WO2021212389A1 - 一种机械手指部件的测试系统、方法和存储介质 - Google Patents

一种机械手指部件的测试系统、方法和存储介质 Download PDF

Info

Publication number
WO2021212389A1
WO2021212389A1 PCT/CN2020/086223 CN2020086223W WO2021212389A1 WO 2021212389 A1 WO2021212389 A1 WO 2021212389A1 CN 2020086223 W CN2020086223 W CN 2020086223W WO 2021212389 A1 WO2021212389 A1 WO 2021212389A1
Authority
WO
WIPO (PCT)
Prior art keywords
mechanical finger
finger component
finger
measurement data
movement
Prior art date
Application number
PCT/CN2020/086223
Other languages
English (en)
French (fr)
Inventor
谢正豪
Original Assignee
南京阿凡达机器人科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京阿凡达机器人科技有限公司 filed Critical 南京阿凡达机器人科技有限公司
Priority to PCT/CN2020/086223 priority Critical patent/WO2021212389A1/zh
Priority to CN202080004254.4A priority patent/CN112912706B/zh
Publication of WO2021212389A1 publication Critical patent/WO2021212389A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0095Means or methods for testing manipulators

Definitions

  • the invention relates to the technical field of robot testing, in particular to a testing system, method and storage medium of a mechanical finger component.
  • the purpose of the present invention is to provide a testing system, method and storage medium of a mechanical finger component, so as to test the joint motion performance of the mechanical finger component part before assembling, thereby realizing the high efficiency and versatility of the test.
  • the present invention provides a testing system for mechanical finger components, including:
  • a tray the tray is provided with a receiving part
  • a sensor module which is arranged at the accommodating part, and is used to obtain measurement data of the mechanical finger component during movement;
  • the servo board is used to generate a driving signal to control the movement of the mechanical finger component, and obtain the corresponding joint movement performance according to the measurement data.
  • the accommodating part is a groove;
  • the sensor module includes:
  • the groove-type photoelectric sensor, the light emitter and the light receiver of the groove-type photoelectric sensor are respectively arranged on opposite sides of the groove.
  • the accommodating part is a groove
  • the sensor module includes:
  • the pressure sensor array is laid on the inner surface of the groove.
  • a fixing device the fixing device is used to fix the finger holder of the mechanical finger component, and the finger holder is connected with a driving motor;
  • the servo board includes:
  • the drive control unit is configured to obtain a user's input signal to generate a corresponding drive signal to the drive motor, so that the drive motor drives the finger end of the mechanical finger component to move;
  • the data processing unit is configured to read the measurement data from the sensor module, and obtain the corresponding joint motion performance according to the measurement data.
  • the instruction input unit includes: a swing control button and a telescopic control button;
  • the drive control unit includes:
  • the control subunit is configured to generate a swing start instruction when the swing control button is pressed, and generate a telescopic start instruction when the telescopic control button is pressed;
  • the driving subunit is configured to drive the finger end of the mechanical finger component toward the accommodating part where the sensor module is located according to the swing start instruction, and perform an up and down reciprocating swing movement in a vertical direction;
  • the driving subunit is further configured to drive the finger end of the mechanical finger component toward the accommodating part where the sensor module is located according to the telescopic start instruction to make a reciprocating telescopic movement in a horizontal direction.
  • the data processing unit includes:
  • An arithmetic sub-unit configured to obtain the telescopic motion parameter and the swing motion parameter of the finger tip according to the measurement data
  • the processing sub-unit is used to analyze and obtain the corresponding joint motion performance according to the preset test requirements, the telescopic motion parameters and the swing motion parameters.
  • the present invention also provides a testing method of a mechanical finger component, which is applied to the testing system of the mechanical finger component, and includes the steps:
  • the corresponding joint motion performance is obtained according to the measurement data.
  • control of the movement of the mechanical finger component includes the steps:
  • a corresponding drive signal is generated according to the start instruction, and the drive signal is sent to a drive motor connected to the finger base of the robotic finger component, so that the drive motor drives the finger end of the robotic finger component to move.
  • the obtaining the corresponding joint motion performance according to the measurement data includes the steps:
  • the telescopic motion parameters and the swing motion parameters are analyzed to obtain the corresponding joint motion performance.
  • the present invention also provides a storage medium in which at least one instruction is stored, and the instruction is loaded and executed by a processor to implement operations such as a method for testing a mechanical finger component.
  • the joint motion performance of the mechanical finger component part can be tested before assembling, thereby realizing the high efficiency and versatility of the test.
  • Fig. 1 is a schematic structural diagram of an embodiment of a testing system for a mechanical finger component of the present invention
  • FIG. 2 is a schematic structural diagram of an embodiment of a testing system for a mechanical finger component of the present invention
  • Fig. 3 is a schematic diagram of a state in which the mechanical finger part of the present invention performs a swing movement
  • Fig. 4 is a schematic diagram of a state in which the mechanical finger part of the present invention performs a telescopic movement.
  • a testing system for a mechanical finger component includes:
  • the sensor module 2 is arranged at the accommodating part and is used to obtain measurement data of the mechanical finger component during the movement;
  • the servo board 3 is used to generate a driving signal to control the movement of the mechanical finger component, and obtain the corresponding joint motion performance of the mechanical finger component according to the measurement data.
  • the robot joint is a key component of the robot, and its performance directly affects the performance of the robot. Therefore, at present, companies need to know the performance of joints in the production process before robot assembly. In the prior art, most of the joint motion performances of the parts of the robot fingers are measured after the robot is assembled, and the test efficiency is low.
  • the movement of the mechanical finger component is controlled by the drive signal, and the measurement data of the mechanical finger component in the movement process is obtained through the sensor module 2, so as to obtain the joint motion performance of the mechanical finger component according to the measurement data test, which can ensure Test the joint motion performance of the parts of the mechanical finger, so as to realize the high efficiency and versatility of the test, the reusability is strong, and the test cost is greatly saved.
  • the receiving part is a groove;
  • the sensor module 2 includes:
  • the groove-type photoelectric sensor, the light emitter and the light receiver of the groove-type photoelectric sensor are respectively arranged on opposite sides of the groove.
  • the models of the slot photoelectric sensor include but are not limited to KI1489, H2210, ITR9606, and EE-SX498.
  • the light emitter and the light receiver are installed on both sides of the groove face to face, and the light emitter emits detection light such as infrared light or visible light, and the light receiver can receive the detection light without obstruction.
  • the optical receiver cannot receive the detection light emitted by the optical transmitter.
  • the slot-shaped photoelectric sensor feeds back the light receiving information of the light receiver for the detection light to the servo board 3 in real time, so that the servo board 3 can analyze the movement state of the finger end of the mechanical finger component according to the light reception information of the detection light.
  • the groove-type photoelectric sensor is used to detect the movement of the finger end of the mechanical finger part. Because the groove-type photoelectric sensor detects the surface of the mechanical finger part by reflection and light transmission, the detection distance is adjustable and non-contact Therefore, it will not damage the parts of the robot finger, nor will it be affected by the parts of the robot finger, which greatly improves the accuracy of the joint motion performance test of the parts of the robot finger.
  • the accommodating portion is a groove
  • the sensor module 2 includes:
  • the pressure sensor array is laid on the inner surface of the groove.
  • the pressure sensor array laid on the inner surface of the groove is used for intelligent detection to capture the pressing action of the finger end of the mechanical finger component.
  • the array pressure sensor has a simple and light structure, is not easy to fall off, has low manufacturing cost, and has stable and reliable performance.
  • the pressure sensor array is turned on to realize the sensing function.
  • the pressure sensor array feeds back the pressing position information and the pressure value to the servo board 3, so that the servo board 3 can analyze the movement state of the finger end of the mechanical finger component according to the pressing position information.
  • the pressure sensor array is used to detect the movement of the finger end of the mechanical finger component. Because the pressure sensor array can obtain the specific pressing position information of the finger end, it can collect the movement state of each finger at the finger end. The joint motion performance of each finger of the finger component is tested in batches, and there is no need to test each finger in batches as in the foregoing embodiment, and the test efficiency is higher. In addition, the pressure sensor array can also accurately measure the pressing force of the finger according to the pressure value, and can also analyze the movement state of the finger end according to the pressing position information. The degree of automation is high, the operation process is relatively simple, and it helps to reduce The test cycle and test cost of the joint motion performance of the part.
  • the tray 1 is connected to the base through a lifting mechanism, and the base is placed on a test plane (such as the ground or a desktop), and the height of the tray 1 is adjusted by the lifting mechanism to adapt to the height of the mechanical finger parts, so as to be suitable for various heights of mechanical finger parts
  • a test plane such as the ground or a desktop
  • a fixing device which is used to fix the finger holder of the mechanical finger component, and the finger holder is connected to the drive motor;
  • the servo board 3 includes:
  • the drive control unit is used to obtain the user's input signal to generate a corresponding drive signal to the drive motor, so that the drive motor drives the finger end of the mechanical finger component to move;
  • the fixing device includes an accommodating groove and a clamping part, one end of the finger holder of the mechanical finger component is placed in the accommodating groove, and the side wall of the finger holder at the exposed part is clamped and fixed by the clamping part.
  • Fixing the finger holder by the fixing device in this embodiment has a simple structure and a reasonable design, which is suitable for testing various types and sizes of mechanical finger components, and improves the test versatility of joint motion performance.
  • the drive control unit obtains the input signal and then generates the drive signal, inputs the drive signal to the drive motor, and controls the magnitude and direction of the voltage applied to both ends of the armature winding of the drive motor according to the drive signal, so as to control the drive motor according to the magnitude and direction of the voltage Rotation speed and output torque, so as to control the movement direction and speed of the mechanical finger parts.
  • the data processing unit is used to read the measurement data from the sensor module 2, and obtain the joint motion performance of the mechanical finger component according to the measurement data.
  • the data processing unit is connected to the sensor module 2, and the data processing unit reads measurement data from the sensor module 2, and analyzes the measurement data to obtain the corresponding joint motion performance.
  • the tray 1 is connected to the base through a traverse mechanism, the base is placed on a test plane (such as the ground or a desktop), and the horizontal displacement of the pallet 1 is adjusted by the traverse mechanism to adjust the distance between the tray 1 and the fixing device.
  • the horizontal distance can be adapted to the length of the mechanical finger components, so as to be suitable for testing various lengths of mechanical finger components, and improve the test versatility of joint motion performance.
  • the tray 1 is connected to the base through a traverse mechanism and a lifting mechanism, the base is placed on a test plane (for example, the ground or a desktop), and the horizontal displacement of the pallet 1 is adjusted by the traverse mechanism to adjust the tray 1 relative to the fixed position.
  • the horizontal distance between the devices to adapt to the length of the mechanical finger parts.
  • the height of the tray 1 is adjusted by the lifting mechanism to adapt to the height of the mechanical finger components, so as to be suitable for testing various heights and lengths of the mechanical finger components, and to improve the test versatility of joint motion performance.
  • the instruction input unit includes: a swing control button and a telescopic control button;
  • the drive control unit includes:
  • the control subunit is used to generate a swing start instruction when the swing control button is pressed, and generate a telescopic start instruction when the telescopic control button is pressed;
  • the driving subunit is used to drive the finger end of the mechanical finger component toward the receiving part where the sensor module 2 is located according to the swing start instruction, and perform a reciprocating swing movement up and down along the vertical direction;
  • the driving subunit is also used to drive the finger end of the mechanical finger component toward the accommodating part where the sensor module 2 is located according to the telescopic start instruction, and perform a reciprocating telescopic movement along the horizontal direction.
  • the servo board 3 is powered by the power module, the joint motion performance test script is written through the test interface, the control subunit loads and runs the joint motion performance test script, the user presses the corresponding control button, and the control subunit according to the corresponding control button The pressing information fed back when being pressed generates a corresponding start instruction.
  • the control button can be a mechanical button or a touch button.
  • a swing start instruction is generated, and the drive motor is controlled to rotate according to the swing start instruction, so that the drive motor rotates so as to drive the finger end toward the accommodating part where the sensor module 2 is located, and reciprocate up and down along the vertical direction.
  • the data processing unit includes:
  • Operation subunit used to obtain the telescopic motion parameters and swing motion parameters of the finger tip according to the measurement data
  • the processing subunit is used to obtain the corresponding joint motion performance according to the preset test requirements, telescopic motion parameters and swing motion parameters analysis.
  • the data processing unit obtains pressing position information and pressure value from the pressure sensor array, and then analyzes the pressing position information and pressure value to obtain the movement direction of the finger end of the mechanical finger component, and the movement speed in the movement direction And the degree of motion response, and the pressing force of each finger at the end of the finger.
  • the data processing unit obtains light receiving information from the slot-shaped photoelectric sensor, and then analyzes the light receiving information to obtain the movement direction of the finger end of the mechanical finger component, as well as the movement speed and movement response degree in the movement direction.
  • Joint motion performance includes, but is not limited to, the direction of motion, the speed of motion in the direction of motion, and the degree of motion response.
  • the movement direction of the finger end is obtained according to the above, since the repetition number of the movement direction of the finger end in a test cycle is known, it can be calculated according to the movement direction and the corresponding repetition number to obtain whether the movement type of the finger end is telescopic or swing Move, and then obtain the telescopic motion parameters and swing motion parameters of the finger end.
  • the telescopic motion parameters include the motion direction and the number of telescopic motions
  • the swing motion parameters include the motion direction and the number of swing motions.
  • Obtain the preset test requirements which include the expected number of executions of the telescopic motion and/or the expected number of executions of the swing motion.
  • the preset test requirements provide a debugging interface and burn it to the servo board 3.
  • the servo board 3 After driving the mechanical finger parts to move, the servo board 3 compares the number of telescopic motions with the expected execution times of the telescopic motion to determine whether it meets the expectations. If it meets the test, the test passes. Again, the test failed. In the same way, the servo board 3 can compare the number of swing motions with the expected number of executions of the swing motion to determine whether it meets the expectations. If it does, the test passes, and the test fails anyway.
  • the control sub-unit issues a start instruction including a 90-degree swing up and down for a total of 10 times.
  • the drive motor After the drive motor receives the start command, it drives the finger to make a reciprocating up and down movement along the vertical direction.
  • the measurement data here, receiving time information
  • the data processing unit of the servo board 3 counts the number of up and down reciprocating swing motions by counting the receiving time information within a specified time.
  • the control sub-unit issues a starting instruction including back-and-forth reciprocating and retracting 1 cm, for a total of 10 times.
  • the drive motor After the drive motor receives the start command, it drives the fingers to make a back and forth telescopic movement along the horizontal direction.
  • the measurement data here, the receiving time information
  • the data processing unit of the servo board 3 counts the number of reciprocating telescopic motions through the reception time information within a predetermined time.
  • the display module includes an LED lamp or a display screen.
  • the joint motion performance fed back by the servo board 3 is obtained, the joint motion performance of the finger end of the manipulator finger part is visualized through the display screen, and the dynamic change of the joint motion performance of the finger end is intuitively viewed through the display screen to achieve real-time verification of the manipulator finger part.
  • the end of the finger is moved in a predetermined manner, so that the end of the finger can be checked.
  • the number of swing motions for example, the number of counts in 1 minute is 10
  • the green LED light will light up (PASS)
  • the red LED light will light up, so that the lighting of the LED light can be used.
  • the invention is convenient for quickly and accurately on the production line, effectively and automatically inspecting whether the function of the mechanical finger component is normal, and while improving the detection efficiency, it can also automatically output the joint motion performance of the mechanical finger component through the display module.
  • the servo board 3 is in communication connection with the host computer. If any one of the telescopic motion and the swing motion test fails, and there is a problem with the finger end of the mechanical finger component, the test passes otherwise.
  • the servo board 3 can generate a test report as needed, and report the test report to the host computer.
  • An embodiment of the present invention includes the steps:
  • S110 controls the movement of the mechanical finger components, and obtains the measurement data of the mechanical finger components during the movement
  • S120 obtains the joint motion performance corresponding to the mechanical finger component according to the measurement data.
  • this embodiment is a method embodiment corresponding to the foregoing system embodiment.
  • this embodiment is a method embodiment corresponding to the foregoing system embodiment.
  • specific effects refer to the foregoing system embodiment, which will not be repeated here.
  • An embodiment of the present invention includes the steps:
  • S210 acquires a user input signal to generate a corresponding start instruction
  • S220 generates a corresponding drive signal according to the start instruction, and sends the drive signal to the drive motor connected to the finger base of the manipulator finger component, so that the drive motor drives the finger end of the manipulator finger component to move;
  • S230 obtains the measurement data of the mechanical finger component during the movement
  • S240 obtains the joint motion performance corresponding to the mechanical finger component according to the measurement data.
  • this embodiment is a method embodiment corresponding to the foregoing system embodiment.
  • this embodiment is a method embodiment corresponding to the foregoing system embodiment.
  • specific effects refer to the foregoing system embodiment, which will not be repeated here.
  • An embodiment of the present invention includes the steps:
  • S310 obtains a user input signal to generate a corresponding start instruction
  • S320 generates a corresponding drive signal according to the start instruction, and sends the drive signal to the drive motor connected to the finger base of the manipulator finger component, so that the drive motor drives the finger end of the manipulator finger component to move;
  • S330 obtains the measurement data of the mechanical finger component during the movement
  • S350 analyzes the corresponding joint motion performance according to preset test requirements, telescopic motion parameters and swing motion parameters.
  • this embodiment is a method embodiment corresponding to the foregoing system embodiment.
  • this embodiment is a method embodiment corresponding to the foregoing system embodiment.
  • specific effects refer to the foregoing system embodiment, which will not be repeated here.
  • An embodiment of the present invention is a storage medium in which at least one instruction is stored, and the instruction is loaded and executed by a processor to implement the operation performed by the corresponding embodiment of the above-mentioned method for testing a mechanical finger component.
  • the computer-readable storage medium may be read-only memory (ROM), random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • the disclosed device/terminal device and method may be implemented in other ways.
  • the device/terminal device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division, and there may be other division methods in actual implementation, for example, multiple divisions.
  • Units or components can be combined or integrated into another system, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated module/unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the present invention implements all or part of the processes in the above-mentioned embodiment methods, and can also be completed by sending instructions to related hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium. When the program is executed by the processor, it can implement the steps of the foregoing method embodiments.
  • the computer program includes: computer program code, and the computer program code may be in the form of source code, object code, executable file, or some intermediate forms.
  • the computer-readable storage medium may include: any entity or device capable of carrying the computer program code, recording medium, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory) ), Random Access Memory (RAM, Random Access Memory), electrical carrier signal, telecommunications signal, and software distribution media, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electrical carrier signal telecommunications signal
  • software distribution media etc.
  • the content contained in the computer-readable storage medium can be appropriately increased or decreased in accordance with the requirements of the legislation and patent practice in the jurisdiction.
  • the computer can be The reading medium does not include electric carrier signals and telecommunication signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Manipulator (AREA)

Abstract

一种机械手指部件的测试系统、方法和存储介质,测试系统包括:托盘(1),托盘(1)设置有容纳部;传感器模块(2),设置于容纳部处,用于获取机械手指部件在运动过程中的测量数据;伺服板(3),用于生成驱动信号以控制机械手指部件运动,并根据测量数据获得对应的关节运动性能。在装配之前对机械手指部件部位的关节运动性能进行测试,从而实现测试的高效性和通用性。

Description

一种机械手指部件的测试系统、方法和存储介质 技术领域
本发明涉及机器人测试技术领域,尤指一种机械手指部件的测试系统、方法和存储介质。
背景技术
现在市场上出现了众多的机器人产品,各种生产机器人的制造企业也陆续应运而生。在产线上需要有各种测试来保证机器人的各种部件的功能的完整性,才能继续组装到机器人整体上,避免反复拆卸和维修。
其中在对包含手指等具有可运动功能的人型机器人的生产线上,对手指部件的性能测试还没有很好的测试方法,只能通过人眼去观察。降低了产线效率和产品良率,希望能有一种简单方法可以快速的检验机械手指部件的功能是否正常。
发明内容
本发明的目的是提供一种机械手指部件的测试系统、方法和存储介质,实现在装配之前对机械手指部件部位的关节运动性能进行测试,从而实现测试的高效性和通用性。
本发明提供的技术方案如下:
本发明提供一种机械手指部件的测试系统,包括:
托盘,所述托盘设置有容纳部;
传感器模块,设置于所述容纳部处,用于获取机械手指部件在运动过程中的测量数据;
伺服板,用于生成驱动信号以控制所述机械手指部件运动,并根据所 述测量数据获得对应的关节运动性能。
进一步的,所述容纳部为凹槽;所述传感器模块包括:
槽型光电传感器,所述槽型光电传感器的光发射器和光接收器分别设置在所述凹槽的相对两侧。
进一步的,所述容纳部为凹槽,所述传感器模块包括:
压力传感器阵列,所述压力传感器阵列铺设于所述凹槽的内表面。
进一步的,还包括:固定装置,所述固定装置用于固定所述机械手指部件的手指座,所述手指座与驱动电机连接;所述伺服板包括:
驱动控制单元,用于获取用户的输入信号以生成对应的驱动信号至所述驱动电机,使得所述驱动电机驱动所述机械手指部件的手指端运动;
数据处理单元,用于从所述传感器模块处读取所述测量数据,根据所述测量数据获得对应的关节运动性能。
进一步的,所述指令输入单元包括:摆动控制按钮和伸缩控制按钮;
所述驱动控制单元包括:
控制子单元,用于在所述摆动控制按钮被按压时生成摆动启动指令,并在所述伸缩控制按钮被按压时生成伸缩启动指令;
驱动子单元,用于根据所述摆动启动指令驱动所述机械手指部件的手指端朝向所述传感器模块所在的容纳部,沿着竖直方向做上下往复的摆动运动;
所述驱动子单元,还用于根据所述伸缩启动指令驱动所述机械手指部件的手指端朝向所述传感器模块所在的容纳部,沿着水平方向做前后往复的伸缩运动。
进一步的,所述数据处理单元包括:
运算子单元,用于根据所述测量数据获取所述手指端的伸缩运动参数和摆动运动参数;
处理子单元,用于根据预设测试需求、所述伸缩运动参数和摆动运动参数分析得到对应的关节运动性能。
本发明还提供一种机械手指部件的测试方法,应用于所述的机械手指部件的测试系统,包括步骤:
控制机械手指部件运动,获取所述机械手指部件在运动过程中的测量数据;
根据所述测量数据获得对应的关节运动性能。
进一步的,所述控制机械手指部件运动包括步骤:
获取用户输入信号以生成对应的启动指令;
根据所述启动指令生成对应的驱动信号,发送所述驱动信号至与所述机械手指部件的手指座所连接的驱动电机,使得所述驱动电机驱动所述机械手指部件的手指端运动。
进一步的,所述根据所述测量数据获得对应的关节运动性能包括步骤:
根据所述测量数据获取所述手指端的伸缩运动参数和摆动运动参数;
根据预设测试需求、所述伸缩运动参数和摆动运动参数分析得到对应的关节运动性能。
本发明还提供一种存储介质,所述存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如机械手指部件的测试方法所执行的操作。
通过本发明提供的一种机械手指部件的测试系统、方法和存储介质,能够在装配之前对机械手指部件部位的关节运动性能进行测试,从而实现测试的高效性和通用性。
附图说明
下面将以明确易懂的方式,结合附图说明优选实施方式,对一种机械手指部件的测试系统、方法和存储介质的上述特性、技术特征、优点及其实现方式予以进一步说明。
图1是本发明一种机械手指部件的测试系统的一个实施例的结构示意图;
图2是本发明一种机械手指部件的测试系统的一个实施例的结构示意图;
图3是本发明的机械手指部件进行摆动运动的状态示意图;
图4是本发明的机械手指部件进行伸缩运动的状态示意图。
具体实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对照附图说明本发明的具体实施方式。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,并获得其他的实施方式。
为使图面简洁,各图中只示意性地表示出了与本发明相关的部分,它们并不代表其作为产品的实际结构。另外,以使图面简洁便于理解,在有些图中具有相同结构或功能的部件,仅示意性地绘示了其中的一个,或仅标出了其中的一个。在本文中,“一个”不仅表示“仅此一个”,也可以表示“多于一个”的情形。
本发明的一个实施例,如图1所示,一种机械手指部件的测试系统,包括:
托盘1,托盘1上设置有容纳部;
传感器模块2,设置于所述容纳部处,用于获取机械手指部件在运动过程中的测量数据;
伺服板3,用于生成驱动信号以控制机械手指部件运动,并根据测量数据获得机械手指部件对应的关节运动性能。
具体的,机器人关节是机器人的关键组成部分,其性能好坏直接影响机器人的性能。因此目前,企业在机器人装配之前的生产环节就需要知道关节性能 如何。在现有技术中,多数是等机器人装配好后对其机械手指部件部位的关节运动性能进行测量,测试效率低。
本实施例中,通过驱动信号控制机械手指部件的运动,通过传感器模块2获取机械手指部件在运动过程中的测量数据,从而根据测量数据测试获得机械手指部件的关节运动性能,能够保证在装配之前对机械手指部件部位的关节运动性能进行测试,从而实现测试的高效性和通用性,可重复利用性强,大大节省测试成本。
基于前述实施例,容纳部为凹槽;传感器模块2包括:
槽型光电传感器,槽型光电传感器的光发射器和光接收器分别设置在凹槽的相对两侧。
具体的,槽型光电传感器的型号包括但是不限于KI1489、H2210、ITR9606、EE-SX498。把光发射器和光接收器面对面地装在凹槽的两侧,通过光发射器发出红外光或可见光等探测光,在无阻碍情况下光接收器能收到探测光。但当机械手指部件的手指端从凹槽中通过,不论手指端是进行摆动运动还是伸缩运动,光接收器均无法接收到光发射器发出的探测光。槽型光电传感器向伺服板3实时反馈光接收器对于探测光的光线接收信息,从而便于伺服板3根据探测光的光线接收信息分析到机械手指部件的手指端的运动状态。
本实施例中,采用槽型光电传感器对机械手指部件的手指端的运动进行检测,由于槽型光电传感器对机械手指部件的表面进行反射及光透过方式进行检测,检测距离可调且是无接触式的,所以不会损伤机械手指部件,也不受机械手指部件的影响,大大提升机械手指部件部位的关节运动性能测试的准确率。
基于前述实施例,容纳部为凹槽,传感器模块2包括:
压力传感器阵列,压力传感器阵列铺设于凹槽的内表面。
具体的,通过铺设在凹槽内表面的压力传感器阵列进行智能检测,捕捉机械手指部件的手指端的按压动作,阵列压力传感器作为传感元件结构简单轻 便,不易脱落,制作成本低,性能稳定可靠,而且在机械手指部件的手指端按压到压力传感器阵列时,压力传感器阵列被导通实现传感功能,不论手指端是进行摆动运动还是伸缩运动,采集手指端在压力传感器阵列上的按压位置信息和压力值,压力传感器阵列将按压位置信息和压力值反馈给反馈给伺服板3,从而便于伺服板3根据按压位置信息分析到机械手指部件的手指端的运动状态。
本实施例中,采用压力传感器阵列对机械手指部件的手指端的运动进行检测,由于压力传感器阵列能够获取到手指端具体的按压位置信息,能对手指端的每个手指的运动状态进行采集,对于机械手指部件的每个手指的关节运动性能进行批量测试,无需像上述实施例那样,分批次对每个手指进行测试,测试效率更高。此外,通过压力传感器阵列还能够根据压力值准确测量手指的按压力量之外,还可根据按压位置信息分析到手指端的运动状态,自动化程度较高,操作过程相对简单,有助于降低对手指部件部位的关节运动性能的测试周期和测试成本。
优选的,托盘1通过升降机构与底座连接,底座放置于测试平面(例如地面或者桌面)上,通过升降机构调节托盘1的高度以适应机械手指部件的高度,以便适用于各种高度机械手指部件的测试,提高关节运动性能的测试通用性。
基于前述实施例,还包括:固定装置,固定装置用于固定机械手指部件的手指座,手指座与驱动电机连接;伺服板3包括:
驱动控制单元,用于获取用户的输入信号以生成对应的驱动信号至驱动电机,使得驱动电机驱动机械手指部件的手指端运动;
具体的,固定装置包括容纳槽和夹持部,机械手指部件的手指座的一端放置于容纳槽内,通过夹持部将外露处的手指座的侧壁进行夹持固定。通过本实施例中的固定装置固定手指座,具有结构简单,设计合理,适应于各种型号大小的机械手指部件的测试,提高关节运动性能的测试通用性。
驱动控制单元获取输入信号进而生成驱动信号,将驱动信号输入至驱动电机,根据驱动信号对控制施加在驱动电机的电枢绕组两端的电压大小和方向,从而根据电压大小和方向来控制驱动电机的转速和输出转矩,从而控制机械手指部件的运动方向和运动速度。
数据处理单元,用于从传感器模块2处读取测量数据,根据测量数据获得机械手指部件对应的关节运动性能。
具体的,延续上述实施例,数据处理单元与传感器模块2连接,数据处理单元从传感器模块2处读取测量数据,根据测量数据进行分析得到对应的关节运动性能。
优选的,托盘1通过横移机构与底座连接,底座放置于测试平面(例如地面或者桌面)上,通过横移机构调节托盘1在水平方向上的位移,从而调节托盘1相对于固定装置之间的水平距离,以适应机械手指部件的长度,以便适用于各种长度机械手指部件的测试,提高关节运动性能的测试通用性。
优选的,托盘1通过横移机构和升降机构与底座连接,底座放置于测试平面(例如地面或者桌面)上,通过横移机构调节托盘1在水平方向上的位移,从而调节托盘1相对于固定装置之间的水平距离,以适应机械手指部件的长度。通过升降机构调节托盘1的高度以适应机械手指部件的高度,以便适用于各种高度和长度机械手指部件的测试,提高关节运动性能的测试通用性。
基于前述实施例,指令输入单元包括:摆动控制按钮和伸缩控制按钮;
驱动控制单元包括:
控制子单元,用于在摆动控制按钮被按压时生成摆动启动指令,并在伸缩控制按钮被按压时生成伸缩启动指令;
驱动子单元,用于根据摆动启动指令驱动机械手指部件的手指端朝向传感器模块2所在的容纳部,沿着竖直方向做上下往复的摆动运动;
驱动子单元,还用于根据伸缩启动指令驱动机械手指部件的手指端朝向传 感器模块2所在的容纳部,沿着水平方向做前后往复的伸缩运动。
具体的,通过电源模块为伺服板3供电,通过测试接口写入关节运动性能测试脚本,控制子单元载入并运行关节运动性能测试脚本,用户按压对应的控制按钮,控制子单元根据对应控制按钮被按压时反馈回来的按压信息生成对应的启动指令。控制按钮可以是机械按钮,也可以是触摸按钮。
在摆动控制按钮被按压时生成摆动启动指令,根据摆动启动指令控制驱动电机转动,使得驱动电机转动从而带动与手指端朝向传感器模块2所在的容纳部,沿着竖直方向做上下往复的摆动运动。
数据处理单元包括:
运算子单元,用于根据测量数据获取手指端的伸缩运动参数和摆动运动参数;
处理子单元,用于根据预设测试需求、伸缩运动参数和摆动运动参数分析得到对应的关节运动性能。
具体的,延续上述实施例,数据处理单元从压力传感器阵列获取按压位置信息和压力值,进而根据按压位置信息和压力值分析得到机械手指部件的手指端的运动方向,在该运动方向上的运动速度和运动响应程度,以及手指端各个手指的按压力量。或者,数据处理单元从槽型光电传感器处获取光线接收信息,进而根据光线接收信息分析得到机械手指部件的手指端的运动方向,以及在该运动方向上的运动速度和运动响应程度。关节运动性能包括但是不限于运动方向,在该运动方向上的运动速度和运动响应程度。
根据上述获取到手指端的运动方向时,由于手指端在一个测试周期中的运动方向的重复次数可知,因此可以根据运动方向及其对应重复次数可以计算得到获取到手指端的运动类型是伸缩运动还是摆动运动,进而获取到手指端的伸缩运动参数和摆动运动参数。其中,伸缩运动参数包括运动方向和伸缩运动次数,摆动运动参数包括运动方向和摆动运动次数。获取预设测试需求,预设测 试测试需求包括伸缩运动期望执行次数和/或摆动运动期望执行次数。将预设测试需求提供调试接口烧录至伺服板3,在驱动机械手指部件运动后,伺服板3将伸缩运动次数与伸缩运动期望执行次数进行比较,判断是否符合预期,如果符合则测试通过,反正测试未通过。同理,伺服板3可将摆动运动次数与摆动运动期望执行次数进行比较,判断是否符合预期,如果符合则测试通过,反正测试未通过。
示例性的,如图2和图3所示,当按下摆动控制按钮时,控制子单元下发包括上下往复摆动90度、共10次的启动指令。驱动电机接收到启动指令后,驱动手指部沿着竖直方向做上下往复的摆动运动。手指在上下往复的摆动运动过程中,每次均会在切割槽型光电传感器时会反馈测量数据(此处即接收时间信息)并回传给伺服板3的数据处理单元。伺服板3的数据处理单元通过对规定时间内的接收时间信息进行统计上下往复的摆动运动次数。
示例性的,如图2和图4所示,当按下伸缩控制按钮时,控制子单元下发包括前后往复伸缩1cm、共10次的启动指令。驱动电机接收到启动指令后,驱动手指部沿着水平方向做前后往复的伸缩运动。手指在前后往复的伸缩运动过程中,每次均会在切割槽型光电传感器时会反馈测量数据(此处即接收时间信息)并回传给伺服板3的数据处理单元。伺服板3的数据处理单元通过对规定时间内的接收时间信息进行统计前后往复的伸缩运动次数。
优选的,显示模块包括LED灯,或者显示屏。其中,获取伺服板3反馈的关节运动性能,通过显示屏将机械手指部件的手指端的关节运动性能可视化,通过显示屏实时直观地查看手指端的关节运动性能的动态变化,达到实时验证机械手指部件的手指端是否按照预定的方式运动的目的,从而能查看手指端。示例性的,当摆动运动次数正确时(如1分钟内统计次数为10次)绿色LED灯会亮起(PASS),当次数错误时,则红色LED灯亮起,从而通过LED灯的点亮情况能直观显示是否符合预设测试需求,进而间接实现对手指运行角度和运行 速度的检测。本发明便于产线上快速准确,有效地自动化检验机械手指部件的功能是否正常,提高检测效率的同时,还可通过显示模块自动输出机械手指部件对应的关节运动性能。
优选的,伺服板3与上位机通信连接,若伸缩运动和摆动运动测试任一项未通过,机械手指部件的手指端存在问题,则反之测试通过。伺服板3可根据需要生成测试报告,将测试报告汇报至上位机。
本发明的一个实施例,一种机械手指部件的测试方法,包括步骤:
S110控制机械手指部件运动,获取机械手指部件在运动过程中的测量数据;
S120根据测量数据获得机械手指部件对应的关节运动性能。
具体的,本实施例是上述系统实施例对应的方法实施例,具体效果参见上述系统实施例,在此不再一一赘述。
本发明的一个实施例,一种机械手指部件的测试方法,包括步骤:
S210获取用户输入信号以生成对应的启动指令;
S220根据启动指令生成对应的驱动信号,发送驱动信号至与机械手指部件的手指座所连接的驱动电机,使得驱动电机驱动机械手指部件的手指端运动;
S230获取机械手指部件在运动过程中的测量数据;
S240根据测量数据获得机械手指部件对应的关节运动性能。
具体的,本实施例是上述系统实施例对应的方法实施例,具体效果参见上述系统实施例,在此不再一一赘述。
本发明的一个实施例,一种机械手指部件的测试方法,包括步骤:
S310获取用户输入信号以生成对应的启动指令;
S320根据启动指令生成对应的驱动信号,发送驱动信号至与机械手指部件的手指座所连接的驱动电机,使得驱动电机驱动机械手指部件的手指端运动;
S330获取机械手指部件在运动过程中的测量数据;
S340根据测量数据获取手指端的伸缩运动参数和摆动运动参数;
S350根据预设测试需求、伸缩运动参数和摆动运动参数分析得到对应的关节运动性能。
具体的,本实施例是上述系统实施例对应的方法实施例,具体效果参见上述系统实施例,在此不再一一赘述。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的程序模块完成,即将所述装置的内部结构划分成不同的程序单元或模块,以完成以上描述的全部或者部分功能。实施例中的各程序模块可以集成在一个处理单元中,也可是各个单元单独物理存在,也可以两个或两个以上单元集成在一个处理单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序单元的形式实现。另外,各程序模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
本发明的一个实施例,一种存储介质,存储介质中存储有至少一条指令,指令由处理器加载并执行以实现上述机械手指部件的测试方法对应实施例所执行的操作。例如,计算机可读存储介质可以是只读内存(ROM)、随机存取存储器(RAM)、只读光盘(CD-ROM)、磁带、软盘和光数据存储设备等。
它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述或记载的部分,可以参见其他实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件 的结合来实现。这些功能究竟以硬件还是软件来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其他的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性、机械或其他的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可能集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序发送指令给相关的硬件完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括:计算机程序代码,所述计算 机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读存储介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读存储介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如:在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
应当说明的是,上述实施例均可根据需要自由组合。以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种机械手指部件的测试系统,其特征在于,包括:
    托盘,所述托盘设置有容纳部;
    传感器模块,设置于所述容纳部处,用于获取机械手指部件在运动过程中的测量数据;
    伺服板,用于生成驱动信号以控制所述机械手指部件运动,并根据所述测量数据获得对应的关节运动性能。
  2. 根据权利要求1所述的机械手指部件的测试系统,其特征在于,所述容纳部为凹槽;所述传感器模块包括:
    槽型光电传感器,所述槽型光电传感器的光发射器和光接收器分别设置在所述凹槽的相对两侧。
  3. 根据权利要求1所述的机械手指部件的测试系统,其特征在于,所述容纳部为凹槽,所述传感器模块包括:
    压力传感器阵列,所述压力传感器阵列铺设于所述凹槽的内表面。
  4. 根据权利要求1-3任一项所述的机械手指部件的测试系统,其特征在于,还包括:固定装置,所述固定装置用于固定所述机械手指部件的手指座,所述手指座与驱动电机连接;所述伺服板包括:
    驱动控制单元,用于获取用户的输入信号以生成对应的驱动信号至所述驱动电机,使得所述驱动电机驱动所述机械手指部件的手指端运动;
    数据处理单元,用于从所述传感器模块处读取所述测量数据,根据所述测量数据获得对应的关节运动性能。
  5. 根据权利要求4所述的机械手指部件的测试系统,其特征在于,所述指令输入单元包括:摆动控制按钮和伸缩控制按钮;
    所述驱动控制单元包括:
    控制子单元,用于在所述摆动控制按钮被按压时生成摆动启动指令,并 在所述伸缩控制按钮被按压时生成伸缩启动指令;
    驱动子单元,用于根据所述摆动启动指令驱动所述机械手指部件的手指端朝向所述传感器模块所在的容纳部,沿着竖直方向做上下往复的摆动运动;
    所述驱动子单元,还用于根据所述伸缩启动指令驱动所述机械手指部件的手指端朝向所述传感器模块所在的容纳部,沿着水平方向做前后往复的伸缩运动。
  6. 根据权利要求4所述的机械手指部件的测试系统,其特征在于,所述数据处理单元包括:
    运算子单元,用于根据所述测量数据获取所述手指端的伸缩运动参数和摆动运动参数;
    处理子单元,用于根据预设测试需求、所述伸缩运动参数和摆动运动参数分析得到对应的关节运动性能。
  7. 一种机械手指部件的测试方法,其特征在于,应用于权利要求1-6任一项所述的机械手指部件的测试系统,包括步骤:
    控制机械手指部件运动,获取所述机械手指部件在运动过程中的测量数据;
    根据所述测量数据获得对应的关节运动性能。
  8. 根据权利要求6所述的机械手指部件的测试方法,其特征在于,所述控制机械手指部件运动包括步骤:
    获取用户输入信号以生成对应的启动指令;
    根据所述启动指令生成对应的驱动信号,发送所述驱动信号至与所述机械手指部件的手指座所连接的驱动电机,使得所述驱动电机驱动所述机械手指部件的手指端运动。
  9. 根据权利要求6所述的机械手指部件的测试方法,其特征在于,所述根据所述测量数据获得对应的关节运动性能包括步骤:
    根据所述测量数据获取所述手指端的伸缩运动参数和摆动运动参数;
    根据预设测试需求、所述伸缩运动参数和摆动运动参数分析得到对应的关节运动性能。
  10. 一种存储介质,其特征在于,所述存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如权利要求7至权利要求9任一项所述的机械手指部件的测试系统所执行的操作。
PCT/CN2020/086223 2020-04-22 2020-04-22 一种机械手指部件的测试系统、方法和存储介质 WO2021212389A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/086223 WO2021212389A1 (zh) 2020-04-22 2020-04-22 一种机械手指部件的测试系统、方法和存储介质
CN202080004254.4A CN112912706B (zh) 2020-04-22 2020-04-22 一种机械手指部件的测试系统、方法和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/086223 WO2021212389A1 (zh) 2020-04-22 2020-04-22 一种机械手指部件的测试系统、方法和存储介质

Publications (1)

Publication Number Publication Date
WO2021212389A1 true WO2021212389A1 (zh) 2021-10-28

Family

ID=76112912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086223 WO2021212389A1 (zh) 2020-04-22 2020-04-22 一种机械手指部件的测试系统、方法和存储介质

Country Status (2)

Country Link
CN (1) CN112912706B (zh)
WO (1) WO2021212389A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295347A (zh) * 2021-12-21 2022-04-08 国家康复辅具研究中心 一种多通道肌电假手疲劳检测装置
CN114536310A (zh) * 2022-04-12 2022-05-27 安徽工业大学 一种仿生人工肌肉的抗压力检测装置及方法
CN114536404A (zh) * 2022-03-01 2022-05-27 乐聚(深圳)机器人技术有限公司 基于机器人的测试方法、设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115773867B (zh) * 2022-10-31 2023-10-10 北京建筑大学 一种机械手抓持性能测试装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594209A (ja) * 1990-04-03 1993-04-16 Korea Advanced Inst Of Sci Technol ロボツトの性能測定及び計数認識装置
CN202344546U (zh) * 2011-11-23 2012-07-25 重庆交通大学 柔性手指的机械手总成
CN105171747A (zh) * 2015-09-23 2015-12-23 芜湖市汽车产业技术研究院有限公司 机器手及其使用方法
CN205451647U (zh) * 2015-12-29 2016-08-10 北京贞正物联网技术有限公司 单足步态模拟及足底压力仿真系统
CN106124233A (zh) * 2016-06-16 2016-11-16 芜湖润众机器人科技有限公司 一种机械手测试平台
CN206609625U (zh) * 2017-01-09 2017-11-03 杭州威衡科技有限公司 工业机器人动态特性测试系统
CN107560880A (zh) * 2017-08-31 2018-01-09 西门子工厂自动化工程有限公司 机械手性能测试方法及装置,计算机可读存储介质
CN109324352A (zh) * 2018-11-01 2019-02-12 苏州云电电力科技有限公司 位置传感器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06110543A (ja) * 1992-09-30 1994-04-22 Nippon Telegr & Teleph Corp <Ntt> 直接教示装置
CN107825469B (zh) * 2017-12-04 2023-09-08 河北工业大学 一种双臂移乘机器人模拟实验平台及其测试方法
CN108705549A (zh) * 2018-08-14 2018-10-26 上海岭先机器人科技股份有限公司 一种带有触觉和力觉的机械手关节
CN110065094B (zh) * 2019-05-29 2023-09-26 华南理工大学 一种柔性关节机械臂的运动检测装置与方法
CN110216715B (zh) * 2019-06-28 2020-11-27 炬星科技(深圳)有限公司 机器人导航性能测试方法、系统、测试终端及存储介质
CN111024007B (zh) * 2019-12-24 2022-01-25 浙江清华柔性电子技术研究院 触觉传感器及机械手

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594209A (ja) * 1990-04-03 1993-04-16 Korea Advanced Inst Of Sci Technol ロボツトの性能測定及び計数認識装置
CN202344546U (zh) * 2011-11-23 2012-07-25 重庆交通大学 柔性手指的机械手总成
CN105171747A (zh) * 2015-09-23 2015-12-23 芜湖市汽车产业技术研究院有限公司 机器手及其使用方法
CN205451647U (zh) * 2015-12-29 2016-08-10 北京贞正物联网技术有限公司 单足步态模拟及足底压力仿真系统
CN106124233A (zh) * 2016-06-16 2016-11-16 芜湖润众机器人科技有限公司 一种机械手测试平台
CN206609625U (zh) * 2017-01-09 2017-11-03 杭州威衡科技有限公司 工业机器人动态特性测试系统
CN107560880A (zh) * 2017-08-31 2018-01-09 西门子工厂自动化工程有限公司 机械手性能测试方法及装置,计算机可读存储介质
CN109324352A (zh) * 2018-11-01 2019-02-12 苏州云电电力科技有限公司 位置传感器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295347A (zh) * 2021-12-21 2022-04-08 国家康复辅具研究中心 一种多通道肌电假手疲劳检测装置
CN114536404A (zh) * 2022-03-01 2022-05-27 乐聚(深圳)机器人技术有限公司 基于机器人的测试方法、设备及存储介质
CN114536310A (zh) * 2022-04-12 2022-05-27 安徽工业大学 一种仿生人工肌肉的抗压力检测装置及方法
CN114536310B (zh) * 2022-04-12 2023-07-21 安徽工业大学 一种仿生人工肌肉的抗压力检测装置及方法

Also Published As

Publication number Publication date
CN112912706A (zh) 2021-06-04
CN112912706B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
WO2021212389A1 (zh) 一种机械手指部件的测试系统、方法和存储介质
CN108594109A (zh) 一种按键耐久测试设备
CN103698686A (zh) 一种信号测试方法及设备
CN211179655U (zh) 超声检测与成像系统
CN115371972B (zh) 光路功能检测方法、装置、设备及存储介质
CN201096624Y (zh) 电机自动检测系统
CN104655722A (zh) 一种声波无损检测方法、装置及系统
CN211824942U (zh) 镜头松动检测设备
CN104570834A (zh) 一种激光器及其的错误检测与恢复装置、方法
CN109946602A (zh) 一种机器人伺服电机性能测试装置
CN109186652A (zh) 光感传感器的自动化测试箱体及待测机
CN102486493A (zh) 电子设备能耗检测系统
CN103107920B (zh) 多功能ic卡自动测试装置及方法
CN210155652U (zh) 一种鼠标测试系统
TW201743069A (zh) 邏輯分析儀及其資料擷取與效能測試之方法
CN111415508A (zh) 模拟遥控器的测试设备
CN108509087B (zh) 测量触摸框触摸高度的方法、装置、机器人及存储介质
CN113310673B (zh) 重复精度检测方法、装置、计算机设备及其存储介质
CN217183477U (zh) 一种tws耳机入耳检测设备
CN211857727U (zh) 模拟遥控器的测试设备
CN209514009U (zh) 一种线性马达特性测试装置
WO2019109284A1 (zh) 调试器以及芯片调试方法
CN210427730U (zh) 一种电路板开关量输入自动检测装置
CN101174362A (zh) 自动遥控测试系统及其测试方法
CN213632053U (zh) 折床角度自动补正装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932704

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20932704

Country of ref document: EP

Kind code of ref document: A1