WO2021212629A1 - 一种导电连接件及多孔位插座 - Google Patents

一种导电连接件及多孔位插座 Download PDF

Info

Publication number
WO2021212629A1
WO2021212629A1 PCT/CN2020/095450 CN2020095450W WO2021212629A1 WO 2021212629 A1 WO2021212629 A1 WO 2021212629A1 CN 2020095450 W CN2020095450 W CN 2020095450W WO 2021212629 A1 WO2021212629 A1 WO 2021212629A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive connector
cross
section
connection
sections
Prior art date
Application number
PCT/CN2020/095450
Other languages
English (en)
French (fr)
Inventor
成瀚
郑静山
王会玖
李震
郑立和
潘海波
罗特苗
姚文彬
Original Assignee
公牛集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020608046.2U external-priority patent/CN211743449U/zh
Priority claimed from CN202010318193.0A external-priority patent/CN111478077A/zh
Application filed by 公牛集团股份有限公司 filed Critical 公牛集团股份有限公司
Publication of WO2021212629A1 publication Critical patent/WO2021212629A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/20Coupling parts carrying sockets, clips or analogous contacts and secured only to wire or cable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R27/00Coupling parts adapted for co-operation with two or more dissimilar counterparts
    • H01R27/02Coupling parts adapted for co-operation with two or more dissimilar counterparts for simultaneous co-operation with two or more dissimilar counterparts

Definitions

  • This application relates to socket technology, in particular to a conductive connector and a multi-hole socket.
  • the conductive connector of the multi-hole socket such as N-pole copper strip and L-pole copper strip, is an important cause of damage to the multi-pole socket. It can be seen that it is necessary to improve the conductive connector to reduce the probability of burnout.
  • the resistance of the whole conductive connecting piece is reduced, so as to reduce the probability of it being blown out.
  • the embodiments of the present application provide a conductive connector and a multi-hole socket, which can not only reduce the probability of the connector being burnt, but also avoid material waste.
  • a conductive connector for a multi-hole socket, wherein the conductive connector includes a plurality of connecting sections, the plurality of connecting sections are connected in sequence, and the plurality of connecting sections are connected to the Corresponding number of sockets on the socket correspond one to one;
  • the resistance of the first connecting section is the smallest, and the first connecting section is the connecting section adjacent to the connecting terminal of the socket.
  • the electrical conductivity of the plurality of connecting sections is the same, and each of the connecting sections has a standard length, and the first connecting section of the plurality of connecting sections has the largest cross-sectional area .
  • the cross-sectional area of the plurality of connection sections is sequentially reduced.
  • the ratio of the cross-sectional area of the connecting segments is proportional to the ratio of the probability of current flowing through each of the connecting segments.
  • the cross-sectional shapes of the multiple connecting segments are all rectangular, and the cross-sectional lengths of the multiple connecting segments are the same;
  • P m is the probability of current flowing through the current connection section.
  • the cross-sectional shapes of the multiple connecting segments are all rectangular, and the cross-sectional widths of the multiple connecting segments are the same;
  • the cross-sectional length L in the range of the first coupling section 1 is: 3.6mm ⁇ L 1 ⁇ 4.5mm.
  • P m is the probability of current flowing through the current connection section.
  • the cross-sectional shapes of the multiple connecting segments are all rectangular, and the cross-sectional lengths and cross-sectional widths of the multiple connecting segments are different;
  • the value range of the cross-sectional area S 1 of the first connecting section is: 1.8 mm 2 ⁇ S 1 ⁇ 2.5 mm 2 .
  • P m is the probability of current flowing through the current connection section.
  • the cross-sectional shapes of the multiple connecting sections are all circular;
  • the radius R of the first coupling section is in the range 1: 0.757mm ⁇ R 1 ⁇ 0.892mm.
  • R m (P m ) 1/2 ⁇ R 1 ; formula (4);
  • P m is the probability of current flowing through the current connection section.
  • each of the connecting sections has a standard geometric size, and the electrical conductivity of the first connecting section is the largest.
  • the electrical conductivity of the plurality of connection sections decreases sequentially.
  • the material of the first connecting section is copper.
  • connection sections other than the first connection section is phosphor bronze and/or brass.
  • the conductive connecting member is a strip or a multi-core wire.
  • the conductive connector includes: at least one of an N-pole connector and an L-pole connector.
  • a multi-hole socket is also provided, wherein the multi-hole socket includes any of the above-mentioned conductive connectors.
  • the number of holes of the multi-hole socket is 2, 3, 4, 5, 6, 7, or 8.
  • Fig. 1 is a schematic structural diagram of an exemplary three-pole socket provided by an embodiment of the application
  • Fig. 2 is a front view of an exemplary N-pole conductive connector provided by an embodiment of the application
  • Fig. 3 is a front view of an exemplary L-pole conductive connector provided by an embodiment of the application
  • FIG. 4 is a schematic diagram of a partial structure of an exemplary three-hole socket provided by an embodiment of the application.
  • Fig. 5 is a partial enlarged view of area A in Fig. 2;
  • FIG. 6 is a side view of an exemplary N-pole conductive connector with different cross-sectional widths of the connecting section provided by the embodiments of the application;
  • FIG. 7 is a side view of an exemplary L-pole conductive connector with different cross-sectional widths of the connecting section provided by an embodiment of the application;
  • FIG. 8 is a top view of an exemplary N-pole conductive connector with different cross-sectional lengths of the connecting section provided by the embodiments of the application;
  • FIG. 9 is a top view of an exemplary L-pole conductive connector with different cross-sectional lengths of the connecting section provided by an embodiment of the application.
  • FIG. 10 is a partial structural diagram of an exemplary three-hole socket with a copper strip structure conductive connector provided by an embodiment of the application.
  • FIG. 11 is a partial structural diagram of an exemplary three-hole socket with a conductive connector with a multi-core wire structure provided by an embodiment of the application.
  • the No. 1 hole position, the No. 2 hole position, and the No. 3 hole position are respectively represented by the symbols 1, 2, and 3, and only the N pole socket, L Pole insert sleeve, E pole insert sleeve (not shown at No. 1 and No. 2 hole positions); only for the N-pole conductive connector, the first connection section, the second connection section and the third connection are shown with marking lines Section (L-pole conductive connection not shown).
  • N pole conductive connector 1-1: N pole conductive connector, 1-2: L pole conductive connector, 1-3: E pole conductive connector,
  • connection section
  • 1021 the first connecting section
  • 1022 the second connecting section
  • 1021 the third connecting section
  • the conductive connector acts as a conductor inside the socket to conduct current.
  • the arrangement of the conductive connector in the socket will be described with reference to Figure 1 below:
  • Fig. 1 illustrates a three-level socket with three holes.
  • the three-level socket includes: a housing 2; a socket socket 3 and a connecting terminal located on the housing 2; and The conductive connector on the socket base 3.
  • the wiring terminals include N (zero line) terminal 4-1, L (live line) terminal 4-2, E (zero line) terminal 4-3; correspondingly, the conductive connector includes N-pole conductive Connector 1-1, L pole conductive connector 1-2, E pole conductive connector 1-3.
  • N-pole conductive connector 1-1 Take the N-pole conductive connector 1-1 as an example. One end of the N-pole conductive connector 1-1 is connected to the N-pole terminal 4-1. The N-pole conductive connector 1-1 corresponds to each hole of the socket. One N-pole socket 5-1 is respectively connected at the position.
  • the N-pole conductive connector 1-1 and the L-pole conductive connector 1-2 each have a plurality of socket contacts 101.
  • each conductive connection The components are divided into a plurality of connecting sections 102 connected in sequence, and the plurality of connecting sections 102 correspond to a corresponding number of sockets on the socket one-to-one (that is, each connecting section 102 corresponds to one hole of the multi-hole socket).
  • the N-pole conductive connector 1-1 and the L-pole conductive connector 1-2 are connected to the socket by using the socket contact 101 thereon, wherein the number of sockets, the number of holes in the socket, and the number of connecting sections are one to the other. Corresponding to use to form holes on the socket.
  • the implementation of this application refers to the “connecting section adjacent to the terminal of the socket” in the conductive connector as the first connecting section 1021 (which is closest to the terminal of the socket), in the direction away from the terminal, except for the first connecting section.
  • the other connecting segments except the connecting segment 1021 may be sequentially referred to as the second connecting segment 1022, ... the nth connecting segment, where n ⁇ 3.
  • Figure 4 illustrates the distribution of the connecting sections of the N-pole conductive connector 1-1 and the L-pole conductive connector 1-2 in a three-hole socket.
  • the N-pole conductive connector 1- 1 and the L-pole conductive connector 1-2 are respectively adjacent to the N-pole terminal 4-1 and the L-pole terminal 4-2 of the socket.
  • the connecting sections are called the first connecting section 1021, which is far away from the N-pole terminal 4 In the direction of -1 and L-pole connecting terminal 4-2, the remaining connecting sections of the two are called the second connecting section 1022 and the third connecting section 1023 in turn.
  • the inventor found through research that, for a porous socket that is damaged due to the burning and fusing of the conductive connector, most (for example, more than 90%) of the fuse position of the conductive connector is close to the terminal.
  • the N-pole conductive connector 1-1 and the L-pole conductive connector 1-2 are respectively connected with three N-pole sockets 5-1 and Three L-pole sockets 5-2, with the conductive connector and the socket contacts of the socket as the boundary, the N-pole conductive connector 1-1 and the L-pole conductive connector 1-2 are equally divided into 3 connecting sections, along In the direction of the N-pole terminal 4-1 and the L-pole terminal 4-2 away from the socket, these three connecting sections are called the first connecting section 1021, the second connecting section 1022, and the third connecting section 1023 (respectively corresponding The hole positions are No. 1 hole position 1, No. 2 hole position 2, and No. 3 hole position 3).
  • the inventor's research confirmed that the fuse positions of the N-pole conductive connecting piece 1-1 and the L-pole conductive connecting piece 1-2 are concentrated in the first connecting section 1021.
  • the three-hole socket can supply up to 3 electrical appliances at a time. It is random for users to use 1, 2 or 3 electrical appliances at a time, and which hole position of the socket is used by the user is also random each time. Permutation and combination, the user's use of the hole position, the current flow of each connection section and the corresponding probability are shown in Table 1:
  • the first connection section of the conductive connector has the greatest probability of heating and fusing due to the current.
  • an embodiment of the present application provides a conductive connector, which is used in a multi-hole socket.
  • the conductive connector includes a plurality of connecting sections 102, wherein the plurality of connecting sections 102 are connected in sequence , And correspond to the corresponding number of sockets one to one.
  • the resistance of the first connecting section 1021 is the smallest, and the first connecting section 1021 is the connecting section 102 adjacent to the connecting terminal of the socket.
  • connection section 102 that is, the first connection section 1021 adjacent to the connection terminal of the socket has the largest probability of making and breaking current, and the probability of fusing is also the largest.
  • the resistance of the connecting section 1021 is the smallest, so as to reduce the probability of burning and fusing, which is beneficial to increase the service life of the conductive connecting piece as a whole. Since it is possible to improve only the first connecting section 1021 that affects the limit life of the conductive connecting member, for example, by increasing its cross-sectional area to minimize its resistance, material waste can be avoided and the cost can be reduced.
  • the conductive connecting member includes a plurality of connecting sections 102, that is, it includes two or more connecting sections 102.
  • it may include two connecting sections 102 and three connecting sections 102 (see Figure 2 and Figure 3), including four connecting sections 102, including five connecting sections 102, including six connecting sections 102, and so on.
  • a bending structure 103 is generally formed at the end of the conductive connector adjacent to the connecting terminal of the socket, and the bending structure 103 is used to connect with the connecting terminal of the socket. Therefore, the “along the direction away from the connection terminal” referred to in the embodiments of the present application can also be understood as the direction away from the bent structure 103 of the conductive connector.
  • the resistance of the first connecting section 1021 is minimized.
  • no improvement may be made, or some or all of them may be improved to make their resistance They are respectively greater than the resistance of the first connecting section 1021.
  • the resistance of the first connection section 1021 can be minimized, and at the same time, the resistance of the second connection section 1022, ... the nth connection section is the same and greater than the resistance of the first connection section 1021 (wherein n ⁇ 3).
  • the resistance of the first connecting section 1021 may be minimized, and at the same time, the resistance of the second connecting section 1022,...
  • the nth connecting section may be the same (where n ⁇ 3).
  • the resistance of the first connection section 1021 may be minimized, and at the same time, the resistances of the second connection section 1022,...
  • the nth connection section may be different from each other. (Among them, n ⁇ 3).
  • the resistance of the multiple connection sections 102 can be increased in the direction away from the connection terminal, that is, the first connection section 1021 and the second connection section 1022 ............
  • the resistance of the nth connecting section increases in turn (where n ⁇ 3).
  • the cost can also be maximized (for example, more The cross-sectional area of each connecting section is gradually reduced to save raw material costs).
  • the ratio of the resistance of each connection section 102 can be inversely proportional to the ratio of the probability of current flowing through each connection section 102. In this way, in the direction away from the terminal, the probability of current flowing through each connection section 102 gradually decreases.
  • the resistance of each connection section 102 can be gradually increased in proportion.
  • the probability of current flowing through each connection section 102 is used to determine the increase in the resistance of the current connection section 102 compared to the previous connection section 102 (for example, to determine the first connection section 102).
  • the resistance of the second connecting section 1022 is increased compared to the resistance of the first connecting section 1021), so that the limit life of each connecting section 102 of the conductive connecting piece is consistent, solving the problem of the bucket effect in the life of the conductive connecting piece, and maximizing cut costs.
  • the resistance of the first connection section 1021 is set as R 1 , and the probability of current flowing through the first connection section 1021 is fixed The value is 1.
  • R m (R 1 ⁇ 1) ⁇ P m .
  • the resistance of the connecting section can be changed to meet the design requirements by changing the cross-sectional area of the connecting section, or the resistance of the connecting section can be changed to meet the design requirements by changing the conductivity of the connecting section.
  • the electrical conductivity of the multiple connecting segments 102 is the same, and each of the connecting segments 102 has a standard length.
  • the first connecting section 1021 has the largest cross-sectional area.
  • the purpose of minimizing the resistance is achieved by maximizing the cross-sectional area of the first connecting section 1021.
  • the length of the connecting section corresponding to each hole position in each of the above-mentioned connecting pieces is a determined standard value. According to the standard in this field, the length of each connecting section in the connecting piece can be determined. In this design, The embodiment of the present application does not improve the length of the connecting section.
  • the cross-sectional area of the multiple connecting sections 102 in the conductive connector can be sequentially reduced along the direction away from the socket terminal, that is, the volume of each connecting section 102 can be reduced, and the cost of raw materials can be saved.
  • the ratio of the cross-sectional area of the connection section 102 can be proportional to the ratio of the probability of current flowing through each connection section 102. In this way, in the direction away from the terminal, the probability of current flowing through each connection section 102 gradually Decrease, so that the cross-sectional area of each connecting section 102 is gradually reduced according to the above-mentioned ratio.
  • the probability of current flowing through each connecting section is used to determine the reduction range of the cross-sectional area of the current connecting section compared to the previous connecting section. On the premise of ensuring that the limit life of each connecting section 102 of the conductive connector is consistent, the cost is reduced to the maximum.
  • the conductive connector includes m connection sections 102 (where m ⁇ 2)
  • the cross-sectional area of the first connection section 1021 is set as S 1
  • the cross-sectional area of each connecting segment is changed by changing the cross-sectional size of the connecting segment to maximize the cross-sectional size of the first connecting segment.
  • the cross-sectional size includes: length, At least one of width and radius.
  • the changed cross-sectional dimension may be the cross-sectional width and/or the cross-sectional length.
  • the changed cross-sectional dimension may be a radius.
  • the conductive connector of this structure can be called a connecting bar
  • it includes m connecting sections 102 with the same conductivity (where m ⁇ 2), and each connecting section
  • Each 102 has a standard length.
  • the cross-sectional area of the first connecting section 1021 of the conductive connector can be increased compared with the related art, and the cross-street area is the largest among all the connecting sections 102. Further, the cross-sectional area of the remaining connecting sections 102 can be reduced in the direction away from the socket terminal, and the reduction of the cross-sectional area of each connecting section 102 is determined by the probability of current flowing through the connecting section. .
  • the cross-sectional shape of the plurality of connecting sections 102 of the conductive connector provided by the embodiment of the present application is rectangular, and the cross-sectional length of the plurality of connecting sections 102 is the same, so that the first connecting section 1021 the maximum cross-sectional width W 1 of, and W 1 is in the range: 0.5mm ⁇ W 1 ⁇ 0.65mm.
  • the cross-sectional width W 1 of the first connecting section 1021 is within the above range, not only the resistance can be reduced, and the limit life of the conductive connector can be increased, but also the design requirements of the multi-hole socket can be met.
  • the cross-sectional width W 1 of the first connecting section 1021 may be 0.51mm, 0.52mm, 0.53mm, 0.54mm, 0.55mm, 0.56mm, 0.57mm, 0.58mm, 0.59mm, 0.60mm, 0.61mm, 0.62 mm, 0.63mm, 0.64mm, etc.
  • the cross-sectional length L of the connecting section refers to the length of the relatively longer side of the cross-sectional length (also can be understood as the width of the connecting section), and the cross-sectional width W It refers to the length of the side whose cross-sectional length is relatively short (can also be understood as the thickness of the connecting section).
  • the cross-sectional width of the remaining connecting section 102 can be sequentially reduced.
  • the cross-sectional width W 1 of the first connecting section 1021 is set. According to the probability of current flowing through each connecting section 102, the following formula can be used to determine the division of the first connecting section 1021
  • W m Probability of current flowing through the current connection segment P m ⁇ W 1 .
  • the cross-sectional shape of the plurality of connecting sections 102 of the conductive connector provided by the embodiment of the present application are all rectangular, and the cross-sectional width of the plurality of connecting sections 102 is the same, so that the first connecting section 1021 is the maximum cross-sectional length L 1, and a cross-sectional length L is in the range 1: 3.6mm ⁇ L 1 ⁇ 4.5mm.
  • the cross-sectional length L 1 of the first connecting section 1021 is within the above range, not only the resistance can be reduced, and the limit life of the conductive connector can be increased, but also the design requirements of the multi-hole socket can be met.
  • the cross-sectional length L 1 of the first connecting section 1021 may be 3.72mm, 3.75mm, 3.78mm, 3.8mm, 3.85mm, 3.9mm, 3.95mm, 4mm, 4.05mm, 4.1mm, 4.15mm, 4.2mm , 4.25mm, 4.3mm, 4.35mm, 4.4mm, etc.
  • the cross-sectional length of the remaining plurality of connecting sections 102 can be sequentially reduced.
  • the cross-sectional length of the first connecting section 1021 is set as L 1. According to the probability of current flowing through each connecting section 102, the following formula can be used to determine the division of the first connecting section 1021 The cross-sectional length L m of the other connecting sections:
  • L m The probability of current flowing through the current connection segment P m ⁇ L 1 .
  • the cross-sectional shape of the plurality of connecting sections 102 of the conductive connector provided in the embodiment of the present application are all rectangular, and the cross-sectional width and cross-sectional length of the plurality of connecting sections 102 are different, so that The cross-sectional area S 1 of the first connecting section 1021 is the largest, and the value range of the cross-sectional area S 1 is: 1.8 mm 2 ⁇ S 1 ⁇ 2.5 mm 2 .
  • the cross-sectional area S 1 of the first connecting section 1021 is within the above range, not only the resistance can be reduced, and the limit life of the conductive connector can be improved, but also the design requirements of the multi-hole socket can be met.
  • a first cross-sectional area of the connecting section 1021 S 1 may be 1.9mm 2, 1.95mm 2, 2.0mm 2 , 2.1mm 2, 2.2mm 2, 2.3mm 2, 2.35mm 2, 2.4mm 2 and the like.
  • the cross-sectional area of the remaining plurality of connecting sections 102 can be sequentially reduced.
  • one of the cross-sectional length or the cross-sectional width is arbitrarily set as a fixed value, and the other can be calculated accordingly.
  • the cross-sectional shape of the plurality of connecting sections 102 of the conductive connector provided in the embodiment of the present application are all circular, and the radius R 1 of the first connecting section 1021 has a value range of 0.757 mm ⁇ R 1 ⁇ 0.892mm, that is, the value range of the cross-sectional area S 1 of the first connecting section 1021 is: 1.8mm 2 ⁇ S 1 ⁇ 2.5mm 2 .
  • the radius R 1 of the first connecting section 1021 is within the above range, not only the resistance can be reduced, and the limit life of the conductive connector can be increased, but also the design requirements of the multi-hole socket can be met.
  • the radius R 1 of the first connecting section may be 0.76mm, 0.77mm, 0.78mm, 0.79mm, 0.8mm, 0.81mm, 0.82mm, 0.83mm, 0.84mm, 0.85mm, 0.86mm, 0.87mm, 0.88 mm, 0.89mm, etc.
  • the radii of the remaining plurality of connecting sections 102 can be sequentially reduced.
  • R m (P m ) 1/2 ⁇ R 1 .
  • the conductive connector of this structure may include a whole conductor or multiple wires.
  • the radius of the above-mentioned connecting section refers to the sum of the radii of the plurality of circular cross-section wires.
  • an exemplary conductive connector for a three-hole socket is provided in combination with the above-mentioned various possible designs to illustrate the structure and cost of the conductive connector provided by the embodiment of the present application compared with the conductive connection provided by the related technology.
  • the three-hole socket includes: an N-pole conductive connector 1-1, an L-pole conductive connector 1-2, and an optional ground electrode conductive connector 1-3.
  • the three-hole socket includes: hole No. 1, hole No. 2, and hole No. 3.
  • the corresponding connecting section 102 on the conductive connector These are the first connecting section 1021, the second connecting section 1022, and the third connecting section 1023, respectively.
  • the probability that the current flows through the first connection section 1021 of the N-pole conductive connector 1-1 and the L-pole conductive connector 1-2 is 1, and the current flows through the N-pole conductive connector 1-1 and the L-pole conductive connector
  • the probability of the second connection section 1022 of 1-2 is 6/7
  • the probability of current flowing through the third connection section 1023 of the N-pole conductive connector 1-1 and the L-pole conductive connector 1-2 is 4/7.
  • the embodiment of the present application provides a conductive connector with a rectangular cross-sectional area of the connection section.
  • the three connections included
  • the length of the cross section of the segment 102 is the same, and the width of the cross section decreases sequentially.
  • the volume of the conductive connector provided by the embodiment of the present application is smaller than that of the conductive connector provided by the related technology.
  • the cross-sectional width is greater than the cross-sectional width of the conductive connector provided by the related art (the overall cross-sectional width of the conductive connector provided by the related art is the same).
  • the value range of the cross-sectional width W 1 of the first connecting section in the conductive connection provided by the embodiments of the present application can be obtained, and any value within the value range can be used as the value of the first connecting section.
  • Cross-sectional width After the cross-sectional width of the first connecting section is determined, according to the probability of current flowing through each connecting section, the cross-sectional width W m of other connecting sections except the first connecting section 1021 is also determined accordingly.
  • the cross-sectional length of each connection section is 3.6mm, and the first connection section 1021, the second connection section 1022, and the third connection
  • the length of the section 1023 is 55mm, 42mm, and 43mm respectively (the lengths of the above three connecting sections belong to a standard size of the N-pole conductive connector, that is, for the N-pole conductive connector 1-1, the first connecting section 1021, the second The connecting section 1022, the third connecting section 1023 have standard lengths of 55 mm, 42 mm, and 43 mm, respectively.
  • each connection section is 3.6mm, and the cross-sectional width is 0.5mm.
  • the first connection section, the second connection section, and the third connection The lengths of the segments are 55mm, 42mm, and 43mm respectively (total length is 140mm).
  • each connecting section 103 is set to be 3.6 mm, and the first connecting section 1021, the second connecting section 1022, The lengths of the third connecting section 1023 are 44mm, 42mm, 42mm respectively (the lengths of the above three connecting sections belong to a standard size of the L-pole conductive connector, that is, for the L-pole conductive connector 1-2, the first connecting section 1021 , The second connecting section 1022, the third connecting section 1023 have standard lengths of 44mm, 42mm, 42mm, respectively).
  • each connection section is 3.6mm, and the cross-sectional width is 0.5mm.
  • the first connection section, the second connection section, and the third connection section The lengths are 44mm, 42mm, 42mm (total length is 128mm).
  • the volume of the L-pole conductive connector provided by the embodiment of the application is smaller than the volume of the L-pole conductive connector provided by the related technology, which makes (3.6 ⁇ W 1 ⁇ 44)+(3.6 ⁇ 6/7 ⁇ W 1 ⁇ 42)+(3.6 ⁇ 4/7 ⁇ W 1 ⁇ 42) ⁇ (3.6 ⁇ 0.5 ⁇ 128), determine W 1 ⁇ 0.615mm.
  • cross-sectional width L of the first connection electrode section provided in the conductive connection member of the present embodiment application > L electrode cross-sectional width of the related art to provide a conductive connection member, which makes the W 1> 0.5mm.
  • the value range of the cross-sectional width W 1 of the first connecting section 1021 of the L-pole conductive connector 1-2 provided by the embodiment of the present application is: 0.5mm ⁇ W 1 ⁇ 0.615mm, and any value within this range Any value can be taken as the cross-sectional width W 1 of the first connecting section 1021 of the L-pole conductive connecting piece 1-2, for example, 0.55mm, 0.58mm, 0.60mm, 0.61mm, etc.
  • the cross-sectional width W 2 of the second connecting section 1022 of the L-pole conductive connector 1-2 provided in the embodiment of the present application 6/7 ⁇ W 1
  • the cross-sectional width W 3 of the third connecting section 1023 4/7 ⁇ W 1 .
  • the cross-sectional width W 1 of the first connecting section 1021 of the L-pole conductive connector 1-2 provided in the embodiment of the present application is 0.6 mm
  • the cross-sectional width W 2 of the second connecting section 1022 is 0.514 mm
  • the cross-sectional width W 3 of the third connecting section 1023 is 0.343 mm.
  • the transverse direction of the first connecting section 1021 of the N-pole conductive connector 1-1 provided in the embodiment of the present application can be calculated.
  • the range of cross-sectional width W 1 is: 0.5mm ⁇ W 1 ⁇ 0.606mm, any value within this range can be used as the cross-sectional width W 1 of the first connecting section 1021 of the N-pole conductive connector 1-1, For example, 0.52mm, 0.55mm, 0.58mm, 0.60mm, etc.
  • the cross-sectional width W 1 of the first connecting section 1021 of the N-pole conductive connector 1-1 provided by the embodiment of the present application is 0.6 mm
  • the cross-sectional width W 2 of the second connecting section 1022 is 0.514 mm
  • the cross-sectional width W 3 of the third connecting section 1023 is 0.343 mm.
  • the volume of the N-pole conductive connector in the embodiment of the present application is reduced by 2.4 mm 3 compared with the related art.
  • the material usage and cost of the conductive connector of a single three-hole socket are significantly reduced compared with related technologies.
  • connection 1 in which the cross-sectional widths of the three connecting sections 102 are the same, and the cross-sectional lengths are sequentially reduced. small.
  • the volume of the conductive connector provided by the embodiment of the present application is smaller than that of the conductive connector provided by the related technology.
  • the cross-sectional length is greater than the cross-sectional length of the conductive connector provided by the related art (the cross-sectional length of the conductive connector provided by the related art is the same as a whole).
  • the value range of the cross-sectional length L 1 of the first connecting section in the conductive connection provided in the embodiments of the present application can be obtained, and any value within the value range can be used as the first connecting section. Length of cross section. After the cross-sectional length of the first connecting section is determined, according to the probability of current flowing through each connecting section, the cross-sectional length L m of other connecting sections except the first connecting section 1021 is also determined accordingly.
  • each connecting section 102 is 0.5 mm
  • the first connecting section 1021, the second connecting section 1022, and the third The length of the connecting section 1023 is 55 mm, 42 mm, and 43 mm, respectively.
  • each connection section is 0.5mm
  • the cross-sectional length is 3.6mm.
  • the first connection section, the second connection section, and the third connection The lengths of the segments are 55mm, 42mm, and 43mm respectively (total length is 140mm).
  • each connecting section 102 is set to be 0.5 mm, and the first connecting section 1021, the second connecting section 1022, The lengths of the third connecting section 1023 are 44mm, 42mm, and 42mm, respectively.
  • each connection section is 0.5mm
  • the cross-sectional length is 3.6mm.
  • the first connection section, the second connection section, and the third connection The lengths of the segments are 44mm, 42mm, and 42mm respectively (total length is 128mm).
  • the cross-sectional length of the first connecting section 1021 is set as L 1 , which is calculated by the following method:
  • the volume of the L-pole conductive connector provided by the embodiment of the application ⁇ the volume of the L-pole conductive connector provided by the related technology, which makes (0.5 ⁇ L 1 ⁇ 44)+(0.5 ⁇ 6/7 ⁇ L 1 ⁇ 42)+(0.5 ⁇ 4/7 ⁇ L 1 ⁇ 42) ⁇ (3.6 ⁇ 0.5 ⁇ 128), at this time, it is determined that L 1 ⁇ 4.431 mm.
  • the cross-sectional length of the first connection section of the L-pole conductive connector provided in the embodiments of the present application >the cross-sectional length of the first connection section of the L-pole conductive connector provided in the related art, which makes L 1 >3.6 mm.
  • the value range of the cross-sectional length L 1 of the first connecting section 1021 of the L-pole conductive connector 1-2 provided by the embodiment of the present application is: 3.6mm ⁇ L 1 ⁇ 4.431mm, and any value within this range Any value can be taken as the cross-sectional length L 1 of the first connecting section 1021 of the L-pole conductive connecting piece 1-2, for example, 3.7 mm, 3.8 mm, 4.0 mm, 4.2 mm, etc.
  • the cross-sectional length of the first connection section 1021 of the L-pole conductive connector 1-2 provided in the embodiment of the present application is 3.8 mm
  • the cross-sectional length of the second connection section 1022 is 3.257 mm
  • the third connection The cross-sectional length of section 1023 is 2.171 mm.
  • the volume of the L-pole conductive connector provided by the embodiment of the present application is reduced by 32.8 mm 3 compared with the related technology.
  • the cross-sectional length L 1 of the first connecting section 1021 of the N-pole conductive connector 1-1 provided in the embodiment of the present application can be calculated.
  • the value range is: 3.6mm ⁇ L 1 ⁇ 4.361mm, any value within this range can be used as the cross-sectional length L 1 of the first connecting section 1021 of the N-pole conductive connector 1-1, for example, 3.7mm, 3.8 mm, 4.0mm, 4.2mm, etc.
  • the cross-sectional length L 1 of the first connecting section 1021 of the N-pole conductive connector 1-1 is 3.8 mm
  • the cross-sectional length L 2 of the second connecting section 1022 is 3.257 mm
  • the third connecting section 1023 The cross-sectional length of L 3 is 2.171 mm.
  • the volume of the N-pole conductive connector provided by the embodiment of the present application is reduced by 32.4 mm 3 compared with the related technology.
  • the material usage and cost of the conductive connector of a single three-hole socket are significantly reduced compared with related technologies.
  • the embodiment of the present application provides such a conductive connector, in the direction away from the terminal, the cross-sectional length and cross-sectional width of the three connecting sections included in the conductive connector are reduced in sequence.
  • the cross-sectional length and cross-sectional width of each connecting segment can be determined according to the probability of current flowing through each connecting segment. Among them, the cross-sectional length and cross-sectional width of each connecting segment can be determined according to its cross-sectional area. get.
  • the volume of the conductive connector provided by the embodiment of the present application is smaller than that of the conductive connector provided by the related technology.
  • Volume; on the other hand, the limit life of the conductive connector provided in the embodiment of the application must be greater than the limit life of the conductive connector provided in the related art, which makes the first connection section of the conductive connector provided in the embodiment of the application
  • the cross-sectional area is larger than the cross-sectional area of the first connection section of the related art conductive connector.
  • the value range of the cross-sectional area S 1 of the first connection section in the conductive connection provided by the embodiment of the present application can be obtained, and any value within the value range can be used as the value of the first connection section.
  • Cross-sectional area After the cross-sectional area of the first connecting section is determined, the cross-sectional area S 1 of the other connecting sections except the first connecting section 1021 is also determined according to the probability of current flowing through each connecting section. Correspondingly, the width and cross-sectional width of each connecting section are also determined with the determination of the cross-sectional area.
  • the volume of the L-pole conductive connector provided by the embodiment of the application is smaller than the volume of the L-pole conductive connector provided by the related technology, which makes (S 1 ⁇ 44)+(6/7 ⁇ S 1 ⁇ 42)+ (4/7 ⁇ S 1 ⁇ 42) ⁇ (3.6 ⁇ 0.5 ⁇ 128), it is determined that S 1 ⁇ 2.215mm 2 .
  • the cross-sectional area of the first connection section of the L-pole conductive connector provided in the embodiment of the present application >the cross-sectional area of the first connection section of the L-pole conductive connector provided in the related art, which makes S 1 >1.8 mm 2 .
  • the value range of the cross-sectional area S 1 of the first connection section of the L-pole conductive connector is: 1.8mm 2 ⁇ S 1 ⁇ 2.215mm 2 , any value within this range a first cross-sectional area can be used as the connecting segment L connecting the conductive electrode member, e.g., 1.9mm 2, 2mm 2, 2.1mm 2, 2.2mm 2 and the like.
  • the cross-sectional area of the first connection section of the L-pole conductive connector provided in the embodiment of the present application can be 2.1 mm 2
  • the cross-sectional area of the second connection section is 1.8 mm 2
  • the cross-sectional area of the third connection section is 1.8 mm 2.
  • the cross-sectional area is 1.2mm 2 .
  • the value range of the cross-sectional width W 1 of the first connection section of the L-pole conductive connector provided in the embodiment of the present application is: 0.5mm ⁇ W 1 ⁇ 0.615mm, and the value range of the cross-sectional length L 1 is: 3.6mm ⁇ L 1 ⁇ 4.431mm.
  • the cross-sectional length of the first connection section of the L-pole conductive connector provided in the embodiment of the present application is 3.8 mm
  • the cross-sectional width is 0.5526 mm
  • the cross-sectional length of the second connection section is 3.5 mm
  • the cross-sectional width is 0.5143mm
  • the width of the third connecting section is 3mm
  • the cross-sectional width is 0.4mm.
  • the volume of the L-pole conductive connector provided in the present application is reduced by 12 mm 3 compared with the related technology.
  • the cross-sectional area S 1 of the first connection section of the N-pole conductive connector provided in the embodiment of the present application can be calculated according to the same method as described above.
  • the value range of is: 1.8mm 2 ⁇ S 1 ⁇ 2.180mm 2 , any value within this range can be used as the cross-sectional area of the first connecting section of the N-pole conductive connector, for example, 1.9mm 2 , 2mm 2 , 2.1mm 2 , 2.15mm 2 etc.
  • the cross-sectional area of the first connection section of the N-pole conductive connector provided in the embodiment of the present application can be 2.1 mm 2 , then the cross-sectional area of the second connection section is 1.8 mm 2 , and the cross-sectional area of the third connection section is 1.8 mm 2.
  • the cross-sectional area is 1.2mm 2 .
  • the value range of the cross-sectional width W 1 of the first connection section of the N-pole conductive connector provided in the embodiment of the present application is: 0.5mm ⁇ W 1 ⁇ 0.606mm, and the value range of the cross-sectional length L 1 is: 3.6mm ⁇ L 1 ⁇ 4.361mm.
  • the cross-sectional length of the first connection section of the N-pole conductive connector provided in the embodiment of the application is 4mm and the cross-sectional width to 0.525mm; the cross-sectional length of the second connection section to be 3mm and the cross-sectional width It is 0.6mm; the cross-sectional length of the third connecting section is 2.8mm, and the cross-sectional width is 0.429mm.
  • the volume of the L-pole conductive connector provided by the embodiment of the present application is reduced by 10.5 mm 3 compared with the related technology.
  • the material usage and cost of the conductive connector of a single three-hole socket can be reduced compared with related technologies.
  • each connection section has its own standard geometric size, its resistance can also be changed by changing the conductivity of the connection section.
  • the first connection terminal adjacent to the socket is The electrical conductivity of the connecting section is the largest.
  • the electrical conductivity of the remaining connecting sections may be all the same, or may be partially the same, or may be different from each other.
  • each connecting section has its own standard geometric size
  • the geometric size of the connecting section at each hole position can be a determined standard value, and the geometric size of each connecting section in the connecting piece can be determined according to the standard generally used in the field.
  • the cross-sectional lengths (or cross-sectional widths) of the multiple connecting sections in the conductive connecting member may be the same or different.
  • the cross-sectional lengths of the multiple connecting sections can be the same, and the cross-sectional widths are also the same.
  • its conductive connecting piece includes a first connecting section, a second connecting section, and a third connecting section.
  • the material of the first connection section can be made of copper, the material of the second connection section is phosphor bronze, and the material of the third connection section is brass.
  • the electrical conductivity of the above three gradually decreases in the direction away from the terminal, which can balance the conduction.
  • the difference in the service life of the different connecting sections of the connector due to the difference in the number of times the current flows, which effectively improves the bucket effect problem in the life of the conductive connector, and improves the overall life of the conductive connector.
  • the above-mentioned connecting sections of different materials can be spliced by welding to form a whole conductive connecting piece.
  • any of the above-mentioned conductive connectors provided in the embodiments of the present application may be in the shape of a strip, such as a copper strip (see FIG. 10), or may also be a multi-core wire (see FIG. 11, where FIG. 11 Only the outer sheath of the multi-core wire is shown in, and the inner wire is not shown).
  • the cross-sectional shape of the copper bar includes, but is not limited to, a rectangle, a circle, and the like.
  • the cross-sectional shape of the copper strip is rectangular.
  • a plurality of connecting sections may be integrally formed, or a splicing method, such as welding (for example, soldering), may be used for sequential connection.
  • the ratio of the cross-sectional area of the first connection section, the second connection section and the third connection section can be 7:6: 4 (The diameter of the wires of each connection section can be different, or the number of wires of each connection section can be different), welding three sections of wires with different cross-sectional areas to form a conductive connection piece.
  • the conductive connector involved in the embodiment of the present application includes at least one of an N-pole conductive connector 1-1 and an L-pole conductive connector 1-2.
  • one of the N-pole conductive connector 1-1 or the L-pole conductive connector 1-2 can be improved in the resistance of the above-mentioned connection sections, or the N-pole conductive connector 1- Both the 1 and the L-pole conductive connecting piece 1-2 simultaneously perform the above-mentioned improvement in the resistance of each connecting section.
  • an embodiment of the present application also provides a multi-hole socket, wherein the multi-hole socket includes any conductive connector involved in the embodiments of the present application.
  • the service life of the multi-hole socket provided by the embodiment of the present application will be correspondingly increased, reducing the probability of damage to the socket.
  • the conductive connecting member may be a copper strip; as shown in FIG. 11, the conductive connecting member may also be a multi-core wire.
  • the L-pole conductive connector and the N-pole conductive connector can use the same method to change the resistance of each connection section, for example, both use a method of changing the cross-sectional length or cross-sectional width, or both use a method of changing the material.
  • the L-pole conductive connector and the N-pole conductive connector can be changed in the same way to change the resistance of each connection section.
  • the L-pole conductive connector and the N-pole conductive connector can also use different ways to change the resistance of each connection section, for example, one of them uses a method of changing the cross-sectional length, and the other uses a method of changing the cross-sectional width, or, One adopts the method of changing the cross-sectional length or the width of the cross-section, and the other adopts the method of changing the material.
  • the multi-hole socket provided by the embodiment of the present application has a plurality of holes.
  • it includes but not limited to two-hole socket, three-hole socket, four-hole socket, five-hole socket, six-hole socket, and seven-hole socket. Hole sockets, eight-hole sockets, etc.
  • multi-hole sockets provided in the embodiments of the present application include, but are not limited to: two-pole sockets and three-pole sockets.
  • the multi-hole socket provided in the embodiment of the present application is a two-pole socket, also called a two-hole socket, that is, the conductive connector includes an L-pole conductive connector and an N-pole conductive connector.
  • the hole position formed by the insert sleeve is a two-hole type.
  • at least one of the L-pole conductive connector and the N-pole conductive connector adopts the conductive connector provided in the embodiment of the present application.
  • the multi-hole socket provided in the embodiment of the present application may be a three-pole socket, also called a three-hole socket, that is, the conductive connectors include L-pole conductive connectors and N-pole conductive connectors.
  • the sockets of the three are matched to form a three-hole type.
  • at least one of the L-pole conductive connector and the N-pole conductive connector adopts the conductive connector provided in the embodiment of the present application.
  • the multi-hole socket provided in the embodiment of the application may be a two-pole + three-pole combined socket, that is, the conductive connection includes an L-pole conductive connection, an N-pole conductive connection, and an E-pole conductive connection.
  • the hole positions of the three plug-in sleeves are two-hole type + three-hole type.
  • at least one of the L-pole conductive connector and the N-pole conductive connector adopts the conductive connector provided in the embodiment of the present application.
  • the structure of the multi-hole socket is common in the art.
  • FIG. 10, FIG. 11 and FIG. 1 it includes: a housing 2; a socket seat 3 on the housing 2; The N-pole terminal 4-1, the L-pole terminal 4-2, and the optional E-pole terminal 4-3 on the housing 2; and the N-pole conductive connector 1-1 fixed on the socket seat 3 , L pole conductive connector 1-2, and optional E pole conductive connector 1-3.
  • the N-pole conductive connector 1-1 and the L-pole conductive connector 1-2 adopts the conductive connector 1 involved in the embodiment of the present application, and the N-pole conductive connector 1-1 and the N-pole connection terminal 4 -1 connection, the L-pole conductive connector 1-2 is connected with the L-pole terminal 4-2, and optionally, the E-pole conductive connector 1-3 is connected with the E-pole terminal 4-3.
  • the N-pole conductive connector 1-1, the L-pole conductive connector 1-2, and the optional E-pole conductive connector 1-3 are all connected with a plurality of sockets through the socket contacts 101 thereon.
  • the multiple sockets on the N-pole conductive connector 1-1 and the L-pole conductive connector 1-2 are in one-to-one correspondence, and the corresponding sockets are spaced apart to form multiple two-pole sockets. , To correspond to multiple holes.
  • the multiple sockets on the E-pole conductive connector 1-3 correspond one-to-one with the multiple sockets on the N-pole conductive connector 1-1 and the L-pole conductive connector 1-2.
  • the corresponding insert sleeves are spaced apart from each other, and a plurality of three-pole insert sleeves can be formed to correspond to a plurality of hole positions.
  • Figure 1 illustrates a three-level socket with three holes, in which the N-pole conductive connector 1-1, the L-pole conductive connector 1-2, and the E-pole conductive connector 1-3 correspond to the No. 1 hole N pole socket 5-1, L pole socket 5-2 and E pole socket 5-3 are respectively connected to No. 2, hole position 2 and No. 3 hole position.
  • Each hole position has an N pole socket 5 -1.
  • the L-pole socket 5-2 and the E-pole socket 5-3 cooperate to form a three-stage socket at a hole position of the socket, and the three-stage socket can be inserted into the circuit wiring.
  • the method for obtaining the size may refer to the method described in Example 1, Example 2, or Example 3, for example.
  • the size of the remaining connecting sections in the conductive connecting piece is determined.
  • the conductive connecting piece is prepared.
  • determining the size of the remaining connecting sections in the conductive connecting piece may include the following:
  • connection section through which the current flows in different hole positions can be determined, and then the current can be determined to flow through each connection section. Probability.
  • the ratio of the cross-sectional area of the connecting section is proportional to the ratio of the probability of current flowing through each connecting section, according to the size of the first connecting section, and the probability of current flowing through other connecting sections except the first connecting section 1021 .
  • the dimensions of the remaining connecting sections can be calculated separately, which can then be used to guide the preparation of conductive connections.
  • the number of connecting sections in the conductive connector is the same as the number of holes in the multi-hole socket, for example, m (m ⁇ 3), then when the user uses the socket, the number of holes in the use state Y can be adopted The following formula is calculated:
  • the probability of current flowing through each connection section is determined respectively.
  • the probability of current flowing through the first connection section and the second connection section is 1, 2/3, respectively.
  • the probability of current flowing through the first connection section, the second connection section, and the third connection section are 1, 6/7, and 4/7, respectively.
  • the probability of current flowing through the first connection section, the second connection section, the third connection section, and the fourth connection section are 1, 14/15, 12/15, and 8/15, respectively.
  • the probability of current flowing through the first connection section, the second connection section, the third connection section, the fourth connection section, and the fifth connection section are 1, 30/31, 28/31, 24/31, 16/31.

Landscapes

  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

本申请公开了一种导电连接件及多孔位插座,属于插座技术领域。该导电连接件,用于多孔位插座,包括多个连接段,多个连接段依次连接,且,多个连接段与插座上相应数量的插套一一对应。多个连接段中,第一连接段的电阻最小,所述第一连接段为与所述插座的接线端子邻接的连接段。通过使与插座的接线端子邻接的第一连接段的电阻最小,不仅可以降低该连接件的烧毁几率,且避免了材料浪费。

Description

一种导电连接件及多孔位插座
本申请要求于2020年04月21日提交的申请号为202010318193.0、发明名称为“一种导电连接件及多孔位插座”以及于2020年04月21日提交的申请号为202020608046.2、实用新型名称为“一种导电连接件及多孔位插座”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及插座技术,特别涉及一种导电连接件及多孔位插座。
背景技术
多孔位插座的导电连接件,例如N极铜条和L极铜条熔断烧毁是导致多孔位插座损坏的一个重要原因,可见,有必要对该导电连接件进行改进,以减少烧毁几率。
目前,通过整体增加导电连接件的宽度或厚度,来降低整根导电连接件的电阻,以减少其被熔断烧毁的几率。
发明内容
鉴于此,本申请实施例提供一种导电连接件及多孔位插座,不仅可以降低连接件烧毁几率,且避免了材料浪费。
具体而言,包括以下的技术方案:
一方面,提供了一种导电连接件,用于多孔位插座,其中,所述导电连接件包括多个连接段,所述多个连接段依次连接,并且,所述多个连接段与所述插座上相应数量的插套一一对应;
所述多个连接段中,第一连接段的电阻最小,所述第一连接段为与所述插座的接线端子邻接的连接段。
在一种可能的实现方式中,所述多个连接段的电导率相同,且每个所述连接段各自具有标准长度,所述多个连接段中所述第一连接段的横截面积最大。
在一种可能的实现方式中,沿远离所述接线端子的方向,所述多个连接段的横截面积依次减小。
在一种可能的实现方式中,所述连接段的横截面积之比与电流流经每个所述连接段的概率之比成正比。
在一种可能的实现方式中,所述多个连接段的横截面形状均为矩形,所述多个连接段的横截面长度相同;
所述第一连接段的横截面宽度W 1的取值范围为:0.5mm<W 1<0.65mm。
在一种可能的实现方式中,根据电流流经每一所述连接段的概率,采用以下公式(1),确定除所述第一连接段之外的其他连接段的横截面宽度W m
W m=P m×W 1;       公式(1);
其中,P m为电流流经当前连接段的概率。
在一种可能的实现方式中,所述多个连接段的横截面形状均为矩形,所述多个连接段的横截面宽度相同;
所述第一连接段的横截面长度L 1的取值范围为:3.6mm<L 1<4.5mm。
在一种可能的实现方式中,根据电流流经每一所述连接段的概率,采用以下公式(2),确定除所述第一连接段之外的其他连接段的横截面长度L m
L m=P m×L 1;        公式(2);
其中,P m为电流流经当前连接段的概率。
在一种可能的实现方式中,所述多个连接段的横截面形状均为矩形,所述多个连接段的横截面长度和横截面宽度均不同;
所述第一连接段的横截面积S 1的取值范围为:1.8mm 2<S 1<2.5mm 2
在一种可能的实现方式中,根据电流流经每一所述连接段的概率,采用以下公式(3),确定除所述第一连接段之外的其他连接段的横截面积S m
S m=P m×S 1;        公式(3);
其中,P m为电流流经当前连接段的概率。
在一种可能的实现方式中,所述多个连接段的横截面形状均为圆形;
所述第一连接段的半径R 1的取值范围为:0.757mm<R 1<0.892mm。
在一种可能的实现方式中,根据电流流经每一所述连接段的概率,采用以下公式(4),确定除所述第一连接段之外的其他连接段的半径R m
R m=(P m) 1/2×R 1;        公式(4);
其中,P m为电流流经当前连接段的概率。
在一种可能的实现方式中,每个所述连接段各自具有标准几何尺寸,所述第一连接段的电导率最大。
在一种可能的实现方式中,沿远离所述接线端子的方向,所述多个连接段的电导率依次减小。
在一种可能的实现方式中,所述第一连接段的材质为紫铜。
在一种可能的实现方式中,除所述第一连接段之外的其他连接段的材质为磷青铜和/或黄铜。
在一种可能的实现方式中,所述导电连接件为条状或者多芯导线。
在一种可能的实现方式中,所述导电连接件包括:N极连接件和L极连接件中的至少一种。
另一方面,还提供了一种多孔位插座,其中,所述多孔位插座包括上述的任一种导电连接件。
在一种可能的实现方式中,所述多孔位插座的孔位数目为2个、3个、4个、5个、6个、7个或者8个。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一示例性三极插座的结构示意图;
图2为本申请实施例提供的一示例性N极导电连接件的主视图;
图3为本申请实施例提供的一示例性L极导电连接件的主视图;
图4为本申请实施例提供的一示例性三孔位插座的局部结构示意图;
图5为图2中A区域的局部放大图;
图6为本申请实施例提供的一示例性连接段横截面宽度不同的N极导电连接件的侧视图;
图7为本申请实施例提供的一示例性连接段横截面宽度不同的L极导电连接件的侧视图;
图8为本申请实施例提供的一示例性连接段横截面长度不同的N极导电连接件的俯视图;
图9为本申请实施例提供的一示例性连接段横截面长度不同的L极导电连接件的俯视图;
图10为本申请实施例提供的一示例性具有铜条结构的导电连接件的三孔位插座的局部结构示意图;
图11为本申请实施例提供的一示例性具有多芯导线结构的导电连接件的三孔位插座的局部结构示意图。
其中,图1中,1号孔位、2号孔位、3号孔位分别以符号①、②、③表示,并且,仅在3号孔位处以标记线示出了N极插套、L极插套、E极插套(①号孔位和②号孔位处未示出);仅针对N极导电连接件以标记线示出了第一连接段、第二连接段和第三连接段(L极导电连接件未示出)。
附图标记分别表示:
1-1:N极导电连接件,1-2:L极导电连接件,1-3:E极导电连接件,
101:插套接点,
102:连接段,
1021:第一连接段,1022:第二连接段,1021:第三连接段,
103:弯折结构,
2:壳体,
3:插套座,
4-1:N极接线端子,
4-2:L极接线端子,
4-3:E极接线端子;
5-1:N极插套;
5-2:L极插套;
5-1:E极插套。
具体实施方式
为使本申请的技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
导电连接件在插座内部作为导体来对电流进行传导,以下结合附图1对导电连接件在插座中的布置进行说明:
附图1示例了一种具有三个孔位的三级插座,如附图1所示,该三级插座包括:壳体2;位于壳体2上的插套座3和接线端子;以及位于插套座3上的导电连接件。其中,接线端子包括N(零线)极接线端子4-1、L(火线)极接线 端子4-2、E(零线)极接线端子4-3;对应地,导电连接件包括N极导电连接件1-1、L极导电连接件1-2、E极导电连接件1-3。
以N极导电连接件1-1举例来说,N极导电连接件1-1的一端与N极接线端子4-1连接,N极导电连接件1-1上对应于插座每一孔位的位置处分别连接有1个N极插套5-1。
进一步如附图2和附图3所示,N极导电连接件1-1和L极导电连接件1-2上均具有多个插套接点101,以插套接点101为界,各导电连接件均分为多个依次连接的连接段102,多个连接段102与插座上相应数量的插套一一对应(也就是说,每一连接段102对应多孔位插座的一个孔位)。
N极导电连接件1-1和L极导电连接件1-2利用其上的插套接点101来连接插套,其中,插套的数目、插座的孔位数目、连接段的数目彼此一一对应,以用来形成插座上的孔位。
为了便于描述,本申请实施将导电连接件中“与插座的接线端子邻接的连接段”称作第一连接段1021(其最接近插座的接线端子),沿远离接线端子的方向,除第一连接段1021之外的其他连接段可以依次称作第二连接段1022、......第n连接段,其中,n≥3。
附图4示例了一种三孔位插座中N极导电连接件1-1和L极导电连接件1-2的各连接段的分布,如附图4所示,N极导电连接件1-1和L极导电连接件1-2分别与插座的N极接线端子4-1和L极接线端子4-2相邻的连接段均称为第一连接段1021,沿远离N极接线端子4-1和L极接线端子4-2的方向,两者其余的连接段依次称作第二连接段1022和第三连接段1023。
发明人研究发现,对于因导电连接件烧毁熔断而导致损坏的多孔位插座,导电连接件的熔断位置绝大部分(例如90%以上)靠近接线端子。
以图1所示的具有三个孔位的三极插座为例,其N极导电连接件1-1和L极导电连接件1-2上分别连接有3个N极插套5-1和3个L极插套5-2,以导电连接件和插套的插套接点为界,N极导电连接件1-1和L极导电连接件1-2均分为3个连接段,沿远离插座的N极接线端子4-1、L极接线端子4-2的方向,这3个连接段依次称作第一连接段1021、第二连接段1022、第三连接段1023(分别对应的孔位是1号孔位①、2号孔位②、3号孔位③)。发明人研究证实,N极导电连接件1-1和L极导电连接件1-2的熔断位置都集中于第一连接段1021。
三孔位插座一次性可最多供3个用电器取电,用户一次性使用1个、2个或 者3个用电器是随机的,并且用户每次使用该插座的哪个孔位也是随机的,根据排列组合,用户使用孔位情况、各连接段电流流经情况以及对应的概率如表1所示:
表1
Figure PCTCN2020095450-appb-000001
由表1可知,在用户使用的孔位随机,且每次使用多少个孔位也随机的情况下,电流流经L极导电连接件和N极导电连接件的第一连接段的概率是1,电流流经L极导电连接件和N极导电连接件的第二连接段的概率是6/7,电流流经L极导电连接件和N极导电连接件的第三连接段的概率是4/7。
可见,用户使用该三孔位插座时,电流流经L极导电连接件和N极导电连接件的第一连接段、第二连接段以及第三连接段的概率是不相同的,这就造成在其他条件相同的情况下,L极导电连接件和N极导电连接件的第一连接段、第二连接段以及第三连接段的熔断寿命是不一样的。因为电流流经L极导电连接件和N极导电连接件的第一连接段的概率最大,故随着该三孔位插座使用次数的增多,L极导电连接件和N极导电连接件的第一连接段最先达到极限寿命,即最先被烧毁熔断。
可见,对于多孔位插座,电流流经L极导电连接件和N极导电连接件的三个连接段的概率存在差异,这就会使得第一连接段最大频率地通断电流,而其他连接段随着其与接线端子的距离的增大,其通断电流的频率相对减小。因此,相对来说,导电连接件的第一连接段因电流发生升温熔断的几率最大。
如附图2及附图3所示,本申请实施例提供了一种导电连接件,其用于多孔位插座,该导电连接件包括多个连接段102,其中,多个连接段102依次连接,并与相应数量的插套一一对应。
多个连接段102中,第一连接段1021的电阻最小,其中,第一连接段1021为与插座的接线端子邻接的连接段102。
本申请实施例提供的导电连接件,由于导电连接件与插座的接线端子邻接 的连接段102(即第一连接段1021)通断电流的概率最大,熔断的概率也最大,通过使该第一连接段1021的电阻最小,来降低其烧毁熔断的几率,利于提高导电连接件整体的使用寿命。由于可以仅对影响导电连接件极限寿命的第一连接段1021进行改进,例如通过增加其横截面积的方式使其电阻最小,如此可避免材料浪费,利于降低成本。
本申请实施例中,导电连接件包括多个连接段102,也就是说,包括两个或两个以上的连接段102,例如,可以包括两个连接段102、包括三个连接段102(参见附图2和附图3)、包括四个连接段102、包括五个连接段102、包括六个连接段102等。
导电连接件与插座的接线端子邻接的端部一般形成有弯折结构103,利用弯折结构103与插座的接线端子连接。所以,本申请实施例所涉及的“沿远离接线端子的方向”也可以理解为沿远离导电连接件的弯折结构103的方向。
本申请实施例中,多个连接段102中,使第一连接段1021的电阻最小,对于其余连接段102,可以不进行改进,也可以对它们中的部分或者全部进行改进,使它们的电阻分别大于第一连接段1021的电阻。
作为一种示例,可以使第一连接段1021的电阻最小,同时,使第二连接段1022、......第n连接段的电阻相同且大于第一连接段1021的电阻(其中,n≥3)。
作为另一种示例,可以使第一连接段1021的电阻最小,同时,使第二连接段1022、......第n连接段的电阻部分相同(其中,n≥3)。
例如,当n=5时,沿远离接线端子的方向,导电连接件包括依次连接的第一连接段,第二连接段、第三连接段、第四连接段、第五连接段,使第一连接段的电阻最小,使第二连接段、第三连接段、第四连接段、第五连接段中的任意两个或者三个的电阻相同。
作为再一种示例,可以使第一连接段1021的电阻最小,同时,使第二连接段1022、......第n连接段的电阻彼此不同。(其中,n≥3)。
例如,当n=5时,沿远离接线端子的方向,导电连接件包括依次连接的第一连接段,第二连接段、第三连接段、第四连接段、第五连接段,使第一连接段的电阻最小,使第二连接段、第三连接段、第四连接段、第五连接段的电阻依次增大。
在一种可能的设计中,本申请实施例提供的导电连接件,沿远离接线端子的方向,多个连接段102的电阻可以依次增大,即,第一连接段1021、第二连 接段1022、......第n连接段的电阻依次增大(其中,n≥3),如此,在降低导电连接件熔断烧毁几率的前提下,还可以最大化地降低成本(例如,使多个连接段的横截面积逐渐减小,以节省原料成本)。
可以使每个连接段102的电阻之比与电流流经每个连接段102的概率之比成反比,这样,沿远离接线端子的方向,由于电流流经各连接段102的概率逐渐减小,而各连接段102的电阻可以按比例逐渐增大,通过电流流经每一连接段102的概率,来确定当前连接段102相比在前连接段102的电阻的增加幅度(例如,来确定第二连接段1022的电阻相比第一连接段1021的电阻增加幅度),以使导电连接件的每一连接段102的极限寿命达到一致,解决导电连接件的寿命存在水桶效应的问题,最大化节省成本。
举例来说,当导电连接件包括m个连接段102时(其中,m≥2),设定第一连接段1021的电阻为R 1,并且,电流流经第一连接段1021的概率为定值1。设定第m连接段的电阻为R m,并且,电流流经第m连接段的概率为P m,则R m=(R 1×1)÷P m
可以通过改变连接段横截面积的方式来改变其电阻达到设计要求,也可以通过改变连接段电导率的方式来改变其电阻达到设计要求,针对以上两类实现方式分别进行阐述:
在一种可能的设计中,本申请实施例提供的导电连接件中,多个连接段102的电导率相同,且每个连接段102各自具有标准长度。多个连接段102中,第一连接段1021的横截面积最大。
在多个连接段102的电导率和长度固定的状态下,通过使第一连接段1021的横截面积最大,来达到使其电阻最小的目的。
需要说明的是,上述的“每个连接段102各自具有标准长度”指的是,在多孔位插座的孔位数目确定的前提下,其内包含的N极连接件和L极连接件的长度,以及上述各连接件中对应于每一孔位的连接段的长度均是确定的标准值,按照本领域通用的标准,即可确定连接件中每一连接段的长度,在该设计中,本申请实施例对连接段的长度不作改进。
基于上述设计,沿远离插座接线端子的方向,导电连接件中多个连接段102的横截面积可以依次减小,即,可以使各连接段102的体积减小,达到节省原料成本的目的。
进一步地,可以使连接段102的横截面积之比与电流流经每个连接段102 的概率之比成正比,这样,沿远离接线端子的方向,由于电流流经各连接段102的概率逐渐减小,使各连接段102的横截面积按上述比例逐渐减小,通过电流流经每一连接段的概率,来确定当前连接段相比在前连接段的横截面积的减小幅度,在保证导电连接件的每一连接段102的极限寿命达到一致的前提下,最大化地降低成本。
举例来说,当导电连接件包括m个连接段102时(其中,m≥2),设定第一连接段1021的横截面积为S 1,并且,电流流经第一连接段1021的概率为定值1,设定第m连接段的电阻为S m,并且,电流流经第m连接段的概率为P m,则S m=S 1×P m
通过改变连接段的横截面尺寸的方式来改变各连接段的横截面积,以使第一连接段的横截面尺寸最大,其中,基于连接段的横截面形状,该横截面尺寸包括:长度、宽度和半径中的至少一种。
举例来说,当导电连接件的横截面形状为矩形时(例如,导电连接件为铜条),被改变的横截面尺寸可以是横截面宽度和/或横截面长度。举例来说,当导电连接件的横截面形状为圆形时,被改变的横截面尺寸可以是半径。
以横截面形状为矩形的导电连接件为例(该结构的导电连接件可以称为连接条),其包括m个电导率相同的连接段102(其中,m≥2),并且每个连接段102各自具有标准长度。
可以相比相关技术增大该导电连接件的第一连接段1021的横截面积,并且使其横街面积在所有连接段102中最大。进一步地,还可以使其余连接段102的横截面积沿远离插座接线端子的方向依次减小,并且每一连接段102的横截面积的减小幅度由电流流经该连接段的概率所决定。
在一种可能的设计中,本申请实施例提供的导电连接件的多个连接段102的横截面形状均为矩形,且多个连接段102的横截面长度相同,可以使第一连接段1021的横截面宽度W 1最大,且W 1的取值范围为:0.5mm<W 1<0.65mm。第一连接段1021的横截面宽度W 1在如上范围内时,不仅可以降低电阻,提高导电连接件极限寿命,同时还满足多孔位插座的设计要求。
示例地,第一连接段1021的横截面宽度W 1可以为0.51mm、0.52mm、0.53mm、0.54mm、0.55mm、0.56mm、0.57mm、0.58mm、0.59mm、0.60mm、0.61mm、0.62mm、0.63mm、0.64mm等。
本申请实施例中,如附图5所示,连接段的横截面长度L指的是其横截面 长度相对较长的边的长度(还可以理解为是连接段的宽度),横截面宽度W指的是其横截面长度相对较短的边的长度(还可以理解为是连接段的厚度)。
进一步地,如附图6及附图7所示,沿远离接线端子的方向,可以使剩余连接段102的横截面宽度依次减小。
当各连接段102的横截面长度相同时,设定第一连接段1021的横截面宽度W 1,根据电流流经每一连接段102的概率,可以采用以下公式确定除第一连接段1021之外的其他连接段的横截面宽度W m
W m=电流流经当前连接段的概率P m×W 1
在另一种可能的设计中,本申请实施例提供的导电连接件的多个连接段102的横截面形状均为矩形,且多个连接段102的横截面宽度相同,可以使第一连接段1021的横截面长度L 1最大,且横截面长度L 1的取值范围为:3.6mm<L 1<4.5mm。第一连接段1021的横截面长度L 1在如上范围内时,不仅可以降低电阻,提高导电连接件的极限寿命,同时还满足多孔位插座的设计要求。
示例地,第一连接段1021的横截面长度L 1可以为3.72mm、3.75mm、3.78mm、3.8mm、3.85mm、3.9mm、3.95mm、4mm、4.05mm、4.1mm、4.15mm、4.2mm、4.25mm、4.3mm、4.35mm、4.4mm等。
进一步地,如附图8及附图9所示,沿远离插座接线端子的方向,可以使剩余的多个连接段102的横截面长度依次减小。
当各连接段102的横截面宽度相同时,设定第一连接段1021的横截面长度为L 1,根据电流流经每一连接段102的概率,可以采用以下公式确定除第一连接段1021之外的其他连接段的横截面长度L m
L m=电流流经当前连接段的概率P m×L 1
在再一种可能的设计中,本申请实施例提供的导电连接件的多个连接段102的横截面形状均为矩形,且多个连接段102的横截面宽度和横截面长度均不同,使第一连接段1021的横截面积S 1最大,且横截面积S 1的取值范围为:1.8mm 2<S 1<2.5mm 2。第一连接段1021的横截面积S 1在如上范围内时,不仅可以降低电阻,提高导电连接件的极限寿命,同时还满足多孔位插座的设计要求。
示例地,第一连接段1021的横截面积S 1可以为1.9mm 2、1.95mm 2、2.0mm 2、2.1mm 2、2.2mm 2、2.3mm 2、2.35mm 2、2.4mm 2等。
进一步地,沿远离接线端子的方向,可以使剩余的多个连接段102的横截面积依次减小。
设定第一连接段1021的横截面积为S 1,根据电流流经每一连接段102的概率,可以采用以下公式确定除第一连接段1021之外的其他连接段的横截面积为S m
S m=电流流经当前连接段的概率P m×S 1
当第一连接段1021横截面积S 1确定时,任意设定其横截面长度或者横截面宽度中的一个为定值,则可相应地计算得到另一个。
在再一种可能的设计中,本申请实施例提供的导电连接件的多个连接段102的横截面形状均为圆形,且第一连接段1021的半径R 1的取值范围为:0.757mm<R 1<0.892mm,即第一连接段1021的横截面积S 1的取值范围为:1.8mm 2<S 1<2.5mm 2
使第一连接段1021的半径R 1在如上范围内时,不仅可以降低电阻,提高导电连接件的极限寿命,同时还满足多孔位插座的设计要求。
示例地,第一连接段的半径R 1可以为0.76mm、0.77mm、0.78mm、0.79mm、0.8mm、0.81mm、0.82mm、0.83mm、0.84mm、0.85mm、0.86mm、0.87mm、0.88mm、0.89mm等。
进一步地,沿远离接线端子的方向,可以使剩余的多个连接段102的半径依次减小。
设定第一连接段1021的半径R 1,根据电流流经每一连接段102的概率,可以采用以下公式确定除第一连接段1021之外的其他连接段的半径为R m
R m=(P m) 1/2×R 1
对于横截面为圆形的导电连接件,该结构的导电连接件可以包括一整根导体,也可以包括多根导线。当包括多根导线时,上述连接段的半径指的是多根圆形截面导线的半径之和。
以下结合上述各种可能的设计,分别提供一示例性的用于三孔位插座的导电连接件,用于说明本申请实施例提供的导电连接件的结构及成本相比相关技术提供的导电连接件的优势:
如附图10和附图11所示,三孔位插座包括:N极导电连接件1-1、L极导电连接件1-2,以及可选的地极导电连接件1-3。沿远离插座的接线端子的方向,三孔位插座包括:1号孔位、2号孔位、3号孔位,如附图2和附图3所示,导电连接件上对应的连接段102分别是第一连接段1021、第二连接段1022、第三 连接段1023。其中,电流流经N极导电连接件1-1和L极导电连接件1-2的第一连接段1021的概率是1,电流流经N极导电连接件1-1和L极导电连接件1-2的第二连接段1022的概率是6/7,电流流经N极导电连接件1-1和L极导电连接件1-2的第三连接段1023的概率是4/7。
(1)作为示例一,如附图6和附图7所示,本申请实施例提供了连接段横截面积为矩形的导电连接件,沿远离接线端子的方向,其所包含的三个连接段102的横截面长度相同,横截面宽度依次减小。
一方面,由于本申请实施例提供的导电连接件的成本须小于相关技术提供的导电连接件的成本,这就使得本申请实施例提供的导电连接件的体积小于相关技术提供的导电连接件的体积;另一方面,本申请实施例提供的导电连接件的极限寿命须大于相关技术提供的导电连接件的极限寿命,这就使得本申请实施例提供的导电连接件中第一连接段的横截面宽度大于相关技术提供的导电连接件的横截面宽度(相关技术提供的导电连接件的整体横截面宽度是一致的)。
基于以上两个方面,可以获得本申请实施例提供的导电连接件中第一连接段的横截面宽度W 1的取值范围,由该取值范围内任意取值均可作为第一连接段的横截面宽度。第一连接段的横截面宽度确定后,根据电流流经每一连接段的概率,除第一连接段1021之外的其他连接段的横截面宽度W  m也随之确定。
如附图6所示,对于本申请实施例提供的N极导电连接件1-1,各连接段的横截面长度均为3.6mm,第一连接段1021、第二连接段1022、第三连接段1023的长度分别为55mm、42mm、43mm(以上三个连接段的长度属于N极导电连接件的一个标准尺寸,即,对于N极导电连接件1-1,第一连接段1021、第二连接段1022、第三连接段1023分别具有标准长度55mm、42mm、43mm)。
以相关技术提供的对于N极导电连接件作为对比,设定其各连接段的横截面长度均为3.6mm,横截面宽度均为0.5mm,第一连接段、第二连接段、第三连接段的长度分别为55mm、42mm、43mm(总长为140mm)。
如附图7所示,对于本申请实施例提供的L极导电连接件1-2,设定各连接段103的横截面长度均为3.6mm,第一连接段1021、第二连接段1022、第三连接段1023的长度分别为44mm、42mm、42mm(以上三个连接段的长度属于L极导电连接件的一个标准尺寸,即,对于L极导电连接件1-2,第一连接段1021、第二连接段1022、第三连接段1023分别具有标准长度44mm、42mm、42mm)。
以相关技术提供的L极导电连接件作为对比,设定其各连接段的横截面长 度均为3.6mm,横截面宽度均为0.5mm,第一连接段、第二连接段、第三连接段的长度分别为44mm、42mm、42mm(总长为128mm)。
(1.1)对于本申请实施例提供的L极导电连接件1-2的第一连接段1021的横截面宽度W 1,其通过以下方式计算得到:
其一,本申请实施例提供的L极导电连接件的体积<相关技术提供的L极导电连接件的体积,这就使得(3.6×W 1×44)+(3.6×6/7×W 1×42)+(3.6×4/7×W 1×42)<(3.6×0.5×128),确定W 1<0.615mm。
其二,本申请实施例提供的L极导电连接件的第一连接段的横截面宽度>相关技术提供的L极导电连接件的横截面宽度,这就使得W 1>0.5mm。
综上可知,本申请实施例提供的L极导电连接件1-2的第一连接段1021的横截面宽度W 1的取值范围是:0.5mm<W 1<0.615mm,在该范围内任意取值均可作为L极导电连接件1-2的第一连接段1021的横截面宽度W 1,例如,0.55mm、0.58mm、0.60mm、0.61mm等。
根据电流流经每一连接段的概率,确定L极导电连接件1-2的第二连接段1022的横截面宽度W 2和第三连接段1023的横截面宽度W 3,其计算公式分别如下:
本申请实施例提供的L极导电连接件1-2的第二连接段1022的横截面宽度W 2=6/7×W 1,第三连接段1023的横截面宽度W 3=4/7×W 1
作为示例,设定本申请实施例提供的L极导电连接件1-2的第一连接段1021的横截面宽度W 1为0.6mm,则第二连接段1022的横截面宽度W 2为0.514mm,第三连接段1023的横截面宽度W 3为0.343mm。
基于以上数据,来计算三孔位插座的L极导电连接件相比相关技术所减少的成本,如下所示:
(1)本申请提供的L极导电连接件的体积V=(44mm×3.6mm×0.6mm)+(42mm×3.6mm×0.514mm)+(42mm×3.6mm×0.343mm)=224.6mm 3
(2)相关技术提供的L极导电连接件的体积V=128mm×3.6mm×0.5mm=230.4mm 3
可见,本申请实施例的L极导电连接件的体积相比相关技术减少5.8mm 3
以L极导电连接件的密度为8.5g/cm 3,单价为41.14元为例,本申请实施例提供的L极导电连接件的重量相比相关技术的减少量△M=8.5g/cm 3×5.8mm 3=0.05g,则其成本相比相关技术的减少量△P=0.05g×41.14元/kg=0.0021元。
(1.2)对于本申请实施例提供的N极导电连接件1-1,按照上述相同的方法,可以计算得到本申请实施例提供的N极导电连接件1-1的第一连接段1021的横截面宽度W 1的取值范围是:0.5mm<W 1<0.606mm,在该范围内任意取值均可作为N极导电连接件1-1的第一连接段1021的横截面宽度W 1,例如,0.52mm、0.55mm、0.58mm、0.60mm等。
作为示例,设定本申请实施例提供的N极导电连接件1-1的第一连接段1021的横截面宽度W 1为0.6mm,则第二连接段1022的横截面宽度W 2为0.514mm,第三连接段1023的横截面宽度W 3为0.343mm。
基于以上数据,来计算三孔位插座的N极导电连接件相比相关技术所减少的成本,如下所示:
(1)本申请实施例提供的N极导电连接件的体积V=55mm×3.6mm×0.6mm+42mm×3.6mm×0.514mm+43mm×3.6mm×0.343mm=249.6mm 3
(2)相关技术提供的N极导电连接件的体积V=140mm×3.6mm×0.5mm=252mm 3
可见,本申请实施例的N极导电连接件的体积相比相关技术减少2.4mm 3
以N极导电连接件的密度为8.5g/cm 3,单价为41.14元为例,本申请实施例提供的N极导电连接件的重量相比相关技术的减少量△M=8.5g/cm 3×2.4mm 3=0.02g,则其成本相比相关技术的减少量△P=0.02g×41.14元/kg=0.008元。
综上,当采用本申请实施例提供的导电连接件时,单个三孔位插座的导电连接件的材料使用量及成本相比相关技术均显著降低。
(2)作为示例二,如附图8和附图9所示,本申请实施例提供了这样一种连接1,其所包含的三个连接段102的横截面宽度相同,横截面长度依次减小。
一方面,由于本申请实施例提供的导电连接件的成本须小于相关技术提供的导电连接件的成本,这就使得本申请实施例提供的导电连接件的体积小于相关技术提供的导电连接件的体积;另一方面,本申请实施例提供的导电连接件的极限寿命须大于相关技术提供的导电连接件的极限寿命,这就使得本申请实施例提供的导电连接件中第一连接段的横截面长度大于相关技术提供的导电连接件的横截面长度(相关技术提供的导电连接件的横截面长度整体是一致的)。
基于以上两个方面,可以获得本申请实施例提供的导电连接件中第一连接段的横截面长度L 1的取值范围,由该取值范围内任意取值均可作为第一连接段 的横截面长度。第一连接段的横截面长度确定后,根据电流流经每一连接段的概率,除第一连接段1021之外的其他连接段的横截面长度L m也随之确定。
如附图8所示,对于本申请实施例提供的N极导电连接件1-1,各连接段102的横截面宽度均为0.5mm,第一连接段1021、第二连接段1022、第三连接段1023的长度分别为55mm、42mm、43mm。
以相关技术提供的对于N极导电连接件作为对比,设定其各连接段的横截面宽度均为0.5mm,横截面长度均为3.6mm,第一连接段、第二连接段、第三连接段的长度分别为55mm、42mm、43mm(总长为140mm)。
如附图9所示,对于本申请实施例提供的L极导电连接件1-2,设定各连接段102的横截面宽度均为0.5mm,第一连接段1021、第二连接段1022、第三连接段1023的长度分别为44mm、42mm、42mm。
以相关技术提供的对于L极导电连接件作为对比,设定其各连接段的横截面宽度均为0.5mm,横截面长度均为3.6mm,第一连接段、第二连接段、第三连接段的长度分别为44mm、42mm、42mm(总长为128mm)。
(2.1)对于本申请实施例提供的L极导电连接件1-2,设定其第一连接段1021的横截面长度为L 1,通过以下方式计算得到:
其一,本申请实施例提供的L极导电连接件的体积<相关技术提供的L极导电连接件的体积,这就使得(0.5×L 1×44)+(0.5×6/7×L 1×42)+(0.5×4/7×L 1×42)<(3.6×0.5×128),此时,确定L 1<4.431mm。
其二,本申请实施例提供的L极导电连接件的第一连接段的横截面长度>相关技术提供的L极导电连接件的第一连接段的横截面长度,这就使得L 1>3.6mm。
综上可知,本申请实施例提供的L极导电连接件1-2的第一连接段1021的横截面长度L 1的取值范围是:3.6mm<L 1<4.431mm,在该范围内任意取值均可作为L极导电连接件1-2的第一连接段1021的横截面长度L 1,例如,3.7mm、3.8mm、4.0mm、4.2mm等。
根据电流流经每一连接段的概率,确定L极导电连接件1-2的第二连接段1022的横截面长度L 2和第三连接段1023的横截面长度L 3,其计算公式分别如下:
本申请实施例提供的L极导电连接件的第二连接段的横截面长度L 2=6/7×L 1,第三连接段的横截面长度L 3=4/7×L 1
作为示例,设定本申请实施例提供的L极导电连接件1-2的第一连接段1021的横截面长度为3.8mm,则第二连接段1022的横截面长度为3.257mm,第三连接段1023的横截面长度为2.171mm。
基于以上数据,来计算三孔位插座的L极导电连接件相比相关技术所减少的成本,如下所示:
(1)本申请提供的L极导电连接件的体积V=(44mm×3.8mm×0.5mm)+(42mm×3.257mm×0.5mm)+(42mm×2.171mm×0.5mm)=197.6mm 3
(2)相关技术提供的L极导电连接件的体积V=128mm×3.6mm×0.5mm=230.4mm 3
可见,本申请实施例提供的L极导电连接件的体积相比相关技术减少32.8mm 3
以L极导电连接件的密度为8.5g/cm 3,单价为41.14元为例,本申请实施例提供的L极导电连接件的重量相比相关技术的减少量△M=8.5g/cm 3×32.8mm 3=0.279g,则其成本相比相关技术的减少量△P=0.279g×41.14元/kg=0.0115元。
(2.2)对于N极导电连接件1-1,按照上述相同的方法,可以计算得到本申请实施例提供的N极导电连接件1-1的第一连接段1021的横截面长度L 1的取值范围是:3.6mm<L 1<4.361mm,在该范围内任意取值均可作为N极导电连接件1-1的第一连接段1021的横截面长度L 1,例如,3.7mm、3.8mm、4.0mm、4.2mm等。
作为示例,设定N极导电连接件1-1的第一连接段1021的横截面长度L 1为3.8mm,则第二连接段1022的横截面长度L 2为3.257mm,第三连接段1023的横截面长度L 3为2.171mm。
基于以上数据,来计算三孔位插座的N极导电连接件的成本,如下所示:
(1)本申请实施例提供的N极导电连接件的体积V=55mm×3.8mm×0.5mm+42mm×3.257mm×0.5mm+43mm×2.171mm×0.5mm=219.6mm 3
(2)相关技术提供的N极导电连接件的体积V=140mm×3.6mm×0.5mm=252mm 3
可见,本申请实施例提供的N极导电连接件的体积相比相关技术减少32.4mm 3
以N极导电连接件的密度为8.5g/cm 3,单价为41.14元为例,本申请实施 例提供的N极导电连接件的重量相比相关技术的减少量△M=8.5g/cm 3×32.4mm 3=0.275g,则其成本相比相关技术的减少量△P=0.0275g×41.14元/kg=0.0113元。
综上,当采用本申请实施例提供的导电连接件时,单个三孔位插座的导电连接件的材料使用量及成本相比相关技术均显著降低。
(3)作为示例三,本申请实施例提供了这样一种导电连接件,沿远离接线端子的方向,其所包含的三个连接段的横截面长度和横截面宽度均依次减小。
可以根据电流流经每一连接段的概率,分别确定每一连接段的横截面长度和横截面宽度,其中,每个连接段的横截面长度和横截面宽度取值可以根据其横截面积确定得到。
设定第一连接段的横截面积为S 1,根据电流流经每一连接段的概率,确定除第一连接段1021之外的其他连接段的横截面积S m=电流流经当前连接段的概率P m×第一连接段的横截面积S 1
一方面,由于本申请实施例提供的导电连接件的成本须小于相关技术提供的导电连接件的成本,这就使得本申请实施例提供的导电连接件的体积小于相关技术提供的导电连接件的体积;另一方面,本申请实施例提供的导电连接件的极限寿命须大于相关技术提供的导电连接件的极限寿命,这就使得本申请实施例提供的导电连接件中第一连接段的横截面积要大于相关技术导电连接件的第一连接段的横截面积。
基于以上两个方面,可以获得本申请实施例提供的导电连接件中第一连接段的横截面积S 1的取值范围,由该取值范围内任意取值均可作为第一连接段的横截面积。第一连接段的横截面积确定后,根据电流流经每一连接段的概率,除第一连接段1021之外的其他连接段的横截面积S 1也随之确定。相应地,每一连接段的宽度和横截面宽度也随横截面积的确定而确定。
(3.1)对于本申请实施例提供的L极导电连接件的S 1,其通过以下方式计算得到:
其一,本申请实施例提供的L极导电连接件的体积<相关技术提供的L极导电连接件的体积,这就使得(S 1×44)+(6/7×S 1×42)+(4/7×S 1×42)<(3.6×0.5×128),确定S 1<2.215mm 2
其二,本申请实施例提供的L极导电连接件的第一连接段的横截面积>相 关技术提供的L极导电连接件的第一连接段的横截面积,这就使得S 1>1.8mm 2
综上可知,本申请实施例提供的L极导电连接件的第一连接段的横截面积S 1的取值范围是:1.8mm 2<S 1<2.215mm 2,在该范围内任意取值均可作为L极导电连接件的第一连接段的横截面积,例如,1.9mm 2、2mm 2、2.1mm 2、2.2mm 2等。
作为示例,可以使本申请实施例提供的L极导电连接件的第一连接段的横截面积为2.1mm 2,则第二连接段的横截面积为1.8mm 2,第三连接段的横截面积为1.2mm 2
根据上述示例一和示例二提供的方法,可以确定的是:
本申请实施例提供的L极导电连接件的第一连接段的横截面宽度W 1的取值范围是:0.5mm<W 1<0.615mm,横截面长度L 1的取值范围是:3.6mm<L 1<4.431mm。
作为示例,可以设定本申请实施例提供的L极导电连接件的第一连接段的横截面长度为3.8mm,横截面宽度为0.5526mm,第二连接段的横截面长度为3.5mm,横截面宽度为0.5143mm,第三连接段的宽度为3mm,横截面宽度为0.4mm。
基于以上数据,来计算三孔位插座的L极导电连接件相比相关技术所减少的成本,如下所示:
(1)本申请实施例提供的L极导电连接件的体积V=(44mm×3.8mm×0.5526mm)+(42mm×3.5mm×0.5143mm)+(42mm×3mm×0.4mm)=218.4mm 3
(2)相关技术提供的L极导电连接件的体积V=128mm×3.6mm×0.5mm=230.4mm 3
可见,本申请提供的L极导电连接件的体积相比相关技术减少12mm 3
以L极导电连接件的密度为8.5g/cm 3,单价为41.14元为例,本申请实施例提供的L极导电连接件的重量相比相关技术的减少量△M=8.5g/cm 3×12mm 3=0.102g,则其成本相比相关技术的减少量△P=0.102g×41.14元/kg=0.0042元。
(3.2)对于本申请实施例提供的N极导电连接件的S 1,按照上述相同的方法,可以计算得到本申请实施例提供的N极导电连接件的第一连接段的横截面积S 1的取值范围是:1.8mm 2<S 1<2.180mm 2,在该范围内任意取值均可作为N极导电连接件的第一连接段的横截面积,例如,例如,1.9mm 2、2mm 2、2.1mm 2、 2.15mm 2
作为示例,可以使本申请实施例提供的N极导电连接件的第一连接段的横截面积为2.1mm 2,则第二连接段的横截面积为1.8mm 2,第三连接段的横截面积为1.2mm 2
根据上述示例一和示例二提供的方法,可以确定的是:
本申请实施例提供的N极导电连接件的第一连接段的横截面宽度W 1的取值范围是:0.5mm<W 1<0.606mm,横截面长度L 1的取值范围是:3.6mm<L 1<4.361mm。
作为示例,可以设定本申请实施例提供的N极导电连接件的第一连接段的横截面长度为4mm,横截面宽度为0.525mm;第二连接段的横截面长度为3mm,横截面宽度为0.6mm;第三连接段的横截面长度为2.8mm,横截面宽度为0.429mm。
基于以上数据,来计算三孔位插座的N极导电连接件相比相关技术所减少的成本,如下所示:
(1)本实施例提供的N极导电连接件的体积V=(55mm×4mm×0.525mm)+(42mm×3mm×0.6mm)+(42mm×2.8mm×0.429mm)=241.5mm 3
(2)相关技术提供的N极导电连接件的体积V=140mm×3.6mm×0.5mm=252mm 3
可见,本申请实施例提供的L极导电连接件的体积相比相关技术减少10.5mm 3
以L极导电连接件的密度为8.5g/cm 3,单价为41.14元为例,本申请实施例提供的L极导电连接件的重量相比相关技术的减少量△M=8.5g/cm 3×10.5mm 3=0.089,则其成本相比相关技术的减少量△P=0.089g×41.14元/kg=0.0036元。
综上,当采用本申请实施例提供的导电连接件时,单个三孔位插座的导电连接件的材料使用量及成本相比相关技术均得以降低。
在每个连接段各自具有标准几何尺寸的状态下,还可以通过改变连接段电导率的方式来改变其电阻,本申请实施例中,多个连接段中,与插座的接线端子邻接的第一连接段的电导率最大。同时,其余连接段的电导率可以全部相同,也可以部分相同,还可以彼此不同。
需要说明的是,上述的“每个连接段各自具有标准几何尺寸”指的是,在多孔位插座的孔位数目确定的前提下,其内包含的N极连接件和L极连接件中 对应于每一孔位的连接段的几何尺寸均可以是确定的标准值,按照本领域通用的标准,即可确定连接件中每一连接段的几何尺寸。
在一种可能的设计中,沿远离接线端子的方向,多个连接段的电导率依次减小。
其中,导电连接件中多个连接段的横截面长度(或者横截面宽度)可以相同,也可以不同。为了便于成型制备,可以使多个连接段的横截面长度相同,横截面宽度也相同。
以三孔位插座举例来说,其导电连接件包括第一连接段、第二连接段、第三连接段。
可以使第一连接段的材质为紫铜,第二连接段的材质为磷青铜,第三连接段的材质为黄铜,以上三者的电导率沿远离接线端子的方向逐渐减小,可以平衡导电连接件的不同连接段因电流流经次数的不同而导致的寿命差异,有效改善导电连接件寿命存在的水桶效应问题,提高导电连接件的整体寿命。
可以通过焊接的方式使材质不同的上述各连接段进行拼接,以形成一整根导电连接件。
在一种可能的设计中,本申请实施例提供的上述任一种导电连接件可以为条状,例如铜条(参见图10)或者也可以为多芯导线(参见图11,其中,图11中仅示出多芯导线的外部护套,而其内部的导线未示出)。
其中,铜条的横截面形状包括但不限于矩形、圆形等。例如,在本申请实施例中,铜条的横截面形状为矩形。
对于上述铜条结构的导电连接件,多个连接段可以一体成型,也可以采用拼接方式,例如焊接(例如焊锡)的方式进行依次连接。
以用于三孔位插座的导电连接件举例来说,当其为多芯导线时,可以使第一连接段、第二连接段和第三连接段的横截面积之比为7:6:4(可以使各连接段的导线的直径不同,也可以使各连接段的导线的数目不同),将三段横截面积不同的导线焊接以形成导电连接件。
本申请实施例所涉及的导电连接件包括N极导电连接件1-1和L极导电连接件1-2中的至少一种。
对于多孔位插座,可以使N极导电连接件1-1或者L极导电连接件1-2中的一者进行上述的各连接段在电阻方面的改进,也可以使N极导电连接件1-1和L极导电连接件1-2两者同时进行上述的各连接段在电阻方面的改进。
另一个方面,本申请实施例还提供了一种多孔位插座,其中,该多孔位插座包括本申请实施例所涉及的任一种导电连接件。
基于采用的导电连接件的整体寿命得以提高,本申请实施例提供的多孔位插座的使用寿命也会相应提高,减少了插座损坏几率。
本申请实施例提供的多孔位插座中,L极导电连接件和N极导电连接件中的至少一个采用本申请实施例提供的导电连接件,并且,L极导电连接件和N极导电连接件在其电阻方面的改进方式可以相同,也可以不同。如附图10所示,导电连接件可以为铜条;如附图11所示,导电连接件也可以为多芯导线。
L极导电连接件和N极导电连接件可以采用相同的方式改变其各连接段的电阻,例如,均采用改变横截面长度或横截面宽度的方式,或者,均采用改变材质的方式。为了便于提高制备效率,简化制备流程,可以使L极导电连接件和N极导电连接件采用相同的方式改变其各连接段的电阻。
L极导电连接件和N极导电连接件还可以采用不同的方式改变其各连接段的电阻,例如,其中一个采用改变横截面长度的方式,而另一个采用改变横截面宽度的方式,或者,其中一个采用改变横截面长度或横截面宽度的方式,而另一个采用改变材质的方式。
本申请实施例提供的多孔位插座具有多个孔位,举例来说,其包括但不限于两孔位插座、三孔位插座、四孔位插座、五孔位插座、六孔位插座、七孔位插座、八孔位插座等。
本申请实施例提供的多孔位插座的类型包括但不限于:两极插座、三极插座。
在一种可能的设计中,本申请实施例提供的多孔位插座为两极插座,也称作两孔型插座,即,其中的导电连接件包括L极导电连接件和N极导电连接件,两者的插套配合构成孔位为两孔型。其中,该L极导电连接件和N极导电连接件中的至少一个采用本申请实施例提供的导电连接件。
在一种可能的设计中,本申请实施例提供的多孔位插座可以是三极插座,也称作三孔型插座,即,其中的导电连接件包括L极导电连接件、N极导电连接件和E极导电连接件,三者的插套配合构成孔位为三孔型。其中,L极导电连接件和N极导电连接件中的至少一个采用本申请实施例提供的导电连接件。
在一种可能的设计中,本申请实施例提供的多孔位插座可以是两极+三极组 合型插座,即其中的导电连接件包括L极导电连接件、N极导电连接件和E极导电连接件,三者的插套配合构成孔位为两孔型+三孔型。其中,L极导电连接件和N极导电连接件中的至少一个采用本申请实施例提供的导电连接件。
多孔位插座的结构为本领域所常见的,举例来说,如附图10、附图11及附图1所示,其包括:壳体2;位于壳体2上的插套座3;位于壳体2上的N极接线端子4-1、L极接线端子4-2、以及可选的E极接线端子4-3;以及固定于插套座3上的N极导电连接件1-1、L极导电连接件1-2、以及可选的E极导电连接件1-3。
其中,N极导电连接件1-1和L极导电连接件1-2中的至少一个采用本申请实施例所涉及的导电连接件1,N极导电连接件1-1与N极接线端子4-1连接,L极导电连接件1-2和L极接线端子4-2连接,可选地,E极导电连接件1-3与E极接线端子4-3连接。
N极导电连接件1-1、L极导电连接件1-2、以及可选的E极导电连接件1-3上均通过其上的插套接点101连接有多个插套。
在一种可能的设计中,N极导电连接件1-1和L极导电连接件1-2上的多个插套一一对应,且对应的插套相互间隔,可形成多个两极插套,以对应多个孔位。
在一种可能的设计中,E极导电连接件1-3上的多个插套与N极导电连接件1-1和L极导电连接件1-2上的多个插套一一对应,且对应的插套相互间隔,可形成多个三极插套,以对应多个孔位。
附图1示例了一种具有三个孔位的三级插座,其中,N极导电连接件1-1、L极导电连接件1-2、E极导电连接件1-3对应于1号孔位、2号孔位和3号孔位处分别连接有N极插套5-1、L极插套5-2和E极插套5-3,每一孔位处的N极插套5-1、L极插套5-2和E极插套5-3配合构成该插座一孔位处的三级插套,该三级插套可供电路接线插入。
对于本申请实施例涉及的任一种导电连接件的制备,可以参见以下制备方法:
获取导电连接件中第一连接段的尺寸,其获取方式例如可以参照上述示例一、示例二或者示例三中所述的方法。
进一步地,根据第一连接段的尺寸,确定导电连接件中其余连接段的尺寸。
根据各连接段的尺寸,来制备导电连接件。
其中,根据第一连接段的尺寸,确定导电连接件中其余连接段的尺寸,可以包括以下:
根据导电连接件中所包含的连接段的数目(即,多孔位插座的孔位数目),可以确定不同孔位使用情况下电流所流经的连接段,进而可以确定电流流经每一连接段概率。
由于连接段的横截面积之比与电流流经每个连接段的概率之比成正比,根据第一连接段的尺寸,以及电流流经除第一连接段1021之外的其他连接段的概率,可以分别计算得到其余连接段的尺寸,进而用于指导导电连接件的制备。
可以理解的是,导电连接件中连接段的数目与其所在多孔位插座的孔位数目一致,例如,为m个(m≥3),则用户使用插座时,孔位使用状态的数目Y可以采用以下公式计算得到:
Figure PCTCN2020095450-appb-000002
针对以上孔位使用状态数,分别确定电流流经每一连接段的概率,例如,电流流经第一连接段的概率为P 1=1,流经第二连接段的概率为P 2=(Y-1)/Y,流经第m连接段的概率为P m=X/Y,只需计算出在Y个孔位使用状态中,电流流经第m连接段的次数X,即可得到P m
以常见的两孔位插座举例,电流流经第一连接段、第二连接段的概率分别为1、2/3。
以常见的三孔位插座举例,电流流经第一连接段、第二连接段、第三连接段的概率分别为1、6/7、4/7。
以常见的四孔位插座举例,电流流经第一连接段、第二连接段、第三连接段、第四连接段的概率分别为1、14/15、12/15、8/15。
以常见的五孔位插座举例,电流流经第一连接段、第二连接段、第三连接段、第四连接段、第五连接段的概率分别为1、30/31、28/31、24/31、16/31。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,在本申请实施例中,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
本申请实施例中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A 和B,单独存在B这三种情况。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (20)

  1. 一种导电连接件,用于多孔位插座,其中,所述导电连接件包括多个连接段,所述多个连接段依次连接,并且,所述多个连接段与所述插座上相应数量的插套一一对应;
    所述多个连接段中,第一连接段的电阻最小,所述第一连接段为与所述插座的接线端子邻接的连接段。
  2. 根据权利要求1所述的导电连接件,其中,所述多个连接段的电导率相同,且每个所述连接段各自具有标准长度,所述多个连接段中所述第一连接段的横截面积最大。
  3. 根据权利要求2所述的导电连接件,其中,沿远离所述接线端子的方向,所述多个连接段的横截面积依次减小。
  4. 根据权利要求3所述的导电连接件,其中,所述连接段的横截面积之比与电流流经每个所述连接段的概率之比成正比。
  5. 根据权利要求2所述的导电连接件,其中,所述多个连接段的横截面形状均为矩形,所述多个连接段的横截面长度相同;
    所述第一连接段的横截面宽度W 1的取值范围为:0.5mm<W 1<0.65mm。
  6. 根据权利要求5所述的导电连接件,其中,根据电流流经每一所述连接段的概率,采用以下公式(1),确定除所述第一连接段之外的其他连接段的横截面宽度W m
    W m=P m×W 1;  公式(1);
    其中,P m为电流流经当前连接段的概率。
  7. 根据权利要求2所述的导电连接件,其中,所述多个连接段的横截面形状均为矩形,所述多个连接段的横截面宽度相同;
    所述第一连接段的横截面长度L 1的取值范围为:3.6mm<L 1<4.5mm。
  8. 根据权利要求7所述的导电连接件,其中,根据电流流经每一所述连接段的概率,采用以下公式(2),确定除所述第一连接段之外的其他所述连接段的横截面长度L m
    L m=P m×L 1;  公式(2);
    其中,P m为电流流经当前连接段的概率。
  9. 根据权利要求2所述的导电连接件,其中,所述多个连接段的横截面形状均为矩形,所述多个连接段的横截面长度和横截面宽度均不同;
    所述第一连接段的横截面积S 1的取值范围为:1.8mm 2<S 1<2.5mm 2
  10. 根据权利要求9所述的导电连接件,其中,根据电流流经每一所述连接段的概率,采用以下公式(3),确定除所述第一连接段之外的其他连接段的横截面积S m
    S m=P m×S 1;公式(3);
    其中,P m为电流流经当前连接段的概率。
  11. 根据权利要求2所述的导电连接件,其中,所述多个连接段的横截面形状均为圆形;
    所述第一连接段的半径R 1的取值范围为:0.757mm<R 1<0.892mm。
  12. 根据权利要求11所述的导电连接件,其中,根据电流流经每一所述连接段的概率,采用以下公式(4),确定除所述第一连接段之外的其他连接段的半径R m
    R m=(P m) 1/2×R 1;  公式(4);
    其中,P m为电流流经当前连接段的概率。
  13. 根据权利要求1所述的导电连接件,其中,每个所述连接段各自具有标准几何尺寸,所述第一连接段的电导率最大。
  14. 根据权利要求13所述的导电连接件,其中,沿远离所述接线端子的方向,所述多个连接段的电导率依次减小。
  15. 根据权利要求13所述的导电连接件,其中,所述第一连接段的材质为紫铜。
  16. 根据权利要求15所述的导电连接件,其中,除所述第一连接段之外的其他连接段的材质为磷青铜和/或黄铜。
  17. 根据权利要求1-16任一项所述的导电连接件,其中,所述导电连接件为条状或者多芯导线。
  18. 根据权利要求1-16任一项所述的导电连接件,其中,所述导电连接件包括:N极连接件和L极连接件中的至少一种。
  19. 一种多孔位插座,其中,所述多孔位插座包括权利要求1-18任一项所述的导电连接件。
  20. 根据权利要求19所述的多孔位插座,其中,所述多孔位插座的孔位数目为2个、3个、4个、5个、6个、7个或者8个。
PCT/CN2020/095450 2020-04-21 2020-06-10 一种导电连接件及多孔位插座 WO2021212629A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202020608046.2U CN211743449U (zh) 2020-04-21 2020-04-21 一种导电连接件及多孔位插座
CN202010318193.0A CN111478077A (zh) 2020-04-21 2020-04-21 一种导电连接件及多孔位插座
CN202010318193.0 2020-04-21
CN202020608046.2 2020-04-21

Publications (1)

Publication Number Publication Date
WO2021212629A1 true WO2021212629A1 (zh) 2021-10-28

Family

ID=78271079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095450 WO2021212629A1 (zh) 2020-04-21 2020-06-10 一种导电连接件及多孔位插座

Country Status (1)

Country Link
WO (1) WO2021212629A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL101695A (en) * 1991-12-25 1996-06-18 Nisko Electrical And Electroni Electrical multi-socket assembly
CN202997110U (zh) * 2012-12-21 2013-06-12 东莞市金河田实业有限公司 一体芯结构插套及插座
CN203674459U (zh) * 2013-12-20 2014-06-25 公牛集团有限公司 显式插座
CN206976652U (zh) * 2017-04-27 2018-02-06 公牛集团有限公司 一种插座
CN208723150U (zh) * 2018-09-19 2019-04-09 刘柯 一种便于安装的五孔铜条插座
CN209056720U (zh) * 2018-09-30 2019-07-02 得力集团有限公司 一种仅含扁插的新型一体铜条组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL101695A (en) * 1991-12-25 1996-06-18 Nisko Electrical And Electroni Electrical multi-socket assembly
CN202997110U (zh) * 2012-12-21 2013-06-12 东莞市金河田实业有限公司 一体芯结构插套及插座
CN203674459U (zh) * 2013-12-20 2014-06-25 公牛集团有限公司 显式插座
CN206976652U (zh) * 2017-04-27 2018-02-06 公牛集团有限公司 一种插座
CN208723150U (zh) * 2018-09-19 2019-04-09 刘柯 一种便于安装的五孔铜条插座
CN209056720U (zh) * 2018-09-30 2019-07-02 得力集团有限公司 一种仅含扁插的新型一体铜条组件

Similar Documents

Publication Publication Date Title
CN204441546U (zh) 铜排连接器及端子组件
TWM394399U (en) Water-proof connector and female terminal therein
CN204118388U (zh) 具有中间屏蔽片的usb3.1插头连接器
CN212085278U (zh) 一种w型弹片及插套结构
WO2021212629A1 (zh) 一种导电连接件及多孔位插座
CN207743426U (zh) 一种圆管端子
CN210489980U (zh) 一种连接器及耳机
CN209981666U (zh) 一种小巧可插拔电路转接线
CN211743449U (zh) 一种导电连接件及多孔位插座
CN101515679A (zh) 一种连接器插针
US7828602B2 (en) Electrical connector with improved contact facilitating low insertion force
CN111478077A (zh) 一种导电连接件及多孔位插座
CN101510639B (zh) 电源连接器的公端接触件和母端接触件
WO2023123623A1 (zh) 接触端子、电连接器及电子设备
CN202103190U (zh) 一种电源孔接触件及其接触片以及电连接器
CN201466279U (zh) 电源连接器的公端接触件和母端接触件
CN201898226U (zh) 连接器母端子与防水连接器
CN205724059U (zh) 一种新型电源连接器
CN211829270U (zh) 一种v型弹片及插套结构
CN209981539U (zh) 一种卧式连接器
CN209325488U (zh) 一种线路板带可剪切连接导体的柔性led灯带
WO2023024163A1 (zh) 接触端子、电连接器及电子设备
CN209374819U (zh) 4pin式电连接插接件
CN208336569U (zh) 一种鱼眼端子
CN208045771U (zh) 一种密集型母线槽连接器与导电排的联接结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932585

Country of ref document: EP

Kind code of ref document: A1