WO2021212708A1 - 一种三缸发动机同心轴平衡装置 - Google Patents

一种三缸发动机同心轴平衡装置 Download PDF

Info

Publication number
WO2021212708A1
WO2021212708A1 PCT/CN2020/110365 CN2020110365W WO2021212708A1 WO 2021212708 A1 WO2021212708 A1 WO 2021212708A1 CN 2020110365 W CN2020110365 W CN 2020110365W WO 2021212708 A1 WO2021212708 A1 WO 2021212708A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
balance weight
inner shaft
outer shaft
concentric
Prior art date
Application number
PCT/CN2020/110365
Other languages
English (en)
French (fr)
Inventor
刘军恒
嵇乾
孙平
吴鹏程
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to GB2106074.4A priority Critical patent/GB2607865B/en
Publication of WO2021212708A1 publication Critical patent/WO2021212708A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/28Counterweights, i.e. additional weights counterbalancing inertia forces induced by the reciprocating movement of masses in the system, e.g. of pistons attached to an engine crankshaft; Attaching or mounting same
    • F16F15/283Counterweights, i.e. additional weights counterbalancing inertia forces induced by the reciprocating movement of masses in the system, e.g. of pistons attached to an engine crankshaft; Attaching or mounting same for engine crankshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/028Gearboxes; Mounting gearing therein characterised by means for reducing vibration or noise

Definitions

  • the invention belongs to the technical field of engines, and specifically relates to a novel balancing device for a three-cylinder engine adopting a concentric shaft structure.
  • the three-cylinder engine Compared with the traditional four-cylinder engine, the three-cylinder engine has the advantages of low fuel consumption, low friction loss, small size and light weight. With the continuous stringent emission regulations and the urgent requirement to reduce energy consumption, the popularization and application of three-cylinder engines has become a trend.
  • three-cylinder engines are completely comparable to traditional four-cylinder engines in terms of power.
  • the crankshaft connecting rod system due to the number of cylinders of the three-cylinder engine itself and the arrangement of the crankshaft structure, the crankshaft connecting rod system has an unbalanced first-order reciprocating moment of inertia, two First-order reciprocating moment of inertia and centrifugal moment of inertia, resulting in prominent engine vibration and noise problems, affecting the comfort of drivers and passengers. This is also an important factor hindering the widespread application of three-cylinder engines at this stage.
  • the centrifugal moment of inertia of the three-cylinder engine can be balanced by the crank counterweight, while the reciprocating moment of inertia needs to be balanced by a balancing device. Since the amplitude of the first-order reciprocating moment of inertia is relatively large, the engine design is usually designed to balance the first-order reciprocating moment of inertia. In theory, the symmetrically placed double balance shaft structure can fully balance the first-order reciprocating moment of inertia, and the horizontal component forces on the two balance shafts can cancel each other without generating additional torque. However, due to the compact structure of the three-cylinder engine, it is difficult to arrange the space of the double balance shaft structure. Therefore, most three-cylinder engines on the market only use a single balance shaft structure.
  • the rotation of the balance weight of the single balance shaft structure generates centrifugal force, and the moment generated by its vertical component is used to offset the first-order reciprocating moment of inertia of the three-cylinder engine, while its horizontal component cannot be self-balanced, and the generated torque will cause the engine to malfunction.
  • Shaking It can be seen that a three-cylinder engine with a single balance shaft is essentially a semi-balanced method, which can only offset part of the first-order moment of inertia and reduce engine jitter to a certain extent. This method cannot completely balance the first-order unbalanced moment, and there is still additional horizontal shaking.
  • the present invention designs an engine balancing device with a concentric shaft structure.
  • the purpose is to occupy a small engine space, including a driven gear, a transmission box, and an inner shaft and Concentric shaft structure composed of outer shafts.
  • the driven gear mounted on the front end of the inner shaft is driven to rotate at a constant speed through the driving gear on the crankshaft, and the inner shaft and the inner shaft balance weight are driven to rotate at the same speed in the same direction.
  • the transmission box is driven by the inner shaft to drive the outer shaft in the reverse direction, and the outer shaft and the outer shaft balance block are driven to rotate in the opposite direction at a constant speed.
  • a concentric shaft balancing device for a three-cylinder engine comprising a driven gear, a transmission box, and an inner and outer concentric shaft structure;
  • the inner and outer concentric shaft structure includes an inner shaft and an outer shaft;
  • the outer shaft is a hollow shaft, and the outer shaft is sleeved on the inner shaft On;
  • the inner shaft and the outer shaft are installed with balance weights, the driven gear is installed on the inner shaft, and the inner shaft is driven by the driven gear to drive the outer shaft installed on the transmission box to rotate at equal speed and reverse rotation to realize the inner shaft and
  • the self-balancing of the horizontal component of the centrifugal force of the outer shaft balance weight comprising a driven gear, a transmission box, and an inner and outer concentric shaft structure;
  • the inner and outer concentric shaft structure includes an inner shaft and an outer shaft;
  • the outer shaft is a hollow shaft, and the outer shaft is sleeved on the inner shaft
  • the inner shaft and the outer shaft are installed with balance weights, the driven gear
  • the balance weight includes a first inner shaft balance weight, a second inner shaft balance weight, a first outer shaft balance weight, and a second outer shaft balance weight; both ends of the inner shaft are respectively installed with a first inner shaft balance weight
  • the first outer shaft balance weight and the second outer shaft balance weight are respectively arranged at both ends of the outer shaft.
  • first inner shaft balance weight, the second inner shaft balance weight, the first outer shaft balance weight and the second outer shaft balance weight have the same mass and center of mass radius, and the first outer shaft balance weight is the same as the first inner shaft balance weight.
  • the balance weights form the first balance weight group; the first balance weight group can be simplified to consist of two front and rear center planes perpendicular to the inner and outer concentric shaft structure axes, symmetric about the vertical center line, and a radius r 2 around the concentric shaft axis
  • the first mass point group is composed of mass points of equal mass running at the same speed and reverse rotation speed n;
  • the second outer shaft balance weight and the second inner shaft balance weight form a second balance weight group, and the second balance weight group can be simplified It is composed of two mass points of equal mass that are located on the front and rear center planes perpendicular to the axis of the inner and outer concentric shafts, symmetric about the vertical center line, and rotate around the axis of the concentric shaft with a radius of r 2 at
  • the transmission box includes a same direction bevel gear, a transmission bevel gear, and a reverse bevel gear; the same direction bevel gear is mounted on the inner shaft, and the reverse bevel gear is mounted on the outer shaft; the same direction bevel gear and The two transmission bevel gears mesh, and the two transmission bevel gears mesh with the reverse bevel gears, thereby realizing the reverse rotation movement of the inner shaft and the outer shaft.
  • the same direction bevel gear is fixedly mounted on the inner shaft through threads
  • the reverse bevel gear is fixedly mounted on the outer shaft through threads
  • the outer shaft is mounted on the inner shaft through a second angular contact ball bearing.
  • the inner shaft consists of a front inner shaft section, a first inner shaft balance weight, an inner shaft middle shaft section, a second inner shaft balance weight, and a rear inner shaft section in sequence from the front end to the rear end; the inner shaft
  • the first inner shaft balance weight and the second inner shaft balance weight are connected as a whole by the external thread at the end of the shaft section; the first inner shaft balance weight and the second inner shaft balance weight are inversely symmetrical along the inner shaft axis Layout.
  • the outer shaft includes a first outer shaft balance weight, an outer shaft middle shaft section, and a second outer shaft balance weight in sequence from the front end to the rear end; the three parts of the outer shaft can be cast integrally or connected by threads; The first outer shaft balance weight and the second outer shaft balance weight are arranged in reverse symmetry along the outer shaft axis.
  • the transmission box further includes a transmission box front shell and a transmission box rear shell; the transmission box front shell and the transmission box rear shell are screwed together, and the same direction bevel gear, the transmission bevel gear and the reverse bevel gear are arranged Between the front case of the transmission case and the rear case of the transmission case.
  • the front ends of the inner shaft and the outer shaft are both arranged in the transmission box.
  • the present invention creatively applies the concentric shaft structure and the coaxial reverse transmission device to the three-cylinder engine balancing device, which can fully balance the first-order reciprocating moment of inertia of the three-cylinder engine while realizing the self-balance of the horizontal component of centrifugal force. Achieve the balance effect that can only be achieved by the original complex double balance shaft structure. For the three-cylinder engine's shock absorption and noise reduction, it has a significant effect on improving the NVH performance.
  • the engine body space occupied by the device of the present invention does not significantly exceed the single balance shaft device, and has a compact structure and good applicability. At the same time, there is no need to specially design the transmission mode of the crankshaft and the balance shaft, and the support mode of the transmission box and the balance shaft can also vary from model to model, which can be flexibly applied to various compact single balance shaft engines.
  • Coaxial reverse rotation is realized by adopting bevel gear set transmission between the inner and outer shafts.
  • the partial structure is simple, and it has the advantages of good reliability, high transmission accuracy and low noise.
  • Figure 1 is a schematic diagram of the force exerted on a single balance shaft of a traditional three-cylinder engine
  • Figure 2 is a schematic diagram of the force exerted by the concentric shaft structure balancing device designed by the present invention
  • Figure 3 is a schematic diagram of the structure of the balance device assembly
  • Figure 4 is a schematic diagram of the inner shaft and related accessories of the balancing device
  • Figure 5 is a schematic diagram of the outer shaft structure of the balancing device
  • Figure 6 is a schematic diagram of the positional relationship between the outer shaft balance weight and the inner shaft balance weight
  • Figure 7 is a schematic diagram of the transmission box structure.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present invention, “plurality” means two or more than two, unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed can be a fixed connection or a detachable connection.
  • integrally connected it can be a mechanical connection or an electrical connection
  • it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • a concentric shaft balancing device for a three-cylinder engine includes a driven gear 1 meshed with a driving gear on a crankshaft and driven to rotate by the driving gear, and an inner shaft 11 and an outer shaft 12.
  • the inner shaft 11 and the outer shaft 12 are concentric shafts, the inner shaft 11 is directly driven to rotate by the driven gear 1, and the outer shaft 12 is driven by the transmission box 2 to rotate in opposite directions with the inner shaft at the same speed.
  • the inner shaft 11 is equipped with a balance weight at the front and rear, which are the first inner shaft balance weight 4 and the second inner shaft balance weight 9 respectively, and the two balance weights are arranged in opposite directions and symmetrically.
  • the first outer shaft balance weight 3 and the second outer shaft balance weight 10 are respectively installed in the front and rear of the outer shaft 12, and the two balance weights are also arranged oppositely and symmetrically.
  • the driven gear 1 is installed on the inner shaft 11 to drive the inner shaft 11 and the driven gear 1 to operate synchronously.
  • the inner shaft 11 is divided into five parts, including a front inner shaft section 1101, a middle inner shaft section 1102 and a rear inner shaft section 1103, and a first inner shaft balance weight 4 and a second inner shaft balance weight 9.
  • the inner shaft 11 is integrally connected with the inner thread of the balance weight through the outer thread at the end of the shaft section.
  • the front shaft section 1101 of the inner shaft passes through the transmission box 2, and the first cylindrical roller bearing 15 and the second cylindrical roller bearing 16 are respectively installed in the front and rear of the middle shaft section of the inner shaft, and the shaft shoulders are used for positioning.
  • a deep groove ball bearing 17 is installed at the rear end of the inner shaft section 1103.
  • the outer shaft 12 is a hollow shaft, which is divided into a first outer shaft balance weight 3, an outer shaft middle shaft section 1201, and a second outer shaft balance weight 10 from front to back.
  • the three parts of the outer shaft 12 can be integrally cast, or can be connected by threads.
  • the balance weights in the first outer shaft balance weight section 3 and the balance weights in the second outer shaft balance weight section 10 are also arranged oppositely symmetrically.
  • the transmission box 2 is composed of a transmission case front case 209 and a transmission case rear case 210, and is fixed on the transverse wall of the engine body.
  • the bolts are fixed by the circumferential holes on the flange 201 of the transmission box.
  • different support and fixing methods can be adopted according to different structures of the engine.
  • a co-rotating bevel gear 203 is installed on the front shaft section 1101 of the inner shaft, which rotates synchronously with the inner shaft 11.
  • the transmission bevel gear 204 is connected with a fixed shaft fixed on the front shell of the transmission box through a bearing, and rotates around the fixed shaft.
  • the co-rotating bevel gear 203 meshes with the left side of the transmission bevel gear 204 to drive the transmission bevel gear 204 to rotate, and the right side of the transmission bevel gear 204 meshes with the reverse bevel gear 211 to drive the reverse bevel gear 211 to rotate.
  • the reverse bevel gear 211 and the same direction bevel gear 203 have the same number of teeth and the same size. According to the transmission characteristics of the bevel gear, the reverse bevel gear 211 will rotate at the same speed and opposite to the same direction bevel gear 203.
  • the reverse bevel gear 211 is fixed to the front end of the first outer shaft balance weight 3 through the front thread 14, and drives the outer shaft 12 to rotate in the opposite direction with the inner shaft 11 at the same speed.
  • the inner shaft 11 and the transmission case 2 are connected by a first angular contact ball bearing 205
  • the outer shaft 12 and the transmission case 2 are connected by a third angular contact ball bearing 207
  • the outer shaft 12 The front shaft section 1101 of the inner shaft is connected by a second angular contact ball bearing 206.
  • Angular contact ball bearings can bear radial and axial composite loads at the same time, and can effectively carry the axial force brought by bevel gear transmission.
  • the middle shaft section 1201 of the outer shaft is connected to the middle shaft section 1102 of the inner shaft through the first cylindrical roller bearing 15 and the second cylindrical roller bearing 16.
  • Cylindrical roller bearings are linear contact bearings with large radial load bearing capacity and can effectively bear and transmit the moments on the inner and outer concentric shafts.
  • the rear shaft section 1103 of the inner shaft and the outer shaft 12 are connected by a deep groove ball bearing 17.
  • a rear end cover 13 is installed at the rear end of the second outer shaft balance weight 10 to close the right end surface of the concentric shaft and axially thrust the deep groove ball bearing 17.
  • Figure 1 shows the force schematic diagram of a traditional single balance shaft.
  • the balance shaft and the crankshaft rotate in opposite directions at a constant speed of n, and the balance weights at both ends are arranged in reverse symmetry at 180°.
  • the balance weights at the front and rear ends can be simplified into two mass points rotating around the axis with a radius r 1.
  • the rotation of the mass point produces centrifugal force, among which the vertical component forces F y1 and F y2 produce a moment M 1 , the direction is opposite to the unbalanced first-order reciprocating inertia moment on the crankshaft, and the change law is the same, which can balance the first-order reciprocating inertia on the crankshaft of a three-cylinder engine Torque, and the horizontal component forces F x1 and F x2 generate a horizontal bending moment M 2 , which causes lateral shaking of the engine. Therefore, the single balance shaft of the traditional three-cylinder engine generally adopts the incomplete balance method.
  • the front and rear, left and right shapes of the inner shaft balance weight and the outer shaft balance weight designed in the present invention are all symmetrical about their corresponding front and rear, left and right center planes, and the masses are evenly distributed. Therefore, the centroid position of the balance weight corresponds to its centroid position.
  • the inner and outer shaft balance weights are of different shapes, the mass and the radius of the center of mass are the same.
  • the positional relationship of the balance weights is shown in Fig. 6: the first outer shaft balance weight 3 has a "several" shape symmetrical structure, and is sleeved outside the first inner shaft balance weight 4 to form a first balance weight group.
  • the front and rear center surfaces of the first outer shaft balance weight 3 are aligned with the front and rear center surfaces of the first inner shaft balance weight 4, that is, coplanar.
  • the face is symmetrical.
  • a second inner shaft balance weight 9 and a second outer shaft balance weight 10 are respectively installed on the inner and outer shafts in opposite directions to form a second balance weight group.
  • the centroid positions of the inner and outer shaft balance weights of the first balance weight group are located on the same plane perpendicular to the concentric shaft axis, and are symmetrical about the vertical plane passing through the axis, so that the corresponding centroid positions are located perpendicular to the concentric axis.
  • the front and rear center planes of the shaft axis are symmetrical about the vertical center line.
  • the mass centers of the inner and outer shaft balance weights of the second balance weight group have the same positional relationship with each other.
  • FIG. 1 is a schematic diagram of the force of the concentric shaft structure balancing device of the present invention.
  • the first balance weight group can be simplified as consisting of two front and rear center planes perpendicular to the axis of the concentric shaft, symmetrical about the vertical centerline, and running around the axis of the concentric shaft with a radius of r 2 at a constant speed and reverse rotation at a speed of n
  • the first mass point group is composed of mass points of equal mass
  • the second balance weight group can be simplified as a second mass point group with the same motion relationship but opposite in symmetry with the first mass point group.
  • the driving gear of the crankshaft, the driven gear 1, the same direction bevel gear 203, the transmission bevel The specific gear tooth roots on the gear 204 and the reverse bevel gear 211 are marked to ensure the contact and meshing relationship between the marked gear teeth during installation to ensure the phase relationship between the entire concentric shaft balance system and the crankshaft.
  • the transmission mode of the balance device and the crankshaft in the present invention is not limited to the direct transmission of the helical gear shown in the figure, and other existing transmission modes with better cushioning and damping performance can also be used.
  • the transmission box 2 can also adopt other transmission structures with coaxial reverse transmission function.
  • the outer shaft of the concentric shaft is provided with a front journal 5 and a rear journal 8, which are connected with the corresponding support frame shaft hole on the engine by bearings to support the concentric shaft and transmit torque.
  • the support frame can take different sizes and structures according to different engines to take into account the height and width of the engine.
  • the present invention designs a new type of concentric shaft balance by adopting the concentric shaft structure and applying the coaxial reverse transmission mechanism to the balancing device.
  • the device does not need to change the transmission mode with the crankshaft driving gear, but drives the outer shaft to rotate in the same speed and reverse direction through the inner shaft drive transmission box to realize the self-balancing of the horizontal component of the centrifugal force of the inner and outer shaft balance weights, effectively solving the traditional single balance
  • the horizontal component of the centrifugal force of the balance weight of the shaft structure cannot be self-balanced, causing the problem of additional shaking of the engine.
  • the device of the present invention can realize the complete balance of the first-order reciprocating moment of inertia of the three-cylinder engine like a double balance shaft system, effectively reduce vibration and noise, improve the NVH performance of the engine, and occupy less engine body space at the same time.
  • the compact three-cylinder engine has outstanding effects.
  • the transmission mode of the balance device and the crankshaft is not limited to the direct transmission of helical gears, and other existing transmission modes with better cushioning and damping performance may also be adopted.
  • the coaxial reverse transmission mode is not limited to the bevel gear transmission used in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Gear Transmission (AREA)

Abstract

一种三缸发动机同心轴平衡装置,包括从动齿轮(1)、传动箱(2)和内外同心轴结构;内外同心轴结构包括内轴(11)和外轴(12);外轴(12)为空心轴,外轴(12)套装在内轴(11)上;内轴(11)与外轴(12)上均安装有平衡块,从动齿轮(1)安装在内轴(11)上,通过从动齿轮(1)驱动内轴(11)带动传动箱(2)上安装的外轴(12),使得内轴(11)和外轴(12)等速反向旋转从而实现内轴(11)与外轴(12)平衡块离心力的水平分力的自平衡。该平衡装置占用空间小,并且改善了三缸发动机的NVH性能。

Description

一种三缸发动机同心轴平衡装置 技术领域
本发明属于发动机技术领域,具体涉及一种采用同心轴结构的三缸发动机新型平衡装置。
背景技术
三缸发动机相较于传统四缸机,具有油耗率低、摩擦损失小、体积小、重量轻等优点。随着排放法规的不断严格和降低能耗的迫切要求,三缸发动机的推广应用已经成为一种趋势。现今,三缸发动机在动力性方面已经完全可以比肩传统四缸发动机,但由于三缸发动机本身的气缸数和曲轴结构布置的原因,其曲轴连杆系统存在不平衡的一阶往复惯性力矩、二阶往复惯性力矩和离心惯性力矩,从而导致发动机的振动及噪音问题突出,影响驾驶人员和乘客的舒适性。这也是现阶段阻碍三缸发动机大范围推广应用的重要因素。
三缸发动机的离心惯性力矩可以通过曲柄平衡重平衡,而往复惯性力矩则需采用平衡装置进行平衡。由于一阶往复惯性力矩的幅值较大,所以通常发动机设计都是针对一阶往复惯性力矩进行平衡。理论上采用对称放置的双平衡轴结构可以充分平衡一阶往复惯性力矩,并且两个平衡轴上的水平分力能够相互抵消,不会产生附加力矩。但通常三缸发动机由于结构紧凑,双平衡轴结构的空间布置难度大。因此,市面上绝大多数三缸发动机仅采用单平衡轴结构。单平衡轴结构的平衡块旋转产生离心力,其竖直分力产生的力矩用于抵消三缸发动机的一阶往复惯性力矩,而其水平分力则不能自平衡,产生的力矩则会引发发动机的晃动。可见,采用单平衡轴的三缸发动机本质上是半平衡法,只能抵消掉部分一阶惯性力矩以及在一定程度上减轻发动机抖动。这种方法既不能完全平衡一阶不平衡力矩,也依然存在附加水平晃动。
为了解决现有的三缸发动机单平衡轴装置的不足,需要设计一种新的平衡装置,可以应用在紧凑型三缸发动机上,既能充分平衡三缸发动机的一阶往复惯性力矩,还能避免产生额外的横向晃动力矩,从而进一步提升发动机的NVH性能。
发明内容
针对现有技术的以上缺陷及改进需求,本发明设计了一种采用同心轴结构的发动机平衡装置,目的是在占用较小发动机空间的前提下,包括从动齿轮、传动箱以及由内轴和外轴组成的同心轴结构。通过曲轴上的主动齿轮驱动安装在内轴前端的从动齿轮等速旋转,带动内轴及内轴平衡块同向等速旋转。通过内轴带动传动箱反向驱动外轴,带动外轴及外轴平衡块做等速反向旋转。
本发明通过如下技术方案得以实现:
一种三缸发动机同心轴平衡装置,包括从动齿轮、传动箱和内外同心轴结构;所述内外同心轴结构包括内轴和外轴;所述外轴为空心轴,外轴套装在内轴上;所述内轴与外轴上均安装有平衡块,从动齿轮安装在内轴上,通过从动齿轮驱动内轴带动传动箱上安装的外轴等速反向旋转可实现内轴与外轴平衡块离心力的水平分力的自平衡。
进一步的,所述平衡块包括第一内轴平衡块、第二内轴平衡块、第一外轴平衡块和第二外轴平衡块;所述内轴两端分别安装有第一内轴平衡块和第二内轴平衡块,所述外轴两端分别布置第一外轴平衡块和第二外轴平衡块。
进一步的,所述第一内轴平衡块、第二内轴平衡块、第一外轴平衡块和第二外轴平衡块质量和质心半径均相同,第一外轴平衡块与第一内轴平衡块组成第一平衡块组;第一平衡块组可简化为由两个位于垂直于内外同心轴结构轴线的前后中心面上、关于竖直中心线对称,且以半径r 2绕同心轴轴线以转速n等速反向运转的质量相等的质点组成的第一质点组;所述第二外轴平衡块和第二内轴平衡块组成第二平衡块组,第二平衡块组则可简化为由两个位于垂直于内外同心轴结构轴线的前后中心面上、关于竖直中心线对称,且以半径r 2绕同心轴轴线以转速n等速反向运转的质量相等的质点组成的第二质点组;第一质点组与第二质点组中心对称。
进一步的,所述传动箱包括同向锥齿轮、传动锥齿轮和反向锥齿轮;所述同向锥齿轮安装在内轴上,反向锥齿轮安装在外轴上;所述同向锥齿轮与两个所述传动锥齿轮啮合,两个所述传动锥齿轮与反向锥齿轮啮合,从而实现将内轴与外轴的反向旋转运动。
进一步的,所述同向锥齿轮通过螺纹固定安装在内轴上,反向锥齿轮通过螺纹固定安装在外轴上,所述外轴通过第二角接触球轴承安装内轴上。
进一步的,所述内轴从前端到后端依次由内轴前轴段、第一内轴平衡块、内轴中轴段、第二内轴平衡块和内轴后轴段;所述内轴通过轴段端部外螺纹与第一内轴平衡块和第二内轴平衡块内螺纹连接为整体;所述第一内轴平衡块与第二内轴平衡块沿内轴轴线呈反向对称布置。
进一步的,所述外轴从前端到后端依次包括第一外轴平衡块、外轴中轴段和第二外轴平 衡块;外轴的三个部分可一体铸造,也可通过螺纹连接;第一外轴平衡块与第二外轴平衡块沿外轴轴线呈反向对称布置。
进一步的,所述传动箱还包括传动箱前壳和传动箱后壳;所述传动箱前壳和传动箱后壳通过螺纹旋合,且同向锥齿轮、传动锥齿轮和反向锥齿轮设置在传动箱前壳和传动箱后壳之间。
进一步的,所述内轴和外轴的前端均设置在传动箱内。
本发明的有益效果:
1、本发明创造性地将同心轴结构和同轴反向传动装置应用到三缸发动机平衡装置中,可以在充分平衡三缸发动机一阶往复惯性力矩的同时实现离心力的水平分力的自平衡,达到原本复杂双平衡轴结构才能实现的平衡效果。对于三缸发动机的减震降噪,提高NVH性能有显著的作用。
2、本发明装置所占用发动机机体空间并不会明显超出单平衡轴装置,其结构紧凑,适用性好。同时不需要特殊设计曲轴与平衡轴的传动方式,传动箱与平衡轴的支撑方式也可因机型而异,可以灵活应用于各种紧凑型单平衡轴发动机上。
3、通过内外轴之间采用锥齿轮组传动实现同轴反向旋转,局部结构简单,具有可靠性好,传动精度高,噪音低的优势。
附图说明
图1为传统三缸发动机单平衡轴受力示意图;
图2为本发明所设计的同心轴结构平衡装置受力示意图;
图3为平衡装置总成结构示意图;
图4为平衡装置的内轴及相关附件结构示意图;
图5为平衡装置的外轴结构示意图;
图6为外轴平衡块与内轴平衡块位置关系示意图;
图7为传动箱结构示意图。
图中标记如下:
1-从动齿轮;2-传动箱;3-第一外轴平衡块;4-第一内轴平衡块;5-前轴颈;6-前轴肩;7-后轴肩;8-后轴颈;9-第二内轴平衡块;10-第二外轴平衡块;11-内轴;12-外轴;13-后端盖;14-前螺纹;15-第一圆柱滚子轴承;16-第二圆柱滚子轴承;17-深沟球轴承;201-传动箱凸缘;202-传动箱前盖;203-同向锥齿轮;204-传动锥齿轮;205-第一角接触球轴承;206-第二角接触球轴承;207-第三角接触球轴承;208-传动箱后盖;209-传动箱前壳;210-传动箱后 壳;211-反向锥齿轮;1101-内轴前轴段;1102-内轴中轴段;1103-内轴后轴段;1201-外轴中轴段。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“轴向”、“径向”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面首先结合附图具体描述根据本发明实施例的
结合附图3,一种三缸发动机同心轴平衡装置,包括与曲轴上的主动齿轮啮合并由主动齿轮驱动旋转的从动齿轮1,以及内轴11和外轴12。所述内轴11和外轴12为同心轴,内轴11直接由从动齿轮1带动旋转,而外轴12则在传动箱2的驱动下做与内轴等速反向旋转。所述内轴11前后各安装一个平衡块,分别为第一内轴平衡块4和第二内轴平衡块9,两个平衡块反向对称布置。所述外轴12前后分别安装第一外轴平衡块3和第二外轴平衡块10,两个平衡块同样反向对称布置。
具体的,如图4所示,所述从动齿轮1安装在内轴11上,带动内轴11与从动齿轮1同步运转。内轴11分为五个部分,包括内轴前轴段1101、内轴中轴段1102和内轴后轴段1103,以及第一内轴平衡块4和第二内轴平衡块9。内轴11通过轴段端部外螺纹与平衡块内螺纹连接为整体。内轴前轴段1101穿过传动箱2,内轴中轴段前后分别安装第一圆柱滚子轴承15 和第二圆柱滚子轴承16,利用轴肩进行定位。内轴后轴段1103尾端则安装有深沟球轴承17。
具体地,如图5所示,所述外轴12为空心轴,从前到后依次分为第一外轴平衡块3、外轴中轴段1201以及第二外轴平衡块10。外轴12的三个部分可以一体铸造,也可以通过螺纹连接。第一外轴平衡块段3中的平衡块与第二外轴平衡块段10中的平衡块同样反向对称布置。
进一步,内轴11与外轴12的等速反向旋转通过传动箱2实现。所述传动箱2结构如图7所示。传动箱壳体由传动箱前壳209和传动箱后壳210组成,并且固定在发动机机体横向壁上。在本发明中通过传动箱凸缘201上的周向孔进行螺栓固定,在实际应用中则可根据发动机不同结构采用不同的支撑和固定方式。在内轴前轴段1101上安装有同向锥齿轮203,随内轴11一起同步旋转。传动锥齿轮204则与固定在传动箱前壳上的固定轴通过轴承连接,绕固定轴旋转。同向锥齿轮203与传动锥齿轮204左侧啮合,驱动传动锥齿轮204旋转,传动锥齿轮204右侧与反向锥齿轮211啮合,进而驱动反向锥齿轮211旋转。反向锥齿轮211与同向锥齿轮203齿数相等,大小相同,则根据锥齿轮的传动特性,反向锥齿轮211会做与同向锥齿轮203等速反向的旋转。反向锥齿轮211通过前螺纹14固定在第一外轴平衡块3的前端,带动外轴12做与内轴11等速反向旋转。
需要说明的是,所述内轴11与传动箱2之间通过第一角接触球轴承205连接,所述外轴12与传动箱2之间通过第三角接触球轴承207连接,而外轴12与内轴前轴段1101则通过第二角接触球轴承206连接。角接触球轴承可同时承受径向、轴向复合负荷,可以有效承载锥齿轮传动所带来的轴向力。外轴中轴段1201则通过第一圆柱滚子轴承15和第二圆柱滚子轴承16与内轴中轴段1102连接。圆柱滚子轴承为线接触轴承,径向承受负荷能力大,能够有效地承受和传递内外同心轴上的力矩。在内轴后轴段1103与外轴12之间则通过深沟球轴承17连接。在第二外轴平衡块10的尾端则安装后端盖13,封闭同心轴右端面并对深沟球轴承17轴向止推。
本发明装置的工作原理:
如图1所示为传统单平衡轴的受力示意图。平衡轴与曲轴以转速n等速反向旋转,其两端的平衡块呈180°反向对称布置,前后两端的平衡块可简化为两个以半径r 1围绕轴线旋转的质点。质点旋转产生离心力,其中竖直分力F y1与F y2产生力矩M 1,方向与曲轴上不平衡的一阶往复惯性力矩相反,变化规律相同,可以平衡三缸发动机曲轴上的一阶往复惯性力矩,而水平分力F x1和F x2则产生水平弯矩M 2,引起发动机的横向晃动。因此,传统三缸发动机单平衡轴一般都是采用不完全平衡法。
本发明中所设计的内轴平衡块与外轴平衡块的前后、左右形状均关于其对应的前后、左右中心面对称,质量则均匀分布。因此平衡块的形心位置即对应为其质心位置。内外轴平衡 块虽然形状不同,但质量和质心半径均相同。平衡块位置关系如图6所示:第一外轴平衡块3为“几”字形对称结构,套装在第一内轴平衡块4外,组成第一平衡块组。沿同心轴轴线方向,第一外轴平衡块3的前后中心面与第一内轴平衡块4的前后中心面的位置一致,即共面,左右中心面的位置则关于过同心轴轴线的竖直面左右对称。在平衡轴的另一端,内外轴则分别反向对称安装有第二内轴平衡块9和第二外轴平衡块10,组成第二平衡块组。通过以上设计,使第一平衡块组的内外轴平衡块的形心位置位于垂直于同心轴轴线的同一平面,且关于通过轴线的竖直平面左右对称,从而使其对应质心位置位于垂直于同心轴轴线的前后中心面上,且关于竖直中心线对称。同理,第二平衡块组的内外轴平衡块的质心之间相互有同样位置关系。
进一步,当发动机运转时,曲轴上的主动齿轮驱动固定安装在内轴上的从动齿轮1以转速n等速旋转,从动齿轮1则带动内轴11同步旋转。而传动箱2则在内轴11的带动下驱动外轴12以转速n等速反向旋转,从而使得内外轴上的平衡块以转速n等速反向旋转。如图2所示为本发明的同心轴结构平衡装置的受力示意图。所述第一平衡块组可以简化为由两个位于垂直于同心轴轴线的前后中心面上、关于竖直中心线对称,且以半径r 2绕同心轴轴线以转速n等速反向运转的质量相等的质点组成的第一质点组,而第二平衡块组则可简化为运动关系相同,但位置与第一质点组对称相反的第二质点组。质点旋转产生离心力,其中离心力竖直分力F y11、F y12与F y21、F y22形成合力矩M平衡三缸发动机的一阶往复惯性力矩,而离心力水平分力F x11、F x12以及F x21、F x22则两两互相抵消,不会产生附加弯矩。这样就可以在占用较小安装空间的条件下实现对一阶往复惯性力矩的完全平衡,同时不引起附加的水平晃动,可有效降低三缸发动机的震动和噪声。
进一步,在本发明中为了保证同心轴平衡装置与曲轴之间以及同心轴内轴11与外轴12之间的相位关系,在曲轴主动齿轮、从动齿轮1、同向锥齿轮203、传动锥齿轮204、反向锥齿轮211上的特定轮齿齿根打上标记,在安装时保证各个带标记的轮齿之间的接触啮合关系,即可保证整个同心轴平衡系统与曲轴的相位关系。
需要说明的是,本发明中平衡装置与曲轴的传动方式并不限于配图中所示的斜齿轮直接传动,也可采用其它已有的具有更好的缓冲、减震性能的传动方式。传动箱2也可采用其它具有同轴反向传动功能的传动结构。同心轴外轴上设置有前轴颈5和后轴颈8,与发动机上对应的支撑架轴孔以轴承连接,支承同心轴,并且传递扭矩。支撑架可根据不同的发动机采取不同的尺寸和结构,以兼顾发动机高度及宽度方向的尺寸。
本发明针对现有三缸发动机单平衡轴结构平衡一阶往复惯性力矩的不足之处,通过采用同心轴结构,并且把同轴反向传动机构应用于平衡装置上,设计了一种新型同心轴平衡装置。 该装置不需要改变与曲轴主动齿轮的传动方式,而是通过内轴驱动传动箱带动外轴等速反向旋转,实现内外轴平衡块离心力的水平分力的自平衡,有效解决了传统单平衡轴结构平衡块离心力的水平分力不能自平衡,引起发动机额外晃动的问题。因此,采用本发明装置就可以像双平衡轴系统一样实现对三缸发动机一阶往复惯性力矩的完全平衡,有效减震降噪,提高发动机NVH性能,同时占用较少的发动机机体空间,在一些结构紧凑的三缸发动机上有突出的效果。
所述平衡装置与曲轴的传动方式并不限于斜齿轮直接传动,也可采用其它已有的具有更好的缓冲、减震性能的传动方式。所述同轴反向传动方式也并不限于本发明所采用的锥齿轮传动。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (9)

  1. 一种三缸发动机同心轴平衡装置,其特征在于,包括从动齿轮(1)、传动箱(2)和内外同心轴结构;所述内外同心轴结构包括内轴(11)和外轴(12);所述外轴(12)为空心轴,外轴(12)套装在内轴(11)上;所述内轴(11)与外轴(12)上均安装有平衡块,从动齿轮(1)安装在内轴(11)上,通过从动齿轮(1)驱动内轴(11)带动传动箱(2)上安装的外轴(12),使得内轴(11)和外轴(12)等速反向旋转从而实现内轴(11)与外轴(12)平衡块离心力的水平分力的自平衡。
  2. 根据权利要求1所述的三缸发动机同心轴平衡装置,其特征在于,所述平衡块包括第一内轴平衡块(4)、第二内轴平衡块(9)、第一外轴平衡块(3)和第二外轴平衡块(10);所述内轴(11)两端分别安装有第一内轴平衡块(4)和第二内轴平衡块(9),所述外轴(12)两端分别布置第一外轴平衡块(3)和第二外轴平衡块(10)。
  3. 根据权利要求2所述的三缸发动机同心轴平衡装置,其特征在于,所述第一内轴平衡块(4)、第二内轴平衡块(9)、第一外轴平衡块(3)和第二外轴平衡块(10)质量和质心半径均相同,第一外轴平衡块(3)与第一内轴平衡块(4)组成第一平衡块组;第一平衡块组可简化为由两个位于垂直于内外同心轴结构轴线的前后中心面上、关于竖直中心线对称,且以半径r 2绕同心轴轴线以转速n等速反向运转的质量相等的质点组成的第一质点组;所述第二外轴平衡块(10)和第二内轴平衡块(9)组成第二平衡块组,第二平衡块组则可简化为由两个位于垂直于内外同心轴结构轴线的前后中心面上、关于竖直中心线对称,且以半径r 2绕同心轴轴线以转速n等速反向运转的质量相等的质点组成的第二质点组;第一质点组与第二质点组中心对称。
  4. 根据权利要求1所述的三缸发动机同心轴平衡装置,其特征在于,所述传动箱(2)包括同向锥齿轮(203)、传动锥齿轮(204)和反向锥齿轮(211);所述同向锥齿轮(203)安装在内轴(11)上,反向锥齿轮(211)安装在外轴(12)上;所述同向锥齿轮(203)与两个所述传动锥齿轮(204)啮合,两个所述传动锥齿轮(204)与反向锥齿轮(211)啮合,从而实现将内轴(11)与外轴(12)的反向旋转运动。
  5. 根据权利要求4所述的三缸发动机同心轴平衡装置,其特征在于,所述同向锥齿轮(203)通过螺纹固定安装在内轴(11)上,反向锥齿轮(211)通过螺纹固定安装在外轴(12)上,所述外轴(12)通过第二角接触球轴承(206)安装内轴(11)上。
  6. 根据权利要求1所述的三缸发动机同心轴平衡装置,其特征在于,所述内轴(11)从前端到后端依次包括内轴前轴段(1101)、第一内轴平衡块(4)、内轴中轴段(1102)、第二内轴平衡块(9)和内轴后轴段(1103);所述内轴(11)通过轴段端部外螺纹与第一内轴平衡块(4)和第二内轴平衡块(9)内螺纹连接为整体;所述第一内轴平衡块(4)与第二内轴平衡块(9)沿内轴(11)轴线呈反向对称布置。
  7. 根据权利要求1所述的三缸发动机同心轴平衡装置,其特征在于,所述外轴(12)从前端到后端依次包括第一外轴平衡块(3)、外轴中轴段(1201)和第二外轴平衡块(10);外轴(12)的三个部分可一体铸造,也可通过螺纹连接;第一外轴平衡块(3)与第二外轴平衡块(10)沿外轴(12)轴线呈反向对称布置。
  8. 根据权利要求4所述的三缸发动机同心轴平衡装置,其特征在于,所述传动箱(2)还包括传动箱前壳(209)和传动箱后壳(210);所述传动箱前壳(209)和传动箱后壳(210)通过螺纹旋合,且同向锥齿轮(203)、传动锥齿轮(204)和反向锥齿轮(211)设置在传动箱前壳(209)和传动箱后壳(210)之间。
  9. 根据权利要求4所述的三缸发动机同心轴平衡装置,其特征在于,所述内轴(11)和外轴(12)的前端均设置在传动箱(2)内。
PCT/CN2020/110365 2020-04-21 2020-08-21 一种三缸发动机同心轴平衡装置 WO2021212708A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2106074.4A GB2607865B (en) 2020-04-21 2020-08-21 Concentric shaft balancing apparatus for three-cylinder engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010317686.2 2020-04-21
CN202010317686.2A CN111425558B (zh) 2020-04-21 2020-04-21 一种三缸发动机同心轴平衡装置

Publications (1)

Publication Number Publication Date
WO2021212708A1 true WO2021212708A1 (zh) 2021-10-28

Family

ID=71556588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110365 WO2021212708A1 (zh) 2020-04-21 2020-08-21 一种三缸发动机同心轴平衡装置

Country Status (2)

Country Link
CN (1) CN111425558B (zh)
WO (1) WO2021212708A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111425558B (zh) * 2020-04-21 2024-04-30 江苏大学 一种三缸发动机同心轴平衡装置
CN113864193A (zh) * 2021-10-28 2021-12-31 珠海凌达压缩机有限公司 曲轴组件、泵体组件和压缩机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101238309A (zh) * 2005-07-14 2008-08-06 博格华纳公司 用于平衡轴的扭转减振器
DE102012005564A1 (de) * 2012-03-20 2013-09-26 Daimler Ag Lagerungsanordnung einer Ausgleichswelle an einem Gehäuseteil einer Verbrennungskraftmaschine
CN208311368U (zh) * 2018-06-19 2019-01-01 北京汽车动力总成有限公司 一种三缸发动机平衡轴装置及汽车
CN209892690U (zh) * 2019-01-29 2020-01-03 柳州上汽汽车变速器有限公司柳东分公司 一种三缸发动机振动平衡装置
CN111425558A (zh) * 2020-04-21 2020-07-17 江苏大学 一种三缸发动机同心轴平衡装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB634778A (en) * 1946-05-28 1950-03-29 Abraham Storer Improvements in and relating to vibration machines
CN201934537U (zh) * 2011-01-27 2011-08-17 李云合 用于摩托车变速箱输入轴上的离合器齿轮
CN103527486B (zh) * 2013-06-19 2016-08-31 广东美芝精密制造有限公司 旋转压缩机及其转子组件
CN107237861A (zh) * 2017-05-17 2017-10-10 北汽福田汽车股份有限公司 一种车辆、发动机及其曲轴平衡结构
DE102017111626A1 (de) * 2017-05-29 2017-07-27 FEV Europe GmbH Dreizylinder-Brennkraftmaschine
CN208237003U (zh) * 2018-05-14 2018-12-14 浙江吉利控股集团有限公司 发动机平衡轴总成
CN212338027U (zh) * 2020-04-21 2021-01-12 江苏大学 一种三缸发动机同心轴平衡装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101238309A (zh) * 2005-07-14 2008-08-06 博格华纳公司 用于平衡轴的扭转减振器
DE102012005564A1 (de) * 2012-03-20 2013-09-26 Daimler Ag Lagerungsanordnung einer Ausgleichswelle an einem Gehäuseteil einer Verbrennungskraftmaschine
CN208311368U (zh) * 2018-06-19 2019-01-01 北京汽车动力总成有限公司 一种三缸发动机平衡轴装置及汽车
CN209892690U (zh) * 2019-01-29 2020-01-03 柳州上汽汽车变速器有限公司柳东分公司 一种三缸发动机振动平衡装置
CN111425558A (zh) * 2020-04-21 2020-07-17 江苏大学 一种三缸发动机同心轴平衡装置

Also Published As

Publication number Publication date
CN111425558A (zh) 2020-07-17
CN111425558B (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2021212708A1 (zh) 一种三缸发动机同心轴平衡装置
JP5764702B2 (ja) 同軸クランクレスエンジン
JP2013524094A (ja) 改善された質量均等化を有する往復ピストン・エンジン
WO2018099392A1 (zh) 少齿差行星减速器、车载显示屏装置及车辆
CN106838138A (zh) 一种具有弹性支撑行星架的星型齿轮减速器
US2407102A (en) Internal-combustion engine
CN200985985Y (zh) 多曲柄低振动少齿差减速机
CN212338027U (zh) 一种三缸发动机同心轴平衡装置
CN108880091A (zh) 一种双轴驱动谐波减速电机
US4179942A (en) Variable ratio crank assembly
CN113028018B (zh) 一种传动装置
CN105626771A (zh) 一种发动机可变平衡轴系统
CN205780685U (zh) 一种减速器
CN204459011U (zh) 一种复式全齿驱动偏心活齿传动装置
CN208337332U (zh) 一种双轴驱动谐波减速电机
CN209725104U (zh) 高速艇高转速发动机的后取力结构
CN109630203B (zh) 一种八缸热气机传动系统
JP2009121540A (ja) クランク装置
CN202301817U (zh) 外摆动多曲轴少齿差增/减速器
CN110657222A (zh) 一种少齿差行星齿轮传动结构
GB2607865A (en) Concentric shaft balancing device for three-cylinder engine
CN104653716A (zh) 一种复式全齿驱动偏心活齿传动装置
CN216430250U (zh) 一种平衡轴结构及双轴平衡系统
CN210566096U (zh) 一种单缸柴油机的双轴平衡机构
CN109677598A (zh) 直升机减速装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202106074

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210428

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932024

Country of ref document: EP

Kind code of ref document: A1