WO2021213195A1 - 一种光引导元件以及光源装置 - Google Patents

一种光引导元件以及光源装置 Download PDF

Info

Publication number
WO2021213195A1
WO2021213195A1 PCT/CN2021/086414 CN2021086414W WO2021213195A1 WO 2021213195 A1 WO2021213195 A1 WO 2021213195A1 CN 2021086414 W CN2021086414 W CN 2021086414W WO 2021213195 A1 WO2021213195 A1 WO 2021213195A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
area
guiding element
light source
wavelength conversion
Prior art date
Application number
PCT/CN2021/086414
Other languages
English (en)
French (fr)
Inventor
方元戎
郭祖强
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021213195A1 publication Critical patent/WO2021213195A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • This application relates to the field of display technology, in particular to a light guide element and a light source device.
  • the existing laser fluorescent white light source can be used as the light source in the projection display, and can also be used for stage lights or spotlights.
  • the laser fluorescent white light source includes a regional diaphragm, which includes a coating area located in the center and a second area located around it. ,
  • the synthesized white light will have a loss of at least 2.5% when passing through the second area. Because the area of the second area is larger, the loss of light is more, resulting in a decrease in luminous efficiency; in addition, because the coating area is set in the area diaphragm In the central area, during coating, a separate mask needs to be used for each diaphragm.
  • the area that does not need to be coated is much larger than the area that needs to be coated, which greatly reduces production efficiency and leads to waste of costs.
  • the present application provides a light guide element and a light source device, which can improve the luminous efficiency and reduce the cost.
  • the technical solution adopted in this application is to provide a light guiding element, the light guiding element includes: a first area and a second area located on opposite sides of the first area, the first area is used for reflection At least part of the first light transmits the second light, and the second area is used to transmit the first light and the second light, wherein the wavelength range of the first light and the wavelength range of the second light are different.
  • a light source device which includes: a light source, a light guiding element and a wavelength conversion device, the light source is used to generate the first light; the light guiding element is arranged at The optical path of the first light includes a first area and a second area located on opposite sides of the first area. The first area is used to reflect at least part of the first light and transmit the second light, and the second area is used to transmit the second light.
  • the wavelength conversion device is used to receive the first light reflected by the light guiding element, and convert at least part of the first light into the second light, the second light is transmitted and emitted through the first area and the second area, wherein ,
  • the wavelength range of the first light and the wavelength range of the second light are different.
  • the beneficial effect of the present application is that since only the second area for transmitting light is provided on the opposite sides of the first area, the area of the second area can be reduced, so that the emitted light can pass through the second area.
  • processing light guide elements multiple light guide elements can share a mask, and multiple light guide elements can be obtained by cutting, which can simplify the processing technology, significantly improve production efficiency, and reduce production costs. And the luminous efficiency of the light source device is improved.
  • Fig. 1 is a schematic structural diagram of an embodiment of a light guiding element provided by the present application
  • FIG. 2 is a schematic diagram of the layer structure of the light guiding element in the embodiment shown in FIG. 1;
  • FIG. 3 is a schematic diagram of the arrangement of multiple light guide elements in the embodiment shown in FIG. 1;
  • FIG. 4 is a schematic structural diagram of an embodiment of a light source device provided by the present application.
  • FIG. 5 is a schematic structural diagram of another embodiment of a light source device provided by the present application.
  • FIG. 6 is a first structural diagram of the wavelength conversion device in the embodiment shown in FIG. 5;
  • FIG. 7 is a schematic diagram of a second structure of the wavelength conversion device in the embodiment shown in FIG. 5.
  • the vibration When light is reflected and transmitted on the surface of the medium, the vibration can be decomposed into a component perpendicular to the incident surface (S component) and a component parallel to the incident surface (P component), and the reflectivity of natural light (the sum of S light and P light) As the angle of incidence increases, it increases. Conversely, the transmittance of natural light decreases as the angle of incidence increases.
  • the light source design using the regional diaphragm now uses the method of coating on a glass plate.
  • the AR (Anti-Reflection) coating can only have a transmittance of 97.5%, and the area coating requires more man-hours and higher cost in the process.
  • FIG. 1 is a schematic structural diagram of an embodiment of a light guiding element provided by the present application.
  • the light guiding element 10 includes a first area 11 and a second area 12 located on opposite sides of the first area 11.
  • the first area 11 and the second area 12 are both rectangular.
  • the first area 11 has opposite upper and lower sides.
  • One of the second areas 12 is located on the upper side of the first area 11, and the other
  • the second area 12 is located on the lower side of the first area 11, that is, the first area 11 is located in the middle area of the light guiding element 10.
  • the light guiding element 10 extends in the up and down direction.
  • the two second regions 12 may also be located on the opposite left and right sides of the first region 11 respectively.
  • the light guide element 10 extends in the left and right directions.
  • the width of the first area 11 is the same as the width of the second area 12, so that the light guiding element 10 forms a complete rectangle, so that the light guiding element 10 is processed It is easy to cut and separate.
  • the width of the second region 12 may also be different from the width of the first region 11, and the width between the two second regions 12 may also be different.
  • the shapes of the first area 11 and the second area 12 are not limited to rectangles, and may also be other polygons such as circles, triangles, trapezoids, and hexagons.
  • the first area 11 and the second area 12 may also have different shapes.
  • the first area 11 is used to reflect at least part of the first light and transmit the second light.
  • the wavelength range of the first light is different from the wavelength range of the second light.
  • the first light and the second light may be monochromatic light, for example, the first light
  • the light can be blue light and the second light can be yellow light; specifically, the first area 11 is used to reflect the first light in the first polarization state and transmit the first light in the second polarization state, for example, the first light in the first polarization state.
  • the first light includes S-polarized blue light
  • the first light of the second polarization state includes P-polarized blue light.
  • the second area 12 is an uncoated area, which may be a glass sheet, capable of transmitting light of all wavelengths, specifically, it may transmit the first light and the second light.
  • the first area 11 includes a first transparent substrate 111 and an optical coating 112 disposed on the first transparent substrate 111
  • the second area 12 includes a second transparent substrate 121;
  • the one transparent substrate 111 and the second transparent substrate 121 may be integrally formed or made of different materials.
  • the light guide element 10 in this embodiment can be used as a light splitter in a 3LCD (Liquid Crystal Display) white light source.
  • the transparent second areas 12 on opposite sides of the first area 11 are reserved to facilitate the structure. Since the second area 12 for transmitting light is only provided on the opposite sides of the first area 11, the area of the second area 12 can be reduced, so that light passes through the second area with only 97.5% transmittance as little as possible. Two areas 12, thereby improving the efficiency of the light source.
  • multiple light guide elements 10 can share a mask. After the coating is completed, multiple light guide elements 10 can be obtained by cutting, which can significantly improve production efficiency and reduce costs. .
  • FIG. 4 is a schematic structural diagram of an embodiment of a light source device provided by the present application.
  • the light source device 40 includes a light source 41, a light guiding element 42 and a wavelength conversion device 43.
  • the light source 41 is used to generate the first light, and the light source 41 may be a laser.
  • the light guide element 42 is disposed on the optical path of the first light, and includes a first area 421 and a second area 422 located on opposite sides of the first area 421, which are used to reflect at least part of the first light and transmit the second light,
  • the wavelength range of the first light and the wavelength range of the second light are different; the second area 422 can allow light beams of all wavelengths to pass, specifically, the second area 422 is used to transmit the first light and the second light, and the light guiding element 42 is The light guide element in the above embodiment.
  • the first area 421 is used to reflect the first light in the first polarization state and transmit the first light in the second polarization state.
  • the first light in the first polarization state includes S-polarized blue light
  • the first light in the second polarization state includes P-polarized blue light.
  • the wavelength conversion device 43 is arranged on the optical path of the first light, and is used to receive the first light reflected by the light guiding element 42 and convert at least part of the first light into second light.
  • the second light passes through the first area 421 and the second light.
  • the two regions 422 are transmitted and emitted; specifically, the first light is reflected by the light guide element 42 to the wavelength conversion device 43, the wavelength conversion device 43 may be a fluorescent pink wheel, the wavelength conversion device 43 is provided with a fluorescent conversion material, and the second light may be Fluorescence, for example, yellow fluorescence.
  • the light emitted by the light source device 40 is composed of the first light generated by the light source 41 and the second light emitted by the wavelength conversion device 43.
  • the first light is incident on the light guiding element 42, at least part of the first light is reflected by the first region 421 to The wavelength conversion device 43.
  • the fluorescence conversion material in the wavelength conversion device 43 is excited to generate a corresponding second light.
  • the second light can pass through the first region 421 and the second region 422 without exciting part of the fluorescent material.
  • One light can be combined with fluorescence to synthesize white light. As the area of the second region 422 is reduced, the portion of the white light passing through the second region 422 is reduced. White light outside the area of the light guiding element 42 can be emitted without damage, thereby improving the luminous efficiency of the light source device 40 .
  • FIG. 5 is a schematic structural diagram of another embodiment of a light source device provided by the present application.
  • the light source device 50 includes: a light source 51, a light guiding element 52, a wavelength conversion device 53, a positive and negative lens 54, a homogenizing device 55, and Collecting lens 56.
  • the light source 51 may be a blue laser.
  • the blue laser light emitted by it passes through a positive and negative lens 54, which is arranged on the optical path of the second light, and is used to compress the second light and emit the compressed second light. ⁇ 55 ⁇ Into the homogenizing device 55.
  • the light homogenizing device 55 is disposed on the optical path of the first light, and is used to homogenize the first light, and inject the homogenized first light into the first area of the light guiding element 52; specifically, the light homogenizing device 55 can be a double fly-eye lens or a square rod, which can homogenize the blue laser light emitted by the blue laser. After the blue laser light is reflected by the first area of the light guiding element 52, it is incident along the central axis of the collecting lens 56.
  • the collection lens 56 is arranged on the optical path between the light guiding element 52 and the wavelength conversion device 53, and the collection lens 56 condenses the blue laser light.
  • the blue laser light is collected by the collection lens 56 and then incident on the wavelength conversion device 53; the wavelength conversion device 53 will receive the light
  • the blue laser light is at least partially converted into yellow fluorescence.
  • the yellow fluorescence is collected by the collecting lens 56 and transmitted to the light guiding element 52.
  • the yellow fluorescence within the area of the light guiding element 52 can pass through the first area and the second area of the light guiding element 52
  • the yellow fluorescent light outside the area of the light guiding element 52 does not need to pass through the light guiding element 52 and can be emitted without damage.
  • the wavelength conversion device 53 emits yellow fluorescent light and unconverted blue laser light, which are mixed into white light.
  • the white light is collected by the collecting lens 56 and transmitted to the light guiding element 52.
  • One area can transmit yellow fluorescence, and the second area can transmit yellow fluorescence and unconverted blue laser light.
  • the middle area will lack blue light, making the central area yellow, so the yellowing problem in the middle area can be solved by setting the polarization state, and the luminous efficiency can be improved at the same time; specifically
  • the light source 41 is used to generate the first light in the first polarization state, the first area is used to reflect the first light in the first polarization state and transmit the first light in the second polarization state; the wavelength conversion area 531 is used to receive the first light in the second polarization state.
  • a region reflects the first light in the first polarization state and converts part of the first light in the first polarization state into second light; the polarization state of the first light in the first polarization state that has not been converted is converted by the wavelength conversion area 531 After being scattered and emitted, the first light in the first polarization state and the first light in the second polarization state are emitted from the wavelength conversion device 53 together with the second light.
  • the first light in the second polarization state can be transmitted from the second light
  • the first area is transmitted, thereby reducing the yellowing problem in the middle area and improving the luminous efficiency; for example, the first light in the first polarization state includes S-polarized blue light, and the first light in the second polarization state includes P-polarized blue light.
  • the light guide element 52 can be placed at an angle of 45° with respect to the optical axis of the first light emitted from the light source 51, as shown in FIG. 5.
  • the wavelength conversion device 53 includes a wavelength conversion area 531, and the wavelength conversion area 531 is used to receive the incident first light and generate the second light.
  • the second light is yellow fluorescence
  • the wavelength conversion area 531 is a ring-shaped area.
  • the ring-shaped area is provided with a yellow fluorescent material. After being excited by a part of the blue laser, the yellow fluorescent material generates yellow fluorescence, but the unconverted blue laser and yellow fluorescence It is mixed into white light, that is, the light emitted from the wavelength conversion region 531 includes yellow fluorescence and unconverted blue laser light.
  • the first light emitted by the light source 51 is homogenized by the light homogenizing device 55, and then reflected by the first area of the light guiding element 52 into the collecting lens 56, and then imaged on the wavelength conversion device 53 to produce yellow fluorescence, and the excited yellow
  • the fluorescent light and the unexcited blue laser light synthesize white light and then it is collected by the collecting lens 56.
  • the white light outside the light guiding element 52 can enter the subsequent optical system without damage to form outgoing light.
  • S-polarized blue light is reflected, and P-polarized blue light and yellow fluorescence are transmitted.
  • the narrow and long light guide element 52 reduces the loss of the light source and improves the luminous efficiency of the light source 51. Reduced costs.
  • the second light includes red fluorescence and green fluorescence.
  • the wavelength conversion area 531 includes a red light conversion area 5311 and a green light conversion area 5312, and the red light conversion area 5311 is provided with a red fluorescent material.
  • the green light conversion area 5312 is provided with a green fluorescent material.
  • the wavelength conversion device 53 further includes a scattering area 532 for scattering the incident first light, and the second light emitted by the wavelength conversion area 531 can synthesize white light with the first light emitted by the scattering area 532.
  • the wavelength conversion area 531 and the scattering area 532 may be located at different positions of the same radius of the wavelength conversion device 53, so that the wavelength conversion area 531 and the scattering area 532 are arranged in a ring shape.
  • the extending direction of the light guiding element 52 is perpendicular to the incident plane formed by the first light.
  • the first light emitted by the light source 51 is reflected by the light guiding element 52 to the wavelength conversion device 53, and is The optical path of the first light before reflection by the guiding element 52 and the optical path of the first light after being reflected by the light guiding element 52 form an incident plane, and the configuration so that the extending direction of the light guiding element 52 is perpendicular to the incident plane formed by the first light can be Reduce the space occupied by the light guide element 52 in the direction of the second light emitted by the wavelength conversion device 53, thereby reducing the distance between the collecting lens 56 and the subsequent optical system, effectively reducing the optical expansion dilution, and further improving the light source 51 The luminous efficiency.
  • This embodiment provides a solution that uses a narrow and long light guide element 52 as a beam splitter.
  • a narrow and long light guide element 52 By reducing the area of the second region in the light guide element 52, the loss of white light passing through the light guide element 52 is reduced, and the loss of white light is increased.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

本申请公开了一种光引导元件以及光源装置,该光引导元件包括第一区域以及分别位于第一区域相对两侧的第二区域,第一区域用于反射至少部分第一光并透射第二光,第二区域用于透射第一光和第二光,其中,第一光的波长范围和第二光的波长范围不同。通过上述方式,本申请能够提高发光效率,降低成本。

Description

一种光引导元件以及光源装置 技术领域
本申请涉及显示技术领域,具体涉及一种光引导元件以及光源装置。
背景技术
现有激光荧光白光源可作为投影显示中的光源,也能用于舞台灯或射灯,该激光荧光白光源包括区域膜片,区域膜片包括位于中心的镀膜区域以及位于周围的第二区域,合成的白光在穿过第二区域时会有至少2.5%的损耗,由于第二区域的面积较大,损失的光较多,致使发光效率下降;另外,由于镀膜区域设置于区域膜片的中心区域,在镀膜时,需要对每一个膜片单独使用一个掩膜,不需要镀膜的区域比需要镀膜的区域大很多,这样大大降低了生产效率,导致成本上的浪费。
实用新型内容
本申请提供一种光引导元件以及光源装置,能够提高发光效率,降低成本。
为解决上述技术问题,本申请采用的技术方案是:提供一种光引导元件,该光引导元件包括:第一区域以及分别位于第一区域相对两侧的第二区域,第一区域用于反射至少部分第一光并透射第二光,第二区域用于透射第一光和第二光,其中,第一光的波长范围和第二光的波长范围不同。
为解决上述技术问题,本申请采用的另一技术方案是:提供一种光源装置,该光源装置包括:光源、光引导元件以及波长转换装置,光源用于产生第一光;光引导元件设置于第一光的光路上,其包括第一区域以及分别位于第一区域相对两侧的第二区域,第一区域用于反射至少部分第一光并透射第二光,第二区域用于透射第一光和第二光;波长转换装置用于接收光引导元件反射的第一光,并将至少部分第一光转换为第二光,第二光 经过第一区域和第二区域透射出射,其中,第一光的波长范围和第二光的波长范围不同。
通过上述方案,本申请的有益效果是:由于仅在第一区域的相对两侧设置用于透射光的第二区域,可减小第二区域的面积,使得出射的光透过第二区域的量减少,减少光损失;在加工光引导元件时,多个光引导元件可共用一个掩膜,通过切割可获得多个光引导元件,能够简化加工工艺,可显著提高生产效率,降低生产成本,且使得光源装置的发光效率提高。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请提供的光引导元件一实施例的结构示意图;
图2是图1所示的实施例中光引导元件的层结构示意图;
图3是图1所示的实施例中多个光引导元件的排列示意图;
图4是本申请提供的光源装置一实施例的结构示意图;
图5是本申请提供的光源装置另一实施例的结构示意图;
图6是图5所示的实施例中波长转换装置的第一结构示意图;
图7是图5所示的实施例中波长转换装置的第二结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
光在介质面发生反射和透射时,可以将振动分解成垂直于入射面的分量(S分量)和平行于入射面的分量(P分量),自然光(S光与P光之和)的反射率随着入射角度增大而增大,反而言之,自然光的透过率随着入射 角度的增大而减小。
由于白光出射后要透过区域膜片后才能被后续光学系统利用,现在使用区域膜片的光源设计都使用在一片玻璃板上镀膜的方式,当区域膜片的外周为透光面时,在镀AR(Anti-Reflection,减反射)膜后也只能有97.5%的透过率,而且区域镀膜在工艺上耗费工时较多,成本较高。
请参阅图1,图1是本申请提供的光引导元件一实施例的结构示意图,光引导元件10包括第一区域11以及分别位于第一区域11相对两侧的第二区域12。在本实施例中,第一区域11和第二区域12均呈矩形,第一区域11具有相对的上侧与下侧,其中一个第二区域12位于第一区域11的上侧,另一个第二区域12位于第一区域11的下侧,即第一区域11位于光引导元件10的中间区域,此时,光引导元件10沿上下的方向延伸。当然,两个第二区域12也可以分别位于第一区域11相对的左侧与右侧,此时,光引导元件10沿左右的方向延伸。优选的,在垂直于光引导元件10的延伸方向上,第一区域11的宽度与第二区域12的宽度相同,如此设置,光引导元件10形成一完整的矩形,使得光引导元件10在加工时易于切割分离。
可以理解地,基于具体的应用需求,第二区域12的宽度也可与第一区域11的宽度不同,两个第二区域12之间的宽度也可以不同。第一区域11和第二区域12的形状并不局限于矩形,也可以为圆形、三角形、梯形、六边形等其他多边形。第一区域11和第二区域12也可以分别为不同的形状。
第一区域11用于反射至少部分第一光并透射第二光,第一光的波长范围和第二光的波长范围不同,第一光与第二光可以是单色光,例如,第一光可以是蓝光,第二光可以是黄光;具体地,第一区域11用于反射第一偏振态的第一光,并透射第二偏振态的第一光,例如,第一偏振态的第一光包括S偏振蓝光,第二偏振态的第一光包括P偏振蓝光。
第二区域12为未镀膜的区域,可为玻璃片,能够透射全部波长的光,具体地,其可透射第一光和第二光。
在一具体的实施例中,如图2所示,第一区域11包括第一透明基板111以及设置于第一透明基板111上的光学镀膜112,第二区域12包括第二透明基板121;第一透明基板111与第二透明基板121可为一体成型,或者采 用不同的材料制作。
本实施例中的光引导元件10可作为分光片应用于3LCD(Liquid Crystal Display,液晶显示器)白光源中,第一区域11的相对两侧的透明的第二区域12被保留下来,以方便结构的固定,由于仅在第一区域11的相对两侧设置用于透射光的第二区域12,可减小第二区域12的面积,使得光尽量少地经过透过率仅有97.5%的第二区域12,从而提高光源效率。
在加工光引导元件10时,如图3所示,多个光引导元件10可共用一个掩膜,在镀膜完成后,可以通过切割获得多个光引导元件10,能够显著提高生产效率,减少成本。
请参阅图4,图4是本申请提供的光源装置一实施例的结构示意图,光源装置40包括:光源41、光引导元件42以及波长转换装置43。
光源41用于产生第一光,光源41可以为激光器。
光引导元件42设置于第一光的光路上,其包括第一区域421以及分别位于第一区域421相对两侧的第二区域422,其用于反射至少部分第一光并透射第二光,第一光的波长范围和第二光的波长范围不同;第二区域422可允许全部波长的光束通过,具体地,第二区域422用于透射第一光和第二光,光引导元件42为上述实施例中的光引导元件。
进一步地,第一区域421用于反射第一偏振态的第一光,并透射第二偏振态的第一光,例如,第一偏振态的第一光包括S偏振蓝光,第二偏振态的第一光包括P偏振蓝光。
波长转换装置43设置于第一光的光路上,其用于接收光引导元件42反射的第一光,并将至少部分第一光转换为第二光,第二光经过第一区域421和第二区域422透射出射;具体地,第一光被光引导元件42反射至波长转换装置43,波长转换装置43可以为荧光粉色轮,波长转换装置43设置有荧光转换材料,该第二光可以为荧光,例如,黄色荧光。
光源装置40发出的光由光源41产生的第一光以及波长转换装置43发出的第二光组成,当第一光入射至光引导元件42时,至少部分第一光被第一区域421反射至波长转换装置43,波长转换装置43中的荧光转换材料受到激发,从而产生相应的第二光,该第二光可透过第一区域421与第二 区域422,而未激发荧光材料的部分第一光可与荧光合成白光,由于第二区域422的面积减少,使得白光经过第二区域422的部分减少,光引导元件42面积以外的白光都能无损出射,从而提高了光源装置40的发光效率。
请参阅图5,图5是本申请提供的光源装置另一实施例的结构示意图,光源装置50包括:光源51、光引导元件52、波长转换装置53、正负透镜54、匀光器件55以及收集透镜56。
光源51可以为蓝光激光器,其发出的蓝激光经过正负透镜54,正负透镜54设置于第二光的光路上,其用于对第二光进行压缩,并将压缩后的第二光射入匀光器件55。
匀光器件55设置于第一光的光路上,其用于对第一光进行匀光,并将匀光后的第一光射入光引导元件52的第一区域;具体地,匀光器件55可以为双复眼透镜或方棒,其可对蓝光激光器发出的蓝激光进行均匀化,蓝激光被光引导元件52的第一区域反射后,沿着收集透镜56的中心轴入射。
收集透镜56设置于光引导元件52与波长转换装置53的光路上,收集透镜56对蓝激光进行汇聚,蓝激光经过收集透镜56收集后入射到波长转换装置53上;波长转换装置53将接收的蓝激光至少部分地转换为黄色荧光,黄色荧光被收集透镜56收集被传导至光引导元件52,在光引导元件52面积以内的黄色荧光能够透过光引导元件52的第一区域和第二区域出射,在光引导元件52面积以外的黄色荧光无需透过光引导元件52,能够无损地出射。在一具体的实施例中,波长转换装置53出射黄色荧光和未被转换的蓝激光,二者混合成白光,该白光被收集透镜56收集并传导至光引导元件52,光引导元件52的第一区域能够透射黄色荧光,第二区域能够透射黄色荧光和未被转换的蓝激光。
进一步地,由于如果蓝激光全部被第一区域反射,则中间区域将缺乏蓝光,使得中心区域发黄,因而可通过偏振态的设置,解决中间区域发黄的问题,同时提高发光效率;具体地,光源41用于产生第一偏振态的第一光,第一区域用于反射第一偏振态的第一光,并透射第二偏振态的第一光;波长转换区域531用于接收被第一区域反射的第一偏振态的第一光,并将部分第一偏振态的第一光转换为第二光;未被转换的第一偏振态的第一光 的偏振态被波长转换区域531散射后出射,变为第一偏振态的第一光和第二偏振态的第一光,与第二光一起自波长转换装置53出射,第二偏振态的第一光能够和第二光从第一区域透射,从而减少中间区域发黄的问题,同时提高发光效率;例如,第一偏振态的第一光包括S偏振蓝光,第二偏振态的第一光包括P偏振蓝光。
在一具体的实施例中,光引导元件52可相对于光源51出射的第一光的光轴呈倾斜45°放置,如图5所示。
在一实施方式中,如图6所示,波长转换装置53包括波长转换区域531,波长转换区域531用于接收入射的第一光,并产生第二光。第二光为黄色荧光,波长转换区域531为环形区域,该环形区域设置有黄色荧光材料,该黄色荧光材料受到部分蓝激光的激发后,产生黄色荧光,而未被转换的蓝激光与黄荧光混合成白光,即波长转换区域531出射的光包括黄色荧光与未被转换的蓝激光。
此实施方式中光源51出射的第一光经过匀光器件55匀光后,被光引导元件52的第一区域反射进入收集透镜56,再成像在波长转换装置53上产生黄荧光,激发的黄荧光与未被激发的蓝激光合成白光,再经过收集透镜56收集,当到达光引导元件52时,在光引导元件52以外的白光都能无损的进入后续光学系统,形成出射光,在第一区域以内,S偏振蓝光被反射,P偏振蓝光与黄荧光被透射,相比于现有技术的光源方案,窄长型的光引导元件52降低了光源的损失,提高了光源51的发光效率,降低了成本。
在另一实施方式中,第二光包括红色荧光与绿色荧光,如图7所示,波长转换区域531包括红光转换区域5311与绿光转换区域5312,红光转换区域5311设置有红色荧光材料,绿光转换区域5312设置有绿色荧光材料。进一步地,波长转换装置53还包括散射区域532,散射区域532用于对入射的第一光进行散射,波长转换区域531出射的第二光可与散射区域532出射的第一光合成白光。波长转换区域531与散射区域532可以位于波长转换装置53的同一半径的不同位置处,使得波长转换区域531与散射区域532呈环形排布。
在另一具体的实施例中,光引导元件52的延伸方向与第一光形成的入射平面垂直,具体地,光源51出射的第一光经光引导元件52反射至波长转换装置53,被光引导元件52反射前的第一光的光路和被光引导元件52反射后的第一光的光路形成一入射平面,配置使光引导元件52的延伸方向垂直于第一光形成的入射平面,能够减少光引导元件52在波长转换装置53出射的第二光的方向上所占的空间,从而减小收集透镜56与后续光学系统之间的距离,有效减少光学扩展量稀释,进一步地提高光源51的发光效率。
本实施例提供了一种使用窄长型的光引导元件52作为分光片的方案,通过减小光引导元件52中的第二区域的面积,降低白光通过光引导元件52的损失量,提高了光源装置50的发光效率,并且由于多个光引导元件52可共用一个掩膜,可简化工艺上的难度,降低生产成本。
以上仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (11)

  1. 一种光引导元件,其特征在于,包括第一区域以及分别位于所述第一区域相对两侧的第二区域,所述第一区域用于反射至少部分第一光并透射第二光,所述第二区域用于透射所述第一光和所述第二光;
    其中,所述第一光的波长范围和所述第二光的波长范围不同。
  2. 根据权利要求1所述的光引导元件,其特征在于,
    所述第一区域用于反射第一偏振态的第一光,并透射第二偏振态的第一光。
  3. 根据权利要求1所述的光引导元件,其特征在于,
    所述第一区域和所述第二区域均呈矩形,在垂直于所述光引导元件的延伸方向上,所述第一区域的宽度与所述第二区域的宽度相同。
  4. 根据权利要求1所述的光引导元件,其特征在于,
    所述第一区域包括第一透明基板以及设置于所述第一透明基板上的光学镀膜,第二区域包括第二透明基板。
  5. 一种光源装置,其特征在于,包括:
    光源,用于产生第一光;
    光引导元件,设置于所述第一光的光路上,所述光引导元件为权利要求1-4中任一项所述的光引导元件,所述第一区域用于反射至少部分所述第一光;
    波长转换装置,用于接收所述光引导元件反射的所述第一光,并将所述至少部分第一光转换为所述第二光,所述第二光经过所述第一区域和所述第二区域透射出射;
    其中,所述第一光的波长范围和所述第二光的波长范围不同。
  6. 根据权利要求5所述的光源装置,其特征在于,
    所述光源用于产生第一偏振态的第一光,所述第一区域用于反射第一偏振态的第一光,并透射第二偏振态的第一光。
  7. 根据权利要求5所述的光源装置,其特征在于,
    所述波长转换装置包括波长转换区域,所述波长转换区域用于接收 入射的所述第一光,并产生所述第二光。
  8. 根据权利要求7所述的光源装置,其特征在于,
    所述第二光为黄色荧光,所述波长转换区域设置有黄色荧光材料,或者
    所述第二光包括红色荧光与绿色荧光,所述波长转换区域包括红光转换区域与绿光转换区域,所述红光转换区域设置有红色荧光材料,所述绿光转换区域设置有绿色荧光材料。
  9. 根据权利要求7所述的光源装置,其特征在于,
    所述波长转换装置还包括散射区域,所述散射区域和所述波长转换区域呈环形排布,所述散射区域用于对入射的所述第一光进行散射。
  10. 根据权利要求5所述的光源装置,其特征在于,
    所述光引导元件的延伸方向与所述第一光形成的入射平面垂直。
  11. 根据权利要求5所述的光源装置,其特征在于,
    所述光源装置还包括匀光器件,所述匀光器件设置于所述第一光的光路上,用于对所述第一光进行匀光,并将匀光后的第一光射入所述光引导元件。
PCT/CN2021/086414 2020-04-20 2021-04-12 一种光引导元件以及光源装置 WO2021213195A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020596406.1 2020-04-20
CN202020596406.1U CN212112106U (zh) 2020-04-20 2020-04-20 一种光引导元件以及光源装置

Publications (1)

Publication Number Publication Date
WO2021213195A1 true WO2021213195A1 (zh) 2021-10-28

Family

ID=73641106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086414 WO2021213195A1 (zh) 2020-04-20 2021-04-12 一种光引导元件以及光源装置

Country Status (2)

Country Link
CN (1) CN212112106U (zh)
WO (1) WO2021213195A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212112106U (zh) * 2020-04-20 2020-12-08 深圳光峰科技股份有限公司 一种光引导元件以及光源装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541879A (zh) * 2015-11-28 2019-03-29 佳能株式会社 光源光学系统和使用光源光学系统的投影显示装置
CN209281139U (zh) * 2018-11-22 2019-08-20 无锡视美乐激光显示科技有限公司 一种光源装置及投影系统
CN110488561A (zh) * 2018-05-15 2019-11-22 佳能株式会社 光源装置和图像投影装置
CN212112106U (zh) * 2020-04-20 2020-12-08 深圳光峰科技股份有限公司 一种光引导元件以及光源装置
CN212623371U (zh) * 2020-05-28 2021-02-26 深圳光峰科技股份有限公司 一种区域镀膜分光片和光源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541879A (zh) * 2015-11-28 2019-03-29 佳能株式会社 光源光学系统和使用光源光学系统的投影显示装置
CN110488561A (zh) * 2018-05-15 2019-11-22 佳能株式会社 光源装置和图像投影装置
CN209281139U (zh) * 2018-11-22 2019-08-20 无锡视美乐激光显示科技有限公司 一种光源装置及投影系统
CN212112106U (zh) * 2020-04-20 2020-12-08 深圳光峰科技股份有限公司 一种光引导元件以及光源装置
CN212623371U (zh) * 2020-05-28 2021-02-26 深圳光峰科技股份有限公司 一种区域镀膜分光片和光源装置

Also Published As

Publication number Publication date
CN212112106U (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
KR101995543B1 (ko) 광원 시스템 및 투영 장치
TWI591418B (zh) 光源系統
CN205353549U (zh) 一种光源装置及照明装置
TWM552112U (zh) 光源裝置及投影系統
WO2018209723A1 (zh) 一种投影照明光路及其投影装置
WO2020248558A1 (zh) 一种激光光源的光学系统
WO2020216263A1 (zh) 光源系统和显示设备
US11347141B2 (en) Light source device and projector
WO2022012207A1 (zh) 一种混合光源装置以及投影显示设备
JP7070620B2 (ja) 光源装置およびプロジェクター
WO2021213195A1 (zh) 一种光引导元件以及光源装置
WO2019200931A1 (zh) 光源装置及显示设备
WO2022012345A1 (zh) 一种光源系统与投影系统
WO2021197355A1 (zh) 一种光源系统
US10824066B2 (en) Light source and projection system
CN106950785A (zh) 一种光源装置及照明装置
CN205384439U (zh) 一种激光投影系统
CN109254485B (zh) 光源装置及投影系统
CN210894973U (zh) 一种激光光源系统
CN210072301U (zh) 一种激光光源的光学系统
CN113608402A (zh) 照明装置及微型投影仪
CN112213908B (zh) 光源系统与显示设备
WO2022007700A1 (zh) 一种光源装置及投影设备
WO2024008103A1 (zh) 一种激光合光装置以及光源
WO2021238891A1 (zh) 棱镜组件、发光装置和投影系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21793304

Country of ref document: EP

Kind code of ref document: A1