WO2021212301A1 - 雷达组件及无人飞行器 - Google Patents

雷达组件及无人飞行器 Download PDF

Info

Publication number
WO2021212301A1
WO2021212301A1 PCT/CN2020/085799 CN2020085799W WO2021212301A1 WO 2021212301 A1 WO2021212301 A1 WO 2021212301A1 CN 2020085799 W CN2020085799 W CN 2020085799W WO 2021212301 A1 WO2021212301 A1 WO 2021212301A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
antenna assembly
assembly
radar antenna
assembly according
Prior art date
Application number
PCT/CN2020/085799
Other languages
English (en)
French (fr)
Inventor
林晓龙
高诗经
高迪
周万仁
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/085799 priority Critical patent/WO2021212301A1/zh
Priority to CN202080029219.8A priority patent/CN113826278A/zh
Publication of WO2021212301A1 publication Critical patent/WO2021212301A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas

Definitions

  • the invention relates to the field of radar technology, in particular to a radar assembly and an unmanned aerial vehicle.
  • Radar is a component used to detect the distance between unmanned aerial vehicles and obstacles during flight, and plays a very important role in the normal operation of unmanned aerial vehicles.
  • the heat generated during the operation of the radar can only be dissipated through thermal radiation, which is inefficient in heat dissipation, which may cause the radar to overheat and affect the reliability of operation.
  • embodiments of the present invention provide a radar assembly and an unmanned aerial vehicle.
  • the present invention can improve the heat dissipation capacity of the radar antenna assembly, thereby improving the reliability of radar operation and prolonging the service life. .
  • a radar assembly including a motor, a radar antenna assembly and a radar base
  • the motor is disposed on the radar base
  • the motor includes a rotor and a stator connected to the rotor, so
  • the rotor can drive the radar antenna assembly to rotate
  • a spoiler is provided on the side of the radar antenna assembly.
  • the spoiler can disturb the radar antenna assembly along with the rotation of the radar antenna assembly.
  • the air around the radar antenna assembly generates an air flow that flows along the direction of the rotation axis of the rotor.
  • the line of intersection between the spoiler and the side surface of the radar antenna assembly is inclined to the rotation axis of the radar antenna assembly.
  • the angle between the line of intersection and the rotation axis of the radar antenna assembly is 25-45°.
  • the end of the spoiler facing away from the side of the radar antenna assembly is arc-shaped.
  • the radar antenna component includes a first side surface and a second side surface that are arranged oppositely, and the spoiler is provided on both the first side surface and the second side surface.
  • a plurality of the spoilers are provided on both the first side surface and the second side surface, and two adjacent spoilers located on the same side surface are arranged at intervals.
  • the radar assembly as described above optionally, further includes a cover, and the cover and the radar base jointly enclose a cavity for accommodating the radar antenna assembly.
  • an air inlet channel and an air outlet channel are provided on the cover.
  • the air inlet passage includes an air inlet hole
  • the air outlet passage includes an air outlet hole
  • both the air inlet hole and the air outlet hole are arranged on the side surface of the cover body.
  • one of the air inlet channel and the air outlet channel is arranged close to the radar base, and the other is arranged away from the radar base.
  • the air inlet channel is arranged close to the radar base, and the air outlet channel is arranged away from the radar base.
  • the air intake holes and the air outlet holes are arranged on the same side surface of the cover; or the air inlet holes and the air outlet holes are respectively arranged on different sides of the cover body superior.
  • the air intake holes and the air outlet holes are arranged along the circumferential direction of the cover body.
  • a waterproof and air-permeable structure is provided in the air inlet channel and/or the air outlet channel.
  • the waterproof and breathable structure includes a waterproof and breathable membrane.
  • the inlet passage and/or the outlet passage include a tortuous gas passage.
  • the cover includes a cylinder and a cover, the cylinder is provided with a first matching portion, the cover is provided with a second matching portion, and the cover is provided with a In the case of the cylinder, the first matching portion and the second matching part cooperate to form the tortuous gas passage.
  • one of the first matching portion and the second matching portion includes a convex portion, and the other includes a concave portion, and the convex portion and the concave portion are formed in cooperation There is at least part of the tortuous gas passage.
  • the radar component is a microwave radar component.
  • the radar antenna component continuously rotates 360 degrees.
  • the radar antenna component rotates intermittently, and the radar antenna component can continue to rotate after staying at a preset angle position for a preset scanning time.
  • an unmanned aerial vehicle including a fuselage, a flight controller installed on the fuselage, and the radar assembly as described above, the radar assembly being installed on the fuselage On and electrically connected to the flight controller,
  • the radar component obtains the position information of the obstacle, and sends the position information of the obstacle to the flight controller; the flight controller performs automatic obstacle avoidance according to the position information of the obstacle.
  • the radar antenna assembly can drive the spoiler to rotate together when the radar antenna assembly rotates, so that the spoiler disturbs the air around the radar antenna assembly ,
  • the spoiler can accelerate the heat exchange between the surrounding air and the radar antenna assembly, thereby improving the heat dissipation capacity of the radar assembly, improving the reliability of the radar operation, and extending Service life.
  • Figure 1 is a schematic structural diagram of a radar component provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the gas flow direction of the radar assembly provided by an embodiment of the present invention during operation;
  • Fig. 3 is a schematic structural diagram of a radar antenna assembly provided by an embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of a cover provided by an embodiment of the present invention.
  • Figure 5 is an exploded view of a cover provided by an embodiment of the present invention.
  • Figure 6 is a cross-sectional view of a cover provided by an embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present invention.
  • Figure 1 is a schematic structural diagram of a radar component provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of the gas flow direction of a radar component provided by an embodiment of the present invention during operation
  • Figure 3 is a radar antenna provided by an embodiment of the present invention
  • Figure 4 is a schematic structural diagram of a cover provided by an embodiment of the present invention
  • Figure 5 is an exploded view of a cover provided by an embodiment of the present invention
  • Figure 6 is a cover provided by an embodiment of the present invention Sectional view of the body; please refer to Figure 1 to Figure 6.
  • this embodiment provides a radar assembly, including a motor 100, a radar antenna assembly 200, and a radar base 300.
  • the motor 100 is disposed on the radar base 300.
  • the motor 100 includes a rotor and a stator connected to the rotor.
  • the rotor can drive the radar antenna assembly 200 to rotate, and the side of the radar antenna assembly 200 is provided with a spoiler 210.
  • the spoiler 210 can disturb the radar antenna assembly 200 with the rotation of the radar antenna assembly 200. The air, thereby generating air flow along the direction of the rotor shaft.
  • the radar component may be a microwave radar component, for example.
  • the motor 100 can be an external rotor motor.
  • the motor 100 is housed in the radar base 300.
  • a mounting slot for installing the motor 100 can be provided on the radar base 300, and the motor 100 can be fixed by a detachable connection.
  • the motor 100 includes a rotor and a stator.
  • the stator includes a stator core and a plurality of coils arranged on the stator core. The plurality of coils are looped around and can generate a magnetic field after being energized.
  • the rotor includes a rotor shell and a rotor magnet.
  • the stator is arranged in the rotor shell.
  • the rotor magnet is contained in the rotor shell and is located between the rotor shell and the stator.
  • the interaction force drives the rotor to rotate, thereby driving the rotating shaft 110 connected with the rotor to rotate.
  • the rotating shaft 110 passes through the radar antenna assembly 200 in the axial direction, thereby driving the radar antenna assembly 200 to rotate, so that the radar antenna assembly 200 transmits microwave signals in multiple different directions and receives microwave signals reflected from multiple directions. Realize the detection of obstacles in multiple directions.
  • the radar antenna assembly 200 can continuously rotate 360 degrees, so that the radar antenna assembly 200 can realize omnidirectional detection.
  • the radar antenna assembly 200 can be rotated intermittently, and the radar antenna assembly 200 can continue to rotate after staying at a preset angular position for a preset scanning time, thereby facilitating the radar antenna assembly 200 to move to a certain position. Detailed detection.
  • the radar assembly further includes a cover 400, and the cover 400 and the radar base 300 jointly enclose a receiving cavity for accommodating the radar antenna assembly 200, so as to protect the radar antenna assembly 200 and prevent the radar antenna assembly 200 from being damaged.
  • Radar components generate a certain amount of heat during operation. As the use time increases, heat continues to accumulate inside the radar components. Therefore, the heat needs to be discharged in time to avoid affecting the normal operation of the radar components.
  • Part A in FIG. 1 shows the approximate range of the heat source that generates heat when the radar assembly is working.
  • the heat source includes the digital board of the radar antenna assembly 200, the power supply system, and the circuit board.
  • the present embodiment is provided with a spoiler 210 on the side of the radar antenna assembly 200.
  • the spoiler 210 can function as a fan blade of an electric fan. When rotating, the surrounding air is disturbed, and the circulation of the air is accelerated, so as to dissipate the heat generated by the radar antenna assembly 200 as soon as possible.
  • the arrow in the figure points to the air flow direction.
  • air can enter the inside of the cover 400 from the air inlet on the cover 400.
  • the air is disturbed by the spoiler 210 to accelerate the flow, and at the same time, an airflow flowing along the rotation axis of the radar antenna assembly 200 is formed, and can be discharged from the radar assembly through the air outlet on the upper part of the cover 400, thereby removing the heat source.
  • the heat generated is carried out of the radar components to reduce the temperature of the radar components.
  • This embodiment can improve the heat dissipation capacity of the radar component, improve the reliability of the radar operation, and prolong the service life.
  • the intersection line between the spoiler 210 and the side of the radar antenna assembly 200 in this embodiment is inclined to the rotation axis of the radar antenna assembly 200, so that the spoiler 210 can be aligned when rotating.
  • the surrounding air realizes spiral cutting, which is beneficial to fully disturb the surrounding air.
  • the angle between the line of intersection and the rotation axis of the radar antenna assembly 200 in this embodiment is 25-45°. Within this range, it can be ensured that the spoiler 210 can achieve high efficiency against the surrounding air. ⁇ orbit.
  • the end of the spoiler 210 facing away from the side of the radar antenna assembly 200 is arc-shaped, which can reduce the resistance experienced by the spoiler 210 when it rotates and improve the disturbance efficiency.
  • the radar antenna assembly 200 of this embodiment includes a first side 201 and a second side 202 opposite to each other, and a spoiler 210 is provided on the first side 201 and the second side 202.
  • the housing of the radar antenna assembly 200 may be roughly quadrangular prism-shaped, and the radar antenna assembly 200 has a first side 201 and a second side 202 opposite to each other. Both the first side 201 and the second side 202 can be provided with spoilers. Piece 210 to improve the efficiency of air disturbance.
  • the digital board, circuit board, antenna board, etc. can be arranged on the other two sides of the radar antenna assembly 200, so that the spoiler 210 and the main components of the radar antenna assembly 200 in this embodiment avoid the arrangement and avoid turbulence.
  • the component 210 affects the signal transmission and reception of the radar antenna assembly 200, making the overall layout of the radar antenna assembly 200 more reasonable.
  • the spoiler 210 can be arranged on the shell of the radar antenna assembly 200 in an integrated manner, so there is no need to add an additional process flow and does not affect the production efficiency of the radar assembly. At the same time, the integrated structure can also improve the strength of the housing of the radar antenna assembly 200.
  • multiple spoilers 210 can be provided on both the first side 201 and the second side 202, and two adjacent spoilers 210 on the same side are arranged at intervals. Specifically, two adjacent spoilers 210 on the same side surface can be arranged at equal intervals, which is beneficial to improve the ability of the radar antenna assembly 200 to disturb the air, and make the disturbance ability of each part basically the same, and the disturbance is generated. The airflow is more uniform.
  • the cover 400 of this embodiment is provided with an air inlet 410 and an air outlet 420.
  • the air inlet 410 and the air outlet 420 in this embodiment are both arranged on the side of the cover 400, and the cover 400 is provided with an inlet connecting the air inlet 410 An air channel and an air outlet channel connected to the air hole 420.
  • One of the air inlet 410 and the air outlet 420 is arranged close to the radar base 300, and the other is arranged away from the radar base 300; optionally, in this embodiment, the air inlet 410 is arranged close to the radar base 300, and the air outlet 420 is set away from the radar base 300.
  • the cover 400 may be provided with multiple air intake holes 410 and air outlet 420, and the multiple air intake holes 410 and the air outlet 420 may be provided on the same side surface of the cover 400; or, more The two air inlet holes 410 and the air outlet holes 420 are respectively arranged on different sides of the cover 400.
  • the air inlet 410 and the air outlet 420 of this embodiment may be arranged along the circumference of the cover 400.
  • the air inlet 410 and the air outlet 420 may both be ring-shaped. And it is arranged along the circumferential direction of the cover 400.
  • a waterproof and breathable structure is provided in both the air inlet channel and the air outlet channel.
  • the waterproof and breathable structure includes a waterproof and breathable membrane 440 or a tortuous gas channel.
  • the waterproof and breathable membrane 440 can be a polymer membrane, in which the gaps between molecules in the membrane layer can allow gas to pass through but can block the passage of water molecules, so as to achieve the effect of waterproof and breathable.
  • the tortuous gas channel constitutes a labyrinth waterproof structure 430, so that the air inlet 410 or the air outlet 420 does not directly communicate with the end inside the cover 400, so that the effect of waterproof and breathable can be realized.
  • the cover 400 of this embodiment includes a cylinder 432 and a cover plate 433, and the cover plate 433 is buckled on the cylinder 432.
  • the air inlet 410 is arranged on the cylinder 432 and is arranged close to the radar base 300; the air outlet 420 is arranged on the connecting surface of the cylinder 432 and the cover plate 433, and is arranged away from the radar base 300. That is, in this embodiment, the vent hole 420 is jointly defined by the cylinder 432 and the cover plate 433. Part of the structure of the vent hole 432 is formed on the cylinder 432, and another part of the structure is formed on the cover plate 433. The cylinder 432 and the cover plate 433 cooperate to form an air outlet 420 together.
  • the labyrinth waterproof structure 430 is a waterproof structure formed by using the mechanical structure of the cover 400 itself. It includes an air outlet channel 431 arranged in the cover 400 and a blocking structure arranged in the air outlet channel 431.
  • the first end of the air outlet channel 431 is connected The air inlet 410 or the air outlet 420, the second end of the air outlet channel 431 is connected to the accommodating cavity, and the blocking structure is used to block the direct communication between the first end of the air outlet channel 431 and the second end of the air outlet channel 431, so that the air outlet channel 431 constitutes the above
  • the tortuous gas channel prevents the liquid from directly entering the accommodating cavity in the cover 400 from the outside through the air outlet channel 431, but the gas can still circulate between the outside and the accommodating cavity in the cover 400 through the air outlet channel 431, thereby achieving The function of waterproof and breathable.
  • the cylinder 432 is provided with a first mating portion 4321
  • the cover plate 433 is provided with a second mating portion 4331.
  • the cover plate 433 is provided on the cylinder 432, the first mating portion 4321 and the second The two cooperating and cooperating together form the above-mentioned tortuous gas channel.
  • one of the first mating portion 4321 and the second mating portion 4331 includes a convex portion, and the other includes a concave portion.
  • the convex portion and the concave portion cooperate to form at least part of a tortuous gas channel, thereby achieving waterproof and breathable Effect.
  • the air inlet 410 is arranged close to the radar base 300, the air outlet 420 is arranged away from the radar base 300, the air inlet 410 is provided with a waterproof and breathable membrane 440, and the air outlet 420 is provided with the above-mentioned zigzag Gas channel.
  • Fig. 7 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present invention; please refer to Fig. 7.
  • This embodiment provides an unmanned aerial vehicle 1, including a fuselage 20, a flight controller installed on the fuselage 20, and the radar assembly 10 as described in the first embodiment.
  • the radar assembly 10 is installed on the fuselage 20 and is connected to The flight controller is electrically connected.
  • the fuselage 20 includes a frame 21 and a tripod 22 mounted on the frame 21.
  • the frame 21 is an installation carrier for other parts of the unmanned aerial vehicle 1, and the flight controller is installed on the aircraft. ⁇ 21 ⁇ Shelf 21.
  • the feet 22 are installed under the frame 21, and the number of the feet 22 can be multiple, which are used to provide support for the UAV 1 when it is landed.
  • the frame 21 is also connected with a plurality of arms 23, and parts such as power devices and propellers can be connected to the arms 23 to provide the flying power of the unmanned aerial vehicle 1.
  • the radar assembly 20 can be installed on the feet 22, so that the radar assembly 20 can avoid being blocked by other parts of the UAV 1, thereby having a better transmission signal.
  • the radar component 20 can obtain the position information of the obstacle and send the position information of the obstacle to the flight controller; the flight controller controls the flight path of the unmanned aerial vehicle 1 according to the position information of the obstacle, To realize automatic obstacle avoidance.
  • the radar component 20 may adopt the radar component as described in the first implementation above, and its structure and beneficial effects have been described in detail in the above-mentioned embodiment, and will not be repeated here.
  • the radar component 20 of the UAV 1 of this embodiment adopts the radar component described in the first embodiment, it has strong heat dissipation capability, reliable and stable operation, and can extend the service life of the UAV 1.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction relationship between two elements.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction relationship between two elements.
  • first and second are only used to facilitate the description of different components, and cannot be understood as indicating or implying the order relationship, relative importance or implicitly indicating that The number of technical characteristics. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features.

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

一种雷达组件(10)及无人飞行器(1),雷达组件(10)包括电机(100)、雷达天线组件(200)和雷达基座(300),电机(100)设置于雷达基座(300),电机(100)包括转子和连接转子的定子,转子能够带动雷达天线组件(200)旋转,雷达天线组件(200)的侧面设置有扰流件(210),在雷达天线组件(200)旋转时,扰流件(210)能够随着雷达天线组件(200)的旋转扰动雷达天线组件(200)周围的空气,从而产生沿着转子的转轴方向流动的气流。雷达天线组件(200)旋转时可带动扰流件(210)一起转动,从而使扰流件(210)扰动雷达天线组件(200)周围的空气,产生沿着雷达天线组件(200)的转轴方向流动的气流;也即,扰流件(210)能够加快周围空气与雷达天线组件(200)之间的热交换,从而提升雷达组件(10)的散热能力,提高雷达运行的可靠性,延长使用寿命。

Description

雷达组件及无人飞行器 技术领域
本发明涉及雷达技术领域,尤其涉及一种雷达组件及无人飞行器。
背景技术
雷达是用来检测无人飞行器飞行时与障碍物之间距离的零部件,对于无人飞行器的正常运行起到十分关键的作用。
在雷达日常的使用时,雷达工作时产生的热量只能通过热辐射的方式散出,热辐射的方式散热效率低下,可能会导致雷达过热而影响运行的可靠性。
发明内容
为了解决现有技术中存在的上述或其他潜在问题,本发明实施例提供一种雷达组件及无人飞行器,本发明能够提高雷达天线组件的散热能力,从而提高雷达运行的可靠性,延长使用寿命。
根据本发明的一些实施例,提供一种雷达组件,包括电机、雷达天线组件和雷达基座,所述电机设置于所述雷达基座,所述电机包括转子和连接所述转子的定子,所述转子能够带动所述雷达天线组件旋转,所述雷达天线组件的侧面设置有扰流件,在所述雷达天线组件旋转时,所述扰流件能够随着所述雷达天线组件的旋转扰动所述雷达天线组件周围的空气,从而产生沿着所述转子的转轴方向流动的气流。
如上所述的雷达组件,可选地,所述扰流件与所述雷达天线组件的侧面之间的交线倾斜于所述雷达天线组件的旋转轴线。
如上所述的雷达组件,可选地,所述交线与所述雷达天线组件的旋转轴线之间的夹角为25-45°。
如上所述的雷达组件,可选地,所述扰流件背离所述雷达天线组件的侧面的一端呈弧形。
如上所述的雷达组件,可选地,所述雷达天线组件包括相对设置的第一侧面和第二侧面,所述第一侧面和第二侧面上均设有所述扰流件。
如上所述的雷达组件,可选地,所述第一侧面和第二侧面上均设有多个所述扰流件,位于同一侧面的相邻两个所述扰流件间隔设置。
如上所述的雷达组件,可选地,还包括罩体,所述罩体和所述雷达基座共同围成用于容纳所述雷达天线组件的容纳腔。
如上所述的雷达组件,可选地,所述罩体上设有进气通道和出气通道。
如上所述的雷达组件,可选地,所述进气通道包括进气孔,所述出气通道包括出气孔,所述进气孔和所述出气孔均设置在所述罩体的侧面上。
如上所述的雷达组件,可选地,所述进气通道和出气通道中的一个靠近所述雷达基座设置,另一个远离所述雷达基座设置。
如上所述的雷达组件,可选地,所述进气通道靠近所述雷达基座设置,所述出气通道远离所述雷达基座设置。
如上所述的雷达组件,可选地,所述进气孔和出气孔设置在所述罩体的同一侧面上;或者,所述进气孔和出气孔分别设置在所述罩体的不同侧面上。
如上所述的雷达组件,可选地,所述进气孔和出气孔沿所述罩体的周向设置。
如上所述的雷达组件,可选地,所述进气通道和/或所述出气通道内设置有防水透气结构。
如上所述的雷达组件,可选地,所述防水透气结构包括防水透气膜。
如上所述的雷达组件,可选地,所述进气通道和/或所述出气通道包括曲折的气体通道。
如上所述的雷达组件,可选地,所述罩体包括筒体和盖板,所述筒体设置有第一配合部,所述盖板设置有第二配合部,所述盖板盖设于所述筒体时,所述第一配合部和所述第二配合配合形成有所述曲折的气体通道。
如上所述的雷达组件,可选地,所述第一配合部和所述第二配合部中的 一个包括凸起部,另一个包括凹陷部,所述凸起部和所述凹陷部配合形成有所述曲折的气体通道的至少部分。
如上所述的雷达组件,可选地,所述雷达组件为微波雷达组件。
如上所述的雷达组件,可选地,所述雷达天线组件连续旋转360度。
如上所述的雷达组件,可选地,所述雷达天线组件进行间断性转动,所述雷达天线组件能够在预设角度位置停留预设扫描时间后继续转动。
根据本发明的一些实施例,提供一种无人飞行器,包括机身、安装在所述机身上的飞行控制器以及如上任一所述的雷达组件,所述雷达组件安装在所述机身上,并且与所述飞行控制器电连接,
其中,所述雷达组件获取障碍物的位置信息,并将所述障碍物的位置信息发送给所述飞行控制器;所述飞行控制器根据所述障碍物的位置信息,进行自动避障。
本发明实施例提供的雷达组件及无人飞行器,通过在雷达天线组件的侧面设置扰流件,雷达天线组件旋转时可带动扰流件一起转动,从而使扰流件扰动雷达天线组件周围的空气,产生沿着雷达天线组件的转轴方向流动的气流;也即,扰流件能够加快周围空气与雷达天线组件之间的热交换,从而提升雷达组件的散热能力,提高雷达运行的可靠性,延长使用寿命。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的雷达组件的结构简图;
图2为本发明一实施例提供的雷达组件在运行时气体流动方向的示意图;
图3为本发明一实施例提供的雷达天线组件的结构简图;
图4为本发明一实施例提供的罩体的结构简图;
图5为本发明一实施例提供的罩体的爆炸视图;
图6为本发明一实施例提供的罩体的剖视图;
图7为本发明一实施例提供的无人机的结构简图。
附图标记:
1-无人飞行器;               10-雷达组件;
20-机身;                    21-机架;
22-脚架;                    23-机臂;
100-电机;                   110-转轴;
200-雷达天线组件;           201-第一侧面;
202-第二侧面;               210-扰流件;
300-雷达基座;               400-罩体;
410-进气孔;                 420-出气孔;
430-迷宫式防水结构;         431-出气通道;
432-筒体;                   4321-第一配合部;
433-盖板;                   4331-第二配合部;
440-防水透气膜;             A-热源。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
实施例一
图1为本发明一实施例提供的雷达组件的结构简图;图2为本发明一实施例提供的雷达组件在运行时气体流动方向的示意图;图3为本发明一实施例提供的雷达天线组件的结构简图;图4为本发明一实施例提供的罩体的结构简图;图5为本发明一实施例提供的罩体的爆炸视图;图6为本发明一实施例提供的罩体的剖视图;请参照图1-图6。
如图1和图2所示,本实施例提供一种雷达组件,包括电机100、雷达天线组件200和雷达基座300,电机100设置于雷达基座300,电机100包括转子和连接转子的定子,转子能够带动雷达天线组件200旋转,雷达天线组件200的侧面设置有扰流件210,在雷达天线组件200旋转时,扰流件210能够随着雷达天线组件200的旋转扰动雷达天线组件200周围的空气,从而产生沿着转子的转轴方向流动的气流。
在本实施例中,雷达组件例如可以为微波雷达组件。电机100例如可以选用外转子电机,电机100收容于雷达基座300内,具体的,可在雷达基座300上设置专门用于安装电机100的安装槽,电机100可采用可拆卸连接的方式固定在该安装槽内。电机100包括转子和定子,定子包括定子铁芯以及设置在定子铁芯上的多个线圈,多个线圈环绕呈圆环状,且可在通电后产生磁场。转子包括转子壳和转子磁铁,定子设置在转子壳内,转子磁铁收容在转子壳内且位于转子壳和定子之间,电机100在工作时,线圈产生的磁场与转子磁铁产生的磁场之间产生相互作用力,以驱动转子转动,从而带动与转子连接的转轴110转动。转轴110在轴向方向上穿过雷达天线组件200,从而带动雷达天线组件200转动,从而使得雷达天线组件200朝向多个不同的方向发射微波信号并接收从多个方向反射回的微波信号,以实现对多个方向上障碍物的检测。
在一个可选地实施方式中,雷达天线组件200可以连续旋转360度,从而使得雷达天线组件200能够实现全方位的检测。
在另一个可选地实施方式中,雷达天线组件200可进行间断性转动,雷达天线组件200能够在预设角度位置停留预设扫描时间后继续转动,从而便于雷达天线组件200对某一位置的详细探测。
雷达组件还包括罩体400,罩体400和雷达基座300共同围成用于容纳雷达天线组件200的容纳腔,以对雷达天线组件200进行保护,防止雷达天线组件200受损。雷达组件在工作时会产生一定的热量,随着使用时间的增加,热量不断积聚在雷达组件内部,因此需要及时将热量排出,以避免对雷达组件的正常运行造成影响。图1中A部示出了雷达组件工作时产生热量的热源的大致范围,其中,热源包括雷达天线组件200的数字板、供电系统以及电路板等零件。为保证将上述零件产生的热量尽快散出,本实施例在雷达天线组件200的侧面设置有扰流件210,扰流件210可以起到类似电风扇扇叶的作用,从而在雷达天线组件200转动时扰动四周的空气,加速空气的流通,以尽快的将雷达天线组件200产生的热量散出。
如图2所示,图中箭头指向为空气的流动方向,通过上述结构设置,本实施例的雷达组件在工作时,空气可以从罩体400上的进气口进入罩体400内部,在罩体200内,空气收到扰流件210的扰动而加快流动,同时形成了沿雷达天线组件200的转轴方向流动的气流,并且可以从罩体400上部的出气口排出雷达组件外,从而将热源产生的热量带出雷达组件,以降低雷达组件的温度。本实施例能够提升雷达组件的散热能力,提高雷达运行的可靠性,延长使用寿命。
在一个可选地实施方式中,本实施例中扰流件210与雷达天线组件200的侧面之间的交线倾斜于雷达天线组件200的旋转轴线,从而使得扰流件210在转动时能够对四周的空气实现螺旋切割,有利于充分扰动四周的空气。
进一步优选地,本实施例中交线与雷达天线组件200的旋转轴线之间的夹角为25-45°,在此范围内,能够保证扰流件210能够以较高的效率实现对周围空气的绕动。
在上述实施方式中,扰流件210背离雷达天线组件200的侧面的一端呈弧形,这样能够降低扰流件210转动时所受的阻力,提高扰动效率。
如图1和图3所示,本实施例的雷达天线组件200包括相对设置的第一侧面201和第二侧面202,第一侧面201和第二侧面202上均设有扰流件210。
具体的,雷达天线组件200的外壳大体可以呈四棱柱状,雷达天线组件 200具有相对设置的第一侧面201和第二侧面202,第一侧面201和第二侧面202上均可设有扰流件210,以提高对空气的扰动效率。数字板、电路板及天线板等可以设置在雷达天线组件200的另外两个侧面上,以使得本实施例中的扰流件210与雷达天线组件200的主要零部件避开设置,避免扰流件210影响雷达天线组件200的信号收发,使得雷达天线组件200的整体布局更加合理。
扰流件210可以采用一体成型的方式设置在雷达天线组件200的外壳上,从而无需增加额外的工艺流程,不影响雷达组件的生产效率。同时,一体化的结构还可以提高雷达天线组件200外壳的强度。
在一个优选地实施方式中,在第一侧面201和第二侧面202上均可设有多个扰流件210,且位于同一侧面的相邻两个扰流件210间隔设置。具体的,位于同一侧面上的相邻的两个扰流件210可以是等间距设置的,这样,有利于提高雷达天线组件200扰动空气的能力,且使得各部位的扰动能力基本相同,扰动生成的气流更加均匀。
为实现雷达组件内部与外界空气之间的热交换,本实施例的罩体400上设有进气孔410和出气孔420。
如图1、图4、图5和图6所示,本实施例中进气孔410和出气孔420均设置在罩体400的侧面上,罩体400内设有连接进气孔410的进气通道以及连接出气孔420的出气通道。进气孔410和出气孔420中的一个靠近雷达基座300设置,另一个远离雷达基座300设置;可选地,在本实施例中,进气孔410靠近雷达基座300设置,出气孔420远离雷达基座300设置。
在一个具体的实施方式中,罩体400上可以设置有多个进气孔410和出气孔420,多个进气孔410和出气孔420可以设置在罩体400的同一侧面上;或者,多个进气孔410和出气孔420分别设置在罩体400的不同侧面上。
在另一个具体的实施方式中,本实施例的进气孔410和出气孔420可沿着罩体400的周向进行设置,可选地,进气孔410和出气孔420可以均呈环状且沿罩体400的周向设置。
进一步地,为了防止外界环境内的雨水或杂质等物进入到罩体400内部, 在进气通道和出气通道内均设有防水透气结构。
具体的,防水透气结构包括防水透气膜440或曲折的气体通道。防水透气膜440可以选用高分子膜,其中膜层内分子间的间隙可以允许气体通过但能够阻挡水分子的通过,从而达到防水透气的效果。曲折的气体通道构成迷宫式防水结构430,使得进气孔410或出气孔420与其在罩体400内侧的一端不会直接连通,从而能够实现防水透气的效果。
本实施例的罩体400包括筒体432和盖板433,盖板433扣合在筒体432上。进气孔410设置在筒体432上,且靠近雷达基座300设置;出气孔420设置在筒体432和盖板433的连接面上,且远离雷达基座300设置。也即,在本实施例中,出气孔420是由筒体432和盖板433共同限定出的,出气孔432的部分结构形成在筒体432上,另外部分结构形成在盖板433上,通过筒体432和盖板433的配合后二者共同围成出气孔420。
迷宫式防水结构430是利用罩体400自身的机械结构形成的防水结构,其包括设置在罩体400内的出气通道431以及设置在出气通道431内的阻挡结构,出气通道431的第一端连接进气孔410或出气孔420,出气通道431的第二端连接容纳腔,阻挡结构用于阻挡出气通道431的第一端与出气通道431的第二端的直接连通,以使得出气通道431构成上述曲折的气体通道,使得液体不能够直接经出气通道431从外界进入罩体400内的容纳腔中,但气体依然可以经出气通道431在外界与罩体400内的容纳腔之间流通,从而实现防水透气的作用。
在一个可选地实施方式中,筒体432设置有第一配合部4321,盖板433设置有第二配合部4331,盖板433盖设于筒体432上时,第一配合部4321和第二配合配合共同构成上述曲折的气体通道。
进一步地,第一配合部4321和第二配合部4331中的一个包括凸起部,另一个包括凹陷部,凸起部和凹陷部配合形成有曲折的气体通道的至少部分,从而实现防水透气的效果。
可选地,本实施例中进气孔410靠近雷达基座300设置,出气孔420远离雷达基座300设置,进气孔410内设有防水透气膜440,出气孔420内设 有上述曲折的气体通道。
实施例二
图7为本发明一实施例提供的无人机的结构简图;请参照图7。本实施例提供一种无人飞行器1,包括机身20、安装在机身20上的飞行控制器以及如上实施例一所述的雷达组件10,雷达组件10安装在机身20上,并且与飞行控制器电连接。
具体的,如图7所示,机身20包括机架21和安装在机架21上的脚架22,机架21为无人飞行器1上其他零部件的安装载体,飞行控制器安装在机架21上。机脚22安装在机架21的下方,机脚22的数量可以为多个,用于为无人飞行器1降落时提供支撑。机架21还连接有多个机臂23,机臂23上可以连接动力装置以及螺旋桨等零件,以提供无人飞行器1的飞行动力。
在一个优选的实施方式中,雷达组件20可以安装在机脚22上,这样,雷达组件20可以避免受无人飞行器1上其他零部件的遮挡,从而具有较好的传输信号。
在无人飞行器运行时,雷达组件20可以获取障碍物的位置信息,并将障碍物的位置信息发送给飞行控制器;飞行控制器根据障碍物的位置信息,控制无人飞行器1的飞行路径,以实现自动避障。其中,雷达组件20可采用如上实施一所述的雷达组件,其结构及能够带来的有益效果已在上述实施例一种做出的详细的描述,在此不再赘述。
本实施例的无人飞行器1由于其雷达组件20采用了上述实施例一中所述的雷达组件,因此具有较强的散热能力,运行可靠、稳定,从而能够延长无人飞行器1的使用寿命。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述, 而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
需要说明的是,在本发明的描述中,术语“第一”、“第二”仅用于方便描述不同的部件,而不能理解为指示或暗示顺序关系、相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (22)

  1. 一种雷达组件,其特征在于,包括电机、雷达天线组件和雷达基座,所述电机设置于所述雷达基座,所述电机包括转子和连接所述转子的定子,所述转子能够带动所述雷达天线组件旋转,所述雷达天线组件的侧面设置有扰流件,在所述雷达天线组件旋转时,所述扰流件能够随着所述雷达天线组件的旋转扰动所述雷达天线组件周围的空气,从而产生沿着所述转子的转轴方向流动的气流。
  2. 根据权利要求1所述的雷达组件,其特征在于,所述扰流件与所述雷达天线组件的侧面之间的交线倾斜于所述雷达天线组件的旋转轴线。
  3. 根据权利要求2所述的雷达组件,其特征在于,所述交线与所述雷达天线组件的旋转轴线之间的夹角为25-45°。
  4. 根据权利要求1所述的雷达组件,其特征在于,所述扰流件背离所述雷达天线组件的侧面的一端呈弧形。
  5. 根据权利要求1-4中任一所述的雷达组件,其特征在于,所述雷达天线组件包括相对设置的第一侧面和第二侧面,所述第一侧面和第二侧面上均设有所述扰流件。
  6. 根据权利要求5所述的雷达组件,其特征在于,所述第一侧面和第二侧面上均设有多个所述扰流件,位于同一侧面的相邻两个所述扰流件间隔设置。
  7. 根据权利要求5所述的雷达组件,其特征在于,还包括罩体,所述罩体和所述雷达基座共同围成用于容纳所述雷达天线组件的容纳腔。
  8. 根据权利要求7所述的雷达组件,其特征在于,所述罩体上设有进气通道和出气通道。
  9. 根据权利要求8所述的雷达组件,其特征在于,所述进气通道包括进气孔,所述出气通道包括出气孔,所述进气孔和所述出气孔均设置在所述罩体的侧面上。
  10. 根据权利要求8所述的雷达组件,所述进气通道和出气通道中的一个靠近所述雷达基座设置,另一个远离所述雷达基座设置。
  11. 根据权利要求10所述的雷达组件,其特征在于,所述进气通道靠近所述雷达基座设置,所述出气通道远离所述雷达基座设置。
  12. 根据权利要求9所述的雷达组件,其特征在于,所述进气孔和出气孔设置在所述罩体的同一侧面上;或者,所述进气孔和出气孔分别设置在所述罩体的不同侧面上。
  13. 根据权利要求9所述的雷达组件,其特征在于,所述进气孔和出气孔沿所述罩体的周向设置。
  14. 根据权利要求8所述的雷达组件,其特征在于,所述进气通道和/或所述出气通道内设置有防水透气结构。
  15. 根据权利要求14所述的雷达组件,其特征在于,所述防水透气结构包括防水透气膜。
  16. 根据权利要求14所述的雷达组件,其特征在于,所述进气通道和/或所述出气通道包括曲折的气体通道。
  17. 根据权利要求16所述的雷达组件,其特征在于,所述罩体包括筒体和盖板,所述筒体设置有第一配合部,所述盖板设置有第二配合部,所述盖板盖设于所述筒体时,所述第一配合部和所述第二配合配合形成有所述曲折的气体通道。
  18. 根据权利要求17所述的雷达组件,其特征在于,所述第一配合部和所述第二配合部中的一个包括凸起部,另一个包括凹陷部,所述凸起部和所述凹陷部配合形成有所述曲折的气体通道的至少部分。
  19. 根据权利要求1所述的雷达组件,其特征在于,所述雷达组件为微波雷达组件。
  20. 根据权利要求1所述的雷达组件,其特征在于,所述雷达天线组件连续旋转360度。
  21. 根据权利要求1所述的雷达组件,其特征在于,所述雷达天线组件进行间断性转动,所述雷达天线组件能够在预设角度位置停留预设扫描时间后继续转动。
  22. 一种无人飞行器,其特征在于,包括机架、安装在所述机架上的飞行控制器以及权利要求1-21中任一所述的雷达组件,所述雷达组件安装在所述机架上,并且与所述飞行控制器电连接,
    其中,所述雷达组件获取障碍物的位置信息,并将所述障碍物的位置信息发送给所述飞行控制器;所述飞行控制器根据所述障碍物的位置信息,进 行自动避障。
PCT/CN2020/085799 2020-04-21 2020-04-21 雷达组件及无人飞行器 WO2021212301A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/085799 WO2021212301A1 (zh) 2020-04-21 2020-04-21 雷达组件及无人飞行器
CN202080029219.8A CN113826278A (zh) 2020-04-21 2020-04-21 雷达组件及无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085799 WO2021212301A1 (zh) 2020-04-21 2020-04-21 雷达组件及无人飞行器

Publications (1)

Publication Number Publication Date
WO2021212301A1 true WO2021212301A1 (zh) 2021-10-28

Family

ID=78270996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085799 WO2021212301A1 (zh) 2020-04-21 2020-04-21 雷达组件及无人飞行器

Country Status (2)

Country Link
CN (1) CN113826278A (zh)
WO (1) WO2021212301A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016201057A1 (de) * 2016-01-26 2017-07-27 Conti Temic Microelectronic Gmbh Lidar-vorrichtung, fahrzeug und verfahren zum erfassen eines objekts
CN207921917U (zh) * 2018-03-19 2018-09-28 广州市金海之光影像器材有限公司 一种高效散热的摄影灯
CN207992436U (zh) * 2018-04-03 2018-10-19 上海禾赛光电科技有限公司 一种具有内部风道的激光雷达
CN208997028U (zh) * 2018-09-20 2019-06-18 上海禾赛光电科技有限公司 一种用于激光雷达的散热装置及激光雷达
WO2019119230A1 (zh) * 2017-12-18 2019-06-27 深圳市大疆创新科技有限公司 旋转雷达及无人机
CN110412542A (zh) * 2019-08-23 2019-11-05 上海禾赛光电科技有限公司 激光雷达及其散热装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212341447U (zh) * 2020-04-21 2021-01-12 深圳市大疆创新科技有限公司 雷达组件及无人飞行器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016201057A1 (de) * 2016-01-26 2017-07-27 Conti Temic Microelectronic Gmbh Lidar-vorrichtung, fahrzeug und verfahren zum erfassen eines objekts
WO2019119230A1 (zh) * 2017-12-18 2019-06-27 深圳市大疆创新科技有限公司 旋转雷达及无人机
CN207921917U (zh) * 2018-03-19 2018-09-28 广州市金海之光影像器材有限公司 一种高效散热的摄影灯
CN207992436U (zh) * 2018-04-03 2018-10-19 上海禾赛光电科技有限公司 一种具有内部风道的激光雷达
CN208997028U (zh) * 2018-09-20 2019-06-18 上海禾赛光电科技有限公司 一种用于激光雷达的散热装置及激光雷达
CN110412542A (zh) * 2019-08-23 2019-11-05 上海禾赛光电科技有限公司 激光雷达及其散热装置

Also Published As

Publication number Publication date
CN113826278A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
EP1049877B1 (en) Low profile motor
CN212341447U (zh) 雷达组件及无人飞行器
US8506264B2 (en) Motor and cooling fan with a circuit board having a heat-conducting insulator
US7903406B2 (en) Centrifugal fan
US8007234B2 (en) Axial fan unit having coaxially arranged axial fans
US7800263B2 (en) Heat dissipating fan
EP2549629B1 (en) Rotating electrical machine
JP6260838B2 (ja) 空調用ブロアモータユニット
US20060023421A1 (en) Electronic apparatus with cooling device
WO2018126536A1 (zh) 电机、动力装置、动力套装及飞行器
US11520013B2 (en) LIDAR system including convection cooling
CN110383577B (zh) 旋转雷达及无人机
JP2000012751A (ja) 冷却ファン装置
US20210388851A1 (en) Electric pump
US11015608B2 (en) Axial flow pump with reduced height dimension
JP2018206964A (ja) 電子装置
WO2021212301A1 (zh) 雷达组件及无人飞行器
WO2021212323A1 (zh) 电机、动力装置及无人飞行器
CN111132507B (zh) 客户终端设备
JP2009203837A (ja) 遠心ファン
JP2003139352A (ja) 室外機用電装品ユニット及び空気調和機の室外機
CN217401215U (zh) 散热风扇及具有其的逆变器
JP2000124648A (ja) ヒートシンクファン装置
JPH10154782A (ja) 電子部品冷却装置
CN219018594U (zh) Ec电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932012

Country of ref document: EP

Kind code of ref document: A1