WO2021213459A1 - 一种3d打印拇外翻矫形鞋垫 - Google Patents

一种3d打印拇外翻矫形鞋垫 Download PDF

Info

Publication number
WO2021213459A1
WO2021213459A1 PCT/CN2021/088903 CN2021088903W WO2021213459A1 WO 2021213459 A1 WO2021213459 A1 WO 2021213459A1 CN 2021088903 W CN2021088903 W CN 2021088903W WO 2021213459 A1 WO2021213459 A1 WO 2021213459A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
printed
force
insole
hallux valgus
Prior art date
Application number
PCT/CN2021/088903
Other languages
English (en)
French (fr)
Inventor
王金武
万克明
许苑晶
鲁德志
王彩萍
戴尅戎
Original Assignee
上海交通大学医学院附属第九人民医院
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020619932.5U external-priority patent/CN212382805U/zh
Priority claimed from CN202010321990.4A external-priority patent/CN111419512A/zh
Application filed by 上海交通大学医学院附属第九人民医院, 上海交通大学 filed Critical 上海交通大学医学院附属第九人民医院
Publication of WO2021213459A1 publication Critical patent/WO2021213459A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/14Footwear with health or hygienic arrangements with foot-supporting parts
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/14Footwear with health or hygienic arrangements with foot-supporting parts
    • A43B7/18Joint supports, e.g. instep supports
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/14Special medical insertions for shoes for flat-feet, club-feet or the like

Definitions

  • This application relates to the field of foot orthopedic devices, in particular to a 3D printed hallux valgus orthopedic insole.
  • Hallux valgus is a relatively common foot deformity nowadays, with an incidence of 20-50%, among which the prevalence of females is about 9-10 times that of males.
  • Conservative treatment by wearing foot orthoses is the first choice for patients.
  • hallux valgus orthoses are mostly mass-produced, failing to meet the individual characteristics of the feet of different patients, resulting in low wearing comfort and poor orthopedic effects.
  • hallux valgus orthoses can be divided into two categories: The first type of orthosis applies force on the outside of the first toe, which will cause the gap between the first toe and the second toe. The gap is too large; the second type of orthosis that applies force on the inside of the first toe, uses a flexible material to apply force.
  • the correction strength is limited, so it is not suitable for patients with severe hallux valgus. Orthotics that use hard materials to exert force usually have a low degree of matching with the shape and characteristics of the individual's foot, resulting in excessive local pressure and induce pain.
  • the existing orthoses generally have the characteristics of mass production, popularization, and poor efficacy. These orthoses for hallux valgus correction cannot meet the patient's personalized foot shape characteristics, and lack support for the patient's arch part, resulting in the medial forefoot Excessive local pressure induces pain.
  • the technical problem to be solved by this application is to provide a 3D printed hallux valgus orthopedic insole to solve at least one problem in the prior art.
  • this application provides a 3D printed hallux valgus orthopedic insole, including: a 3D printed insole body, and a 3D printed corrective structure for correcting hallux valgus;
  • the corrective structure It comprises: a finger cuff, a first force application part, and a second force application part; the finger cuff is arranged on the insole body corresponding to the thumb area; the finger finger cuff includes: a finger cuff body, And a finger cuff force wall; the finger cuff body is used to fix the patient's thumb; the finger cuff force wall is used to separate the first phalanx and the second phalanx, and form a reaction force to the first phalanx and the second phalanx.
  • the insole body and the corrective structure are 3D printed by adapting the foot size data obtained by optical scanning of the patient's foot.
  • the materials used in the 3D printing technology include: polyurethane, polylactic acid, nylon plastic, photosensitive resin, silica gel, rubber, latex, ABS plastic, PVC plastic, silicone resin, acrylic resin. Any one or more combinations.
  • the structure of the finger cuff body is correspondingly set according to the shape and size of the first phalanx of the patient's foot; at the same time, the force wall of the finger cuff is adjusted according to the correction distance recommended by the doctor for the patient's foot
  • the position direction or structure shape, and the thickness of the finger cuff applying wall is adjusted according to the correction degree recommended by the doctor for the patient's foot.
  • the insole body is also correspondingly provided with any one or more of heel, arch, edge, and thumb. It is used to fit the patient's plantar curve.
  • the corresponding settings on the insole body include any one or more of the following: the heel is set to be concave according to the patient's heel size data U-shaped cup structure; the edge of the heel is higher than the center by a certain height to protect the ankle joint; the arch of the foot is convexly set as a foot arch support structure with a certain slope according to the curvature of the patient's arch curve The edge portion is set as a slope structure according to the outer side of the lower middle end of the patient; the thumb portion is set as a recessed structure according to the size data of the patient's thumb.
  • the corrective structure is fixed to the insole by bonding or snapping, so that the corrective structure can be adjusted or replaced according to the patient's correction and recovery.
  • the first force application portion corresponds to the first metatarsophalangeal joint and the first metatarsal bone of the patient, and is arched in an arc;
  • the second force application portion corresponds to the fifth metatarsophalangeal joint and the fifth metatarsophalangeal joint.
  • the metatarsal bones are arched in an arc shape; the first force applying portion and the second force applying portion are used for stabilizing the forefoot.
  • the surfaces of the finger sleeve force applying wall, the first force applying portion, and the second force applying portion are all provided with a silicone material.
  • this application provides a 3D printed hallux valgus orthopedic insole, including: a 3D printed insole body and a 3D printed corrective structure for correcting hallux valgus;
  • the corrective structure includes: Finger finger cuff, first force applying part, and second force applying part; said finger finger cuff is arranged on said insole body corresponding to the thumb area; said finger finger cuff includes: finger cuff body and finger cuff The force applying wall; the finger cuff body is used to fix the patient's thumb; the finger cuff force wall is used to separate the first phalanx and the second phalanx, and form a reaction force to the first phalanx and the second phalanx.
  • This application has simple structure and convenient use, improves comfort and fit through personalized customization, uses silicone material, has good softness, and protects the skin of the feet from being squeezed and worn. At the same time, it has a good correction effect on the first phalanx, first metatarsal bone and metatarsal joints, and can apply precise orthopedic force. In addition, it can be placed in normal shoes without affecting walking. It is suitable for patients to walk and stand, and is comfortable and beautiful.
  • Fig. 1 is a schematic structural diagram of a 3D printed hallux valgus orthopedic insole in an embodiment of the application.
  • this application provides an orthopedic insole that can be 3D printed.
  • the patient's foot size data can be obtained by optical scanning of the patient, and the patient's volume can be measured.
  • the first phalanx, first metatarsal and metatarsal joints are corrected, and the thumb is flexible and fits well. It is suitable for patients to walk and stand.
  • 3D printed hallux valgus orthopedics can be tailored for patients to apply precise orthopedic force. insole. More importantly, the 3D printed hallux valgus orthopedic insoles provided by this application can be placed in normal shoes without affecting walking, and can achieve dynamic correction, which is convenient and comfortable, has significant orthopedic effects, and has a high success rate.
  • a schematic structural diagram of a 3D printed hallux valgus orthopedic insole in an embodiment of the present application is shown.
  • the 3D printed hallux valgus orthopedic insole includes a 3D printed insole body 1 and a 3D printed corrective structure 2 for correcting hallux valgus.
  • the insole body 1 and the corrective structure 2 are 3D printed by fitting the foot size data obtained by optical scanning of the patient's foot.
  • the three-dimensional scan image data of the patient’s foot is obtained in advance, such as the three-dimensional scan image data obtained through X-ray film and CT.
  • the spatial coordinates of the foot surface Compared with the traditional custom process, the optical three-dimensional scanning collection is simple, convenient and accurate, and the non-contact optical scanner is not harmful to the human body, there is no radiation, and it can collect high-precision point cloud data. Department for accurate scanning.
  • import the 3D modeling software import the 3D modeling software and describe the size of the patient’s foot and the degree of hallux valgus. According to the patient’s foot size and the degree of correction planned to be achieved, by obtaining the size of the shape of the foot in the static state of the thumb valgus, use Computer modeling design and 3D printing can achieve better treatment effects.
  • this application can be individually designed according to the hallux valgus conditions of different patients, so that it can completely fit the size of the patient's foot, so as to achieve personalized, precise and customized treatment.
  • the size of the hallux valgus orthopedic insole formed by 3D printing in the above-mentioned manner can conform to the anatomical characteristics of the patient's foot, the patient is comfortable to wear, has no discomfort, and has high compliance, effectively preventing and correcting hallux valgus deformity.
  • the materials used in the 3D printing technology include, but are not limited to: polyurethane, polylactic acid, nylon plastic, photosensitive resin, silicone, rubber, latex, ABS plastic, PVC plastic, silicone resin, Any one or more combinations of propylene-based resins.
  • the 3D printed hallux valgus orthopedic insole described in the present application is formed by scanning the foot with an optical three-dimensional scanner to obtain corresponding three-dimensional data, and preferably using TPU material for 3D integrated molding and printing.
  • TPU thermoplastic Polyurethanes
  • thermoplastic polyurethane elastomer rubber is called thermoplastic polyurethane elastomer rubber. It is mainly divided into polyester type and polyether type. It has a wide range of hardness (60HA-85HD), abrasion resistance, oil resistance, transparency, and good elasticity. It is widely used in daily necessities, sports goods, toys, decorative materials and other fields. It is halogen-free Combustion TPU can also replace soft PVC to meet environmental protection requirements in more and more fields.
  • the so-called elastomer refers to a polymer material with a glass transition temperature lower than the room temperature, an elongation at break >50%, and a relatively good recovery after the external force is removed.
  • Polyurethane elastomer is a relatively special category of elastomers. Polyurethane elastomers have a wide range of hardness and performance. Therefore, polyurethane elastomers are a type of polymer material between rubber and plastic. It can be heated and plasticized, with no or little cross-linking in the chemical structure, and its molecules are basically linear, but there is a certain amount of physical cross-linking. This type of polyurethane is called TPU.
  • the TPU printing material has good performance, is easy to be integrally formed, has a high material utilization rate, is economical in overall price, and does not pollute the environment.
  • the 3D printed hallux valgus orthopedic insole printed with the TPU material has a certain degree of toughness.
  • the patient can not only get the effect of orthopedic force during walking, but also greatly reduces discomfort, and does not affect the metatarsophalangeal joints and phalangeal joints. Normal flexion and extension exercises.
  • the 3D printed hallux valgus orthopedic insole provided by the present application is printed by additive manufacturing technology. It can also have the advantages of light and breathable, conforming to the anatomical structure, comfortable and beautiful, and its surface accuracy is high, which greatly improves the wear of the patient Compliance.
  • the correction structure 2 includes: a finger cuff 21, a first force applying portion 22, and a second force applying portion 23.
  • each main force application surface is attached with a silicone material.
  • the silicone material has good softness, can reduce the friction with the skin of the foot, and can protect the foot. The skin is not squeezed and worn to prevent secondary damage during wearing.
  • the finger cuff 21 is provided on the insole body 1 in the area corresponding to the thumb; the finger cuff 21 includes: a finger cuff body 211 and a finger cuff force wall 212; the finger cuff The main body 211 is used to fix the thumb of the patient; the finger cuff force application wall 212 is used to separate the first phalanx and the second phalanx, and form a reaction force to the first phalanx and the second phalanx.
  • the structure of the finger cuff body 211 is set according to the shape and size of the first phalanx of the patient's foot; at the same time, the finger cuff is adjusted according to the doctor's recommended correction distance for the patient's foot
  • the position direction or structure shape of the force applying wall 212 and the thickness of the finger cuff force applying wall 212 are adjusted according to the degree of correction recommended by the doctor to the patient's foot.
  • the finger cuff force wall 212 will be located between the first phalanx and the second phalanx of the patient during use to separate the first phalanx from the second phalanx.
  • the end is cylindrical and the diameter can be 0.3cm to prevent skin abrasion.
  • One side of the finger cuff force wall 212 will contact the inner side of the first phalanx, and the other side of the finger cuff force wall 212 will contact the second phalanx and even the second metatarsal bone.
  • the side is the main force application, and the thickness is preferably 0.3cm, which is the most suitable for corrective force.
  • the finger cuff force wall 212 can also be attached with silicone materials on both sides; at the same time, the patient’s thumb will be inserted into the finger cuff body 211 during use to fix the patient’s foot Thumbs up.
  • the 3D printed hallux valgus orthopedic insoles tailored for the patient are more closely fit through the optical scanning of the patient to obtain the patient's foot size data.
  • the first phalanx, the first metatarsal and the metatarsal joints are corrected, applying precise orthopedic force, and the orthopedic effect is remarkable.
  • the use of silicone material has good softness and can protect the skin of the feet from being squeezed and worn.
  • the first force applying portion 22 corresponds to the first metatarsophalangeal joint and the first metatarsal bone of the patient, and is arched in an arc;
  • the second force applying portion 23 corresponds to the fifth metatarsophalangeal joint And the fifth metatarsal bone, and arched in an arc shape; the first force applying portion 22 and the second force applying portion 23 are used to stabilize the forefoot.
  • the first force application part 22 corresponds to the first metatarsophalangeal joint and the first metatarsal bone, and the thickness of this part is preferably 0.3 cm, arched in an arc shape, and silicone material is attached to the surface to prevent skin abrasion;
  • the second force application corresponds to the fifth metatarsophalangeal joint and the fifth metatarsal, and the thickness of this part is preferably 0.3 cm, arched in an arc shape, and a silicone material is attached to the surface.
  • the first force application portion 22 and the second force application portion 23 are used to jointly stabilize the forefoot.
  • the corrective structure 2 is fixed to the insole by bonding or snapping, so that the corrective structure 2 can be adjusted or replaced according to the patient's correction and recovery.
  • the contact areas of the corrective structure 2 and the insole body 1 are respectively set to be pasted for detachable fixation; or this, the corrective structure 2 is an engaging structure with an interlayer at the bottom.
  • the insole can be inserted into the interlayer locally to achieve detachable fixation.
  • the corrective structure 2 can also be adjusted or replaced to adapt to the true changes of the patient’s foot in time , In order to achieve a better correction effect.
  • the insole body 1 is further provided with any one of the heel portion 11, the arch portion 12, the edge portion 13, and the thumb portion 14.
  • One or more kinds to fit the patient's plantar curve are particularly preferred.
  • the insole body 1 is provided with corresponding settings according to the patient's foot size data, including any one or more of the following:
  • the heel portion 11 is set as a recessed U-shaped cup structure according to the patient's heel size data; the edge of the heel portion 11 is higher than the center by a certain height. To put it simply, the edge of the heel 11, that is, the edge of the insole, is the highest, and the center of the heel 11 is the lowest, so that the heel can be stabilized and the ankle joint can be protected. According to the actual situation of the patient, the edge should be 1-2cm higher for the best fixation effect.
  • the arch part 12 is convexly set as a foot arch support structure with a certain slope according to the curvature of the patient's foot arch. According to the curvature of the patient's foot arch, the arch support with an appropriate slope is designed to improve the comfort of the patient.
  • the edge portion 13 is arranged in a slope structure according to the outer side of the lower middle end of the patient, that is, the edge portion 13 is increased in a slope type to improve the comfort of the patient.
  • the thumb part 14 is configured as a recessed structure according to the size data of the patient's thumb, which can reduce the discomfort of the thumb.
  • this application uses insoles as the main orthopedic form.
  • the 3D printed hallux valgus orthopedic insoles described in this application can be placed in normal shoes. It has an impact on walking, and can also achieve dynamic correction, which is convenient and comfortable, and has a high correction rate.
  • this application provides a 3D printed hallux valgus orthopedic insole. It includes: a 3D printed insole body and a 3D printed corrective structure for correcting hallux valgus; the corrective structure includes: a finger cuff, a first force application part, and a second force application part;
  • the finger cuff is arranged on the insole body corresponding to the area of the thumb; the finger cuff includes: a finger cuff body and a finger cuff force wall; the finger cuff body is used to fix the patient's thumb; the finger cuff force wall It is used to separate the first phalanx and the second phalanx, and form a reaction force to the first phalanx and the second phalanx.
  • This application has simple structure and convenient use, improves comfort and fit through personalized customization, uses silicone material, has good softness, and protects the skin of the feet from being squeezed and worn.
  • the first phalanx, first metatarsal and metatarsal joints are corrected, and the thumb is flexible and fits well. It is suitable for patients to walk and stand.
  • 3D printed hallux valgus orthopedics can be tailored for patients to apply precise orthopedic force. insole. More importantly, the 3D printed hallux valgus orthopedic insoles provided by this application can be placed in normal shoes without affecting walking, and can achieve dynamic correction, which is convenient and comfortable, has significant orthopedic effects, and has a high success rate.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Nursing (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Abstract

一种3D打印拇外翻矫形鞋垫,包括:3D打印的鞋垫本体(1)及其上3D打印的用于矫正拇外翻的矫正结构(2);矫正结构(2)包括:分指指套(21)、第一施力部(22)及第二施力部(23);分指指套(21)设于鞋垫本体(1)上对应大拇指区域;分指指套(21)包括:指套主体(211)及指套施力壁(212);指套主体(211)用于固定患者大拇指;指套施力壁(212)用于分离第一趾骨与第二趾骨,并对第一趾骨及第二趾骨形成反作用力。该鞋垫具有结构简单、使用方便,通过个性化定制提高舒适度和贴合度,使用硅胶材料,柔软度较好,保护足部皮肤不被挤压和磨损。同时对第一趾骨、第一跖骨和跖骨关节矫正效果好,可施加精准的矫形力。另外,可放于正常的鞋内,不会对行走造成影响,适合患者行走与站立,舒适美观。

Description

一种3D打印拇外翻矫形鞋垫 技术领域
本申请涉及一种足部矫形装置领域,特别是涉及一种3D打印拇外翻矫形鞋垫。
背景技术
拇外翻是现今比较常见的足部畸形,发病率为20~50%,其中女性患病率约为男性的9~10倍。通过佩戴足部矫形器进行保守治疗是患者的首要选择。目前拇外翻矫形器多为批量化生产,未能满足不同患者足部个性化特征,导致穿戴舒适性低,矫形效果不佳。
现有矫形器种类繁多,根据矫形原理的不同,可将拇外翻矫形器分为两类:第一类在第一脚趾外侧施力的矫形器,会造成第一脚趾与第二脚趾之间缝隙过大;第二类在第一脚趾内侧施力的矫形器,使用柔性材料施加力的矫形器。但由于柔性材料限制,矫正力度有限,不适用于拇外翻严重的患者。而使用硬性材料施加力的矫形器,通常又与个体足部曲面形状特征匹配度低,导致局部压力过大诱发疼痛。
所以现有矫形器普遍存在批量化、大众化、疗效差的特点,这些用于拇外翻矫正的矫形器不能满足患者个性化足部形状特征,并且对患者的足弓部分缺少支撑,导致前足内侧局部压力过大,诱发疼痛。
因此,有必要提供一种个性化疗效好的拇外翻矫形装置以解决上述技术问题。
发明内容
鉴于以上所述现有技术的缺点,本申请要解决的技术问题在于提供一种3D打印拇外翻矫形鞋垫,用于解决现有技术中至少一个问题。
为实现上述目的及其他相关目的,本申请提供一种3D打印拇外翻矫形鞋垫,包括:3D打印的鞋垫本体、及其上3D打印的用于矫正拇外翻的矫正结构;所述矫正结构包括:分指指套、第一施力部、及第二施力部;所述分指指套设于所述鞋垫本体上对应大拇指区域;所述分指指套包括:指套主体、及指套施力壁;所述指套主体用于固定患者大拇指;所述指套施力壁用于分离第一趾骨与第二趾骨,并对所述第一趾骨及第二趾骨形成反作用力。
于本申请一实施例中,所述鞋垫本体、及矫正结构是通过对患者足部进行光学扫描所获取到的足部尺寸数据适配进行3D打印的。
于本申请一实施例中,所述3D打印技术所采用的材料包括:聚氨酯、聚乳酸、尼龙塑料、光敏树脂、硅胶、橡胶、乳胶、ABS塑料、PVC塑料、有机硅树脂、丙烯基树脂中任意 的一种或多种组合。
于本申请一实施例中,所述指套主体的结构是根据患者足部的第一趾骨外形大小进行相应设置的;同时依据医生对患者足部的建议的矫正距离调整所述指套施力壁的位置走向或结构形状、以及依据医生对患者足部的建议的矫正程度调整所述指套施力壁的厚度。
于本申请一实施例中,依据患者的足部尺寸数据,所述鞋垫本体上还相应分布设置有足跟部、足弓部、边缘部、及大拇指部中任意一种或多种,以用于贴合患者足底曲线。
于本申请一实施例中,所述依据患者的足部尺寸数据,所述鞋垫本体上相应的设置包括以下任意一种或多种:所述足跟部根据患者足跟尺寸数据设置为凹陷的U型杯状结构;所述足跟部的边缘处高出中心处一定高度,以用于保护踝关节;所述足弓部根据患者足弓曲面弧度凸设置为具有一定坡度的足弓支撑结构;所述边缘部根据患者较低中端外侧设置为斜坡式结构;所述大拇指部根据患者大拇指尺寸数据设置为凹陷结构。
于本申请一实施例中,所述矫正结构通过粘合或卡合方式固定于所述鞋垫本地上,以供所述矫正结构根据患者矫正恢复情况进行调整或更换。
于本申请一实施例中,所述第一施力部对应患者第一跖趾关节和第一跖骨,并呈弧形拱起;所述第二施力部对应第五跖趾关节和第五跖骨,并呈弧形拱起;所述第一施力部与所述第二施力部用于稳定前脚掌。
于本申请一实施例中,所述指套施力壁、第一施力部、及第二施力部的表面均设置有硅胶材料。
综上所述,本申请提供了一种3D打印拇外翻矫形鞋垫,包括:3D打印的鞋垫本体、及其上3D打印的用于矫正拇外翻的矫正结构;所述矫正结构包括:分指指套、第一施力部、及第二施力部;所述分指指套设于所述鞋垫本体上对应大拇指区域;所述分指指套包括:指套主体、及指套施力壁;所述指套主体用于固定患者大拇指;所述指套施力壁用于分离第一趾骨与第二趾骨,并对所述第一趾骨及第二趾骨形成反作用力。
达到了以下有益效果:
本申请具有结构简单、使用方便,通过个性化定制提高舒适度和贴合度,使用硅胶材料,柔软度较好,保护足部皮肤不被挤压和磨损。同时对第一趾骨、第一跖骨和跖骨关节矫正效果好,可施加精准的矫形力。另外,可放于正常的鞋内,不会对行走造成影响,适合患者行走与站立,舒适美观。
附图说明
图1为本申请于一实施例中的一种3D打印拇外翻矫形鞋垫的结构示意图。
具体实施方式
以下通过特定的具体实例说明本申请的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本申请的其他优点与功效。本申请还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本申请的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本申请的基本构想,虽然图式中仅显示与本申请中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,但其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
针对现有的拇外翻矫形鞋垫存在的大众化、批量化、疗效差等缺陷,本申请提供一种可以3D打印的矫形鞋垫,通过对患者进行光学扫描获取患者的足部尺寸数据,为患者量身定做矫形鞋垫,贴合度高。使用硅胶材料,柔软度较好,保护足部皮肤不被挤压和磨损。同时对第一趾骨、第一跖骨和跖骨关节矫正,且足拇指处柔性好、贴合性高,适合患者行走与站立,为患者量身定做可施加精准的矫形力的3D打印拇外翻矫形鞋垫。更重要的是,本申请提供的3D打印拇外翻矫形鞋垫可放于正常的鞋内,不会对行走造成影响,可达到动态矫正,方便舒适,矫形效果显著,成功率高。
如图1所示,展示本申请实施例中的一种3D打印拇外翻矫形鞋垫的结构示意图。如图所示,所述3D打印拇外翻矫形鞋垫包括:3D打印的鞋垫本体1、及其上3D打印的用于矫正拇外翻的矫正结构2。
于本申请的一实施例中,所述鞋垫本体1、及矫正结构2是通过对患者足部进行光学扫描所获取到的足部尺寸数据适配进行3D打印的。
具体来说,预先获取患者足部的三维扫描图像数据,如通过X光片和CT获取三维扫描图像数据,本申请还可通过光学三维扫描仪对足部的尺寸、拇指畸形进行捕捉,从而获得足部表面的空间坐标。相对于传统定制工艺而言,光学三维扫描收集简单、方便、准确,并且非接触式光学扫描仪对人体没有危害,不存在辐射,能采集高精度的点云数据,可以做到量体裁衣,对足部进行精准扫描。然后导入三维建模软件并描绘出患者的足部大小、拇外翻程度,根据患者的足部尺寸、计划达到的矫正程度,通过获取静止状态下足部拇指外翻状态下 形态的大小,使用计算机进行建模设计并进行3D打印,可以达到更好的治疗效果。
需要说明的是,本申请能够根据不同患者的拇外翻情况进行个性化设计,使其完全贴合患者的足部大小,实现个性化、精准化和定制式的治疗。并且通过上述方式3D打印成型的所述拇外翻矫形鞋垫的尺寸能够符合患者足部解剖特征,患者佩戴舒服,无不适感,依从性高,有效预防和矫正拇外翻畸形。
于本申请的一实施例中,所述3D打印技术所采用的材料包括但不限于:聚氨酯、聚乳酸、尼龙塑料、光敏树脂、硅胶、橡胶、乳胶、ABS塑料、PVC塑料、有机硅树脂、丙烯基树脂中任意的一种或多种组合。
本申请所述3D打印拇外翻矫形鞋垫通过使用光学三维扫描仪扫描足部获取对应的三维数据,优选地采用TPU材料进行3D一体化成型打印而成。
其中,TPU(Thermoplastic polyurethanes)名称为热塑性聚氨酯弹性体橡胶。主要分为聚酯型和聚醚型,它硬度范围宽(60HA-85HD)、耐磨、耐油,透明,弹性好,在日用品、体育用品、玩具、装饰材料等领域得到广泛应用,无卤阻燃TPU还可以代替软质PVC以满足越来越多领域的环保要求。所谓弹性体是指玻璃化温度低于室温度,断裂伸长率>50%,外力撤除后复原性比较好的高分子材料。聚氨酯弹性体是弹性体中比较特殊的一大类,聚氨酯弹性体的硬度范围很宽,性能范围很宽,所以聚氨酯弹性体是介于橡胶和塑料的一类高分子材料。可加热塑化,化学结构上没有或很少交联,其分子基本是线性的,然而却存在一定的物理交联。这类聚氨酯称为TPU。
在一或多个可实现的实施例中,所述TPU打印材料性能好,易一体成型,材料利用率高,总体价格经济实惠,不污染环境。
所述TPU材料打印而成的所述3D打印拇外翻矫形鞋垫具有一定的韧性,患者在步行过程,不仅能够得到矫形力的作用,而且极大减少不适感,不影响跖趾关节、趾骨关节正常的屈伸运动。另外,本申请提供的所述3D打印拇外翻矫形鞋垫通过增材制造技术打印,还能具有轻便透气、符合解剖结构、舒适美观等优点,且其表面精度高,极大地提高了患者佩戴的依从性。
于本申请的一实施例中,所述矫正结构2包括:分指指套21、第一施力部22、及第二施力部23。
需说明的是,所述指套施力壁212、第一施力部22、及第二施力部23的表面均设置有硅胶材料。即本申请中所述3D打印拇外翻矫形鞋垫中各主要施力处表面均附有硅胶材料,所述硅胶材料的柔软度较好,可以减小与足部皮肤间的摩擦,能够保护足部皮肤不被挤压和磨 损,防止穿戴过程中造成二次损伤。
于本实施例中,所述分指指套21设于所述鞋垫本体1上对应大拇指区域;所述分指指套21包括:指套主体211、及指套施力壁212;所述指套主体211用于固定患者大拇指;所述指套施力壁212用于分离第一趾骨与第二趾骨,并对所述第一趾骨及第二趾骨形成反作用力。
于本申请的一实施例中,所述指套主体211的结构是根据患者足部的第一趾骨外形大小进行相应设置的;同时依据医生对患者足部的建议的矫正距离调整所述指套施力壁212的位置走向或结构形状、以及依据医生对患者足部的建议的矫正程度调整所述指套施力壁212的厚度。
举例来说,所述指套施力壁212在使用时会位于患者第一趾骨与第二趾骨的指缝间,用于分离第一趾骨与第二趾骨,其端部为圆柱状设计,直径可为0.3cm,以用于防止皮肤的磨损。所述指套施力壁212的一侧会接触到第一趾骨内侧,所述指套施力壁212的另一侧会接触到第二趾骨,甚至还接触第二跖骨,而所述指套施力壁212的两侧则为主要施力处,厚度优选为0.3cm,此厚度矫形力度最为合适。另外,为了防止皮肤长期受力而出现破损,所述指套施力壁212两侧还可附有硅胶材料;同时,在使用时患者的大拇指会套入指套主体211内,以固定患者足部的大拇指。
须知的是,通过对患者进行光学扫描获取患者的足部尺寸数据,为患者量身定做的3D打印拇外翻矫形鞋垫贴合度更高。同时对第一趾骨、第一跖骨和跖骨关节矫正,施加精准的矫形力,矫形效果显著,另外,使用硅胶材料,柔软度较好,能够保护足部皮肤不被挤压和磨损。
于本申请的一实施例中,所述第一施力部22对应患者第一跖趾关节和第一跖骨,并呈弧形拱起;所述第二施力部23对应第五跖趾关节和第五跖骨,并呈弧形拱起;所述第一施力部22与所述第二施力部23用于稳定前脚掌。
举例来说,所述第一施力部22对应第一跖趾关节和第一跖骨,此部分厚度优选为0.3cm,呈弧形拱起,表面附有硅胶材料,以防止皮肤的磨损;所述第二施力对应第五跖趾关节和第五跖骨,此部分厚度优选为0.3cm,呈弧形拱起,表面附有硅胶材料。所述第一施力部22与述第二施力部23用于共同稳定前脚掌。
于本申请的一实施例中,所述矫正结构2通过粘合或卡合方式固定于所述鞋垫本地上,以供所述矫正结构2根据患者矫正恢复情况进行调整或更换。
举例来说,所述矫正结构2与所述鞋垫本体1的接触区域分别设置为粘贴,以供可拆卸的固定;或这,所述矫正结构2为底部设有夹层的卡合结构,所述鞋垫本地可插入该夹层内, 以实现可拆卸的固定。
需要说明的是,当患者随着穿戴本申请所述3D打印拇外翻矫形鞋垫拇外翻的症状不断恢复,还可以通过调整或更换所述矫正结构2以及时适配患者足部的真实变化,以期达到更好的矫正效果。
于本申请的一实施例中,依据患者的足部尺寸数据,所述鞋垫本体1上还相应分布设置有足跟部11、足弓部12、边缘部13、及大拇指部14中任意一种或多种,以用于贴合患者足底曲线。
为了使适用本申请所述3D打印拇外翻矫形鞋垫更加舒适,所述鞋垫本体1上依据患者的足部尺寸数据进行了相应的设置,包括以下任意一种或多种:
1)所述足跟部11根据患者足跟尺寸数据设置为凹陷的U型杯状结构;所述足跟部11的边缘处高出中心处一定高度。简单来说,设置为足跟部11边缘也即鞋垫边缘最高,足跟部11中心最低,这样可以稳定足跟,保护踝关节。根据患者实际情况,边缘处应高出1-2cm,固定效果最好。
2)所述足弓部12根据患者足弓曲面弧度凸设置为具有一定坡度的足弓支撑结构,根据患者足弓曲面弧度,设计适当坡度的足弓支撑,提高患者的舒适度。
3)所述边缘部13根据患者较低中端外侧设置为斜坡式结构,即所述边缘部13为斜坡式增高,为提高患者的舒适感。
4)所述大拇指部14根据患者大拇指尺寸数据设置为凹陷结构,可以减轻大拇指的不适感。
本申请相比于传统的独立矫形器相比,本申请以鞋垫为主要矫形形式,在实际场景中,可将本申请所述的3D打印拇外翻矫形鞋垫放于正常的鞋内,不会对行走造成影响,还可达到动态矫正,方便舒适,矫形率高。
综上所述,本申请提供的一种3D打印拇外翻矫形鞋垫。包括:3D打印的鞋垫本体、及其上3D打印的用于矫正拇外翻的矫正结构;所述矫正结构包括:分指指套、第一施力部、及第二施力部;所述分指指套设于所述鞋垫本体上对应大拇指区域;所述分指指套包括:指套主体、及指套施力壁;所述指套主体用于固定患者大拇指;所述指套施力壁用于分离第一趾骨与第二趾骨,并对所述第一趾骨及第二趾骨形成反作用力。
本申请具有结构简单、使用方便,通过个性化定制提高舒适度和贴合度,使用硅胶材料,柔软度较好,保护足部皮肤不被挤压和磨损。同时对第一趾骨、第一跖骨和跖骨关节矫正,且足拇指处柔性好、贴合性高,适合患者行走与站立,为患者量身定做可施加精准的矫形力 的3D打印拇外翻矫形鞋垫。更重要的是,本申请提供的3D打印拇外翻矫形鞋垫可放于正常的鞋内,不会对行走造成影响,可达到动态矫正,方便舒适,矫形效果显著,成功率高。
本申请有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本申请的原理及其功效,而非用于限制本申请。任何熟悉此技术的人士皆可在不违背本申请的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本申请所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本申请的权利要求所涵盖。

Claims (9)

  1. 一种3D打印拇外翻矫形鞋垫,其特征在于,包括:3D打印的鞋垫本体、及其上3D打印的用于矫正拇外翻的矫正结构;
    所述矫正结构包括:分指指套、第一施力部、及第二施力部;
    所述分指指套设于所述鞋垫本体上对应大拇指区域;所述分指指套包括:指套主体、及指套施力壁;
    所述指套主体用于固定患者大拇指;所述指套施力壁用于分离第一趾骨与第二趾骨,并对所述第一趾骨及第二趾骨形成反作用力。
  2. 根据权利要求1所述的3D打印拇外翻矫形鞋垫,其特征在于,所述鞋垫本体、及矫正结构是通过对患者足部进行光学扫描所获取到的足部尺寸数据适配进行3D打印的。
  3. 根据权利要求1或2所述的3D打印拇外翻矫形鞋垫,其特征在于,所述3D打印技术所采用的材料包括:聚氨酯、聚乳酸、尼龙塑料、光敏树脂、硅胶、橡胶、乳胶、ABS塑料、PVC塑料、有机硅树脂、丙烯基树脂中任意的一种或多种组合。
  4. 根据权利要求2所述的3D打印拇外翻矫形鞋垫,其特征在于,所述指套主体的结构是根据患者足部的第一趾骨外形大小进行相应设置的;同时依据医生对患者足部的建议的矫正距离调整所述指套施力壁的位置走向或结构形状、以及依据医生对患者足部的建议的矫正程度调整所述指套施力壁的厚度。
  5. 根据权利要求2所述的3D打印拇外翻矫形鞋垫,其特征在于,依据患者的足部尺寸数据,所述鞋垫本体上还相应分布设置有足跟部、足弓部、边缘部、及大拇指部中任意一种或多种,以用于贴合患者足底曲线。
  6. 根据权利要求5所述的3D打印拇外翻矫形鞋垫,其特征在于,所述依据患者的足部尺寸数据,所述鞋垫本体上相应的设置包括以下任意一种或多种:
    所述足跟部根据患者足跟尺寸数据设置为凹陷的U型杯状结构;所述足跟部的边缘处高出中心处一定高度,以用于保护踝关节;
    所述足弓部根据患者足弓曲面弧度凸设置为具有一定坡度的足弓支撑结构;
    所述边缘部根据患者较低中端外侧设置为斜坡式结构;
    所述大拇指部根据患者大拇指尺寸数据设置为凹陷结构。
  7. 根据权利要求1所述的3D打印拇外翻矫形鞋垫,其特征在于,所述矫正结构通过粘合或卡合方式固定于所述鞋垫本地上,以供所述矫正结构根据患者矫正恢复情况进行调整或更换。
  8. 根据权利要求1所述的3D打印拇外翻矫形鞋垫,其特征在于,所述第一施力部对应患者 第一跖趾关节和第一跖骨,并呈弧形拱起;所述第二施力部对应第五跖趾关节和第五跖骨,并呈弧形拱起;所述第一施力部与所述第二施力部用于稳定前脚掌。
  9. 根据权利要求1或8所述的3D打印拇外翻矫形鞋垫,其特征在于,所述指套施力壁、第一施力部、及第二施力部的表面均设置有硅胶材料。
PCT/CN2021/088903 2020-04-22 2021-04-22 一种3d打印拇外翻矫形鞋垫 WO2021213459A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202020619932.5U CN212382805U (zh) 2020-04-22 2020-04-22 一种3d打印拇外翻矫形鞋垫
CN202010321990.4 2020-04-22
CN202020619932.5 2020-04-22
CN202010321990.4A CN111419512A (zh) 2020-04-22 2020-04-22 一种3d打印拇外翻矫形鞋垫

Publications (1)

Publication Number Publication Date
WO2021213459A1 true WO2021213459A1 (zh) 2021-10-28

Family

ID=78270287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088903 WO2021213459A1 (zh) 2020-04-22 2021-04-22 一种3d打印拇外翻矫形鞋垫

Country Status (1)

Country Link
WO (1) WO2021213459A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080155731A1 (en) * 2006-12-27 2008-07-03 Iwao Kasahara Corrective socks featuring elastic bands and reinforcing bands to correct hallux valgus and digitus quintus varus
JP4783626B2 (ja) * 2005-12-20 2011-09-28 巖 笠原 外反母趾及び内反小指矯正用サポータ
CN203183100U (zh) * 2013-03-31 2013-09-11 颜玉如 拇外翻矫正鞋垫
CN104699908A (zh) * 2015-03-24 2015-06-10 唐力 3d矫形鞋垫的制作方法
CN206620928U (zh) * 2017-01-06 2017-11-10 凌子龙 拇外翻预防矫正鞋
CN109674144A (zh) * 2019-01-16 2019-04-26 西安交通大学 一种柔性矫形鞋垫及其制备方法
CN110122974A (zh) * 2019-05-16 2019-08-16 佛山市南海起弘新材料科技有限公司 一种矫形鞋垫
CN209285870U (zh) * 2018-11-22 2019-08-23 长沙市优足健康科技有限公司 一种可穿鞋使用的拇外翻双趾矫正器
JP2020028370A (ja) * 2018-08-21 2020-02-27 株式会社鹿浜製作所 外反母趾矯正具
CN110974510A (zh) * 2019-12-23 2020-04-10 江苏健姿医疗科技股份有限公司 一种新型拇外翻矫形套
CN111419512A (zh) * 2020-04-22 2020-07-17 上海交通大学医学院附属第九人民医院 一种3d打印拇外翻矫形鞋垫
CN212382805U (zh) * 2020-04-22 2021-01-22 上海交通大学医学院附属第九人民医院 一种3d打印拇外翻矫形鞋垫

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4783626B2 (ja) * 2005-12-20 2011-09-28 巖 笠原 外反母趾及び内反小指矯正用サポータ
US20080155731A1 (en) * 2006-12-27 2008-07-03 Iwao Kasahara Corrective socks featuring elastic bands and reinforcing bands to correct hallux valgus and digitus quintus varus
CN203183100U (zh) * 2013-03-31 2013-09-11 颜玉如 拇外翻矫正鞋垫
CN104699908A (zh) * 2015-03-24 2015-06-10 唐力 3d矫形鞋垫的制作方法
CN206620928U (zh) * 2017-01-06 2017-11-10 凌子龙 拇外翻预防矫正鞋
JP2020028370A (ja) * 2018-08-21 2020-02-27 株式会社鹿浜製作所 外反母趾矯正具
CN209285870U (zh) * 2018-11-22 2019-08-23 长沙市优足健康科技有限公司 一种可穿鞋使用的拇外翻双趾矫正器
CN109674144A (zh) * 2019-01-16 2019-04-26 西安交通大学 一种柔性矫形鞋垫及其制备方法
CN110122974A (zh) * 2019-05-16 2019-08-16 佛山市南海起弘新材料科技有限公司 一种矫形鞋垫
CN110974510A (zh) * 2019-12-23 2020-04-10 江苏健姿医疗科技股份有限公司 一种新型拇外翻矫形套
CN111419512A (zh) * 2020-04-22 2020-07-17 上海交通大学医学院附属第九人民医院 一种3d打印拇外翻矫形鞋垫
CN212382805U (zh) * 2020-04-22 2021-01-22 上海交通大学医学院附属第九人民医院 一种3d打印拇外翻矫形鞋垫

Similar Documents

Publication Publication Date Title
US6874258B2 (en) Orthopedic shoe appliance and method
US7849610B2 (en) Orthopedic shoe appliance and method
US20100050322A1 (en) Orthotic footsock and integrated removable gel arch pad
US20040103561A1 (en) Footwear with orthopedic component system
US10441032B2 (en) Method of manufacturing a shoe insole
US20040194348A1 (en) Heat malleable orthotic shoe insert
US20020162250A1 (en) Unitary orthotic insert and orthopedic insole
US20040194352A1 (en) Orthopedic insole for a diabetic shoe
MX2011006719A (es) Plantilla de zapato para aliviar dolor artritico.
US20080217816A1 (en) Production Method for Sole Plate
CN109806038B (zh) 全碳纤afo踝足式假肢的制作工艺
US5282328A (en) Custom foot beds for footwear
Bancroft et al. Orthotics
CN111419512A (zh) 一种3d打印拇外翻矫形鞋垫
CN212382805U (zh) 一种3d打印拇外翻矫形鞋垫
WO2021213459A1 (zh) 一种3d打印拇外翻矫形鞋垫
WO2017197255A1 (en) Insert and support for preventing foot fatigue and weakness
Doxey Clinical use and fabrication of molded thermoplastic foot orthotic devices: suggestion from the field
US11758971B2 (en) Foot orthosis having sulcus support and methods for making same
JPH02261447A (ja) 足裏支持体
CN107568832B (zh) 防塌陷的扁平足矫形鞋垫结构
KR20170101588A (ko) 발가락 교정구
CN219537605U (zh) 一种拇外翻分指器矫形鞋垫构造
Permsombat et al. Effects of customized foot orthoses on lower limbs kinematics in adults with highly pronated foot
RU145793U1 (ru) Ортопедическая стелька для лечения плоско-вальгусной деформации стопы у детей

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21793695

Country of ref document: EP

Kind code of ref document: A1