WO2024008103A1 - 一种激光合光装置以及光源 - Google Patents

一种激光合光装置以及光源 Download PDF

Info

Publication number
WO2024008103A1
WO2024008103A1 PCT/CN2023/105784 CN2023105784W WO2024008103A1 WO 2024008103 A1 WO2024008103 A1 WO 2024008103A1 CN 2023105784 W CN2023105784 W CN 2023105784W WO 2024008103 A1 WO2024008103 A1 WO 2024008103A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
laser light
wavelength
wavelength conversion
Prior art date
Application number
PCT/CN2023/105784
Other languages
English (en)
French (fr)
Inventor
陈彬
付锦江
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210806825.7A external-priority patent/CN117404623A/zh
Priority claimed from CN202221779338.8U external-priority patent/CN218480555U/zh
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2024008103A1 publication Critical patent/WO2024008103A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present application relates to the field of lighting technology, and in particular to a laser light combining device and a light source.
  • Existing light sources can meet the needs of low power, small size of lighting equipment, long-distance illumination, light extraction efficiency and central light intensity.
  • the light spot emitted by the existing light source has a white middle with yellow edges and poor color uniformity.
  • the main purpose of this application is to provide a laser light combining device and a light source, aiming to solve at least one technical problem in the prior art.
  • the present application provides a laser light combining device.
  • the laser light combining device includes: a spectroscopic element and a wavelength conversion element, wherein the spectroscopic element is used to reflect part away from the spectroscopic element and the wavelength conversion element.
  • the laser incident on one side is used to form a first wavelength beam, and the non-reflected part of the laser is transmitted to the wavelength conversion element; the wavelength conversion element is used to perform wavelength conversion on the non-reflected part of the laser to Form a second wavelength beam, and reflect the second wavelength beam to the spectroscopic element, so that the second wavelength beam and the first wavelength beam form a composite light; wherein the divergence of the first wavelength beam The angle and the divergence angle of the second wavelength beam are both larger than the divergence angle of the laser.
  • the light source includes a laser and the above-mentioned laser light combining device.
  • the laser is used to emit laser light
  • the laser light combining device is used to receive the laser light.
  • Laser separate and convert the laser light and then combine the light to form the combined light of the first wavelength beam and the second wavelength beam.
  • the laser light combining device of the present application includes: a spectroscopic element and a wavelength conversion element, wherein the spectroscopic element is used to reflect part of the incident laser from the side of the spectroscopic element away from the wavelength conversion element to form a first wavelength beam , and transmit the non-reflected part of the laser to the wavelength conversion element; the wavelength conversion element is used to perform wavelength conversion on the non-reflected part of the laser to form a second wavelength beam, and reflect the second wavelength beam to the spectroscopic element, so that the third The two-wavelength beam and the first-wavelength beam form combined light, and the divergence angle of the first-wavelength beam and the divergence angle of the second-wavelength beam are both larger than the divergence angle of the laser.
  • the spectroscopic element reflects part of the laser light to form a reflected laser light, that is, a first wavelength laser, and transmits part of the laser light to the wavelength conversion element to excite fluorescence through the wavelength conversion element, that is, a second wavelength beam, and the first wavelength
  • the divergence angle of the beam and the divergence angle of the second wavelength beam are both larger than the divergence angle of the laser, so that the color uniformity of the combined light formed by the first wavelength beam and the second wavelength beam is high; at the same time, the method of forming the combined light is simple and the structure is Compact and less expensive to manufacture.
  • Figure 1 is a schematic structural diagram of an embodiment of the laser light combining device provided by this application.
  • Figure 2 is a schematic structural diagram of an embodiment of the laser light combining device provided by this application.
  • Figure 3 is a schematic structural diagram of an embodiment of the laser light combining device provided by this application.
  • Figure 4 is a schematic structural diagram of an embodiment of a spectroscopic element provided by this application.
  • Figure 5 is a schematic structural diagram of an embodiment of the laser light combining device provided by this application.
  • Figure 6 is a schematic structural diagram of an embodiment of the laser light combining device provided by this application.
  • Figure 7 is a schematic structural diagram of an embodiment of the laser light combining device provided by this application.
  • Figure 8 is a schematic structural diagram of an embodiment of the light source provided by this application.
  • laser light combining device 10 spectroscopic element 100; wavelength conversion element 200; Laser 300; first wavelength beam 310; second wavelength beam 320; fluorescent layer 210; reflective layer 220; glass layer 110; scattering layer 120; middle region 130; peripheral region 140; through hole 150; anti-reflection coating 160; frosted glass 170 ; Heat dissipation substrate 400; light source 1; laser 20; compression lens 30; mirror 40; diffusion sheet 50; reflective prism 60; collection lens 70; diaphragm 80.
  • first”, “second” and “third” in this application are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise clearly and specifically limited. All directional indications (such as up, down, left, right, front, back%) in the embodiments of this application are only used to explain the relative positional relationship between components in a specific posture (as shown in the drawings). , sports conditions, etc., if the specific posture changes, the directional indication will also change accordingly.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand explicitly and implicitly that, The embodiments described herein may be combined with other embodiments.
  • Figure 1 is a schematic structural diagram of an embodiment of the laser light combining device 10 provided by the present application.
  • the laser light combining device 10 includes: a spectroscopic element 100 and a wavelength conversion element 200.
  • the spectroscopic element 100 can partially transmit and partially reflect the laser light 300 .
  • the spectroscopic element 100 is used to reflect part of the incident laser 300 from the side of the spectroscopic element 100 away from the wavelength conversion element 200 to form a first wavelength beam 310 with an increased divergence angle, and to transmit the non-reflected part of the laser 300 to the wavelength conversion element 200 .
  • the wavelength conversion element 200 is used to perform wavelength conversion on the non-reflected part of the laser 300 to form a second wavelength beam 320, and reflect the second wavelength beam 320 to the spectroscopic element 100, so that the second wavelength beam 320 is consistent with the first wavelength beam.
  • 310 forms combined light, wherein the divergence angle of the first wavelength beam 310 and the divergence angle of the second wavelength beam 320 are both larger than the divergence angle of the laser 300 .
  • part of the laser 300 can be reflected by the spectroscopic element 100 to form a reflected laser, that is, the first wavelength beam 310, and part of the laser 300 can be transmitted to the wavelength conversion element 200 to generate fluorescence by exciting the wavelength conversion element 200.
  • the two-wavelength beam 320, and the divergence angle of the first wavelength beam 310 and the second wavelength beam 320 are both larger than the divergence angle of the laser 300, so that the color of the combined light formed by the first wavelength beam 310 and the second wavelength beam 320 is The uniformity is high; at the same time, the method of forming combined light is simple, the structure is compact, and the manufacturing cost is low.
  • the overlap area of the divergence angle of the first wavelength beam 310 and the divergence angle of the second wavelength beam 320 is greater than or equal to 80%.
  • the overlap area of the divergence angles of the first wavelength beam and the second wavelength beam can be obtained using the following calculation method: overlap area Volume/(volume of overlapping area + volume of non-overlapping area).
  • the divergence angle of the first wavelength beam 310 and the divergence angle of the second wavelength beam 320 can be substantially the same, that is, the overlapping area of the two is approximately equal to 100%, so that the first wavelength beam 310 and the second wavelength beam 320 overlap.
  • the size of the light spot formed by the wavelength beam 310 and the second wavelength beam 320 is substantially the same, so as to further improve the color uniformity of the combined light.
  • Figure 2 is a schematic structural diagram of an embodiment of the laser light combining device 10 provided by the present application. picture.
  • the wavelength conversion element 200 may include a fluorescent layer 210 and a reflective layer 220.
  • the fluorescent layer 210 is disposed between the light splitting element 100 and the reflective layer 220 .
  • the fluorescent layer 210 may be made of fluorescent material, and the fluorescent material may be a wavelength conversion material of blue light segment, green light segment, yellow light segment or red light segment.
  • the fluorescent layer 210 can receive the laser 300 and excite the fluorescent material through the laser 300 to generate the second wavelength beam 320.
  • fluorescent materials may include fluorescent glass, fluorescent silica gel, fluorescent single crystal, fluorescent ceramics, fluorescent composite phase ceramics, etc.
  • the reflective layer 220 may be used to reflect the first wavelength beam 310 .
  • the reflective layer 220 may be a metal reflective layer or an inorganic reflective layer.
  • the metal reflective layer can form a metal layer (such as silver layer, etc.) through metal materials.
  • the inorganic reflective layer 220 is formed of reflective particles or scattering particles and a matrix.
  • the reflective particles or scattering particles may be silicon nitride, aluminum oxide, aluminum nitride, magnesium oxide, barium sulfate, titanium dioxide, zirconium oxide, zinc oxide, boron nitride, Aluminum nitride, silicon carbide, aluminum borate, etc., the matrix can be made of silicone or glass.
  • the fluorescent layer 210 receives the part of the laser 300 that is not reflected by the spectroscopic element 100, and excites the fluorescent material with the laser 300 to generate a second wavelength beam 320.
  • the generated second wavelength beam 320 is reflected by the reflective layer 220.
  • Spectroscopic element 100 is Spectroscopic element 100.
  • the laser 300 is incident from the side of the spectroscopic element 100 away from the wavelength conversion element 200, and is divided by the spectroscopic element 100 into the laser 300 used to excite the fluorescent material in the fluorescent layer 210, and the laser 300 used to mix with the second wavelength beam 320 to A combined first wavelength beam 310 is formed. Therefore, the color of the combined light can be adjusted by mixing the first wavelength beam 310 and the fluorescence-excited second wavelength beam 320, where the color of the combined light can be white, red, green, yellow, etc.
  • the spectroscopic element 100 may be frosted glass, and its side surface close to the wavelength conversion element 200 and the side surface away from the wavelength conversion element 200 are both atomized.
  • the laser 300 can be incident on the atomized side surface of the frosted glass away from the wavelength conversion element 200, so as to expand the divergence angle of the laser 300 through the atomized surface, and then utilize the Fresnel reflection phenomenon of the glass material in the frosted glass to make the laser 300 is partially reflected and partially transmitted, the reflected partial laser 300 is used as the first wavelength beam 310, and the transmitted partial laser 300 is used as excitation light to excite the fluorescent material of the wavelength conversion element 200 to form the second wavelength beam 320, and And both the first wavelength beam 310 and the second wavelength beam 320 pass through the atomized surface of the frosted glass, so that the divergence angles of the first wavelength beam 310 and the second wavelength beam 320 are both greater than the divergence angle of the laser 300, so that through the first wavelength
  • Figure 3 is a schematic structural diagram of an embodiment of the laser light combining device 10 provided by the present application.
  • the spectroscopic element 100 includes a glass layer 110 and a scattering layer 120.
  • the glass layer 110 is disposed between the scattering layer 120 and the wavelength conversion element 200.
  • the glass layer 110 may be made of glass material.
  • the laser 300 is partially reflected and partially transmitted through the Fresnel reflection phenomenon of the glass material.
  • the scattering layer 120 can increase the divergence angle of the laser 300 .
  • laser 300 is incident on the scattering layer 120, and the divergence angle of the laser 300 is increased through the scattering layer 120.
  • the laser 300 with the increased divergence angle is transmitted to the glass layer 110, using the Fresnel of the glass material in the glass layer 110.
  • the reflection phenomenon partially reflects and partially transmits the laser 300.
  • the reflected laser 300 forms a first wavelength beam 310, and the transmitted part of the laser 300 enters the wavelength conversion element 200 to form a second wavelength beam 320.
  • the divergence angles of the first wavelength beam 310 and the second wavelength beam 320 are both larger than the divergence angle of the laser 300, and finally the first wavelength beam 310 and the second wavelength beam 310 are transmitted through the scattering layer 120.
  • the color uniformity of the combined light formed by the light beam 320 is relatively high.
  • the scattering layer 120 and the glass layer 110 can be provided integrally. Specifically, by mixing titanium dioxide and pores in the glass material, the formed spectroscopic element 100 has the function of scattering the laser 300 and can also utilize the Fresnel of the glass material. The reflection phenomenon partially reflects and partially transmits the laser 300 .
  • the light splitting element 100 may be a diffuser.
  • the laser 300 is incident on the diffuser, and the laser 300 is split through the Fresnel reflection of the diffuser itself.
  • the split laser 300 is partially reflected and partially transmitted.
  • the partially reflected laser 300 forms the first wavelength beam 310 and is partially transmitted.
  • the laser light 300 is incident on the wavelength conversion element 200 .
  • the diffusion sheet can be formed by adding chemical particles as scattering particles into the diffusion film base material.
  • the scattering particles are located in the diffusion film base material.
  • the laser 300 After receiving the laser 300 through the diffusion sheet, the laser 300 will continue to pass through the diffusion layer. Passing through scattering particles with different refractive indexes, the laser 300 is refracted, reflected and scattered.
  • the divergence angles of the first wavelength beam 310 and the second wavelength beam 320 are both larger than the divergence angle of the laser 300, and at the same time, the angles of the first wavelength beam 310 and the second wavelength beam 320 are basically the same, so that the first wavelength beam 310 and the second wavelength beam 320 are The color uniformity of the combined light formed by the two-wavelength light beam 320 is relatively high.
  • the light-splitting element 100 includes a light-splitting film layer (not shown).
  • the light-splitting film layer is bonded to the fluorescent layer of the wavelength conversion element 200.
  • the light-splitting film layer includes a glass material and scattering particles doped in the glass material. .
  • the light-splitting film layer may include glass material, and the glass material may be doped with TiO2, Al2O3, pores and other scattering particles.
  • the wavelength conversion element 200 may include a fluorescent layer 210 and a reflective layer 220.
  • the fluorescent layer 210 is disposed between the spectroscopic element 100 and the reflective layer 220.
  • the fluorescent layer 210 may be made of fluorescent material.
  • the fluorescent material may be a blue light segment, a green light segment,
  • the wavelength conversion material for the yellow light segment or the red light segment, and the dichroic film layer can be directly bonded to the fluorescent material of the fluorescent layer.
  • the laser 300 is incident on the dichroic film layer to expand the divergence angle of the laser 300 through the scattering particles in the dichroic film layer.
  • the Fresnel reflection phenomenon of the glass material in the dichroic film layer is used to cause the laser 300 to be Partial reflection and partial transmission processing
  • the reflected partial laser 300 serves as the first wavelength beam 310
  • the transmitted partial laser 300 serves as the excitation light to excite the fluorescent material of the wavelength conversion element 200 to form the second wavelength beam 320
  • the first wavelength beam 310 and the second wavelength beam 320 both pass through the scattering particles of the spectroscopic film layer, so that the divergence angles of the first wavelength beam 310 and the second wavelength beam 320 are both greater than the divergence angle of the laser 300.
  • the color uniformity of the combined light formed by the light beam 320 is relatively high.
  • Figure 4 is a schematic structural diagram of an embodiment of the spectroscopic element 100 provided by the present application.
  • the light reflectance of the middle region 130 of the spectroscopic element 100 is smaller than the light reflectance of the peripheral region 140 of the spectroscopic element 100 .
  • the central light of the light spot formed by the laser is usually strong, and the light around the central light is weak. Therefore, the energy distribution of the beam irradiated on the wavelength conversion element is strong at the center and weak at the edge. Therefore, the excitation light at the center is weak. Stronger, has a strong ability to excite fluorescent materials, and the excitation light that does not participate in the excitation and the received laser light formed by exciting the fluorescent materials are mixed to produce the first mixed light. The power density of the light spot at the edge is low and the excitation light is weak.
  • the excitation light is involved in exciting the fluorescent material to produce excitation light, while less excitation light is not involved in the excitation.
  • the excitation light that is not involved in the excitation and the excitation of the fluorescent material are formed.
  • the laser light is mixed to produce a second mixed light. Since the beam energy distribution of the excitation light is strong at the center and weak at the edge, the first mixed light There are differences in the color and energy distribution of the combined light and the second mixed light, which ultimately leads to large color difference and poor uniformity of the mixed light generated by the laser.
  • the color of the first mixed light may be bluer, while the color of the second mixed light may be yellower.
  • the resulting mixed light is bluer and brighter in the center and yellower and darker at the edges.
  • This application enhances the reflectivity of the middle region 130 of the spectroscopic element 100, thereby reducing the transmittance of the middle region 130 of the spectroscopic element 100, so as to reduce the difference in the second wavelength beam 320 generated by the wavelength conversion elements 200 at different positions, and pass through the third wavelength conversion element 200.
  • the color uniformity of the combined light formed by mixing the first wavelength light beam 310 and the second wavelength light beam 320 is relatively high.
  • the size of the area of the middle area 130 can be set according to actual needs.
  • Figure 5 is a schematic structural diagram of an embodiment of the laser light combining device 10 provided by the present application.
  • the middle region 130 of the spectroscopic element 100 is provided with a through hole 150 so as to reduce the reflectivity of the middle region 130 of the spectroscopic element 100 through the through hole 150 .
  • the size of the through hole 150 can be set according to the size of the spot of the laser 300.
  • the radial size of the through hole 150 can be less than or equal to the size of the spot of the laser 300.
  • the central beam of the laser 300 can be incident into the wavelength conversion element 200 through the through hole 150.
  • the wavelength conversion element 200 performs wavelength conversion to form the second wavelength beam 320.
  • the second wavelength beam 320 generated by the middle region 130 of the wavelength conversion element 200 is stronger, thereby passing the first wavelength beam 310 and the second wavelength beam 320.
  • the synthesized light spot meets the characteristics of strong illumination in the center and weak illumination in the edge area.
  • Figure 6 is a schematic structural diagram of an embodiment of the laser light combining device 10 provided by the present application.
  • the spectroscopic element 100 includes a frosted glass 170 , a surface of which is atomized close to the wavelength conversion element 200 , and an anti-reflection film 160 is provided in the middle region 130 of the surface of which is away from the wavelength conversion element 200 .
  • the central beam of the laser 300 is irradiated to the middle area 130 of the spectroscopic element 100.
  • An anti-reflection film 160 is provided on the middle area 130 of the spectroscopic element 100.
  • the anti-reflection film 160 increases the light transmittance of the middle area 130 of the spectroscopic element 100, so that the light can be split.
  • the light reflectance of the central region 130 of the element 100 is smaller than the light reflectance of the peripheral region 140 of the spectroscopic element 100 .
  • this application enhances the reflectivity of the middle region 130 of the spectroscopic element 100 by arranging the anti-reflection film 160, thereby reducing the transmittance of the middle region 130 of the spectroscopic element 100, so that the waves at different positions are The difference in the second wavelength beam 320 generated by the long conversion element 200 is reduced, and the color uniformity of the combined light formed by mixing the first wavelength beam 310 and the second wavelength beam 320 is higher.
  • FIG. 7 is a schematic structural diagram of an embodiment of the laser light combining device 10 provided by the present application.
  • the laser light combining device 10 provided in this application may also include a heat dissipation substrate.
  • the scattering substrate is disposed on the side of the wavelength conversion element away from the spectroscopic element.
  • the heat dissipation substrate is used to carry the wavelength conversion element, and the wavelength conversion element generates heat during its operation. Heat can spread through the heat sink substrate.
  • the laser light combining device 10 provided by the present application has a simple light combining method, a compact structure, and low manufacturing cost, and the light reflectivity of the middle region 130 of the spectroscopic element 100 is smaller than that of the peripheral region 140 of the spectroscopic element 100 Reflectivity can make the color uniformity of the resulting combined light higher.
  • Figure 8 is a schematic structural diagram of an embodiment of the light source provided by the present application.
  • the light source 1 includes a laser 20 and the above-mentioned laser light combining device 10.
  • the laser 20 is used to emit laser light.
  • the laser light combining device 10 is used to receive laser light, separate and convert the laser light and then combine the laser light to form a first wavelength beam and a second wavelength light beam. The combined light of two wavelength beams.
  • the light source 1 may include a compression lens 30 , a reflecting mirror 40 , a diffusion sheet 50 , a reflecting prism 60 and a collecting lens 70 .
  • the compression lens 30 is disposed on the light exit side of the laser 20 .
  • the compression lens 30 is used to compress the light spot of the laser light emitted from the laser 20 along the first optical path.
  • the reflecting mirror 40 is disposed on the light exit side of the compression lens 30 .
  • the reflecting mirror 40 is used to reflect the compressed laser light to form laser light that propagates along the second optical path.
  • the diffusion sheet 50 is disposed on the second optical path, and the diffusion sheet 50 is used to diffuse the laser light propagating along the second optical path.
  • the reflective prism 60 is disposed on the second optical path, and the diffusion sheet 50 is located between the reflective mirror and the reflective prism.
  • the reflective prism 60 is used to reflect the diffused laser light propagating along the second optical path to form a laser propagating along the third optical path. laser.
  • the collection lens 70 is disposed on the third optical path and is located between the reflective prism 60 and the laser combining device 10.
  • the collection lens 70 is used to collect the laser light propagating along the third optical path and guide the laser light propagating along the third optical path to the laser beam.
  • the compression lens 30 is a cylinder with a convex surface at one end and a concave surface at the other end.
  • the laser beam emitted by the laser 20 is compressed after passing through the convex surface of the compression lens 30, and is guided to the Collimated emission after concave surface.
  • the length of the cylinder of the compression lens 30 can be configured to allow the light to be refracted by the convex surface and the concave surface successively and then be collimated and emitted.
  • the light source 1 may further include an aperture 80.
  • the aperture 80 may be disposed between the collection lens 70 and the laser light combining device 10.
  • the aperture 80 may be used to control the size of the light spot incident on the laser light combining device 10 and its color uniformity. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Lasers (AREA)

Abstract

一种激光合光装置(10),包括分光元件(100)及波长转换元件(200),其中,分光元件(100)用于反射部分从分光元件(100)背离波长转换元件(200)一侧入射的激光(300),以形成第一波长光束(310),并将激光(300)的未反射部分透射至波长转换元件(200);波长转换元件(200)用于对激光(300)的未反射部分进行波长转换,以形成第二波长光束(320),并将第二波长光束(320)反射至分光元件(100),以使第二波长光束(320)与第一波长光束(310)形成合光,第一波长光束(310)的发散角和第二波长光束(320)的发散角均大于激光(300)的发散角。经由第一波长光束(310)和第二波长光束(320)形成的合光的颜色均匀性较高;同时形成合光的方法简单,结构紧凑,制造成本较低。还提供一种包括激光合光装置(10)的光源(1)。

Description

一种激光合光装置以及光源 技术领域
本申请涉及照明技术领域,特别是涉及一种激光合光装置以及光源。
背景技术
现有的光源可满足功率小、照明设备体积小、远距离照射及出光效率和中心光强的需求,但是现有光源出射的光斑中间白边缘黄,颜色均匀性差。
且现有技术中为了能够满足使用需求,通常需要对光路进行复杂处理,需要满足大功率和复杂的散热,往往结构复杂,且整个装置的体积较大,制造成本较高。
发明内容
本申请的主要目的是提供一种激光合光装置以及光源,旨在解决现有技术中的至少一技术问题。
为解决上述问题,本申请提供了一种激光合光装置,激光合光装置包括:分光元件及波长转换元件,其中,所述分光元件用于反射部分从所述分光元件背离所述波长转换元件一侧入射的激光,以形成第一波长光束,并将所述激光的未反射部分透射至所述波长转换元件;所述波长转换元件用于对所述激光的未反射部分进行波长转换,以形成第二波长光束,并将所述第二波长光束反射至所述分光元件,以使所述第二波长光束与所述第一波长光束形成合光;其中,所述第一波长光束的发散角和所述第二波长光束的发散角均大于所述激光的发散角。
为解决上述问题,本申请提供了一种光源,光源包括激光器以及上述的激光合光装置,激光器用于出射激光,激光合光装置用于接收所述 激光,将激光分离和转换后进行合光,以形成第一波长光束与第二波长光束的合光。
与现有技术相比,本申请的激光合光装置包括:分光元件及波长转换元件,其中,分光元件用于反射部分从分光元件背离波长转换元件一侧入射的激光,以形成第一波长光束,并将激光的未反射部分透射至波长转换元件;波长转换元件用于对激光的未反射部分进行波长转换,以形成第二波长光束,并将第二波长光束反射至分光元件,以使第二波长光束与第一波长光束形成合光,第一波长光束的发散角和第二波长光束的发散角均大于激光的发散角。通过上述方式,分光元件将部分激光反射,形成反射激光,即第一波长激光,且将部分激光透射至波长转换元件,以通过波长转换元件激发产生荧光,即第二波长光束,并且第一波长光束的发散角和第二波长光束的发散角均大于激光的发散角,使得经由第一波长光束和第二波长光束形成的合光的颜色均匀性较高;同时形成合光的方法简单,结构紧凑,制造成本较低。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的激光合光装置一实施例结构示意图;
图2是本申请提供的激光合光装置一实施例结构示意图;
图3是本申请提供的激光合光装置一实施例结构示意图;
图4是本申请提供的分光元件一实施例结构示意图;
图5是本申请提供的激光合光装置一实施例结构示意图;
图6是本申请提供的激光合光装置一实施例结构示意图;
图7是本申请提供的激光合光装置一实施例结构示意图;
图8是本申请提供的光源一实施例结构示意图。
附图标号:激光合光装置10;分光元件100;波长转换元件200; 激光300;第一波长光束310;第二波长光束320;荧光层210;反射层220;玻璃层110;散射层120;中间区域130;外围区域140;通孔150;增透膜160;毛玻璃170;散热基板400;光源1;激光器20;压缩透镜30;反射镜40;扩散片50;反射棱镜60;收集透镜70;光阑80。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。可以理解的是,此处所描述的具体实施例仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是, 本文所描述的实施例可以与其它实施例相结合。
参见图1,图1是本申请提供的激光合光装置10一实施例结构示意图。
本申请提供的激光合光装置10包括:分光元件100及波长转换元件200。
分光元件100能够对激光300部分透射和部分反射。分光元件100用于反射部分从分光元件100背离波长转换元件200一侧入射的激光300,以形成发散角增大的第一波长光束310,并将激光300的未反射部分透射至波长转换元件200。
波长转换元件200用于对激光300的未反射部分进行波长转换,以形成第二波长光束320,并将第二波长光束320反射至分光元件100,以使第二波长光束320与第一波长光束310形成合光,其中,第一波长光束310的发散角和第二波长光束320的发散角均大于激光300的发散角。
通过上述方式,可以通过分光元件100将部分激光300反射,形成反射激光,即第一波长光束310,且将部分激光300透射至波长转换元件200,以通过激发波长转换元件200产生荧光,即第二波长光束320,并且第一波长光束310的发散角和第二波长光束320的发散角均大于激光300的发散角,使得经由第一波长光束310和第二波长光束320形成的合光的颜色均匀性较高;同时形成合光的方法简单,结构紧凑,制造成本较低。
第一波长光束310的发散角和第二波长光束320的发散角的角度重合区域大于或等于80%,第一波长光束和第二波长光束的发散角重合区域可使用如下计算方式得到:重合区域体积/(重合区域体积+未重合区域体积)。为了进一步提高合光的颜色的均匀性,第一波长光束310的发散角和第二波长光束320的发散角的角度可以基本一致,也即两者的重合区域约等于100%,以使第一波长光束310和第二波长光束320所形成的光斑大小基本一致,以进一步能够提高合光的颜色的均匀性。
参见图2,图2是本申请提供的激光合光装置10一实施例结构示意 图。
波长转换元件200可以包括荧光层210和反射层220。荧光层210设置于分光元件100和反射层220之间。
荧光层210可以由荧光材料制成,荧光材料可以是蓝光段、绿光段、黄光段或红光段的波长转换材料。荧光层210可以接收激光300,并通过激光300激发荧光材料,产生第二波长光束320。具体地,荧光材料可以包括荧光玻璃、荧光硅胶、荧光单晶、荧光陶瓷、荧光复相陶瓷等。
反射层220可以用于反射第一波长光束310。其中,反射层220可为金属反射层或无机反射层。金属反射层可通过金属材料形成一层金属层(如银层等)。无机反射层220由反射颗粒或散射颗粒以及基质形成,反射颗粒或散射颗粒可为氮化硅、氧化铝、氮化铝、氧化镁、硫酸钡、二氧化钛、氧化锆、氧化锌、氮化硼、氮化铝、碳化硅、硼酸铝等,基质可以为硅胶或玻璃等材质。
在本实施例中,荧光层210接收激光300的未被分光元件100反射的部分激光300,通过激光300激发荧光材料产生第二波长光束320,产生的第二波长光束320被反射层220反射至分光元件100。
激光300从分光元件100背离波长转换元件200一侧入射,并通过分光元件100将激光300分为用来激发荧光层210中的荧光材料的激光300,以及用来与第二波长光束320混合以形成合光的第一波长光束310。因此,可以通过第一波长光束310和经过荧光激发的第二波长光束320混合调节合光的颜色,其中,合光的颜色可以为白色、红色、绿色或黄色等等。
在一实施例中,分光元件100为可以为毛玻璃,其靠近波长转换元件200的一侧表面及背离波长转换元件200的一侧表面均被雾化。激光300可以从毛玻璃背离波长转换元件200且被雾化的一侧表面入射,以通过被雾化的表面使得激光300的发散角扩大,然后利用毛玻璃中玻璃材料的菲涅尔反射现象,使激光300被部分反射和部分透射处理,被反射的部分激光300作为第一波长光束310,被透射的部分激光300作为激发光激发波长转换元件200的荧光材料以形成第二波长光束320,并 且第一波长光束310和第二波长光束320均经过毛玻璃被雾化的表面,以使第一波长光束310和第二波长光束320的发散角均大于激光300的发散角,使得经由第一波长光束310和第二波长光束320形成的合光的颜色均匀性较高。
参见图3,图3是本申请提供的激光合光装置10一实施例结构示意图。
在一实施例中,分光元件100包括玻璃层110及散射层120,玻璃层110设置在散射层120与波长转换元件200之间。玻璃层110可以是由玻璃材料制成,通过玻璃材料的菲涅尔反射现象对激光300进行部分反射和部分透射处理,散射层120能够增大激光300的发散角。在图3中,激光300入射至散射层120,通过散射层120增大激光300的发散角,被增大发散角的激光300透射至玻璃层110,利用玻璃层110中玻璃材料的菲涅尔反射现象对激光300进行部分反射和部分透射处理,被反射的激光300形成第一波长光束310,被透射的部分激光300进入波长转换元件200,以形成第二波长光束320。在本实施例中,由于激光300经过散射层120散射处理,使得第一波长光束310和第二波长光束320的发散角均大于激光300的发散角,最终经由第一波长光束310和第二波长光束320形成的合光的颜色均匀性较高。其中,散射层120和玻璃层110可以一体设置,具体地,通过在玻璃材料中混合二氧化钛和气孔,所形成的分光元件100具有使得激光300散射的功能,同时也能利用玻璃材料的菲涅尔反射现象对激光300进行部分反射和部分透射处理。
在一实施例中,分光元件100可以为扩散片。激光300入射至扩散片,并通过扩散片自身的菲涅尔反射对激光300进行分光处理,将分光后的激光300部分反射和部分透射,部分反射的激光300形成第一波长光束310,部分透射的激光300入射至波长转换元件200。具体地,扩散片可以是在扩散膜基材中加入作为散射粒子的化学颗粒而成,散射粒子位于扩散膜基材中,通过扩散片接收激光300后,激光300在经过扩散层时会不断的在折射率相异的散射粒子中穿过,从而实现对激光300的折射、反射与散射。在本实施例中,通过使用扩散片作为分光元件100, 使第一波长光束310和第二波长光束320的发散角均大于激光300的发散角,同时第一波长光束310和第二波长光束320的角度基本一致,由此经由第一波长光束310和第二波长光束320形成的合光的颜色均匀性较高。
在一实施例中,分光元件100包括分光膜层(图未示),分光膜层粘接在波长转换元件200的荧光层上,分光膜层包括玻璃材料及掺杂在玻璃材料中的散射颗粒。具体地,分光膜层可以包括玻璃材料,并在玻璃材料中掺杂TiO2、Al2O3、气孔等散射颗粒。波长转换元件200可以包括荧光层210和反射层220,荧光层210设置于分光元件100和反射层220之间,荧光层210可以由荧光材料制成,荧光材料可以是蓝光段、绿光段、黄光段或红光段的波长转换材料,分光膜层可以直接粘接在荧光层的荧光材料上。在本实施例中,激光300入射至分光膜层,以通过分光膜层中的散射颗粒使激光300的发散角扩大,同时利用分光膜层中玻璃材料的菲涅尔反射现象,使激光300被部分反射和部分透射处理,被反射的部分激光300作为第一波长光束310,被透射的部分激光300作为激发光激发波长转换元件200的荧光材料以形成第二波长光束320,并且第一波长光束310和第二波长光束320均经过分光膜层的散射颗粒,以使第一波长光束310和第二波长光束320的发散角均大于激光300的发散角,经由第一波长光束310和第二波长光束320形成的合光的颜色均匀性较高。
参见图4,图4是本申请提供的分光元件100一实施例结构示意图。
进一步地,分光元件100的中间区域130的光反射率小于分光元件100的外围区域140的光反射率。现有技术中,通常激光所形成的光斑的中心光较强,中心光周围的光较弱,因此照射在波长转换元件上的光束能量分布为中心强边缘弱,由此,中心处的激发光较强,激发荧光材料的能力强,而没有参与激发的激发光和激发荧光材料形成的受激光混合产生第一混合光。而边缘处光斑功率密度低,激发光较弱,绝大部分激发光参与激发荧光材料以产生激发光,而没有参与激发的激发光较少,最终没有参与激发的激发光和激发荧光材料形成的受激光混合产生第二混合光,由于激发光的光束能量分布为中心强边缘弱,因此第一混 合光和第二混合光的颜色和能量分布均存在差异,最终导致通过激光产生的混合光的色差较大、均匀性较差。以蓝激光激发黄色波长转换元件为例,第一混合光颜色可能偏蓝,而第二混合光颜色可能偏黄,所产生的混合光呈中心偏蓝偏亮,边缘偏黄偏暗的。本申请通过增强分光元件100的中间区域130的反射率,从而降低分光元件100中间区域130的透射率,使不同位置的波长转换元件200所产生的第二波长光束320的差异降低,并通过第一波长光束310和第二波长光束320混合形成的合光的颜色均匀性较高。其中,中间区域130的面积的大小可以根据实际需要设定。
参见图5,图5是本申请提供的激光合光装置10一实施例结构示意图。
进一步地,分光元件100的中间区域130设有通孔150,以通过通孔150降低分光元件100中间区域130的反射率。通孔150的大小可以根据激光300的光斑的大小设定,通孔150的径向尺寸可以小于或等于激光300的光斑的大小,激光300的中心光束可以通过通孔150入射进入波长转换元件200,通过波长转换元件200进行波长转换,形成第二波长光束320。并且,由于激光的中心光束通过通孔150进入波长转换元件200,波长转换元件200的中间区域130所产生的第二波长光束320较强,由此通过第一波长光束310和第二波长光束320合成的合光的光斑满足中心照明度较强,边缘区域的照明度较弱的特点。
参见图6,图6是本申请提供的激光合光装置10一实施例结构示意图。
分光元件100包括毛玻璃170,其靠近波长转换元件200的一侧表面被雾化,其背离波长转换元件200的一侧表面的中间区域130设有增透膜160。激光300的中心光束照射至分光元件100的中间区域130,在分光元件100的中间区域130设置增透膜160,通过增透膜160增加分光元件100的中间区域130的光透射率,以使得分光元件100的中间区域130的光反射率小于分光元件100的外围区域140的光反射率。因此,本申请通过设置增透膜160增强分光元件100的中间区域130的反射率,从而降低分光元件100中间区域130的透射率,使不同位置的波 长转换元件200所产生的第二波长光束320的差异降低,并通过第一波长光束310和第二波长光束320混合形成的合光的颜色均匀性较高。
参见图7,图7是本申请提供的激光合光装置10一实施例结构示意图。
本申请提供的激光合光装置10还可以包括散热基板,散射基板设置于波长转换元件背离所述分光元件一侧,散热基板用于承载波长转换元件,且波长转换元件在工作过程中所产生的热量可以通过散热基板扩散。
综上,本申请提供的激光合光装置10的合光方法简单,结构紧凑,制造成本较低,并且通过设置分光元件100的中间区域130的光反射率小于分光元件100的外围区域140的光反射率,能够使得到的合光的颜色均匀性较高。
参见图8,图8是本申请提供的光源一实施例结构示意图。
光源1包括激光器20及上述的激光合光装置10,激光器20用于出射激光,激光合光装置10用于接收激光,并将激光分离和转换后进行合光,以形成第一波长光束与第二波长光束的合光。
进一步地,光源1可以包括压缩透镜30、反射镜40、扩散片50、反射棱镜60以及收集透镜70。
压缩透镜30设置在激光器20的出光侧,压缩透镜30用于对从激光器20沿第一光路出射的激光的光斑进行压缩。反射镜40设置在压缩透镜30的出光侧,反射镜40用于将压缩后的激光进行反射,以形成沿第二光路传播的激光。扩散片50设置在第二光路上,扩散片50用于对沿第二光路传播的激光进行扩散。反射棱镜60设置在第二光路上,且扩散片50位于反射镜与反射棱镜之间,反射棱镜60用于对扩散后的沿第二光路传播的激光进行反射,以形成沿第三光路传播的激光。收集透镜70设置在第三光路上,且位于反射棱镜60与激光合光装置10之间,收集透镜70用于收集沿第三光路传播的激光,并将沿第三光路传播的激光引导至激光合光装置10。
优选地,压缩透镜30为一端为凸面且另一端为凹面的柱体,激光器20出射的激光经压缩透镜30的凸面后光斑得到压缩,经柱体引导至 凹面后准直出射。可以理解地,压缩透镜30的柱体长度可以配置为使光线先后经凸面和凹面折射后准直出射。
光源1可以进一步包括光阑80,光阑80可以设置于收集透镜70与激光合光装置10之间,光阑80可以用于控制入射至激光合光装置10的光斑的大小及其颜色均匀性。
本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种激光合光装置,其特征在于,包括:分光元件及波长转换元件;
    所述分光元件用于反射部分从所述分光元件背离所述波长转换元件一侧入射的激光,以形成第一波长光束,并将所述激光的未反射部分透射至所述波长转换元件;
    所述波长转换元件用于对所述激光的未反射部分进行波长转换,以形成第二波长光束,并将所述第二波长光束反射至所述分光元件,以使所述第二波长光束与所述第一波长光束形成合光;
    其中,所述第一波长光束的发散角和所述第二波长光束的发散角均大于所述激光的发散角。
  2. 根据权利要求1所述的激光合光装置,其特征在于,所述分光元件包括毛玻璃,其靠近所述波长转换元件的一侧表面及背离所述波长转换元件的一侧表面均被雾化。
  3. 根据权利要求1所述的激光合光装置,其特征在于,所述分光元件包括玻璃层及散射层,所述玻璃层设置在所述散射层与所述波长转换元件之间。
  4. 根据权利要求1所述的激光合光装置,其特征在于,所述分光元件包括扩散片。
  5. 根据权利要求1所述的激光合光装置,其特征在于,所述分光元件包括分光膜层,所述分光膜层粘接在所述波长转换元件的荧光层上,所述分光膜层包括玻璃材料及掺杂在所述玻璃材料中的散射颗粒。
  6. 根据权利要求1所述的激光合光装置,其特征在于,所述分光元件的中间区域的光反射率小于所述分光元件的外围区域的光反射率。
  7. 根据权利要求1所述的激光合光装置,其特征在于,所述分光元件的中间区域设有通孔。
  8. 根据权利要求6所述的激光合光装置,其特征在于,所述分光元件包括毛玻璃,其靠近所述波长转换元件的一侧表面被雾化,其背离所述波长转换元件的一侧表面的中间区域设有增透膜。
  9. 一种光源,其特征在于,包括激光器及权利要求1至8任一项所述的激光合光装置,所述激光器用于出射激光,所述激光合光装置用于接收所述激光,将所述激光分离和转换后进行合光,以形成所述第一波长光束与所述第二波长光束的合光。
  10. 根据权利要求9所述的光源,其特征在于,进一步包括:
    压缩透镜,设置在所述激光器的出光侧,用于对从所述激光器沿第一光路出射的所述激光的光斑进行压缩;
    反射镜,设置在所述压缩透镜的出光侧,用于将压缩后的所述激光进行反射,以形成沿第二光路传播的激光;
    扩散片,设置在所述第二光路上,用于对所述沿第二光路传播的激光进行扩散;
    反射棱镜,设置在所述第二光路上,且所述扩散片位于所述反射镜与所述反射棱镜之间,所述反射棱镜用于对扩散后的所述沿第二光路传播的激光进行反射,以形成沿第三光路传播的激光;
    收集透镜,设置在所述第三光路上,且位于所述反射棱镜与所述激光合光装置之间,用于收集所述沿第三光路传播的激光,并将所述沿第三光路传播的激光引导至所述激光合光装置。
PCT/CN2023/105784 2022-07-08 2023-07-05 一种激光合光装置以及光源 WO2024008103A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210806825.7 2022-07-08
CN202210806825.7A CN117404623A (zh) 2022-07-08 2022-07-08 一种激光合光装置以及光源
CN202221779338.8U CN218480555U (zh) 2022-07-08 2022-07-08 一种激光合光装置以及光源
CN202221779338.8 2022-07-08

Publications (1)

Publication Number Publication Date
WO2024008103A1 true WO2024008103A1 (zh) 2024-01-11

Family

ID=89454431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105784 WO2024008103A1 (zh) 2022-07-08 2023-07-05 一种激光合光装置以及光源

Country Status (1)

Country Link
WO (1) WO2024008103A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101467266A (zh) * 2006-06-08 2009-06-24 皇家飞利浦电子股份有限公司 发光器件
CN206946178U (zh) * 2017-06-29 2018-01-30 深圳市光峰光电技术有限公司 波长转换装置及光源系统
US20190187545A1 (en) * 2017-12-18 2019-06-20 Seiko Epson Corporation Wavelength conversion element, light source apparatus, and projector
CN110887022A (zh) * 2018-09-10 2020-03-17 深圳光峰科技股份有限公司 波长转换装置及光源系统
CN111425820A (zh) * 2020-04-24 2020-07-17 超视界激光科技(苏州)有限公司 一种波长转换单元及激光照明模组
CN113494685A (zh) * 2020-03-20 2021-10-12 深圳市绎立锐光科技开发有限公司 照明装置
CN215264353U (zh) * 2021-05-24 2021-12-21 深圳市绎立锐光科技开发有限公司 波长转换装置以及光源系统
CN114135801A (zh) * 2020-09-03 2022-03-04 上海蓝湖照明科技有限公司 一种反射式波长转换装置以及一种灯具
CN218480555U (zh) * 2022-07-08 2023-02-14 深圳市绎立锐光科技开发有限公司 一种激光合光装置以及光源

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101467266A (zh) * 2006-06-08 2009-06-24 皇家飞利浦电子股份有限公司 发光器件
CN206946178U (zh) * 2017-06-29 2018-01-30 深圳市光峰光电技术有限公司 波长转换装置及光源系统
US20190187545A1 (en) * 2017-12-18 2019-06-20 Seiko Epson Corporation Wavelength conversion element, light source apparatus, and projector
CN110887022A (zh) * 2018-09-10 2020-03-17 深圳光峰科技股份有限公司 波长转换装置及光源系统
CN113494685A (zh) * 2020-03-20 2021-10-12 深圳市绎立锐光科技开发有限公司 照明装置
CN111425820A (zh) * 2020-04-24 2020-07-17 超视界激光科技(苏州)有限公司 一种波长转换单元及激光照明模组
CN114135801A (zh) * 2020-09-03 2022-03-04 上海蓝湖照明科技有限公司 一种反射式波长转换装置以及一种灯具
CN215264353U (zh) * 2021-05-24 2021-12-21 深圳市绎立锐光科技开发有限公司 波长转换装置以及光源系统
CN218480555U (zh) * 2022-07-08 2023-02-14 深圳市绎立锐光科技开发有限公司 一种激光合光装置以及光源

Similar Documents

Publication Publication Date Title
US9778553B2 (en) Light-emitting apparatus and a related projection system
CN205353549U (zh) 一种光源装置及照明装置
US20220186910A1 (en) Light Source System and Lighting Apparatus
TWM552112U (zh) 光源裝置及投影系統
US11150547B2 (en) Light source system with beamsplitter, projection device of same, and lighting device thereof
WO2019214273A1 (zh) 光源系统、投影设备及照明设备
WO2022012207A1 (zh) 一种混合光源装置以及投影显示设备
CN110389486B (zh) 光源装置及显示设备
CN218480555U (zh) 一种激光合光装置以及光源
WO2017118300A1 (zh) 一种光源装置及照明装置
WO2021184842A1 (zh) 照明装置
WO2024008103A1 (zh) 一种激光合光装置以及光源
CN105911752A (zh) 背光模组及显示装置
CN113433782A (zh) 光源装置和投影仪
WO2018000920A1 (zh) 一种光源和投影系统
CN116430600A (zh) 一种合光系统及投影设备
WO2021213195A1 (zh) 一种光引导元件以及光源装置
WO2021143438A1 (zh) 波长转换装置、光源装置及投影系统
CN210894973U (zh) 一种激光光源系统
CN117404623A (zh) 一种激光合光装置以及光源
CN210072301U (zh) 一种激光光源的光学系统
CN112628617A (zh) 一种折反式激光发光装置
CN217787501U (zh) 一种光源装置及内窥镜系统
WO2019205737A1 (zh) 光源系统
CN220020087U (zh) 光源系统和投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834870

Country of ref document: EP

Kind code of ref document: A1