und verfahren zum betreiben einer luftversorgungseinrichtung
WO2019020289A1 (de) Turbomaschine, insbesondere für ein brennstoffzellensystem
DE2032562A1 (de) Kompressor fur Gasturbinen Motoren
DE102012013048A1 (de) Strömungsmaschine für einen Energiewandler sowie Brennstoffzelleneinrichtung mit einer solchen Strömungsmaschine
EP3267089A1 (de) Ölverteilungssystem und turbomaschine mit einem ölverteilungssystem
EP2407247B1 (de) Turbinenmotor eines Rotationszerstäubers
DE102020205172A1 (de) Strömungsmaschine, Verfahren zum Betreiben einer Strömungsmaschine
WO2021063566A1 (de) Axial-gaslager
DE102008051980A1 (de) Luftversorgungsvorrichtung für eine Brennstoffzelle
WO2021069143A1 (de) Strömungsmaschine, verfahren zum betreiben einer strömungsmaschine
WO2009130262A1 (de) Trägerring einer leitvorrichtung mit sperrluftkanal
CH701132A2 (de) Verdichter für einen Turbolader und damit ausgerüsteter Turbolader.
WO2021063600A1 (de) Axial-gaslager
WO2018184800A1 (de) Turbokompressor, insbesondere für ein brennstoffzellensystem
WO2021018455A1 (de) Luftzuführvorrichtung
DE102007017844B4 (de) Abgasturbolader, Brennkraftmaschine mit diesem Abgasturbolader und Verfahren zum Regeln des Ladedrucks des Abgasturboladers
WO2005049972A1 (de) Reinigungsvorrichtung
DE2952446C2 (de) Teilchenabscheider für den Lufteinlaufkanal eines Flugzeugtriebwerkes
DE102019211237A1 (de) Luftzuführvorrichtung
EP1505263A1 (de) Abströmleiteinrichtung im Diffusor einer Strömungsmaschine und Verfahren zur Strömungsablenkung
WO2016078945A1 (de) Elektrisch betriebener gasverdichter
DE102010017061A1 (de) Dampfturbine
DE102016220849B4 (de) Turbolader für eine Antriebseinrichtung sowie Verfahren zum Betreiben eines Turboladers
DE102022210600A1 (de) Fördereinrichtung für ein Brennstoffzellen-System zur Förderung und/oder Rezirkulation eines gasförmigen Mediums, insbesondere Wasserstoff

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20751542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20751542

Country of ref document: EP

Kind code of ref document: A1