WO2021210189A1 - 病原体量子結晶固相化基板およびそれを用いる病原体の量子結晶固相化蛍光計数法 - Google Patents

病原体量子結晶固相化基板およびそれを用いる病原体の量子結晶固相化蛍光計数法 Download PDF

Info

Publication number
WO2021210189A1
WO2021210189A1 PCT/JP2020/021837 JP2020021837W WO2021210189A1 WO 2021210189 A1 WO2021210189 A1 WO 2021210189A1 JP 2020021837 W JP2020021837 W JP 2020021837W WO 2021210189 A1 WO2021210189 A1 WO 2021210189A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
substrate
fluorescence
immobilized
antigen
Prior art date
Application number
PCT/JP2020/021837
Other languages
English (en)
French (fr)
Inventor
裕起 長谷川
長谷川 克之
Original Assignee
有限会社マイテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社マイテック filed Critical 有限会社マイテック
Publication of WO2021210189A1 publication Critical patent/WO2021210189A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to a pathogen quantum crystal-immobilized substrate on which a pathogen is immobilized with a quantum crystal and a novel fluorescence counting method for a pathogen using the same, particularly a pathogen (virus, bacterium, fungus, etc.) that produces an antibody in a sample. (Including heavy metal) or its antibody is immobilized by the quantum crystal aggregation method, and the immobilization substrate for fluorescence counting and the fluorescence counting method for counting the fluorescent spots in the fluorescent image are used to quantify the pathogen or its antibody. ..
  • Virus test and antibody test are tests that collect mucus, sputum and blood in the back of the nose and throat and examine proteins such as antigen virus and antibody contained in them, and the PCR method is currently the mainstream.
  • This PCR method is a highly accurate method of collecting a sample, amplifying the gene contained in the sample, and inspecting whether or not it matches a specific gene sequence.
  • this method uses proficient pretreatment techniques and sophisticated inspection equipment, and the inspection takes at least about 6 hours or more. Therefore, a simple and rapid gene amplification method is desired, and although the LAMP (Loop-Mediated Isothermal Amplification) method has been proposed, it is a PCR method that uses gene amplification to the last, and is not suitable for rapid in-situ testing. It is a qualitative judgment of whether it is positive or negative, and it is applied quantitatively.
  • a serological diagnostic method using an immunochromatography method for detecting a virus-specific antibody in serum or an enzyme-linked immunosorbent assay (ELISA), which is a simple and rapid virus test method has been proposed.
  • ELISA enzyme-linked immunosorbent assay
  • virus-specific antibody detection method by the immunochromatography method enables qualitative analysis by visual judgment, it does not require a special device, and it is possible to perform an outpatient / bedside examination quickly and easily, and clinical examination is as quick as possible.
  • introduction to the field is required, in the case of COVID-19, it is currently difficult to detect virus-specific antibodies in the sera of COVID-19 patients up to 6 days after the onset, and even in the serum 1 week after the onset. It became clear that the detection rate was only about 20%.
  • the antibody positive rate increases over time, and after 13 days of onset, most patients become positive for IgG antibody in serum, while the detection rate for IgM antibody is low and only IgG antibody becomes positive. Since there are many cases, it is considered that the serological diagnosis of COVID-19 using the kit requires evaluation using a pair of sera up to 6 days after the onset and sera 13 days after the onset. Furthermore, non-specific reactions may not be ruled out by tests that are not gene-enhanced, and the interpretation of the results is unreliable and requires careful examination by comprehensively judging multiple test results and clinical symptoms. Will be done. Under such circumstances, pathogen testing requires accuracy comparable to that of the PCR method for amplifying genes, and simple and rapid testing equivalent to that of the immunochromatography method.
  • the present inventors have conducted diligent research in order to realize the two problems, that is, the accuracy comparable to that of the PCR method and the method capable of performing a simple and rapid test equivalent to that of the immunochromatography method.
  • the fluorescent antibody method for investigating the distribution of an antigen using an antibody that specifically recognizes an antigen in a tissue or cell.
  • An object of the present invention is to realize a method capable of performing a simple and rapid test equivalent to the above-mentioned immunochromatography method while having an accuracy comparable to the above-mentioned PCR method.
  • the present inventor can agglomerate the pathogen at the same time when the quantum crystal of the plasmon metal complex is aggregated, and the pathogen is dispersed and immobilized together with the quantum crystal.
  • the fluorescence of the pathogen appears in dots or granules on the fluorescent image due to the surface plasmon enhancing action of the plasmon metal complex, and the number of pathogens can be counted as the punctate fluorescence number (hereinafter, the fluorescence counting method).
  • the fluorescence counting method it has been found that the non-specific reaction can be eliminated or reduced by the fluorescence counting method, and the accuracy is remarkably improved.
  • One of the present inventions was made based on the above findings, and is an immobilized substrate applied to a novel fluorescence counting method, in which an inactivated pathogen or an antibody thereof is subjected to an electrode on a metal substrate together with a plasmon metal complex. Aggregated by potential difference, immobilized with metal complex quantum crystals on a metal substrate, immobilized pathogens or immobilized antibodies can be labeled by antigen-antibody reaction, and can be counted and quantified by fluorescence counting method. It is in a solid phase substrate, which is characterized by being present.
  • the labeled fluorescent molecule captured by the antigen-antibody reaction can be efficiently fluorescently enhanced by surface plasmon excitation with a plasmon metal complex.
  • This is different from the conventional surface plasmon excitation enhanced fluorescence spectroscopy (SPFS) immunoassay (Non-Patent Document 1), which detects the fluorescence signal excited by the localized field light induced on the surface of the gold film electrode.
  • SPFS surface plasmon excitation enhanced fluorescence spectroscopy
  • Fluorescent signals appear in dots or granules in the fluorescence image observed by a fluorescence microscope, and when the fluorescence points or grains above a certain threshold are counted after being binarized, they correlate with the number of pathogens and antibodies, and the number of pathogens and antibodies is increased.
  • the solid phase substrate of the present invention differs from the conventional surface plasmon resonance excitation enhanced fluorescence spectroscopy (SPFS) solid phase substrate is whether the solid phase substrate is formed on a gold thin film or a plasmon metal. It seems that it is formed on the complex quantum crystal.
  • SPFS surface plasmon resonance excitation enhanced fluorescence spectroscopy
  • This solid-phase synthesis technology is usually complicated, and SPFS measurement, which is a substrate-type reaction field of this type, is disadvantageous in terms of reaction efficiency. Is applied.
  • the use of this microchannel makes measurement by surface plasmon excitation enhanced fluorescence spectroscopy (SPFS) complicated and difficult.
  • solidification required for pathogen measurement can be easily and quickly achieved by agglutination of quantum crystals of a plasmon metal complex.
  • Patent Document 1 it is possible to provide a novel method that facilitates immobilization of an antibody or antigen in a reaction field and enables highly reproducible surface plasmon excitation-enhanced fluorescence spectroscopy (SPFS) without using a microchannel.
  • SPFS surface plasmon excitation-enhanced fluorescence spectroscopy
  • the present inventors have found that such a solid-phase substrate is excellent in quantification in the detection of pathogens including viruses.
  • a solid-phase substrate is excellent in quantification in the detection of pathogens including viruses.
  • influenza virus is subjected to fluorescence spectroscopy by an antigen-antibody reaction (sandwich method)
  • the measured image is solid on the quantum crystal. It is sandwiched between a phased antibody and a labeled antibody and emits a large number of fluorescence in the form of granules.
  • the granular fluorescence is the fluorescence of the labeled antibody in which the virus is sandwiched.
  • the plasmon metal complex in the solution aggregates as a quantum crystal of the metal complex on a metal substrate having an electrode potential near the reduction potential by selecting the electrodeposition substrate potential.
  • the quantum crystal aggregation method when an antigen or antibody coexists in the solution, the antigen or antibody aggregates on the substrate or particles together with the metal complex to form a plasmon reaction field immobilized on the substrate or particles.
  • the immobilized substrate according to the present invention is excellent in image retrieval observed with a fluorescence microscope in the fluorescence spectroscopy (SPFS) method of enhancing surface plasmon excitation, and counts the number of granular fluorescence in the fluorescence image to indicate the presence of virus. None, we provide a novel quantum crystal-immobilized fluorescence counting method that can analyze diseases depending on the number of counts.
  • SPFS fluorescence spectroscopy
  • the immobilized substrate according to the present invention has an antibody immobilized on a plasmon metal complex using a quantum crystal aggregation method, has nm-sized gaps or microchannels between quantum crystals, and is labeled with a fluorescent substance.
  • the complex of the secondary antibody and the antigen can be bound, and the surface plasmon is excited by irradiation with excitation light, and the fluorescence of the complex can be observed as granular fluorescence in the fluorescence image, and the number of granular fluorescence can be determined. It is an immobilized substrate that can be detected as the amount of virus.
  • the plasmon metal complex in solution is aggregated as a quantum crystal of the metal complex on a metal substrate having an electrode potential near the reduction potential by selecting the electrodeposition substrate potential (hereinafter, quantum crystal).
  • quantum crystal when an antigen or antibody coexists in the solution, the antigen or antibody aggregates on the substrate or particles together with the metal complex to form a immobilized plasmon reaction field, which is a metal complex of about 100 nm.
  • an antigen is immobilized by using a quantum crystal agglutination method of a plasmon metal complex, and the antigen is reacted with an antibody to provide an antibody solid phase having a gap or a microchannel between the quantum crystals. It can also be produced by forming a substrate and further binding a labeled secondary antibody labeled with a fluorescent substance.
  • the solid-phase substrate of the present invention may be manufactured by using a metal powder instead of the substrate.
  • the antibody or antigen-immobilized metal powder obtained by immobilizing the antibody or antigen is formed, and the complex or fluorescent substance of the first method of the secondary antibody labeled with a fluorescent substance and the antigen is used. It can be produced by reacting the labeled secondary antibody of the second method labeled using the antibody with an antibody or an antigen-immobilized metal powder in a liquid. After washing the substrate, the remaining complex or the labeled secondary antibody is irradiated with excitation light to excite the quantum crystal by surface plasmon to enhance the fluorescence of the complex or the secondary labeled antibody, and the fluorescence image thereof is observed. The number of granular fluorescence in the image is counted and detected.
  • the antigen was sandwiched between fluorescently labeled antibodies (primary antibodies), but the fluorescently labeled primary antibody and the fluorescently labeled secondary antibody were used as labeled antibodies.
  • fluorescently labeled antibodies primary antibodies
  • fluorescently labeled secondary antibody were used as labeled antibodies.
  • the fluorescence intensity of the virus antigen but the fluorescence number of the virus antigen can be measured as the virus concentration.
  • the quantum crystal forming the antibody or antigen-immobilized substrate has nm-sized gaps or microchannels between the quantum crystals, the photons incidented by the excitation light and the free electrons of the plasmon metal particles forming the quantum crystal Since an interaction occurs between the two and the surface plasmon is excited to enhance the fluorescence of each complex or the secondary labeled antibody, it is possible to count and detect the granular fluorescence with good reproducibility instead of the overall fluorescence intensity. can.
  • SPFS surface plasmon excitation enhanced fluorescence spectroscopy
  • the second method of the present invention it is possible to provide a method for capturing an antibody produced in the body that is effective against a specific virus.
  • the antigen is sandwiched between the fluorescently labeled primary antibody and the fluorescently labeled secondary antibody, and the primary antibody or the labeled secondary antibody is labeled with the primary antibody or label.
  • the fluorescence becomes stronger. Therefore, by adding the labeled secondary antibody, the fluorescence can be detected with higher sensitivity.
  • the present invention is a solid phase substrate applied to a fluorescence counting method that counts fluorescence points or grains in a fluorescence image to quantify a measurement target of a pathogen or antibody in a sample, and is an inactivated pathogen or the same.
  • the antibody is aggregated together with the plasmon metal complex quantum crystal on a metal substrate by an electrode potential difference, fixed together with the metal complex quantum crystal on the metal substrate, and the immobilized pathogen or the immobilized antibody is subjected to an antigen-antibody reaction. It is characterized by being fluorescently labeled and capable of counting and quantifying by a fluorescence counting method by subjecting fluorescent spots or grains to surface plasmons in a fluorescently labeled fluorescent image.
  • the object to be immobilized is a quantum crystal of a plasmon metal containing gold, silver and copper that causes surface plasmon resonance by excitation light, and the concentration of the aqueous solution thereof is 1000 ppm to 5000 ppm, preferably 1000 to 3000 ppm, and is placed on a metal substrate. Form 50 to 150 nm quantum crystals.
  • the object to be immobilized is a pathogen containing a virus, a bacterium, a fungus, and a heavy metal that produces an antibody, or an antibody thereof, and the sample concentration thereof is 10 ⁇ g / ml or more.
  • Embodiment 4 Immobilization in which a quantum crystal and a pathogen to be measured or a related antibody produced thereof are immobilized on a metal substrate by using the quantum crystal aggregation method of a plasmon metal complex according to any one of Embodiments 1 to 3.
  • the pathogen to be immobilized or its antibody is standardized by either the direct method, the indirect method, the sandwich method, or the competitive method, and a fluorescence point or a fluorescence point above a certain threshold value in the fluorescence image is used using a fluorescence microscope. This is a method in which grains are binarized and counted to quantify pathogens or antibodies in a sample.
  • an antibody-immobilized substrate in which a quantum crystal and an antibody are immobilized using the quantum crystal aggregation method of a plasmon metal complex it is complexed with a pathogen containing an antigen that produces an antibody and an antibody labeled with a fluorescent substance.
  • This is an indirect method in which the complex is dropped onto the antibody-immobilized substrate to bind the two, and after washing the unbound complex and the antibody, the complex remaining on the substrate is irradiated with excitation light to form a quantum crystal.
  • Surface plasmon excitation is performed to enhance the fluorescence of the complex, and the fluorescence image is observed with a fluorescence microscope or a fluorescence reader.
  • Embodiment 6 A direct method using an antigen-immobilized substrate in which an antigen that is a pathogen or a part thereof is immobilized together with a quantum crystal using the quantum crystal aggregation method of a plasmon metal complex, and an antibody labeled with a fluorescent substance is used. After dropping the antibody on the antigen-immobilized substrate to bind them together and washing the unbound labeled antibody, the labeled antibody remaining on the substrate is irradiated with excitation light to excite the quantum crystal by surface plasmon to enhance the fluorescence of the labeled antibody.
  • the fluorescence image is observed with a fluorescence microscope or a fluorescence reader, and the number of fluorescence grains obtained by binarizing the fluorescence particles having a brightness value of an arbitrary value or more from an arbitrary range or the entire image of the obtained fluorescence image is calculated. Count detection.
  • the labeled antibody a primary antibody capable of binding to each other or a labeled primary antibody and a labeled secondary antibody are used at the same time.
  • a metal powder is used instead of the above substrate.
  • This is a method using an antigen-immobilized substrate on which an antigen is immobilized.
  • the inactivated antigen After inactivating an antigen in a sample collected from a human, the inactivated antigen is immobilized on the substrate by a quantum crystal aggregation method. After the antibody labeled with the immobilized antigen is bound by an antigen-antigen reaction to label it, the unbound labeled antibody is washed with a buffer solution or pure water, and the excitation light meets the antibody label (fluorescent substance). Is irradiated from a light source, and the fluorescent particles on the substrate are counted with a fluorescent microscope. [Embodiment 10] This method uses an antibody-immobilized substrate on which an antibody is immobilized.
  • the inactivated antigen After inactivating an antigen in a sample collected from a human, the inactivated antigen is immobilized on the substrate by a quantum crystal aggregation method.
  • An antibody that has been bound to an antibody and labeled with an inactivated antigen is bound by an antigen-antibody reaction for labeling, and then the unbound labeled antibody is washed with a buffer or pure water, and the antibody is labeled (fluorescent substance).
  • the excitation light that meets the antibody is irradiated from the light source, and the fluorescent particles on the substrate are counted with a fluorescent microscope.
  • the plasmon metal complex in solution aggregates as quantum crystals on a metal substrate having an electrode potential near the reduction potential by selecting the electrodeposition substrate potential, and at that time, in the solution.
  • the coexisting antigen or antibody is aggregated and immobilized on the substrate or particles together with the metal complex.
  • the sample After collecting the sample, it is placed in a tube containing an inactivating reagent solution to inactivate it.
  • 3 is an SEM image and a component analysis graph of a solid phase substrate when using a phosphate buffer solution containing 4000 ppm of Ag reagent and influenza antibody (50 ⁇ g / ml).
  • 3 is an SEM image and a component analysis graph of a solid phase substrate when using a phosphate buffer solution containing 4000 ppm of Ag reagent and influenza virus (50 ⁇ g / ml).
  • An image diagram (a) showing a method for preparing an influenza antibody-immobilized substrate and a clear vision portion image (b) of the solid-phase substrate are shown. It is a test process diagram of the sensitivity of a solid phase substrate. It is a graph which shows the correlation of each concentration of FITC influenza antibody, and the count number of the fluorescence point of a fluorescence image. It is an image diagram which shows the relationship between the immobilization of an influenza antibody and the quantum crystal concentration. It is a process diagram of the method of solidifying the inactivated influenza virus antigen and counting the fluorescence by the method of the present invention (direct method). It is a process drawing which shows the method of fluorescence counting the inactivated influenza virus antigen by the method of this invention (sandwich method).
  • a solid-phase solid phase substrate can be easily prepared by using the quantum crystal agglutination method and using various substances listed below on a predetermined metal substrate and metal powder.
  • a silver complex quantum crystal is agglutinated as a solid phase substrate
  • a copper and copper alloy substrate particularly a phosphor bronze substrate
  • the substrate having the plasmon metal quantum crystal region used in the method of the present invention is called a proteochip.
  • the manufacturing method is as follows. 1) A metal complex aqueous solution is chemically reduced by an electrode potential difference on a metal substrate having an electrode potential (high ionization tendency) lower than that of the metal forming the complex to aggregate quantum crystals (nano-sized metal complex crystals).
  • a quantum crystal of the silver complex is formed by using an electrode potential difference electrodeposition method by aggregating an aqueous solution of silver thiosulfate on a copper or a copper alloy having an electrode potential (high ionization tendency) lower than that of silver. ing.
  • the concentration of the metal complex in the aqueous solution should be determined mainly by considering the size of the quantum crystal to be formed, and when using a dispersant, the concentration should also be considered, and usually 100 ppm to 1000 ppm. However, 1000 ppm, preferably 2000 It is preferable to use a quantum crystal aqueous solution having a concentration of 10000 ppm or more, preferably 4000 ppm.
  • the quantum crystal is different from the aggregation only from the quantum crystal aqueous solution. It tends to be dispersed on the solid phase substrate (see FIGS. 9-1 (a), (b) and (c)).
  • the metal complex forming the quantum crystal is selected so as to have a complex stability constant (log ⁇ ) or more represented by the formula (I), which correlates with the electrode potential E of the supporting metal.
  • Equation (I): E ° (RT /
  • the metal complex is a plasmon metal complex selected from Au, Ag, Pt or Pd, it has a localized surface plasmon resonance enhancing effect on excitation light.
  • the metal complex is a silver complex, it is preferably formed by the reaction of a silver complexing agent having a stability constant (production constant) (log ⁇ i) of 8 or more with silver halide, and as silver halide.
  • Silver chloride is preferable, and the complexing agent is preferably one selected from thiosulfate, thiocyanate, sulfite, thiourea, potassium iodide, thiosalicylate, and thiocyanurate.
  • the silver complex has quantum dots composed of nanoclusters having an average diameter of 5 to 20 nm, and the size of the quantum crystal is 50 to 150 nm. (Examination of solid-phase concentration 1)
  • the concentration of the quantum crystal reagent (Ag reagent) is very important in the solid phase technology using quantum crystals. Therefore, Biotin is immobilized by changing the concentration of the quantum crystal reagent to be immobilized, and Avidin labeled with FITC is detected by a fluorescence microscope using an Avidin-Biotin bond.
  • FITC-Avidin VEC FLUORES CEIN AVIDIN D" Cat No.A-2001 Biotin Wakosha "(+)-Biotin” Cat No. 023-08711
  • a solid-phase substrate on which Biotin (5 ⁇ g / ml) is solid-phased is prepared at a quantum crystal concentration of 1000, 2000, 3000, 4000, 5000 ppm (solid-phase time: 1 minute).
  • FITC-Avidin (5 ⁇ g / ml) was dropped onto a Biotin-immobilized substrate, and the image of Avidin labeled with FITC using the Avidin-Biotin bond was measured with a FITC-labeled fluorescence microscope “BZ-X710”. Calculate the average brightness value of the obtained fluorescence image (reaction time 1 minute). As a result, at 1000 ppm (average brightness value of the image 54), 2000 ppm (69), 3000 ppm (62), 4000 ppm (59), and 5000 ppm (59), a large amount of Biotin was immobilized, and FITC-Avidin was most bound.
  • influenza antibody is immobilized by changing the concentration of the quantum crystal to be immobilized, and the influenza virus and the FITC-labeled influenza antibody are measured with a fluorescence microscope using an antigen-antibody reaction, and the fluorescence points are counted from the obtained fluorescence image.
  • Influenza antibody Hytest "Monoclonal Mouse anti-influenza A haemogglutinin H1" Cat No.3 AH1 Influenza virus: HyTest "Influenza A (H1N1) virus” Cat No.IN73-3 FITC Influenza Antibody (ARP "Anti-Influenza A virus (H1N1) FITC”) Cat No.12-6250-3
  • An equal amount of influenza antibody 100 ⁇ g / ml
  • a buffer solution and dropped onto a metal substrate to prepare a solid-phase substrate (solid-phase time of 1 minute).
  • the complex formed by mixing the inactivated influenza virus (10 ⁇ g / ml) and the FITC-labeled influenza antibody (25 ⁇ g / ml) is added dropwise to the immobilized substrate (reaction time 1 minute). Rinse the binding complex and FITC antibody with water or a buffer. This chip is measured with a fluorescence microscope "BZ-X710" manufactured by KEYENCE CORPORATION, and the fluorescence points of the obtained fluorescence image above a predetermined threshold value are counted. As a result, as in the case of the Avidin-Biotin bond, when influenza was immobilized on 2000 ppm of quantum crystals (1000 ppm in total), the most influenza virus-containing complex could be detected.
  • the solid phase substrate of the present invention is mixed with an inactivating solution and / or a buffer solution containing a pathogen containing an antigen to be immobilized and / or an antibody in addition to the quantum crystal metal complex aqueous solution to solidify the aggregation of quantum crystals.
  • the aggregating action is different in that it is formed, basically, an antibody or an antigen can be immobilized by using a quantum crystal aggregating method (Japanese Patent Laid-Open No. 2016-197114) for producing a quantum crystal of a plasmon metal complex. Therefore, in this specification, the method described in JP-A-2016-197114 is cited and referred to.
  • FIG. 9 shows a control in which an equal amount of a phosphate buffer solution is mixed with 2000 ppm of a silver thiosulfate aqueous solution (Ag reagent) (Fig.
  • FIG. 10B is a clear view image of the solid phase substrate.
  • An antibody-immobilized substrate was prepared by immobilizing an influenza antibody labeled with FITC whose concentration was changed by using the above-mentioned quantum crystal agglutination method, and the fluorescence points of each of the obtained fluorescence images were counted.
  • FITC influenza antibody ARP "Anti-Influenza A virus (H1N1) FITC" Cat No.12-6250-3) was used.
  • An equal amount of the above antibody 250, 125, 62.5, 31.25 ⁇ g / ml
  • Ag reagent 2000 ppm silver thiosulfate aqueous solution
  • FIG. 11 (a) The time required is about 1 minute.
  • the solid phase substrate was measured with a fluorescence microscope (Keyence BZ-X710) at fluorescence points having a fluorescence sensitivity equal to or higher than a predetermined threshold value.
  • a fluorescence microscope Keyence BZ-X710
  • the number of counts of the solid-phase substrate of the present invention increases in a concentration-dependent manner. That is, in the solid-phase substrate according to the present invention, the antibody is quantitatively immobilized, and it is quantified as shown in FIG. Therefore, according to the present invention, it can be seen that the antigen and the antibody can be quantitatively immobilized. (Steronization of virus part 1)
  • FIG. 13 shows the inspection process of the direct method of influenza virus (solid phase of inactivated influenza virus). Fluorescein points are counted from fluorescent images obtained by dropping influenza antibodies labeled with FITC onto a substrate on which influenza virus inactivated by the quantum crystal aggregation method is immobilized (this was performed using an antigen-antibody reaction). Direct method).
  • Influenza virus HyTest "Influenza A (H1N1) virus” Cat No.IN73-3 FITC Influenza Antibody (ARP "Anti-Influenza A virus (H1N1) FITC”) Cat No.12-6250-3
  • ARP Anti-Influenza A virus (H1N1) FITC”
  • An equal amount mixture (pH 7.4) of the above silver thiosulfate aqueous solution (Ag reagent) 2000 ppm and the early influenza virus (50 ⁇ g / ml) phosphate buffer solution was added onto a phosphorus bronze plate to prepare a virus-immobilized substrate. (Immobilize in about 1 minute).
  • a virus-free buffer is mixed with a quantum crystalline Ag reagent to form a solid phase substrate.
  • FIG. 10B is a fluorescence image of the solid phase substrate. (Solid phase of antibody, part 1)
  • FIG. 14 shows the inspection process of the influenza virus sandwich method (immobilization of influenza antibody).
  • a FITC-labeled influenza antibody and an inactivated influenza virus were complexed on a substrate on which the influenza antibody was immobilized using the quantum crystal aggregation method, and this was dropped to fluoresce from the fluorescent image obtained by the antigen-antibody reaction. Points are counted (this is called the direct method using an antigen-antibody reaction).
  • Influenza antibody Hytest "Monoclonal Mouse anti-influenza A haemogglutinin H1" Cat No.3 AH1 Influenza virus: HyTest "Influenza A (H1N1) virus” Cat No.IN73-3 FITC Influenza Antibody (ARP "Anti-Influenza A virus (H1N1) FITC”) Cat No.12-6250-3
  • An equal amount mixture pH 7.2) of the above silver thiosulfate aqueous solution (Ag reagent) 2000 ppm and an influenza antibody (50 ⁇ g / ml) phosphate buffer is added onto a phosphor bronze plate to prepare an antibody-immobilized substrate. (Stabilizes in about 1 minute).
  • a FITC-labeled influenza antibody 25 ⁇ g / ml
  • influenza virus are mixed to form a complex, which is dropped onto a solid-phase substrate (reaction time is only 1 minute).
  • This measuring chip is measured with a fluorescence microscope "BZ-X710" manufactured by KEYENCE CORPORATION, and fluorescence points of a predetermined threshold value or more of the obtained fluorescence image are counted.
  • the measurement conditions and equipment used are the same as for solid phase virus. (Solid phase of antibody, part 2)
  • FIG. 15 shows the inspection process. Fluorescence points were obtained from a fluorescence image obtained by dropping a complex of an inactivated COVID-19 patient sample and a FITC-labeled COVID-19 antibody onto a substrate on which a COVID-19 antibody was immobilized using a quantum crystal.
  • FITC-labeled COVID-19 antibody GeneTex "SARS-COV-2 peplomer antibody” Cat No.
  • This measuring chip is measured with a fluorescence microscope "BZ-X710" manufactured by KEYENCE CORPORATION, and fluorescence points of a predetermined threshold value or more of the obtained fluorescence image are counted.
  • the measurement conditions and equipment used are the same as for virus immobilization # 1.
  • the virus was detected in both of the two samples collected from the pharyngeal swabs of two COVID-19 patients. The counts represented the patient's symptoms.
  • 70% ethanol was used for the blank. The results showed blank: count number 8 (relative value 0), sample 1: count number 16 (relative value 8), and sample 2: count number 51 (relative value 43).
  • the relative value is the number of counts when the number of blank counts is 0. Even if the sample is saliva, the count number is a little low, but the same result is shown.
  • Quantum crystals were formed in the SEM image.
  • the photograph showing various SEM images of the nanoparticle aggregates (quantum crystals) produced in Example 1 it is a thin hexagonal columnar crystal of about 100 nm, and irregularities on the order of several nm appear on the surface. No facets peculiar to metal nanocrystals could be confirmed.
  • the correlation between the standing time after dropping on phosphor bronze slope and the quantum crystal shape is shown.
  • the quantum crystal is formed into a hexagonal columnar shape of about 100 nm when dropped on a phosphorus bronze plate and left for 1 minute, and each hexagonal columnar quantum crystal has irregularities on the order of several nm.
  • the facet peculiar to the metal nanocrystal could not be confirmed, and the element derived from silver and the complex ligand was detected by the EDS element analysis, so that the whole was a nanocrystal of the silver complex. It is presumed that the irregularities appearing on the surface of the complex are spread out by forming quantum dots as clusters of silver in the complex.
  • the equilibrium potential of the silver thiosulfate complex is 0.33 and that of copper. Since it is equivalent to the electrode potential (0.34), only silver (0.80) is deposited on the copper substrate, and in the case of phosphorus bronze, the electrode potential is 0.22, which is slightly low, and therefore the silver complex.
  • the complex aqueous solution is in a dilute region of 500 to 2000 ppm
  • the electrode potential of the supporting metal is slightly lower than the equilibrium potential of the metal complex aqueous solution
  • 3 It is important that the metal complex aggregates due to the electrode potential difference, but it was found that it is desirable to use a thiosulfate Ag quantum crystal reagent having a higher concentration of 2000 ppm or more for immobilization of the antigen-antibody.
  • the substrate can be sanded to physically remove the surface oxide film, and a silver thiosulfate solution can be dropped onto the substrate to form a passivation substrate by the agglutination action of quantum crystals.
  • the physical state of the substrate surface affects the formation state of quantum crystals, which may affect the measured values. Therefore, in order to make the quantum crystal formation region constant, as shown in FIG. 4, 1) circular groove processing (etching processing) is performed on the region under the substrate droplets of the phosphorus bronze plate, and 2) the region is used as it is. After sand paper polishing, electrolytic polishing, and chemical polishing, 3) Ag reagent solution (2000-4000 ppm silver thiosulfate solution) is dropped and stored in a circular groove by surface tension, and 4) then removed to form a quantum crystal. Ensure agglomerated state. As a result of observing the agglomerated state and inspecting the variation in the measurement results, it was found that there are variations in the measurement results between the use as it is, electrolytic polishing, chemical polishing, and sandpaper polishing.
  • the target of immobilization includes not only viruses, bacteria, fungi, etc., which are pathogens that produce antibodies by the immune function of humans and animals, but also heavy metals and proteins. It also includes antibodies produced by such pathogens.
  • Antibodies include five classes of monoclonal antibodies of animal species such as rats, mice, chickens, rabbits, and humans, IgA, IgD, IgE, IgG, and IgM, rabbits, guinea pigs, goats, sheep, rats, mice, chickens, etc.
  • Antibodies such as polyclonal antibodies and immunoglobulins containing 5 classes of IgA, IgD, IgE, IgG and IgM of animal species, fragments of Fc region, Fab region, heavy chain, light chain, antigen binding site, hinge part, etc. It includes a part of the transformed antibody, a recombinant antibody and a fragmented part, and a human antibody obtained by infecting human B lymphocytes with a virus (EBV, etc.) and propagating the antibody gene. ..
  • Viruses include animal viruses that infect animals such as coronavirus, influenza virus, bird influenza virus, and adenovirus, plant viruses that infect plants such as tobacco mosaic virus, and bacterial viruses that infect bacteria such as bacteriophage. It also includes some fragmented viruses such as spikes on the surface of the virus and nucleocapsids of the virus, as well as recombinant viruses and fragmented parts.
  • Bacteria, fungi, various cells can be immobilized, bacteria such as staphylococcus, salmonella, tuberculosis, Escherichia coli, and tuberculosis, fungi such as Candida, and Aspergillus, iPS cells, immune cells, dendritic Contains cells, tumor cells, blood cells, cells derived from humans, animals and plants, etc., and is a fragmented part of a fragmented bacterium, fungus or cell, or a fragmented part of a recombinant bacterium, fungus or cell. including.
  • a structure containing DNA and RNA including DNA such as cfDNA and ctDNA, a structure containing DNA such as nucleosome, RNA such as microRNA and mRNA, a structure containing the RNA, and a structure containing fragmented DNA and DNA.
  • DNA such as cfDNA and ctDNA
  • a structure containing DNA such as nucleosome
  • RNA such as microRNA and mRNA
  • a structure containing the RNA a structure containing fragmented DNA and DNA.
  • Proteins include proteins such as biological membranes, lectins, various ligands, various receptors, various enzymes, various biotoxins, biopolymers derived from humans, animals and plants, and some fragmented proteins, and further. Includes recombinant proteins and fragmented parts.
  • Molecular compounds include low molecular weight compounds such as biotin, pharmaceutical compounds such as Tamiflu, chemical agents such as salin, various surfactants, various molecular targeting agents, fluorescent substances such as FITC and GFP, and molecules such as low molecular weight compounds in blood. Includes a compound and a structure containing the molecular compound thereof.
  • a sample collected from humans or animals and a sample containing an inactivated virus or a fragmented part are included as immobilization targets, and collected from humans or animals such as pharyngeal swab, saliva, blood, and urine.
  • the body fluid to be used is included as a sample.
  • Example 1 of solid-phase substrate Examples of immobilizing a quantum crystal and biotin having a binding ability to avidin will be given.
  • a liquid prepared by mixing Ag reagent (1000 ppm, 20 ⁇ l) and biotin (5 ⁇ g / ml, 20 ⁇ l) to prepare a quantum crystal is prepared and dropped onto a phosphor bronze plate, and biotin is immobilized on the quantum crystal purified on the substrate.
  • FITC fluorescently labeled avidin having a binding ability to biotin is added dropwise to the biotin-immobilized substrate.
  • biotin and FITC fluorescently labeled avidin bind to each other, and when observed with a fluorescence microscope, fluorescence of FITC on the granules is observed.
  • a solid-phase substrate in which biotin is immobilized on the quantum crystal can be formed by mixing the quantum crystal and biotin and dropping the mixture. From this, it was found that a molecular compound or the like can be immobilized on the quantum crystal substrate.
  • Ag reagent has a range of 500ppm to 10000ppm
  • biosolidified biotin has a range of 1pg / ml to 1g / ml
  • Example 2 of solid-phase substrate An equal amount of Ag reagent (2000ppm, 12.5 ⁇ l) to prepare a quantum crystal and hemagglutinin H1 influenza A antibody (25 ⁇ g / ml, 12.5 ⁇ l) are mixed to prepare a solution, which is dropped onto a phosphorus bronze plate and purified on the substrate. Hemagglutinin H1 influenza A antibody is immobilized on crystals. Next, a complex of H1N1 influenza virus that binds to hemagglutinin H1 influenza A antibody in an antigen-antibody reaction and H1N1 influenza virus antibody labeled with FITC is dropped onto the hemagglutinin H1 influenza A antibody immobilized substrate.
  • H1N1 influenza virus 100 ⁇ g / ml, 5 ⁇ l
  • H1N1 influenza virus antibody 50 ⁇ g / ml, 5 ⁇ l
  • FITC label 50 ⁇ g / ml, 5 ⁇ l
  • a complex of influenza virus and FITC-labeled antibody was bound to the immobilized antibody of the immobilized substrate, and when observed with a fluorescence microscope, fluorescence of FITC on the granules was observed as shown in the image below.
  • the equipment used is as follows. Equipment: KEYENCE Fluorescence Microscope BZ-X710 Light source: Metal halide lamp 80W Fluorescent filter: BZ-X filter GFP (525 ⁇ 25) Analysis software: BZ-X Analyzer
  • the step (1) is an image acquisition step, in which the fluorescence image obtained by the measurement is taken into the image analysis software "BZ-X Analyzer" and analyzed (fluorescence is observed like a round grain).
  • the imaging time becomes as fast as 3.5 seconds, but a plurality of images are captured. It may be photographed (see the fluorescence measurement method of Japanese Patent Application No. 2019-234330).
  • Step (2) is a binarization step, in which all the fluorescent particles having a brightness value or more set for the entire range of the fluorescent image are extracted and binarized (red particles have a brightness value equal to or higher than the set value). Extracted fluorescent particles).
  • the step (3) is a counting step, and counts the extracted fluorescent particles having a brightness value equal to or higher than the set luminance value (calculating the number of only the fluorescence of the red particles (broken line portion)).
  • Fluorescent image acquisition process a technique of irradiating the fragmented DNA captured on the plasmon metal nanocrystal substrate with excitation light to enhance the autofluorescence of the captured fragmented DNA by the surface plasmon enhancing effect, and acquiring fluorescent colonies as a fluorescence image.
  • excitation light a laser light source of excitation light having a diameter of 405 nm, which is considered to be suitable for exciting a hematoporphyrin derivative (tumor-affinitive fluorescent substance) having different accumulation / excretion characteristics between normal tissue and lesion tissue, was used. Blood was collected from the protein conjugate and centrifuged, and the obtained plasma was diluted 30-fold with distilled water before use.
  • Example 4 Similarly, a solution prepared by mixing an Ag reagent (2000 ppm, 5 ⁇ l) for forming a quantum crystal and an H1N1 influenza virus antibody (250 ⁇ g / ml, 5 ⁇ l) labeled with FITC was prepared and dropped onto a phosphorus bronze plate, and was dropped onto a substrate.
  • the FITC-labeled H1N1 influenza virus antibody is immobilized on the purified quantum crystal.
  • fluorescence of FITC on the grains was observed. From this, a fluorescent label such as FITC can be immobilized on the quantum crystal substrate.
  • Ag reagents range from 500ppm to 10000ppm
  • FITC-labeled H1N1 influenza virus antibodies range from 1pg / ml to 1g / ml
  • FIG. 1 is a method including steps (1) to (4).
  • step (1) an antibody-immobilized substrate is prepared using the quantum crystal agglutination method. Specifically, a virus antibody is added to a buffer solution (pH 7 phosphate buffer solution) to prepare an immobilized antibody solution.
  • an equal amount of 1000 to 10000, preferably 2000 to 4000 ppm of a plasmon metal complex aqueous solution is added to prepare a composite aqueous solution of the plasmon metal complex and a viral antibody, and a plasmon metal complex solution containing the viral antibody is added to the plasmon.
  • a virus antibody-immobilized substrate on which a virus antibody is immobilized by dropping plasmon metal complex quantum crystals to which an antibody is bound by dropping onto a metal substrate having an electrode potential near the reduction potential of the metal complex is prepared.
  • one selected from palladium, platinum, gold, silver, and copper is selected as the plasmon metal
  • a metal substrate having an electrode potential near the oxidation-reduction potential of the plasmon metal complex is selected, and a quantum crystal of the silver thiosulfate complex is selected.
  • copper or a copper alloy, particularly phosphorus bronze is selected as the substrate.
  • an antibody as an influenza virus antibody, five types of monoclonals of IgA, IgD, IgE, IgG, and IgM of animal species such as rats, mice, chickens, rabbits, and humans produced from viral antigens and hybridomas.
  • Antibodies or polyclonal antibodies including five classes of IgA, IgD, IgE, IgG and IgM of animal species such as rabbits, guinea pigs, goats, sheep, rats, mice and chickens, antibodies such as globulin, Fc region and Fab region A part of fragmented antibody such as heavy chain, light chain, antigen binding site, hinge part, etc., recombinant antibody or fragmented part, human B lymphocytes are infected with virus (EBV etc.) and propagated. Contains human antibodies obtained by cloning antibody genes.
  • Coronavirus antibodies include five classes of monoclonal antibodies or rabbits, guinea pigs, and goats from animal species such as rats, mice, chickens, rabbits, and humans made from viral antigens and hybridomas: IgA, IgD, IgE, IgG, and IgM. , Polyclonal antibodies comprising five classes of animal species such as sheep, rat, mouse and chicken, IgA, IgD, IgE, IgG and IgM.
  • an antigen-antibody reaction is used to form a complex of a virus antibody labeled with a fluorescent substance and a virus antigen in a sample.
  • excitation light such as Pacific Blue 400 nm to 436 nm
  • excitation light such as FITC 453 to 505 nm
  • excitation light such as TRITC 485 to 566 nm
  • excitation light such as APC 488 to 706 nm
  • IR Dye 800 etc.
  • a fluorescent substance having an excitation light of 732 to 784 nm can be mentioned.
  • step (3) the complex is dropped onto the antibody-immobilized substrate using the antigen-antibody reaction, the complex is bound to the antibody on the substrate, and the unbound complex is prepared with pure water, a buffer solution, or the like.
  • step (4) the complex of the labeled antibody and antigen remaining on the substrate is irradiated with excitation light, and the fluorescence image is observed with a fluorescence microscope or a fluorescence reader by surface plasmon excitation, and the obtained fluorescence is obtained. Fluorescent particles having a brightness value of an arbitrary value or more are binarized from an arbitrary range of the image or the entire image, and the number obtained is counted. Since the fluorescence measurement method of Japanese Patent Application No.
  • 2019-234330 of the same applicant can be used to binarize and count the fluorescence particles above a certain threshold value in the fluorescence image, such a fluorescence measurement method is cited here. And refer to.
  • one visual field measurement condition shown in FIG. 16 threshold 62 without blur filter ⁇ one visual field measurement of a 10x lens (here, one visual field measurement is the case of Japanese Patent Application No. 2019-234330 as shown in FIG. Differently, it refers to the method of acquiring only one part of the chip).
  • FIG. 2 comprises steps (1) to (5).
  • an antibody-immobilized metal powder is prepared by using the quantum crystal agglutination method. Specifically, the virus antibody is added to a plasmon metal complex aqueous solution having a concentration of 500 to 10000 ppm, and the carrier metal powder is added thereto and mixed.
  • the plasmon metal complex aggregates with a metal powder having an electrode potential near the reduction potential of the plasmon metal complex, and the virus antibody, the plasmon metal complex, and the carrier metal powder are integrated into the virus antibody-immobilized metal powder.
  • a complex of a virus antibody labeled with a fluorescent substance and a virus antigen in a sample is formed by utilizing the first antigen-antibody reaction.
  • the sample and the fluorescent substance are the same as in the first method.
  • step (3) the complex is added to the antibody-immobilized powder solution, and the antibody-immobilized powder is bound to the complex by utilizing the second antigen-antibody reaction.
  • step (4) the combined product of the antibody-immobilized powder and the complex is filtered, and the unbound complex and the antibody are washed with pure water, a buffer solution or the like.
  • step (5) the complex of the labeled antibody and antigen remaining on the substrate is irradiated with excitation light, and the fluorescence image is observed with a fluorescence microscope or a fluorescence reader by surface plasmon excitation. From an arbitrary range of the obtained fluorescent image or the entire image, the fluorescent particles having a brightness value of an arbitrary value or more are binarized, and the obtained number is counted.
  • the second method of the present invention is a method of immobilizing a virus antigen or a part thereof (a part of a non-infectious antigen, for example, a virus surface spike part) to capture an antibody produced in the body.
  • a virus antigen or a part thereof a part of a non-infectious antigen, for example, a virus surface spike part
  • the antigen or a part thereof is reacted with an antibody to form a gap or a microchannel between the quantum crystals.
  • an antibody labeled with a fluorescent substance is dropped onto the antigen or a partially immobilized substrate thereof to bind the two to obtain an unbound labeled antibody.
  • the labeled antibody remaining on the substrate is irradiated with excitation light to excite the quantum crystal by surface plasmon to enhance the fluorescence of the labeled antibody, and the fluorescence is detected.
  • the antigen or a part thereof is reacted with an antibody to provide a gap or a microchannel between quantum crystals, or one of them.
  • a labeled antibody labeled with a fluorescent substance is dropped onto the antigen or a partially immobilized substrate thereof to bind the two, and after washing the unbound labeled antibody, the substrate is subjected to The remaining labeled antibody is irradiated with excitation light to excite the quantum crystal by surface plasmon, and the fluorescence image is observed with a fluorescence microscope or a fluorescence reader.
  • This is a method in which fluorescent particles having a brightness value or higher are binarized and the obtained number is counted and detected. That is, in step (1), an antigen and a partially solid-phase substrate thereof are produced by using the quantum crystal agglutination method.
  • the virus antigen or a part thereof is added to a plasmon metal complex aqueous solution having a concentration of 500 to 10000 ppm.
  • a virus antigen or a part of a pharyngeal swab, saliva, urine, feces or a non-infectious antigen is used as a part thereof.
  • For the treatment of virus antigens and some of them refer to autoclave (high-pressure steam sterilization at 121 ° C for 15 minutes or more), 0.01% or more Na hypochlorous acid immersion for 1 hour or more, 4% formaldehyde solution immersion, 70% ethanol immersion, etc. can do.
  • a composite aqueous solution of the plasmon metal complex and the virus antigen or a part thereof is prepared, and the plasmon metal complex solution containing the virus antigen or a part thereof is dropped onto a metal substrate having an electrode potential near the reduction potential of the plasmon metal complex.
  • a plasmon metal complex to which an antigen or a part thereof is bound is aggregated to prepare a virus antigen or a virus antigen on which a part thereof is immobilized and a partially immobilized substrate thereof.
  • step (2) a complex of the immobilized antigen or a part thereof and the virus antibody in blood is formed by utilizing the first antigen-antibody reaction.
  • blood, serum, and plasma are used as the sample containing the virus antibody.
  • step (3) a labeled antibody is prepared, dropped onto an antigen-antibody-immobilized substrate using the second antigen-antibody reaction, the complex is bound to the antibody on the substrate, and unbound with pure water or a buffer. Wash the labeled antibody.
  • the sample of step (2) and the labeled antibody of step (3) can be mixed in advance.
  • step (4) the complex of the labeled antibody and antigen remaining on the substrate is irradiated with excitation light, and the fluorescence image is observed with a fluorescence microscope or a fluorescence reader by surface plasmon excitation, and the obtained fluorescence is obtained. Fluorescent particles having a brightness value of an arbitrary value or more are binarized from an arbitrary range of the image or the entire image, and the obtained number is counted and detected.
  • step (1) an antibody-immobilized substrate is prepared using the quantum crystal agglutination method. It is the same as the step (1) of FIG.
  • step (2) the first virus antibody was labeled with a fluorescent substance using an antigen-antibody reaction.
  • the second-labeled antibody and the second-labeled antibody are used simultaneously to form a complex with the viral antigen in the sample.
  • the secondary labeled antibody may be bound after the primary labeled antibody is bound.
  • the sample pharyngeal swab, saliva, urine, and feces are targeted.
  • fluorescent substances that label viral antibodies excitation light such as Pacific Blue 400 nm to 436 nm, excitation light such as FITC 453 to 505 nm, excitation light such as TRITC 485 to 566 nm, excitation light such as APC 488 to 706 nm, and IR Dye 800, etc.
  • a fluorescent substance having an excitation light of 732 to 784 nm can be mentioned.
  • a secondary-labeled antibody that recognizes the animal species that is the source of the primary-labeled antibody is combined.
  • a primary labeled antibody derived from a mouse is used, a secondary labeled antibody that recognizes the mouse antibody is used, and other animal species are similarly combined.
  • the complex is dropped onto the antibody-immobilized substrate using the antigen-antibody reaction, the complex is bound to the antibody on the substrate, and the unbound complex is prepared with pure water, a buffer solution, or the like. Wash the antibody.
  • step (4) the complex of the labeled antibody and antigen remaining on the substrate is irradiated with excitation light, and the fluorescence image is observed with a fluorescence microscope or a fluorescence reader by surface plasmon excitation, and the obtained fluorescence is obtained. Fluorescent particles having a brightness value of an arbitrary value or more are binarized from an arbitrary range of the image or the entire image, and the number obtained is counted. (Actual measurement by antigen-antibody reaction of influenza virus)
  • Equal amounts of Ag reagent (500 to 10000ppm), which is the source of quantum crystals, and influenza antibody (5 to 1000 ⁇ g / ml) are mixed, and the mixed solution is dropped onto a phosphor bronze plate, and the quantum crystals and antibodies are placed on a phosphor bronze plate. Immobilize to. Next, an equal amount of influenza virus (5 to 1000 ⁇ g / ml) and an influenza antibody labeled with FITC (5 to 1000 ⁇ g / ml) are mixed and added dropwise to the quantum crystal substrate.
  • reagents ⁇ Influenza antibody HyTest Monoclonal mouse anti-Influenza A haemagglutinin H1 ⁇ Influenza A (H1N1) Virus from HyTest -FITC influenza antibody IBL Anti-Influenza A Virus (H1N1) FITC was used. The excess FITC-labeled influenza antibody is washed with pure water, etc., and irradiated with light from a light source (metal halide lamp 80W) to irradiate a fluorescence microscope (Keyens fluorescence microscope BZ-X710). Is used for measurement. Images were observed with a fluorescence microscope and analyzed with a BZ-X Analyer. It is as shown in FIG.
  • FIG. 6 (b) when the influenza antigen is not contained, it is as shown in FIG. 6 (b).
  • the surface plasmon is excited and the fluorescence image is observed with a fluorescence microscope or a fluorescence reader, and the fluorescence particles having a brightness value of an arbitrary value or more are binarized from within an arbitrary range or the entire image of the obtained fluorescence image. The obtained number is counted and detected. If there is a virus, it is sandwiched between the immobilized antibody on the quantum crystal and the labeled antibody, and a large number of fluorescence is emitted in the form of granules. )), In the absence of the virus, it was observed that a large number of granular fluorescence did not appear (Fig.
  • the present invention is suitable for a method of promptly performing a virus test on the spot at the time of immigration examination and hospital diagnosis, and uses an antigen in a sample (pharyngeal swab, saliva, sputum, nasopharyngeal fluid, urine, etc.) collected from a human. After inactivation, the inactivated antigen was immobilized on a substrate by the quantum crystal aggregation method, and the antibody labeled with the immobilized antigen was bound by an antigen-antibody reaction to label it, and then unbound.
  • a sample pharyngeal swab, saliva, sputum, nasopharyngeal fluid, urine, etc.
  • the labeled antibody is washed with a buffer solution or pure water, irradiated with excitation light that meets the antibody label (fluorescent substance) from a light source, and the fluorescent particles on the substrate are counted by a fluorescent microscope.
  • the quantum crystal agglomeration method refers to a coagulation method for producing a quantum crystal of a plasmon metal complex shown in Japanese Patent Application Laid-Open No. 2016-197114, and the plasmon metal complex in a solution has an electrodeposition substrate potential.
  • the antigen in the collected sample is inactivated on the substrate on which the antibody is immobilized by the quantum crystal aggregation method in advance and bound to the substrate by the antigen-antibody reaction, and the label is labeled with the labeled antibody.
  • the unbound labeled antibody is washed with a buffer solution or pure water, irradiated with excitation light that meets the antibody label (fluorescent substance) from a light source, and fluorescent particles on the substrate with a fluorescent microscope. May be counted.
  • the virus to be inactivated in a sample is basically composed of either nucleic acid DNA or RNA and a shell protein (capsid) that protects it, and is a membrane called an envelope containing lipids. It is classified into a small spherical virus that is wrapped and has no envelope. Therefore, the difference in whether or not the virus is susceptible to inactivation by a drug depends on whether or not it has an envelope, but in general, a virus having an envelope is sensitive to a disinfectant, and therefore the use of a drug is preferable.
  • inactivation methods that are effective against most viruses include boiling (98 ° C or higher) for 15 to 20 minutes, 2w / v% glutaral, 0.05 to 0.5w / v% (500 to 5,000ppm) sodium hypochlorite. , 76.9-81.4v / v% rubbing alcohol, 70v / v% isopropanol, 2.5w / v% povidone iodine, 55w / v% phthalal, 0.3w / v% peracetic acid.
  • many viruses are inactivated by altering the capsid protein at 56 ° C. for 30 minutes, and enveloped viruses are easily inactivated by lipid solvents such as ether, chloroform, and fluorocarbon.
  • the inactivation according to the present invention from the viewpoint of not affecting or little affecting the antigen-antibody reaction, a drug method using ethanol, formalin, and AVL buffer, heat treatment, and SD treatment (chemical treatment). , Acid treatment, alkali treatment, radiation treatment and other inactivation methods can be used.
  • metal powder may be used instead of the substrate, or it can be produced. Further, in the above method, if a fluorescently labeled primary antibody and a fluorescently labeled secondary antibody are used at the same time as the labeled antibody and imaged for analysis, the fluorescent image can be obtained more appropriately. And it can be acquired accurately.
  • the present invention preferably uses a sample inactivating collection kit so that it can be applied to on-site collection and on-site inspection, and it is preferable to inactivate it using a drug.
  • a tube 10 containing a chemical solution L such as ethanol and a rod-shaped sample collection unit 20 are set, and the sample collection unit is composed of a non-woven fabric, gauze, or the like having absorption performance.
  • a sample is collected by a rod-shaped sample collection unit.
  • Specimen S is saliva, sputum, pharyngeal swab, nasopharyngeal fluid, etc.
  • the collection unit 20 is placed in the tube 10.
  • the inner part of the tube 10 becomes a narrow part, and when the sample collection part 20 is inserted, the sample collection part 20 is compressed on the narrow wall surface, and the sample S (saliva) is dispersed in the chemical solution L such as ethanol. (5) When the sample collection unit 20 other than the sample collection unit 20 is taken out, the sample collection unit 20 remains in the tube 10. (6) Specimen S is inactivated by the drug L and remains in the sample collection unit 20.
  • a viral antigen is collected in the field, inactivated, immobilized on a substrate by a quantum crystal agglutination method, and a labeled antibody is bound, or the antigen is immobilized on a substrate on which an antibody is immobilized in advance.
  • a virus antigen inactivated by an antibody reaction can be bound to a labeled antibody, and the number of fluorescences of the virus antigen can be counted and measured as the virus concentration instead of the fluorescence intensity thereof.
  • the quantum crystal forming the antibody or antigen-immobilized substrate an interaction occurs between the photon incidented by the excitation light and the free electron of the plasmon metal particle forming the quantum crystal, and the surface plasmon is excited to cause the labeled antibody. Since the fluorescence of is enhanced, it is possible to count and detect the granular fluorescence with good reproducibility instead of the overall fluorescence intensity. Therefore, surface plasmon excitation enhanced fluorescence spectroscopy (SPFS) can be used for rapid inspection in as little as 2 to 5 minutes, resulting in complicated pretreatment, insensitivity due to primers, many protocols, and inspection. It is possible to provide highly accurate diagnostic results as an alternative to PCR tests, which take a long time. In addition to determining the presence or absence of a disease, the count number corresponds to the number of viruses, so that it is possible to determine the mildness of the disease, which is epoch-making.
  • SPFS surface plasmon excitation enhanced fluorescence spectroscopy
  • the collected virus can be inactivated and secured in a tube, so that the virus can be sent to a required inspection place and taken out at any time for inspection.
  • the inactivated antigen or the like is directly immobilized by the quantum crystal aggregation method, but the antibody is immobilized in advance, and the inactivated antigen is bound to the antibody labeled by the antigen-antibody reaction. It may be detected, and the direct method, the sandwich method and the indirect method in the fluorescent antibody method can be adopted. (Detection of virus from inactive sample)
  • An equal amount of Ag reagent (2000ppm, 12.5 ⁇ l) to prepare a quantum crystal and hemagglutinin H1 influenza A antibody (25 ⁇ g / ml, 12.5 ⁇ l) are mixed to prepare a solution, which is dropped onto a phosphorus bronze plate and aggregated on the substrate.
  • Hemagglutinin H1 influenza A antibody is immobilized with the crystals.
  • a complex of an inactivated sample (25 ⁇ g / ml, 5 ⁇ l) and a FITC-labeled H1N1 influenza virus antibody 25 ⁇ g / ml, 5 ⁇ l is added dropwise to the hemagglutinin H1 influenza A antibody immobilized substrate.
  • H1N1 influenza virus When H1N1 influenza virus is present in the inactivated sample, the complex of influenza virus and FITC-labeled antibody binds to the immobilized antibody of the immobilized substrate, and when observed with a fluorescence microscope, the fluorescence of FITC on the granules is observed. It was observed. In addition, in the absence of influenza virus in the sample, no fluorescence of FITC on the granules was observed. When the measurement image obtained by the fluorescence microscope was set to a threshold value of 57 with "KEYENCE analysis software: BZ-X Analyzer" and analyzed, a large difference was obtained in the fluorescence count value of the granular FITC.
  • FIG. 17 is a method including steps (1) to (7).
  • an inactivated sample is prepared using the sample inactivated collection kit shown in FIG.
  • the inactivated antigen in the sample and the Ag reagent are mixed.
  • a solid-phase substrate of the inactivated antigen is prepared by using the quantum crystal agglutination method.
  • the inactivated antigen is added to the plasmon metal complex aqueous solution having a concentration of 2000 to 6000 ppm to prepare a composite aqueous solution of the plasmon metal complex and the inactivated antigen, and the plasmon metal complex solution containing the inactivated antigen is plasmon metal.
  • a solidified substrate on which an inactivated antigen is immobilized by aggregating plasmon metal complex quantum crystals by dropping onto a metal substrate having an electrode potential near the reduction potential of the complex is prepared (step (4)).
  • one selected from palladium, platinum, gold, silver, and copper is selected as the plasmon metal
  • a metal substrate having an electrode potential near the oxidation-reduction potential of the plasmon metal complex is selected, and a quantum crystal of the silver thiosulfate complex is selected.
  • copper or a copper alloy, particularly phosphorus bronze is selected as the substrate.
  • the method described in JP-A-2016-197114 is cited and referred to.
  • the viral antigen in the immobilized sample is labeled with a viral antibody labeled with a fluorescent substance using the antigen-antibody reaction.
  • excitation light such as Pacific Blue 400 nm to 436 nm
  • excitation light such as FITC 453 to 505 nm
  • excitation light such as TRITC 485 to 566 nm
  • excitation light such as APC 488 to 706 nm
  • IR Dye 800 etc.
  • a fluorescent substance having an excitation light of 732 to 784 nm can be mentioned.
  • step (7) the complex of the labeled antibody and antigen remaining on the substrate is irradiated with excitation light, and the fluorescence image is observed with a fluorescence microscope or a fluorescence reader by surface plasmon excitation, and the obtained fluorescence is obtained.
  • Fluorescent particles having a brightness value of an arbitrary value or more are binarized from an arbitrary range of the image or the entire image, and the number obtained is counted. Fluorescent particles having a certain threshold value or higher in the fluorescent image are binarized and counted.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】検体中の不活化した抗原又は抗体量を表面プラズモン励起増強の蛍光分光(SPFS)法を用いて検出するための固相化基板を提供する。 【解決手段】 溶液中のプラズモン金属錯体が、電析基板電位の選択により、還元電位近傍の電極電位を有する金属基板上で量子結晶として凝集し、その際、溶液中に抗原やその一部又は抗体が共存すると、金属錯体とともに基板又は粒子上に抗原やその一部又は抗体が凝集し、固相化したプラズモン反応場として完成し、しかも固相化基板ではあるものの、プラズモン金属薄膜と異なり、100nm前後の六角板状の金属錯体結晶が規則正しく配列し、一定の間隔をおいてその量子結晶間に抗原やその一部又は抗体が物理的又は化学的に固相化するため、マイクロ流路を形成するのと同様、表面プラズモン励起増強が可能であるウイルス抗原やその一部及びウイルス抗体の蛍光検出法に使用可能な固相化基板であって、蛍光画像を蛍光顕微鏡又は蛍光リーダーで観測し、得られた蛍光画像の任意の範囲内または画像全体から、任意の値の輝度値以上の蛍光の粒を二値化して、得られた個数をカウント検出可能とする。

Description

病原体量子結晶固相化基板およびそれを用いる病原体の量子結晶固相化蛍光計数法
 本発明は、病原体を量子結晶で固相化した病原体量子結晶固相化基板およびそれを用いる病原体の新規蛍光計数法、特に検体中の、抗体を産生させる病原体(ウイルス、細菌、真菌の他、重金属を含む)またはその抗体を量子結晶凝集法により固相化した蛍光計数用固相化基板およびそれを用いる、病原体またはその抗体の定量を蛍光画像中の蛍光点等をカウントする蛍光計数法に関する。
 ウイルス検査や抗体検査とは鼻や喉の奥の粘液や痰や血液を採取し、中に含まれる抗原ウイルスや抗体などのタンパク質を調べる検査であって、現在PCR法が主流である。このPCR法は検体を採取し、その検体中に含まれる遺伝子を増幅し、特定の遺伝子配列と一致するか否かを検査する精度の高い方法である。しかしながら、この方法には、熟達した前処理技術と精巧な検査機器を使用し、少なくとも検査に要する時間が約6時間以上である。そのため、簡易迅速な遺伝子増幅法が望まれ、LAMP(Loop-Mediated Isothermal Amplification)法が提案されているものの、あくまで遺伝子の増幅を用いるPCR法であって、迅速なその場検査に適さず、しかも陽性か陰性かの定性判断であって、定量性にかける。
 そこで、PCR法に代えまたは補足する検査として、簡易迅速なウイルス検査法である、血清中のウイルス特異的抗体を検出するイムノクロマト法や酵素抗体法(ELISA)を利用した血清学的診断法が提案されている。一般的な急性ウイルス感染症の場合、血中の抗体は、発症後1週間ほど経過した後に誘導される。そのためこの種、血清学的診断では、疾患の急性期および回復期の血中抗体価を測定し、抗体の推移を比較する必要がある。よって、発症後速やかに検査を実施し診断する必要がある急性ウイルス感染症の診断法には血清中の特異抗体検出法を取り入れることは比較的難しい。しかしながら、血清学的診断に必要な血液検体は、採取が比較的簡単で、検体採取時の医療従事者への二次感染リスクが比較的低い。さらに、イムノクロマト法によるウイルス特異抗体検出法は、目視判定による定性分析ができるため、特別な装置を必要とせず、外来・ベットサイドで迅速かつ簡便に検査することが可能であり、一刻も早い臨床現場への導入が求められているものの、COVID-19の場合、現在のところ、発症6日後までのCOVID-19患者血清ではウイルス特異的抗体の検出は困難であり、発症1週間後の血清でも検出率は2割程度にとどまることが明らかになった。また、抗体陽性率は経時的に上昇していき、発症13日以降になると、殆どの患者で血清中のIgG抗体は陽性となる一方、IgM抗体の検出率が低く、IgG抗体のみ陽性となる症例が多いことから、当該キットを用いたCOVID-19の血清学的診断には発症6日後までの血清と発症13日以降の血清のペア血清による評価が必要と考えられている。さらに、遺伝子増強でない検査法では非特異反応を否定できない場合があり、結果の解釈には、信頼性に欠け、複数の検査結果、臨床症状を総合的に判断した慎重な検討が必要であるとされる。かかる現状では、病原体の検査には、遺伝子を増幅するPCR法に匹敵する精度と、イムノクロマト法と同等の簡易迅速検査が要求される。そこで、本発明者らはかかる二つの課題である、PCR法に匹敵する精度とイムノクロマト法と同等の簡易迅速検査が行える方法を実現するため、鋭意研究をおこなった。組織、細胞内の抗原を特異的に認識する抗体を用いてその抗原の分布を調べるに蛍光抗体法という方法がある。1次抗体、2次抗体を順次使用することにより、組織、細胞中の1次抗体の分布、すなわちそれが認識する抗原の分布を蛍光標識した二次抗体の分布として見るという方法であるが、患者から採取した検体中の病原体を組織、細胞の系外では固相化しなければ測定が困難である。また、時間をかけて病原体を検体として固相化できたとしても、検体間に疑似検体を存在しやすく、これが非特異反応(測定対象以外の何らかの生体成分が測定試薬や採血管の添加物などの成分と異常反応を引き起こし、病態とかけ離れた測定値を示す現象をいう)を惹起し、測定精度を劣化させることを知った。
特願2020-74439号
KONIKAMINORUTA Report 2012
 本発明は上記PCR法に匹敵する精度を備えると同時に、上記イムノクロマト法と同等の簡易迅速検査が行える方法を実現することを課題とする。かかる課題を解決するため、本発明者は鋭意研究の結果、プラズモン金属錯体の量子結晶を凝集させる際、病原体を同時に凝集させることができ、量子結晶とともにに病原体が分散して固相化され、これに蛍光抗体法を適用すると、プラズモン金属錯体の表面プラズモン増強作用により、病原体の蛍光が蛍光画像に点状または粒状に現れ、病原体の個数が点状蛍光数として計数できる(以下、蛍光計数法という)一方、該蛍光計数法では非特異反応が解消または軽減でき、精度が著しく向上することを見出した。
 本発明の一つは、上記発見に基づきなされたもので、新規な蛍光計数法に適用される固相化基板であって、不活化した病原体またはその抗体を、プラズモン金属錯体とともに金属基板上電極電位差で凝集させ、金属基板上に金属錯体量子結晶とともに固定してなり、固相化した病原体にまたは固相化した抗体を抗原抗体反応より標識化可能で、蛍光計数法による計数定量が可能であることを特徴とする固相化基板にある。
 本発明の固相化基板は、抗原抗体反応により捕捉された標識蛍光分子を,プラズモン金属錯体により効率よく表面プラズモン励起により蛍光増強することができる。これは従来の金膜極表面に誘起された局在場光により励起されるその蛍光シグナルを検出する、表面プラズモン励起増強蛍光分光(SPFS)免疫測定法(非特許文献1)とは違って、蛍光シグナルが蛍光顕微鏡で観測される蛍光画像中に点状または粒状に現れ、二値化して一定の閾値以上の蛍光点または粒をカウントすると、病原体数、抗体数と相関し、病原体や抗体の正確な定量が可能である。これは陽性か、陰性かのPCR法とは違って病状の発症、進行、治癒の現状を知ることができる貴重な検査となる。また、免疫抗体を検査するイムノクロマト法と異なり、感染か否かを病原体量の蛍光計数法による定量により、迅速にかつ正確に判断することができる。さらに、金膜極表面に誘起された局在場光により励起される固相化基板に比してマイクロ流路の必要もなく、非特異反応による蛍光シグナルの疑似性も解消される。
 本発明の固相化基板が従来の表面プラズモン共鳴励起増強蛍光分光(SPFS)の固相化基板とどのように異なるかは、固相化基板が金薄膜上に形成されたものか、プラズモン金属錯体量子結晶上に形成されたものかにあると思われる。この固相化技術は通常複雑であるとともに、この種の基板型の反応場であるSPFS測定は反応効率の点で不利であり,高効率な反応促進技術として、微小流路(マイクロ流路)が適用される。しかしながら、このマイクロ流路の利用が表面プラズモン励起増強蛍光分光(SPFS)による測定を複雑で困難なものとしている。本発明ではプラズモン金属錯体の量子結晶の凝集により病原体の測定に必要な固相化を簡易迅速に達成することができる。即ち、反応場での抗体または抗原の固相化が容易で、しかも、マイクロ流路を使用せずとも再現性の高い表面プラズモン励起増強の蛍光分光(SPFS)が可能な新規な方法を提供できる(特許文献1)。
 即ち、本発明者らは、かかる固相化基板がウイルスを含む病原体の検出において定量性に優れることを見出した。例えば、インフルエンザウイルスを、抗原抗体反応(サンドイッチ法)で蛍光分光を行う場合、従来の固相化基板と異なり、測定した画像が図6に示すように、ウイルスが有ると、量子結晶上の固相化した抗体と標識した抗体で挟み込み、粒状に多数の蛍光を発し、この粒状の蛍光がウイルスを挟み込んだ標識抗体の蛍光であり、一定の閾値以上の蛍光粒をカウントするとウイルス数と相関する一方(図6(a))、ウイルスがない場合は、粒状の多数の蛍光が現れないことを新たに見出した(図6(b))。そこで、その固相化基板の詳細を検査するに、溶液中のプラズモン金属錯体が、電析基板電位の選択により、還元電位近傍の電極電位を有する金属基板上で金属錯体の量子結晶として凝集し(以後、量子結晶凝集法という)、その際、溶液中に抗原又は抗体が共存すると、金属錯体とともに基板又は粒子上に抗原又は抗体が凝集し、固相化したプラズモン反応場とするもので、固相化基板ではあるものの、プラズモン金属薄膜と異なり、100nm前後の金属錯体結晶が規則正しく配列し、一定の間隔をおいてその量子結晶間に抗原又は抗体が物理的又は化学的に固相化するためか、マイクロ流路を形成することと同様に、表面プラズモン励起増強が可能であり、その結果、かかる表面プラズモン励起増強の蛍光分光(SPFS)方法において、蛍光顕微鏡で観測される粒状の蛍光個数をカウントして、ウイルスの有り無し、カウント数の多少により、ウイルス数の定量により、疾病を解析するのが有効である。
 本発明にかかる固相化基板は、表面プラズモン励起増強の蛍光分光(SPFS)方法において、蛍光顕微鏡で観測される画像検索に優れ、蛍光画像中の粒状の蛍光個数をカウントして、ウイルスの有り無し、カウント数の多少により、疾病を解析することができる新規な量子結晶固相化蛍光計数法を提供する。
 本発明に係る固相化基板は、プラズモン金属錯体をの量子結晶凝集法を用いて抗体を固相化して量子結晶間にnmサイズの間隙又はマイクロ流路を備え、蛍光物質を用いて標識化した二次抗体と抗原との複合体を結合可能であって、励起光の照射により、表面プラズモン励起して複合体の蛍光をその蛍光画像中に、粒状蛍光として観測可能で、粒状蛍光個数をウイルス量として検出可能な固相化基板である。ここで、量子結晶凝集法とは溶液中のプラズモン金属錯体が、電析基板電位の選択により、還元電位近傍の電極電位を有する金属基板上で金属錯体の量子結晶として凝集し(以後、量子結晶凝集法という)、その際、溶液中に抗原又は抗体が共存すると、金属錯体とともに基板又は粒子上に抗原又は抗体が凝集し、固相化したプラズモン反応場とするもので、100nm前後の金属錯体結晶が規則正しく配列し、一定の間隔をおいてその量子結晶間に抗原又は抗体が物理的又は化学的に固相化して、マイクロ流路を形成する凝集法をいう(特開2016-197114号参照)。
 本発明の固相化基板は、プラズモン金属錯体の量子結晶凝集法を用いて抗原を固相化し、その抗原と抗体とを反応させて量子結晶間に間隙又はマイクロ流路を備える抗体固相化基板を形成し、さらに蛍光物質を用いて標識化した標識2次抗体を結合させるようにしても製造することができる。
 また、本発明の固相化基板は、基板に代えて金属粉体を使用してもよいも製造することができる。その場合は、抗体もしくは抗原を固相化した抗体もしくは抗原固相化金属粉体を形成し、蛍光物質を用いて標識化した2次抗体と抗原との第1法の複合体又は蛍光物質を用いて標識化した第2法の標識2次抗体を抗体もしくは抗原固相化金属粉体と液中で反応させて製造することができる。かかる基板は、洗浄後、残る複合体又は標識2次抗体に励起光を照射して量子結晶を表面プラズモン励起して複合体又は2次標識抗体の蛍光を増強し、その蛍光画像を観測し、画像中の粒状蛍光の個数をカウントして検出する。
 上記の製造法は、蛍光標識を付けた抗体(1次抗体)で抗原を挟みこんで製造したが、標識を付けた抗体として蛍光標識を付けた1次抗体と蛍光標識を付けた2次抗体で抗原を補足し、蛍光を画像化して解析するようにすると、より蛍光画像を適切にかつ正確に獲得することができる。
 本発明によれば、ウイルス抗原の蛍光強度でなく、ウイルス抗原の蛍光個数をウイルス濃度として計測することができる。しかも抗体又は抗原固相化基板を形成する量子結晶は量子結晶間にnmサイズの間隙又はマイクロ流路を備えるので、励起光により入射された光子と量子結晶を形成するプラズモン金属粒子の自由電子との間に相互作用が起こり、表面プラズモン励起して各複合体又は2次標識抗体の蛍光を増強するので、全体の蛍光強度でなく、その粒状の蛍光を再現性良くカウントして検出することができる。したがって、表面プラズモン励起増強蛍光分光(SPFS)法を用いて、2~5分という短時間で迅速に検査することができるので、前処理が煩雑で、プライマーによって感度が鈍く、プロトコールが多く、検査まで時間がかかるというPCR検査に代わる精度の高い診断結果を提供できる。また、疾病の有り無しの判定だけでなく、カウント数はウイルス数に対応するので、疾病の軽重度の判定をすることができるので、画期的である。
 本発明の第2法によれば、特定のウイルスに有効な体内で生成される抗体を捕捉する方法を提供することができる。ここでは、上記の間接法において、蛍光標識を付けた1次抗体と蛍光標識を付けた2次抗体で抗原を挟み込み、1次抗体もしくは標識を付けた2次抗体を1次抗体もしくは標識を付けた1次抗体へ結合させると、蛍光がより強くなるので、標識2次抗体を加えることで、蛍光をより高感度で検出する事が可能になる。
(本発明の好ましい実施形態)
 [実施形態1]
 本発明は、蛍光画像中の蛍光点または粒をカウントして検体中の病原体または抗体の測定対象の定量を行う蛍光計数法に適用される固相化基板であって、不活化した病原体またはその抗体を、プラズモン金属錯体量子結晶とともに金属基板上に電極電位差で凝集させ、金属基板上に金属錯体量子結晶とともに固定してなり、固相化した病原体にまたは固相化した抗体を抗原抗体反応より蛍光標識化可能で、蛍光標識された蛍光画像中に蛍光点または粒を表面プラズモン励起して蛍光計数法による計数定量が可能であることを特徴とする。
 [実施形態2]
 固相化対象が励起光によって表面プラズモン共鳴を起こす金、銀および銅を含むプラズモン金属の量子結晶であって、その水溶液の濃度が1000ppm~5000ppm、好ましくは1000~3000ppmであり、金属基板上に50から150nm量子結晶を形成する。
 [実施形態3]
 固相化対象が、抗体を産生させるウイルス、細菌、真菌および重金属を含む病原体またはその抗体であって、その検体濃度が10μg/ml以上である。
 [実施形態4]
 実施形態1~3のいずれかに記載の、プラズモン金属錯体の量子結晶凝集法を用いて量子結晶と測定対象である病原体またはその産生される関連抗体を金属基板上に固相化した固相化基板を用い、直接法、間接法、サンドイッチ法又は競合法のいずれかの方法で固相化対象の病原体またはその抗体を標準化し、蛍光顕微鏡を用いて蛍光画像中の一定閾値以上の蛍光点または粒を二値化してカウントし、検体中の病原体または抗体の定量を行う方法である。
 [実施形態5]
 プラズモン金属錯体の量子結晶凝集法を用いて量子結晶と抗体を固相化した抗体固相化基板を使用し、抗体を産生させる抗原を含む病原体と蛍光物質を用いて標識化した抗体と複合化し、該複合体を前記抗体固相化基板に滴下して両者を結合させる間接法であって、未結合複合体及び抗体を洗浄後、基板に残る複合体に励起光を照射して量子結晶を表面プラズモン励起して複合体の蛍光を増強し、その蛍光画像を蛍光顕微鏡又は蛍光リーダーで観測し、得られた蛍光画像の任意の範囲内または画像全体から、任意の値の輝度値以上の蛍光の粒を二値化して、得られた個数をカウント検出する。また抗原を含む病原体は不活化されるのがよい。
 [実施形態6]
 プラズモン金属錯体の量子結晶凝集法を用いて病原体である抗原やその一部を量子結晶とともに固相化した抗原固相化基板を用いる直接法であって、蛍光物質を用いて標識化した抗体を抗原固相化基板に滴下して両者を結合させ、未結合標識した抗体を洗浄後、基板に残る標識抗体に励起光を照射して量子結晶を表面プラズモン励起して標識抗体の蛍光を増強し、その蛍光画像を蛍光顕微鏡又は蛍光リーダーで観測し、得られた蛍光画像の任意の範囲内または画像全体から、任意の値の輝度値以上の蛍光の粒を二値化し、得られた個数をカウント検出する。
 [実施形態7]
 標識化した抗体として互いに結合可能な第1次抗体もしくは標識した第1次抗体と標識した第2次抗体とを同時に用いる。
 [実施形態8]
 上記基板に代えて金属粉体を使用する。
 [実施形態9]
 抗原を固相化した抗原固相化基板を用いる方法であって、ヒトから採取した検体中の抗原を不活化した後、その不活化した抗原を量子結晶凝集法で基板上に固相化し、固相化した抗原に標識を付けた抗体を抗原抗体反応で結合させて標識化した後、未結合の標識抗体を緩衝液や純水で洗浄し、抗体の標識(蛍光物質)に会う励起光を光源から照射し、蛍光顕微鏡で基板上の蛍光粒をカウントする。
 [実施形態10]
 抗体を固相化した抗体固相化基板を用いる方法であって、ヒトから採取した検体中の抗原を不活化した後、その不活化した抗原を量子結晶凝集法で基板上に固相化した抗体に結合させ、不活化した抗原に標識を付けた抗体を抗原抗体反応で結合させて標識化した後、未結合の標識抗体を緩衝液や純水で洗浄し、抗体の標識(蛍光物質)に会う励起光を光源から照射し、蛍光顕微鏡で基板上の蛍光粒をカウントする。
 [実施形態11]
 プラズモン金属錯体の量子結晶凝集法が、溶液中のプラズモン金属錯体が、電析基板電位の選択により、還元電位近傍の電極電位を有する金属基板上で量子結晶として凝集し、その際、溶液中に共存する抗原又は抗体を、金属錯体とともに基板又は粒子上に凝集し、固相化する。
 [実施形態12]
 検体を採取後、不活化試薬液を含有するチューブに入れ、不活化する。
[規則91に基づく訂正 22.06.2020] 
本発明の第1法(サンドイッチ法)の工程(1)~(4)からなる概要図である。 本発明の第1法において、金属基板の代わりに金属粉体を使った場合の工程(1)~(3)からなる概要図である。 本発明の第1法において、金属基板の代わりに金属粉体を使った場合の工程(4)~(5)からなる概要図である。 本発明の第2法(間接法)の工程(1)~(4)からなる概要図である。 本発明の量子結晶基板の製造方法を示す工程図である。 本発明の第1法及び第2法の標識抗体として互いに結合可能な第1次標識抗体と第2次標識抗体を使うウイルス検出方法を示す概要図である。 インフルエンザウイルスがいる場合の蛍光画像(a)とインフルエンザウイルスがいない場合の蛍光画像(b)である。 インフルエンザウイルスの定量を本発明の蛍光カウント数で行う時のグラフである。 本発明の蛍光画像の解析方法を示す工程説明図である。 量子結晶固相化基板の2万5千倍SEM画像で、(a)はAg試薬(チオ硫酸銀水溶液)2000ppmとリン酸緩衝液使用時の固相化基板、(b)はAg試薬2000ppmとインフルエンザ抗体(50μg/ml)含有リン酸緩衝液使用時の固相化基板、(c)Ag試薬2000ppmとインフルエンザウイルス(50μg/ml)含有リン酸緩衝液使用時の固相化基板のそれぞれのSEM画像を示す。 各固相化基板の量子結晶状態及び成分分析結果を示すグラフで、Ag試薬(チオ硫酸銀水溶液)4000ppmとリン酸緩衝液使用時の固相化基板のSEM画像および成分分析グラフである。 Ag試薬4000ppmとインフルエンザ抗体(50μg/ml)含有リン酸緩衝液使用時の固相化基板のSEM画像および成分分析グラフである。 Ag試薬4000ppmとインフルエンザウイルス(50μg/ml)含有リン酸緩衝液使用時の固相化基板のSEM画像および成分分析グラフである。 インフルエンザ抗体固相化基板の作成方法を示すイメージ図(a)及び固相化基板の明視部画像(b)を示す 固相化基板の感度の試験工程図である。 FITCインフルエンザ抗体の各濃度と蛍光画像の蛍光点のカウント数の相関関係を示すグラフである。 インフルエンザ抗体の固相化と量子結晶濃度との関係を示すイメージ図である。 不活化したインフルエンザウイルス抗原を固相化し、本発明方法(直接法)で蛍光計数する方法の工程図である。 不活化したインフルエンザウイルス抗原を本発明方法(サンドイッチ法)で蛍光計数する方法を示す工程図である。 患者検体を用い、不活化したCovid-19ウイルスを本発明方法(サンドイッチ法)で蛍光計数する方法を示す工程図である。 本発明の量子結晶固相化蛍光計数法の解析法を示す概要図である。 本発明の不活化検体を使った第3法(直接法)の工程(1)~(4)からなる概要図である。 本発明の第3法の工程(5)~(7)からなる概要図である。 本発明の検体不活性採取キットを用いた採取工程(1)~(3)からなる概要図である。 本発明の検体不活性採取キットを用いた採取工程(4)~(6)からなる概要図である。
 本発明では量子結晶凝集法を用い、所定の金属基板及び金属粉体上に、以下にあげる多様なものを用いて、簡便に固相化基板を作成することが出来る。
 (量子結晶凝集反応)
 固相化基板として銀錯体量子結晶を凝集する場合、凝集用基板として、銅及び銅合金基板、特にリン青銅基板を用いるのがよい。
本発明方法で用いるプラズモン金属量子結晶領域を有する基板をプロテオチップという。その製造方法は、以下の通りである。
 1)金属錯体水溶液を錯体を形成する金属より卑なる電極電位(イオン化傾向の大きい)金属基板上で電極電位差により化学還元して量子結晶(ナノサイズの金属錯体結晶)を凝集させる。銀錯体の場合、チオ硫酸銀水溶液を銀より卑なる電極電位(イオン化傾向の大きい)の銅または銅合金上で凝集させることにより銀錯体の量子結晶を電極電位差電析法を採用して形成している。詳しくは、金属錯体の水溶液中の濃度は主として形成する量子結晶のサイズを考慮して決定すべきであり、分散剤を使用するときはその濃度をも考慮するのがよく、通常、100ppmから1000ppmの範囲で使用できるが、抗原抗体反応に用いる抗原を含む病原体または病原体が免疫反応で産生させる抗体にも依存してナノクラスタというべき50~150nmのナノサイズを調製するにはら1000ppm、好ましくは2000以上10000ppm、好ましくは4000ppmの量子結晶水溶液を用いるのが好ましい。また、本発明の抗原および抗体の固相化には固相化対象を不活化液および緩衝液と混合して量子結晶水溶液とともに凝集させるので、量子結晶水溶液からのみの凝集と異なり、量子結晶は固相化基板上に分散する傾向にある(図9-1(a),(b)及び(c)参照)
 2)量子結晶を形成する金属錯体は担持金属の電極電位Eと相関する式(I)で示される錯体安定度定数(logβ)以上を有するように選択される。
    式(I):E゜=(RT/|Z|F)ln(βi)
(ここでE゜は、標準電極電位、Rは、気体定数、Tは、絶対温度、Zは、イオン価、Fは、ファラデー定数を表す。)
 ここで、金属錯体が、Au、Ag、PtまたはPdから選ばれるプラズモン金属の錯体である場合は、励起光に対して局在表面プラズモン共鳴増強効果を有する。特に、金属錯体が銀錯体であるときは、安定度定数(生成定数)(logβi)が8以上の銀錯化剤とハロゲン化銀との反応により形成されるのがよく、ハロゲン化銀としては塩化銀が好ましく、錯化剤としてはチオ硫酸塩、チオシアン酸塩、亜硫酸塩、チオ尿素、ヨウ化カリ、チオサリチル酸塩、チオシアヌル酸塩から選ばれる1種であるのが好ましい。銀錯体は平均直径が5~20nmであるナノクラスタからなる量子ドットを有し、量子結晶のサイズが50~150nmとなる。
(固相化濃度の検討その1)
 量子結晶を用いた固相化技術において、量子結晶試薬(Ag試薬)の濃度は非常に重要である。そこで、固相化する量子結晶試薬の濃度を変えてBiotinを固相化し、Avidin-Biotin結合を用いてFITC標識が付与されたAvidinを蛍光顕微鏡で検出する。
FITC-Avidin VEC社 「FLUORESCEIN AVIDIN D」CatNo.A-2001
Biotin 和光社 「(+)-Biotin」CatNo.023-08711
量子結晶濃度を1000、2000、3000、4000、5000ppmの濃度で、Biotin(5μg/ml)を固相化した固相化基板を作成する(固相化時間1分間)。次にFITC-Avidin(5μg/ml)をBiotin固相化基板に滴下してAvidin-Biotin結合を用いてFITC標識が付与されたAvidinをキーエンス社蛍光顕微鏡「BZ-X710」で画像を測定し、得られた蛍光画像の平均輝度値を算出する(反応時間1分間)。その結果、1000ppm(画像の平均輝度値54)、2000ppm(69)、3000ppm(62)、4000ppm(59)、5000ppm(59)で、Biotinが多く固相化し、FITC-Avidinが最も結合したのは平均輝度が一番高い2000ppmだったと結論することができる。これはおそらく、量子結晶量が少ないと、固相化Biotin量も少なく、量子結晶量が沢山あると、固相化Biotinが埋没してしまい、FITC-Avidinの検出が少なくなったと考えられる。
なお、各量子結晶の測定に使用した機器は次の通りである。
使用機器
機器:キーエンス社蛍光顕微鏡BZ-X710
光源:メタルハライドランプ80W
蛍光フィルタ:BZ-XフィルタGFP(525±25)
解析ソフト:BZ-X Analyzer
 
(固相化濃度の検討その2)
 次に、抗原抗体反応を用いたインフルエンザウイルスの検出においても量子結晶試薬の最適濃度の検討を行った。固相化する量子結晶濃度をかえてインフルエンザ抗体を固相化し、抗原抗体反応を用いてインフルエンザウイルスとFITC標識を付与したインフルエンザ抗体を蛍光顕微鏡で測定し、得られた蛍光画像から蛍光点をカウントした(抗原抗体反応―サンドイッチ法)。
 インフルエンザ抗体:Hytest社「Monoclonal Mouse anti-influenza A haemogglutinin H1」CatNo.3AH1
インフルエンザウイルス:HyTest社「Influenza A(H1N1)virus」CatNo.IN73-3
FITCインフルエンザ抗体(ARP社「Anti-Influenza A virus(H1N1)FITC」)CatNo.12-6250-3
量子結晶濃度2000、4000、6000ppmの各濃度で等量のインフルエンザ抗体(100μg/ml)を緩衝液と混ぜて金属基板に滴下し、固相化基板を作成する(固相化時間1分間)。次に、不活化されているインフルエンザウイルス(10μg/ml)とFITC標識の付いたインフルエンザ抗体(25μg/ml)を混ぜて形成した複合体を固相化基板に滴下する(反応時間1分間)未結合の複合体やFITC抗体などは水や緩衝液で洗い流す。このチップをキーエンス社蛍光顕微鏡「BZ-X710」で測定し、得られた蛍光画像の所定の閾値以上の蛍光点をカウントする。その結果、Avidin-Biotin結合の場合と同様、量子結晶2000ppmでインフルエンザを固相化する場合(全体では1000ppm)が最もインフルエンザウイルスを含む複合体を多く検出することができた。量子結晶濃度でインフルエンザ抗体を固相化した場合の各濃度2000、4000、6000ppmでのイメージは図12に示す通りである。
量子結晶濃度(ppm)とカウント数
2000(228カウント)、4000(159カウント)、6000(47カウント)
 測定条件:閾値62 ぼかしフィルタ無し ×10倍レンズの1視野測定(ここで、1視野測定とは図16に示すように、特願2019-234330号の場合と違ってチップの1部分のみを取得する方法をいい、測定時間の短縮につながる)。 
使用機器
機器:キーエンス社蛍光顕微鏡BZ-X710
光源:メタルハライドランプ80W
蛍光フィルタ:BZ-XフィルタGFP(525±25)
解析ソフト:BZ-X Analyzer
(固相化基板の調整)
 本発明の固相化基板は、量子結晶金属錯体水溶液の他に、固相化対象の抗原を含む病原体および抗体を含む不活化液および/または緩衝液と混合して量子結晶の凝集に固相化する点で凝集作用は異なるが、基本的に、プラズモン金属錯体の量子結晶を製造する量子結晶凝集法(特開2016-197114号)を用いて抗体又は抗原を固相化することができる。そこで、本明細書では特開2016-197114号公報記載の方法が引用され、参照される。ただし、病原体およびそれが産生する抗体は不活化液または緩衝液中に添加され、固相化のためにプラズモン金属錯体試薬(例えば、チオ硫酸銀水溶液)と混合されて固相化基板上に添加されて凝集する。量子結晶だけの場合と違って量子結晶による抗原および抗体の固相化の場合、緩衝液との相互作用、pHの変化の影響を受けると考えられる。
 図9はチオ硫酸銀水溶液(Ag試薬)2000ppmに等量のリン酸緩衝液を混合したコントロール(図9-1(a))とし、リン酸緩衝液に抗体(インフルエンザ抗体:ARP社「Anti-Influenza A virus(H1N1)FITC」)CatNo.12-6250-3)および抗原(不活化インフルエンザ抗原:インフルエンザウイルス:HyTest社「Influenza A(H1N1)virus」CatNo.IN73-3)をそれぞれ50μg/mlとなるように加え、これにチオ硫酸銀水溶液(Ag試薬)2000ppmに等量混合した場合のSEM画像を(図9-1(a))と(図9-1(b))に示す。緩衝液を加えた場合は量子結晶が全体に拡散し、抗体および抗原がその量子結晶上に結合して固相化されることがわかる。かかる量子結晶の分散凝集が蛍光画像における蛍光点計数が可能な状況を作り上げると思われ、これにより、抗原および抗体が固相化した基板は標識されると、励起光の照射により、表面プラズモン励起して複合体の蛍光をその蛍光画像中に、粒状蛍光として観測可能での粒状蛍光個数をウイルス量として検出可能である。
なぜなら、図9-2、図9-3および図9-4に示す如く、リン青銅基板のCuおよびSn成分以外に各量子結晶ではAg成分の検出が見られ、量子結晶銀錯体により固相化が行われているのを確認できる。なお。抗体および抗原の検出はされない。
(インフルエンザ抗体固相化基板作成および感度)
 上記チオ硫酸銀水溶液(Ag試薬)2000ppm(pH5.2)とインフルエンザ抗体(50μg/ml)の0.1
mol/Lリン酸緩衝液(pH7.4)との等量混合液(pH7.2)をリン青銅板上に添加すると、約1分間で固相化するので、金属基板上の残液をエアで吹き飛ばして抗体固相化基板を得た(図10(a))。図10(b)はその固相化基板の明視部画像である。
 上記量子結晶凝集法を用いて濃度を変えたFITC標識の付いたインフルエンザ抗体を固相化して抗体固相化基板を作成し、得られたそれぞれの蛍光画像の蛍光点をカウントした。FITCインフルエンザ抗体(ARP社「Anti-Influenza A virus(H1N1)FITC」)CatNo.12-6250-3)を用いた。
2000ppmのチオ硫酸銀水溶液(Ag試薬)に、上記抗体(250、125、62.5、31.25μg/ml)を等量混合し、基板上に滴下し、各種固相化基板を作成する(図11(a))。所要時間は約1分である。この固相化基板を図11(b)に示すように蛍光顕微鏡(キーエンス社BZ-X710)でその蛍光感度を所定閾値以上の蛍光点をカウントした。その結果、本発明の固相化基板は濃度依存的にカウント数が増えることが分かった。即ち、本発明に係る固相化基板は抗体が定量的に固相化されており、図12に示すように定量化される。したがって、本発明によれば、定量的に抗原および抗体が定量的に固相化することができることがわかる。
(ウイルスの固相化その1)
 図13にインフルエンザウイルスの直接法の検査工程を示す(不活化したインフルエンザウイルスの固相化)
 量子結晶凝集法を用いて不活化したインフルエンザウイルスを固相化した基板へ、FITC標識のついたインフルエンザ抗体滴下して得られた蛍光画像から蛍光点をカウントする(これを抗原抗体反応を用いた直接法という)。
 インフルエンザウイルス:HyTest社「Influenza A(H1N1)virus」CatNo.IN73-3
FITCインフルエンザ抗体(ARP社「Anti-Influenza A virus(H1N1)FITC」)CatNo.12-6250-3
上記チオ硫酸銀水溶液(Ag試薬)2000ppmと前期インフルエンザウイルス(50μg/ml)リン酸緩衝液との等量混合液(pH7.4)をリン青銅板上に添加してウイルス固相化基板を作成する(約1分間で固相化する)。比較のため、ウイルスのない緩衝液を量子結晶Ag試薬と混ぜて固相化基板を形成する。次に、FITC標識の付いたインフルエンザ抗体(25μg/ml)を上記2つの固相化基板に滴下する(反応時間はわずか1分間)。未結合の複合体やFITC抗体などを水や緩衝液で洗い流す。金属基板上の残液をエアで吹き飛ばして抗体固相化基板を得た(図10(a))。図10(b)はその固相化基板の蛍光画像である。
(抗体の固相化その1)
 図14にインフルエンザウイルスのサンドイッチ法の検査工程を示す(インフルエンザ抗体の固相化)
 インフルエンザ抗体を量子結晶凝集法を用いて固相化した基板へ、FITC標識のついたインフルエンザ抗体と不活化したインフルエンザウイルスを複合化し、これを滴下して抗原抗体反応で得られた蛍光画像から蛍光点をカウントする(これを抗原抗体反応を用いた直接法という)。
  インフルエンザ抗体:Hytest社「Monoclonal Mouse anti-influenza A haemogglutinin H1」CatNo.3AH1
インフルエンザウイルス:HyTest社「Influenza A(H1N1)virus」CatNo.IN73-3
FITCインフルエンザ抗体(ARP社「Anti-Influenza A virus(H1N1)FITC」)CatNo.12-6250-3
 上記チオ硫酸銀水溶液(Ag試薬)2000ppmとインフルエンザ抗体(50μg/ml)リン酸緩衝液との等量混合液(pH7.2)をリン青銅板上に添加して抗体固相化基板を作成する(約1分間で固相化する)。次に、FITC標識の付いたインフルエンザ抗体(25μg/ml)とインフルエンザウイルスを混合して複合体を形成し、これを固相化基板に滴下する(反応時間はわずか1分間)。未結合の複合体やFITC抗体などを水や緩衝液で洗い流す。この測定チップを、キーエンス社蛍光顕微鏡「BZ-X710」で測定し、得られた蛍光画像の所定の閾値以上の蛍光点をカウントする。測定条件および使用機器はウイルスの固相化と同じである。
(抗体の固相化その2)
 図15に検査工程を示す。量子結晶を用いてCOVID-19抗体を固相化した基板へ不活化したCOVID-19患者検体とFITC標識を付けたCOVID-19抗体の複合体を滴下して得られた蛍光画像から蛍光点をカウントする。
COVID-19抗体:GeneTex社「SARS-COV-2 spike antibody」 CatNo.GTX135356
FITC標識のCOVID-19抗体:GeneTex社「SARS-COV-2 spike antibody」 CatNo.GTX135356にFITC標識をつけたもの(標識率8.64)
2000ppmの量子結晶試薬(チオ硫酸Ag)へCOVID-19抗体(50μg/ml)を等量混ぜてリン青銅基板上に滴下して抗体固相化基板を作成する。次に、COVID-19患者から得た咽頭拭い液を70%エタノールで不活化し、FITC標識のCOVID-19抗体(34.5μg/ml)を混ぜて形成した複合体を固相化基板に滴下する。未結合の複合体やFITC]抗体などは水や緩衝液で洗い流す。
この測定チップを、キーエンス社蛍光顕微鏡「BZ-X710」で測定し、得られた蛍光画像の所定の閾値以上の蛍光点をカウントする。測定条件および使用機器はウイルスの固相化その1と同じである。
その結果、COVID-19患者2名の咽頭拭い液から採取した2検体ともウイルスを検出した。カウント数は患者の症状を表していた。なお、ブランクは70%エタノールを使用した。結果はブランク:カウント数8(相対値0)、検体1:カウント数16(相対値8)、検体2:カウント数51(相対値43)を示した。なお、相対値はブランクのカウント数を0とした際のカウント数である。
検体が唾液であっても、カウント数はやや低いが同様の結果を示す。
(量子結晶の製造)
 チオ硫酸銀2000又は4000ppm水溶液を調製し、その1滴をりん青銅板上に滴下し、約1分間放置し、溶液を吹き飛ばすと、SEM像でみると、量子結晶が作成されていた。実施例1で製造したナノ粒子凝集体(量子結晶)の各種SEM像を示す写真では、100nm前後の薄い六角柱状結晶であって、表面に数nmオーダの凹凸が発現している。金属ナノ結晶に特有のファセットは確認できなかった。りん青銅坂上に滴下後の放置時間と量子結晶形状の相関関係を示す。まず、六角形の量子結晶が生成し、形状を維持しつつ成長するのが認められ、量子結晶のEDSスペクトル(元素分析)の結果を示すグラフでは、りん青銅板上に形成された結晶は銀及び錯体配位子由来の元素を検出したが、銅板上にチオ硫酸銀1000ppm水溶液を調製し、その1滴を滴下し、約3分間放置し、溶液を吹き飛ばした場合は、銀のみを検出したに過ぎなかった。
 (量子結晶凝集理論)
 量子結晶は2000又は4000ppmチオ硫酸銀錯体水溶液の場合、りん青銅板上に滴下して1分間放置すると、100nm前後の六角柱状に形成され、各六角柱状の量子結晶は数nmオーダの凹凸を持つことがSEM像から確認されたが、金属ナノ結晶に特有のファセットは確認できず、EDS元素分析で銀及び錯体配位子由来の元素を検出されたため、全体は銀錯体のナノ結晶であって、その表面に現れる凹凸は錯体中の銀がクラスタとして量子ドットを形成して広がっていると推測される。本発明の銀錯体量子結晶がりん青銅板上に形成される一方、銅基板上には銀のみのナノ粒子が析出する現象を見ると、チオ硫酸銀錯体の平衡電位が0.33で銅の電極電位(0.34)と同等であるため、銅基板上には銀(0.80)のみが析出し、りん青銅の場合は0.22と電極電位がわずかに卑であるため、銀錯体の結晶が析出したものと思われる。したがって、量子結晶を作成するためには1)錯体水溶液が500~2000ppmという希薄な領域であること、2)金属錯体水溶液の平衡電位に対し担持金属の電極電位がわずかに卑であること、3)電極電位差で金属錯体が凝集させることが重要であるが、抗原抗体の固相化にはそれより濃度の高い2000ppm以上のチオ硫酸Ag量子結晶試薬を使用するのが望ましいことが分かった。
 基板はサンドペーパーで磨いて表面酸化被膜を物理的に除去し、その上にチオ硫酸銀溶液を滴下して量子結晶の凝集作用で固相化基板を形成することができる。基板表面物理状態が量子結晶の形成状態に影響を与え、測定値に影響を与える場合がある。そこで、量子結晶形成領域を一定にすべく、図4に示すように、1)リン青銅版の基板液滴下領域に円形溝加工(エッチング加工)を施し、2)その領域内をそのまま使用するもしくはサンドペーパー研磨、電解研磨、化学研磨を施し、3)Ag試薬液(2000~4000ppmチオ硫酸銀溶液)を滴下して表面張力で円形溝内に液溜めし、4)その後除去して量子結晶の凝集状態を確保する。凝集状態を観測し、測定結果のばらつきを検査した結果、そのまま使用、電解研磨、化学研磨、サンドペーパー研磨で測定結果のばらつきがあることがわかった。
(固相化の対象)
 固相化の対象は人間や動物の免疫機能により抗体を産生させる病原体であるウイルス、細菌、真菌等だけでなく、重金属およびたんぱくを含む。また、かかる病原体により産生される抗体をも含む。
 抗体としては、ラット、マウス、ニワトリ、ウサギ、ヒト等の動物種のIgA、IgD、IgE、IgG、IgMの5種類のクラスのモノクローナル抗体やウサギ、モルモット、ヤギ、ヒツジ、ラット、マウス、ニワトリ等の動物種のIgA、IgD、IgE、IgG、IgMの5種類のクラスを含むポリクローナル抗体や免疫グロブリン等の抗体、Fc領域やFab領域や重鎖や軽鎖や抗原結合部位やヒンジ部等の断片化した抗体の一部、リコンビナントされた抗体や断片化した一部、ヒトBリンパ球にウイルス(EBV等)を感染させ増殖させて抗体遺伝子をクローニングして得られたヒト抗体を含む。。
 ウイルスとしては、コロナウイルスやインフルエンザウイルスや鳥インフルエンザウイルスやアデノウイルス等の動物に感染する動物ウイルスやタバコモザイクウイルス等の植物に感染する植物ウイルスやバクテリオファージ等の細菌に感染する細菌ウイルス等のウイルス、また、ウイルスの表面にあるスパイクやウイルスのヌクレオカプシド等の断片化したウイルスの一部、また、リコンビナントされたウイルスや断片化した一部を含む。
 細菌、真菌、各種細胞を固相化対象とすることができ、ブドウ球菌、サルモネラ菌、結核菌、大腸菌、及び結核菌等の細菌、カンジダ、及びアスペルギルス等の真菌、iPS細胞、免疫細胞、樹状細胞、腫瘍細胞、血球、ヒト、動物及び植物由来の細胞等を含み、また、断片化した細菌や真菌や細胞の一部、或いはまた、リコンビナントされた細菌、真菌、細胞の断片化した一部を含む。
 その他、DNAやRNAを含み、cfDNAやctDNA等のDNA、ヌクレオソーム等のDNAを含む構造体、microRNAやmRNA等のRNA、そのRNAを含む構造体、また、断片化したDNAやDNAを含む構造体、RNAやRNAを含む構造体の一部を含む。また、リコンビナントされたDNA、DNAを含む構造体、RNAやRNAを含む構造体の断片化した一部を含む。不活化したウイルスや断片化した一部を含む。
 タンパク質として、生体膜、レクチン、各種リガンド、各種レセプター、各種酵素、各種生体毒素、ヒト、動物及び植物由来の生体高分子等のタンパク質を含み、また、断片化したタンパク質の一部、更にまた、リコンビナントされたタンパク質や断片化した一部を含む。
 分子化合物として、ビオチン等の低分子化合物、タミフル等の医薬化合物、サリン等の化学剤、各種界面活性剤、各種分子標的薬、FITC及びGFP等の蛍光物質、血液中の低分子化合物等の分子化合物、その分子化合物を含む構造体を含む。
 本発明においては、ヒトや動物から採取する検体及び不活化したウイルスや断片化した一部を含む検体を固相化対象として含み、咽頭拭い液、唾液、血液、尿等のヒトや動物から採取する体液を検体として含む。
(固相化基板の実施例1)
 量子結晶と、アビジンと結合能を有しているビオチンを固相化する実施例を挙げる。
 量子結晶を作成するAg試薬(1000ppm、20μl)とビオチン(5μg/ml、20μl)を混ぜた液を作成しリン青銅板へ滴下し、基板上に精製される量子結晶へビオチンが固相化される。
 次に、ビオチンと結合能を有しているFITC蛍光標識を付与したアビジンをビオチン固相化基板へ滴下する。すると、ビオチンとFITC蛍光標識を付与したアビジンが結合し、蛍光顕微鏡で観察すると粒上のFITCの蛍光が観察される。量子結晶とビオチンを混ぜて滴下することで、量子結晶にビオチンが固相化された固相化基板が出来ることが分かる。このことから、量子結晶基板には分子化合物等を固相化出来ることが分かった。
(Ag試薬は500ppm~10000ppmの範囲を持ち、固相化するビオチンは1pg/ml~1g/mlの範囲を持つ)
 (固相化基板の実施例2)
 量子結晶を作成するAg試薬(2000ppm、12.5μl)とヘマグルチニンH1インフルエンザA抗体(25μg/ml、12.5μl)を等量混ぜた液を作成しリン青銅板へ滴下し、基板上に精製される量子結晶へヘマグルチニンH1インフルエンザA抗体を固相化する。次に、ヘマグルチニンH1インフルエンザA抗体と抗原抗体反応で結合するH1N1インフルエンザウイルスとFITC標識を付与したH1N1インフルエンザウイルス抗体の複合体を、ヘマグルチニンH1インフルエンザA抗体固相化基板へ滴下する。すると、固相化基板の固相化された抗体へインフルエンザウイルスとFITC標識抗体の複合体が結合し、蛍光顕微鏡で観察すると粒上のFITCの蛍光が観察された。その結果、量子結晶とヘマグルチニンH1インフルエンザA抗体を混ぜて滴下することで、量子結晶にヘマグルチニンH1インフルエンザA抗体が固相化された固相化基板が出来ていることが分かった。このことから、量子結晶基板には抗体等を固相化出来ることが分かった。(Ag試薬は500ppm~10000ppmの範囲を持ち、固相化するヘマグルチニンH1インフルエンザA抗体は1pg/ml~1g/mlの範囲を持つ)
 (固相化基板の実施例3)
 今度は、量子結晶を作成するAg試薬(4000ppm、12.5μl)とヘマグルチニンH1インフルエンザA抗体(100μg/ml、12.5μl)を等量混ぜた液を作成しリン青銅板へ滴下し、基板上に精製される量子結晶へヘマグルチニンH1インフルエンザA抗体を固相化する。
次に、ヘマグルチニンH1インフルエンザA抗体と抗原抗体反応で結合するH1N1インフルエンザウイルス( 100μg/ml、5μl )とFITC標識を付与したH1N1インフルエンザウイルス抗体(50μg/ml、5μl)の複合体を、ヘマグルチニンH1インフルエンザA抗体固相化基板へ滴下する。固相化基板の固相化された抗体へインフルエンザウイルスとFITC標識抗体の複合体が結合し、蛍光顕微鏡で観察すると下の画像のように粒上のFITCの蛍光が観察された。
 使用機器は以下の通りである。
機器:キーエンス社 蛍光顕微鏡BZ-X710
光源:メタルハライドランプ80W
蛍光フィルタ:BZ-Xフィルタ GFP (525±25)
解析ソフト:BZ-X Analyzer 
(蛍光画像の解析方法)
 図8(1)から(3)に示すように蛍光画像を解析した。
工程(1)は画像取得工程で、測定により得られた蛍光画像を、画像解析ソフト「BZ-X Analyzer」に取り込み解析を行う(蛍光が丸い粒のように観察される)。ここでは図16に示すように、対物10倍レンズ1枚だけを撮影し(1視野測定)、2値化して計数(カウント)すると撮影時間は3.5秒と早くなるが、複数の画像を撮影してもよい(特願2019-234330号の蛍光計測法参照)。
工程(2)は二値化工程で、蛍光画像の全ての範囲を対象に、設定した輝度値以上の蛍光の粒を全て抽出して、二値化する(赤い粒が設定した輝度値以上の抽出された蛍光の粒)。
 工程(3)はカウント工程で、抽出された設定した輝度値以上の蛍光の粒をカウントする(赤い粒(破線部)の蛍光のみの数を算出する)。
 「蛍光画像取得工程」
 ここでは、上記プラズモン金属ナノ結晶基板上に捕捉された断片化DNAに励起光を照射して、捕捉断片化DNAの自家蛍光を表面プラズモン増強効果により増強し、蛍光コロニーを蛍光画像として取得する技術を参考にすることができる。
 励起光としては正常組織と病変組織でその集積・排出特性が異なるヘマトポルフィリン誘導体(腫瘍親和性蛍光物質)を励起するに適するとされる405nmの励起光のレーザ光源を用いた。タンパク結合体は血液を採取して遠心分離にかけ、得られる血漿を蒸留水で30倍希釈して用いた。
 c)蛍光コロニーの採択工程:
 オリンパスDM(ダイクロイックミラー)405-445/514を用い、図1の結果が得られたので、各サンプル毎の輝度の高いポイントを例えば10点(疾病に応じ、採取ポイント数は決められる)抽出し、中心付近に円形のROIを作成し、スペクトルデータを算出した。蛍光コロニーの10点採択は専用ソフト「cellSens」で二値化し、所定の閾値以上の輝度の蛍光コロニーを採択する。
 その他の画像取得条件は次の通りである。
レーザ: 405nm 50%
対物レンズ: 10倍(MPLFLN10×)
ピンホール径:500nm
取得波長:460-504nm
スリット幅:4nm
ステップ:2nm
解像度:1024×1024
平均化:4回
 (実施例4)
 また、同様に量子結晶を作成するAg試薬(2000ppm、5μl)とFITC標識を付与したH1N1インフルエンザウイルス抗体(250μg/ml、5μl)を混ぜた液を作成しリン青銅板へ滴下し、基板上に精製される量子結晶へFITC標識を付与したH1N1インフルエンザウイルス抗体を固相化する。この固相化基板を蛍光顕微鏡で観察すると粒上のFITCの蛍光が観察された。このことから、量子結晶基板にはFITC等の蛍光標識を固相化することが出来る。(Ag試薬は500ppm~10000ppmの範囲を持ち、FITC標識を付与したH1N1インフルエンザウイルス抗体は1pg/ml~1g/mlの範囲を持つ)
 (測定例1)
 本発明は患者のウイルスの検出に表面プラズモン励起増強蛍光分光(SPFS)法を適用するものであり、ウイルス抗原の存在する咽頭拭い液、唾液、尿、糞便を用いる。図1は工
程(1)~(4)からなる方法である。工程(1)では量子結晶凝集法を利用して抗体固相化基板を作成する。詳しくはウイルス抗体を緩衝液(pH7のリン酸緩衝液)に添加し、固相化抗体液を作成する。これに、等量の1000~10000、好ましくは2000~4000ppm濃度のプラズモン金属錯体水溶液中に添加し、プラズモン金属錯体とウイルス抗体との複合水溶液を調整し、ウイルス抗体を含むプラズモン金属錯体溶液をプラズモン金属錯体の還元電位近傍の電極電位を有する金属基板上に滴下して抗体が結合したプラズモン金属錯体量子結晶を凝集させてウイルス抗体を固相化したウイルス抗体固相化基板を用意する。ここで、プラズモン金属としてパラジウム、プラチナ、金、銀、及び銅から選ばれる一種が選択され、プラズモン金属錯体の酸化還元電位近傍の電極電位を有する金属基板が選択され、チオ硫酸銀錯体の量子結晶を利用するときは基板として銅又は銅合金、特にリン青銅が選択される。
 ここで、抗体としては、インフルエンザウイルス抗体として、ウイルス抗原やハイブリドーマから作成されるラット、マウス、ニワトリ、ウサギ、ヒトなどの動物種のIgA、IgD、IgE、IgG、IgMの5種類のクラスのモノクローナル抗体又はウサギ、モルモット、ヤギ、ヒツジ、ラット、マウス、ニワトリなどの動物種のIgA、IgD、IgE、IgG、IgMの5種類のクラスを含むポリクローナル抗体や免グロブリン等の抗体、Fc領域やFab領域や重鎖や軽鎖や抗原結合部位やヒンジ部等の断片化した抗体の一部、リコンビナントされた抗体や断片化した一部、ヒトBリンパ球にウイルス(EBV等)を感染させ増殖させて抗体遺伝子をクローニングして得られたヒト抗体を含む。コロナウイルス抗体として、ウイルス抗原やハイブリドーマから作成されるラット、マウス、ニワトリ、ウサギ、ヒトなどの動物種のIgA、IgD、IgE、IgG、IgMの5種類のクラスのモノクローナル抗体又はウサギ、モルモット、ヤギ、ヒツジ、ラット、マウス、ニワトリなどの動物種のIgA、IgD、IgE、IgG、IgMの5種類のクラスを含むポリクローナル抗体を挙げることができる。
 工程(2)では抗原抗体反応を利用して蛍光物質で標識化したウイルス抗体と検体中のウイルス抗原との複合体を形成する。ここで、検体としては、咽頭拭い液、唾液、尿、糞便が対象となる。ウイルス抗体を標識化する蛍光物質として、Pacific Blueなどの励起光400nm~436nmやFITCなどの励起光453~505nmやTRITCなどの励起光485~566nmやAPCなどの励起光488~706nmやIRDye800などの励起光732~784nmの蛍光物質を挙げることができる。
 行程(3)では抗原抗体反応を利用して上記複合体を上記抗体固相化基板に滴下し、基板上の抗体に複合体を結合させ、純水や緩衝液等で未結合の複合体及び抗体を洗浄する。ここで、緩衝液としてPBS、HEPES、TRIS、BIS-TRIS、CAPS、CAPSO、Glycylglycine、MES、MOPS、PIPESなどを利用する。
 工程(4)では、基板上に残る、標識化した抗体と抗原との複合体に励起光を照射し、表面プラズモン励起により、その蛍光画像を蛍光顕微鏡又は蛍光リーダーで観測し、得られた蛍光画像の任意の範囲内または画像全体から、任意の値の輝度値以上の蛍光の粒を二値化して、得られた個数をカウントする。蛍光画像中のある閾値以上の蛍光の粒を二値化してカウントするには同一出願人の特願2019-234330号の蛍光計測法を利用することができるので、かかる蛍光計測法をここに引用し、参照する。本発明では図16に示す1視野測定条件:閾値62 ぼかしフィルタ無し ×10倍レンズの1視野測定(ここで、1視野測定とは図16に示すように、特願2019-234330号の場合と違ってチップの1部分のみを取得する方法をいう)。
 上記実施例では抗体を固相化した基板を使用したが、同種の金属粉体を使用することにより液中での抗原抗体反応を利用してウイルス抗原を検出することができる。
 ウイルス抗原の存在する咽頭拭い液、唾液、尿、糞便を用い、図2では工程(1)~(5)からなる。工程(1)では量子結晶凝集法を利用して抗体固相化金属粉体を作成する。詳しくはウイルス抗体を500~10000ppm濃度のプラズモン金属錯体水液中に添加するとともに、ここに担体金属粉体を添加して混合する。ウイルス抗体とともにプラズモン金属錯体はプラズモン金属錯体の還元電位近傍の電極電位を有する金属粉体と凝集し、ウイルス抗体とプラズモン金属錯体と担体金属粉体とが一体となったウイルス抗体固相化金属粉体を形成する。
 他方、工程(2)では第1抗原抗体反応を利用して蛍光物質で標識化したウイルス抗体
と検体中のウイルス抗原との複合体を形成する。ここで、検体および蛍光物質は第1法と
同じである。
 次いで、工程(3)では上記複合体を上記抗体固相化粉体液中に添加し、第2抗原抗体
反応を利用し、抗体固相化粉体と上記複合体を結合させる。
 工程(4)では、抗体固相化粉体と複合体との合体物をろ過し、これを純水や緩衝液等で未結合の複合体及び抗体を洗浄する。
最後に、工程(5)では、基板上に残る、標識化した抗体と抗原との複合体に励起光を照射し、表面プラズモン励起により、その蛍光画像を蛍光顕微鏡又は蛍光リーダーで観測し、得られた蛍光画像の任意の範囲内または画像全体から、任意の値の輝度値以上の蛍光の粒を二値化して、得られた個数をカウントする。
 本発明の第2法では、ウイルス抗原やその一部(感染性のない抗原の一部、例えば、ウ
イルス表面スパイク部分)を固相化し、体内で生成される抗体を捕捉する方法であり、図3に示すように、プラズモン金属錯体の量子結晶凝集法を用いて抗原やその一部を固相化した後その抗原やその一部と抗体とを反応させて量子結晶間に間隙又はマイクロ流路を備える抗原やその一部固相化基板を形成する一方、蛍光物質を用いて標識化した抗体を前記抗原やその一部固相化基板に滴下して両者を結合させ、未結合標識抗体を洗浄後、基板に残る標識抗体に励起光を照射して量子結晶を表面プラズモン励起して標識抗体の蛍光を増強し、その蛍光を検出する方法である。プラズモン金属錯体の量子結晶凝集法を用いて抗原やその一部を固相化した後その抗原やその一部と抗体とを反応させて量子結晶間に間隙又はマイクロ流路を備える抗原やその一部固相化基板を形成する一方、蛍光物質を用いて標識化した標識抗体を前記抗原やその一部固相化基板に滴下して両者を結合させ、未結合標識抗体を洗浄後、基板に残る標識抗体に励起光を照射して量子結晶を表面プラズモン励起してその蛍光画像を蛍光顕微鏡又は蛍光リーダーで観測し、得られた蛍光画像の任意の範囲内または画像全体から、任意の値の輝度値以上の蛍光の粒を二値化して、得られた個数をカウント検出する方法である。すなわち、工程(1)では量子結晶凝集法を利用して抗原やその一部固相化基板を作成する。詳しくはウイルス抗原やその一部を500~10000ppm濃度のプラズモン金属錯体水溶液中に添加する。ここで、ウイルス抗原やその一部として咽頭拭い液、唾液、尿、糞便や感染性のない抗原の一部を用いる。
 ウイルス抗原やその一部の処理はオートクレーブ(121℃15分以上の高圧蒸気滅菌)や0.01%以上の次亜塩素酸Na浸漬1時間以上や4%ホルムアルデヒド液浸漬や70%エタノール浸漬などを参考とすることができる。
 プラズモン金属錯体とウイルス抗原やその一部との複合水溶液を調整し、ウイルス抗原やその一部を含むプラズモン金属錯体溶液をプラズモン金属錯体の還元電位近傍の電極電位を有する金属基板上に滴下して抗原やその一部が結合したプラズモン金属錯体量子結晶を凝集させてウイルス抗原やその一部を固相化したウイルス抗原やその一部固相化基板を用意する。
 次いで、工程(2)では第1抗原抗体反応を利用して固相化した抗原やその一部と血中
のウイルス抗体との複合体を形成する。ここで、ウイルス抗体を含む検体としては、血液、血清、血漿を用いる。
 工程(3)では標識抗体を用意し、第2抗原抗体反応を利用して抗原抗体固相化基板に
滴下し、基板上の抗体に複合体を結合させ、純水や緩衝液等で未結合の標識抗体を洗浄する。
 ただし、工程(2)の検体と工程(3)の標識抗体をあらかじめ混ぜて行うこともできる。
 工程(4)では、基板上に残る、標識化した抗体と抗原との複合体に励起光を照射し、表面プラズモン励起により、その蛍光画像を蛍光顕微鏡又は蛍光リーダーで観測し、得られた蛍光画像の任意の範囲内または画像全体から、任意の値の輝度値以上の蛍光の粒を二値化して、得られた個数をカウント検出する。
 上記サンドイッチ法において、標識した抗体として、互いに結合可能な第1次標識抗体
と第2次標識抗体とを同時に使用し、蛍光強度を増強させる。図4の方法は本発明の第1の
方法(1)から(4)の工程において互いに結合可能な第1次標識抗体と第2次標識抗体とを同時に用いる。
 工程(1)では量子結晶凝集法を利用して抗体固相化基板を作成する。図17の工程(1)と同様である。
 工程(2)では抗原抗体反応を利用して蛍光物質で標識化したウイルス抗体として第1
次標識抗体と第2次標識抗体とを同時に用い、検体中のウイルス抗原との複合体を形成す
る。
 または第1次標識抗体を結合させた後に第2次標識抗体を結合させてもよい。
 ここで、検体としては、咽頭拭い液、唾液、尿、糞便が対象となる。ウイルス抗体を標識化する蛍光物質として、Pacific Blueなどの励起光400nm~436nmやFITCなどの励起光453~505nmやTRITCなどの励起光485~566nmやAPCなどの励起光488~706nmやIRDye800などの励起光732~784nmの蛍光物質を挙げることができる。
 第1次標識抗体と第2次標識抗体の組み合わせとして
 第1次標識抗体の元となる動物種を認識する第2次標識抗体を組み合わせる。例えば、マウス由来の第1次標識抗体を使用する場合は、マウス抗体を認識する第2次標識抗体を使用し、他の動物種でも同様に組み合わせる。
 工程(3)では抗原抗体反応を利用して上記複合体を上記抗体固相化基板に滴下し、基板上の抗体に複合体を結合させ、純水や緩衝液等で未結合の複合体及び抗体を洗浄する。ここで、緩衝液としてPBS、HEPES、TRIS、BIS-TRIS、CAPS、CAPSO、Glycylglycine、MES、MOPS、PIPESなどを利用する。
 工程(4)では、基板上に残る、標識化した抗体と抗原との複合体に励起光を照射し、表面プラズモン励起により、その蛍光画像を蛍光顕微鏡又は蛍光リーダーで観測し、得られた蛍光画像の任意の範囲内または画像全体から、任意の値の輝度値以上の蛍光の粒を二値化して、得られた個数をカウントする。
 (インフルエンザウイルスの抗原抗体反応による実測)
 量子結晶の元となるAg試薬(500~10000ppm)とインフルエンザ抗体(5~1000μg/ml)を等量混合し、混合した液をリン青銅板上へ滴下し、量子結晶と抗体をリン青銅板上へ固相化する。
 次いで、インフルエンザウイルス(5~1000μg/ml)とFITC標識を付けたインフルエンザ抗体(5~1000μg/ml)を等量混合し、さきほどの量子結晶基板へ滴下する。
 試薬例として
 ・インフルエンザ抗体 HyTest社 Monoclonal mouse anti-Influenza A haemagglutinin H1
 ・インフルエンザウイルス HyTest社 Influenza A (H1N1) Virus
 ・FITCインフルエンザ抗体 IBL社 Anti-Influenza A Virus(H1N1) FITCを用いた。
 
 余剰のFITC標識を付けたインフルエンザ抗体を純水などで洗浄し、光源(メタルハライドランプ80W)からの光を照射して蛍光顕微鏡(キーエンス社蛍光顕微鏡BZ-X710)
を用いて測定する。蛍光顕微鏡で画像を観察し、BZ-X Analyerで解析した。図6(a)に
示す通りである。これに比べ、インフルエンザ抗原の含まない場合は図6(b)に示す通りである。表面プラズモン励起してその蛍光画像を蛍光顕微鏡又は蛍光リーダーで観測し、得られた蛍光画像の任意の範囲内または画像全体から、任意の値の輝度値以上の蛍光の粒を二値化して、得られた個数をカウント検出する。
 ウイルスが有ると、量子結晶上の固相化した抗体と標識した抗体で挟み込み、粒状に多数の蛍光を発し、この粒状の蛍光がウイルスを挟み込んだ標識抗体の蛍光である一方(図6(a))、ウイルスがない場合は、粒状の多数の蛍光が現れないことを観測した(図6(b))。
 インフルエンザ抗体(25μg/ml)とFITCインフルエンザ抗体(25μg/ml)でキーエンスBZ-X710 対物レンズ×10倍でウイルス(Virus)濃度と蛍光画像中の蛍光の粒の輝度値57以上を解析ソフト(BZ-X)を使用して二値化してカウントすると図7に示す表の結果を得た。これを直線化したのが、図7のグラフである。得られた画像からカウント数とウイルス濃度が相対関係にあることがわかる。
(現場採取検体の検査)
 本発明は、入国審査、病院診断時にその場で迅速にウイルス検査を行う方法に適するもので、ヒトから採取した検体(咽頭拭い液、唾液、痰、鼻咽頭液、尿等)中の抗原を不活化した後、その不活化した抗原を量子結晶凝集法で基板上に固相化し、固相化した抗原に標識を付けた抗体を抗原抗体反応で結合させて標識化した後、未結合の標識抗体を緩衝液や純水で洗浄し、抗体の標識(蛍光物質)に会う励起光を光源から照射し、蛍光顕微鏡で基板上の蛍光粒をカウントすることを特徴とする。ここで、量子結晶凝集法とは量子結晶凝集法とは特開2016-197114号に示すプラズモン金属錯体の量子結晶を製造する凝集法をいい、溶液中のプラズモン金属錯体が、電析基板電位の選択により、還元電位近傍の電極電位を有する金属基板上で金属錯体の量子結晶として凝集する方法をいう。この場合、予め量子結晶凝集法で抗体を固相化した基板上に、採取した検体中の抗原を不活化して抗原抗体反応で基板に結合させ、これを標識化した抗体で標識を抗原抗体反応で結合させて標識化した後、未結合の標識抗体を緩衝液や純水で洗浄し、抗体の標識(蛍光物質)に会う励起光を光源から照射し、蛍光顕微鏡で基板上の蛍光粒をカウントするようにしてもよい。
 本発明において、検体中の、不活化の対象のウイルスは、基本的に核酸のDNAかRNAのどちらか一方とそれを保護する殻蛋白(カプシド)から構成され、脂質を含むエンベロープと呼ばれる膜で包まれている場合とエンベロープを持たない小型球形ウイルスに分類される。したがって、薬剤による不活化を受けやすいか否かの違いはエンベロープを有しているかどうかにより異なるが、一般にエンベロープを有するウイルスは消毒薬に対し感性であるので、薬剤の使用が好ましい。その他、大部分のウイルスに効果を示す不活化法として、煮沸(98℃以上)15~20 分間、2w/v%グルタラール、0.05~0.5w/v%(500~5,000ppm)次亜塩素酸ナトリウム、76.9~81.4v/v%消毒用エタノール 、70v/v%イソプロパノール、2.5w/v%ポビドンヨード 、55w/v%フタラール 、0.3w/v%過酢酸が挙げられる。
 また、多くのウイルスは56℃・30分でカプシドタンパク質が変質して不活化され、かつまた、エーテル、クロロホルム、フロロカーボンなどの脂質溶剤により、エンベロープを持つウイルスは容易に不活化される。また、ウイルス内部に存在するヌクレオシド、ヌクレオチド、ヌクレオカプシドを認識する抗体を用いることで、膜や殻を破壊し細かくなった不活化したウイルス抗原を検出する事もできる。そのため、本発明に係る不活化としては、抗原抗体反応に影響を与えないか与えることが少ないという観点から、エタノール、ホルマリン、AVL緩衝液を使用する薬剤法と加熱処理、SD処理(化学処理)、酸性処理、アルカリ処理、放射線処理等の不活化法が使用できる。本発明においては、基板に代えて金属粉体を使用してもよいも製造することができる。また、上記方法では、標識を付けた抗体として蛍光標識を付けた1次抗体と蛍光標識を付けた2次抗体とを同時に使用し、画像化して解析するようにすると、より蛍光画像を適切にかつ正確に獲得することができる。
 本発明は、現場採取、現場検査に適用できるように、検体不活化採取キットを使用するのが好ましく、薬剤を用いて不活化するのがよい。 図18(1)に示すように、エタノール等の薬液剤Lの入ったチューブ10と棒状の検体採取部20をセットとし、検体採取部を不織布やガーゼなどの吸収性能を持つもので構成する。次いで、(2)棒状の検体採取部で検体を採取する。唾液、痰、咽頭拭い液、鼻咽頭液等を検体Sとする。(3)検体Sを採取した後、採取部20をチューブ10内に入れる。(4)チューブ10内の奥は狭小部となり、検体採取部20を挿入すると、狭小壁面で検体採取部20が圧縮され、検体S(唾液)がエタノール等の薬液L中に分散する。(5)検体採取部20以外を取り出すと、検体採取部20はチューブ10内に残る。(6)検体Sは薬剤Lで不活化され、検体採取部20内に残留することになる。
 本発明によれば、ウイルス抗原を現場で採取して不活化し、基板上に量子結晶凝集法で固相化し、標識化した抗体を結合する、又は予め抗体を固相化した基板上で抗原抗体反応により不活化したウイルス抗原と標識化した抗体を結合し、その蛍光強度でなく、ウイルス抗原の蛍光個数をカウントしてウイルス濃度として計測することができる。しかも抗体又は抗原固相化基板を形成する量子結晶は、励起光により入射された光子と量子結晶を形成するプラズモン金属粒子の自由電子との間に相互作用が起こり、表面プラズモン励起して標識抗体の蛍光を増強するので、全体の蛍光強度でなく、その粒状の蛍光を再現性良くカウントして検出することができる。したがって、表面プラズモン励起増強蛍光分光(SPFS)法を用いて、2~5分という短時間で迅速に検査することができるので、前処理が煩雑で、プライマーによって感度が鈍く、プロトコールが多く、検査まで時間がかかるというPCR検査に代わる精度の高い診断結果を提供できる。また、疾病の有り無しの判定だけでなく、カウント数はウイルス数に対応するので、疾病の軽重度の判定をすることができるので、画期的である。
 本発明の検体不活化採取キットによれば、採取したウイルスを不活化してチューブ内に確保できるので、必要な検査場所に送付していつでも取り出して検査することができる。 本発明においては、量子結晶凝集法により、不活化した抗原等を直接固相化するが、抗体を予め固相化し、これに不活化した抗原を抗原抗体反応で標識化した抗体を結合させ、検出させるようにしてもよく、蛍光抗体法における直接法、サンドイッチ法及び間接法が採用できる。
 (不活性検体からのウイルスの検出)
 量子結晶を作成するAg試薬(2000ppm、12.5μl)とヘマグルチニンH1インフルエンザA抗体(25μg/ml、12.5μl)を等量混ぜた液を作成しリン青銅板へ滴下し、基板上に凝集され
る量子結晶とともにヘマグルチニンH1インフルエンザA抗体を固相化する。次に、不活化
した検体(25μg/ml、5μl)とFITC標識を付与したH1N1インフルエンザウイルス抗体(25μg/ml、5μl)の複合体を、ヘマグルチニンH1インフルエンザA抗体固相化基板へ滴下する。不活化した検体中にH1N1インフルエンザウイルスが存在すると、固相化基板の固相化された抗体へインフルエンザウイルスとFITC標識抗体の複合体が結合し、蛍光顕微鏡で観察すると粒上のFITCの蛍光が観察された。また、検体中にインフルエンザウイルスが存在しない場合は、粒上のFITCの蛍光が観察されなかった。蛍光顕微鏡により得られた測定画像を「キーエンス社 解析ソフト:BZ-X Analyzer」で閾値57に設定し解析すると、粒状のFITCの蛍光のカウント値に大きな差が得られた。その結果、蛍光画像からの蛍光の粒をカウントすると、ウイルス無では4であったのに対し、ウイルス有の場合は145であった。
 使用機器は以下の通りである。
機器:キーエンス社 蛍光顕微鏡BZ-Z710
光源:メタルハライドランプ80W
蛍光フィルタ:BZ-Xフィルタ GFP (525±25)
解析ソフト:BZ-X Analyzer 
 (患者ウイルスの測定例1)
 患者のウイルスの検出に本発明の蛍光計数法を適用するものであり、ウイルス抗原の存在する咽頭拭い液、唾液、痰、鼻咽頭液、尿、糞便を用いる。図17は工程(1)~(7)からなる方法である。工程(1)では、図18に示す検体不活化採取キットを用いて不活化した検体を作成する。工程(2)では検体中の不活化抗原とAg試薬(チオ硫酸銀錯体溶液)を混合させる。工程(3)では量子結晶凝集法を利用して不活化抗原の固相化基板を作成する。詳しくは不活化した抗原を2000~6000ppm濃度のプラズモン金属錯体水溶液中に添加し、プラズモン金属錯体と不活化した抗原との複合水溶液を調整し、不活化した抗原を含むプラズモン金属錯体溶液をプラズモン金属錯体の還元電位近傍の電極電位を有する金属基板上に滴下してプラズモン金属錯体量子結晶を凝集させて不活化した抗原を固相化した固相化基板を用意する(工程(4))。ここで、プラズモン金属としてパラジウム、プラチナ、金、銀、及び銅から選ばれる一種が選択され、プラズモン金属錯体の酸化還元電位近傍の電極電位を有する金属基板が選択され、チオ硫酸銀錯体の量子結晶を利用するときは基板として銅又は銅合金、特にリン青銅が選択される。量子結晶の作成方法としては特開2016-197114号公報記載の方法が引用され、参照される。
 工程(5)では抗原抗体反応を利用して蛍光物質で標識化したウイルス抗体で、固相化した検体中のウイルス抗原を標識する。ここで、検体としては、咽頭拭い液、唾液、痰、鼻咽頭液、尿、糞便が対象となる。ウイルス抗体を標識化する蛍光物質として、Pacific Blueなどの励起光400nm~436nmやFITCなどの励起光453~505nmやTRITCなどの励起光485~566nmやAPCなどの励起光488~706nmやIRDye800などの励起光732~784nmの蛍光物質を挙げることができる。
 行程(6)では基板から、純水や緩衝液等で未結合の複合体及び抗体を洗浄する。ここで、緩衝液としてPBS、HEPES、TRIS、BIS-TRIS、CAPS、CAPSO、Glycylglycine、MES、MOPS、PIPESなどを利用する。
 工程(7)では、基板上に残る、標識化した抗体と抗原との複合体に励起光を照射し、表面プラズモン励起により、その蛍光画像を蛍光顕微鏡又は蛍光リーダーで観測し、得られた蛍光画像の任意の範囲内または画像全体から、任意の値の輝度値以上の蛍光の粒を二値化して、得られた個数をカウントする。蛍光画像中のある閾値以上の蛍光の粒を二値化してカウントする。本発明方法によれば、ウイルスの検出において、PCR法に匹敵する高精度の検出を簡易迅速に行うことができる。したがって、入国検査、病院等での現場での迅速な検査が可能である。
 

Claims (12)

  1.  蛍光画像中の蛍光点または粒をカウントして検体中の病原体または抗体の測定対象の定量を行う蛍光計数法に適用される固相化基板であって、不活化した病原体またはその抗体を、プラズモン金属錯体量子結晶とともに金属基板上に電極電位差で凝集させ、金属基板上に金属錯体量子結晶とともに固定してなり、固相化した病原体にまたは固相化した抗体を抗原抗体反応より蛍光標識化可能で、蛍光標識された蛍光画像中に蛍光点または粒を表面プラズモン励起して蛍光計数法による計数定量が可能であることを特徴とする固相化基板。
  2.  固相化対象が励起光によって表面プラズモン共鳴を起こす金、銀および銅を含むプラズモン金属の量子結晶であって、その水溶液の濃度が1000ppm~5000ppm、好ましくは1000~3000ppmであり、金属基板上に50から150nm量子結晶を形成する請求項1記載の固相化基板。
  3.  固相化対象が、抗体を産生させるウイルス、細菌、真菌および重金属を含む病原体(不活化)またはその抗体であって、その検体濃度が10μg/ml以上である請求項1記載の固相化基板。
  4.  請求項1~3のいずれかに記載の、プラズモン金属錯体の量子結晶凝集法を用いて量子結晶と測定対象である病原体またはその産生される関連抗体を金属基板上に固相化した固相化基板を用い、直接法、間接法、サンドイッチ法又は競合法のいずれかの方法で固相化対象の病原体またはその抗体を標識化し、蛍光顕微鏡を用いて蛍光画像中の一定閾値以上の蛍光点または粒を二値化してカウントし、検体中の病原体または抗体の定量を行うことを特徴とする量子結晶固相化蛍光計数法。
  5.  プラズモン金属錯体の量子結晶凝集法を用いて量子結晶と抗体を固相化した抗体固相化基板を使用し、抗体を産生させる抗原を含む病原体と蛍光物質を用いて標識化した抗体と複合化し、該複合体を前記抗体固相化基板に滴下して両者を結合させる間接法であって、未結合複合体及び抗体を洗浄後、基板に残る複合体に励起光を照射して量子結晶を表面プラズモン励起して複合体の蛍光を増強し、その蛍光画像を蛍光顕微鏡又は蛍光リーダーで観測し、得られた蛍光画像の任意の範囲内または画像全体から、任意の値の輝度値以上の蛍光の粒を二値化して、得られた個数をカウント検出することを特徴とする請求項4記載の量子結晶固相化蛍光計数法。
  6.  プラズモン金属錯体の量子結晶凝集法を用いて病原体である抗原やその一部を量子結晶とともに固相化した抗原固相化基板を用いる方法であって、蛍光物質を用いて標識化した抗体を抗原固相化基板に滴下して両者を結合させ、未結合標識した抗体を洗浄後、基板に残る標識抗体に励起光を照射して量子結晶を表面プラズモン励起して標識抗体の蛍光を増強し、その蛍光画像を蛍光顕微鏡又は蛍光リーダーで観測し、得られた蛍光画像の任意の範囲内または画像全体から、任意の値の輝度値以上の蛍光の粒を二値化し、得られた個数をカウント検出することを特徴とする量子結晶固相化蛍光計数法。
  7.  標識化した抗体として互いに結合可能な標識した第1次抗体と標識した第2次抗体とを同時に用いる請求項5又は6記載の量子結晶固相化蛍光計数法。
  8.  上記基板に代えて金属粉体を使用する請求項5又は6記載の量子結晶固相化蛍光計数法。
  9.  抗原を固相化した抗原固相化基板を用いる方法であって、ヒトから採取した検体中の抗原を不活化した後、その不活化した抗原を量子結晶凝集法で基板上に固相化し、固相化した抗原に標識を付けた抗体を抗原抗体反応で結合させて標識化した後、未結合の標識抗体を緩衝液や純水で洗浄し、抗体の標識(蛍光物質)に会う励起光を光源から照射し、蛍光顕微鏡で基板上の蛍光粒をカウントすることを特徴とする請求項4に記載の量子結晶固相化蛍光計数法。
  10.  抗体を固相化した抗体固相化基板を用いる方法であって、ヒトから採取した検体中の抗原を不活化した後、その不活化した抗原を量子結晶凝集法で基板上に固相化した抗体に結合させ、不活化した抗原に標識を付けた抗体を抗原抗体反応で結合させて標識化した後、未結合の標識抗体を緩衝液や純水で洗浄し、抗体の標識(蛍光物質)に会う励起光を光源から照射し、蛍光顕微鏡で基板上の蛍光粒をカウントすることを特徴とする請求項4記載の量子結晶固相化蛍光計数法。
  11.  プラズモン金属錯体の量子結晶凝集法が、溶液中のプラズモン金属錯体が、電析基板電位の選択により、還元電位近傍の電極電位を有する金属基板上で量子結晶として凝集し、その際、溶液中に共存する抗原又は抗体を、金属錯体とともに基板又は粒子上に凝集し、固相化する方法である請求項4記載の量子結晶固相化蛍光計数法。
  12.  検体を採取後、不活化試薬液を含有するチューブに入れ、不活化する請求項4記載の量子結晶固相化蛍光計数法。
     
PCT/JP2020/021837 2020-04-18 2020-06-02 病原体量子結晶固相化基板およびそれを用いる病原体の量子結晶固相化蛍光計数法 WO2021210189A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020074439 2020-04-18
JP2020-074439 2020-04-18
JP2020080227 2020-04-30
JP2020-080227 2020-04-30
JP2020-081748 2020-05-07
JP2020081748 2020-05-07
JP2020086846 2020-05-18
JP2020-086846 2020-05-18

Publications (1)

Publication Number Publication Date
WO2021210189A1 true WO2021210189A1 (ja) 2021-10-21

Family

ID=78084777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021837 WO2021210189A1 (ja) 2020-04-18 2020-06-02 病原体量子結晶固相化基板およびそれを用いる病原体の量子結晶固相化蛍光計数法

Country Status (2)

Country Link
JP (1) JP2021181971A (ja)
WO (1) WO2021210189A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512497A (ja) * 2000-06-23 2004-04-22 ミナーヴァ・バイオテクノロジーズ・コーポレーション コロイドが固定された種と非コロイド構造上の種との相互作用
JP2016080565A (ja) * 2014-10-20 2016-05-16 有限会社マイテック エボラウイルスのラマン分光検出方法及びエボラウイルス抗体固相化基板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512497A (ja) * 2000-06-23 2004-04-22 ミナーヴァ・バイオテクノロジーズ・コーポレーション コロイドが固定された種と非コロイド構造上の種との相互作用
JP2016080565A (ja) * 2014-10-20 2016-05-16 有限会社マイテック エボラウイルスのラマン分光検出方法及びエボラウイルス抗体固相化基板

Also Published As

Publication number Publication date
JP2021181971A (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
JP5860922B2 (ja) ビーズまたは他の捕捉物を用いた分子または粒子の超高感度検出
Bamrungsap et al. Rapid and sensitive lateral flow immunoassay for influenza antigen using fluorescently-doped silica nanoparticles
JP5994890B2 (ja) アナライト検出プローブ
Kurdekar et al. Fluorescent silver nanoparticle based highly sensitive immunoassay for early detection of HIV infection
JP2006504937A (ja) 粒子の評価方法
BRPI0711844A2 (pt) método e sistema para determinar os efeitos da matriz de amostra, e, cartucho descartável
Bedair et al. Spectroscopic methods for COVID-19 detection and early diagnosis
US20230243816A1 (en) Fluorescence counting system for quantifying viruses or antibodies on an immobilized metal substrate by using an antigen-antibody reaction
KR101612095B1 (ko) 바이오마커의 조기 검출 및 정밀 정량화가 가능한 바이오마커 탐지용 프로브 및 이의 용도
JP2016080565A (ja) エボラウイルスのラマン分光検出方法及びエボラウイルス抗体固相化基板
JP4959330B2 (ja) きわめて少量の粒子を検出するための方法およびデバイス
WO2021210189A1 (ja) 病原体量子結晶固相化基板およびそれを用いる病原体の量子結晶固相化蛍光計数法
KR101745897B1 (ko) 전반사산란을 이용한 바이러스의 정량 스크리닝 방법
JP5821852B2 (ja) 非特異吸着の精製機構を備えたspfs用センサ
JP7481758B2 (ja) 試料中の被検出物質を検出する方法
JP2012502273A (ja) 改良されたワイヤグリッド基板構造及び斯かる基板を製造する方法
US20230358747A1 (en) In vitro method for the detection of sars-cov-2 in a sample from the upper respiratory tract using a colorimetric immunosensor and related colorimetric immunosensor
US20230366882A1 (en) In vitro method for the detection of sars-cov-2 in an oral sample using a colorimetric immunosensor and related colorimetric immunosensor
JP6926907B2 (ja) 測定用抗体分散液、その製造方法、測定用抗体分散液調製用キット、および生体物質測定方法
WO2022190027A1 (en) In vitro method for the detection of sars-cov-2 in an oral sample using a colorimetric immunosensor and related colorimetric immunosensor
Selinidis Biochemistry Laboratory Proposal: Surface Plasmon Resonance of the Coronavirus
WO2023144291A1 (en) Real-time breath antigen detection system and method thereof
Lai Utilization of antibody-conjugated gold nanoparticles, dynamic light scattering and SERS in influenza virus detection
Kwarta et al. EFFECT OF CAPTURE SUBSTRATE AREA AND SAMPLE VOLUME ON DETECTION IN A HETEROGENEOUS IMMUNOASSAY: VIRUS READOUT WITH SURFACE-ENHANCED RAMAN SCATTERING
JP2016183966A (ja) 標的物質の測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP