WO2019119230A1 - 旋转雷达及无人机 - Google Patents

旋转雷达及无人机 Download PDF

Info

Publication number
WO2019119230A1
WO2019119230A1 PCT/CN2017/117014 CN2017117014W WO2019119230A1 WO 2019119230 A1 WO2019119230 A1 WO 2019119230A1 CN 2017117014 W CN2017117014 W CN 2017117014W WO 2019119230 A1 WO2019119230 A1 WO 2019119230A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
antenna
rotating
radar control
control board
Prior art date
Application number
PCT/CN2017/117014
Other languages
English (en)
French (fr)
Inventor
王佳迪
王春明
匡亮亮
谭洪仕
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780088038.0A priority Critical patent/CN110383577B/zh
Priority to PCT/CN2017/117014 priority patent/WO2019119230A1/zh
Priority to CN202110330922.9A priority patent/CN113030869A/zh
Publication of WO2019119230A1 publication Critical patent/WO2019119230A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas

Definitions

  • the invention relates to the technical field of drones, in particular to a rotating radar and a drone using a rotating radar.
  • the UAV transmits electromagnetic waves and receives echoes through the antennas and electronic components built in the radar for target detection. Because the electronic components work when they are hot, it is easy to cause their own temperature to rise, exceeding the upper limit of the stable working temperature, affecting the radar. use.
  • the existing heat dissipation method by adding heat sinks, heat pipes, fans, and the like to the heat sink unit additionally increases the volume and weight, and is not suitable for dissipating the radar of the drone with high volume and weight requirements.
  • the technical solution provided by the present invention is: a rotating radar, the rotating radar includes a rotating base, a radar control board, an antenna bracket, and an antenna, and a gap is set between the radar control board and the antenna bracket, the antenna Provided on the antenna bracket, the rotating base is configured to support and drive the radar control board, the antenna bracket, and the antenna to rotate, and at least one side of the radar control board is provided with at least one flow guiding member The flow guide is configured to introduce a gas flow into the gap when the rotating radar rotates.
  • the rotating radar sequentially arranges the antenna, the antenna bracket and the radar control panel from the outer side to the inside.
  • the flow guiding member includes a baffle and a supporting plate connected to the baffle, and an air inlet is formed between the baffle and the supporting plate and the antenna, and the air inlet and the air inlet The gap is connected.
  • the baffle includes an inner flow guiding surface for the inner guiding surface The airflow entering the air inlet is introduced into the gap.
  • the flow guiding member further includes a fixing portion connected to the support plate, and the fixing portion is fixed on at least one of the antenna holder, the antenna, and the radar control board.
  • the number of the fixing portions is two, and is respectively connected to both ends of the support plate.
  • the flow guide comprises at least one reinforcement.
  • the reinforcing portion is connected to an outer side surface of the baffle.
  • the reinforcing portion is connected to an inner flow guiding surface of the deflector.
  • an angle between the cut surface at the edge of the inner flow guiding surface near the edge of the radar control panel and the radar control panel is 90° to 180°.
  • the number of the flow guiding members is plural, and are respectively disposed at two sides of the radar control board.
  • the plurality of flow guiding members are arranged in a rotational symmetry about a rotation axis of the rotating radar.
  • the number of the antenna bracket and the antenna are two, and two antenna brackets are disposed on two sides of the radar control board, and each antenna is disposed at a corresponding antenna bracket away from the radar control board. a side, the air inlet of one of the flow guiding members communicates with a gap between the radar control panel and one of the antenna brackets, and the air inlet of the other air guiding member and the gap between the radar control panel and the other antenna bracket Connected.
  • a mounting protrusion is disposed on one side of each antenna bracket, and mounting protrusions of the two antenna brackets are fixed to each other, and the radar control board is disposed between the two antenna brackets and fixed to the mounting protrusion of the at least one antenna bracket on.
  • a positioning hole is disposed on the rotating base, and the end of the radar control board and/or the antenna bracket is provided with a positioning portion, a positioning portion of the radar control board and/or a positioning portion of the antenna bracket It is fixed in the positioning hole of the spin base.
  • the rotating radar further includes a base, and the rotating base is disposed on the base.
  • the rotating radar further includes a protective cover fixed to the base and forming a cavity together with the base, the radar control board, the antenna bracket, the antenna, and the The flow guide is housed within the cavity.
  • the present invention also provides a drone comprising a body and a stand, the drone further comprising the rotating radar of any of the above.
  • the rotating radar is disposed on the tripod.
  • the rotating radar provided by the present invention is provided with a flow guiding member, and the rotating member of the rotating radar drives the rotating member to rotate, and introduces an air flow into the radar control board and the antenna bracket.
  • the gap between the two takes the heat of the surface of the radar control board to achieve the purpose of heat dissipation, and achieves continuous and stable operation of the rotating radar for the drone.
  • FIG. 1 is a schematic diagram of an overall structure of a rotating radar according to an embodiment of the present invention.
  • Fig. 2 is a plan view showing the entire structure of the rotating radar shown in Fig. 1 with the protective cover removed.
  • FIG. 3 is a partially exploded perspective view of the rotating radar shown in FIG. 1.
  • FIG. 4 is an enlarged schematic view of a rotating base of the rotating radar shown in FIG. 1.
  • Fig. 5 is an enlarged schematic view showing a flow guide of the rotary radar shown in Fig. 1.
  • Figure 6 is an enlarged schematic view of the flow guide shown in Figure 5 from another angle.
  • Fig. 7 is an enlarged schematic view showing the flow guiding member shown in Fig. 5 from still another angle.
  • Fig. 8 is a partial enlarged view of the rotary radar shown in Fig. 2;
  • Fig. 9 is a drone to which the rotating radar shown in Fig. 1 is applied.
  • a component when referred to as being “fixed” to another component, it can be directly on the other component or the component can be present.
  • a component When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • a component When a component is considered to be “set to” another component, it can be placed directly on another component or possibly with a centered component.
  • the terms “vertical,” “horizontal,” “left,” “right,” and the like, as used herein, are for illustrative purposes only.
  • a rotating radar 100 has an electronic component that emits electromagnetic waves and receives echoes for target detection of an aircraft.
  • the rotary radar 100 includes a protective cover 10, a base 20, an antenna 30, an antenna mount 40, a radar control panel 50, and a spin base 60, and the spin base 60 is disposed on the base 20.
  • the protective cover 10 is fixed to the base 20 and forms a cavity together with the base 20.
  • the radar control board 50, the antenna bracket 40, and the antenna 30 are received in the cavity.
  • the antenna 30, the antenna holder 40, and the radar control board 50 are sequentially arranged from the outer side to the inner side, and the rotating base 60 supports and drives the antenna 30, the antenna holder 40, and the radar control board.
  • a gap is set between the radar control board 50 and the antenna holder 40, the antenna 30 is disposed on the antenna holder 40, the antenna 30, the antenna holder 40 and the radar control board 50 They are generally plate-shaped and together form a substantially plate-shaped structure.
  • At least one side of the radar control panel 50 is provided with at least one flow guiding member 70, and the flow guiding member 70 is received in the cavity for introducing a gas flow into the gap when the rotating radar 100 rotates.
  • the rotating base 60 includes a rotating disk 61 and is disposed in rotation.
  • the positioning seat 62 on the top surface of the disk 61 has a substantially rectangular frame shape, and the positioning seat 62 defines a substantially rectangular positioning hole 622.
  • the ends of the radar control board 50 and the antenna holder 40 are fixed in the position.
  • the positioning hole 622 of the spin base 60 is described.
  • the bottom of the positioning hole 622 is provided with a fixing hole, and the end of the radar control board 50 and the antenna holder 40 are received in the positioning hole 622, and the fastener is passed through the fixing hole and the antenna bracket. 40 is fixed to securely connect the radar control panel 50 to the spin base 60.
  • the spin base 60 is not limited to the structure in the present embodiment.
  • the positioning holes 622 may have other shapes, and are not limited to rectangular. In other embodiments, the number of the positioning holes 622 may be more than one.
  • the radar control board 50 and the antenna holder 40 may be respectively fixed in one positioning hole 622. In other embodiments, one of the radar control board 50 and the antenna mount 40 is secured in the locating aperture 622.
  • the manner in which the radar control board 50 and/or the antenna holder 40 and the spin base 60 are fixed is not limited to the embodiment, and may be, for example, a snap, an interference fit, or the like.
  • the rotating base 60 further includes a connecting arm 63 extending from one side of the rotating disk 61.
  • One end of the connecting arm 63 is fixed at an edge position adjacent to the top surface of the rotating disk 61, and protrudes toward the protective cover 10, and the connecting arm
  • a position detector 64 is provided on one end away from the rotary disk 61 for detecting positional information of the target and outputting it.
  • the position detector 64 is a photosensor that cooperates with a grating provided at the base 20 to detect a position.
  • the connecting arm 63 and the position detector 64 are disposed on one side of the rotating base 60, in order to ensure the balance state when the rotating radar 100 rotates, the eccentric rotation is prevented, and the counterweight 60 is further disposed on the rotating base 60, and the weight 65 is provided.
  • One end is connected to the rotary disk 61, and the other end is extended from the rotary disk 61.
  • the weight 65 and the connecting arm 63 are located on opposite sides of the rotating disk 61, and are arranged substantially on the same straight line. The connecting arm 63 and the weight 65 follow the rotation of the rotating disk 61.
  • the antenna 30 is a component for transmitting and receiving electromagnetic waves, and the measurement of the azimuth and elevation coordinates of the target position is closely related to the performance of the antenna 30.
  • the rotating radar can also dissipate heat to the antenna 30 during operation, and the antenna is raised. 30 performance.
  • the number of the antennas 30 is two, and the positions are symmetrically distributed.
  • Each of the antennas 30 has a fixing hole 301 arranged in the circumference and the center array. In the embodiment, the number is nine, which is convenient for fastening.
  • the number of the fixing holes 301 is not limited.
  • the fixing manner of the antenna 30 and the antenna holder 40 is not limited to being fixed by a fastener, for example, by a snapping manner. In other embodiments, the distribution of the fixing holes 301 may be irregularly distributed.
  • the antenna mount 40 is used to support the antenna 30 and/or the radar control panel 50.
  • the number of the antennas 30 is two.
  • the number of the antenna brackets 40 is also two, and the positions of the two antenna brackets 40 are symmetrically distributed.
  • Two antenna brackets 40 are respectively disposed on both sides of the radar control panel 50, and each antenna 30 is disposed on a side of the corresponding antenna bracket 40 facing away from the radar control panel 50.
  • Each antenna holder 40 is disposed at a side of the antenna 30 with a convex portion 401 corresponding to the fixing hole 301 of the antenna 30.
  • the fastener passes through the fixing hole 301 of the antenna 30 and is connected to the antenna bracket.
  • the projections 401 of 40 are positioned to position the antenna 30 on the antenna mount 40.
  • Each of the antenna brackets 40 is provided with a mounting protrusion 411 facing one side of the radar control board 50.
  • the mounting protrusion 411 is provided with a connecting hole through which the two mounting portions 411 can be used.
  • the mounting convex portions 411 of the antenna holder 40 are fixed to each other.
  • the radar control panel 50 is located between the two antenna mounts 40 and is attached to one of the antenna mounts 40.
  • one of the connection holes on each of the mounting projections 411 of one of the antenna holders 40 is two, one of which is for fixing to the other antenna holder 40 and the other for fixing to the radar control panel 50.
  • a positioning portion 421 is disposed at an end of each of the antenna holders 40. The positioning portion 421 of the antenna holder 40 is received in the positioning hole 621 of the rotating base 60.
  • a positioning portion 521 is disposed at an end of the radar control board 50, and a positioning portion 521 of the radar control board 50 is fixed in the positioning hole 622 of the rotating base 60.
  • the number of mounting protrusions 411 on each antenna holder 40 is four, and is located at four corner positions, respectively.
  • a connection hole is formed at a position corresponding to the mounting convex portion 411 at the four corner portions of the radar control panel 50.
  • the number of the mounting protrusions 411 may be one or more, and the position is not limited to the corners, and accordingly, The number of connection holes of the radar control panel 50 is not limited to four, and the position is not limited to the corner.
  • the radar control board 50 can be fixedly coupled to the two antenna mounts 40 at the same time.
  • the position at which the radar control board 50 is fixedly coupled to the antenna holder 40 is not limited to being attached to the mounting protrusion 411, and the connection manner is not limited to the use of a fastening connection.
  • the antenna holder 40 may be provided with a hole toward one side of the antenna 30, and the antenna 30 may be provided with a convex portion toward the side of the antenna holder 40, and the convex portion on the antenna 30 and the antenna holder may be disposed.
  • the holes on the 40 are connected.
  • convex portions may be disposed on both sides of the radar control board 50, and the antenna holder 40 is provided with a hole near the surface of the radar control board 50 to connect the convex portion on the radar control board 50 with the hole on the antenna holder 40.
  • the radar control board 50 is a circuit part of the rotating radar 100, and includes a circuit board and other electronic components for controlling, recording, detecting target information and own state information, etc., and is an important information collecting and processing module, which is actually working. More heat is generated in the process; electronic components generally have a normal operating temperature range. For example, some electronic components generally have a normal operating temperature range of 20 degrees Celsius to 75 degrees Celsius, which is highly susceptible to temperature due to heat generated during operation. If it is too high and fails, it will not continue to work or the work effect will be reduced. It is especially important for the timely cooling of the heating surface.
  • the gap between the radar control board 50 and the antenna holder 40 has a width of 3 mm, which facilitates the dissipation of heat on the surface of the radar control panel 50 and facilitates heat dissipation on the antenna holder 40.
  • the width of the gap between the radar control board 50 and the antenna holder 40 is not limited to 3 mm, and the larger the gap, the better the heat dissipation.
  • the connection relationship between the rotating base 60, the antenna 30, the antenna holder 40, and the radar control board 50 of the rotating radar 100 is that the antenna 30, the antenna holder 40, and the radar control board 50 are vertically arranged from one side to the other side.
  • the antenna 30 is connected to the antenna holder 40 by the fastener passing through the fixing hole 301 of the antenna 30 and the convex portion 401 on both sides of the antenna holder 40; the connection on the mounting convex portion 411 of the antenna holder 40 is passed through the fastener.
  • the corresponding connecting holes on the holes and the radar control board 50 are assembled and fixedly connected to the radar control board 50.
  • a connecting hole on the mounting convex portion 411 of the bracket 40 fixes the two antenna brackets 40.
  • the mounting portion 421 of the antenna holder 40 and the mounting portion 521 of the radar control board 50 are disposed in the positioning hole 622 of the rotating base 60.
  • a gap is provided between the radar control board 50 and the antenna holder 40, and the radar control board 50 and the antenna holder are disposed. 40.
  • the antenna 30 is supported by the rotating base 60 and is rotated by the rotating base 60 during operation.
  • At least one side of the radar control panel 50 of the rotating radar 100 is provided with at least one flow guiding member 70 for rotating the radar control panel 50.
  • a flow of air is introduced into the gap to dissipate heat from the surface of the radar control panel 50 by air flow, thereby achieving heat dissipation.
  • the number of the flow guiding members 70 is two, and are respectively disposed on both sides of the radar control panel 50, centrally disposed in the height direction, and the two flow guiding members 70 surround the rotating radar.
  • the axis of rotation of 100 is rotationally symmetric.
  • Each of the flow guiding members 70 includes a baffle 701 and a supporting plate 703 connected to the deflector 701, and the baffle 701 and the supporting plate 703 form a space with the radar control plate 50.
  • the tuyere 711, the air inlet 711 communicates with the gap, and the air inlet 711 is gradually narrowed toward a direction close to the gap.
  • the deflector 701 includes an inner flow guiding surface 701a for introducing a gas flow entering from the air inlet 711 into the gap.
  • the deflector 701 is a curved plate.
  • the number of the support plates 703 is two, located at both ends of the baffle 701, and the shape of the support plate 703 is substantially fan-shaped.
  • the flow guiding members 70 are two, and the air inlet 711 of one of the flow guiding members 70 communicates with the gap between the radar control panel 50 and one of the antenna brackets 40, and the other of the flow guiding members 70
  • the air inlet 711 communicates with the radar control panel 50 and the air inlet 711 of the other antenna bracket 40.
  • the deflector 711 rotates to interfere with the direction of air flow and can be directed into the gap between the radar control panel 50 and the antenna mount 40.
  • the air inlets 711 of the plurality of flow guides 70 may be disposed to communicate with the same gap.
  • Each of the flow guiding members 70 further includes a fixing portion 702, the fixing portion 702 and the The support plate 703 is connected, and the fixing portion 702 is fixed to at least one of the antenna holder 40, the antenna 30, and the radar control board 50.
  • the number of the fixing portions 702 is two, and each fixing plate 702 is connected to one straight side of each supporting plate 703, and the end portion of the deflector 701 is connected to the arc edge of the supporting plate 703.
  • Each fixing portion 702 is fixed to the side of the two antenna holders 40.
  • the flow guide 70 further includes at least one reinforcement 704.
  • the reinforcing portion 704 is coupled to an outer side surface of the deflector 701 and fixed to a side of one of the antenna holders 40. In other embodiments, the reinforcing portion 704 may also be disposed to be connected to the inner flow guiding surface 701a of the baffle 701.
  • the angle 812 between the cut surface 802 at any position on the inner flow guiding surface 701a of the baffle 701 and the radar control panel 50 may be any value between 90° and 180°. In the present embodiment, the angle between the cut surface of the inner flow guiding surface 701a near the edge of the radar control panel 50 and the radar control panel 50 is about 180°. In other embodiments, the angle between the cut surface of the inner flow guiding surface 701a near the edge of the radar control panel 50 and the radar control panel 50 may be 90° to 180°.
  • the shape of the baffle 701 may be a diagonal plate or other irregular shape.
  • the number of the flow guiding members 70 may be one or more, and may not be set to rotational symmetry or may not be set at a center position.
  • the rotating base 60 drives the antenna 30, the antenna holder 40, the radar control board 50, and the flow guiding member 70 to rotate together, and the guiding member 70 introduces the surrounding air into the air inlet 711, and the air flows to the antenna bracket 40.
  • the air continues to flow in the gap, taking away the heat generated by the surface of the radar control panel 50 and the antenna bracket 40, and dissipating it to the outside to avoid the radar control panel.
  • the accumulation of heat on the 50 and the antenna holder 40 achieves the purpose of dissipating heat to the radar control board 50 and the antenna 30.
  • the embodiment further provides a drone 1 comprising a body 2, a stand 3, and a rotating radar 100 disposed on the stand 3.
  • the rotating radar 100 has good heat dissipation effect and stable working performance.
  • the body 2 is provided with four support arms, two propellers are arranged on each support arm, and the propeller rotation control drone 1 is executed at a set altitude. task.
  • the drone 1 can be used to perform tasks such as aerial photography, transportation, monitoring, exploration, search and rescue, etc.
  • the target detection accuracy is high and the stability is good.
  • the drone 1 may also include other components, which are not limited by the present invention. Other components may have an engine, a control system, a function cabin, etc., and the engine provides a power source to start and stop the drone 1, and the control system realizes the ground.
  • the platform controls the operation and control of the drone, and the function bin can be used to collect and transmit information and other functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供一种旋转雷达(100)及无人机(1),所述旋转雷达(100)包括旋转基座(60)、雷达控制板(50)、天线支架(40)、和天线(30),雷达控制板(50)与天线支架(40)之间设置间隙,天线(30)设置在天线支架(40)上,旋转基座用于支撑并带动雷达控制板(50)、天线支架(40)、和天线(30)旋转,雷达控制板(50)的至少一侧设置至少一导流件(70),导流件(70)用于在旋转雷达(100)旋转时将气流导入所述间隙。通过旋转雷达(100)自身旋转特性带动导流件(70)转动,将空气流引入所述雷达控制板(50)与所述天线支架(40)的空隙,带走所述雷达控制板(50)表面的热量达到散热的目的,实现无人机(1)用旋转雷达(100)的持续稳定工作。

Description

旋转雷达及无人机 技术领域
本发明涉及无人机技术领域,尤其涉及一种旋转雷达、及应用旋转雷达的无人机。
背景技术
无人机通过雷达内设的天线和电子元器件发射电磁波和接收回波进行目标探测,由于电子元器件工作时发热,易导致其自身温度升高,超出其稳定工作的温度上限,影响雷达的使用。而现有通过增加散热片、热管、风扇等辅助散热器件的散热方式会额外增加体积和重量,不适用于对体积和重量要求高的无人机的雷达进行散热。
发明内容
鉴于以上内容,有必要提供一种改进的旋转雷达及应用旋转雷达的无人机,该旋转雷达具有散热效果好且不影响自身重量、工作稳定的特点。
本发明提供的技术方案为:一种旋转雷达,所述旋转雷达包括旋转基座、雷达控制板、天线支架、和天线,所述雷达控制板与所述天线支架之间设置间隙,所述天线设置在所述天线支架上,所述旋转基座用于支撑并带动所述雷达控制板、所述天线支架、和所述天线旋转,所述雷达控制板的至少一侧设置至少一导流件,所述导流件用于在所述旋转雷达旋转时将气流导入所述间隙。
进一步地,所述旋转雷达从外侧面至内部顺序排列所述天线、所述天线支架和所述雷达控制板。
进一步地,所述导流件包括导流板和与所述导流板连接的支撑板,所述导流板和所述支撑板与所述天线之间形成进风口,所述进风口与所述间隙连通。
进一步地,所述导流板包括内导流面,所述内导流面用于将从所 述进风口进入的气流导入所述间隙中。
进一步地,所述导流件还包括固定部,所述固定部与所述支撑板连接,所述固定部固定在所述天线支架、所述天线、所述雷达控制板的至少一个上。
进一步地,所述固定部的数量为两个,并分别与所述支撑板的两端连接。
进一步地,所述导流件包括至少一个加强部。
进一步地,所述加强部连接在所述导流板的外侧面上。
进一步地,所述加强部连接在所述导流板的内导流面上。
进一步地,所述内导流面靠近所述雷达控制板的边缘处的切面与所述雷达控制板之间的角度为90°至180°。
进一步地,所述导流件的数量为多个,且分别设置在所述雷达控制板的两侧。
进一步地,所述多个导流件绕所述旋转雷达的旋转轴呈旋转对称设置。
进一步地,所述天线支架和所述天线的数量均为两个,两个天线支架设置在所述雷达控制板的两侧,每一天线设置在对应的天线支架背离所述雷达控制板的一侧,其中一个导流件的进风口与所述雷达控制板与其中一个天线支架之间的间隙连通,另一个导流件的进风口与所述雷达控制板与另一个天线支架之间的间隙连通。
进一步地,每一天线支架的一侧设置安装凸部,两个天线支架的安装凸部相互固定,所述雷达控制板设置在两个天线支架之间并固定在至少一个天线支架的安装凸部上。
进一步地,所述旋转基座上设置定位孔,所述雷达控制板和/或所述天线支架的端部设置定位部,所述雷达控制板的定位部和/或所述天线支架的定位部固定在所述旋转基座的定位孔中。
进一步地,所述旋转雷达还包括底座,所述旋转基座设置在所述底座上。
进一步地,所述旋转雷达还包括保护罩,所述保护罩与所述底座固定,并与所述底座共同形成空腔,所述雷达控制板、所述天线支架、所述天线、和所述导流件收容在所述空腔内。
本发明还提供一种无人机,包括机体和脚架,所述无人机还包括上述任一项所述的旋转雷达。
进一步地,所述旋转雷达设置于所述脚架上。
与现有技术相比,本发明提供的旋转雷达设置有导流件,通过所述旋转雷达自身旋转特性带动所述导流件转动,将空气流引入所述雷达控制板与所述天线支架之间的空隙,带走所述雷达控制板表面的热量,达到散热的目的,实现无人机用旋转雷达的持续稳定工作。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1是本发明一实施例提供的旋转雷达的整体结构示意图。
图2是图1所示的旋转雷达去掉保护罩的整体结构俯视图。
图3是图1所示的旋转雷达的局部分解示意图。
图4是图1所示的旋转雷达的旋转基座的放大示意图。
图5是图1所示的旋转雷达的导流件的放大示意图。
图6是图5所示的导流件从另一角度的放大示意图。
图7是图5所示的导流件从又一角度的放大示意图。
图8是图2所示的旋转雷达的局部放大图。
图9是应用图1所示的旋转雷达的无人机。
附图标记说明:
Figure PCTCN2017117014-appb-000001
Figure PCTCN2017117014-appb-000002
如下具体实施方式将结合上述附图进一步说明本发明实施例。
具体实施方式
为了能够更清楚地理解本发明实施例的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施方式中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明实施例,所描述的实施方式仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施方式,都属于本发明实施例保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明实施例的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明实施例。
请参阅图1至图3,本发明一实施例提供的旋转雷达100,内设电子元器件发射电磁波和接收回波为飞行器进行目标探测。所述旋转雷达100包括保护罩10、底座20、天线30、天线支架40、雷达控制板50和旋转基座60,所述旋转基座60设置在所述底座20上。所述保护罩10与所述底座20固定,并与所述底座20共同形成空腔,所述雷达控制板50、所述天线支架40、所述天线30收容在所述空腔内。从外侧面至内部顺序排列所述天线30、所述天线支架40和所述雷达控制板50,所述旋转基座60支撑并带动所述天线30、所述天线支架40和所述雷达控制板50旋转,所述雷达控制板50与所述天线支架40之间设置间隙,所述天线30设置在所述天线支架40上,所述天线30、所述天线支架40和所述雷达控制板50均大致呈板状,且共同组成大致板型的结构。所述雷达控制板50的至少一侧设置至少一导流件70,所述导流件70收容在所述空腔中,用于在所述旋转雷达100旋转时将气流导入所述间隙。
请一并参阅图4,所述旋转基座60包括旋转盘61和设置在旋转 盘61顶面上的定位座62,定位座62大致呈矩形框体状,定位座62上开设大致长方形的定位孔622,所述雷达控制板50和所述天线支架40的端部固定在所述旋转基座60的定位孔622中。在本实施方式中,定位孔622的底部设置有固定孔,所述雷达控制板50和所述天线支架40的端部收容在定位孔622,并通过紧固件穿过固定孔后与天线支架40固定,从而将所述雷达控制板50与旋转基座60固定连接。
在其他实施方式中,旋转基座60不限定为本实施方式中的结构。在其他实施方式中,定位孔622可为其他形状,不限定为长方形。在其他实施方式中,定位孔622的数量可不止一个,例如可以是雷达控制板50和天线支架40分别固定在一个定位孔622中。在其他实施方式中,雷达控制板50和所述天线支架40之一固定在定位孔622中。在其他实施方式中,所述雷达控制板50和/或所述天线支架40与旋转基座60之间的固定方式不限定于本实施方式,例如可以是卡扣、过盈配合等。
所述旋转基座60还包括从旋转盘61的一侧伸出的连接臂63,连接臂63的一端与旋转盘61的顶面临近边缘位置处固定,并朝向保护罩10伸出,连接臂63远离旋转盘61的一端上设置位置检测器64,用于检测目标的位置信息并输出。在本实施方式中,位置检测器64为光电传感器,其与设置在底座20的光栅配合检测位置。由于旋转基座60的一侧设置连接臂63和位置检测器64,为保证旋转雷达100旋转时的平衡状态,防止偏心旋转,旋转基座60的上还设置配重块65,配重块65的一端与旋转盘61连接,另一端伸出旋转盘61。配重块65与连接臂63位于旋转盘61的相对两侧,且大致排列在同一直线上。连接臂63和配重块65跟随旋转盘61转动。
所述天线30是用来发射和接收电磁波的部件,目标位置的方位和仰角坐标的测量与所述天线30的性能息息相关,本实施方式中旋转雷达在工作时同样能够对天线30散热,提升天线30的性能。本实 施例中所述天线30的数量为两个,位置为对称分布;每一所述天线30的四周和中心阵列排设有固定孔301,在本实施方式中数量为9个,便于通过紧固件与所述天线支架40的连接。在其他实施方式中,固定孔301的数量不限,另外,天线30与天线支架40的固定方式也不限定为采用紧固件固定,例如采用卡扣方式固定。在其他实施方式中,固定孔301的分布可以不规则分布。
所述天线支架40用于支撑所述天线30和/或所述雷达控制板50。本实施例中,所述天线30的数量为两个,相应地,所述天线支架40的数量也为两个,两个天线支架40的位置对称分布。两个天线支架40分别间隔设置在雷达控制板50的两侧,每一天线30设置在对应的天线支架40背离所述雷达控制板50的一侧。每一天线支架40朝向所述天线30的一侧设置与所述天线30的固定孔301相应的凸部401,紧固件穿过所述天线30的固定孔301,并连接于所述天线支架40的凸部401上,从而将天线30定位在天线支架40上。每一天线支架40朝向所述雷达控制板50的一侧设置安装凸部411,所述安装凸部411上设置有连接孔,采用紧固件穿过所述安装凸部411可以将两个所述天线支架40的安装凸部411相互固定。
雷达控制板50位于两个天线支架40之间,并固定在其中一个天线支架40上。在本实施方式中,其中一个天线支架40的每一安装凸部411上的连接孔为两个,其中一个用于与另一天线支架40固定,另一用于与雷达控制板50固定。每一所述天线支架40的端部设置定位部421,所述天线支架40的定位部421收容在所述旋转基座60的定位孔621中。所述雷达控制板50的端部设置一定位部521,所述雷达控制板50的定位部521固定在所述旋转基座60的定位孔622中。
在本实施方式中,每一天线支架40上的安装凸部411的数量为四个,且分别位于四个角部位置处。雷达控制板50的四个角部上对应安装凸部411的位置开设连接孔。在其他实施方式中,安装凸部411的数量可以为一个或一个以上,且位置不限定在角部处,相应地, 雷达控制板50的连接孔的数量不限定为四个,位置不限定在角部。
在其他实施方式中,雷达控制板50可同时与两个天线支架40固定连接。在其他实施方式中,雷达控制板50与天线支架40固定连接的位置不限于连接在安装凸部411上,连接方式也不限于采用紧固连接。
在其他实施方式中,所述天线支架40朝向所述天线30的一侧可以设置孔,所述天线30朝向所述天线支架40一侧可以设置凸部,将天线30上的凸部与天线支架40上的孔连接。在其他实施方式中,雷达控制板50的两侧可设置凸部,天线支架40靠近雷达控制板50的面上设置孔,将雷达控制板50上的凸部与天线支架40上的孔连接。
所述雷达控制板50为旋转雷达100的电路部分,包括电路板和其他电子元器件,用于控制、记录、检测目标信息和自身状态信息等,是重要的信息收集和处理模块,在实际工作过程中会产生较多的热量;电子元器件一般具有正常的工作温度范围,例如一些电子元器件的一般正常工作温度范围在20摄氏度到75摄氏度之间,由于工作时产生热量,极易因温度过高而发生故障无法继续工作或工作效果降低,对其发热面的及时散热尤为重要。本实施例中,雷达控制板50与天线支架40之间的间隙的宽度为3mm,所述间隙有利于所述雷达控制板50表面热量的散发,以及有利于对天线支架40上的热量散发。在其他实施方式中,所述雷达控制板50与所述天线支架40的间隙的宽度不限于3mm,间隙越大,越有利于散热。
所述旋转雷达100的旋转基座60、天线30、天线支架40、及雷达控制板50的连接关系为:从一侧至另一侧依次竖直排列天线30、天线支架40、雷达控制板50、另一天线支架40、另一天线30。通过紧固件穿过天线30的固定孔301、天线支架40的两侧的凸部401,将天线30与天线支架40连接;通过紧固件穿过天线支架40的安装凸部411上的连接孔、雷达控制板50上相应的连接孔,将天线支架40与雷达控制板50进行装配并固定连接。通过紧固件穿过两个天线 支架40的安装凸部411上的连接孔,将两个天线支架40固定。天线支架40的安装部421、雷达控制板50的安装部521设置在所述旋转基座60的定位孔622中,雷达控制板50与天线支架40之间设置间隙,雷达控制板50、天线支架40、和天线30由旋转基座60支撑,工作时由旋转基座60带动一起转动。
请再一并参阅图5至图8,所述旋转雷达100的雷达控制板50的至少一侧设置至少一导流件70,所述导流件70用于在所述雷达控制板50旋转时将气流导入所述间隙,通过空气流动带离所述雷达控制板50表面的热量,从而达到散热的目的。在本实施方式中,导流件70的数量为两个,且分别设置在所述雷达控制板50的两侧,高度方向上的居中设置,所述两个导流件70绕所述旋转雷达100的旋转轴呈旋转对称设置。
每一所述导流件70包括导流板701和与所述导流板701连接的支撑板703,所述导流板701和所述支撑板703与所述雷达控制板50之间形成进风口711,所述进风口711与所述间隙连通,朝向靠近所述空隙的方向,所述进风口711逐渐变窄。所述导流板701包括内导流面701a,所述内导流面701a用于将从所述进风口711进入的气流导入所述间隙中。在本实施方式中,所述导流板701为弧形板。支撑板703的数量为两个,位于导流板701的两端,支撑板703的形状大致呈扇形。
在本实施方式中,导流件70为两个,其中一个导流件70的进风口711与所述雷达控制板50与其中一个天线支架40之间的间隙连通,另一个导流件70的进风口711与所述雷达控制板50与另一个天线支架40的进风口711连通。当旋转雷达100工作时,所述导流板711转动,对空气流动方向起阻扰作用,可以将其导向所述雷达控制板50和所述天线支架40之间的间隙中。在其他实施方式中,也可以设置为多个导流件70的进风口711与同一个间隙连通。
每一所述导流件70还包括固定部702,所述固定部702与所述 支撑板703连接,所述固定部702固定在所述天线支架40、所述天线30、所述雷达控制板50的至少一个上。在本实施方式中,所述固定部702的数量为两个,每一固定板702与每一支撑板703的一个直边连接,导流板701的端部与支撑板703的弧边连接。每个固定部702与两个天线支架40的侧边固定。所述导流件70还包括至少一个加强部704。所述加强部704连接在所述导流板701的外侧面上,并与其中一个天线支架40的侧边固定。在其他实施方式中,所述加强部704也可设置为连接在所述导流板701的内导流面701a上。
所述导流板701的内导流面701a上任一位置处的切面802与所述雷达控制板50之间的角度812可以为90°至180°之间任意一个值。在本实施方式中,所述内导流面701a靠近所述雷达控制板50的边缘处的切面与所述雷达控制板50之间的角度为约180°。在其他实施方式中,所述内导流面701a靠近所述雷达控制板50的边缘处的切面与所述雷达控制板50之间的角度可以为90°至180°。
可以理解,在其他实施例中所述导流板701的形状可以为斜直板或其他异形。所述导流件70的数量可以为一个或一个以上,可以不设置为旋转对称,也可以不设置在居中位置。
当旋转雷达100工作时,旋转基座60带动天线30、天线支架40、雷达控制板50、导流件70一起转动,导流件70将周围的空气引入进风口711,空气流动至天线支架40与雷达控制板50留有靠近进风口711的间隙中,空气在所述间隙中继续流动,带走雷达控制板50和天线支架40的表面产生的热量,并散出至外部,避免雷达控制板50和天线支架40上热量的积聚,达到给雷达控制板50及天线30散热的目的。
本实施方式还提供一种无人机1,包括机体2、脚架3、以及设置在脚架3上的旋转雷达100。所述旋转雷达100散热效果好,工作性能稳定,所述机体2上设置4个支撑臂,每一支撑臂上设有两个螺旋桨,螺旋桨转动控制无人机1飞行在设定的空中高度执行任务。该 无人机1可以用于执行航拍、运输、监测、勘探、搜救等任务,目标探测准确性高、稳定性好。无人机1还可以包括其他元部件,本发明对此不作限定,其他元部件例如可以有发动机、控制系统、功能舱等结构,发动机提供动力源启动和停止无人机1,控制系统实现地面平台操控无人机的运行和管控,功能仓可用于收集、传递信息数据等功能。
以上实施方式仅用以说明本发明实施例的技术方案而非限制,尽管参照以上较佳实施方式对本发明实施例进行了详细说明,本领域的普通技术人员应当理解,可以对本发明实施例的技术方案进行修改或等同替换都不应脱离本发明实施例的技术方案的精神和范围。

Claims (19)

  1. 一种旋转雷达,其特征在于:所述旋转雷达包括旋转基座、雷达控制板、天线支架、和天线,所述雷达控制板与所述天线支架之间设置间隙,所述天线设置在所述天线支架上,所述旋转基座用于支撑并带动所述雷达控制板、所述天线支架、和所述天线旋转,所述雷达控制板的至少一侧设置至少一导流件,所述导流件用于在所述旋转雷达旋转时将气流导入所述间隙。
  2. 根据权利要求1所述的旋转雷达,其特征在于:所述旋转雷达从外侧面至内部顺序排列所述天线、所述天线支架和所述雷达控制板。
  3. 根据权利要求1所述的旋转雷达,其特征在于:所述导流件包括导流板和与所述导流板连接的支撑板,所述导流板和所述支撑板与所述天线之间形成进风口,所述进风口与所述间隙连通。
  4. 根据权利要求3所述的旋转雷达,其特征在于:所述导流板包括内导流面,所述内导流面用于将从所述进风口进入的气流导入所述间隙中。
  5. 根据权利要求3所述的旋转雷达,其特征在于:所述导流件还包括固定部,所述固定部与所述支撑板连接,所述固定部固定在所述天线支架、所述天线、所述雷达控制板的至少一个上。
  6. 根据权利要求5所述的旋转雷达,其特征在于:所述固定部的数量为两个,并分别与所述支撑板的两端连接。
  7. 根据权利要求1所述的旋转雷达,其特征在于:所述导流件包括至少一个加强部。
  8. 根据权利要求7所述的旋转雷达,其特征在于:所述加强部连接在所述导流板的外侧面上。
  9. 根据权利要求7所述的旋转雷达,其特征在于:所述加强部连接在所述导流板的内导流面上。
  10. 根据权利要求2所述的旋转雷达,其特征在于:所述内导流面靠近所述雷达控制板的边缘处的切面与所述雷达控制板之间的角 度为90°至180°。
  11. 根据权利要求1所述的旋转雷达,其特征在于:所述导流件的数量为多个,且分别设置在所述雷达控制板的两侧。
  12. 根据权利要求11所述的旋转雷达,其特征在于:所述多个导流件绕所述旋转雷达的旋转轴呈旋转对称设置。
  13. 根据权利要求11所述的旋转雷达,其特征在于:所述天线支架和所述天线的数量均为两个,两个天线支架设置在所述雷达控制板的两侧,每一天线设置在对应的天线支架背离所述雷达控制板的一侧,其中一个导流件的进风口与所述雷达控制板与其中一个天线支架之间的间隙连通,另一个导流件的进风口与所述雷达控制板与另一个天线支架之间的间隙连通。
  14. 根据权利要求1所述的旋转雷达,其特征在于:每一天线支架的一侧设置安装凸部,两个天线支架的安装凸部相互固定,所述雷达控制板设置在两个天线支架之间并固定在至少一个天线支架的安装凸部上。
  15. 根据权利要求1所述的旋转雷达,其特征在于:所述旋转基座上设置定位孔,所述雷达控制板和/或所述天线支架的端部设置定位部,所述雷达控制板的定位部和/或所述天线支架的定位部固定在所述旋转基座的定位孔中。
  16. 根据权利要求1所述的旋转雷达,其特征在于:所述旋转雷达还包括底座,所述旋转基座设置在所述底座上。
  17. 根据权利要求16所述的旋转雷达,其特征在于:所述旋转雷达还包括保护罩,所述保护罩与所述底座固定,并与所述底座共同形成空腔,所述雷达控制板、所述天线支架、所述天线、和所述导流件收容在所述空腔内。
  18. 一种无人机,包括机体和脚架,其特征在于:还包括如权利要求1-18中任一项所述的旋转雷达。
  19. 根据权利要求18所述的无人机,其特征在于,所述旋转雷达设置于所述脚架上。
PCT/CN2017/117014 2017-12-18 2017-12-18 旋转雷达及无人机 WO2019119230A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780088038.0A CN110383577B (zh) 2017-12-18 2017-12-18 旋转雷达及无人机
PCT/CN2017/117014 WO2019119230A1 (zh) 2017-12-18 2017-12-18 旋转雷达及无人机
CN202110330922.9A CN113030869A (zh) 2017-12-18 2017-12-18 旋转雷达及无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117014 WO2019119230A1 (zh) 2017-12-18 2017-12-18 旋转雷达及无人机

Publications (1)

Publication Number Publication Date
WO2019119230A1 true WO2019119230A1 (zh) 2019-06-27

Family

ID=66992847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117014 WO2019119230A1 (zh) 2017-12-18 2017-12-18 旋转雷达及无人机

Country Status (2)

Country Link
CN (2) CN110383577B (zh)
WO (1) WO2019119230A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112166334A (zh) * 2019-09-30 2021-01-01 深圳市大疆创新科技有限公司 雷达装置及可移动平台
WO2021212301A1 (zh) * 2020-04-21 2021-10-28 深圳市大疆创新科技有限公司 雷达组件及无人飞行器
WO2024104587A1 (de) * 2022-11-17 2024-05-23 Tutsch Fabian Funkvermessungs-flugdrohne

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019119230A1 (zh) * 2017-12-18 2019-06-27 深圳市大疆创新科技有限公司 旋转雷达及无人机
CN112154100A (zh) * 2019-11-04 2020-12-29 深圳市大疆创新科技有限公司 飞行器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100045544A1 (en) * 2007-02-13 2010-02-25 Thales Airborne radar notably for a drone
CN103840244A (zh) * 2012-11-22 2014-06-04 古野电气株式会社 雷达天线以及具备该雷达天线的雷达装置
CN106672225A (zh) * 2016-12-27 2017-05-17 昆山优尼电能运动科技有限公司 无人机散热风路系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752794B2 (ja) * 1989-05-09 1995-06-05 三菱電機株式会社 冷却装置
EP0535374B1 (de) * 1991-09-30 1996-12-04 Siemens Aktiengesellschaft Radaranlage mit einem sich im Azimut drehenden Antennensystem
JPH10170575A (ja) * 1996-12-05 1998-06-26 Mitsubishi Electric Corp ボアサイトアライメント板
DE19810437A1 (de) * 1997-08-26 1999-03-04 Bosch Gmbh Robert Elektrische Maschine
JP5731745B2 (ja) * 2009-10-30 2015-06-10 古野電気株式会社 アンテナ装置およびレーダ装置
FR2976764B1 (fr) * 2011-06-17 2014-12-26 Thales Sa Systeme electronique comprenant une structure fixe comportant une enveloppe de protection d'equipements electroniques et une structure mobile par rapport a la structure fixe, la structure mobile comportant une ouverture d'aspiration de l'air.
CN203396945U (zh) * 2013-07-06 2014-01-15 西安电子工程研究所 一种便携式地面监视雷达
CN203617419U (zh) * 2013-12-06 2014-05-28 中国电子科技集团公司第三十八研究所 一体式小型天线平台
CN205069853U (zh) * 2015-09-20 2016-03-02 金华技物光电研究所有限公司 全范围定向天线系统的航空器天线结构
CN205452528U (zh) * 2016-02-17 2016-08-10 厦门九华通信设备厂 一种车载Ku频段卫星通信终端
CN106347702B (zh) * 2016-08-24 2018-07-27 东南大学 一种喷气导流板
CN107223292B (zh) * 2016-09-26 2019-04-23 深圳市大疆创新科技有限公司 天线及无人机
CN106876985B (zh) * 2017-03-06 2023-08-01 中国电子科技集团公司第三十八研究所 机载双频段天线的稳定平台系统
WO2019119230A1 (zh) * 2017-12-18 2019-06-27 深圳市大疆创新科技有限公司 旋转雷达及无人机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100045544A1 (en) * 2007-02-13 2010-02-25 Thales Airborne radar notably for a drone
CN103840244A (zh) * 2012-11-22 2014-06-04 古野电气株式会社 雷达天线以及具备该雷达天线的雷达装置
CN106672225A (zh) * 2016-12-27 2017-05-17 昆山优尼电能运动科技有限公司 无人机散热风路系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112166334A (zh) * 2019-09-30 2021-01-01 深圳市大疆创新科技有限公司 雷达装置及可移动平台
WO2021062657A1 (zh) * 2019-09-30 2021-04-08 深圳市大疆创新科技有限公司 雷达装置及可移动平台
US20220221555A1 (en) * 2019-09-30 2022-07-14 SZ DJI Technology Co., Ltd. Radar device and mobile platform
CN112166334B (zh) * 2019-09-30 2024-04-09 深圳市大疆创新科技有限公司 雷达装置及可移动平台
WO2021212301A1 (zh) * 2020-04-21 2021-10-28 深圳市大疆创新科技有限公司 雷达组件及无人飞行器
WO2024104587A1 (de) * 2022-11-17 2024-05-23 Tutsch Fabian Funkvermessungs-flugdrohne

Also Published As

Publication number Publication date
CN110383577A (zh) 2019-10-25
CN113030869A (zh) 2021-06-25
CN110383577B (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2019119230A1 (zh) 旋转雷达及无人机
KR101924209B1 (ko) 장거리 능동 위상 배열 레이더의 방열 방법
US11820496B2 (en) Heat dissipation structure, heat dissipation method and device, unmanned aerial vehicle, and readable storage medium
WO2019140660A1 (zh) 机身及包括该机身的无人机
CN206394889U (zh) 无人机
JP6913980B2 (ja) 飛行体および飛行体のフレーム
US11335988B2 (en) Automated feed source changer for a compact test range
JP7050958B2 (ja) アンテナ装置
US10820449B2 (en) Electronic chassis with heat exchanger
CN110352162A (zh) 无人机及其机壳
CN208868303U (zh) 散热结构及无人飞行器
US20130231041A1 (en) Air guiding apparatus
US20220221555A1 (en) Radar device and mobile platform
CN214544334U (zh) 一种无人机干扰设备
WO2021056194A1 (zh) 无人机
CN109050953B (zh) 具有多摄像头的轻量化无人机云台及无人机系统
CN209467337U (zh) 一种轻量化无人机云台
CN207346071U (zh) 无人机及基壳体
WO2021189441A1 (zh) 测距装置及可移动平台
CN219421442U (zh) 一种便于散热的吊舱装置
WO2023074776A1 (ja) 空冷冷却構造およびアンテナ装置
WO2021212301A1 (zh) 雷达组件及无人飞行器
CN216332759U (zh) 基于矢量无人机机身共形设计的雷达侦察系统
WO2022028251A1 (zh) 保持部件、摄像装置以及摄像系统
CN209112424U (zh) 拼接式无人机机身以及具有其的无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935273

Country of ref document: EP

Kind code of ref document: A1