WO2021209068A1 - 磁性纱线、磁性织物、磁控机器人及其制备方法 - Google Patents

磁性纱线、磁性织物、磁控机器人及其制备方法 Download PDF

Info

Publication number
WO2021209068A1
WO2021209068A1 PCT/CN2021/088134 CN2021088134W WO2021209068A1 WO 2021209068 A1 WO2021209068 A1 WO 2021209068A1 CN 2021088134 W CN2021088134 W CN 2021088134W WO 2021209068 A1 WO2021209068 A1 WO 2021209068A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
yarn
fabric
magnetic field
fiber
Prior art date
Application number
PCT/CN2021/088134
Other languages
English (en)
French (fr)
Inventor
陶光明
向远卓
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2021209068A1 publication Critical patent/WO2021209068A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins

Definitions

  • the invention relates to the field of functional fabrics and soft robots, in particular to a magnetic yarn and fabric made therefrom, and a preparation method of the robot.
  • rigid body robots are widely used in the manufacturing industry, and they can be specially programmed to efficiently perform a single task. But the disadvantage of rigid body robots is that their adaptability is very limited. Because they are composed of rigid links and joints, they are not safe when interacting with people. A common practice is to separate the workers and robots in the factory to reduce safety hazards. The lack of adaptability in traditional actuation mechanisms is a large part of this problem.
  • Software robots are one of the hot research topics in the field of human-computer interaction. Compared with sturdy robots, the body of soft robots is made of essentially soft and expandable materials (such as silicone), which can deform and absorb most of the energy generated by collisions. These robots have a continuously deformable structure, have a muscle drive similar to a biological system, and have a relatively large degree of freedom compared with rigid body robots. They exhibit unprecedented adaptability, sensitivity and agility.
  • the driving methods of soft robots include tendon driving, smart materials, such as shape memory polymer (SMP), shape memory alloy (SMA), pneumatic fiber braid, pneumatic polymer elastomer, hydrogel or electroactive polymer (EAP) .
  • SMP shape memory polymer
  • SMA shape memory alloy
  • EAP electroactive polymer
  • magnetic soft robots operate by using an external magnetic field to control magnetic particles in a polymer matrix. By changing the direction and size of this magnetic field, the torque, deformation, elongation, contraction or bending of the deformable magnetic composite material can be controlled.
  • These drive structures can achieve fast response time, high dynamic range, small size, high power efficiency and low drive voltage (usually 0 to 30V).
  • Magnetic soft robots have been successfully used to manufacture various high-performance mechatronics and micro-robot systems, and have gradually become a research hotspot.
  • Chinese patent CN110382338A discloses a magnetically controlled multi-modal motion robot.
  • soft active materials loaded with NdFeB particles such as ECOFLEX, shape memory alloys, liquid metals, silicone rubber, silicon-based materials, polyurethane, soft gels (hydrogels, oil-based gels, aerogels) and natural polymers It is programmed and solidified in an external magnetic field environment, and its sports capabilities include swimming, walking, flipping, crawling, rolling, diving, immersion, emergence, jumping, landing, surface climbing, liquid meniscus climbing, jumping, crawling in a limited space, rotating, flying , Gliding, etc.
  • Chinese patent CN109866231A discloses a magnetically controlled hydrogel soft robot with segmented magnetic programming. By laser irradiation and curing of the hydrogel in an external magnetic field, the distribution direction of the nano-ferroferric oxide in the magnetron hydrogel can be programmed to differentiate the design of the magnetron hydrogel soft robot, which can effectively control its different parts. Different action states.
  • Chinese Patent CN110053020A discloses a magnetically driven peristaltic soft robot based on magnetically programmed temperature-sensitive hydrogel, which drives the temperature-responsive hydrogel containing magnetic particles to deform through a magnetic field.
  • Chinese patent CN110076749A discloses a magnetically controlled miniature soft robot imitating jellyfish.
  • the head and five rigid movable arms with different magnetic field directions are connected by elastic ribs; the five movable arms can move with multiple degrees of freedom under the action of an external magnetic field, including clamping objects, crawling motion, rolling motion, and horizontal dragging.
  • Chinese patent CN110216667A discloses a controllable magnetization system of a magnetron soft robot. Realizing a magnetic field design that can be controlled in space and time, including: array-type distributed micro-coils and magnetic nanoparticles uniformly distributed and solidified on the hydrogel substrate to form a magnetic control software robot, which can realize local magnetization and precise magnetization control.
  • Chinese patent CN110722545A discloses a three-stage magnetically controlled miniature soft crawling robot. It can realize crawling or turning motion under the drive of alternating magnetic field.
  • Chinese patent CN110783055A discloses a device and method for regulating the internal magnetization characteristics of a magnetic soft robot. According to the target magnetization path in the magnetic soft robot, determine the spatial layout of the excitation unit, design the corresponding components, and embed the excitation unit in the fixed component; after the discharge capacitor is charged, the on-discharge switch is triggered to generate a space magnetizing magnetic field, which leads to magnetism Magnetization or demagnetization will occur inside the soft robot.
  • the present invention provides a magnetic yarn, a magnetic fabric, a fabric state magnetic robot, and a preparation method of the robot.
  • the present invention provides a magnetic yarn in the first aspect.
  • the magnetic yarn includes:
  • a yarn base material comprising one, two or more yarn monofilaments
  • Magnetic particles the magnetic particles are dispersed in the yarn base material, the magnetic particles have a certain residual magnetic field direction after magnetization, and the mass percentage of the magnetic particles in the magnetic yarn is 1- 75%.
  • the yarn base material is selected from at least one of the following groups: polypropylene (PP) fiber, polyvinyl alcohol (PVA) fiber, polyvinyl chloride (PVC) fiber, polyurethane (PU) fiber, polyester (PES) fiber, polyethylene (PE) fiber, polyamide (PA) fiber, polymethyl methacrylate (PMMA) fiber, polyvinylidene fluoride (PVDF) fiber, polyterephthalate Ethylene formate (PET) fiber, polystyrene (PS) fiber, polyacrylonitrile (PAN) fiber, polyparaphenylene terephthalamide (PPTA) fiber, polyethylene glycol (PEG) fiber, poly Trimethylene terephthalate (PTT) fiber, cotton fiber, viscose fiber, ramie fiber, hemp fiber, wool fiber, aramid fiber, polyimide fiber.
  • PP polypropylene
  • PVA polyvinyl alcohol
  • PVC polyvinyl chloride
  • PU polyurethane
  • PET poly
  • the polyurethane (PU) fiber is a thermoplastic polyurethane (TPU) fiber.
  • the polyethylene (PE) fibers are low-density polyethylene (LDPE) fibers.
  • the shape of the yarn substrate is selected from at least one of the following: yarn monofilaments are mutually independent, yarn monofilaments are twisted into strands, yarn monofilaments are coiled with each other, and hierarchical structure lines.
  • the magnetic particles are selected from at least one of the following: superparamagnetic particles, paramagnetic particles, or ferromagnetic particles.
  • the material of the magnetic particles is selected from at least one of the following groups: metals, metal oxides, and metal alloys.
  • the material of the magnetic particles is selected from at least one of the following group consisting of: neodymium iron boron alloy, samarium cobalt alloy, alnico alloy, iron, cobalt, nickel, ferroferric oxide , Iron trioxide, nickel-cobalt alloy, iron-cobalt alloy, most preferably neodymium iron boron permanent magnet particles.
  • the particle size of the magnetic particles is 0.03-250 ⁇ m, preferably 0.1-220 ⁇ m, 0.5-200 ⁇ m, 1-180 ⁇ m, 3-35 ⁇ m, 5-160 ⁇ m, 10-120 ⁇ m, 20-100 ⁇ m, 40 ⁇ m. -80 ⁇ m, or 60-70 ⁇ m.
  • the fineness of the yarn is in the range of 3-650tex, preferably 3-620tex, 3-30tex, 30-50tex, 50-600tex, 50-100tex, 70-350tex, 80-550tex, 90 -500tex, 160-450tex, 200-400tex, or 250-300tex.
  • the yarn has a strength range of 15-1000MPa, preferably 15-35MPa, 15-25MPa, 50-900MPa, 80-800MPa, 100-700MPa, 200-600MPa, 300-500MPa, or 350- 400MPa.
  • the elastic modulus of the yarn is in the range of 0.05-200 GPa, preferably 3-190 GPa, 10-180 GPa, 20-160 GPa, 50-140 GPa, 70-120 GPa, or 90-100 GPa.
  • the mass percentage of the magnetic particles in the magnetic yarn is 1 to 75%, preferably the mass percentage in the magnetic yarn is 5 to 70%, preferably 10%. -60%, 20-50%, or 30-40%.
  • the present invention relates to a magnetic fabric in a second aspect.
  • the magnetic fabric is knitted from the magnetic yarn according to the first aspect of the present invention.
  • the knitting of the magnetic fabric is selected from at least one of the following: woven, knitted, braided, and stitched.
  • the structure of the magnetic fabric is selected from at least one of the following: plain weave structure, twill structure, satin structure, plain weave structure, straight structure, jacquard structure, needle drawing structure, rib structure, pearl Structure, braid structure, suture structure.
  • the magnetic flux density of the residual magnetic field on the surface of the magnetic fabric is in the range of 0.1-200mT, preferably 0.5-180mT, 1-160mT, 5-140mT, 10-120mT, 30-100mT, 50-80mT, or 60mT. -70mT.
  • the magnetic flux density of the residual magnetic field on the surface of the magnetic fabric is in the range of 1-50mT, preferably 5-40mT, 10-30mT, or 20-25mT.
  • the present invention relates to a fabric state magnetic control robot.
  • the fabric-state magnetron robot is made of a magnetic fabric according to the second aspect of the present invention, and the fabric-state magnetron robot has a residual magnetic field with anisotropy in size and direction.
  • the fabric state magnetron robot can control movement and behavior by driving a magnetic field.
  • the driving magnetic field is selected from at least one of the following: a gradient magnetic field, a rotating magnetic field, an oscillating magnetic field, and a periodic switching magnetic field.
  • the size of the driving magnetic field is 0.1-1000mT, preferably 1-800mT, 5-700mT, 10-600mT, 50-500mT, 100-400mT, or 200-300mT.
  • the size of the driving magnetic field is 10-200mT, preferably 20-180mT, 30-150mT, 50-120mT, or 80-100mT.
  • the motion of the magnetron robot is selected from at least one of the following: self-deformation, crawling, jumping, cargo grasping, cargo transportation, rolling, swimming, turning, rotating, gliding, and flying.
  • the fourth aspect of the present invention relates to a method (1) for preparing a fabric-state magnetic control robot.
  • the method includes:
  • the shape of the obtained magnetic fabric is fixed, and the magnetic fabric is magnetized under a pulsed strong magnetic field to obtain a fabric-state magnetron robot with anisotropy in the magnitude and orientation of the residual magnetic field.
  • the pulsed strong magnetic field has a size of 0.1-6T, preferably 0.5-5T, 1-4.5T, 2-4T, or 2.5-3.5T.
  • the magnitude of the pulsed strong magnetic field is 3T.
  • the fifth aspect of the present invention relates to a method (2) for preparing a fabric-state magnetic control robot.
  • the method includes:
  • the obtained magnetized magnetic yarn is knitted, that is, the magnetic particle distribution and the direction of the residual magnetic field are programmed to obtain a fabric state magnetron robot with anisotropy of the size and direction of the residual magnetic field.
  • the pulsed strong magnetic field has a size of 0.1-6T, preferably 0.5-5T, 1-4.5T, 2-4T, or 2.5-3.5T.
  • the magnitude of the pulsed strong magnetic field is 3 T.
  • a magnetic yarn characterized in that the magnetic yarn comprises:
  • a yarn base material comprising one, two or more yarn monofilaments
  • Magnetic particles the magnetic particles are dispersed in the yarn base material, the magnetic particles have a certain residual magnetic field direction after magnetization, and the mass percentage of the magnetic particles in the magnetic yarn is 1- 75%.
  • the yarn base material is selected from at least one of the group consisting of polypropylene (PP) fiber, polyvinyl alcohol (PVA) fiber, Polyvinyl chloride (PVC) fiber, polyurethane (PU) fiber, polyester (PES) fiber, polyethylene (PE) fiber, polyamide (PA) fiber, polymethyl methacrylate (PMMA) fiber, polyvinylidene fluoride (PVDF) fiber, polyethylene terephthalate (PET) fiber, polystyrene (PS) fiber, polyacrylonitrile (PAN) fiber, polyparaphenylene terephthalamide (PPTA) fiber, poly Ethylene glycol (PEG) fiber, polytrimethylene terephthalate (PTT) fiber, cotton fiber, viscose fiber, ramie fiber, hemp fiber, wool fiber, aramid fiber, polyimide fiber.
  • PP polypropylene
  • PVA polyvinyl alcohol
  • PVC Polyvinyl chloride
  • PU polyurethane
  • PET
  • the magnetic yarn according to item 1 characterized in that the form of the yarn base material is selected from at least one of the following: yarn monofilaments are mutually independent, yarn monofilaments twisted into strands, yarn Monofilaments are coiled with each other, hierarchical structure line.
  • magnetic particles are selected from at least one of the following: superparamagnetic particles, paramagnetic particles or ferromagnetic particles.
  • the magnetic yarn according to item 1, wherein the material of the magnetic particles is at least one selected from the group consisting of metals, metal oxides, and metal alloys.
  • the material of the magnetic particles is selected from at least one of the following group consisting of: neodymium iron boron alloy, samarium cobalt alloy, alnico alloy, iron , Cobalt, nickel, ferroferric oxide, ferric oxide, nickel-cobalt alloy, iron-cobalt alloy, and most preferably neodymium iron boron permanent magnet particles.
  • the magnetic yarn according to item 1 characterized in that the particle size of the magnetic particles is 0.03-250 ⁇ m, and most preferably, it is 3-35 ⁇ m.
  • a magnetic fabric characterized in that the magnetic fabric is woven from the magnetic yarn according to any one of items 1 to 11.
  • the magnetic fabric according to item 12, wherein the weaving of the magnetic fabric is selected from at least one of the following: woven, knitted, braided, and sewing.
  • the magnetic fabric according to item 12 characterized in that the structure of the magnetic fabric is selected from at least one of the following: plain weave structure, twill structure, satin structure, plain weave structure, straight structure, jacquard structure, and Needle structure, rib structure, bead structure, braid structure, suture structure.
  • a fabric state magnetic control robot characterized in that, the fabric state magnetic control robot is made of the magnetic fabric according to any one of items 12 to 15, and the fabric state magnetic control robot has various sizes and directions. Anisotropic residual magnetic field.
  • the fabric state magnetic control robot according to item 16 characterized in that the fabric state magnetic control robot can control movement and behavior by driving a magnetic field.
  • the driving magnetic field is selected from at least one of the following: a gradient magnetic field, a rotating magnetic field, an oscillating magnetic field, and a periodic switching magnetic field.
  • the fabric state magnetron robot according to item 19 characterized in that the size of the driving magnetic field is 10-200mT.
  • the fabric state magnetic control robot according to any one of items 17 to 20, wherein the movement of the magnetic control robot is selected from at least one of the following: self-deformation, crawling, jumping, cargo grabbing, cargo Transport, roll, swim, flip, spin, glide, fly.
  • the shape of the obtained magnetic fabric is fixed, and the magnetic fabric is magnetized under a pulsed strong magnetic field to obtain a fabric-state magnetron robot with anisotropy in the magnitude and orientation of the residual magnetic field.
  • the obtained magnetized magnetic yarn is knitted, that is, the magnetic particle distribution and the direction of the residual magnetic field are programmed to obtain a fabric state magnetron robot with anisotropy of the size and direction of the residual magnetic field.
  • the beneficial effects of the present invention are embodied in the following: the present invention integrates magnetic micro-nano particles on the yarn and fabric level, can achieve high-concentration magnetic particles composite, and the concentration distribution and particle orientation are highly controllable programming and device morphology. It can achieve diversification by combining various textile technologies, is highly compatible with existing textile platforms, has simple preparation methods, and has short processes.
  • the fabricated magnetron robot has the characteristics of easy manufacturing, easy loading and unloading, high adaptability, and high programmability. . Under the stimulation of the external driving magnetic field, the localized response is different due to the action of the magnetic moment and the magnetic force, and the fabric-like robot can deform into a specific programmed shape or produce a variety of motions. It provides new ideas and methods for solving the problems of cumbersome manufacturing process of existing magnetron software robots, limited application scenarios caused by a single device form, and high manufacturing costs.
  • Figure 1 is a preparation flow chart of the fabric state magnetic control robot of the present invention
  • Figure 2 is an example of a fabric state magnetic control robot prepared by the method (1) of the present invention
  • Figure 3 is an example of a fabric state magnetic control robot prepared by the method (2) of the present invention.
  • the depth of the fabric color indicates the level of the content of magnetic particles.
  • fabric refers to a flat piece of flexible material formed by crossing, entwining and connecting small and flexible objects.
  • Woven fabric is made up of yarns that have a cross relationship. Knitted fabrics are made of yarns in a knotted relationship. Non-woven fabrics are composed of yarns in a connected relationship. The third fabric is composed of yarns in a cross/knot relationship. After many yarns form a stable relationship, a fabric is formed. Crossing, entanglement and connection are the three stable structural relationships that yarns can form. Make the fabric maintain a stable shape and specific mechanical properties.
  • 3D fabric refers to two-dimensional weaving (X, Y directions) by adding yarns in the Z direction for longitudinal weaving. It is also a fabric structure, commonly known as extra-thick sandwich mesh. Cloth, also known as 3D spacer fabric, is a new pure fabric material with excellent breathability, elasticity and support.
  • magnetic particles refer to particulate matter made of magnetic materials.
  • any material that can react to a magnetic field in a certain way can be called a magnetic material.
  • it can be divided into diamagnetic material, paramagnetic material, ferromagnetic material, antiferromagnetic material and ferrimagnetic material.
  • Magnetization is a vector field representing the permanent or induced dipole magnetic moment of a magnetic substance, and a physical quantity that describes the degree of magnetism of a macroscopic magnetic substance. When the magnetization is negative, the solid appears to be diamagnetic. Metals such as gold and silver have this property.
  • paramagnetic substances there is a permanent magnetic moment inside the atom regardless of the presence of an external magnetic field.
  • an external magnetic field due to the random thermal vibration of the atoms of the paramagnetic substance, macroscopically, there is no magnetism; under the action of the external magnetic field, the magnetic moment of each atom is oriented relatively regularly, and the substance exhibits extremely weak magnetism.
  • the magnetization is consistent with the direction of the external magnetic field.
  • transition elements, rare earth elements, steel-based elements, and metals such as aluminum and platinum are all paramagnetic substances. Most materials are diamagnetic or paramagnetic, and they respond weakly to external magnetic fields.
  • Ferromagnetic materials and ferrimagnetic materials are ferromagnetic materials.
  • magnetic materials refer to ferromagnetic materials.
  • the magnetization curve and hysteresis loop are characteristic curves that reflect their basic magnetic properties.
  • Ferromagnetic materials are generally Fe, Co, Ni elements and their alloys, rare earth elements and their alloys, and some Mn compounds.
  • Magnetic materials are generally classified into soft magnetic materials and hard magnetic materials according to the degree of difficulty of their magnetization.
  • "magnetization” is to magnetize a magnetic substance or to increase the magnetism of a magnet with insufficient magnetism.
  • the magnetic object to be magnetized is placed in the magnetic field formed by the coil through which direct current passes.
  • the instantaneous pulsed current is passed through the coil to make the coil generate a short super strong magnetic field. It is especially suitable for materials such as aluminum nickel cobalt series, ferrite series, rare earth permanent magnet series and so on.
  • Example 1 Utilization method (1) Preparation of fabric state magnetic control robot
  • method (1) is used to prepare a fabric-state magnetic control robot. This method can be briefly described as the "weaving first, then magnetizing" method.
  • the non-magnetized magnetic yarn used by the fabric robot, the yarn base is 96 polypropylene (PP) monofilaments twisted into strands, the yarn is 8 layers, and the yarn is
  • the doped magnetic particles are NdFeB micron particles with a particle size range of 20-35 microns, the magnetic particles occupy 60% by mass in the magnetic yarn, and the fineness of the yarn ranges from 80 to 100tex, the strength of the yarn is 95-105MPa, and the elastic modulus of the yarn is 1-5GPa.
  • a transverse magnetic field of 20mT is applied.
  • the amount of bending deformation at a free length of 10 mm is 5.97 mm.
  • the intensity of the magnetizing pulse magnetic field is 3T.
  • Figure 2 shows the product obtained in Example 1-1.
  • the depth of the fabric color indicates the level of magnetic particle content
  • the direction of the arrow represents the direction of the magnetic force line of the residual magnetic field.
  • the product in Figure 2 is woven and magnetized with the material folded in a W shape, where the two points X and Z are the two turning points on the lower side of the W shape, and the Y point is located at the W The turning point on the upper side of the middle of the shape.
  • the magnetic flux density of the residual magnetic field at point Y, the magnetic flux density of the residual magnetic field at point X, and the magnetic flux density of the residual magnetic field at point Z are respectively 192mT, 3mT, and 4mT.
  • the non-magnetized magnetic yarns used in the fabric-like robot, the yarn base is 96 polypropylene (PP) monofilaments twisted into strands, the yarns are 10 layers, and the yarns
  • the magnetic particles doped in the thread are NdFeB micron particles with a particle size range of 30-70 microns, the magnetic particles occupy 45% by mass in the magnetic yarn, and the fineness range of the yarn is 70 to 110tex, the strength of the yarn is 95-105MPa, and the elastic modulus of the yarn is 1-5GPa.
  • the magnetic flux density of the residual magnetic field at point Y, the magnetic flux density of the residual magnetic field at point X, and the magnetic flux density of the residual magnetic field at point Z are 181mT, 8mT, and 11mT, respectively.
  • the magnetic particles doped in the thread are NdFeB micron particles with a particle size ranging from 5 to 30 microns.
  • the magnetic particles occupy 50% of the magnetic yarn by mass, and the yarn fineness is in the range of 80 to 130tex, the strength of the yarn is 105-120MPa, and the elastic modulus of the yarn is 4-12GPa.
  • the magnetic particles doped in the thread are NdFeB micron particles, with a particle size range of 80-120 microns, the magnetic particles occupies 30% by mass in the magnetic yarn, and the fineness range of the yarn is 120 to 180 tex, the strength of the yarn is in the range of 180-200 MPa, and the elastic modulus of the yarn is in the range of 70-90 GPa.
  • the yarn After the yarn is magnetized under a 3T radial magnetic field, the When a transverse magnetic field is applied, the amount of bending deformation at a free length of 10 mm is 0.63 mm.
  • the above-mentioned magnetic yarns as warp yarns, respectively pass through the vertical frame on the jacquard loom, and then take part of the same magnetic yarns as weft yarns, and pass through the upper and lower openings of the warp yarns through a shuttle to obtain an unmagnetized magnetic fabric with a specific jacquard pattern .
  • the unmagnetized magnetic fabric into strips of appropriate size, magnetize the material in a W-shaped fold, and place it in the inner cavity of a cylindrical magnetizing table with a diameter of 5 cm and a depth of 3 cm.
  • the magnetic fabric is instantly magnetized to the magnetic saturation intensity in the inner cavity of the magnetizing table.
  • the magnetizing direction is the N pole upright, and the fabric state magnetic control robot is obtained.
  • the intensity of the magnetizing pulse magnetic field is 3T.
  • the magnetic flux density of the residual magnetic field at point Y, the magnetic flux density of the residual magnetic field at point X, and the magnetic flux density of the residual magnetic field at point Z are 170mT, 19mT, and 22mT, respectively.
  • the non-magnetized multiple magnetic yarns used by the fabric-like robot is 48 polypropylene (PP) monofilaments twisted into strands, the yarns are 6 layers, and the yarns
  • the magnetic particles doped in the thread are NdFeB micron particles with a particle size in the range of 70-100 microns, the mass percentage of the magnetic particles in the magnetic yarn is 40%, and the fineness range of the yarn is 150 to 220tex, the yarn strength range is 350-420MPa, and the elastic modulus range of the yarn is 130-150GPa.
  • the yarn After the yarn is magnetized under a 3T radial magnetic field, the yarn is heated at 20mT When a transverse magnetic field is applied, the amount of bending deformation at a free length of 10 mm is 0.71 mm.
  • the above-mentioned magnetic yarns as warp yarns, respectively pass through the vertical frame on the jacquard loom, and then take part of the same magnetic yarns as weft yarns, and pass through the upper and lower openings of the warp yarns through a shuttle to obtain an unmagnetized magnetic fabric with a specific jacquard pattern .
  • the non-magnetized magnetic yarns used in the fabric-like robot, the yarn base is 96 polypropylene (PP) monofilaments twisted into strands, the yarns are 10 layers, and the yarns
  • the magnetic particles doped in the thread are NdFeB micron particles with a particle size range of 190-220 microns.
  • the magnetic particles occupy 20% by mass in the magnetic yarn.
  • the fineness range of the yarn is 320 to 350tex
  • the strength of the yarn is in the range of 660-720MPa
  • the elastic modulus of the yarn is in the range of 180-190GPa.
  • the yarn After the yarn is magnetized in a 3T radial magnetic field, the When a transverse magnetic field is applied, the amount of bending deformation at a free length of 10 mm is 0.02 mm.
  • the above-mentioned magnetic yarns as warp yarns, respectively pass through the vertical frame on the jacquard loom, and then take part of the same magnetic yarns as weft yarns, and pass through the upper and lower openings of the warp yarns through a shuttle to obtain an unmagnetized magnetic fabric with a specific jacquard pattern .
  • the non-magnetized magnetic yarn used by the fabric robot the yarn base material is 48 polypropylene (PP) monofilaments twisted into strands, the yarn is two layers, and the yarn is
  • the doped magnetic particles are NdFeB micron particles with a particle size ranging from 3 to 7 microns, the magnetic particles occupy 60% of the magnetic yarn by mass, and the yarn fineness range is 13.44 tex
  • the strength of the yarn is in the range of 19-23 MPa, and the elastic modulus of the yarn is 12.3 GPa.
  • the non-magnetized magnetic yarn used by the fabric-like robot, the yarn base material is 24 polypropylene (PP) monofilaments twisted into strands, the yarn is two layers, and the yarn is
  • the doped magnetic particles are NdFeB micron particles with a particle size range of 3-7 microns, the magnetic particles occupy 45% of the magnetic yarn by mass, and the yarn fineness range is 5.76 tex
  • the strength of the yarn is in the range of 22-25 MPa, and the elastic modulus of the yarn is 5.51 GPa.
  • the doped magnetic particles are NdFeB micron particles with a particle size range of 3-7 microns, the magnetic particles occupy 50% by mass in the magnetic yarn, and the fineness range of the yarn is 4.16 tex
  • the strength of the yarn is in the range of 20-23 MPa, and the elastic modulus of the yarn is 7.01 GPa.
  • the non-magnetized magnetic yarn used by the fabric-like robot the yarn base material is 24 polypropylene (PP) monofilaments twisted into strands, the yarn is two layers, and the yarn is
  • the doped magnetic particles are NdFeB micron particles, with a particle size range of 3-7 microns, the magnetic particles occupies 30% by mass in the magnetic yarn, and the fineness range of the yarn is 4.56 tex
  • the strength of the yarn is in the range of 27-29 MPa, and the elastic modulus of the yarn is 3.02 GPa.
  • the non-magnetized magnetic yarn used by the fabric-like robot the yarn base material is 24 polypropylene (PP) monofilaments twisted into strands, the yarn is two layers, and the yarn is
  • the doped magnetic particles are NdFeB micron particles, with a particle size range of 3-7 microns, the magnetic particles occupies 40% by mass in the magnetic yarn, and the fineness range of the yarn is 5.52 tex ,
  • the strength of the yarn is in the range of 24-26MPa, and the elastic modulus of the yarn is 4.43GPa.
  • the non-magnetized magnetic yarn used by the fabric-like robot the yarn base material is 96 polypropylene (PP) fiber monofilaments twisted into strands, the yarn is two layers, and the yarn is
  • the doped magnetic particles are NdFeB micron particles, with a particle size ranging from 3-7 microns, the magnetic particles occupy 20% by mass in the magnetic yarn, and the yarn fineness range is 15.36 tex
  • the strength of the yarn is in the range of 28-30 MPa, and the elastic modulus of the yarn is 2.18 GPa.
  • the non-magnetized magnetic yarn used by the fabric-like robot, the yarn base material is 24 thermoplastic polyurethane (TPU) monofilaments twisted into strands, the yarn is two layers, the yarn
  • the magnetic particles doped in the medium are SmCo micron particles, with a particle size range of 3-10 microns, the magnetic particles occupy 60% by mass in the magnetic yarn, and the yarn fineness range is 11 tex.
  • the strength of the yarn is in the range of 22-25MPa, and the elastic modulus of the yarn is in the range of 0.05-0.06GPa.
  • the non-magnetized magnetic yarn used by the fabric robot is 48 polyvinyl alcohol (PVA) monofilaments twisted into strands, the yarn is two layers, the yarn
  • the magnetic particles doped in the medium are AlNiCo micron particles with a particle size in the range of 10-20 microns, the mass percentage of the magnetic particles in the magnetic yarn is 40%, and the fineness of the yarn is in the range of 20.64 tex, the strength of the yarn is in the range of 23-31MPa, and the modulus of elasticity of the yarn is in the range of 0.06-0.07GPa.
  • the amount of bending deformation at a free length of 10 mm is 1.4 mm.
  • the non-magnetized magnetic yarn used by the fabric-like robot, the yarn base material is 24 thermoplastic polyurethane (TPU) monofilaments twisted into strands, the yarn is two layers, the yarn
  • the magnetic particles doped in the medium are SmCo micron particles, with a particle size range of 3-10 microns, the magnetic particles occupy 60% by mass in the magnetic yarn, and the yarn fineness range is 11 tex.
  • the strength of the yarn is in the range of 24-28MPa, and the elastic modulus of the yarn is in the range of 0.05-0.06GPa.
  • the bending deformation at a free length of 10 mm is 1.3 mm.
  • the above magnetic yarns as warp yarns respectively pass through the heald frames on the jacquard loom, take part of the same magnetic yarns as weft yarns, and pass through the upper and lower openings of the warp yarns through a shuttle to obtain an unmagnetized magnetic fabric with a specific jacquard pattern .
  • the non-magnetized magnetic yarn used by the fabric robot is 48 polyvinyl alcohol (PVA) monofilaments twisted into strands, the yarn is two layers, the yarn
  • the magnetic particles doped in the medium are AlNiCo micron particles, the particle size ranges from 10-20 microns, the mass percentage of the magnetic particles in the magnetic yarn is 40%, and the fineness range of the yarn is 21 tex.
  • the strength of the yarn is in the range of 26-35MPa, and the elastic modulus of the yarn is in the range of 0.06-0.07GPa.
  • the yarn After the yarn is magnetized in a radial instantaneous magnetic field of 3T, the Under the transverse magnetic field, the amount of bending deformation at a free length of 10 mm is 1.1 mm.
  • the above magnetic yarns as warp yarns, respectively pass through the heald frames on the jacquard loom, take part of the same magnetic yarns as weft yarns, and pass through the upper and lower openings of the warp yarns through a shuttle to obtain an unmagnetized magnetic fabric with a specific jacquard pattern .
  • Example 2 Manipulation of the fabric state magnetron robot prepared in Example 1-1
  • the driving magnetic field generated by the neodymium magnet or the electromagnetic coil system is used to control and display the fabric state robot as shown in Fig. 2:
  • the fabric state robot is placed horizontally on a non-magnetic plane. Under the action of a uniform magnetic field with a size of 100mT and a vertical upward direction, due to the magnetic moment, the direction of the residual magnetic field of the fabric state robot tends to drive the direction of the magnetic field. Under the action of a static magnetic field, it appears as a "W" shape; the size of the magnetic field is unchanged, and the direction becomes vertical downward, and the fabric state robot gradually becomes a "M" shape under the action of the static magnetic field.
  • Crawling Place the fabric state robot horizontally on a non-magnetic plane. Under the action of a uniform magnetic field with a size of 100mT and a vertical downward direction, the fabric state robot assumes an "M" shape under the action of a static magnetic field, and the magnetic field direction is moved toward the direction of movement.
  • the fabric robot and its center of gravity When tilting 45°, due to the magnetic moment, the fabric robot and its center of gravity will also tilt in the direction of movement, leaving only the frontmost area in the direction of movement on the contact surface; replace the static magnetic field with an oscillation with a direction perpendicular to a tilt of 45° Periodic magnetic field (the magnetic field is the largest when the direction is vertical, 0 when the direction is tilted 45°, and the maximum magnetic field is 100mT), the fabric-like robot will form a cycle with the center of gravity raised, tilted forward, and center of gravity lowered with the periodic oscillation of the magnetic field Action, namely crawling.
  • Cargo transportation Under the magnetic field stimulation of the crawling mode, a piece of non-magnetic polymer material is placed in the middle of the "M" shape of the fabric state robot, and the minimum magnetic field stimulated by the oscillating periodic magnetic field is changed to 10mT, and the goods are transported in the crawling mode; At the same time, the goods can be clamped between the "M"-shaped arms of the fabric state robot. Under the action of a periodically changing magnetic field with a size of 100mT and a direction rotating in the vertical plane of the direction of movement, the fabric state robot will roll with the direction of the driving magnetic field. Form cargo movement.
  • method two is used to prepare a fabric state magnetic control robot.
  • This method can be simply summarized as the "magnetization first, then weaving" method.
  • the magnetic yarn used by the fabric-like robot is composed of polyurethane (PU) fiber monofilament twisted into strands, and the doped magnetic particles are NdFeB micron particles.
  • the fabric contains a total of three doped concentrations of magnetic yarns, and the doped proportions of magnetic particles in the yarns are 20wt.%, 50wt.%, and 70wt.% respectively.
  • the fineness of the three magnetic yarns is 30tex, 80tex, and 190tex.
  • the particle size ranges of the three kinds of yarns doped with NdFeB micron particles are 5-20 ⁇ m, 70-90 ⁇ m, and 150-170 ⁇ m.
  • the magnetic yarn is magnetized, and the non-magnetized magnetic yarns of different concentrations are taken to be perpendicular to each other. Or horizontally fixed in the inner cavity of a cylindrical magnetizing table with a diameter of 5cm and a depth of 3cm.
  • There is a magnetizing coil outside the inner cavity which can provide the inner cavity with a 3T vertical upward instant magnetic field at 1900V and 10ms.
  • the magnetic yarn is instantly magnetized to the magnetic saturation intensity in the inner cavity of the magnetizing table.
  • the magnetizing direction of the yarn is the N pole upright, and the residual magnetic field strength of the yarn after magnetizing is positively correlated with the content of NdFeB magnetic powder contained in the yarn.
  • the above-mentioned magnetic yarns are used as warp yarns and passed through the heald frames of the jacquard loom.
  • knitting is performed by setting the opening sequence of the opening mechanism of the weaving device under the set knitting logic, and the fabric state robot with anisotropy in the direction and size of the residual magnetic field as shown in FIG. 3 is obtained.
  • the driving magnetic field generated by the neodymium magnet or the electromagnetic coil system is used to control and display the fabric state robot as shown in Fig. 3:
  • Self-deformation Place the fabric state robot horizontally on a non-magnetic plane. Under the action of a uniform magnetic field with a size of 100mT and a vertical downward direction, due to the magnetic moment, the direction of the residual magnetic field of the fabric state robot tends to drive the direction of the magnetic field, and the fabric state The four corners of the robot will stand up, and the center part will be folded.
  • Crawling Place the fabric state robot horizontally on a non-magnetic plane, with an oscillating periodic magnetic field with a direction perpendicular to an inclined 45° (the magnetic field is the largest when the direction is vertical, 0 when the direction is inclined 45°, and the maximum magnetic field is 100mT Under the action of ), the fabric-like robot will form a periodic movement of raising, tilting, and lowering the center of gravity with the periodic oscillation of the magnetic field, that is, crawling.
  • Example 5 Using method (2) to prepare 3D fabric state magnetic control robot
  • a method for preparing a 3D textile robot is provided.
  • the magnetic fiber/yarn is the same as that in Embodiment 3. The difference is that this embodiment uses 3D three-dimensional weaving technology to construct a 3D fabric state magnetic control robot.
  • Example 3 On the basis of Example 3, a part of the magnetic yarns are used as Z yarns, and the warp yarns and weft yarn layers are combined by interweaving the warp yarns up and down by using the Z yarns to obtain a 3D fabric state magnetron robot with anisotropic residual magnetic field size and direction.
  • Example 6 Method for monitoring the motion behavior of a fabric state robot
  • a method for monitoring the motion behavior of a fabric state robot is provided.
  • a fabric with integrated metal loops is placed, and the integrated metal loops in the fabric are fixed on the surface or inside of the fabric by embroidery.
  • the fabric state robot passes through the integrated metal coil under the control of an external magnetic field, the magnetic flux in the metal coil changes, and an induced current is generated in the coil to detect the change of the induced current; in this application scenario, a comparative test is required.
  • the robot's fabric with integrated coils passes through the external magnetic field in the same way.
  • the induced currents generated in the integrated coils in the two methods are compared, and the induced currents generated only when the fabric-state robot passes through the metal coil are obtained, and then the behavior of the fabric-state robot in motion is detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Robotics (AREA)
  • Manufacturing & Machinery (AREA)
  • Woven Fabrics (AREA)

Abstract

一种磁性纱线,包括:包含单丝的纱线基材,以及分散在纱线基材中的磁性颗粒,磁性颗粒充磁后具有一定的剩磁场朝向,磁性颗粒在磁性纱线中所占的质量百分数为1-75%。还包括具有磁性纱线的磁性织物、由磁性织物制成织物态磁控机器人以及织物态磁控机器人的制备方法。以织物为载体制得的织物态磁控机器人,能降低制造成本、提高柔性并扩大应用场景。

Description

磁性纱线、磁性织物、磁控机器人及其制备方法 技术领域
本发明涉及功能织物和软体机器人领域,具体涉及一种磁性纱线及由其制成的织物和以及该机器人制备方法。
背景技术
传统刚体机器人在制造行业中被广泛使用,它们可以进行专门编程以有效地执行单个任务。但刚体机器人的缺点在于适应性非常有限。由于它们是由刚性链接和关节构成的,因此与人互动时不安全。一种常见的做法是将工厂中的人员和机器人工作区分开,以减轻安全隐患。传统致动机构中适应性的缺乏是该问题的一大部分。
软体机器人是人机交互领域的热点研究之一。与坚固的机器人相比,软机器人的主体由本质上柔软且可扩展的材料(如硅胶)制成,它们可以变形并吸收碰撞产生的大部分能量。这些机器人具有可连续变形的结构,具有类似于生物系统的肌肉驱动,与刚体机器人相比,具有相对较大的自由度。它们展现出前所未有的适应性、敏感性和敏捷性。
软体机器人的驱动方法包括腱驱动、智能材料,如形状记忆聚合物(SMP)、形状记忆合金(SMA)、气动纤维编织物、气动聚合物弹性体、水凝胶或电活性聚合物(EAP)。与电磁致动相比,所有这些方法在性能和可控性方面都存在局限。
通常,磁性软体机器人通过使用外部磁场来控制聚合物基质中的磁性微粒来操作。通过改变这种磁场的方向和大小,可以控制可变形的磁性复合材料的扭矩、变形、伸长、收缩或弯曲。这些驱动结构可实现快速响应时间、高动态范围、小尺寸、高功率效率和低驱动电压(通常为0至30V)。磁性软体机器人已被成功地用于制造各种高性能的机电一体化和微型机器人系统,逐渐成为研究热点。
中国专利CN110382338A公开了一种磁控多模态运动机器人。对加载有NdFeB微粒的软活性材料,如ECOFLEX、形状记忆合金、液态金属、硅橡 胶、硅基材料、聚氨酯、软凝胶(水凝胶、油基凝胶、气凝胶)以及天然聚合物在外磁场环境下编程固化,其运动能力包括游泳、行走、翻转、爬行、滚动、潜水、浸入、浮现、跳跃、登陆、表面爬升、液弯月爬升、蹦、在限定空间内爬行,旋转,飞行,滑翔等。
中国专利CN109866231A公开了一种分段磁编程的磁控水凝胶软体机器人。通过外磁场环境下对水凝胶进行激光照射固化编程磁控水凝胶中纳米四氧化三铁的分布方向,对磁控水凝胶软体机器人进行差异化的设计,可以有效控制其不同部位的不同动作状态。在此基础上,中国专利CN110053020A公开了一种基于磁编程温敏水凝胶的磁驱动蠕动软体机器人,通过磁场驱动含有磁性颗粒的温度响应的水凝胶变形。
中国专利CN110076749A公开了一种仿水母磁控微型软体机器人。由头部和五条具有不同磁场方向的刚性活动臂由弹性筋连接而成;五条活动臂能够在外加磁场的作用下发生多自由度运动,包括夹持物体、爬行运动、滚动运动、水平拖动运动、螺旋式游泳运动以及张合式游泳运动六种运动模式。
中国专利CN110216667A公开了一种磁控软体机器人的可控磁化系统。实现空间和时间均可控的磁场设计,包括:阵列式分布微型线圈和磁性纳米颗粒均匀分布固化于所述水凝胶基底构成磁控软体机器人,可实现局部磁化以及精准磁化控制。
中国专利CN110722545A公开了一种三段式磁控微型软体爬行机器人。能够在交变磁场的驱动下实现爬行或转向运动。
中国专利CN110783055A公开了一种公开了一种磁性软体机器人内部磁化特性的调控装置及方法。根据磁性软体机器人中的目标磁化路径,确定励磁单元的空间布局,设计对应构件,并将励磁单元嵌入到固定构件中;放电电容充电完毕后,触发导通放电开关,产生空间磁化磁场,导致磁性软体机器人内部将发生充磁或退磁。
织物由于其良好的拉伸性、柔韧性以及穿戴舒适性,是材料科学和电子技术等跨学科领域研究中非常热门的器件基底材料,是极佳的技术载体。从机器人的角度,织物的易制造、易运输、高适应等特性是现有的机器人平台所不具有的。而在目前公开的磁控软体机器人相关专利中,其工艺平台都基于水凝胶、硅胶等材料的光固化平台,其器件形态单一,大大限制了其应用场景,同时,制造过程复杂、制造成本较高且规模化生产可能性较低。而将 磁功能与成熟的纺织技术相结合,是面向高人机适应性的软体机器人的下一个发展机遇。
发明内容
针对现有基于磁功能的硅胶、水凝胶基软体致动技术结构编程过程复杂、器件形态单一、柔性不足、功能嫁接成本较高等问题,可以将传统织物作为载体,集成功能刺激响应材料(诸如磁性材料)来实现织物态机器人。此技术路线是发展下一代软体机器人的关键。
为了实现上述目的,本发明提供了一种磁性纱线、一种磁性织物、一种织物态磁性机器人以及该机器人的制备方法。
本发明在第一方面提供了一种磁性纱线。
在一个实施方式中,所述磁性纱线包括:
纱线基材,所述纱线基材包括一根、两根或多根纱线单丝;和
磁性颗粒,所述磁性颗粒分散在所述纱线基材中,所述磁性颗粒充磁后具有一定的剩磁场朝向,所述磁性颗粒在所述磁性纱线中所占的质量百分数为1-75%。
在又一实施方式中,所述纱线基材选自由下述构成的组中的至少一种:聚丙烯(PP)纤维、聚乙烯醇(PVA)纤维、聚氯乙烯(PVC)纤维、聚氨酯(PU)纤维、聚酯(PES)纤维、聚乙烯(PE)纤维、聚酰胺(PA)纤维、聚甲基丙烯酸甲酯(PMMA)纤维、聚偏氟乙烯(PVDF)纤维、聚对苯二甲酸乙二酯(PET)纤维、聚苯乙烯(PS)纤维、聚丙烯腈(PAN)纤维、聚对苯二甲酰对苯二胺(PPTA)纤维、聚乙二醇(PEG)纤维、聚对苯二甲酸丙二酯(PTT)纤维、棉纤维、粘胶纤维、苎麻纤维、汉麻纤维、羊毛纤维、芳纶纤维、聚酰亚胺纤维。
在又一实施方式中,所述聚氨酯(PU)纤维为热塑性的聚氨酯(TPU)纤维。在又一实施方式中,所述聚乙烯(PE)纤维为低密度聚乙烯(LDPE)纤维。
在另一实施方式中,所述纱线基材的形态选自如下的至少一种:纱线单丝相互独立、纱线单丝拧成股线、纱线单丝相互盘绕、层级结构线。
在再一实施方式中,所述磁性颗粒选自如下的至少一种:超顺磁性颗粒、顺磁性颗粒或铁磁性颗粒。
在一个实施方式中,所述磁性颗粒的材料选自由下述构成的组中的至少 一种:金属、金属氧化物、金属合金。
在又一实施方式中,所述磁性颗粒的材料选自由下述构成的组中的至少一种:钕铁硼合金、钐钴合金、铝镍钴合金、铁、钴、镍、四氧化三铁、三氧化二铁、镍钴合金、铁钴合金,最优选为钕铁硼永磁颗粒。
在另一实施方式中,所述磁性颗粒的粒径为0.03-250μm,优选为0.1-220μm,0.5-200μm,1-180μm,3-35μm,5-160μm,10-120μm,20-100μm,40-80μm,或60-70μm。
在再一实施方式中,所述纱线的细度范围为3-650tex,优选3-620tex,3-30tex,30-50tex,50-600tex,50-100tex,70-350tex,80-550tex,90-500tex,160-450tex,200-400tex,或250-300tex。
在一个实施方式中,所述纱线的强度范围为15-1000MPa,优选15-35MPa,15-25MPa,50-900MPa,80-800MPa,100-700MPa,200-600MPa,300-500MPa,或350-400MPa。
在又一实施方式中,所述纱线的弹性模量范围为0.05-200GPa,优选3-190GPa,10-180GPa,20-160GPa,50-140GPa,70-120GPa,或90-100GPa。
在再一实施方式中,所述磁性颗粒在所述磁性纱线中所占的质量百分数为1-75%,优选在所述磁性纱线中所占的质量百分数为5-70%,优选10-60%,20-50%,或30-40%。
本发明在第二方面涉及一种磁性织物。
在一个实施方式中,所述磁性织物由根据本发明的第一方面的磁性纱线编制而成。
在又一实施方式中,所述磁性织物的编织选自如下至少一种:梭织、针织、辫织、缝纫。
在再一实施方式中,所述磁性织物的结构选自如下至少一种:平织结构、斜纹结构、缎纹结构、平纹结构、直条结构、提花结构、抽针结构、罗纹结构、珠地结构、条辫结构、缝线结构。
在一个实施方式中,所述磁性织物表面剩磁场的磁通密度范围为0.1-200mT,优选0.5-180mT,1-160mT,5-140mT,10-120mT,30-100mT,50-80mT,或60-70mT。
在又一实施方式中,所述磁性织物表面剩磁场的磁通密度范围为1-50mT,优选5-40mT,10-30mT,或20-25mT。
本发明在第三方面涉及一种织物态磁控机器人。
在一个实施方式中,所述织物态磁控机器人由根据本发明的第二方面磁性织物制成,所述织物态磁控机器人具有大小及方向各向异性的剩磁场。
在又一实施方式中,所述织物态磁控机器人可通过驱动磁场进行运动及行为控制。
在另一实施方式中,所述驱动磁场选自如下的至少一种:梯度磁场、旋转磁场、振荡磁场、周期开关磁场。
在再一实施方式中,所述驱动磁场的大小为0.1-1000mT,优选1-800mT,5-700mT,10-600mT,50-500mT,100-400mT,或200-300mT。
在又一实施方式中,所述驱动磁场的大小为10-200mT,优选20-180mT,30-150mT,50-120mT,或80-100mT。
在再一实施方式中,所述磁控机器人的运动选自如下至少一种:自形变、爬行、跳起、货物抓取、货物运输、滚动、游泳、翻转、旋转、滑翔、飞行。
本发明的第四方面涉及制备织物态磁控机器人的方法(一)。
在一个实施方式中,所述方法包括:
取未充磁的磁性纱线,将无剩磁场的磁性纱线编织成磁性织物;
将得到的所述磁性织物进行形状固定,在脉冲强磁场下对所述磁性织物进行充磁处理,得到剩磁场大小及朝向各向异性的织物态磁控机器人。
在又一实施方式中,在进行所述充磁处理时,所述脉冲强磁场的大小为0.1-6T,优选0.5-5T,1-4.5T,2-4T,或2.5-3.5T。
在再一实施方式中,在进行所述充磁处理时,所述脉冲强磁场的大小为3T。
本发明的第五方面涉及制备织物态磁控机器人的方法(二)。
在一个实施方式中,所述方法包括:
取未充磁的磁性纱线,在脉冲强磁场下对其进行充磁处理,使得磁性纱线中分布的磁性颗粒群具有一定的剩磁场朝向;
将得到的磁化后的所述磁性纱线进行编织,即磁性颗粒分布及剩磁场朝向编程,得到剩磁场大小及朝向各向异性的织物态磁控机器人。
在又一实施方式中,在进行所述充磁处理时,所述脉冲强磁场的大小为0.1-6T,优选0.5-5T,1-4.5T,2-4T,或2.5-3.5T。
在再一实施方式中,在进行所述充磁处理时,所述脉冲强磁场的大小为3 T。
上面涉及的实施方式也可以简述为:
1.一种磁性纱线,其特征在于,所述磁性纱线包括:
纱线基材,所述纱线基材包括一根、两根或多根纱线单丝;和
磁性颗粒,所述磁性颗粒分散在所述纱线基材中,所述磁性颗粒充磁后具有一定的剩磁场朝向,所述磁性颗粒在所述磁性纱线中所占的质量百分数为1-75%。
2.根据项1所述的磁性纱线,其特征在于,所述纱线基材选自由下述构成的组中的至少一种:聚丙烯(PP)纤维、聚乙烯醇(PVA)纤维、聚氯乙烯(PVC)纤维、聚氨酯(PU)纤维、聚酯(PES)纤维、聚乙烯(PE)纤维、聚酰胺(PA)纤维、聚甲基丙烯酸甲酯(PMMA)纤维、聚偏氟乙烯(PVDF)纤维、聚对苯二甲酸乙二酯(PET)纤维、聚苯乙烯(PS)纤维、聚丙烯腈(PAN)纤维、聚对苯二甲酰对苯二胺(PPTA)纤维、聚乙二醇(PEG)纤维、聚对苯二甲酸丙二酯(PTT)纤维、棉纤维、粘胶纤维、苎麻纤维、汉麻纤维、羊毛纤维、芳纶纤维、聚酰亚胺纤维。
3.根据项1所述的磁性纱线,其特征在于,所述纱线基材的形态选自如下的至少一种:纱线单丝相互独立、纱线单丝拧成股线、纱线单丝相互盘绕、层级结构线。
4.根据项1所述的磁性纱线,其特征在于,所述磁性颗粒选自如下的至少一种:超顺磁性颗粒、顺磁性颗粒或铁磁性颗粒。
5.根据项1所述的磁性纱线,其特征在于,所述磁性颗粒的材料选自由下述构成的组中的至少一种:金属、金属氧化物、金属合金。
6.根据项5所述的磁性纱线,其特征在于,所述磁性颗粒的材料选自由下述构成的组中的至少一种:钕铁硼合金、钐钴合金、铝镍钴合金、铁、钴、镍、四氧化三铁、三氧化二铁、镍钴合金、铁钴合金,最优选为钕铁硼永磁颗粒。
7.根据项1所述的磁性纱线,其特征在于,所述磁性颗粒的粒径为0.03-250μm,最优选的,为3-35μm。
8.根据项1所述的磁性纱线,其特征在于,所述纱线的细度范围为3-650tex。
9.根据项1所述的磁性纱线,其特征在于,所述纱线的强度范围为 15-1000MPa。
10.根据项1所述的磁性纱线,其特征在于,所述纱线的弹性模量范围为0.05-200GPa。
11.根据项1所述的磁性纱线,其特征在于,所述磁性颗粒在所述磁性纱线中所占的质量百分数为20-70%。
12.一种磁性织物,其特征在于,所述磁性织物由根据项1至11任一项所述的磁性纱线编制而成。
13.根据项12所述的磁性织物,其特征在于,所述磁性织物的编织选自如下至少一种:梭织、针织、辫织、缝纫。
14.根据项12所述的磁性织物,其特征在于,所述磁性织物的结构选自如下至少一种:平织结构、斜纹结构、缎纹结构、平纹结构、直条结构、提花结构、抽针结构、罗纹结构、珠地结构、条辫结构、缝线结构。
15.根据项12至14任一项所述的磁性织物,其特征在于,所述磁性织物表面剩磁场的磁通密度范围为0-200mT。
16.一种织物态磁控机器人,其特征在于,所述织物态磁控机器人由根据项12至15任一项所述的磁性织物制成,所述织物态磁控机器人具有大小及方向各向异性的剩磁场。
17.根据项16所述的织物态磁控机器人,其特征在于,所述织物态磁控机器人可通过驱动磁场进行运动及行为控制。
18.根据项17所述的织物态磁控机器人,其特征在于,所述驱动磁场选自如下的至少一种:梯度磁场、旋转磁场、振荡磁场、周期开关磁场。
19.根据项17所述的织物态磁控机器人,其特征在于,所述驱动磁场的大小为0.1-1000mT。
20.根据项19所述的织物态磁控机器人,其特征在于,所述驱动磁场的大小为10-200mT。
21.根据项17至20任一项所述的织物态磁控机器人,其特征在于,所述磁控机器人的运动选自如下至少一种:自形变、爬行、跳起、货物抓取、货物运输、滚动、游泳、翻转、旋转、滑翔、飞行。
22.一种根据项16至21任一项所述的织物态磁控机器人的制备方法,其特征在于,所述方法包括:
取未充磁的磁性纱线,将无剩磁场的磁性纱线编织成磁性织物;
将得到的所述磁性织物进行形状固定,在脉冲强磁场下对所述磁性织物进行充磁处理,得到剩磁场大小及朝向各向异性的织物态磁控机器人。
23.根据项22所述的织物态磁控机器人制备方法,其特征在于,在进行所述充磁处理时,所述脉冲强磁场的大小为0.1-6T。
24.根据项23所述的织物态磁控机器人制备方法,其特征在于,在进行所述充磁处理时,所述脉冲强磁场的大小为3T。
25.一种根据项16至21任一项所述的织物态磁控机器人的制备
方法,其特征在于,所述方法包括:
取未充磁的磁性纱线,在脉冲强磁场下对其进行充磁处理,使得磁性纱线中分布的磁性颗粒群具有一定的剩磁场朝向;
将得到的磁化后的所述磁性纱线进行编织,即磁性颗粒分布及剩磁场朝向编程,得到剩磁场大小及朝向各向异性的织物态磁控机器人。
26.根据项25所述的织物态磁控机器人制备方法,其特征在于,在进行所述充磁处理时,所述脉冲强磁场的大小为0.1-6T。
27.根据项26所述的织物态磁控机器人制备方法,其特征在于,在进行所述充磁处理时,所述脉冲强磁场的大小为3T。
同现有技术相比,本发明的有益效果体现在:本发明将磁性微纳颗粒集成在纱线及织物层面,可实现高浓度磁性颗粒复合且浓度分布与颗粒朝向高度可控编程、器件形态可通过结合各种纺织技术实现多样化、与现有纺织平台高度兼容、制备方法简单、流程短,制备的织物态磁控机器人具有易于制造、易于装卸、高适应性、高可编程化的特点。在外驱动磁场的刺激下,由于磁矩及磁力的作用,局域化响应不同,织物态机器人可以变形成特定编程形状或产生多种运动。为现有磁控软体机器人制造工艺繁琐、器件形态单一引起的应用场景受限、制造成本高等问题提供了新的解决思路及方法。
附图说明
图1为本发明织物态磁控机器人制备流程图;
图2为本发明方法(一)制备的织物态磁控机器人示例;
图3为本发明方法(二)制备的织物态磁控机器人示例;
在上述图中,织物颜色的深浅表示磁性颗粒的含量的高低。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
在本说明书的上下文中,“织物”是指由细小柔长物通过交叉、绕结以及连接构成的平软片块物。机织物是由存在交叉关系的纱线构成的。针织物是由存在绕结关系的纱线构成的。无纺织物是由存在连接关系的纱线构成的。第三织物是由存在交叉/绕结关系的纱线构成的。众多纱线构成稳定的关系后就形成了织物。交叉,绕结和连接是纱线能构成的三种稳定结构关系。使织物保持稳定的形态和特定力学性能。通过分析织物中的纱线组及其运行方向、运行规律和形成的关系,可以清晰地认识各种织物。特别地,在本说明书的上下文中,“3D织物”是指2维编织(X,Y方向)的基础上增加Z方向上的纱线进行纵向编织,也是一种织物结构,俗称特厚三明治网眼布,也称3D间隔织物,是一款透气性,弹性,支撑性都很出色的新型纯织物材料。
在本说明书的上下文中,“磁性颗粒”是指由磁性材料制成的颗粒物质。在此,能对磁场作出某种方式反应的材料都可以称为磁性材料。按照物质在外磁场中表现出来磁性的强弱,可将其分为抗磁性物质、顺磁性物质、铁磁性物质、反铁磁性物质和亚铁磁性物质。磁化强度是表示磁性物质永久的或者诱发的偶极磁矩的矢量场,描述宏观磁性体磁性强弱程度的物理量。当磁化强度为负时,固体表现为抗磁性。金、银等金属具有这种性质。顺磁性物质的主要特征是,不论外加磁场是否存在,原子内部存在永久磁矩。但在无外加磁场时,由于顺磁物质的原子做无规则的热振动,宏观看来,没有磁性;在外加磁场作用下,每个原子磁矩比较规则地取向,物质显示极弱的磁性。磁化强度与外磁场方向一致。比如过渡元素、稀土元素、钢系元素,还有铝铂等金属,都属于顺磁物质。大多数材料是抗磁性或顺磁性的,它们对外磁场反应较弱。铁磁性物质和亚铁磁性物质是强磁性物质,通常所说的磁性材料即指强磁性材料。对于磁性材料来说,磁化曲线和磁滞回线是反映其基本磁性能的特性曲线。铁磁性材料一般是Fe,Co,Ni元素及其合金,稀土元素及其合金,以及一些Mn的化合物。磁性材料按照其磁化的难易程度,一 般分为软磁材料及硬磁材料。在本说明书的上下文中,“充磁”是使磁性物质磁化或使磁性不足的磁体增加磁性。一般是指下述过程:把要充磁的可带磁性物体放在有直流电通过的线圈所形成的磁场里。在线圈中通过瞬间的脉冲大电流,使线圈产生短暂的超强磁场。其特别适用于铝镍钴系列、铁氧体系列、稀土永磁系列等材料。
在本说明书的上下文中,“编程”、“磁编程”和“结构编程”拥有相同的定义,即通过本专利提供的两种制备方法,对织物中集成的磁性物质的分布及朝向设置,从而形成对磁控织物态机器人中局域部分对外磁场反应大小及方向的定义。即赋予织物机器人在外磁场刺激下形成特定形变及运动的能力。
实施例1.利用方法(一)制备织物态磁控机器人
在本实施例中,利用方法(一)制备织物态磁控机器人。该方法可以简述为“先编织、再充磁”法。
实施例1-1
该织物态机器人所采用的未充磁的磁性纱线,所述纱线基材为96根聚丙烯(PP)纤维单丝拧成股线,所述纱线为8层,所述纱线中掺杂的磁性颗粒为NdFeB微米粒子,粒径范围为20-35微米,所述磁性颗粒在所述磁性纱线中所占的质量百分数为60%,所述纱线的细度范围为80至100tex,所述纱线的强度范围为95-105MPa,所述纱线的弹性模量范围为1-5GPa,将所述纱线在3T磁场下进行径向充磁后,在20mT的外加横向磁场下10mm自由长度时的弯曲形变量为5.97mm。将上述磁性纱线作为经纱,分别穿过在提花织布机上的综框,再取部分相同磁性纱线作为纬纱,经过梭子穿过经纱的上下开口,得到特定提花图案的未充磁的磁性织物。
将未充磁的磁性织物裁剪为合适大小的条状织物,将材料在呈W形折叠的情况下进行充磁,放置于直径为5cm,深度为3cm的圆柱型充磁台内腔中。内腔外有充磁线圈,在10ms内,1900V电压作用下可以为内腔提供中心强度为3T竖直向上的瞬间磁场。磁性织物在充磁台内腔中被瞬间充磁到磁饱和强度。充磁方向为N极竖直向上,得到如图2所示的织物态磁控机器人,其剩磁场大小与提花图案高度相关,剩磁场方向与充磁形状高度相关。充磁脉冲磁场强度为3T。由图2可见由实施例1-1得到的产品,在图中,织物 颜色的深浅表示其中磁性颗粒含量的高低,而箭头方向代表剩磁场磁力线方向。很明显,图2中的产品是在编织后,将材料在呈W形折叠的情况下进行充磁,其中X、Z两点为位于W形下侧的两个转折点,而Y点为位于W形中间上侧的转折点。其中Y点剩磁场磁通密度、X点剩磁场磁通密度、Z点剩磁场磁通密度分别为192mT、3mT、4mT。
实施例1-2
该织物态机器人所采用的未充磁的多根磁性纱线,所述纱线基材为96根聚丙烯(PP)纤维单丝拧成股线,所述纱线为10层,所述纱线中掺杂的磁性颗粒为NdFeB微米粒子,粒径范围为30-70微米,所述磁性颗粒在所述磁性纱线中所占的质量百分数为45%,所述纱线的细度范围为70至110tex,所述纱线的强度范围为95-105MPa,所述纱线的弹性模量范围为1-5GPa,将所述纱线在3T大小的径向磁场下充磁后,在20mT的外加横向磁场下,10mm自由长度时的弯曲形变量为4.25mm。将上述磁性纱线作为经纱,分别穿过在提花织布机上的纵框,再取部分相同磁性纱线作为纬纱,经过梭子穿过经纱的上下开口,得到特定提花图案的未充磁的磁性织物。
将未充磁的磁性织物裁剪为合适大小的条状织物,将材料在呈W形折叠的情况下进行充磁,放置于直径为5cm,深度为3cm的圆柱型充磁台内腔中。内腔外有充磁线圈,在10ms内,1900V电压作用下可以为内腔提供中心强度为3T竖直向上的瞬间磁场。磁性织物在充磁台内腔中被瞬间充磁到磁饱和强度。充磁方向为N极竖直向上,得到织物态磁控机器人。充磁脉冲磁场强度为3T。所得产品其中Y点剩磁场磁通密度、X点剩磁场磁通密度、Z点剩磁场磁通密度分别为181mT、8mT、11mT。
实施例1-3
该织物态机器人所采用的未充磁的多根磁性纱线,所述纱线基材为24根聚丙烯(PP)纤维单丝拧成股线,所述纱线为42层,所述纱线中掺杂的磁性颗粒为NdFeB微米粒子,粒径范围为5-30微米,所述磁性颗粒在所述磁性纱线中所占的质量百分数为50%,所述纱线的细度范围为80至130tex,所述纱线的强度范围为105-120MPa,所述纱线的弹性模量范围为4-12GPa,将所述纱线在3T大小的径向磁场下充磁后,在20mT的外加横向磁场下,10mm 自由长度下时的弯曲形变量为3.86mm。将上述磁性纱线作为经纱,分别穿过在提花织布机上的纵框,再取部分相同磁性纱线作为纬纱,经过梭子穿过经纱的上下开口,得到特定提花图案的未充磁的磁性织物。
将未充磁的磁性织物裁剪为合适大小的条状织物,将材料在呈W形折叠的情况下进行充磁,放置于直径为5cm,深度为3cm的圆柱型充磁台内腔中。内腔外有充磁线圈,在10ms内,1900V电压作用下可以为内腔提供中心强度为3T竖直向上的瞬间磁场。磁性织物在充磁台内腔中被瞬间充磁到磁饱和强度。充磁方向为N极竖直向上,得到织物态磁控机器人。充磁脉冲磁场强度为3T。其中Y点剩磁场磁通密度、X点剩磁场磁通密度、Z点剩磁场磁通密度分别为189mT、6mT、6mT。
实施例1-4
该织物态机器人所采用的未充磁的多根磁性纱线,所述纱线基材为48根聚丙烯(PP)纤维单丝拧成股线,所述纱线为8层,所述纱线中掺杂的磁性颗粒为NdFeB微米粒子,粒径范围为80-120微米,所述磁性颗粒在所述磁性纱线中所占的质量百分数为30%,所述纱线的细度范围为120至180tex,所述纱线的强度范围为180-200MPa,所述纱线的弹性模量范围为70-90GPa,将所述纱线在3T大小的径向磁场下充磁后,在20mT的外加横向磁场下,10mm自由长度下时的弯曲形变量为0.63mm。将上述磁性纱线作为经纱,分别穿过在提花织布机上的纵框,再取部分相同磁性纱线作为纬纱,经过梭子穿过经纱的上下开口,得到特定提花图案的未充磁的磁性织物。
将未充磁的磁性织物裁剪为合适大小的条状织物,将材料在呈W形折叠的情况下进行充磁,放置于直径为5cm,深度为3cm的圆柱型充磁台内腔中。内腔外有充磁线圈,在10ms内,1900V电压作用下可以为内腔提供中心强度为3T竖直向上的瞬间磁场。磁性织物在充磁台内腔中被瞬间充磁到磁饱和强度。充磁方向为N极竖直向上,得到织物态磁控机器人。充磁脉冲磁场强度为3T。其中Y点剩磁场磁通密度、X点剩磁场磁通密度、Z点剩磁场磁通密度分别为170mT、19mT、22mT。
实施例1-5
该织物态机器人所采用的未充磁的多根磁性纱线,所述纱线基材为48根 聚丙烯(PP)纤维单丝拧成股线,所述纱线为6层,所述纱线中掺杂的磁性颗粒为NdFeB微米粒子,粒径范围为70-100微米,所述磁性颗粒在所述磁性纱线中所占的质量百分数为40%,所述纱线的细度范围为150至220tex,所述纱线的强度范围为350-420MPa,所述纱线的弹性模量范围为130-150GPa,将所述纱线在3T大小的径向磁场下充磁后,在20mT的外加横向磁场下,10mm自由长度下时的弯曲形变量为0.71mm。将上述磁性纱线作为经纱,分别穿过在提花织布机上的纵框,再取部分相同磁性纱线作为纬纱,经过梭子穿过经纱的上下开口,得到特定提花图案的未充磁的磁性织物。
将未充磁的磁性织物裁剪为合适大小的条状织物,将材料在呈W形折叠的情况下进行充磁,放置于直径为5cm,深度为3cm的圆柱型充磁台内腔中。内腔外有充磁线圈,在10ms内,1900V电压作用下可以为内腔提供中心强度为3T竖直向上的瞬间磁场。磁性织物在充磁台内腔中被瞬间充磁到磁饱和强度。充磁方向为N极竖直向上,得到织物态磁控机器人。充磁脉冲磁场强度为3T。其中Y点剩磁场磁通密度、X点剩磁场磁通密度、Z点剩磁场磁通密度分别为172mT、14mT、11mT。
实施例1-6
该织物态机器人所采用的未充磁的多根磁性纱线,所述纱线基材为96根聚丙烯(PP)纤维单丝拧成股线,所述纱线为10层,所述纱线中掺杂的磁性颗粒为NdFeB微米粒子,粒径范围为190-220微米,所述磁性颗粒在所述磁性纱线中所占的质量百分数为20%,所述纱线的细度范围为320至350tex,所述纱线的强度范围为660-720MPa,所述纱线的弹性模量范围为180-190GPa,将所述纱线在3T大小的径向磁场下充磁后,在20mT的外加横向磁场下,10mm自由长度下时的弯曲形变量为0.02mm。将上述磁性纱线作为经纱,分别穿过在提花织布机上的纵框,再取部分相同磁性纱线作为纬纱,经过梭子穿过经纱的上下开口,得到特定提花图案的未充磁的磁性织物。
将未充磁的磁性织物裁剪为合适大小的条状织物,将材料在呈W形折叠的情况下进行充磁,放置于直径为5cm,深度为3cm的圆柱型充磁台内腔中。内腔外有充磁线圈,在10ms内,1900V电压作用下可以为内腔提供中心强度为3T竖直向上的瞬间磁场。磁性织物在充磁台内腔中被瞬间充磁到磁饱和强度。充磁方向为N极竖直向上,得到织物态磁控机器人。充磁脉 冲磁场强度为3T。其中Y点剩磁场磁通密度、X点剩磁场磁通密度、Z点剩磁场磁通密度分别为161mT、21mT、24mT。
实施例1-7
该织物态机器人所采用的未充磁的磁性纱线,所述纱线基材为48根聚丙烯(PP)纤维单丝拧成股线,所述纱线为两层,所述纱线中掺杂的磁性颗粒为NdFeB微米粒子,粒径范围为3-7微米,所述磁性颗粒在所述磁性纱线中所占的质量百分数为60%,所述纱线的细度范围为13.44tex,所述纱线的强度范围为19-23MPa,所述纱线的弹性模量为12.3GPa,将所述纱线在3T大小的径向磁场下充磁后,在20mT的外加横向磁场下,10mm自由长度下时的弯曲形变量为2.15mm。将上述磁性纱线作为经纱,分别穿过在提花织布机上的综框,再取部分相同磁性纱线作为纬纱,经过梭子穿过经纱的上下开口,得到特定提花图案的未充磁的磁性织物。
将未充磁的磁性织物裁剪为合适大小的条状织物,将材料在呈W形折叠的情况下进行充磁,放置于直径为5cm,深度为3cm的圆柱型充磁台内腔中。内腔外有充磁线圈,在10ms内,1900V电压作用下可以为内腔提供中心强度为3T竖直向上的瞬间磁场。磁性织物在充磁台内腔中被瞬间充磁到磁饱和强度。充磁方向为N极竖直向上,得到织物态磁控机器人。充磁脉冲磁场强度为3T。其中Y点剩磁场磁通密度、X点剩磁场磁通密度、Z点剩磁场磁通密度分别为102.4mT、0.1mT、0.1mT。
实施例1-8
该织物态机器人所采用的未充磁的磁性纱线,所述纱线基材为24根聚丙烯(PP)纤维单丝拧成股线,所述纱线为两层,所述纱线中掺杂的磁性颗粒为NdFeB微米粒子,粒径范围为3-7微米,所述磁性颗粒在所述磁性纱线中所占的质量百分数为45%,所述纱线的细度范围为5.76tex,所述纱线的强度范围为22-25MPa,所述纱线的弹性模量为5.51GPa,将所述纱线在3T大小的径向磁场下充磁后,在20mT的外加横向磁场下,10mm自由长度下时的弯曲形变量为3.83mm。将上述磁性纱线作为经纱,分别穿过在提花织布机上的综框,再取部分相同磁性纱线作为纬纱,经过梭子穿过经纱的上下开口,得到特定提花图案的未充磁的磁性织物。
将未充磁的磁性织物裁剪为合适大小的条状织物,将材料在呈W形折叠的情况下进行充磁,放置于直径为5cm,深度为3cm的圆柱型充磁台内腔中。内腔外有充磁线圈,在10ms内,1900V电压作用下可以为内腔提供中心强度为3T竖直向上的瞬间磁场。磁性织物在充磁台内腔中被瞬间充磁到磁饱和强度。充磁方向为N极竖直向上,得到织物态磁控机器人。充磁脉冲磁场强度为3T。其中Y点剩磁场磁通密度、X点剩磁场磁通密度、Z点剩磁场磁通密度分别为64.1mT、0mT、0mT。
实施例1-9
该织物态机器人所采用的未充磁的磁性纱线,所述纱线基材为16根聚丙烯(PP)纤维单丝拧成股线,所述纱线为两层,所述纱线中掺杂的磁性颗粒为NdFeB微米粒子,粒径范围为3-7微米,所述磁性颗粒在所述磁性纱线中所占的质量百分数为50%,所述纱线的细度范围为4.16tex,所述纱线的强度范围为20-23MPa,所述纱线的弹性模量为7.01GPa,将所述纱线在3T大小的径向磁场下充磁后,在20mT的外加横向磁场下,10mm自由长度下时的弯曲形变量为3.28mm。将上述磁性纱线作为经纱,分别穿过在提花织布机上的综框,再取部分相同磁性纱线作为纬纱,经过梭子穿过经纱的上下开口,得到特定提花图案的未充磁的磁性织物。
将未充磁的磁性织物裁剪为合适大小的条状织物,将材料在呈W形折叠的情况下进行充磁,放置于直径为5cm,深度为3cm的圆柱型充磁台内腔中。内腔外有充磁线圈,在10ms内,1900V电压作用下可以为内腔提供中心强度为3T竖直向上的瞬间磁场。磁性织物在充磁台内腔中被瞬间充磁到磁饱和强度。充磁方向为N极竖直向上,得到织物态磁控机器人。充磁脉冲磁场强度为3T。其中Y点剩磁场磁通密度、X点剩磁场磁通密度、Z点剩磁场磁通密度分别为81.8mT、0.1mT、0mT。
实施例1-10
该织物态机器人所采用的未充磁的磁性纱线,所述纱线基材为24根聚丙烯(PP)纤维单丝拧成股线,所述纱线为两层,所述纱线中掺杂的磁性颗粒为NdFeB微米粒子,粒径范围为3-7微米,所述磁性颗粒在所述磁性纱线中所占的质量百分数为30%,所述纱线的细度范围为4.56tex,所述纱线的强 度范围为27-29MPa,所述纱线的弹性模量为3.02GPa,将所述纱线在3T大小的径向磁场下充磁后,在20mT的外加横向磁场下,10mm自由长度下时的弯曲形变量为4.99mm。将上述磁性纱线作为经纱,分别穿过在提花织布机上的综框,再取部分相同磁性纱线作为纬纱,经过梭子穿过经纱的上下开口,得到特定提花图案的未充磁的磁性织物。
将未充磁的磁性织物裁剪为合适大小的条状织物,将材料在呈W形折叠的情况下进行充磁,放置于直径为5cm,深度为3cm的圆柱型充磁台内腔中。内腔外有充磁线圈,在10ms内,1900V电压作用下可以为内腔提供中心强度为3T竖直向上的瞬间磁场。磁性织物在充磁台内腔中被瞬间充磁到磁饱和强度。充磁方向为N极竖直向上,得到织物态磁控机器人。充磁脉冲磁场强度为3T。其中Y点剩磁场磁通密度、X点剩磁场磁通密度、Z点剩磁场磁通密度分别为30.7mT、0mT、0.1mT。
实施例1-11
该织物态机器人所采用的未充磁的磁性纱线,所述纱线基材为24根聚丙烯(PP)纤维单丝拧成股线,所述纱线为两层,所述纱线中掺杂的磁性颗粒为NdFeB微米粒子,粒径范围为3-7微米,所述磁性颗粒在所述磁性纱线中所占的质量百分数为40%,所述纱线的细度范围为5.52tex,所述纱线的强度范围为24-26MPa,所述纱线的弹性模量为4.43GPa,将所述纱线在3T大小的径向磁场下充磁后,在20mT的外加横向磁场下,10mm自由长度下时的弯曲形变量为4.33mm。将上述磁性纱线作为经纱,分别穿过在提花织布机上的综框,再取部分相同磁性纱线作为纬纱,经过梭子穿过经纱的上下开口,得到特定提花图案的未充磁的磁性织物。
将未充磁的磁性织物裁剪为合适大小的条状织物,将材料在呈W形折叠的情况下进行充磁,放置于直径为5cm,深度为3cm的圆柱型充磁台内腔中。内腔外有充磁线圈,在10ms内,1900V电压作用下可以为内腔提供中心强度为3T竖直向上的瞬间磁场。磁性织物在充磁台内腔中被瞬间充磁到磁饱和强度。充磁方向为N极竖直向上,得到织物态磁控机器人。充磁脉冲磁场强度为3T。其中Y点剩磁场磁通密度、X点剩磁场磁通密度、Z点剩磁场磁通密度分别为51.5mT、0.1mT、0mT。
实施例1-12
该织物态机器人所采用的未充磁的磁性纱线,所述纱线基材为96根聚丙烯(PP)纤维单丝拧成股线,所述纱线为两层,所述纱线中掺杂的磁性颗粒为NdFeB微米粒子,粒径范围为3-7微米,所述磁性颗粒在所述磁性纱线中所占的质量百分数为20%,所述纱线的细度范围为15.36tex,所述纱线的强度范围为28-30MPa,所述纱线的弹性模量为2.18GPa,将所述纱线在3T大小的径向磁场下充磁后,在20mT的外加横向磁场下,10mm自由长度下时的弯曲形变量为4.83mm。将上述磁性纱线作为经纱,分别穿过在提花织布机上的综框,再取部分相同磁性纱线作为纬纱,经过梭子穿过经纱的上下开口,得到特定提花图案的未充磁的磁性织物。
将未充磁的磁性织物裁剪为合适大小的条状织物,将材料在呈W形折叠的情况下进行充磁,放置于直径为5cm,深度为3cm的圆柱型充磁台内腔中。内腔外有充磁线圈,在10ms内,1900V电压作用下可以为内腔提供中心强度为3T竖直向上的瞬间磁场。磁性织物在充磁台内腔中被瞬间充磁到磁饱和强度。充磁方向为N极竖直向上,得到织物态磁控机器人。充磁脉冲磁场强度为3T。其中Y点剩磁场磁通密度、X点剩磁场磁通密度、Z点剩磁场磁通密度分别为63.9mT、0.1mT、0.1mT。
实施例1-13
该织物态机器人所采用的未充磁的磁性纱线,所述纱线基材为24根热塑性的聚氨酯(TPU)纤维单丝拧成股线,所述纱线为两层,所述纱线中掺杂的磁性颗粒为SmCo微米粒子,粒径范围为3-10微米,所述磁性颗粒在所述磁性纱线中所占的质量百分数为60%,所述纱线的细度范围为11tex,所述纱线的强度范围为22-25MPa,所述纱线的弹性模量范围为0.05-0.06GPa,将所述纱线在3T大小的径向磁场下充磁后,在20mT的外加横向磁场下,10mm自由长度下时的弯曲形变量为5.5mm。将上述磁性纱线作为经纱,分别穿过在提花织布机上的综框,再取部分相同磁性纱线作为纬纱,经过梭子穿过经纱的上下开口,得到特定提花图案的未充磁的磁性织物。
将未充磁的磁性织物裁剪为合适大小的条状织物,将材料在呈W形折叠的情况下进行充磁,放置于直径为5cm,深度为3cm的圆柱型充磁台内腔中。内腔外有充磁线圈,在10ms内,1900V电压作用下可以为内腔提供 中心强度为3T竖直向上的瞬间磁场。磁性织物在充磁台内腔中被瞬间充磁到磁饱和强度。充磁方向为N极竖直向上,得到织物态磁控机器人。充磁脉冲磁场强度为3T。其中Y点剩磁场磁通密度、X点剩磁场磁通密度、Z点剩磁场磁通密度分别为21.2mT、0.1mT、0mT。
实施例1-14
该织物态机器人所采用的未充磁的磁性纱线,所述纱线基材为48根聚乙烯醇(PVA)纤维单丝拧成股线,所述纱线为两层,所述纱线中掺杂的磁性颗粒为AlNiCo微米粒子,粒径范围为10-20微米,所述磁性颗粒在所述磁性纱线中所占的质量百分数为40%,所述纱线的细度范围为20.64tex,所述纱线的强度范围为23-31MPa,所述纱线的弹性模量范围为0.06-0.07GPa,将所述纱线在3T大小的径向瞬间磁场下充磁后,在20mT的外加横向磁场下,10mm自由长度下时的弯曲形变量为1.4mm。将上述磁性纱线作为经纱,分别穿过在提花织布机上的综框,再取部分相同磁性纱线作为纬纱,经过梭子穿过经纱的上下开口,得到特定提花图案的未充磁的磁性织物。
将未充磁的磁性织物裁剪为合适大小的条状织物,将材料在呈W形折叠的情况下进行充磁,放置于直径为5cm,深度为3cm的圆柱型充磁台内腔中。内腔外有充磁线圈,在10ms内,1900V电压作用下可以为内腔提供中心强度为3T竖直向上的瞬间磁场。磁性织物在充磁台内腔中被瞬间充磁到磁饱和强度。充磁方向为N极竖直向上得到织物态磁控机器人。充磁脉冲磁场强度为3T。其中Y点剩磁场磁通密度、X点剩磁场磁通密度、Z点剩磁场磁通密度分别为36.7mT、0mT、0.1mT。
实施例1-15
该织物态机器人所采用的未充磁的磁性纱线,所述纱线基材为24根热塑性的聚氨酯(TPU)纤维单丝拧成股线,所述纱线为两层,所述纱线中掺杂的磁性颗粒为SmCo微米粒子,粒径范围为3-10微米,所述磁性颗粒在所述磁性纱线中所占的质量百分数为60%,所述纱线的细度范围为11tex,所述纱线的强度范围为24-28MPa,所述纱线的弹性模量范围为0.05-0.06GPa,将所述纱线在3T大小的径向磁场下充磁后,在20mT的外加横向磁场下,10mm自由长度时的弯曲形变量为1.3mm。将上述磁性纱线作为经纱,分别 穿过在提花织布机上的综框,再取部分相同磁性纱线作为纬纱,经过梭子穿过经纱的上下开口,得到特定提花图案的未充磁的磁性织物。
将未充磁的磁性织物裁剪为合适大小的条状织物,将材料在呈W形折叠的情况下进行充磁,放置于直径为5cm,深度为3cm的圆柱型充磁台内腔中。内腔外有充磁线圈,在10ms内,1900V电压作用下可以为内腔提供中心强度为3T竖直向上的瞬间磁场。磁性织物在充磁台内腔中被瞬间充磁到磁饱和强度。充磁方向为N极竖直向上,得到织物态磁控机器人。充磁脉冲磁场强度为3T。其中Y点剩磁场磁通密度、X点剩磁场磁通密度、Z点剩磁场磁通密度分别为10.5mT、0mT、0mT。
实施例1-16
该织物态机器人所采用的未充磁的磁性纱线,所述纱线基材为48根聚乙烯醇(PVA)纤维单丝拧成股线,所述纱线为两层,所述纱线中掺杂的磁性颗粒为AlNiCo微米粒子,粒径范围为10-20微米,所述磁性颗粒在所述磁性纱线中所占的质量百分数为40%,所述纱线的细度范围为21tex,所述纱线的强度范围为26-35MPa,所述纱线的弹性模量范围为0.06-0.07GPa,将所述纱线在3T大小的径向瞬间磁场下充磁后,在20mT的外加横向磁场下,10mm自由长度时的弯曲形变量为1.1mm。将上述磁性纱线作为经纱,分别穿过在提花织布机上的综框,再取部分相同磁性纱线作为纬纱,经过梭子穿过经纱的上下开口,得到特定提花图案的未充磁的磁性织物。
将未充磁的磁性织物裁剪为合适大小的条状织物,将材料在呈W形折叠的情况下进行充磁,放置于直径为5cm,深度为3cm的圆柱型充磁台内腔中。内腔外有充磁线圈,在10ms内,1900V电压作用下可以为内腔提供中心强度为3T竖直向上的瞬间磁场。磁性织物在充磁台内腔中被瞬间充磁到磁饱和强度。充磁方向为N极竖直向上得到织物态磁控机器人。充磁脉冲磁场强度为3T。其中Y点剩磁场磁通密度、X点剩磁场磁通密度、Z点剩磁场磁通密度分别为16.5mT、0mT、0mT。
将实施例1-1~实施例1-16的实验参数和效果数据列于下表1中:
表1
Figure PCTCN2021088134-appb-000001
Figure PCTCN2021088134-appb-000002
实施例2.对实施例1-1中制备的织物态磁控机器人进行操控
在本实施例中,利用钕磁铁或电磁线圈系统产生的驱动磁场对如图2所示的织物态机器人进行操控展示:
自形变:将织物态机器人水平置于非磁性平面上,在大小为100mT、方向垂直向上的均匀磁场作用下,由于磁矩作用,织物态机器人的剩磁场方向趋于驱动磁场方向,织物态机器人在静磁场作用下呈现为“W”形状;将磁场大小不变,方向变为垂直向下,织物态机器人在静磁场作用下逐渐变为“M”形状。
爬行:将织物态机器人水平置于非磁性平面上,在大小为100mT、方向垂直向下的均匀磁场作用下,织物态机器人在静磁场作用下呈现为“M”形状,将磁场方向向运动方向进行倾斜45°,由于磁矩作用,织物态机器人及其重心也会向运动方向进行倾斜,接触面只留有运动方向上最前的区域;将静磁场替换为方向在垂直到倾斜45°的振荡周期磁场(磁场大小在方向为垂 直时最大,方向为倾斜45°时为0,最大磁场大小为100mT),织物态机器人会随着磁场的周期振荡形成重心抬高、前倾、重心降低的周期动作,即爬行。
货物运送:在爬行模式的磁场刺激下,在织物态机器人“M”形状的中间放上一块非磁聚合物材料,将振荡周期磁场刺激的最小磁场大小变为10mT,利用爬行模式进行货物运送;同时,可将货物夹取在织物态机器人“M”形状的臂间,在大小为100mT、方向在运动方向垂直平面内旋转的周期变化磁场作用下,织物态机器人随着驱动磁场方向产生滚动,形成货物运动。
实施例3.利用方法(二)制备织物态磁控机器人
在本实施例中,利用方法二制备织物态磁控机器人。此方法可以简单归纳为“先充磁、后编织”法。该织物态机器人所采用的磁性纱线,所述纱线基材为聚氨酯(PU)纤维单丝拧成股线,其中掺杂的磁性颗粒为NdFeB微米粒子。织物中共包含三种掺杂浓度的磁性纱线,纱线中磁性颗粒掺杂比重分别为20wt.%、50wt.%、70wt.%。三种磁性纱线细度分别为30tex、80tex、190tex。三种纱线掺杂NdFeB微米粒子的粒径范围分别为5-20μm、70-90μm、150-170μm首先,对磁性纱线进行充磁,取不同浓度的未充磁的磁性纱线,分别垂直或水平固定在直径为5cm,深度为3cm的圆柱型充磁台内腔中。内腔外有充磁线圈,在1900V、10ms的瞬间可以为内腔提供中心强度为3T竖直向上的瞬间磁场。磁性纱线在充磁台内腔中被瞬间充磁到磁饱和强度。纱线的充磁方向为N极竖直向上,纱线充磁后的剩磁磁场强度与纱线所含的钕铁硼磁粉含量正相关。
然后对纱线、纤维进行编织。将上述磁性纱线作为经纱,通过提花织机的综框。取上述磁性纱线作为纬纱,在设定编织逻辑下通过设置纺织装置开口机构的开口顺序,进行编织,得到在如图3所示的剩磁场方向及大小各向异性的织物态机器人。
由于我们的目的是得到在编织后剩磁场的磁力线方向如图3所示的织物,为此,需要对各个经线、纬线及其轴向位置进行编号,将纱线按照定义的磁力线方向由胶带垂直、水平或倾斜于充磁磁场方向地固定在充磁台腔体中,从而按照图3定义的磁力线方向对纱线进行充磁,将充磁结束后得到的具有磁性的纱线在编织机中按照定义进行编织。由图3可见,最终得到了整体呈 矩形的、四周的磁力线方向由箭头进行表示的磁控织物。
实施例4.对实施例3制备得到的织物态机器人进行运动操控
在本实施例中,利用钕磁铁或电磁线圈系统产生的驱动磁场对如图3所示的织物态机器人进行操控展示:
自形变:将织物态机器人水平置于非磁性平面上,在大小为100mT、方向垂直向下的均匀磁场作用下,由于磁矩作用,织物态机器人的剩磁场方向趋于驱动磁场方向,织物态机器人的四个角会立起,中心部分会进行折叠。
跳跃:将织物态机器人水平置于非磁性平面上,初始磁场方向为垂直向上,大小为100mT,织物态机器人此时保持四角向上,中心折叠的形状。在10ms瞬间给予一个200mT大小、方向垂直向下的磁场刺激,织物态机器人在10ms的剩磁场形成的瞬间力矩的作用下会产生四角立起与中心反向收缩,由于磁场大小相对较大,跳跃前的接触面会形成织物与非磁性平面的弹性碰撞,促使织物态机器人形成跳跃动作。
爬行:将织物态机器人水平置于非磁性平面上,在方向在垂直到倾斜45°的振荡周期磁场(磁场大小在方向为垂直时最大,方向为倾斜45°时为0,最大磁场大小为100mT)作用下,织物态机器人会随着磁场的周期振荡形成重心抬高、前倾、重心降低的周期动作,即爬行。
实施例5.利用方法(二)制备3D织物态磁控机器人
在本实施例中,提供一种3D织物态机器人的制备方法。
在本实施例中,磁性纤维/纱线同实施例3,区别在于本实施例利用3D立体编织技术构建3D织物态磁控机器人。
在实施例3的基础上,将一部分磁性纱线作为Z纱,利用Z纱在经纱上下交织对经纱、纬纱层进行结合,得到剩磁场大小及方向各向异性的3D织物态磁控机器人。
实施例6.对织物态机器人运动行为监测的方法
在本实施例中,提供了一种对织物态机器人运动行为监测的方法。
在本实施例中,在织物态机器人的下方,放置带有集成金属线圈的织物,织物中的集成金属线圈通过刺绣的方式,固定在织物表面或内部。当织物态 机器人在外界磁场控制下,经过集成金属线圈时,金属线圈内磁通量发生变化,线圈中产生感应电流,检测感应电流的变化;在本应用场景中,需对比试验,在未放置织物态机器人的带有集成线圈的织物上方,以相同方式通过外界磁场。对比两种方式在集成线圈内产生的感应电流,得到仅在织物态机器人经过金属线圈时产生的感应电流,进而对运动中的织物态机器人的行为进行检测。

Claims (27)

  1. 一种磁性纱线,其特征在于,所述磁性纱线包括:
    纱线基材,所述纱线基材包括一根、两根或多根纱线单丝;和
    磁性颗粒,所述磁性颗粒分散在所述纱线基材中,所述磁性颗粒充磁后具有一定的剩磁场朝向,所述磁性颗粒在所述磁性纱线中所占的质量百分数为1-75%。
  2. 根据权利要求1所述的磁性纱线,其特征在于,所述纱线基材选自由下述构成的组中的至少一种:聚丙烯(PP)纤维、聚乙烯醇(PVA)纤维、聚氯乙烯(PVC)纤维、聚氨酯(PU)纤维、聚酯(PES)纤维、聚乙烯(PE)纤维、聚酰胺(PA)纤维、聚甲基丙烯酸甲酯(PMMA)纤维、聚偏氟乙烯(PVDF)纤维、聚对苯二甲酸乙二酯(PET)纤维、聚苯乙烯(PS)纤维、聚丙烯腈(PAN)纤维、聚对苯二甲酰对苯二胺(PPTA)纤维、聚乙二醇(PEG)纤维、聚对苯二甲酸丙二酯(PTT)纤维、棉纤维、粘胶纤维、苎麻纤维、汉麻纤维、羊毛纤维、芳纶纤维、聚酰亚胺纤维。
  3. 根据权利要求1所述的磁性纱线,其特征在于,所述纱线基材的形态选自如下的至少一种:纱线单丝相互独立、纱线单丝拧成股线、纱线单丝相互盘绕、层级结构线。
  4. 根据权利要求1所述的磁性纱线,其特征在于,所述磁性颗粒选自如下的至少一种:超顺磁性颗粒、顺磁性颗粒或铁磁性颗粒。
  5. 根据权利要求1所述的磁性纱线,其特征在于,所述磁性颗粒的材料选自由下述构成的组中的至少一种:金属、金属氧化物、金属合金。
  6. 根据权利要求5所述的磁性纱线,其特征在于,所述磁性颗粒的材料选自由下述构成的组中的至少一种:钕铁硼合金、钐钴合金、铝镍钴合金、铁、钴、镍、四氧化三铁、三氧化二铁、镍钴合金、铁钴合金,最优选为钕铁硼永磁颗粒。
  7. 根据权利要求1所述的磁性纱线,其特征在于,所述磁性颗粒的粒径为0.03-250μm,最优选的,为3-35μm。
  8. 根据权利要求1所述的磁性纱线,其特征在于,所述纱线的细度范围为3-650tex。
  9. 根据权利要求1所述的磁性纱线,其特征在于,所述纱线的强度范围 为15-1000MPa。
  10. 根据权利要求1所述的磁性纱线,其特征在于,所述纱线的弹性模量范围为0.05-200GPa。
  11. 根据权利要求1所述的磁性纱线,其特征在于,所述磁性颗粒在所述磁性纱线中所占的质量百分数为20-70%。
  12. 一种磁性织物,其特征在于,所述磁性织物由根据权利要求1至11任一项所述的磁性纱线编制而成。
  13. 根据权利要求12所述的磁性织物,其特征在于,所述磁性织物的编织选自如下至少一种:梭织、针织、辫织、缝纫。
  14. 根据权利要求12所述的磁性织物,其特征在于,所述磁性织物的结构选自如下至少一种:平织结构、斜纹结构、缎纹结构、平纹结构、直条结构、提花结构、抽针结构、罗纹结构、珠地结构、条辫结构、缝线结构。
  15. 根据权利要求12至14任一项所述的磁性织物,其特征在于,所述磁性织物表面剩磁场的磁通密度范围为0-200mT。
  16. 一种织物态磁控机器人,其特征在于,所述织物态磁控机器人由根据权利要求12至15任一项所述的磁性织物制成,所述织物态磁控机器人具有大小及方向各向异性的剩磁场。
  17. 根据权利要求16所述的织物态磁控机器人,其特征在于,所述织物态磁控机器人可通过驱动磁场进行运动及行为控制。
  18. 根据权利要求17所述的织物态磁控机器人,其特征在于,所述驱动磁场选自如下的至少一种:梯度磁场、旋转磁场、振荡磁场、周期开关磁场。
  19. 根据权利要求17所述的织物态磁控机器人,其特征在于,所述驱动磁场的大小为0.1-1000mT。
  20. 根据权利要求19所述的织物态磁控机器人,其特征在于,所述驱动磁场的大小为10-200mT。
  21. 根据权利要求17至20任一项所述的织物态磁控机器人,其特征在于,所述磁控机器人的运动选自如下至少一种:自形变、爬行、跳起、货物抓取、货物运输、滚动、游泳、翻转、旋转、滑翔、飞行。
  22. 一种根据权利要求16至21任一项所述的织物态磁控机器人的制备方法,其特征在于,所述方法包括:
    取未充磁的磁性纱线,将无剩磁场的磁性纱线编织成磁性织物;
    将得到的所述磁性织物进行形状固定,在脉冲强磁场下对所述磁性织物进行充磁处理,得到剩磁场大小及朝向各向异性的织物态磁控机器人。
  23. 根据权利要求22所述的织物态磁控机器人制备方法,其特征在于,在进行所述充磁处理时,所述脉冲强磁场的大小为0.1-6T。
  24. 根据权利要求23所述的织物态磁控机器人制备方法,其特征在于,在进行所述充磁处理时,所述脉冲强磁场的大小为3T。
  25. 一种根据权利要求16至21任一项所述的织物态磁控机器人的制备方法,其特征在于,所述方法包括:
    取未充磁的磁性纱线,在脉冲强磁场下对其进行充磁处理,使得磁性纱线中分布的磁性颗粒群具有一定的剩磁场朝向;
    将得到的磁化后的所述磁性纱线进行编织,即磁性颗粒分布及剩磁场朝向编程,得到剩磁场大小及朝向各向异性的织物态磁控机器人。
  26. 根据权利要求25所述的织物态磁控机器人制备方法,其特征在于,在进行所述充磁处理时,所述脉冲强磁场的大小为0.1-6T。
  27. 根据权利要求26所述的织物态磁控机器人制备方法,其特征在于,在进行所述充磁处理时,所述脉冲强磁场的大小为3T。
PCT/CN2021/088134 2020-04-17 2021-04-19 磁性纱线、磁性织物、磁控机器人及其制备方法 WO2021209068A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010304890.0A CN111501149A (zh) 2020-04-17 2020-04-17 磁性纱线、磁性织物、磁控机器人及其制备方法
CN202010304890.0 2020-04-17

Publications (1)

Publication Number Publication Date
WO2021209068A1 true WO2021209068A1 (zh) 2021-10-21

Family

ID=71867451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088134 WO2021209068A1 (zh) 2020-04-17 2021-04-19 磁性纱线、磁性织物、磁控机器人及其制备方法

Country Status (2)

Country Link
CN (1) CN111501149A (zh)
WO (1) WO2021209068A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115044994A (zh) * 2022-06-29 2022-09-13 华中科技大学 一种发电复合纤维、制法及其应用
CN117226806A (zh) * 2023-09-26 2023-12-15 广东工业大学 一种集群磁控微纳机器人及其制备方法
CN117429528A (zh) * 2023-12-06 2024-01-23 浙江大学 一种磁驱软体爬杆机器人及植物生理信息感知方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111501149A (zh) * 2020-04-17 2020-08-07 华中科技大学 磁性纱线、磁性织物、磁控机器人及其制备方法
CN113326645A (zh) * 2021-05-28 2021-08-31 清华大学 一种柔性微型磁控机器人跳跃动态的分析方法
CN113799887B (zh) * 2021-09-16 2022-08-23 湖南大学 一种磁响应仿生爬行软机器人及其制备方法
CN114323080A (zh) * 2021-11-15 2022-04-12 华中科技大学 一种磁性纳米纤维素基的可降解柔性运动传感器及其制备
CN114284065B (zh) * 2021-12-27 2023-01-06 北京航空航天大学 一种磁性液体/弹性多孔织物复合膜的制备方法及其应用
CN114603545B (zh) * 2022-03-07 2023-11-24 华南理工大学 一种磁驱动人工肌肉纤维及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1791707A (zh) * 2003-05-19 2006-06-21 东丽株式会社 磁场响应性及导电性优良的纤维及由该纤维构成的制品
WO2012050928A2 (en) * 2010-09-28 2012-04-19 The Regents Of The University Of California Fuel-free nanowire motors
CN106213592A (zh) * 2016-08-29 2016-12-14 浙江惠侬丝针织内衣有限公司 一种柔软性好的磁疗内衣加工方法及内衣结构
JP2017101361A (ja) * 2015-12-03 2017-06-08 ユニプラス滋賀株式会社 ポリアミド系着磁性繊維およびその製造方法ならびにポリアミド系着磁性布帛
CN110869883A (zh) * 2017-06-26 2020-03-06 微软技术许可有限责任公司 柔性磁致动器
CN110973722A (zh) * 2019-12-27 2020-04-10 海澜之家股份有限公司 一种具有磁疗功能的香型羊毛袜及其制备方法
CN111501149A (zh) * 2020-04-17 2020-08-07 华中科技大学 磁性纱线、磁性织物、磁控机器人及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106000116B (zh) * 2016-05-23 2018-12-28 武汉纺织大学 一种硬磁特性的纳米纤维膜的制备方法
CN110216667B (zh) * 2019-06-26 2020-12-08 华中科技大学 一种磁控软体机器人的可控磁化系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1791707A (zh) * 2003-05-19 2006-06-21 东丽株式会社 磁场响应性及导电性优良的纤维及由该纤维构成的制品
WO2012050928A2 (en) * 2010-09-28 2012-04-19 The Regents Of The University Of California Fuel-free nanowire motors
JP2017101361A (ja) * 2015-12-03 2017-06-08 ユニプラス滋賀株式会社 ポリアミド系着磁性繊維およびその製造方法ならびにポリアミド系着磁性布帛
CN106213592A (zh) * 2016-08-29 2016-12-14 浙江惠侬丝针织内衣有限公司 一种柔软性好的磁疗内衣加工方法及内衣结构
CN110869883A (zh) * 2017-06-26 2020-03-06 微软技术许可有限责任公司 柔性磁致动器
CN110973722A (zh) * 2019-12-27 2020-04-10 海澜之家股份有限公司 一种具有磁疗功能的香型羊毛袜及其制备方法
CN111501149A (zh) * 2020-04-17 2020-08-07 华中科技大学 磁性纱线、磁性织物、磁控机器人及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DING LI, XUAN SHOUHU, FENG JIABIN, GONG XINGLONG: "Magnetic/conductive composite fibre: A multifunctional strain sensor with magnetically driven property", COMPOSITES PART A, vol. 100, 1 September 2017 (2017-09-01), AMSTERDAM, NL, pages 97 - 105, XP055857149, ISSN: 1359-835X, DOI: 10.1016/j.compositesa.2017.04.025 *
LEE DUCK WEON ET AL.: "Magnetic torsional actuation of carbon nanotube yarn artificial muscle", ROYAL SOCIETY OF CHEMISTRY, vol. 8, no. 31, 11 May 2018 (2018-05-11), XP055857154 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115044994A (zh) * 2022-06-29 2022-09-13 华中科技大学 一种发电复合纤维、制法及其应用
CN117226806A (zh) * 2023-09-26 2023-12-15 广东工业大学 一种集群磁控微纳机器人及其制备方法
CN117429528A (zh) * 2023-12-06 2024-01-23 浙江大学 一种磁驱软体爬杆机器人及植物生理信息感知方法
CN117429528B (zh) * 2023-12-06 2024-03-19 浙江大学 一种磁驱软体爬杆机器人及植物生理信息感知方法

Also Published As

Publication number Publication date
CN111501149A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
WO2021209068A1 (zh) 磁性纱线、磁性织物、磁控机器人及其制备方法
Haider et al. Exceptionally tough and notch-insensitive magnetic hydrogels
Sung et al. Magnetic nanofibers with core (Fe3O4 nanoparticle suspension)/sheath (poly ethylene terephthalate) structure fabricated by coaxial electrospinning
CN104769834A (zh) 卷曲和非卷曲加捻纳米纤维纱线及聚合物纤维扭转和拉伸驱动器
CN110382759B (zh) 用于操纵材料的装置和方法
Buckner et al. Functional fibers for robotic fabrics
Pyo et al. All-textile wearable triboelectric nanogenerator using pile-embroidered fibers for enhancing output power
Liu et al. Preparation of magnetic polyvinyl alcohol composite nanofibers with homogenously dispersed nanoparticles and high water resistance
Banerjee et al. Soft multimaterial magnetic fibers and textiles
Yin et al. Synthesis and properties of poly (D, L-lactide) drug carrier with maghemite nanoparticles
Molcan et al. Magnetically modified electrospun nanofibers for hyperthermia treatment
Sahoo et al. Effect of surface pinning on magnetic nanostuctures
US20090047220A1 (en) Contrast medium for administration to a patient for magnetic resonance imaging
Hamed et al. Realization of a soft microrobot with multiple flexible flagella
Lu et al. High temperature spin-glass-like transition in La 0.67 Sr 0.33 MnO 3 nanofibers near the Curie point
Yang et al. Reversible linear assemblies of superparamagnetic Fe3O4/PLGA composite microspheres induced by ultra-low magnetic field
RU156174U1 (ru) Зонд атомно-силового микроскопа с излучающим элементом, на основе квантовых точек и магнитных наночастиц структуры ядро-оболочка
Barrera et al. Electrospun magnetic nanofibers with anti-counterfeiting applications
Mayeen et al. Surface Chemistry and Properties of Magnetic Nanoparticles
JP2788106B2 (ja) 磁性布帛
Xia et al. New shedding motion, based on electroactuation force, for micro-and nanoweaving
US20220125142A1 (en) Closures
Lachner et al. Braiding with magnetic octupoles
EP3980592B1 (en) Magnetic fabric for molding applications
Habeeb Improvement of the Physical Properties of Electro-spun Polyacrylonitrile Nano-fibers Using the Fe2O3 Nanoparticles for Wastewater Treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21787661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21787661

Country of ref document: EP

Kind code of ref document: A1