WO2021208730A1 - 一种两相相变散热器件及终端设备 - Google Patents

一种两相相变散热器件及终端设备 Download PDF

Info

Publication number
WO2021208730A1
WO2021208730A1 PCT/CN2021/084002 CN2021084002W WO2021208730A1 WO 2021208730 A1 WO2021208730 A1 WO 2021208730A1 CN 2021084002 W CN2021084002 W CN 2021084002W WO 2021208730 A1 WO2021208730 A1 WO 2021208730A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
phase change
groove
heat sink
change heat
Prior art date
Application number
PCT/CN2021/084002
Other languages
English (en)
French (fr)
Inventor
刘用鹿
汤勇
靳林芳
聂聪
陈恭
王英先
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021208730A1 publication Critical patent/WO2021208730A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps

Definitions

  • This application relates to the technical field of phase change heat dissipation, in particular to a two-phase phase change heat sink device and terminal equipment.
  • the computing processing performance of the internal chips and other modules of the terminal equipment has also been significantly improved.
  • the chip is at a better working temperature is a prerequisite for its functional operation. Therefore, in order to ensure the stable and continuous high-performance operation of the chip and other modules with more serious heat generation, two heat pipes and VC (Vapor Chamber) are usually used.
  • the phase change heat dissipating device transfers the heat in the higher temperature area to other areas.
  • the demand for lightweight and ultra-thin hand-held products has further reduced the thickness of the product stack. It is necessary to achieve high-density heat transfer in an extremely limited thickness space, which is important for improving the maximum heat transfer and transmission of heat transfer components. Requests for distance, etc.
  • the structure of the two-phase phase change heat sink such as heat pipe and VC is mainly composed of a shell and a working fluid. It is functionally divided into three parts: the evaporation section, the adiabatic section, and the condensation section.
  • the working principle is: when the two-phase phase change radiator When heated, the liquid working fluid in this area evaporates and vaporizes while taking away a lot of heat.
  • the maximum heat transfer is related to the storage capacity of the working fluid and its system operation resistance. Due to the requirement of ultra-thinness, the internal structural space of the two-phase phase change heat sink is compressed, and the working fluid The storage is only distributed in the pores of the capillary layer.
  • the thickness of the capillary layer is further increased, the volume of the vapor space will be compressed, resulting in an increase in the resistance of the system. Area, and there is a risk that the working fluid cannot be refilled in time and the working fluid will burn out. At the same time, the vapor-liquid phase change occurs more easily on the vaporization core.
  • the increase of the vaporization core on the phase change surface is an important factor that affects the conversion rate of the working fluid from liquid to gas, and the related two-phase phase change heat sink uses a smooth surface
  • the sintered capillary has fewer vaporized cores on the inner and outer surfaces of the wall in contact with the heat source, and only occurs on the capillary pore surface of the capillary layer. The large area of the wall is not fully utilized, which affects the gas-liquid circulation efficiency of the two-phase phase change heat sink.
  • An object of the present application is to provide a two-phase phase change heat sink, which aims to increase the maximum heat transfer of the two-phase phase change heat sink, enhance the heat dissipation efficiency of the phase change, and solve the problem of poor heat dissipation performance of the two-phase phase change heat sink.
  • a two-phase phase change heat sink comprising a sealing structure with closed ends and a cavity, a capillary structure arranged in the cavity, and a working fluid arranged in the cavity;
  • the sealing structure includes a transmission Section, an evaporation section at one end of the transfer section, and a condensation section at the other end of the transfer section;
  • the inner wall of the evaporation section is provided with a first groove structure.
  • the maximum liquid storage capacity of a two-phase phase change heat sink with a smooth inner wall depends on the porosity of the capillary structure itself, and also depends on the gap when the capillary structure and the inner wall of the two-phase phase change heat sink have a gap.
  • the inner wall of the evaporation section of the sealing structure is provided with a first groove structure, and the first groove structure can contain a liquid working medium, thereby increasing the liquid storage capacity of the working medium inside the two-phase phase change heat sink. Therefore, compared with the two-phase phase change heat sink with smooth inner wall, the ability of the two-phase phase change heat sink to absorb heat and dissipate heat can be improved.
  • the internal working fluid of the two-phase phase change heat sink for heat dissipation at high heat flux (such as chip), there is enough liquid working fluid to absorb heat and vaporize, and the working fluid liquefied in the condensing section returns to evaporation Before the stage, the liquid working fluid at the evaporation stage is not easy to boil off.
  • the inner wall of the evaporation section is provided with a two-phase phase change heat sink with a first groove structure.
  • a two-phase phase change heat sink with a smooth inner wall the contact area between the inner side wall of the groove of the first groove structure and the liquid working medium is increased. , That is, the heat exchange area between the sealing structure and the liquid working medium is increased, the heat transfer per unit time between the sealing structure and the liquid working medium is increased, and the heat absorption and heat dissipation performance of the two-phase phase change heat sink is improved.
  • the working medium can quickly be heated and vaporized to absorb heat, which speeds up the start-up speed of the two-phase phase change heat sink for heat absorption and heat dissipation . It effectively avoids the damage of chips and other components due to the slow start of heat absorption and heat dissipation of the two-phase phase change heat sink.
  • the inner wall of the evaporation section is provided with a two-phase phase change heat sink with a first groove structure.
  • the roughness of the inner wall of the sealing structure is increased.
  • the higher the roughness, the vaporization core at this place The more, the more conducive to the vaporization of the liquid working fluid to form a gaseous working fluid. That is to say, the heat of vaporization and heat absorption per unit time is increased, thereby improving the heat absorption and heat dissipation performance of the two-phase phase change heat sink.
  • the working fluid can quickly receive heat and vaporize to absorb heat, which speeds up the start-up speed of the two-phase phase change radiator element for heat absorption and heat dissipation. It effectively avoids the damage of chips and other components due to the slow start of heat absorption and heat dissipation of the two-phase phase change heat sink.
  • the roughness of the inner wall and bottom of the first groove structure can be increased to further improve the vaporization core of the evaporation section.
  • a two-phase phase change heat sink with a capillary structure is provided, and the liquid working medium is returned from the condensation section to the evaporation section mainly through the capillary adsorption force provided by the capillary structure. Therefore, the roughness of the inner wall of the sealing structure is increased, and the liquid working medium is not returned to the evaporation section.
  • the capacity of the condensing section has a greater impact.
  • the internal liquid working fluid is returned from the condensation section to the evaporation section through the capillary adsorption force provided by the capillary structure.
  • the working fluid can be deionized water, methanol, acetone and other substances.
  • the first groove structure is a first internal thread groove.
  • the first internal thread groove is spirally opened on the inner wall of the evaporation section, and a groove with a longer stroke can be formed on the evaporation section of the same length, thereby increasing the amount of liquid working medium contained in the first groove structure and increasing the liquid
  • the area of heat exchange between the working fluid and the evaporation section of the sealing structure to improve the heat dissipation capacity of the two-phase phase change heat sink.
  • the roughness of the first groove structure including the first internal thread groove is also effectively improved, thereby increasing the vaporization core of the inner wall of the evaporation section to accelerate the startup speed of the two-phase phase change heat sink device.
  • the first internal thread groove is arranged on the inner wall of the evaporation section in a spiral form, and can be processed by a lathe, which reduces the processing difficulty of the two-phase phase change heat sink.
  • the depth range of the first internal thread groove may be 0.01 mm-0.2 mm, and the addendum angle of the side wall of the first internal thread groove may be 10 mm. °-25°; the helix angle range of the first internal thread groove can be 25°-40°; the number of heads of the first internal thread groove can range from 50-70.
  • the first groove structure includes a plurality of first long grooves, and the length direction of the first long grooves is the same as the axial direction of the sealing structure.
  • the length direction of the elongated groove is the direction in which it extends.
  • the first groove structure includes a plurality of first elongated grooves, thereby increasing the amount of liquid working fluid in the sealing structure, and increasing the area of heat exchange between the liquid working fluid and the evaporation section of the sealing structure; to improve the two-phase phase change heat sink device
  • the heat dissipation capacity has the directionality of liquid return, and the auxiliary liquid returns along the direction of the first long groove.
  • the first long groove has a simple structure. During processing, it can be processed during the casting of the sealing structure or formed by mechanical processing on the sealing structure, which reduces the processing difficulty of the two-phase phase change heat sink.
  • a long groove is defined as being formed in a direction extending in a straight line along a certain direction.
  • the inner wall of the condensation section is provided with a second groove structure.
  • a second groove structure is opened on the inner wall of the condensing section.
  • the condensing section of the sealing structure of the two-phase phase change heat sink is provided with a second groove structure.
  • the two-phase phase change heat sink device compared with the two-phase phase change heat sink device with a smooth inner wall, increases the contact area between the inner side wall of the groove of the second groove structure and the gaseous working fluid, that is, increases the sealing structure and the gaseous working fluid
  • the heat exchange area between the two increases the amount of heat transfer per unit time between the condensing section of the sealed structure and the gaseous working medium.
  • the gaseous working medium can quickly release heat and restore the liquid to the evaporation section. Therefore, the liquid working medium can be supplemented in time at the evaporation section, so that the heat of the heating source can be absorbed by the liquid working medium in the evaporation section in time.
  • the condensing section can also realize the heat absorption function of the evaporation section, and the contact part of the heat source and the two-phase phase change radiator is expanded into the evaporation section And the condensing section improves the flexibility of the use of the two-phase phase change heat sink, and the evaporating end and the condensing end can be replaced, so that the use of the two-phase phase change heat sink does not have a specific directionality.
  • the outer wall of the condensing section can be provided with grooves to increase the contact area of the condensing section of the sealing structure with air, increase the condensing heat exchange area, so that the heat at the condensing section is released in time, reduces the temperature of the condensing section, and increases
  • the temperature difference between the gaseous working fluid and the condensing section is to promote the liquefaction of the gaseous working fluid and return to the evaporation section. Therefore, the liquid working medium can be supplemented in time at the evaporation section, so that the heat of the heating source can be absorbed by the liquid working medium in the evaporation section in time.
  • the second groove structure is a second internal thread groove.
  • the second internal thread groove is spirally opened on the inner wall of the condensing section, and a groove with a longer stroke can be formed on the condensing section of the same length, thereby increasing the amount of liquid working fluid contained in the second groove structure.
  • the gaseous working fluid is not easy to liquefy in the condensing section or the liquefaction speed is slow, because there are enough liquid working fluids inside the sealed structure Therefore, the liquid working fluid in the sealing structure can be effectively prevented from drying out.
  • the second internal thread groove is opened on the inner wall of the condensing section in the form of a spiral, which increases the heat exchange area between the gaseous working fluid and the condensing section of the sealing structure, increases the condensing heat exchange area, and makes the heat at the condensing section outward in time Release, reduce the temperature of the condensing section, increase the temperature difference between the gaseous working fluid and the condensing section, to promote the liquefaction of the gaseous working fluid, and return to the evaporation section. Therefore, the liquid working medium can be supplemented in time at the evaporation section, so that the heat of the heating source can be absorbed by the liquid working medium in the evaporation section in time.
  • the depth range of the second internal thread groove may be 0.01 mm-0.2 mm, and the addendum angle of the side wall of the second internal thread groove may be 10 mm. °-25°; the helix angle range of the second internal thread groove can be 25°-40°; the number of heads of the second internal thread groove can range from 50-70.
  • the second groove structure includes a plurality of second long grooves, and the length direction of the second long grooves is the same as the axial direction of the sealing structure.
  • the second groove structure includes a plurality of second long grooves, thereby increasing the amount of liquid working fluid in the sealing structure, and increasing the heat exchange area between the gas working fluid and the condensing section of the sealing structure, and increasing the condensation heat exchange area, so that condensation The heat at the section is released to the outside in time. And has the directionality of liquid return, the auxiliary liquid returns in the direction of the first long groove; the second long groove has a simple structure, and can be processed during the casting of the sealing structure during processing, or mechanical processing can be used on the sealing structure The formation reduces the processing difficulty of the two-phase phase change heat sink.
  • the inner wall of the transmission section is provided with a third groove structure.
  • a first groove structure is opened on the evaporation section and a third groove structure is opened on the transfer section, or a first groove structure, a second groove structure, and a third groove are set on the evaporation section, the condensation section, and the transfer section.
  • Groove structure; the third groove structure can contain liquid working fluid, thereby increasing the liquid storage capacity of the working fluid inside the two-phase phase change heat sink.
  • the gaseous working fluid is not easy to liquefy in the condensing section or the liquefaction speed is slow, because there are enough liquid working fluids inside the sealed structure Therefore, the liquid working fluid in the sealing structure can be effectively prevented from drying out.
  • the third groove structure can increase the heat exchange area between the gaseous working fluid and the transfer section of the sealing structure, that is, increase the heat exchange area between the transfer section of the sealing structure and the gaseous working fluid, and improve the sealing structure
  • the amount of heat transfer per unit time between the transfer section and the gaseous working medium effectively reduces the temperature of the gaseous working medium before it reaches the condensing section, so that the gaseous working medium quickly condenses and liquefies after reaching the condensing section and returns to the evaporation section. Therefore, the liquid working medium can be supplemented in time at the evaporation section, so that the heat of the heating source can be absorbed by the liquid working medium in the evaporation section in time.
  • the third groove structure is a third internal thread groove.
  • the third internal thread groove is spirally opened on the inner wall of the transmission section, and a groove with a longer stroke can be formed on the transmission section of the same length, thereby increasing the amount of liquid working fluid contained in the third groove structure.
  • the gaseous working fluid is not easy to liquefy in the condensing section or the liquefaction speed is slow, because there are enough liquid working fluids inside the sealed structure Therefore, the liquid working fluid in the sealing structure can be effectively prevented from drying out.
  • the third internal thread groove is opened on the inner wall of the transfer section in the form of a spiral, which increases the heat exchange area between the gaseous working medium and the transmission section of the sealing structure, that is, increases the distance between the transmission section of the sealing structure and the gaseous working medium.
  • the heat exchange area increases the amount of heat transfer per unit time between the transfer section of the sealed structure and the gaseous working fluid, so that the temperature of the gaseous working fluid before reaching the condensing section is effectively reduced, so that the gaseous working fluid reaches the condensing section after it reaches the condensing section. Quickly condense and liquefy and return to the evaporation section.
  • the inner wall of the transfer section of the two-phase phase change heat sink is provided with a third groove structure (for example, when it is a third internal thread groove), and the third groove structure has sufficient liquid working medium, therefore
  • the transfer section can also realize the heat absorption function of the evaporation section.
  • the contact part of the heat source and the two-phase phase change heat sink is expanded into the evaporation section and the transfer section, which improves the flexibility of using the two-phase phase change heat sink.
  • both the condensation section and the transfer section can realize the heat absorption function of the evaporation section.
  • the contact part of the heat source and the two-phase phase change heat sink is expanded into an evaporation section, a condensation section and a transfer section, which improves the flexibility of the use of the two-phase phase change heat sink.
  • the third groove structure includes a plurality of third long grooves, and the length direction of the third long grooves is the same as the axial direction of the sealing structure.
  • the third groove structure includes a plurality of third long grooves, thereby increasing the amount of liquid working fluid in the sealing structure, and increasing the heat exchange area between the gas working fluid and the transfer section of the sealing structure, so that the gas working fluid reaches the condensing section.
  • the previous temperature effectively reduces the discharge.
  • the third long groove has a simple structure. During processing, it can be processed during the casting of the sealing structure or formed by mechanical processing on the sealing structure, which reduces the processing difficulty of the two-phase phase change heat sink.
  • the inner wall of the transfer section is provided with a third groove structure; the third groove structure is in communication with the first groove structure and the second groove structure.
  • the first groove structure, the second groove structure, and the third groove can be connected to produce a capillary similar to the above capillary structure.
  • Adsorption force assists the capillary structure to promote the reflux of the liquid working fluid to the evaporation section.
  • the inner wall of the sealing structure is provided with a fourth long groove, and the length direction of the fourth long groove is the same as the axial direction of the sealing structure; the fourth long groove covers the The evaporation section, the transfer section and the condensation section.
  • the fourth elongated groove can cross the first internal thread groove of the evaporation section or the second internal thread groove of the condensation section; it can increase the capillary adsorption force of the inner wall of the evaporation section and the condensation section for the liquid working fluid , Thereby assisting the capillary structure to promote the reflux of the liquid working fluid to the evaporation section.
  • the capillary structure includes a metal wire mesh provided on the inner wall of the sealing structure, and the metal wire mesh covers at least the evaporation section.
  • the mesh of the metal wire mesh can lift the vaporization core at the evaporation section. Therefore, the metal wire mesh covering the inner wall of the evaporation section can cooperate with the first groove structure to further enhance the vaporization core of the evaporation section, increase the heat of vaporization and heat absorption per unit time, and thereby increase the heat absorption of the two-phase phase change heat sink Thermal performance.
  • the working fluid can quickly be heated and vaporized to absorb heat, which speeds up the start-up speed of the heat absorption and heat dissipation of the two-phase phase change radiator. It effectively avoids the damage of chips and other components due to the slow start of heat absorption and heat dissipation of the two-phase phase change heat sink.
  • the metal wire mesh is attached to the inner wall of the sealing structure, when the working fluid is adsorbed on the metal wire mesh, it can fully contact the inner wall of the sealing structure, and the working fluid can quickly absorb the heat absorbed by the sealing structure from the heat source.
  • the capillary structure further includes fiber strands arranged along the axial direction of the sealing structure; the fiber strands are attached to the wire mesh.
  • the fiber strand includes a plurality of metal fibers, and the plurality of metal fibers are woven to form the fiber strand, and the angle between adjacent metal fibers ranges from 30° to 75°.
  • the structure of the limiting wire harness is similar to the weaving method of the inner core of the cable and the weaving method of the hemp rope in the prior art, and is woven by multiple metal fibers.
  • the included angle between the metal fibers can be 30°-75°, which can provide the best capillary adsorption force to divert the liquid working fluid to the evaporation section.
  • the capillary structure further includes sintered metal powder, and the sintered metal powder is provided on at least one of the inner wall of the sealing structure, the wire mesh, and the fiber bundle.
  • the roughness of the inner wall of the sealing structure can be increased, and the roughness of the inner wall at the evaporation section will increase accordingly, thereby increasing the vaporization core at the evaporation section, so the working fluid can be quickly heated and vaporized Absorb heat and speed up the start-up speed of heat absorption and heat dissipation of the two-phase phase change heat sink. It effectively avoids the damage of chips and other components due to the slow start of heat absorption and heat dissipation of the two-phase phase change heat sink.
  • the metal wire mesh When the metal wire mesh is equipped with sintered metal powder, the metal wire mesh at least covers the inner wall of the evaporation section, thereby increasing the roughness of the internal structure at the evaporation section, and then increasing the vaporization core at the evaporation section, so the working fluid can be heated quickly It vaporizes and absorbs heat, and accelerates the start-up speed of heat absorption and heat dissipation of the two-phase phase change radiator. It effectively avoids the damage of chips and other components due to the slow start of heat absorption and heat dissipation of the two-phase phase change heat sink.
  • Another object of the present application is to provide a terminal device, including a device main body and the two-phase phase change heat dissipating device described in any of the above embodiments.
  • the terminal equipment including the above-mentioned two-phase phase-change heat sink device can conduct thermal conduction contact between the two-phase phase-change heat sink device and the chip and other components that generate more severe heat, so that the heat generated by the chip can be absorbed by the two-phase phase-change heat sink device and transferred to it in time. Circulate outside.
  • the terminal equipment continues to work with high performance, there is enough liquid working fluid in the two-phase phase change radiator for heat absorption and vaporization. Before the liquefied working fluid at the condensing section returns to the evaporation section, the liquid working medium at the evaporation section is not easy to Boil dry. Ensure that the terminal equipment continues to be in a high-performance working state.
  • the vaporization core at the evaporation section of the two-phase phase change heat sink is large enough to ensure the heat absorbed by the working fluid vaporization per unit time, that is, the two-phase phase change heat sink can quickly start to absorb
  • the heat generated by the chip prevents the chip from heating up in a short period of time and affecting the service life of the chip.
  • the sealing structure of the two-phase phase change heat sink device is provided with a first groove structure that can be used to contain the liquid working fluid on the inner wall of the evaporation section, which improves the two-phase phase change Changing the liquid storage capacity of the working fluid inside the radiator component, thereby increasing the maximum heat transfer of the two-phase phase change radiating component, also increasing the heat exchange area between the liquid working fluid and the inner wall of the evaporation section, and at the same time improving the vaporization of the inner wall of the evaporation section The core, thereby enhancing the ability of the two-phase phase change heat sink device to absorb heat and dissipate heat.
  • components with severe heat generation such as chips can be in thermal conduction contact with the evaporation section of the two-phase phase-change heat sink device during operation, and there is enough liquid working fluid in the two-phase phase-change heat sink device in the evaporation section. Local vaporization absorbs the heat of the chip, so that the chip is at a better operating temperature, and the terminal device can continue to work with high performance and stability.
  • FIG. 1 is a schematic diagram of the structure of a two-phase phase change heat dissipating device in an embodiment of the application;
  • FIG. 2 is a cross-sectional view of the two-phase phase change heat sink in one of the embodiments of the application along the axial direction;
  • 3 to 10 are cross-sectional views along the axial direction of the two-phase phase change heat sink in other embodiments of the application;
  • FIG. 11 is a cross-sectional view of the two-phase phase change heat sink in one of the embodiments of the application along the width direction (vertical axis);
  • FIG. 12 is a schematic structural diagram of a mobile terminal in an embodiment of the application.
  • first”, “second”, “third”, and “fourth” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined as “first”, “second”, “third”, and “fourth” may explicitly or implicitly include one or more of these features. In the description of the present application, “multiple” means two or more than two, unless otherwise specifically defined.
  • the two-phase phase change heat sink provided by the embodiments of the present application may be an ultra-thin two-phase phase change heat sink, which can be applied to small terminal devices such as mobile phones, tablet computers, and ultra-thin notebook computers.
  • the evaporation section (heat absorption part) of the two-phase phase change heat sink is in contact with the main heat source of the terminal device (such as the main control chip or the chip of other modules) to realize the heat conduction connection, and connect the heat source at the main heat source.
  • the heat is transferred to other areas for heat dissipation. In turn, the local high hot spots of the terminal equipment are eliminated, and the effect of overall heating is achieved.
  • an embodiment of the present application proposes a two-phase phase change heat sink device 400, which includes: a sealing structure 1, a capillary structure 2 arranged in the sealing structure 1, and a work piece arranged in the sealing structure 1. Quality 3.
  • the middle area of the sealing structure 1 is the transfer section 12, one end of which is the evaporation section 11, and the other end is the condensation section 13.
  • the two ends of the sealing structure 1 are closed, and the inside has a cavity 18 communicating with the condensation section 13, the transfer section 12 and the evaporation section 11; the capillary structure 2 is provided in the cavity 18 and is used for the work
  • the substance 3 provides capillary adsorption force, so that the working substance 3 can return from the condensation section 13 to the evaporation section 11 along the capillary structure 2.
  • the sealing structure 1 is provided with a first groove structure 14 that can be used to contain the liquid working medium 3 on the inner wall of the evaporation section 11.
  • the process of absorbing and dissipating heat at the heat source by the two-phase phase change heat dissipating element 400 is: contacting the evaporation section 11 of the two-phase phase change heat dissipating element 400 with the heat source to achieve thermal conduction connection,
  • the liquid working medium 3 there absorbs heat and vaporizes and evaporates, while taking away a large amount of heat in the heat source area.
  • the gaseous working medium 3 flows through the transfer section 12 to the condensation section under a slight pressure difference.
  • the currently used sealing structure 1 is a two-phase phase change heat sink 400 with a smooth inner wall (no protrusions or grooves on the inner wall surface).
  • the liquid storage volume of the working fluid 3 inside the two-phase phase change heat sink 400 depends on the capillary structure 2 itself
  • the porosity refers to the percentage of the pore volume in the bulk material to the total volume of the material in its natural state) depends on the gap when there is a gap between the capillary structure 2 and the inner wall of the sealing structure 1. That is, in the two-phase phase change heat sink 400 currently used, the working fluid 3 can only exist in the capillary structure 2 and the gap between the capillary structure 2 and the inner wall of the sealing structure 1.
  • a first groove structure 14 is opened on the inner wall of the evaporation section 11 of the sealing structure 1, and the first groove structure 14 can contain the liquid working medium 3, and
  • the two-phase phase-change heat sink 400 on the smooth inner wall can increase the liquid storage capacity of the working fluid 3 inside the two-phase phase-change heat sink 400. Therefore, the two-phase phase change heat dissipating device 400 provided by the embodiment of the present application can effectively improve the heat absorption and heat dissipation capability.
  • the working medium 3 inside the two-phase phase change heat sink device 400 is increased, there is sufficient liquid working medium for heat dissipation at high heat fluxes (such as the main control chip 600 shown in FIG. 12) 3 is used for heat absorption and vaporization.
  • the liquid working fluid 3 at the evaporation section 11 is not easy to be dried.
  • the maximum heat transfer amount of the two-phase phase change heat dissipating component 400 also increases.
  • the inner wall of the evaporation section 11 is provided with a two-phase phase change heat sink 400 with a first groove structure 14.
  • the inner wall and liquid working fluid at the evaporation section 11 are increased.
  • the contact area which increases the heat exchange area between the evaporation section 11 and the liquid working medium 3, increases the heat transfer per unit time between the sealing structure 1 and the liquid working medium 3, and further improves the two-phase phase. Change the heat absorption and heat dissipation performance of the radiator device 400.
  • the working medium 3 can quickly receive heat and vaporize to absorb heat, speeding up the absorption of the two-phase phase change heat sink 400 The starting speed of heat dissipation. This effectively avoids the occurrence of damage to the chip 600 and other components due to the slow start of heat absorption and heat dissipation of the two-phase phase change heat sink 400.
  • the first groove structure 14 increases the roughness of the inner wall of the evaporation section 11.
  • the higher the roughness the more vaporization cores there are, which is more conducive to the vaporization of the liquid working medium 3 to form the gaseous working medium 3. That is to say, the heat of vaporization and heat absorption per unit time is increased, thereby improving the heat absorption and heat dissipation performance of the two-phase phase change heat sink 400.
  • the working fluid 3 can quickly receive heat and vaporize to absorb heat, which speeds up the heat absorption of the two-phase phase change heat sink 400 The starting speed of the heat dissipation. This further effectively avoids the occurrence of damage to the chip 600 and other components due to the slow start of heat absorption and heat dissipation of the two-phase phase change heat sink 400.
  • the roughness of the inner surface of the first groove structure 14 may be set to be sufficiently high to further enhance the vaporization core of the evaporation section 11.
  • the two-phase phase change heat sink 400 provided with the capillary structure 2 (for example, the two-phase phase change heat sink 400 used in small terminals such as mobile phones, when the thickness is less than 1 mm), the liquid working medium 3 is mainly provided by the capillary structure 2
  • the adsorption force returns from the condensing section 13 to the evaporating section 11, so increasing the roughness of the inner surface of the first groove structure 14 will not greatly affect the speed of the liquid working fluid 3 returning to the condensing section 13.
  • the first groove structure 14 may not cover the inner wall of the evaporation section 11 and only needs to overlap with the capillary structure 2.
  • the working fluid 3 can be deionized water, methanol, acetone, freon, acetone, etc., or can be a combination of the above substances.
  • the shape of the sealing structure 1 may be a round tube or a flat tube, such as a flat ultra-thin sealing structure.
  • a flat sealing structure 1 with a thickness of less than 1 mm can be selected.
  • the liquid working medium 3 in the sealing structure 1 is mainly driven by the capillary adsorption force passed by the capillary structure 2 to achieve condensation Section 13 returns to the evaporation section 11.
  • FIG. 12 it is a schematic diagram when the two-phase phase change heat dissipating device 400 provided by the embodiment of this application is applied to a terminal device 500.
  • the two-phase phase change heat sink element 400 is pressed on the main board of the terminal device 500, the sealing structure 1 of the two-phase phase change heat sink element 400 is in contact with the chip 600 on the main board and other heat sources with serious heat generation, and the sealing structure 1 is in contact with the chip 600
  • One end of the sealing structure 1 forms an evaporation section 11, and one end of the sealing structure 1 away from the chip 600 forms a condensing section 13.
  • the heat generated by the chip 600 is transferred to the evaporation section 11 of the sealing structure 1.
  • the liquid working medium 3 at the evaporation section 11 is heated and evaporated.
  • the gaseous working medium 3 flows through the transfer section 12 to the condensation section 13 under a slight pressure difference, and finally The condensing section 13 releases heat and condenses into a liquid state.
  • the liquid working medium 3 returns to the evaporation section 11 by the capillary adsorption force of the capillary structure 2, and the two-phase phase change heat sink 400 absorbs the heat of the chip 600 and radiates it outward.
  • the first groove structure 14 is a first internally threaded groove 141.
  • the first internally threaded groove 141 is opened on the inner wall of the evaporation section 11 in the form of a spiral, which can be in the same length
  • a long-stroke groove is formed on the evaporation section 11 of the evaporator.
  • the amount of the liquid working medium 3 contained in the first groove structure 14 is increased, and the heat exchange area between the liquid working medium 3 and the evaporation section 11 of the sealing structure 1 is also increased, so as to improve the heat dissipation capacity of the two-phase phase change heat sink 400.
  • the first internally threaded groove 141 with a longer stroke also effectively increases the roughness of the inner wall of the evaporation section 11, so that the vaporization core of the inner wall of the evaporation section 11 is significantly higher, so as to accelerate the startup speed of the two-phase phase change heat sink 400.
  • the first internal thread groove 141 can be easily formed on the inner wall of the evaporation section 11 by using a lathe during processing, without excessively increasing the processing difficulty of the two-phase phase change heat sink 400.
  • the depth range of the first internal thread groove 141 may be 0.1 mm-0.2 mm, and the addendum angle of the side wall of the first internal thread groove 141 is in the range It can be 10°-25°; the helix angle of the first internal thread groove 141 can be 25°-40°; the number of threads of the first internal thread groove 141 can be 50-70.
  • the first groove structure 14 includes a plurality of first elongated grooves 142 opened on the inner wall of the evaporation section 11, and the plurality of first elongated grooves 142 extend along the evaporating section 11
  • the inner wall is arranged circumferentially, and the first long groove 142 extends along the axial direction of the sealing structure 1.
  • the plurality of first long grooves 142 can effectively increase the storage capacity of the liquid working fluid 3 at the evaporation section 11, and the inner surface of the first long grooves 142 can also increase the heat of the liquid working medium 3 and the evaporation section 11 of the sealing structure 1 Exchange area; to improve the heat dissipation capacity of the two-phase phase change heat sink device 400.
  • the first long groove 142 has a linear structure, it can be formed directly during casting or forging of the sealing structure 1 during processing, or it can be formed on the sealing structure 1 by mechanical processing, without excessively increasing the two-phase phase change heat sink. 400 processing difficulty.
  • the elongated groove is defined as a groove formed in a direction extending in a straight line along a certain direction.
  • a second groove structure 15 capable of accommodating the liquid working medium 3 is provided on the inner wall of the condensation section 13.
  • the arrangement of the second groove structure 15 further increases the storage capacity of the liquid working fluid 3 inside the sealing structure 1.
  • the gaseous working medium 3 is not easy to liquefy in the condensing section 13 or the liquefaction rate is slow, because the inside of the sealing structure 1 has enough Therefore, the liquid working medium 3 in the sealing structure 1 can be effectively prevented from drying out.
  • the condensing section 13 is provided with a two-phase phase change heat sink device 400 with a second groove structure 15.
  • the inner surface of the second groove structure 15 and the gaseous working fluid are increased.
  • the contact area that is, increases the heat exchange area between the condensing section 13 and the gaseous working medium 3, and improves the heat transfer per unit time between the condensing section 13 of the sealing structure 1 and the gaseous working medium 3.
  • the gaseous working medium The mass 3 can quickly release heat and restore the liquid back to the evaporation section 11. Therefore, the liquid working medium 3 can be supplemented in time at the evaporation section 11, so that the heat of the heating source can be absorbed by the liquid working medium 3 in the evaporation section 11 in time.
  • the condensing section 13 can also realize the heat absorption function of the evaporation section 11.
  • the installation direction of the two-phase phase change heat sink 400 is opposite to the preset direction, and it will not affect the normal operation of the two-phase phase change heat sink 400, which improves the use of the two-phase phase change heat sink 400. flexibility.
  • the so-called condensation section 13 and the evaporation section 11 are only used to refer to opposite ends of the two-phase phase change heat sink 400, and its function It is not limited to this name, one end implements the evaporation function, and the other end implements the condensation function.
  • the outer wall of the condensing section 13 can also be provided with grooves to increase the contact area of the condensing section 13 of the sealing structure 1 with air and increase the condensing heat exchange area.
  • the heat at the condensing section 13 is released to the air in time, and the temperature of the condensing section 13 is reduced. Therefore, the temperature difference between the gaseous working medium 3 and the condensation section 13 is increased to promote the liquefaction of the gaseous working medium 3 and return to the evaporation section 11. Therefore, the liquid working medium 3 can be supplemented in time at the evaporation section 11, so that the heat of the heating source can be absorbed by the liquid working medium 3 in the evaporation section 11 in time.
  • the second groove structure 15 may be a second internally threaded groove 151, and the second internally threaded groove 151 is opened in the inner wall of the condensing section 13 in a spiral form.
  • a long-stroke groove is formed on the condensing section 13 of the same length, thereby increasing the amount of the liquid working fluid 3 in the second groove structure 15.
  • the gaseous working medium 3 is not easy to liquefy in the condensation section 13 or the liquefaction rate is slow, due to the sealing structure 1 There is enough liquid working medium 3 inside, which can effectively prevent the liquid working medium 3 in the sealing structure 1 from drying out.
  • the second internally threaded groove 151 is opened on the inner wall of the condensing section 13 in the form of a spiral, and a groove with a long stroke is formed on the condensing section 13 of the same length.
  • the inner surface of the second internally threaded groove 151 is gaseous.
  • the heat exchange area between the working fluid 3 and the condensing section 13 of the sealing structure 1 is increased, which increases the condensing heat exchange area, so that the heat at the condensing section 13 is released in time, reduces the temperature of the condensing section 13, and increases the gaseous working medium 3.
  • the temperature difference between it and the condensing section 13 is to promote the liquefaction of the gaseous working fluid 3 and return it to the evaporation section 11. Therefore, the liquid working medium 3 can be supplemented in time at the evaporation section 11, so that the heat of the heating source can be absorbed by the liquid working medium 3 in the evaporation section 11 in time.
  • the depth range of the second internal thread groove 151 may be 0.1 mm-0.2 mm, and the addendum angle of the side wall of the second internal thread groove 151 is in the range It can be 10°-25°; the helix angle of the second internal thread groove 151 can be 25°-40°; the number of ends of the second internal thread groove 151 can be 50-70.
  • the above-mentioned second groove structure 15 includes a plurality of second elongated grooves 152 provided with the inner wall of the condensation section 13, and the plurality of second elongated grooves 152 extend along the condensation section 13
  • the inner wall of the sealing structure 1 is arranged circumferentially, and the second long groove 152 extends along the axial direction of the sealing structure 1.
  • the plurality of second long grooves 152 can effectively increase the storage capacity of the liquid working fluid 3 at the condensing section 13, and the inner surface of the second long grooves 152 can also increase the heat of the liquid working medium 3 and the condensing section 13 of the sealing structure 1 Exchange area; to promote the liquefaction of the gaseous working medium 3 and transfer heat to the sealing structure 1 at the condensing section 13.
  • the second elongated groove 152 has a linear structure, it can be directly formed during casting or forging of the sealing structure 1 during processing, or it can be formed by machining on the sealing structure 1, without excessively increasing the two-phase phase change heat sink. 400 processing difficulty.
  • a third groove structure 16 capable of accommodating the liquid working medium 3 is opened on the inner wall of the transfer section 12, thereby raising the two-phase phase change heat sink 400
  • the gaseous working medium 3 is not easy to liquefy in the condensing section 13 or the liquefaction rate is slow, because the inside of the sealing structure 1 has enough Therefore, the liquid working medium 3 in the sealing structure 1 can be effectively prevented from drying out.
  • the inner surface of the third groove structure 16 can increase the heat exchange area between the gaseous working medium 3 and the transfer section 12 of the sealing structure 1, and improve the unit time between the transmission section 12 of the sealing structure 1 and the gaseous working medium 3.
  • the amount of heat transfer effectively reduces the temperature of the gaseous working fluid 3 before it reaches the condensation section 13, and the gaseous working medium 3 can be quickly condensed and liquefied after reaching the condensation section 13, and return to the evaporation section 11. Therefore, the liquid working medium 3 can be supplemented in time at the evaporation section 11, so that the heat of the heating source can be absorbed by the liquid working medium 3 in the evaporation section 11 in time.
  • the third groove structure 16 in the above embodiment is a third internal thread groove 161 opened on the inner wall of the transmission section 12.
  • the third internal thread groove 161 is opened on the inner wall of the transmission section 12 in the form of a spiral, and a groove with a longer stroke can be formed on the transmission section 12 of the same length, thereby enhancing the third groove structure 16 to accommodate the liquid working medium 3 ⁇ The amount.
  • the gaseous working medium 3 is not easy to liquefy in the condensing section 13 or the liquefaction rate is slow, because the inside of the sealing structure 1 has enough Therefore, the liquid working medium 3 in the sealing structure 1 can be effectively prevented from drying out.
  • the third internal thread groove 161 is opened on the inner wall of the transmission section 12 in the form of a spiral.
  • the inner surface of the third internal thread groove 161 increases the heat exchange area between the gaseous working medium 3 and the transmission section 12 of the sealing structure 1. That is to say, the heat exchange area between the transfer section 12 of the sealing structure 1 and the gaseous working medium 3 is increased, and the heat transfer amount per unit time between the transfer section 12 of the sealing structure 1 and the gaseous working medium 3 is increased, so that the gaseous working medium
  • the temperature of the mass 3 before reaching the condensing section 13 is effectively reduced, so that the gaseous working medium 3 rapidly condenses and liquefies after reaching the condensing section 13 and returns to the evaporation section 11.
  • the transfer section 12 can also realize the heat absorption function of the evaporation section 11, and the contact part of the heat source and the two-phase phase change heat sink 400 is expanded into the evaporation section 11 and the transfer section 12, which improves the flexibility of use of the two-phase phase change heat sink 400 sex.
  • the condensation section 13 and the transfer section 12 can all realize the evaporation section 11
  • the heat absorption function of the two-phase phase change heat sink 400 is expanded into the evaporation section 11, the condensation section 13 and the transfer section 12 where the heat source contacts the two-phase phase change heat sink 400, which improves the flexibility of use of the two-phase phase change heat sink 400.
  • the naming of each section in the two-phase phase change heat sink device 400 is only used to distinguish its different positions in the two-phase phase change heat sink device 400, and the specific functions implemented depend on the location of the heat source.
  • the third groove structure 16 in the above embodiment includes a plurality of third long grooves 162 opened on the inner wall of the condensation section 13, and the third long grooves 162 It extends along the axial direction of the sealing structure 1.
  • the plurality of third long grooves 162 can increase the liquid storage capacity of the liquid working medium 3 in the sealing structure 1, and increase the heat exchange area between the gas working medium 3 and the transfer section 12 of the sealing structure 1, so that the gas working medium 3 is The temperature before reaching the condensation section 13 effectively reduces the discharge.
  • the third elongated groove 162 has a linear structure. During processing, it can be formed during casting and forging of the sealing structure 1, or can be formed on the sealing structure 1 by machining, and the processing procedure is simple.
  • the first groove structure 14, the second groove structure 15, and the third groove structure 16 in the above embodiment are mutually connected grooves.
  • Most of the liquid working medium 3 in the sealing structure 1 is driven by the capillary adsorption force of the capillary structure 2 to return from the condensation section 13 to the evaporation section 11.
  • the liquid working fluid 3 located in the second groove structure 15 at the condensation section 13 receives relatively small capillary adsorption force, which is not conducive to leaving the second groove structure 15, but can enter the transfer section along with a small adsorption force.
  • the third groove structure 16 of 12 finally returns to the first groove structure 14 of the evaporation section 11.
  • the liquid working medium 3 is not easily confined in the second groove structure 15, and the liquid working medium 3 in the sealing structure 1 can better participate in the cycle of vaporization and liquefaction, and the utilization rate of the liquid working medium 3 is improved.
  • the above groove also has a certain capillary adsorption force, which can assist the capillary structure 2 to the liquid working medium 3 in the sealing structure 1. Provide capillary adsorption.
  • the evaporation section 11 is provided with a first groove structure 14 and the condensation section 13 is provided with a second groove structure 15, and the inner wall of the sealing structure 1 is also provided with a fourth groove structure.
  • the elongated groove 17 and the fourth elongated groove 17 are formed extending along the axial direction of the sealing structure 1 and cover the evaporation section 11, the transfer section 12 and the condensation section 13.
  • the fourth long groove 17 can cross and communicate with the first internal thread groove 141 of the evaporation section 11, and cross and communicate with the second internal thread groove 151 of the condensing section 13; thereby, the second groove structure can be more effectively
  • the liquid working fluid 3 in 15 is guided into the first groove structure 14 of the evaporation section 11.
  • the capillary structure 2 includes a metal wire mesh 21 attached to the inner wall of the sealing structure 1, and the metal mesh covers the evaporation section 11 or completely covers the inner wall of the sealing structure 1.
  • the mesh of the metal wire mesh 21 can lift the vaporization core at the evaporation section 11. Therefore, the metal wire mesh 21 covering the inner wall of the evaporation section 11 can cooperate with the first groove structure 14 to further enhance the vaporization core of the evaporation section 11, increase the heat of vaporization heat absorption per unit time, and thus increase the two-phase phase transition.
  • the radiator device 400 absorbs heat and dissipates heat.
  • the working fluid 3 can quickly receive heat and vaporize to absorb heat, which speeds up the start-up speed of the two-phase phase change heat sink 400 for heat absorption and heat dissipation. This effectively avoids the occurrence of damage to the chip 600 and other components due to the slow start of heat absorption and heat dissipation of the two-phase phase change heat sink 400.
  • the wire mesh 21 is attached to the inner wall of the sealing structure 1, when the working fluid 3 is adsorbed on the wire mesh 21, it can fully contact the inner wall of the sealing structure 1, and the working fluid 3 can quickly absorb the sealing structure 1 from the heat source. The heat.
  • another embodiment of the capillary structure 2 further includes a fiber strand 22 attached to the metal wire mesh 21 in the above embodiment.
  • the fiber bundle 22 is arranged along the axial direction of the sealing structure 1, and passes through the evaporation section 11, the transfer section 12 and the condensation section 13, thereby providing a certain capillary adsorption force for the working medium 3 in the sealing structure 1, so that the working medium 3 is along the fiber
  • the wire harness 22 flows from the condensation section 13 to the evaporation section 11.
  • the fiber strand 22 may be braided by a plurality of metal fibers 221, and its braided structure is similar to the braided structure of the inner core of the cable and the braided structure of hemp rope in the related art.
  • the included angle between adjacent metal fibers 221 may be 30°-75°, which can provide better capillary adsorption force to allow the liquid working medium 3 to flow.
  • the capillary structure 2 further includes sintered metal powder (such as sintered copper powder), and the sintered metal powder can be sintered and fixed to at least one of the inner wall of the sealing structure 1, the wire mesh 21 and the fiber strand 22.
  • sintered metal powder such as sintered copper powder
  • the roughness of the inner wall of the sealing structure 1 can be increased, and the roughness of the inner wall at the evaporation section 11 will increase accordingly, thereby increasing the vaporization core at the evaporation section 11, so the working fluid 3 It can quickly receive heat and vaporize to absorb heat, and accelerate the start-up speed of heat absorption and heat dissipation of the two-phase phase change heat sink 400. This effectively avoids the occurrence of damage to the chip 600 and other components due to the slow start of heat absorption and heat dissipation of the two-phase phase change heat sink 400.
  • the wire mesh 21 When the wire mesh 21 is provided with sintered metal powder, the wire mesh 21 covers at least the inner wall of the evaporation section 11, thereby increasing the roughness of the internal structure at the evaporation section 11, thereby increasing the vaporization core at the evaporation section 11.
  • the working fluid 3 can quickly receive heat and vaporize to absorb heat, which speeds up the start-up speed of the two-phase phase change heat sink 400 for heat absorption and heat dissipation. This effectively avoids the occurrence of damage to the chip 600 and other components due to the slow start of heat absorption and heat dissipation of the two-phase phase change heat sink 400.
  • the respective thread parameters (including the addendum angle, the thread angle and the number of threads) Parameters) can be the same or different.
  • an embodiment of the present application also provides a terminal device 500, which includes a device main body and the two-phase phase change heat sink 400 in any of the foregoing embodiments.
  • the two-phase phase-change heat sink 400 is arranged inside the main body of the device, and the evaporation section 11 of the two-phase phase-change heat sink 400 conducts heat conduction with the chip 600 (main control chip 600, etc.) on the main board in the main body of the device, which generates heat. touch.
  • the heat generated by the chip 600 can be absorbed by the two-phase phase-change heat sink 400 in time and radiated outward.
  • the terminal device 500 When the terminal device 500 is working (especially during continuous high-performance work), there is sufficient liquid working medium in the two-phase phase-change heat sink 400 3 is used for heat absorption and vaporization. Before the working fluid 3 liquefied at the condensation section 13 is returned to the evaporation section 11, the liquid working fluid 3 at the evaporation section 11 is not easy to be dried. It is ensured that the terminal device 500 continues to be in a better working state.
  • the vaporization core at the evaporation section 11 of the two-phase phase change heat sink 400 is large enough to ensure the heat of vaporization and absorption of the working fluid 3 per unit time, that is, the two-phase phase change heat sink
  • the 400 can quickly start to absorb the heat generated by the chip 600, which prevents the chip 600 from heating up in a short period of time and affecting the service life of the chip 600.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请公开了一种两相相变散热器件,涉及散热领域。两相相变散热器件(400)包括密封结构(1)、设于密封结构(1)内的毛细结构(2),以及设于密封结构(1)内的工质(3)。密封结构(1)的中部区域为传递段(12),其中一端部为蒸发段(11),另一端部为冷凝段(13)。密封结构(1)的两端为封闭状,且内部具有连通冷凝段(13)、传递段(12)及蒸发段(11)的空腔(18);毛细结构(2)设于该空腔(18)内,并用于为空腔(18)内的工质(3)提供毛细吸附力,使得工质(3)可沿着毛细结构(2)从冷凝段(13)回到蒸发段(11)。密封结构(1)于蒸发段(11)的内壁开设有可用于容纳液态工质(3)的第一凹槽结构(14),提升了两相相变散热器件(400)内部工质(3)的储液量,也增加了液态工质(3)与蒸发段(11)的内壁的热交换面积,同时提升了蒸发段(11)的内壁的汽化核心,进而提升了两相相变散热器件(400)吸热散热的能力。

Description

一种两相相变散热器件及终端设备
本申请要求于2020年4月15日提交国家知识产权局、申请号为202010293768.8、申请名称为“一种两相相变散热器件及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及相变散热技术领域,尤其涉及一种两相相变散热器件及终端设备。
背景技术
随着手机及平板等终端设备功能的多样性,终端设备内部芯片等模组的运算处理性能也显著提升。芯片处于较佳的工作温度是其保持功能性工作的必备条件,因此为了保证芯片等发热较为严重的模组稳定持续的高性能工作,通常利用热管及VC(均热板,Vapor Chamber)两相相变散热器件将温度较高的区域的热量传递至其他区域。同时,手持式产品的轻量化和超薄化需求,也进一步压缩了产品的厚度堆叠,需求在极其有限的厚度空间内实现高热量密度的热量传输,对提高传热部件的最大传热量、传输距离等提出要求。
热管、VC等两相相变散热器件结构主要由管壳及工质组成,从功能上分为蒸发段、绝热段、冷凝段三部分,其工作原理为:当两相相变散热器件蒸发段受热时该区域的液体工质蒸发汽化,同时带走大量热量。而相关技术中,在高热流密度的使用环境下,最大传热量和工质储液量及其系统运行阻力有关,由于超薄化需求压缩了两相相变散热器件内部结构空间,其工质的存储仅分布在毛细层孔隙内,如进一步增加毛细层厚度会压缩蒸汽空间体积,导致系统运行阻力增加,使得其传热散热性能较差,无法及时将温度较高的区域的热量传递至其他区域,且存在无法及时补液而使得工质烧干的风险。同时,气液相变在汽化核心上发生更容易,在相变表面增加汽化核心的是影响工质从液态变为气态的转化速率的重要因素,而相关的两相相变散热器件采用平滑表面烧结毛细,其与热源相接触的壁面内外表面汽化核心较少,仅发生在毛细层的毛细孔表面,对于大面积的壁面未充分利用,影响两相相变散热器件的气液循环效率。
发明内容
本申请的一个目的在于提供一种两相相变散热器件,旨在提升两相相变散热器件最大传热量,加强相变散热效率从而解决两相相变散热器件散热性能差的问题。
为达此目的,本申请实施例采用以下技术方案:
一种两相相变散热器件,包括两端封闭且具有空腔的密封结构、设于所述空腔内的毛细结构,以及设于所述空腔内的工质;所述密封结构包括传递段、位于所述传递段的其中一端的蒸发段,以及位于所述传递段的另一端的冷凝段;所述蒸发段的内壁开设有第一凹槽结构。
相关技术中,光滑内壁的两相相变散热器件,最大储液量取决于毛细结构自身的孔隙率,在毛细结构与两相相变散热器件内壁具有间隙的情况下还取决于该间隙。
在密封结构的蒸发段的内壁开设有第一凹槽结构,第一凹槽结构内可容纳液态的工质,进而提升两相相变散热器件内部工质的储液量。因此相对于光滑内壁的两相相变散热器件,可提升两相相变散热器件吸热散热的能力。在增加两相相变散热器件内部工质的情况下,对于高热流密度(例如芯片)处的散热,具有足够的液态工质以供吸热汽化,在冷凝段处液化的工质回流至蒸发段之前,蒸发段处的液态工质不易于烧干。
蒸发段内壁设置有第一凹槽结构的两相相变散热器件,相对于光滑内壁的两相相变散热器件,增加了第一凹槽结构的凹槽的内侧壁与液态工质接触的面积,也即增加了密封结构与液态工质之间的换热面积,提升了密封结构与液态工质之间单位时间内的热传递量,进而提升了两相相变散热器件吸热散热性能。在散热的初始状态下,由于密封结构与液态工质之间单位时间内的热传递量的增加,因此工质可快速受热并汽化吸收热量,加快两相相变散热器件吸热散热的启动速度。有效避免了因两相相变散热器件吸热散热启动慢而导致芯片等部件损坏的情况发生。
蒸发段内壁设置有第一凹槽结构的两相相变散热器件,相对于光滑内壁的两相相变散热器件,增加了密封结构的内壁的粗糙度,粗糙度越高,该处的汽化核心越多,越利于液态工质汽化形成气态工质。也即在单位时间内提升汽化吸热的热量,进而提升了两相相变散热器件吸热散热性能。在散热的初始状态下,由于蒸发段处的第一凹槽结构可提升工质的汽化能力,因此工质可快速受热并汽化吸收热量,加快两相相变散热器件吸热散热的启动速度。有效避免了因两相相变散热器件吸热散热启动慢而导致芯片等部件损坏的情况发生。
可选的,若利用机械加工工具加工上述第一凹槽结构时,可提升第一凹槽结构内壁及底部的粗糙度,以进一步提升蒸发段的汽化核心。设置有毛细结构的两相相变散热器件,液态工质主要通过毛细结构提供的毛细吸附力从冷凝段回到蒸发段,因此增加密封结构内壁的粗糙度,并不会对液态工质回流至冷凝段的能力造成较大影响。尤其对于厚度小于1毫米,应用于手机等小型终端的两相相变散热器件,其内部液态工质主要通过毛细结构提供的毛细吸附力从冷凝段回到蒸发段。
工质可为去离子水、甲醇及丙酮等物质。
在一个实施例中,所述第一凹槽结构为第一内螺纹凹槽。
第一内螺纹凹槽以螺旋的形式开设于蒸发段的内壁上,可在同等长度的蒸发段上形成行程较长的凹槽,进而提升第一凹槽结构容纳液态工质的量,增加液态工质与密封结构的蒸发段的热交换的面积;以提升两相相变散热器件的散热能力。包括有第一内螺纹凹槽的第一凹槽结构的粗糙度也有效提升,进而提升了蒸发段的内壁的汽化核心,以加快两相相变散热器件的启动速度。
第一内螺纹凹槽以螺旋的形式开设于蒸发段的内壁上,可利用车床加工,降低了两相相变散热器件的加工难度。
示例的,当蒸发段的长度为10毫米-35毫米时,第一内螺纹凹槽的深度范围可为0.01毫米-0.2毫米,第一内螺纹凹槽的侧壁的齿顶角范围可为10°-25°;第一内螺纹凹槽的螺旋角范围可为25°-40°;第一内螺纹凹槽的头数范围可为50-70。
在一个实施例中,所述第一凹槽结构包括多个第一长条槽,所述第一长条槽的长 度方向与所述密封结构的轴线方向相同。长条槽的长度方向为其自身延伸的方向。
第一凹槽结构包括多个第一长条槽,进而增加密封结构内液态工质的量,并增加液态工质与密封结构的蒸发段的热交换的面积;以提升两相相变散热器件的散热能力。且具有回液的方向性,辅助液体回流沿第一长条槽的方向回液。
第一长条槽结构简单,在加工时,可在密封结构铸造时加工,也可在密封结构上利用机械加工形成,降低了两相相变散热器件的加工难度。
于本申请中,长条槽定义为沿某一方向以直线延伸的方向形成。
在一个实施例中,所述冷凝段的内壁开设有第二凹槽结构。
在蒸发段的内壁开设有第一凹槽结构的基础上,再在冷凝段的内壁上开设第二凹槽结构,两相相变散热器件的密封结构的冷凝段设置有第二凹槽结构的两相相变散热器件,相对于光滑内壁的两相相变散热器件,增加了第二凹槽结构的凹槽的内侧壁与气态工质接触的面积,也即增加了密封结构与气态工质之间的换热面积,提升了密封结构的冷凝段与气态工质之间单位时间内的热传递量,气态工质可快速释放热量并恢复液态回流至蒸发段。因此蒸发段处可及时得到液态工质的补充,使得发热源的热量可及时被蒸发段的液态工质吸收。
可选的,由于冷凝段上的第二凹槽结构内也有足够的液态工质,使得冷凝段也可实现蒸发段的吸热功能,热源与两相相变散热器件接触的部位扩展为蒸发段及冷凝段,提升了两相相变散热器件使用的灵活性,可更换蒸发端和冷凝端,使得两相相变散热器件的使用不具备特定方向性。
可选的,冷凝段的外壁可开设有凹槽,提升密封结构的冷凝段与空气接触的面积,提升冷凝换热面积,使得冷凝段处的热量及时向外释放,降低冷凝段的温度,增加气态工质与冷凝段之间的温差,以促进气态工质的液化,并回流至蒸发段。因此蒸发段处可及时得到液态工质的补充,使得发热源的热量可及时被蒸发段的液态工质吸收。
在一个实施例中,所述第二凹槽结构为第二内螺纹凹槽。
第二内螺纹凹槽以螺旋的形式开设于冷凝段的内壁上,可在同等长度的冷凝段上形成行程较长的凹槽,进而提升第二凹槽结构容纳液态工质的量。对于高热流密度(例如芯片)处的散热,且外部环境温度也较高的情况下,气态工质不易于在冷凝段液化或者液化速度慢时,由于密封结构的内部具有足够多的液态工质,因此可有效避免密封结构内的液态工质烧干。
第二内螺纹凹槽以螺旋的形式开设于冷凝段的内壁上,增加了气态工质与密封结构的冷凝段的热交换的面积,提升冷凝换热面积,使得冷凝段处的热量及时向外释放,降低冷凝段的温度,增加气态工质与冷凝段之间的温差,以促进气态工质的液化,并回流至蒸发段。因此蒸发段处可及时得到液态工质的补充,使得发热源的热量可及时被蒸发段的液态工质吸收。
示例的,当冷凝段的长度为10毫米-35毫米时,第二内螺纹凹槽的深度范围可为0.01毫米-0.2毫米,第二内螺纹凹槽的侧壁的齿顶角范围可为10°-25°;第二内螺纹凹槽的螺旋角范围可为25°-40°;第二内螺纹凹槽的头数范围可为50-70。
在一个实施例中,所述第二凹槽结构包括多个第二长条槽,所述第二长条槽的长度方向与所述密封结构的轴线方向相同。
第二凹槽结构包括多个第二长条槽,进而增加密封结构内液态工质的量,并增加气态工质与密封结构的冷凝段的热交换的面积,提升冷凝换热面积,使得冷凝段处的热量及时向外释放。且具有回液的方向性,辅助液体沿第一长条槽的方向回液;第二长条槽结构简单,在加工时,可在密封结构铸造时加工,也可在密封结构上利用机械加工形成,降低了两相相变散热器件的加工难度。
在一个实施例中,所述传递段的内壁开设有第三凹槽结构。
在蒸发段上开设第一凹槽结构并在传递段上开设第三凹槽结构,或者于蒸发段、冷凝段及传递段上分别开设第一凹槽结构、第二凹槽结构及第三凹槽结构;第三凹槽结构内可容纳液态的工质,进而提升两相相变散热器件内部工质的储液量。对于高热流密度(例如芯片)处的散热,且外部环境温度也较高的情况下,气态工质不易于在冷凝段液化或者液化速度慢时,由于密封结构的内部具有足够多的液态工质,因此可有效避免密封结构内的液态工质烧干。
同时,第三凹槽结构,可提升气态工质与密封结构的传递段之间的热交换面积,也即增加了密封结构的传递段与气态工质之间的换热面积,提升了密封结构的传递段与气态工质之间单位时间内的热传递量,使得气态工质在到达冷凝段之前的温度就有效降低,使得气态工质在到达冷凝段后快速冷凝液化并回流至蒸发段。因此蒸发段处可及时得到液态工质的补充,使得发热源的热量可及时被蒸发段的液态工质吸收。
在一个实施例中,所述第三凹槽结构为第三内螺纹凹槽。
第三内螺纹凹槽以螺旋的形式开设于传递段的内壁上,可在同等长度的传递段上形成行程较长的凹槽,进而提升第三凹槽结构容纳液态工质的量。对于高热流密度(例如芯片)处的散热,且外部环境温度也较高的情况下,气态工质不易于在冷凝段液化或者液化速度慢时,由于密封结构的内部具有足够多的液态工质,因此可有效避免密封结构内的液态工质烧干。
第三内螺纹凹槽以螺旋的形式开设于传递段的内壁上,增加了气态工质与密封结构的传递段的热交换的面积,也即增加了密封结构的传递段与气态工质之间的换热面积,提升了密封结构的传递段与气态工质之间单位时间内的热传递量,使得气态工质在到达冷凝段之前的温度就有效降低,使得气态工质在到达冷凝段后快速冷凝液化并回流至蒸发段。
可选的,由于两相相变散热器件的传递段的内壁开设有第三凹槽结构(例如为第三内螺纹凹槽时),且第三凹槽结构内具有足够的液态工质,因此传递段也可实现蒸发段的吸热功能,热源与两相相变散热器件接触的部位扩展为蒸发段及传递段,提升了两相相变散热器件使用的灵活性。
可选的,当蒸发段、冷凝段及传递段上分别开设第一凹槽结构、第二凹槽结构及第三凹槽结构时,冷凝段及传递段均可实现蒸发段的吸热功能,热源与两相相变散热器件接触的部位扩展为蒸发段、冷凝段及传递段,提升了两相相变散热器件使用的灵活性。
在一个实施例中,所述第三凹槽结构包括多个第三长条槽,所述第三长条槽的长度方向与所述密封结构的轴线方向相同。
第三凹槽结构包括多个第三长条槽,进而增加密封结构内液态工质的量,并增加 气态工质与密封结构的传递段的热交换的面积,使得气态工质在到达冷凝段之前的温度就有效降低放。
第三长条槽结构简单,在加工时,可在密封结构铸造时加工,也可在密封结构上利用机械加工形成,降低了两相相变散热器件的加工难度。
在一个实施例中,所述传递段的内壁开设有第三凹槽结构;所述第三凹槽结构与所述第一凹槽结构及所述第二凹槽结构均相通。
液态工质在通过毛细结构提供的毛细吸附力从冷凝段回到蒸发段的过程中,第一凹槽结构、第二凹槽结构及第三凹槽连通后可产生与上述毛细结构类似的毛细吸附力,进而辅助毛细结构促进液态工质回流至蒸发段。
在一个实施例中,所述密封结构的内壁开设有第四长条槽,所述第四长条槽的长度方向与所述密封结构的轴线方向相同;所述第四长条槽覆盖所述蒸发段、所述传递段及所述冷凝段。
第四长条槽可与蒸发段的第一内螺纹凹槽交叉,也可与冷凝段的第二内螺纹凹槽交叉;可提升蒸发段及冷凝段处的内壁对于液态工质的毛细吸附力,进而辅助毛细结构促进液态工质回流至蒸发段。
在一个实施例中,所述毛细结构包括设于所述密封结构的内壁的金属丝网,所述金属丝网至少覆盖所述蒸发段。
金属丝网的网孔,可提升蒸发段处的汽化核心。因此覆盖于蒸发段的内壁的金属丝网,可协同第一凹槽结构,进一步提升蒸发段的汽化核心,在单位时间内提升汽化吸热的热量,进而提升了两相相变散热器件吸热散热性能。在散热的初始状态下,由于蒸发段处的汽化核心足够大,因此工质可快速受热并汽化吸收热量,加快两相相变散热器件吸热散热的启动速度。有效避免了因两相相变散热器件吸热散热启动慢而导致芯片等部件损坏的情况发生。
由于金属丝网贴附于密封结构的内壁上,当工质吸附于金属丝网时,可与密封结构的内壁充分接触,工质可快速吸收密封结构从热源处吸收的热量。
在一个实施例中,所述毛细结构还包括沿所述密封结构的轴向设置的纤维线束;所述纤维线束贴合于所述金属丝网上。
在一个实施例中,所述纤维线束包括多根金属纤维,多根所述金属纤维编织形成所述纤维线束,相邻所述金属纤维之间的夹角范围为30°-75°。
限位线束的结构类似于现有技术中,电缆内部线芯的编织方式,以及麻绳的编织方式,并由多根金属纤维编织而成。可选的,金属纤维之间的夹角可选为30°-75°,可提供最佳的毛细吸附力将液态工质导流至蒸发段。
在一个实施例中,所述毛细结构还包括烧结金属粉,所述烧结金属粉设于所述密封结构的内壁、所述金属丝网及所述纤维线束中的至少一个位置。
当密封结构的内壁设置有烧结金属粉时,可提升密封结构内壁的粗糙度,蒸发段处的内壁的粗糙度随之提升,进而提升蒸发段处的汽化核心,因此工质可快速受热并汽化吸收热量,加快两相相变散热器件吸热散热的启动速度。有效避免了因两相相变散热器件吸热散热启动慢而导致芯片等部件损坏的情况发生。
当金属丝网设有烧结金属粉时,金属丝网至少覆盖蒸发段处的内壁,进而提升了 蒸发段处的内部结构的粗糙度,进而提升蒸发段处的汽化核心,因此工质可快速受热并汽化吸收热量,加快两相相变散热器件吸热散热的启动速度。有效避免了因两相相变散热器件吸热散热启动慢而导致芯片等部件损坏的情况发生。
本申请的另一个目的在于提供一种终端设备,包括设备主体以及上述任一实施例所述的两相相变散热器件。
包括有上述两相相变散热器件的终端设备,可将两相相变散热器件与芯片等发热较为严重的部件进行热传导接触,使得芯片产生的热量可及时被两相相变散热器件吸收并向外散发。终端设备持续高性能工作时,两相相变散热器件内具有足够的液态工质以供吸热汽化,在冷凝段处液化的工质回流至蒸发段之前,蒸发段处的液态工质不易于烧干。保证终端设备持续处于高性能工作状态。
在终端设备高性能工作的初始状态,两相相变散热器件蒸发段处的汽化核心足够大,可保证单位时间内工质汽化吸热的热量,也即两相相变散热器件可快速启动吸收芯片产生的热量,避免芯片在短时间内升温较高而影响芯片的使用寿命。
本申请实施例提供的两相相变散热器件的有益效果:两相相变散热器件的密封结构于蒸发段的内壁开设有可用于容纳液态工质的第一凹槽结构,提升了两相相变散热器件内部工质的储液量,进而提升了两相相变散热器件的最大传热量,也增加了液态工质与蒸发段的内壁的热交换面积,同时提升了蒸发段的内壁的汽化核心,进而提升了两相相变散热器件吸热散热的能力。
使用前述两相相变散热器件的终端设备,工作时芯片等发热严重的部件可与两相相变散热器件的蒸发段热传导接触,两相相变散热器件内具有足够的液态工质在蒸发段处汽化吸收芯片的热量,使得芯片处于较佳的工作温度内,终端设备可持续稳定的高性能工作。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的实施例中两相相变散热器件的结构示意图;
图2为本申请的其中一个实施例中两相相变散热器件沿轴向的剖视图;
图3-图10为本申请的其他实施例中两相相变散热器件沿轴向的剖视图;
图11为本申请的其中一个实施例中两相相变散热器件沿宽度方向(垂直轴向)的剖视图;
图12为本申请的实施例中移动终端的结构示意图;
图中:
400、两相相变散热器件;500、终端设备;600、芯片;
1、密封结构;11、蒸发段;12、传递段;13、冷凝段;14、第一凹槽结构;141、第一内螺纹凹槽;142、第一长条槽;15、第二凹槽结构;151、第二内螺纹凹槽;152、第二长条槽;16、第三凹槽结构;161、第三内螺纹凹槽;162、第三长条槽;17、第四长条槽;18、空腔;
2、毛细结构;21、金属丝网;22、纤维线束;221、金属纤维;
3、工质。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”、“第三”、“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本申请实施例提供的两相相变散热器件可以为超薄两相相变散热器件,可应用于手机、平板电脑及超薄笔记本电脑等小型终端设备。具体使用时,两相相变散热器件的蒸发段(吸热部位)与终端设备的主要发热源(例如主控芯片或者其他模组的芯片)接触以实现热传导连接,并将主要发热源处的热量传递至其他区域进行散热。进而消除终端设备的局部高热点,达到整体均热的效果。
以下结合具体实施例对本申请的实现进行详细的描述。
如图1-图3所示,本申请实施例提出了一种两相相变散热器件400,包括:密封结构1、设于密封结构1内的毛细结构2和设于密封结构1内的工质3。密封结构1的中部区域为传递段12,其中一端部为蒸发段11,另一端部为冷凝段13。密封结构1的两端为封闭状,且内部具有连通冷凝段13、传递段12及蒸发段11的空腔18;毛细结构2设于该空腔18内,并用于为空腔18内的工质3提供毛细吸附力,使得工质3可沿着毛细结构2从冷凝段13回到蒸发段11。密封结构1于蒸发段11的内壁开设有可用于容纳液态工质3的第一凹槽结构14。
在本申请的实施例中,两相相变散热器件400对发热源处的吸热散热过程为:将两相相变散热器件400的蒸发段11与发热源接触以实现热传导连接,两相相变散热器件400的蒸发段11受热时,该处的液态工质3吸热汽化蒸发,同时带走热源区的大量热量,气态的工质3在微小的压差下经过传递段12流向冷凝段13,并最终在冷凝段13释放热量冷凝成液态,液态的工质3借助毛细结构2的毛细吸附作用力返回蒸发段11。由此完成一次热传导循环,形成一个气液并存的双向循环系统。
目前使用的密封结构1为光滑内壁(内壁表面无凸起或凹槽结构)的两相相变散 热器件400,两相相变散热器件400内部工质3的储液量取决于毛细结构2自身的孔隙率(是指块状材料中孔隙体积与材料在自然状态下总体积的百分比),在毛细结构2与密封结构1内壁具有间隙的情况下还取决于该间隙。也即目前使用的两相相变散热器件400,工质3只能存在于毛细结构2内以及毛细结构2与密封结构1内壁的间隙内。
而本申请实施例提供的两相相变散热器件400,在密封结构1的蒸发段11的内壁开设有第一凹槽结构14,第一凹槽结构14内可容纳液态的工质3,相对于光滑内壁的两相相变散热器件400,可提升两相相变散热器件400内部工质3的储液量。因此本申请实施例提供的两相相变散热器件400的吸热散热的能力有效提升。在两相相变散热器件400内部尤其是蒸发段11处的工质3增加了情况下,对于高热流密度处(例如图12所示的主控芯片600)的散热,具有足够的液态工质3以供吸热汽化,在冷凝段13处液化的工质3回流至蒸发段11之前,蒸发段11处的液态工质3不易于烧干。且由于两相相变散热器件400内部工质3的储液量有效提升,因此两相相变散热器件400的最大传热量也变大。
另外,蒸发段11处的内壁开设有第一凹槽结构14的两相相变散热器件400,相对于光滑内壁的两相相变散热器件400,增加了蒸发段11处的内壁与液态工质3接触的面积,也即增加了蒸发段11与液态工质3之间的换热面积,提升了密封结构1与液态工质3之间单位时间内的热传递量,进而提升了两相相变散热器件400吸热散热性能。尤其在散热的初始状态下,由于蒸发段11与液态工质3之间单位时间内的热传递量的增加,因此工质3可快速受热并汽化吸收热量,加快两相相变散热器件400吸热散热的启动速度。有效避免了因两相相变散热器件400吸热散热启动慢而导致芯片600等部件损坏的情况发生。
同时,第一凹槽结构14增加了蒸发段11处的内壁的粗糙度,粗糙度越高,该处的汽化核心越多,越利于液态工质3汽化形成气态工质3。也即在单位时间内提升汽化吸热的热量,进而提升了两相相变散热器件400吸热散热性能。在散热的初始状态下,由于蒸发段11处的第一凹槽结构14可提升工质3的汽化能力,因此工质3可快速受热并汽化吸收热量,加快两相相变散热器件400吸热散热的启动速度。进一步有效避免了因两相相变散热器件400吸热散热启动慢而导致芯片600等部件损坏的情况发生。
示例的,在加工上述第一凹槽结构14时(例如利用机床加工时),可将第一凹槽结构14的内表面的粗糙度设置为足够高,以进一步提升蒸发段11的汽化核心。设置有毛细结构2的两相相变散热器件400(例如应用于手机等小型终端的两相相变散热器件400,其厚度小于1毫米时),液态工质3主要通过毛细结构2提供的毛细吸附力从冷凝段13回到蒸发段11,因此增加第一凹槽结构14的内表面的粗糙度,并不会对液态工质3回流至冷凝段13的速度造成较大影响。
示例的,于本申请的一个实施例中,第一凹槽结构14可以不布满于蒸发段11处的内壁,只需要与毛细结构2重合即可。
于本申请的实施例中,工质3可为去离子水、甲醇、丙酮、氟利昂及丙酮等物质,也可为上述物质的组合物。
密封结构1的形状可为圆管状,也可为扁管状,例如扁状的超薄型密封结构。例如,应用于手机等小型终端时,可选择厚度小于1毫米的扁状密封结构1,此时密封结构1内的液态工质3主要由毛细结构2通过的毛细吸附力带动,以实现从冷凝段13回到蒸发段11。
如图12所示,为本申请实施例提供的两相相变散热器件400应用于终端设备500时的示意图。两相相变散热器件400压持在终端设备500的主板上,两相相变散热器件400的密封结构1与主板上的芯片600等发热较为严重的发热源接触,密封结构1与芯片600接触的一端形成蒸发段11,密封结构1远离芯片600的一端形成冷凝段13。芯片600产生的热量传递给密封结构1的蒸发段11,蒸发段11处的液态工质3受热蒸发,气态的工质3在微小的压差下经过传递段12流向冷凝段13,并最终在冷凝段13释放热量冷凝成液态,液态的工质3借助毛细结构2的毛细吸附作用力返回蒸发段11,两相相变散热器件400完成吸收芯片600的热量并向外散发。
如图2所示,在一个实施例中,第一凹槽结构14为第一内螺纹凹槽141,第一内螺纹凹槽141以螺旋的形式开设于蒸发段11的内壁,可在同等长度的蒸发段11上形成行程较长的凹槽。进而提升了第一凹槽结构14容纳液态工质3的量,也增加液态工质3与密封结构1的蒸发段11的热交换的面积,以提升两相相变散热器件400的散热能力。行程变长的第一内螺纹凹槽141同时使得蒸发段11的内壁的粗糙度有效提升,使得蒸发段11的内壁的汽化核心显著变高,以加快两相相变散热器件400的启动速度。
可选的,第一内螺纹凹槽141在加工时,利用车床即可便捷的在蒸发段11的内壁形成,没有过度增加两相相变散热器件400的加工难度。
示例的,当蒸发段11的长度为10毫米-35毫米时,第一内螺纹凹槽141的深度范围可为0.1毫米-0.2毫米,第一内螺纹凹槽141的侧壁的齿顶角范围可为10°-25°;第一内螺纹凹槽141的螺旋角范围可为25°-40°;第一内螺纹凹槽141的头数范围可为50-70。
如图3所示,在另一个实施例中,第一凹槽结构14包括开设于蒸发段11的内壁的多个第一长条槽142,多个第一长条槽142沿蒸发段11的内壁周向排布,第一长条槽142沿密封结构1的轴线方向延伸形成。多个第一长条槽142可有效提升蒸发段11处的液态工质3的储存量,第一长条槽142的内表面也可增加液态工质3与密封结构1的蒸发段11的热交换的面积;以提升两相相变散热器件400的散热能力。
由于第一长条槽142为直线结构,在加工时,可在密封结构1铸造或锻压时直接形成,也可在密封结构1上利用机械加工的方式形成,没有过度增加两相相变散热器件400的加工难度。
于本申请的实施例中,长条槽定义为沿某一方向以直线延伸的方向形成的凹槽。
如图4-图5所示,在上述实施例的基础上,在冷凝段13的内壁上开设有能够容纳液态工质3的第二凹槽结构15。第二凹槽结构15的设置,进一步提升了密封结构1内部液态工质3的储存量。对于高热流密度(例如芯片600)处的散热,且外部环境温度也较高的情况下,气态工质3不易于在冷凝段13液化或者液化速度慢时,由于密封结构1的内部具有足够多的液态工质3,因此可有效避免密封结构1内的液态工质3烧干。
另外,冷凝段13设置有第二凹槽结构15的两相相变散热器件400,相对于光滑内壁的两相相变散热器件400,增加了第二凹槽结构15的内表面与气态工质3接触的面积,也即增加了冷凝段13与气态工质3之间的换热面积,提升了密封结构1的冷凝段13与气态工质3之间单位时间内的热传递量,气态工质3可快速释放热量并恢复液态回流至蒸发段11。因此蒸发段11处可及时得到液态工质3的补充,使得发热源的热量可及时被蒸发段11的液态工质3吸收。
由于冷凝段13上的第二凹槽结构15内也有足够的液态工质3,使得冷凝段13也可实现蒸发段11的吸热功能,热源与两相相变散热器件400接触的部位扩展为蒸发段11及冷凝段13,两相相变散热器件400安装时的方向与预设的相反也不会影响两相相变散热器件400的正常工作,提升了两相相变散热器件400使用的灵活性。可以理解的是,当蒸发段11和冷凝段13均设置有凹槽结构时,所称的冷凝段13和蒸发段11仅用于指代两相相变散热器件400的相对两端,其功能不局限于该命名,其一端实施蒸发功能,则另一端实施冷凝功能。
在冷凝段13的内壁开设有第二凹槽结构15的基础上,冷凝段13的外壁也可开设有凹槽,提升密封结构1的冷凝段13与空气接触的面积,提升冷凝换热面积,使得冷凝段13处的热量及时向空气释放,降低冷凝段13的温度。因而增加气态工质3与冷凝段13之间的温差,以促进气态工质3的液化,并回流至蒸发段11。因此蒸发段11处可及时得到液态工质3的补充,使得发热源的热量可及时被蒸发段11的液态工质3吸收。
如图4所示,在一个实施例中,上述第二凹槽结构15可为第二内螺纹凹槽151,第二内螺纹凹槽151以螺旋的形式开设于冷凝段13的内壁,可在同等长度的冷凝段13上形成行程较长的凹槽,进而提升第二凹槽结构15容纳液态工质3的量。对于高热流密度(例如图12所示的芯片600)处的散热,且外部环境温度也较高的情况下,气态工质3不易于在冷凝段13液化或者液化速度慢时,由于密封结构1的内部具有足够多的液态工质3,可有效避免密封结构1内的液态工质3烧干。
另外,第二内螺纹凹槽151以螺旋的形式开设于冷凝段13的内壁上,在同等长度的冷凝段13上形成行程较长的凹槽,第二内螺纹凹槽151的内表面使得气态工质3与密封结构1的冷凝段13的热交换面积增加,提升了冷凝换热面积,使得冷凝段13处的热量及时向外释放,降低了冷凝段13的温度,增加了气态工质3与冷凝段13之间的温差,以促进气态工质3的液化,并回流至蒸发段11。因此蒸发段11处可及时得到液态工质3的补充,使得发热源的热量可及时被蒸发段11的液态工质3吸收。
示例的,当冷凝段13的长度为10毫米-35毫米时,第二内螺纹凹槽151的深度范围可为0.1毫米-0.2毫米,第二内螺纹凹槽151的侧壁的齿顶角范围可为10°-25°;第二内螺纹凹槽151的螺旋角范围可为25°-40°;第二内螺纹凹槽151的头数范围可为50-70。
如图5所示,在另一个实施例中,上述第二凹槽结构15包括开设有冷凝段13的内壁的多个第二长条槽152,多个第二长条槽152沿冷凝段13的内壁周向排布,第二长条槽152沿密封结构1的轴线方向延伸形成。多个第二长条槽152可有效提升冷凝段13处的液态工质3的储存量,第二长条槽152的内表面也可增加液态工质3与密封 结构1的冷凝段13的热交换的面积;以促进气态工质3液化并将热量传递至冷凝段13处的密封结构1。
由于第二长条槽152为直线结构,在加工时,可在密封结构1铸造或锻压时直接形成,也可在密封结构1上利用机械加工的方式形成,没有过度增加两相相变散热器件400的加工难度。
如图6-图7所示,在上述任一实施例的基础上,在传递段12的内壁开设有能够容纳液态工质3的第三凹槽结构16,进而提升两相相变散热器件400内部工质3的储液量。对于高热流密度(例如芯片600)处的散热,且外部环境温度也较高的情况下,气态工质3不易于在冷凝段13液化或者液化速度慢时,由于密封结构1的内部具有足够多的液态工质3,因此可有效避免密封结构1内的液态工质3烧干。
第三凹槽结构16的内表面可提升气态工质3与密封结构1的传递段12之间的热交换面积,提升了密封结构1的传递段12与气态工质3之间单位时间内的热传递量,使得气态工质3在到达冷凝段13之前的温度就有效降低,气态工质3在到达冷凝段13后可快速冷凝液化,并回流至蒸发段11。因此蒸发段11处可及时得到液态工质3的补充,使得发热源的热量可及时被蒸发段11的液态工质3吸收。
如图6及图10所示,在一个实施例中,上述实施例中的第三凹槽结构16为开设于传递段12的内壁的第三内螺纹凹槽161。第三内螺纹凹槽161以螺旋的形式开设于传递段12的内壁上,可在同等长度的传递段12上形成行程较长的凹槽,进而提升第三凹槽结构16容纳液态工质3的量。对于高热流密度(例如芯片600)处的散热,且外部环境温度也较高的情况下,气态工质3不易于在冷凝段13液化或者液化速度慢时,由于密封结构1的内部具有足够多的液态工质3,因此可有效避免密封结构1内的液态工质3烧干。
第三内螺纹凹槽161以螺旋的形式开设于传递段12的内壁上,第三内螺纹凹槽161的内表面增加了气态工质3与密封结构1的传递段12的热交换的面积,也即增加了密封结构1的传递段12与气态工质3之间的换热面积,提升了密封结构1的传递段12与气态工质3之间单位时间内的热传递量,使得气态工质3在到达冷凝段13之前的温度就有效降低,使得气态工质3在到达冷凝段13后快速冷凝液化并回流至蒸发段11。
由于两相相变散热器件400的传递段12的内壁开设有第三凹槽结构16(例如为第三内螺纹凹槽161时),且第三凹槽结构16内具有足够的液态工质3,因此传递段12也可实现蒸发段11的吸热功能,热源与两相相变散热器件400接触的部位扩展为蒸发段11及传递段12,提升了两相相变散热器件400使用的灵活性。
当蒸发段11、冷凝段13及传递段12上分别开设第一凹槽结构14、第二凹槽结构15及第三凹槽结构16时,冷凝段13及传递段12均可实现蒸发段11的吸热功能,热源与两相相变散热器件400接触的部位扩展为蒸发段11、冷凝段13及传递段12,提升了两相相变散热器件400使用的灵活性。同样的,在这种情况下,两相相变散热器件400中各段的命名仅用于区分其在两相相变散热器件400中的不同位置,具体实施的功能依热源的位置确定。
如图7及图9所示,在一个实施例中,上述实施例中的第三凹槽结构16包括开设 于冷凝段13的内壁的多个第三长条槽162,第三长条槽162沿密封结构1的轴线方向延伸形成。多个第三长条槽162可提升密封结构1内的液态工质3的储液量,并增加气态工质3与密封结构1的传递段12的热交换的面积,使得气态工质3在到达冷凝段13之前的温度就有效降低放。
第三长条槽162为直线结构,在加工时,可在密封结构1铸造锻压时形成,也可在密封结构1上利用机械加工形成,加工程序简单。
如图6-图7所示,在一个实施例中,上述实施例中的第一凹槽结构14、第二凹槽结构15及第三凹槽结构16为相互连通的凹槽。密封结构1内的大部分液态工质3通过毛细结构2的毛细吸附力的驱动,实现从冷凝段13回到蒸发段11。但是冷凝段13处位于第二凹槽结构15内的液态工质3,受到的毛细吸附力相对较小,不利于脱离第二凹槽结构15,但可以顺着较小的吸附力进入传递段12的第三凹槽结构16,最后回到蒸发段11的第一凹槽结构14内。使得液态工质3不易于被限制于第二凹槽结构15内,密封结构1内的液态工质3均可较好的参与到汽化液化的循环过程中,提升液态工质3的利用率。且第一凹槽结构14、第二凹槽结构15及第三凹槽结构16连通后,上述凹槽也具有一定的毛细吸附力,可辅助毛细结构2对密封结构1内的液态工质3提供毛细吸附力。
如图8所示,在一个实施例中,在蒸发段11开设有第一凹槽结构14,冷凝段13开设有第二凹槽结构15的基础上,密封结构1的内壁还开设有第四长条槽17,第四长条槽17沿密封结构1的轴线方向延伸形成并覆盖蒸发段11、传递段12及冷凝段13。第四长条槽17可与蒸发段11的第一内螺纹凹槽141交叉并连通,并与冷凝段13的第二内螺纹凹槽151交叉并连通;进而更有效的将第二凹槽结构15内的液态工质3导流至蒸发段11的第一凹槽结构14内。
如图11所示,在一个实施例中,毛细结构2包括贴合在密封结构1的内壁的金属丝网21,该金属网覆盖在蒸发段11,或者完全覆盖密封结构1的内壁。金属丝网21的网孔,可提升蒸发段11处的汽化核心。因此覆盖于蒸发段11的内壁的金属丝网21,可协同第一凹槽结构14,进一步提升蒸发段11的汽化核心,在单位时间内提升汽化吸热的热量,进而提升了两相相变散热器件400吸热散热性能。在散热的初始状态下,由于蒸发段11处的汽化核心足够大,因此工质3可快速受热并汽化吸收热量,加快两相相变散热器件400吸热散热的启动速度。有效避免了因两相相变散热器件400吸热散热启动慢而导致芯片600等部件损坏的情况发生。
由于金属丝网21贴附于密封结构1的内壁上,当工质3吸附于金属丝网21时,可与密封结构1的内壁充分接触,工质3可快速吸收密封结构1从热源处吸收的热量。
如图11所示,另一个毛细结构2的实施例中,还包括贴合于上述实施例中的金属丝网21上的纤维线束22。纤维线束22沿密封结构1的轴向设置,并经过蒸发段11、传递段12及冷凝段13,进而为密封结构1内的工质3提供一定的毛细吸附力,使得工质3沿着纤维线束22从冷凝段13流至蒸发段11。
纤维线束22可由多根金属纤维221编织而成,其编织结构类似于相关技术中电缆内部线芯的编织结构,以及麻绳的编织结构。可选的,相邻金属纤维221之间的夹角可选为30°-75°,可提供较佳的毛细吸附力使得液态工质3流动。
在另一个实施例中,毛细结构2还包括有烧结金属粉(例如烧结铜粉),烧结金属粉可烧结固定于密封结构1的内壁、金属丝网21及纤维线束22中的至少一个位置。
当密封结构1的内壁设置有烧结金属粉时,可提升密封结构1内壁的粗糙度,蒸发段11处的内壁的粗糙度随之提升,进而提升蒸发段11处的汽化核心,因此工质3可快速受热并汽化吸收热量,加快两相相变散热器件400吸热散热的启动速度。有效避免了因两相相变散热器件400吸热散热启动慢而导致芯片600等部件损坏的情况发生。
当金属丝网21设有烧结金属粉时,金属丝网21至少覆盖蒸发段11处的内壁,进而提升了蒸发段11处的内部结构的粗糙度,进而提升蒸发段11处的汽化核心,因此工质3可快速受热并汽化吸收热量,加快两相相变散热器件400吸热散热的启动速度。有效避免了因两相相变散热器件400吸热散热启动慢而导致芯片600等部件损坏的情况发生。
于本申请的实施例中,第一凹槽结构14、第二凹槽结构15及第三凹槽结构16为内螺纹凹槽时,各自的螺纹参数(包括齿顶角、螺纹角及头数等参数)可以相同也可为不同。
如图12所示,本申请实施例还提供了一种终端设备500,包括设备主体以及上述任一实施例中的两相相变散热器件400。两相相变散热器件400布置于设备主体的内部,两相相变散热器件400的蒸发段11与设备主体内的主板上的芯片600(主控芯片600等)等发热较为严重的部件进行热传导接触。芯片600产生的热量可及时被两相相变散热器件400吸收并向外散发,终端设备500工作时(尤其是持续高性能工作时),两相相变散热器件400内具有足够的液态工质3以供吸热汽化,在冷凝段13处液化的工质3回流至蒸发段11之前,蒸发段11处的液态工质3不易于烧干。保证终端设备500持续处于较佳的工作状态。
在终端设备500高性能工作的初始状态,两相相变散热器件400蒸发段11处的汽化核心足够大,可保证单位时间内工质3汽化吸热的热量,也即两相相变散热器件400可快速启动吸收芯片600产生的热量,避免芯片600在短时间内升温较高而影响芯片600的使用寿命。
显然,本申请的上述实施例仅仅是为了清楚说明本申请所作的举例,并非是对本申请的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请权利要求的保护范围之内。

Claims (16)

  1. 一种两相相变散热器件,其特征在于,包括两端封闭且具有空腔的密封结构、设于所述空腔内的毛细结构,以及设于所述空腔内的工质;所述密封结构包括传递段、位于所述传递段的其中一端的蒸发段,以及位于所述传递段的另一端的冷凝段;所述蒸发段的内壁开设有第一凹槽结构。
  2. 根据权利要求1所述的两相相变散热器件,其特征在于,所述第一凹槽结构包括第一内螺纹凹槽。
  3. 根据权利要求1所述的两相相变散热器件,其特征在于,所述第一凹槽结构包括多个沿所述蒸发段的内壁周向排布的第一长条槽,所述第一长条槽的长度方向与所述密封结构的轴线方向相同。
  4. 根据权利要求1所述的两相相变散热器件,其特征在于,所述冷凝段的内壁开设有第二凹槽结构。
  5. 根据权利要求4所述的两相相变散热器件,其特征在于,所述第二凹槽结构包括第二内螺纹凹槽。
  6. 根据权利要求4所述的两相相变散热器件,其特征在于,所述第二凹槽结构包括多个沿所述冷凝段的内壁周向排布的第二长条槽,所述第二长条槽的长度方向与所述密封结构的轴线方向相同。
  7. 根据权利要求1-6任一项所述的两相相变散热器件,其特征在于,所述传递段的内壁开设有第三凹槽结构。
  8. 根据权利要求7所述的两相相变散热器件,其特征在于,所述第三凹槽结构包括第三内螺纹凹槽。
  9. 根据权利要求7所述的两相相变散热器件,其特征在于,所述第三凹槽结构包括多个第三长条槽,所述第三长条槽的长度方向与所述密封结构的轴线方向相同。
  10. 根据权利要求4-6任一项所述的两相相变散热器件,其特征在于,所述传递段的内壁开设有第三凹槽结构;所述第三凹槽结构与所述第一凹槽结构及所述第二凹槽结构均相通。
  11. 根据权利要求1-6任一项所述的两相相变散热器件,其特征在于,所述密封结构的内壁开设有第四长条槽,所述第四长条槽的长度方向与所述密封结构的轴线方向相同;所述第四长条槽覆盖所述蒸发段、所述传递段及所述冷凝段。
  12. 根据权利要求1-6任一项所述的两相相变散热器件,其特征在于,所述毛细结构包 括设于所述密封结构的内壁的金属丝网,所述金属丝网至少覆盖所述蒸发段。
  13. 根据权利要求12所述的两相相变散热器件,其特征在于,所述毛细结构还包括沿所述密封结构的轴向设置的纤维线束;所述纤维线束贴合于所述金属丝网上。
  14. 根据权利要求13所述的两相相变散热器件,其特征在于,所述纤维线束包括多根金属纤维,多根所述金属纤维编织形成所述纤维线束,相邻所述金属纤维之间的夹角范围为30°-75°。
  15. 根据权利要求13所述的两相相变散热器件,其特征在于,所述毛细结构还包括烧结金属粉,所述烧结金属粉设于所述密封结构的内壁、所述金属丝网及所述纤维线束中的至少一个位置。
  16. 终端设备,其特征在于,包括如权利要求1-15任一项所述的两相相变散热器件。
PCT/CN2021/084002 2020-04-15 2021-03-30 一种两相相变散热器件及终端设备 WO2021208730A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010293768.8A CN113532170A (zh) 2020-04-15 2020-04-15 一种两相相变散热器件及终端设备
CN202010293768.8 2020-04-15

Publications (1)

Publication Number Publication Date
WO2021208730A1 true WO2021208730A1 (zh) 2021-10-21

Family

ID=78083556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084002 WO2021208730A1 (zh) 2020-04-15 2021-03-30 一种两相相变散热器件及终端设备

Country Status (2)

Country Link
CN (1) CN113532170A (zh)
WO (1) WO2021208730A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114383454A (zh) * 2022-02-10 2022-04-22 嵊州天脉导热科技有限公司 一种vc均热板下盖板毛细结构
CN115568160A (zh) * 2022-04-02 2023-01-03 荣耀终端有限公司 散热结构及电子设备
CN117545226A (zh) * 2023-04-27 2024-02-09 荣耀终端有限公司 均热板和电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892273A (en) * 1973-07-09 1975-07-01 Perkin Elmer Corp Heat pipe lobar wicking arrangement
CN101055153A (zh) * 2006-04-14 2007-10-17 富准精密工业(深圳)有限公司 热管
CN101055158A (zh) * 2006-04-14 2007-10-17 富准精密工业(深圳)有限公司 热管
CN101398272A (zh) * 2007-09-28 2009-04-01 富准精密工业(深圳)有限公司 热管
JP2009115346A (ja) * 2007-11-02 2009-05-28 Fujikura Ltd ヒートパイプ
CN101706165A (zh) * 2009-11-10 2010-05-12 南京赫特节能环保有限公司 太阳能热水器横置式内螺纹热管
CN201787845U (zh) * 2010-09-02 2011-04-06 昆山巨仲电子有限公司 热管多复合毛细结构
US20120048517A1 (en) * 2010-08-31 2012-03-01 Kunshan Jue-Chung Electronics Co., Heat pipe with composite wick structure
US20120175084A1 (en) * 2011-01-09 2012-07-12 Chin-Hsing Horng Heat pipe with a radial flow shunt design
DE202014104145U1 (de) * 2014-09-04 2014-09-16 Asia Vital Components Co. Ltd. Wärmerohr mit kombinierten Kapillarstrukturen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125381A (ja) * 2002-08-02 2004-04-22 Mitsubishi Alum Co Ltd ヒートパイプユニット及びヒートパイプ冷却器
JP4878317B2 (ja) * 2007-03-22 2012-02-15 株式会社コベルコ マテリアル銅管 銅または銅合金からなる銅管
JP4812138B2 (ja) * 2008-09-24 2011-11-09 株式会社日立製作所 冷却装置及びそれを備えた電子機器
CN201954995U (zh) * 2010-12-16 2011-08-31 昆山长运电子工业有限公司 具径向引流的热管

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892273A (en) * 1973-07-09 1975-07-01 Perkin Elmer Corp Heat pipe lobar wicking arrangement
CN101055153A (zh) * 2006-04-14 2007-10-17 富准精密工业(深圳)有限公司 热管
CN101055158A (zh) * 2006-04-14 2007-10-17 富准精密工业(深圳)有限公司 热管
CN101398272A (zh) * 2007-09-28 2009-04-01 富准精密工业(深圳)有限公司 热管
JP2009115346A (ja) * 2007-11-02 2009-05-28 Fujikura Ltd ヒートパイプ
CN101706165A (zh) * 2009-11-10 2010-05-12 南京赫特节能环保有限公司 太阳能热水器横置式内螺纹热管
US20120048517A1 (en) * 2010-08-31 2012-03-01 Kunshan Jue-Chung Electronics Co., Heat pipe with composite wick structure
CN201787845U (zh) * 2010-09-02 2011-04-06 昆山巨仲电子有限公司 热管多复合毛细结构
US20120175084A1 (en) * 2011-01-09 2012-07-12 Chin-Hsing Horng Heat pipe with a radial flow shunt design
DE202014104145U1 (de) * 2014-09-04 2014-09-16 Asia Vital Components Co. Ltd. Wärmerohr mit kombinierten Kapillarstrukturen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114383454A (zh) * 2022-02-10 2022-04-22 嵊州天脉导热科技有限公司 一种vc均热板下盖板毛细结构
CN114383454B (zh) * 2022-02-10 2024-05-10 嵊州天脉导热科技有限公司 一种vc均热板下盖板毛细结构
CN115568160A (zh) * 2022-04-02 2023-01-03 荣耀终端有限公司 散热结构及电子设备
CN115568160B (zh) * 2022-04-02 2023-08-18 荣耀终端有限公司 散热结构及电子设备
CN117545226A (zh) * 2023-04-27 2024-02-09 荣耀终端有限公司 均热板和电子设备

Also Published As

Publication number Publication date
CN113532170A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
WO2021208730A1 (zh) 一种两相相变散热器件及终端设备
CN100383963C (zh) 薄型环路式散热装置
CN100491888C (zh) 环路式热交换装置
CN103629963B (zh) 多尺度毛细芯平板环路热管式散热装置
CN100561105C (zh) 热管
US20100155019A1 (en) Evaporator and loop heat pipe employing it
WO2006119684A1 (fr) Echangeur de chaleur a caloduc integre
CN100334931C (zh) 用于cpl的带散热片的平面式毛细芯蒸发器
WO2020215803A1 (zh) 一种散热装置、电路板及电子设备
CN101398272A (zh) 热管
CN109612314A (zh) 相变散热装置
JP2020076554A (ja) ヒートパイプ
JP2007247931A (ja) 蒸発器及びこの蒸発器を使用したループ型ヒートパイプ
US20070240851A1 (en) Heat pipe
US20110000647A1 (en) Loop heat pipe
US20120175084A1 (en) Heat pipe with a radial flow shunt design
US20190195569A1 (en) Wick structure and loop heat pipe using same
JP4718349B2 (ja) 蒸発器及びこの蒸発器を使用したループ型ヒートパイプ
CN110411258A (zh) 一种用于cpu散热的重力环路热管散热器
WO2012152018A1 (zh) 一种平板热管换热器
CN112432532B (zh) 蒸发器组件及环路热管
TWI700471B (zh) 具軸向毛細的散熱單元
TWM584883U (zh) 具軸向毛細的散熱單元
US20120037344A1 (en) Flat heat pipe having swirl core
CN216385225U (zh) 回路热管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21789035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21789035

Country of ref document: EP

Kind code of ref document: A1