WO2021213757A1 - Getriebe und antriebssystem eines kraftfahrzeugs - Google Patents

Getriebe und antriebssystem eines kraftfahrzeugs Download PDF

Info

Publication number
WO2021213757A1
WO2021213757A1 PCT/EP2021/057363 EP2021057363W WO2021213757A1 WO 2021213757 A1 WO2021213757 A1 WO 2021213757A1 EP 2021057363 W EP2021057363 W EP 2021057363W WO 2021213757 A1 WO2021213757 A1 WO 2021213757A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
drive shaft
transmission
drive
drive unit
Prior art date
Application number
PCT/EP2021/057363
Other languages
English (en)
French (fr)
Inventor
Johannes Kaltenbach
Martin Brehmer
Fabian Kutter
Matthias Horn
Stefan Beck
Original Assignee
Zf Friedrichshafen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Friedrichshafen Ag filed Critical Zf Friedrichshafen Ag
Priority to US17/788,033 priority Critical patent/US20230029575A1/en
Priority to CN202180005665.XA priority patent/CN114466755A/zh
Publication of WO2021213757A1 publication Critical patent/WO2021213757A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/091Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4816Electric machine connected or connectable to gearbox internal shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4833Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4833Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
    • B60K2006/4841Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range the gear provides shifting between multiple ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0043Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising four forward speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a transmission of a motor vehicle. Furthermore, it relates to a drive system of a motor vehicle.
  • a transmission of a motor vehicle designed as a hybrid vehicle is known.
  • the transmission has a first drive shaft to which a first drive unit can be coupled, and a second drive shaft to which a second drive unit can be coupled.
  • the transmission comprises an output shaft to which an output can be coupled.
  • the first drive shaft is part of a first partial transmission for the first drive unit.
  • the second drive shaft is part of a second partial transmission for the second drive unit.
  • both partial transmissions are designed as spur gear transmissions.
  • the two partial transmissions can be coupled to one another via a shifting element arranged on a pre-gel shaft.
  • the invention is based on the object of creating a novel transmission of a motor vehicle and a drive system with such a transmission.
  • the transmission has a first drive shaft for a first drive unit.
  • the transmission also has a second drive shaft for a second drive unit.
  • the transmission has a first sub-transmission for the first drive unit, comprising the first drive shaft.
  • the transmission has a second sub-transmission, comprising the second drive shaft, for the second drive unit, the second sub-transmission being designed as a planetary gear with components at least comprising a sun gear, a ring gear and a web.
  • the second sub-transmission being designed as a planetary gear with components at least comprising a sun gear, a ring gear and a web.
  • at least planet gears are added if they are not defined as part of the web.
  • the first partial transmission for the first drive unit which is preferably designed as an internal combustion engine, is designed as a spur gear with intermeshing gears.
  • the transmission has at least one countershaft.
  • the transmission preferably has two countershafts.
  • the second partial transmission for the second drive unit which is preferably designed as an electrical machine, is designed as a planetary gear.
  • a shifting device is assigned to the planetary gear, in a first shifting position of the shifting device a first component of the planetary gear is connected to the second drive shaft and in a second shifting position of the shifting device, a second component of the planetary gear is connected to the second drive shaft.
  • the switching device can be used to achieve an alternating ratio of the second sub-transmission.
  • a particularly compact design can be realized for the transmission according to the invention. This is due, among other things, to the fact that the second sub-gear is designed as a planetary gear.
  • the countershafts can be made relatively short due to the execution of the second sub-transmission as a planetary gear.
  • Another advantage in terms of installation space can be achieved if the shifting elements assigned to the second part of the transmission are designed as double shifting elements.
  • the second output shaft is permanently coupled to a countershaft via a gearwheel arranged coaxially with the first drive shaft. This is preferably the only connection point to the output.
  • exactly two fixed gears can be arranged on the first drive shaft. These can preferably be arranged in double engagement, so each mesh with two idler gears. This results in a particularly compact design.
  • the gear wheel which is arranged on the countershaft and which is coupled to the second input shaft can preferably be designed as a fixed wheel.
  • the second drive unit can advantageously be connected to the ring gear of the planetary gear.
  • the planetary gear can be built up in a simplified manner.
  • a separating coupling assigned to the first drive shaft can be provided for the uncoupling connection of the first drive unit to the first drive shaft.
  • a third drive unit which is designed as an electrical machine, the third drive unit being in operative connection with the first drive shaft.
  • the third drive unit designed as an electrical machine, can work as a starter generator and improve the function of the gearbox or of the drive system having the gearbox.
  • a separating clutch is also present between the first drive unit, which is designed as an internal combustion engine, and the first drive shaft, purely electrical power shifts can be provided when the separating clutch is open. As a result, the operation of a drive system having the transmission can then be further improved.
  • the drive system of a motor vehicle according to the invention is defined in claim 10.
  • FIG. 1 shows a diagram of a drive system of a motor vehicle with a first exemplary embodiment of a transmission
  • FIG. 2 shows a switching matrix of the drive system of FIG. 1;
  • FIG. 3 shows a list of exemplary gear ratio values of a drive system with a first exemplary embodiment of a transmission
  • FIG. 4 shows a diagram of a drive system of a motor vehicle with a two-th embodiment of a transmission
  • FIG. 5 shows a diagram of a drive system of a motor vehicle with a third exemplary embodiment of a transmission
  • FIG. 6 shows a diagram of a drive system of a motor vehicle with a fourth exemplary embodiment of a transmission
  • FIG. 7 shows a diagram of a drive system of a motor vehicle with a fifth exemplary embodiment of a transmission
  • FIG. 8 shows a diagram of a drive system of a motor vehicle with a sixth embodiment of a transmission
  • FIG. 9 shows a diagram of a drive system of a motor vehicle with a seventh embodiment of a transmission
  • FIG. 10 shows a diagram of a drive system of a motor vehicle with an eighth exemplary embodiment of a transmission
  • FIG. 11 shows a diagram of a drive system of a motor vehicle with a ninth embodiment of a transmission
  • FIG. 12 shows a diagram of a drive system of a motor vehicle with a ten-th embodiment of a transmission
  • 13 shows a diagram of a drive system of a motor vehicle with an eleventh exemplary embodiment of a transmission
  • 14 shows a diagram of a drive system of a motor vehicle with a twelfth exemplary embodiment of a transmission.
  • FIG. 1 shows a diagram of a drive system 1 according to the invention of a motor vehicle which comprises a transmission 2 according to the invention.
  • the drive system 1 comprises, in addition to the transmission 2, a first drive unit 3 and a second drive unit 4, the first drive unit 3 preferably being an internal combustion engine and the second drive unit 4 preferably being an electrical machine.
  • the drive system of FIG. 1 is accordingly a hybrid drive system.
  • the transmission 2 comprises two sub-transmissions 5, 6.
  • the first sub-transmission 5 serves as a sub-transmission for the first drive unit 3, preferably designed as an internal combustion engine, wherein the first drive unit 3 can be coupled to a first drive shaft 7 of the first sub-transmission 5 of the transmission 2.
  • a damping device TD can be arranged between the internal combustion engine VM and the first drive shaft 7.
  • the damping device TD can have a torsion damper and / or a damper and / or a slip clutch.
  • the torsion damper can be designed as a dual mass flywheel and the damper can be designed as a speed-adaptive damper.
  • the second sub-transmission 6 serves as a sub-transmission for the second drive unit 4, which is formed as an electrical machine, and the second drive unit 4, which is preferably designed as an electrical machine, can be coupled to a second input shaft 8 of the transmission 2, which is provided by the second sub-transmission 6.
  • the transmission 2 also has an output shaft 9 common to both sub-transmissions 5, 6, to which an output 10 is coupled.
  • a differential of the output 10 is shown in FIG. 1.
  • the first partial transmission 5 has a countershaft 11.
  • the countershaft 11 runs parallel to the first drive shaft 7 and has gears 12, 16, 17, 18.
  • the countershaft 11 is in gear engagement with the output shaft 9 or the differential 10 via the gear 12 designed as a fixed gear.
  • the gears positioned coaxially to the first drive shaft 7 are gears 13, 14 and 15.
  • the gears 13 and 14 are fixed gears.
  • the gear 15 is not a fixed gear with respect to the first drive shaft 7, since there is no rotationally fixed connection. But it is also not a loose wheel, since no switching element for connecting the gear 15 to the first drive shaft 7 is provided.
  • the gear 15 is therefore only on the first drive shaft 7 gela Gert.
  • Two shift elements B and D are assigned to the second countershaft 9. These two switching elements B and D are preferably of a double switching element
  • the idler gear 20 When the switching element D is closed, the idler gear 20 is coupled to the second countershaft 9 in a rotationally fixed manner. Then, however, when the switching element B is closed, the idler gear 21 is rotatably coupled to the second countershaft 9.
  • Two shift elements A and C are assigned to the first countershaft 11. These two switching elements B and D are preferably of a double switching element
  • the idler gear 16 When the switching element C is closed, the idler gear 16 is coupled to the first countershaft 11 in a rotationally fixed manner. Then, however, when the switching element A is closed, the idler gear 17 is rotatably coupled to the first countershaft 11. In this way, four gear stages for gear ratios i1, i2, i3 and i4 can be made available with little installation space through the first partial transmission 5 alone.
  • the gears 16, 17 and 18 of the countershaft 11 mesh, as stated above, exclusively in gears positioned coaxially to the first drive shaft 7, namely in the gears 13, 14 and 15.
  • the gear 19 meshes with the differential of the output 10.
  • the gear 20 meshes with the fixed 13 of the first drive shaft 7, and the gear 21 meshes with the fixed gear 14 of the first drive shaft 7.
  • the first partial transmission 5 for the first preferably out as an internal combustion engine formed drive unit 3 is therefore designed as a spur gear made of intermingling gears.
  • the second partial transmission 6 is connected to the first partial transmission 5 via the transmission stage ic with the gears 15 and 18.
  • the translation between the electrical machine EM1 and the countershaft 11 can be influenced via the switching position of the switching device S3.
  • either the ring gear 22 or the web 23, as components of the planetary gear set PG, is coupled to the second drive shaft and then to the countershaft 11.
  • the second sub-gear 6 for the second drive unit 4, which is preferably formed as an electrical machine 4, is a planetary gear set PG, which comprises a ring gear 22, a web 23 and a sun gear 24.
  • the ring gear 22 of the planetary gear PG provides the second drive shaft 8 of the Ge gear 2, namely the second sub-gear 6 of the same, ready.
  • the electrical machine EM1 which provides the second drive unit 4 is coupled directly or directly to the second drive shaft 8 and coaxial to the planetary gear. be PG positioned so that the planetary set is nested in the rotor of the electrical machine 4.
  • the output side of the planetary gear 6 is formed by the web 23 or the ring gear 22.
  • the sun gear 24 is permanently coupled to the housing.
  • Shift elements E and F are assigned to the second partial transmission 6. Depending on the switching position of the switching elements E and F, one of the components of the planetary gear unit PG is coupled to the second drive shaft 8. When the shift element E is closed, this is the web 23, and when the shift element F is closed, this is the ring gear 22.
  • the two gears for the electric machine EM1 are generated with the help of a planetary gear PG.
  • the drive represents the ring gear 22, the output represents the web 23.
  • the sun 24 is permanently fixed to the housing.
  • the electrical machine EM1 is connected to the ring gear 22.
  • the shift element E connects the second drive shaft 8 to the web 23 so that the first electrical gear E1 can be shifted.
  • the shift element F connects the second drive shaft 8 to the ring gear 22 or to the rotor of the electrical machine EM1, so that the second electrical gear E2 can be shifted.
  • the second drive shaft 8 is permanently connected to the drive via the spur gear stage ic. This represents the partial transmission 6 for the electrical machine EM1.
  • the shifting elements E / F can be combined as a double shifting element in the shifting device S3.
  • “Purely internal combustion engine” means that the large electric machine EM1 is decoupled. However, the smaller electrical machine EM2 rotates with it, if it is available.
  • the planetary gear PG is arranged coaxially to the first drive shaft 7 •
  • An additional spur gear stage ic to the countershaft 11 is provided from the output of the planetary gear (web 23 / ring gear 22). It is advantageous to use the countershaft 11 and not the countershaft 9, since iab1 provides a higher gear ratio than iab2.
  • a high gear ratio for an electrical machine EM1 is advantageous: a design with more speed and less torque is possible.
  • the transmission 2 can be used for a purely electric ferry operation, a purely combustion engine ferry operation and a hybrid ferry operation.
  • the switching matrix of FIG. 2 summarizes the respective possible ferry operations, gears and, by way of example, gear ratios of the transmission in the respective gears. Shift elements which are closed in the respective gear or to stand of the transmission 2 are marked with an X in the shift matrix of FIG.
  • the translation values of the switching matrix in FIG. 2 are only of a purely exemplary nature.
  • FIG. 3 The translation values of the switching matrix in FIG. 3 are purely exemplary in nature.
  • Fig. 4 shows a modification of the embodiment of FIG. 1, in which the drive shaft 7 does not go to the end of the transmission 2.
  • the advantages and disadvantages are of a structural nature, for example with regard to storage.
  • FIG. 5 shows a further modification of the exemplary embodiment in FIG. 1, in which a separating clutch KO for the internal combustion engine VM is added.
  • the separating clutch KO can be designed as a dog clutch or alternatively as a friction clutch.
  • Providing the separating clutch KO has the following advantages:
  • • KO can also open under load, e.g. in the event of emergency braking or a malfunction in the VM.
  • • KO can also be closed at a differential speed so that a so-called “swing start” of the VM with EM2 is possible (utilization of the inertial mass of EM2 to start the VM).
  • Fig. 6 shows a further modification of the embodiment of Fig. 1, in which the rotor of the electrical machine EM1 is not permanently verbun with the ring gear, but with that of the switching device S3 in the form of Doppelschaltelemen th E / F between ring gear 22 and web 23 can be recoupled.
  • the web 23 is permanently connected to the second drive shaft 8.
  • the planetary gear set PG cannot be decoupled and also cannot be blocked. At higher driving speeds, high speeds occur on the ring gear 22 and on the planetary gears.
  • the switching matrix and functions are identical to the configuration according to FIG. 1.
  • FIG. 7 shows a further modification of the embodiment of FIG. 1, in which
  • the planetary gear set PG is interconnected differently: the electrical machine EM1 is connected to the web 23.
  • the spur gear transmission ratio ic is therefore adapted: a higher ratio is selected than in FIG. 1, so that suitable ratios again arise for the electrical machine EM1 or the electrical gears E1 and E2
  • Fig. 8 shows a modification of the embodiment of FIG. 7, in which the drive shaft 7 does not go to the end of the transmission.
  • the advantages and disadvantages are of a structural nature. This modification can be implemented in all embodiments.
  • Fig. 9 shows a modification of the embodiment of FIG.
  • the rotor of the electrical machine EM1 is not permanently connected to the ring gear 22, but can be recoupled between the ring gear 22 and the web 23 with the double switching element E / F.
  • the ring gear 22 is permanently connected to the second drive shaft
  • the planetary gear set PG cannot be decoupled, it cannot be decoupled and it cannot be blocked.
  • Fig. 10 shows a further modification of the embodiment of Fig. 1, in wel cher the planetary gear PG is connected differently: the connection of the ring gear 22 and the sun gear 24 are interchanged.
  • the ring gear 22 is permanently housed, the sun 24 is connected to the rotor of the electrical machine EM1. This results in the following differences from the embodiment according to FIG. 1:
  • the electric machine EM1 has a significantly higher gear ratio in gear E1 (in the numerical example 17.82 in Fig. 10 and 10.35 in Fig. 1)
  • FIG. 11 shows a modification of the embodiment of FIG. 10, in which the drive shaft 7 does not extend to the end of the transmission.
  • the advantages and disadvantages are of a constructive nature.
  • Fig. 12 shows a further modification of the embodiment of FIG. 1, in wel cher the electrical machine EM2 is connected to the countershaft 11, namely via an intermediate gear 26.
  • the modification is functionally equivalent to the configuration of FIG. 1, since the countershaft 1 is permanently operatively connected to the combustion engine VM.
  • Fig. 13 shows a further modification of the embodiment of FIG. 1, in wel cher •
  • the sun 24 for gear E1 is switched fixed to the housing (switching element E).
  • E and F are designed as a double switching element, e.g. in switching device S3. Since the sun 24 is switched against the housing 25, there are two sensible variants left for locking with F: Sun 24 with ring gear 22 or Sun 24 with web 23.
  • FIG. 14 shows a modification of the embodiment of FIG.
  • the electrical machine EM1 is connected to the web 23.
  • the spur gear ratio ic can be adapted (a higher ratio is selected than in FIG. 13) so that suitable gear ratios are again produced for the electrical machine EM1
  • the electrical machine EM1 which is arranged in particular coaxially with respect to the drive shafts, can sit entirely at the end of the transmission.
  • An actuator for actuating the switching device S3 with the switching elements E / F can reach it from the outside on the transmission side. This can be especially true for a particularly large and powerful electrical machine EM1 be useful if both the switching device S3 with the switching elements E / F and the planetary gear PG are at least partially radially nested within the rotor of the electrical machine EM1. This has the advantage that axial installation space is saved.
  • the drive shaft 7 does not have to go to the end of the gear 2, it can alternatively end at the fixed gear of the spur gear stages i1 / i2. However, it can be constructive for storage reasons to extend the drive shaft 7 as indicated in the scheme.
  • the electrical machine EM2 can preferably be connected to the fixed gear of the spur gear stages i3 / i4 with an intermediate gear (this has a larger diameter than the fixed gear of the spur gear stages i1 / i2).
  • the electric machine EM2 can alternatively be connected to the drive shaft 7 as a coaxial electric machine.
  • the electric machine EM2 could alternatively also be attached to the belt drive of the internal combustion engine VM.
  • the electrical machine EM2 could alternatively also be connected to an additional fixed gear on the first drive shaft 7.
  • the electrical machine EM2 could also alternatively be connected to a loose wheel of the countershafts 9 or 11, since there is also a permanent operative connection to the first drive shaft 7 in this way.
  • the following functions can be covered with the electric machine EM2, provided that the electric machine EM2 is available:
  • the electrical machine EM2 generates electricity for the electrical machine EM1 in the switching states 9 and 10

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Structure Of Transmissions (AREA)
  • Retarders (AREA)

Abstract

Getriebe (2) eines Kraftfahrzeugs. Mit einer ersten Antriebswelle (7) für ein erstes Antriebsaggregat (3). Mit einer zweiten Antriebswelle (8) für ein zweites Antriebsaggregat (4). Mit einer Abtriebswelle (9). Mit einem die erste Antriebswelle (7) und eine über eine Konstantübersetzung mit der ersten Antriebswelle (7) gekoppelte Vorgelegewellem(11) umfassenden ersten Teilgetriebe (5), wobei auf der Vorgelegewelle (11) Zahnräder (16, 17, 18) angeordnet sind, die ausschließlich in koaxial zur ersten Antriebswelle (7) angeordnete Zahnräder (12, 13, 15) kämmen, wobei zumindest einige dieser Zahnräder (14, 15) in auf der Abtriebswelle (9) angeordnete Zahnräder (20, 21) kämmen, wobei sowohl der ersten Antriebswelle (7) als auch der Vorgelegewelle (11) Schaltelemente (A, B, C, D) zugordnet sind, die entweder einen Gang mit einer ersten Anzahl von Zahnradeingriffen oder einen Windungsgang mit einer zweiten Anzahl von Zahnradeingriffen bereitstellen. Mit einem die zweite Antriebswelle (8) umfasenden zweiten Teilgetriebe (6), wobei das zweite Teilgetriebe (6) als Planetengetriebe ausgebildet ist, wobei ein Hohlrad (22) die zweite Antriebswelle (8) des zweiten Teilgetriebes (6) bildet, wobei ein Steg (23) an die Abtriebswelle (9) und an ein auf der Vorgelegewelle (11) angeordnetes Zahnrad (18) permanent gekoppelt ist, wobei dem Planetengetriebe Schaltelemente (F, E) zugordnet sind, über die abhängig von deren Schaltstellung ein Sonnenrad (24) gehäusefest anbindbar oder das Planetengetriebe in Blockumlauf bringbar ist.

Description

Getriebe und Antriebssvstem eines Kraftfahrzeugs
Die Erfindung betrifft ein Getriebe eines Kraftfahrzeugs. Weiterhin betrifft die ein An triebssystem eines Kraftfahrzeugs.
Aus der US 2017/0129323 A1 ist ein Getriebe eines als Hybridfahrzeug ausgebilde ten Kraftfahrzeugs bekannt. Das Getriebe verfügt über eine erste Antriebswelle, an die ein erstes Antriebsaggregat koppelbar ist, sowie über eine zweite Antriebswelle, an die ein zweites Antriebsaggregat koppelbar ist. Ferner umfasst das Getriebe eine Abtriebswelle, an die ein Abtrieb koppelbar ist. Die erste Antriebswelle ist Bestandteil eines ersten Teilgetriebes für das erste Antriebsaggregat. Die zweite Antriebswelle ist Bestandteil eines zweiten Teilgetriebes für das zweite Antriebsaggregat. Beide Teilgetriebe sind nach der US 2017/0129323 A1 als Stirnradgetriebe ausgeführt. Die beiden Teilgetriebe sind aneinander koppelbar, und zwar über ein auf einer Vorgele gewelle angeordnetes Schaltelement.
Das Getriebe gemäß US 2017/0129323 A1 benötigt einen relativ großen Bauraum und weist ein relativ hohes Gewicht auf.
Hiervon ausgehend liegt der Erfindung die Aufgabe zu Grunde, ein neuartiges Ge triebe eines Kraftfahrzeugs und ein Antriebssystem mit einem solchen Getriebe zu schaffen.
Diese Aufgabe wird durch ein Getriebe eines Kraftfahrzeugs gemäß Patentanspruch 1 gelöst.
Das Getriebe weist eine erste Antriebswelle für ein erstes Antriebsaggregat auf.
Das Getriebe weist ferner eine zweite Antriebswelle für ein zweites Antriebsaggregat auf. Das Getriebe weist ein die erste Antriebswelle umfassendes erstes Teilgetriebe für das erste Antriebsaggregat auf.
Das Getriebe weist ein die zweite Antriebswelle umfassendes zweites Teilgetriebe für das zweite Antriebsaggregat auf, wobei das zweite Teilgetriebe als Planetengetriebe mit Bauteilen wenigstens umfassend mit ein Sonnenrad, ein Hohlrad und einen Steg ausgebildet ist. Je nach Definition kommen zumindest Planetenräder hinzu, wenn diese nicht als Teil des Stegs definiert sind.
Das erste Teilgetriebe für das erste Antriebsaggregat, welches vorzugsweise als Verbrennungsmotor ausgeführt ist, ist als Stirnradgetriebe mit ineinander kämmen den Zahnrädern ausgebildet.
Das Getriebe weist wenigstens eine Vorgelegewelle auf. Vorzugsweise weist das Getriebe zwei Vorgelegewellen auf.
Das zweite Teilgetriebe für das zweite Antriebsaggregat, welches vorzugsweise als elektrische Maschine ausgeführt ist, ist als Planetengetriebe ausgeführt.
Dabei ist eine Schalteinrichtung dem Planetengetriebe zugeordnet, wobei in einer ersten Schaltstellung der Schalteinrichtung ein erstes Bauteil des Planetengetriebes mit der zweiten Antriebswelle verbunden ist und in einer zweiten Schaltstellung der Schalteinrichtung ein zweites Bauteil des Planetengetriebes mit der zweiten An triebswelle verbunden ist. Durch die Schalteinrichtung kann eine wechselnde Über setzung des zweiten Teilgetriebes erzielt werden.
Für das erfindungsgemäße Getriebe kann eine besonders kompakte Bauform reali siert werden. Dies liegt unter anderem darin begründet, dass das zweite Teilgetriebe als Planetengetriebe ausgeführt ist. Die Vorgelegewellen können durch die Ausfüh rung des zweiten Teilgetriebes als Planetengetriebe relativ kurz ausgeführt werden. Ein weiterer Bauraumvorteil kann dann realisiert werden, wenn die dem zweiten Teil getriebe zugeordneten Schaltelemente als Doppelschaltelement ausgeführt werden. Nach einer vorteilhaften Weiterbildung ist die zweite Abtriebswelle über ein koaxial zur ersten Antriebswelle angeordnetes Zahnrad permanent an eine Vorgelegewelle gekoppelt. Bevorzugt ist dies die einzige Anbindungsstelle an den Abtrieb.
Bevorzugt können auf der ersten Antriebswelle genau zwei Festräder angeordnet sein. Diese können bevorzugt im Doppeleingriff angeordnet sein, also jeweils mit zwei Losrädern kämmen. Dadurch ergibt sich eine besonders kompakte Bauweise.
Vorzugsweise kann das auf der Vorgelegewelle angeordnete Zahnrad, welches an die zweite Eingangswelle gekoppelt ist, als Festrad ausgebildet sein.
Vorteilhafterweise kann das zweite Antriebsaggregat an das Hohlrad des Planeten getriebes angebunden sein. Dadurch kann das Planetengetriebe vereinfacht aufge baut werden.
Vorteilhafterweise kann durch eine der ersten Antriebswelle zugeordnete Trennkupp lung zur abkoppelbaren Anbindung des ersten Antriebsaggregats an die erste An triebswelle vorgesehen sein.
Nach einer vorteilhaften Weiterbildung ist ein drittes Antriebsaggregat vorhanden, welches als elektrische Maschine ausgebildet ist, wobei das dritte Antriebsaggregat mit der ersten Antriebswelle in Wirkverbindung steht. Dann, wenn ein weiteres, drit tes Antriebsaggregat vorhanden ist, welches ebenso wie das zweite Antriebsaggre gat vorzugsweise als elektrische Maschine ausgebildet ist, können weitere Vorteile realisiert werden. So kann insbesondere das als elektrische Maschine ausgebildete dritte Antriebsaggregat als Starter-Generator arbeiten und die Funktion des Getrie bes bzw. des das Getriebe aufweisenden Antriebssystems verbessern. Dann, wenn zusätzlich eine Trennkupplung zwischen dem als Verbrennungsmotor ausgebildeten ersten Antriebsaggregat und der ersten Antriebswelle vorhanden ist, können rein elektrische Lastschaltungen bei geöffneter Trennkupplung bereitgestellt werden. Hierdurch kann dann der Betrieb eines das Getriebe aufweisenden Antriebssystems weiter verbessert werden. Das erfindungsgemäße Antriebssystem eines Kraftfahrzeugs ist in Anspruch 10 defi niert.
Bevorzugte Weiterbildungen ergeben sich aus den Unteransprüchen und der nach folgenden Beschreibung. Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigt:
Fig. 1 ein Schema eines Antriebssystems eines Kraftfahrzeugs mit einem ersten Ausführungsbeispiel eines Getriebes;
Fig. 2 eine Schaltmatrix des Antriebssystems der Fig. 1 ;
Fig. 3 eine Liste beispielhafter Übersetzungswerte eines Antriebssystems mit einem ersten Ausführungsbeispiel eines Getriebes;
Fig. 4 ein Schema eines Antriebssystems eines Kraftfahrzeugs mit einem zwei ten Ausführungsbeispiel eines Getriebes;
Fig. 5 ein Schema eines Antriebssystems eines Kraftfahrzeugs mit einem dritten Ausführungsbeispiel eines Getriebes;
Fig. 6 ein Schema eines Antriebssystems eines Kraftfahrzeugs mit einem vierten Ausführungsbeispiel eines Getriebes;
Fig. 7 ein Schema eines Antriebssystems eines Kraftfahrzeugs mit einem fünften Ausführungsbeispiel eines Getriebes;
Fig. 8 ein Schema eines Antriebssystems eines Kraftfahrzeugs mit einem sechs ten Ausführungsbeispiel eines Getriebes;
Fig. 9 ein Schema eines Antriebssystems eines Kraftfahrzeugs mit einem sieb ten Ausführungsbeispiel eines Getriebes;
Fig. 10 ein Schema eines Antriebssystems eines Kraftfahrzeugs mit einem achten Ausführungsbeispiel eines Getriebes;
Fig. 11 ein Schema eines Antriebssystems eines Kraftfahrzeugs mit einem neun ten Ausführungsbeispiel eines Getriebes;
Fig. 12 ein Schema eines Antriebssystems eines Kraftfahrzeugs mit einem zehn ten Ausführungsbeispiel eines Getriebes;
Fig. 13 ein Schema eines Antriebssystems eines Kraftfahrzeugs mit einem elften Ausführungsbeispiel eines Getriebes; Fig. 14 ein Schema eines Antriebssystems eines Kraftfahrzeugs mit einem zwölf ten Ausführungsbeispiel eines Getriebes.
Fig. 1 zeigt ein Schema eines erfindungsgemäßen Antriebssystems 1 eines Kraft fahrzeugs, welches ein erfindungsgemäßes Getriebe 2 umfasst.
Das Antriebssystem 1 umfasst zusätzlich zu dem Getriebe 2 ein erstes Antriebsag gregat 3 und ein zweites Antriebsaggregat 4, wobei das erste Antriebsaggregat 3 vorzugsweise als Verbrennungsmotor und das zweite Antriebsaggregat 4 vorzugs weise als elektrische Maschine ausgeführt ist. Bei dem Antriebssystem der Fig. 1 handelt es sich demnach um ein Hybrid-Antriebssystem.
Das Getriebe 2 umfasst zwei Teilgetriebe 5, 6. Das erste Teilgetriebe 5 dient als Teilgetriebe für das erste, vorzugsweise als Verbrennungsmotor ausgebildete An triebsaggregat 3, wobei das erste Antriebsaggregat 3 an eine erste Antriebswelle 7 des ersten Teilgetriebes 5 des Getriebes 2 koppelbar ist.
Zwischen dem Verbrennungsmotor VM und der ersten Antriebswelle 7 kann eine Dämpfungseinrichtung TD angeordnet sein. Die Dämpfungseinrichtung TD kann einen Torsionsdämpfer und/oder einen Tilger und/oder eine Rutschkupplung aufweisen. Der Torsionsdämpfer kann als Zweimassenschwungrad ausgebildet sein und der Tilger kann als Drehzahladaptiver Tilger ausgebildet sein.
Das zweite Teilgetriebe 6 dient als Teilgetriebe für das als elektrische Maschine aus gebildete zweite Antriebsaggregat 4, wobei das vorzugsweise als elektrische Ma schine ausgebildete zweite Antriebsaggregat 4 an eine zweite Eingangswelle 8 des Getriebes 2 koppelbar ist, die vom zweiten Teilgetriebe 6 bereitgestellt ist.
Das Getriebe 2 verfügt weiterhin über eine für beide Teilgetriebe 5, 6 gemeinsame Abtriebswelle 9, an die ein Abtrieb 10 gekoppelt ist. Vom Abtrieb 10 ist in Fig. 1 ein Differenzial gezeigt. Das erste Teilgetriebe 5 verfügt zusätzlich zu der ersten Antriebswelle 7, an die im gezeigten Ausführungsbeispiel der Fig. 1 das vorzugsweise als Verbrennungsmotor VM ausgebildete erste Antriebsaggregat 3 permanent gekoppelt ist, über eine Vorge legewelle 11 . Die Vorgelegewelle 11 verläuft parallel zur ersten Antriebswelle 7, und weist Zahnräder 12, 16, 17, 18 auf. Die Vorgelegewelle 11 steht über das als Festrad ausgebildete Zahnrad 12 in Zahnradeingriff mit der Abtriebswelle 9 bzw. dem Differential 10.
Bei den koaxial zur ersten Antriebswelle 7 positionierten Zahnrädern handelt es sich um die Zahnräder 13, 14 und 15. Bei den Zahnrädern 13 und 14 handelt es sich um Festräder. Das Zahnrad 15 ist in Bezug auf die erste Antriebswelle 7 kein Festrad, da keine drehfeste Verbindung besteht. Es ist aber auch kein Losrad, da kein Schalt element zur Verbindung des Zahnrades 15 mit der ersten Antriebswelle 7 vorgese hen ist. Das Zahnrad 15 ist also ausschließlich auf der ersten Antriebswelle 7 gela gert.
Der zweiten Vorgelegewelle 9 sind zwei Schaltelemente B und D zugeordnet. Diese beiden Schaltelemente B und D sind vorzugsweise von einem Doppelschaltelement
51 ausgeführt, wobei immer nur eines dieser Schaltelemente geschlossen sein kann.
Dann, wenn das Schaltelement D geschlossen ist, ist das Losrad 20 drehfest an die zweite Vorgelegewelle 9 gekoppelt. Dann hingegen, wenn das Schaltelement B ge schlossen ist, ist das Losrad 21 drehfest an die zweite Vorgelegewelle 9 gekoppelt.
Der ersten Vorgelegewelle 11 sind zwei Schaltelemente A und C zugeordnet. Diese beiden Schaltelemente B und D sind vorzugsweise von einem Doppelschaltelement
52 ausgeführt, wobei immer nur eines dieser Schaltelemente geschlossen sein kann.
Dann, wenn das Schaltelement C geschlossen ist, ist das Losrad 16 drehfest an die erste Vorgelegewelle 11 gekoppelt. Dann hingegen, wenn das Schaltelement A ge schlossen ist, ist das Losrad 17 drehfest an die erste Vorgelegewelle 11 gekoppelt. Auf diese Art und Weise können alleine durch das erste Teilgetriebe 5 vier Gangstu fen für Übersetzungen i1, i2, i3 und i4 mit geringem Bauraum zur Verfügung gestellt werden.
Die Zahnräder 16, 17 und 18 der Vorgelegewelle 11 kämmen, wie oben ausgeführt, ausschließlich in koaxial zur ersten Antriebswelle 7 positionierte Zahnräder, nämlich in die Zahnräder 13, 14 und 15.
Das Zahnrad 19 kämmt in das Differential des Abtriebs 10. Das Zahnrad 20 kämmt in das Fest 13 der ersten Antriebswelle 7, das Zahnrad 21 kämmt in das Festrad 14 der ersten Antriebswelle 7.
Das erste Teilgetriebe 5 für das erste, vorzugsweise als Verbrennungsmotor ausge bildete Antriebsaggregat 3 ist demnach als Stirnradgetriebe aus ineinander käm menden Zahnrädern ausgebildet.
Über die Übersetzungsstufe ic mit den Zahnrädern 15 und 18 ist das zweite Teilge triebe 6 an das erste Teilgetriebe 5 angebunden. Die Übersetzung zwischen der elektrischen Maschine EM1 und der Vorgelegewelle 11 kann über die Schaltstellung der Schalteinrichtung S3 beeinflusst werden. Je nachdem ob und welches der Schaltelemente E und F geschlossen ist, ist entweder das Hohlrad 22 oder der Steg 23 als Bauteile des Planetengetriebes PG mit der zweiten Antriebswelle und dann mit der Vorgelegewelle 11 gekoppelt.
Bei dem zweiten Teilgetriebe 6 für das vorzugsweise als elektrische Maschine 4 aus gebildete zweite Antriebsaggregat 4 handelt es sich um ein Planetengetriebe PG, welches ein Hohlrad 22, einen Steg 23 und ein Sonnenrad 24 umfasst.
Das Hohlrad 22 des Planetengetriebes PG stellt die zweite Antriebswelle 8 des Ge triebes 2, nämlich des zweiten Teilgetriebes 6 desselben, bereit. In Fig. 1 ist die elektrische Maschine EM1 , die das zweite Antriebsaggregat 4 bereitstellt, direkt bzw. unmittelbar an die zweite Antriebswelle 8 gekoppelt und koaxial zum Planetengetrie- be PG positioniert, sodass der Planetensatz im Rotor der elektrischen Maschine 4 geschachtelt angeordnet ist.
Die Abtriebsseite des Planetengetriebes 6 wird vom Steg 23 oder vom Hohlrad 22 gebildet. Das Sonnenrad 24 ist permanent gehäusefest gekoppelt.
Dem zweiten Teilgetriebe 6 sind Schaltelemente E und F zugeordnet. Abhängig von der Schaltstellung der Schaltelemente E und F ist eines der Bauteile des Planetenge triebes PG mit der zweiten Antriebswelle 8 gekoppelt. Bei geschlossenem Schalt element E ist dies der Steg 23, bei geschlossenem Schaltelement F das Hohlrad 22.
Zusammenfassend kann man Folgendes zu der Ausgestaltung nach Fig. 1 sagen:
Die beiden Gänge für die elektrische Maschine EM1 werden mit Hilfe eines Plane tengetriebes PG erzeugt. Der Antrieb stellt das Hohlrad 22 dar, der Abtrieb der Steg 23. Die Sonne 24 ist permanent gehäusefest. Die elektrische Maschine EM1 ist mit dem Hohlrad 22 verbunden. Das Schaltelement E verbindet die zweite Antriebswelle 8 mit dem Steg 23, sodass der erste elektrische Gang E1 geschaltet werden kann. Das Schaltelement F verbindet die zweite Antriebswelle 8 mit dem Hohlrad 22 bzw. mit dem Rotor der elektrischen Maschine EM1 , sodass der zweite elektrische Gang E2 geschaltet werden kann. Die zweite Antriebswelle 8 ist permanent mit dem Ab trieb verbunden über die Stirnradstufe ic. Dies stellt das Teilgetriebe 6 für die elektri sche Maschine EM1 dar. Die Schaltelemente E/F können als Doppelschaltelement in der Schalteinrichtung S3 zusammengefasst werden.
Wenn die Schaltelemente E und F beide offen sind, sind sowohl die elektrische Ma schine EM1 als auch das Planetengetriebe abgekoppelt und verursachen beim rein verbrennungsmotorischen Fährbetrieb (Zustände 11-14) keine Schleppverluste.
„Rein verbrennungsmotorisch“ meint dabei, dass die große elektrische Maschine EM1 abgekoppelt ist. Die kleinere elektrische Maschine EM2 dreht jedoch mit, sofern sie vorhanden ist.
Bei der vorliegenden Erfindung wird das Planetengetriebe PG koaxial zur ersten An triebswelle 7 angeordnet • Vom Abtrieb des Planetengetriebes (Steg 23/Hohlrad 22) wird eine zusätzliche Stirnradstufe ic zur Vorgelegewelle 11 vorgesehen. Es ist vorteilhaft, die Vor gelegewelle 11 zu verwenden und nicht die Vorgelegewelle 9, da iab1 eine höhere Übersetzung bereitstellt als iab2. Eine hohe Übersetzung für eine elektrische Maschine EM1 ist vorteilhaft: eine Auslegung mit mehr Drehzahl und weniger Drehmoment ist möglich.
Die Funktionsweise ist folgendermaßen:
• Es ist eine Vielzahl an Schaltzuständen möglich (rein elektrischer Betrieb, rein verbrennungsmotorischer Betrieb, Hybridbetrieb)
• Die beiden elektrischen Gänge E1 und E2 sind untereinander nicht lastschalt- bar
• Im Hybridbetrieb sind Lastschaltungen durch elektrische Zugkraftstützung mit der elektrischen Maschine EM1 möglich
Dadurch
• Ist die betroffene Vorgelegewelle axial kürzer und beansprucht daher weniger Bauraum
• Kann bei einer zum Verbrennungsmotor VM koaxialen elektrischen Maschine EM1 das Planetengetriebe PG im Rotor der EM1 geschachtelt werden
Das Getriebe 2 kann für einen rein elektrischen Fährbetrieb, einen rein verbren nungsmotorischen Fährbetrieb und einen hybridischen Fährbetrieb genutzt werden. Die Schaltmatrix der Fig. 2 fasst mit den Zuständen 1 bis 14 die jeweils möglichen Fährbetriebe, Gänge und exemplarisch Übersetzungsstufen des Getriebes in den jeweiligen Gängen zusammen. Schaltelemente, die in dem jeweiligen Gang bzw. Zu stand des Getriebes 2 geschlossen sind, sind in der Schaltmatrix der Fig. 2 mit einem X gekennzeichnet. Die Übersetzungswerte der Schaltmatrix der Fig. 2 sind lediglich rein exemplarischer Natur.
Die Übersetzungswerte der Schaltmatrix der Fig. 3 sind lediglich rein exemplarischer Natur. Fig. 4 zeigt eine Abwandlung des Ausführungsbeispiels der Fig. 1 , in welcher die An triebswelle 7 nicht bis zum Ende des Getriebes 2 geht. Die Vor- und Nachteile sind konstruktiver Art, beispielsweise bezüglich Lagerung.
Fig. 5 zeigt eine weitere Abwandlung des Ausführungsbeispiels der Fig. 1 , in welcher eine Trennkupplung KO für den Verbrennungsmotor VM hinzugefügt ist. Die Trenn kupplung KO kann eine Klauenkupplung ausgebildet sein oder alternativ als Reib kupplung. Das Vorsehen der Trennkupplung KO weist folgende Vorteile auf:
• Bei offener KO ist ein rein elektrischer Fährbetrieb mit EM2 möglich (Nutzung der Gänge V1 , V2, V3, V4).
• Ein rein elektrischer Fährbetrieb mit EM1 und EM2 zusammen ist möglich, wobei die jeweiligen Gänge beliebig kombiniert werden können.
• Im rein elektrischen Fährbetrieb (KO offen) kann EM2 die Zugkraft stützen, während EM1 den Gang wechselt
• Im rein elektrischen Fährbetrieb (KO offen) kann EM1 die Zugkraft stützen, während EM2 den Gang wechselt
Ist die Trennkupplung KO als Reibkupplung ausgebildet ergeben sich weitere Vortei le:
• KO kann auch unter Last öffnen, z.B. bei einer Vollbremsung oder einer Fehl funktion beim VM.
• KO kann auch unter Differenzdrehzahl geschlossen werden, sodass ein soge nannter „Schwungstart“ des VM mit EM2 möglich ist (Ausnutzung der Träg heitsmasse von EM2 zum VM-Start).
Fig. 6 zeigt eine weitere Abwandlung des Ausführungsbeispiels der Fig. 1 , in welcher der Rotor der elektrischen Maschine EM1 nicht permanent mit dem Hohlrad verbun den ist, sondern mit dem der Schalteinrichtung S3 in Form des Doppelschaltelemen tes E/F zwischen Hohlrad 22 und Steg 23 umgekoppelt werden kann. Der Steg 23 ist mit zweiten Antriebswelle 8 permanent verbunden. Dadurch kann das Planetengetriebe PG nicht abgekoppelt werden und auch nicht verblockt werden. Es treten bei höheren Fahrgeschwindigkeiten hohe Drehzahlen am Hohlrad 22 und an den Planetenrädern auf.
Die Schaltmatrix und Funktionen sind identisch zu der Ausgestaltung nach Fig. 1.
Fig. 7 zeigt eine weitere Abwandlung des Ausführungsbeispiels der Fig. 1 , in welcher
• Das Planetengetriebe PG anders verschaltet ist: die elektrische Maschine EM1 ist mit dem Steg 23 verbunden.
• Das Planetengetriebe PG wirkt bei Schaltstellung F ins Schnelle
• Die Stirnrad-Getriebeübersetzung ic wird daher angepasst: es wird eine höhe re Übersetzung gewählt als bei Fig. 1 , sodass für die elektrische Maschine EM1 bzw. die elektrischen Gänge E1 und E2 wieder passende Übersetzungen entstehen
Dadurch erhält man folgende Vorteile:
• Im Haupt-E-Fahrgang E1 (Schaltelement E geschlossen) ist der Wirkungsgrad gut (keine Leistung im abwälzenden Planetengetriebe)
Fig. 8 zeigt eine Abwandlung des Ausführungsbeispiels der Fig. 7, in welcher die An triebswelle 7 nicht bis zum Ende des Getriebes geht. Die Vor- und Nachteile sind konstruktiver Art. Diese Abwandlung kann in allen Ausführungsformen umgesetzt werden.
Fig. 9 zeigt eine Abwandlung des Ausführungsbeispiels der Fig. 7, in welcher
• Der Rotor der elektrischen Maschine EM1 nicht permanent mit dem Hohlrad 22 verbunden ist, sondern mit dem Doppelschaltelement E/F zwischen Hohl rad 22 und Steg 23 umgekoppelt werden kann. Das Hohlrad 22 ist mit der zweiten Antriebswelle permanent verbunden
• Das Planetengetriebe wirkt bei Schaltstellung F ins Schnelle
Dadurch kann das Planetengetriebe PG nicht abgekoppelt werden nicht abgekoppelt werden und auch nicht verblockt werden. Es treten bei höheren Fahrgeschwindigkei- ten hohe Drehzahlen am Hohlrad und an den Planeten auf (aufgrund der hohen Übersetzung der Stirnradstufe ic).
Fig. 10 zeigt eine weitere Abwandlung des Ausführungsbeispiels der Fig. 1 , in wel cher das Planetengetriebe PG anders angebunden ist: die Anbindung des Hohlrades 22 und des Sonnenrades 24 sind vertauscht. Das Hohlrad 22 ist permanent gehäu sefest, die Sonne 24 ist mit dem Rotor der elektrischen Maschine EM1 verbunden. Dadurch ergeben sich folgende Unterschiede zu der Ausführungsform nach Fig. 1:
• Die elektrische Maschine EM1 hat im Gang E1 eine deutlich höhere Überset zung (im Zahlenbeispiel 17.82 bei Fig. 10 und 10.35 bei Fig. 1)
• Ein Vorteil ist, dass die elektrische Maschine EM1 mit geringerer Drehmomen tanforderung ausgelegt werden kann
• Der Gang E2 hat die gleiche Übersetzung wie bei Fig. 1
• Wird keine so hohe Übersetzung im Gang E1 benötigt, kann beispielsweise die Übersetzung der Stirnradstufe ic etwas reduziert werden.
• Die Übersetzungen für den Verbrennungsmotor VM und ggf. die elektrische Maschine EM2 sind davon unberührt
Fig. 11 zeigt eine Abwandlung des Ausführungsbeispiels der Fig. 10, in welcher die Antriebswelle 7 nicht bis zum Ende des Getriebes geht. Die Vor- und Nachteile sind konstruktiver Art.
Fig. 12 zeigt eine weitere Abwandlung des Ausführungsbeispiels der Fig. 1 , in wel cher die elektrische Maschine EM2 mit der Vorgelegewelle 11 verbunden ist, nämlich über ein Zwischenrad 26. Die Abwandlung ist funktional gleichbedeutend zur Ausge staltung nach Fig. 1 , da die Vorgelegewellel 1 permanent mit dem Verbrennungsmo tor VM wirkverbunden ist.
Diese Abwandlung kann in allen beschriebenen Ausführungsformen vorgenommen werden.
Fig. 13 zeigt eine weitere Abwandlung des Ausführungsbeispiels der Fig. 1 , in wel cher • Die Sonne 24 für den Gang E1 gehäusefest geschaltet wird (Schaltelement E).
• Für den Gang E2 wird das Planetengetriebe verblockt, indem zwei der drei Elemente miteinander verbunden werden (Schaltelement F).
• Vorteilhaft ist es, wenn E und F als ein Doppelschaltelement z.B. in der Schalteinrichtung S3 ausgeführt wird. Da die Sonne 24 gegen das Gehäuse 25 geschaltet wird, bleiben für die Verblockung mit F zwei sinnvolle Varianten übrig: Sonne 24 mit Hohlrad 22 oder Sonne 24 mit Steg 23.
• Es wäre auch die Verbindung Hohlrad 22 mit Steg 23 möglich, dann ist aber das Doppelschaltelement nicht möglich.
Bei dieser Ausführungsform kann aber das Planetengetriebe nicht abgekoppelt werden kann.
Fig. 14 zeigt eine Abwandlung des Ausführungsbeispiels der Fig. 13, in welcher
• das Planetengetriebe PG anders verschaltet ist. Die elektrische Maschine EM1 ist mit dem Steg 23 verbunden.
• Das Planetengetriebe PG wirkt bei Schaltstellung F ins Schnelle
• Die Stirnradübersetzung ic kann angepasst werden (es wird eine höhere Übersetzung gewählt als bei Fig. 13), sodass für die elektrische Maschine EM1 wieder passende Gang Übersetzungen entstehen
Die hat den Vorteil, dass im Gang E1 (Schaltelement E geschlossen) der Wirkungs grad für EM1 gut ist, da keine Leistung im Planetengetriebe verbleibt, da es verblockt ist. Allerdings kann das Planetengetriebe nicht abgekoppelt werden.
Alle Ausführungsformen weisen folgenden Merkmale auf/können folgende Merkmale aufweisen:
Die, insbesondere koaxial zu den Antriebswellen angeordnete, elektrische Maschine EM1 kann ganz am Getriebeende sitzen. Ein Aktuator zur Betätigung der Schaltein richtung S3 mit den Schaltelementen E/F kann sie getriebeseitig von außen errei chen. Dies kann insbesondere bei einer besonders großen und leistungsfähigen elektrischen Maschine EM1 sinnvoll sein, wenn sowohl die Schalteinrichtung S3 mit den Schaltelementen E/F als auch das Planetengetriebe PG mindestens teilweise innerhalb des Rotors der elektrischen Maschine EM1 radial schachtelbar sind. Dies hat den Vorteil, dass axialer Bauraum eingespart wird.
Die Antriebswelle 7 muss nicht bis zum Ende des Getriebes 2 gehen, sie kann alter nativ auch schon beim Festrad der Stirnradstufen i1 / i2 enden. Es kann jedoch kon struktiv aus Lagerungsgründen sinnvoll sein, die Antriebswelle 7 wie im Schema an gedeutet zu verlängern.
Es ist vorteilhaft, einen mit dem Verbrennungsmotor VM fest verbundenen zusätzli chen Starter-Generator EM2 vorzusehen, da mit der elektrischen Maschine EM1 kein Laden im Stillstand möglich ist.
Die elektrische Maschine EM2 kann bevorzugt mit einem Zwischenrad am Festrad der Stirnradstufen i3 / i4 angebunden werden (dieses hat einen größeren Durchmes ser als das Festrad der Stirnradstufen i1 / i2).
Die elektrische Maschine EM2 kann alternativ als koaxiale E-Maschine an die An triebswelle 7 angebunden sein.
Die elektrische Maschine EM2 könnte alternativ auch am Riementrieb des Verbren nungsmotor VM angebracht sein.
Die elektrische Maschine EM2 könnte alternativ auch an einem zusätzlichen Festrad auf der ersten Antriebswelle 7 angebunden sein. Die elektrische Maschine EM2 könnte weiter alternativ auch an einem Losrad der Vorgelegewellen 9 oder 11 ange bunden sein, da auch auf diesem Weg eine permanente Wirkverbindung zur ersten Antriebswelle 7 besteht.
Folgende Funktionen können mit der elektrischen Maschine EM2 abgedeckt werden, sofern die elektrische Maschine EM2 vorhanden ist:
• VM-Start aus rein elektrischer Fahrt • Versorgung des elektrischen Bordnetzes
• serielles Kriechen und serielles Fahren vorwärts / rückwärts. Die elektrische Maschine EM2 erzeugt dabei Strom für die elektrische Maschine EM1 in den Schaltzuständen 9 und 10
• Unterstützung der VM-Drehzahlregelung beim Ankoppeln und bei Schaltungen Eine Synchronisation von Klauenschaltelementen beispielsweise bei Schaltungen wird vorteilhaft durch Drehzahlregelung an einer E-Maschine vorgenommen.
Bezuqszeichen
1 Antriebssystem
2 Getriebe
3 erstes Antriebsaggregat / Verbrennungsmotor
4 zweites Antriebsaggregat / elektrische Maschine
5 erstes Teilgetriebe
6 zweites Teilgetriebe
7 erste Antriebswelle
8 zweite Antriebswelle
9 Abtriebswelle
10 Abtrieb
11 Vorgelegwelle
12 Festrad
13 Losrad
14 Losrad
15 Losrad
16 Festrad
17 Losrad
18 Losrad
19 Festrad
20 Festrad
21 Festrad
22 Hohlrad
23 Steg
24 Sonnenrad
25 Gehäuse
26 Zwischenrad
28 drittes Antriebsaggregat / elektrische Maschine
A Schaltelement
B Schaltelement
C Schaltelement
D Schaltelement E Schaltelement
F Schaltelement
KO Trennkupplung

Claims

Patentansprüche
1 . Getriebe (2) eines Kraftfahrzeugs, mit einer ersten Antriebswelle (7) für ein erstes Antriebsaggregat (3), mit einer zweiten Antriebswelle (8) für ein zweites Antriebsaggregat (4), mit einer Abtriebswelle (9), mit einem die erste Antriebswelle (7) umfassenden ersten Teilgetriebe (5) für das erste Antriebsaggregat (3), mit einem die zweite Antriebswelle (8) umfassenden zweiten Teilgetriebe (6) für das zweite Antriebsaggregat (4), wobei das zweite Teilgetriebe (6) als Planetengetriebe mit Bauteilen wenigstens um fassend ein Sonnenrad (24), ein Hohlrad (22) und einen Steg (23) ausgebildet ist, wobei eine Schalteinrichtung (S3) dem Planetengetriebe (PG) zugeordnet ist, wobei in einer ersten Schaltstellung (E) der Schalteinrichtung (S3) ein erstes Bauteil (23) des Planetengetriebes (PG) mit der zweiten Antriebswelle (8) verbunden ist und in einer zweiten Schaltstellung (F) der Schalteinrichtung (S3) ein zweites Bauteil (22) des Planetengetriebes (PG) mit der zweiten Antriebswelle (8) verbunden ist.
2. Getriebe nach Anspruch 1 , dadurch gekennzeichnet, dass die zweite Abtriebswelle (8) über ein koaxial zur ersten Antriebswelle (7) angeordne tes Zahnrad (15) permanent an eine Vorgelegewelle (11) gekoppelt ist.
3. Getriebe nach Anspruch 2, dadurch gekennzeichnet, dass auf der ersten An triebswelle zwei Festräder (13, 14) angeordnet sind.
4. Getriebe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das auf der Vorgelegewelle (11 ) angeordnete Zahnrad (18), welches an die zweite Eingangswelle gekoppelt ist, als Festrad ausgebildet ist.
5. Getriebe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das zweite Antriebsaggregat (4) an das Hohlrad (22) des Planetengetriebes ange bunden ist. ZFWO 2021/2137573P AG PCT/EP2021/0573632 Friedrichshafen 2020-04-22
6. Getriebe nach einem der Ansprüche 1 bis 5, gekennzeichnet durch ein drittes Antriebsaggregat (28), welches als elektrische Maschine ausgebildet ist, wobei das dritte Antriebsaggregat (28) mit der ersten Antriebswelle (7) in Wirkverbindung steht.
7. Getriebe nach Anspruch 6, dadurch gekennzeichnet, dass das dritte Antriebs aggregat (28) entweder an ein auf der ersten Antriebswelle (7) angeordnete Festrad (12) oder an ein auf einer Vorgelegewelle (11 ) angeordnete Festrad (16) gekoppelt ist.
8. Getriebe nach einem der Ansprüche 1 bis 7, gekennzeichnet durch eine der ersten Antriebswelle (7) zugeordnete Trennkupplung (KO) zur abkoppelbaren Anbin dung des ersten Antriebsaggregats (3) an die erste Antriebswelle (7).
9. Antriebssystem eines Kraftfahrzeugs, mit einem Getriebe (2) nach einem der Ansprüche 1 bis 8, mit einem an die erste Antriebswelle (7) gekoppelten ersten Antriebsaggregat (3), mit einem an die zweite Antriebswelle (8) gekoppelten zweiten Antriebsaggregat (4), mit einem an die Abtriebswelle (9) gekoppelten Abtrieb (10).
PCT/EP2021/057363 2020-04-22 2021-03-23 Getriebe und antriebssystem eines kraftfahrzeugs WO2021213757A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/788,033 US20230029575A1 (en) 2020-04-22 2021-03-23 Transmission and Drive System of a Motor Vehicle
CN202180005665.XA CN114466755A (zh) 2020-04-22 2021-03-23 机动车的变速器和驱动系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020205090.2A DE102020205090A1 (de) 2020-04-22 2020-04-22 Getriebe und Antriebssystem eines Kraftfahrzeugs
DE102020205090.2 2020-04-22

Publications (1)

Publication Number Publication Date
WO2021213757A1 true WO2021213757A1 (de) 2021-10-28

Family

ID=75339677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/057363 WO2021213757A1 (de) 2020-04-22 2021-03-23 Getriebe und antriebssystem eines kraftfahrzeugs

Country Status (4)

Country Link
US (1) US20230029575A1 (de)
CN (1) CN114466755A (de)
DE (1) DE102020205090A1 (de)
WO (1) WO2021213757A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019205324B4 (de) * 2019-04-12 2024-03-28 Zf Friedrichshafen Ag Hybrid-Getriebeeinrichtung sowie Kraftfahrzeug
DE102022202905A1 (de) 2022-03-24 2023-09-28 Zf Friedrichshafen Ag Kompaktes Hybridgetriebe
DE102022203684A1 (de) 2022-04-12 2023-10-12 Zf Friedrichshafen Ag Hybridgetriebevorrichtung für ein Kraftfahrzeug
DE102022203690A1 (de) 2022-04-12 2023-10-12 Zf Friedrichshafen Ag Hybridgetriebevorrichtung für ein Kraftfahrzeug
DE102022208152A1 (de) 2022-08-05 2024-02-08 Zf Friedrichshafen Ag Hybridgetriebevorrichtung für ein Kraftfahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008001650A1 (de) * 2008-05-08 2009-11-12 Zf Friedrichshafen Ag Antriebsstranganordnung eines Fahrzeuges
EP2161154A1 (de) * 2007-06-19 2010-03-10 Toyota Jidosha Kabushiki Kaisha Kraftübertragungssystem für fahrzeug
CN106609815A (zh) * 2016-08-01 2017-05-03 雷世庆 插电式多挡混合动力变速器
US20170129323A1 (en) 2014-06-24 2017-05-11 Renault S.A.S. Hybrid transmission with offset electric machine and method for controlling gear changes
DE102018205140A1 (de) * 2018-04-05 2019-10-10 Zf Friedrichshafen Ag Antriebssystem eines Kraftfahrzeugs und Verfahren zum Betreiben desselben

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001120A (ja) * 2007-06-20 2009-01-08 Toyota Motor Corp 動力伝達装置
DE102011089709B4 (de) * 2011-12-23 2023-10-05 Zf Friedrichshafen Ag Hybridantrieb eines Kraftfahrzeugs
DE102012213667A1 (de) * 2012-08-02 2014-02-06 Zf Friedrichshafen Ag Übersetzungsstufe eines Stufengetriebes, sowie Stufengetriebe
DE102012016988A1 (de) * 2012-08-25 2014-05-15 Volkswagen Aktiengesellschaft Hybridantriebsstrang für ein Kraftfahrzeug, Hybridfahrzeug und dessen Verwendung
DE102013200158A1 (de) * 2013-01-09 2014-07-10 Zf Friedrichshafen Ag Hybridantrieb für ein Kraftfahrzeug
DE102014213012A1 (de) * 2014-07-04 2016-01-07 Zf Friedrichshafen Ag Mehrganggetriebe für Schienenfahrzeuge
DE102014222611A1 (de) * 2014-11-05 2016-05-12 Zf Friedrichshafen Ag Parallelschaltgetriebe
CN107428234B (zh) * 2015-04-02 2021-05-11 博格华纳瑞典公司 电动轴
EP3344898B1 (de) * 2015-08-31 2020-09-30 BorgWarner Sweden AB Hybridantriebsmodul
DE102015220232A1 (de) * 2015-10-16 2017-04-20 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstrangs eines Kraftfahrzeugs
DE102015221499A1 (de) * 2015-11-03 2017-05-04 Zf Friedrichshafen Ag Antriebsanordnung für ein Hybridfahrzeug und Antriebsstrang mit einer solchen Antriebsanordnung
DE102015221514A1 (de) * 2015-11-03 2017-05-04 Zf Friedrichshafen Ag Getriebe für ein Hybridfahrzeug, Antriebsstrang mit einem solchen Getriebe und Verfahren zum Betreiben desselben
DE102016200583A1 (de) * 2016-01-19 2017-07-20 Zf Friedrichshafen Ag Hybridgetriebe
CN207315991U (zh) * 2017-10-11 2018-05-04 上海中科深江电动车辆有限公司 两挡变速器及驱动装置
DE102018111798A1 (de) * 2018-05-16 2019-11-21 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung mit einer elektrischen Maschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2161154A1 (de) * 2007-06-19 2010-03-10 Toyota Jidosha Kabushiki Kaisha Kraftübertragungssystem für fahrzeug
DE102008001650A1 (de) * 2008-05-08 2009-11-12 Zf Friedrichshafen Ag Antriebsstranganordnung eines Fahrzeuges
US20170129323A1 (en) 2014-06-24 2017-05-11 Renault S.A.S. Hybrid transmission with offset electric machine and method for controlling gear changes
CN106609815A (zh) * 2016-08-01 2017-05-03 雷世庆 插电式多挡混合动力变速器
DE102018205140A1 (de) * 2018-04-05 2019-10-10 Zf Friedrichshafen Ag Antriebssystem eines Kraftfahrzeugs und Verfahren zum Betreiben desselben

Also Published As

Publication number Publication date
US20230029575A1 (en) 2023-02-02
CN114466755A (zh) 2022-05-10
DE102020205090A1 (de) 2021-10-28

Similar Documents

Publication Publication Date Title
DE102011089709B4 (de) Hybridantrieb eines Kraftfahrzeugs
WO2021213757A1 (de) Getriebe und antriebssystem eines kraftfahrzeugs
WO2018077903A1 (de) Getriebeanordnung für ein hybridfahrzeug, antriebsanordnung, verfahren zu deren betreiben und hybridfahrzeug
DE102021204616A1 (de) Hybridgetriebevorrichtung und Kraftfahrzeug mit einer Hybridgetriebevorrichtung
WO2021213754A1 (de) Getriebe und antriebssystem eines kraftfahrzeugs
WO2020078639A1 (de) Getriebe und antriebssystem eines kraftfahrzeugs
WO2020078640A1 (de) Getriebe und antriebssystem eines kraftfahrzeugs
DE102015221498A1 (de) Antriebsanordnung für ein Hybridfahrzeug und Antriebsstrang mit einer solchen Antriebsanordnung
DE102018215234A1 (de) Getriebe für ein Kraftfahrzeug
DE102020203775A1 (de) Hybridgetriebe für einen Kraftfahrzeug-Antriebsstrang eines Kraftfahrzeugs
DE102017216309A1 (de) Getriebe für ein Kraftfahrzeug
WO2022129111A1 (de) Getriebe für ein kraftfahrzeug und kraftfahrzeugantriebsstrang damit
WO2021213755A1 (de) Getriebe und antriebssystem eines kraftfahrzeugs
DE102021202250B4 (de) Hybrid-Getriebeanordnung und Fahrzeug mit einer Hybrid-Getriebeanordnung
DE102021205332B4 (de) Hybrid-Getriebeanordnung für ein Kraftfahrzeug
DE102022106552A1 (de) Hybridgetriebe sowie Antriebsstrang mit Hybridgetriebe
WO2022129112A1 (de) Getriebe für ein kraftfahrzeug und kraftfahrzeugantriebsstrang damit
WO2022129109A1 (de) Getriebe für ein kraftfahrzeug, kraftfahrzeugantriebsstrang damit und verfahren zum betreiben des getriebes
DE102017216317A1 (de) Getriebe für ein Kraftfahrzeug
DE102006009296A1 (de) Leistungsverzweigter Hybrid-Antriebsstrang und Schaltverfahren
DE102020216292A1 (de) Getriebe für ein Kraftfahrzeug
DE102020205092A1 (de) Getriebe und Antriebssystem eines Kraftfahrzeugs
DE102020203126A1 (de) Getriebe für ein Kraftfahrzeug
DE102020203787A1 (de) Hybridgetriebe für einen Kraftfahrzeug-Antriebsstrang eines Kraftfahrzeugs
WO2021052557A1 (de) Hybridantriebsanordnung mit schaltgetriebe, antriebsstranganordnung und verfahren zum steuern einer solchen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21715790

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21715790

Country of ref document: EP

Kind code of ref document: A1