WO2021208613A1 - Distributed finite time control method for isolated island microgrid heterogeneous battery energy storage system - Google Patents
Distributed finite time control method for isolated island microgrid heterogeneous battery energy storage system Download PDFInfo
- Publication number
- WO2021208613A1 WO2021208613A1 PCT/CN2021/078414 CN2021078414W WO2021208613A1 WO 2021208613 A1 WO2021208613 A1 WO 2021208613A1 CN 2021078414 W CN2021078414 W CN 2021078414W WO 2021208613 A1 WO2021208613 A1 WO 2021208613A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bess
- control
- battery energy
- matrix
- island microgrid
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00004—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00032—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
- H02J13/00034—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0063—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/10—The network having a local or delimited stationary reach
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/10—Flexible AC transmission systems [FACTS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
- Y02P80/14—District level solutions, i.e. local energy networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
Definitions
- the invention relates to a distributed limited time control method for a heterogeneous battery energy storage system in an island microgrid, and belongs to the technical field of microgrid control.
- Microgrid is a new type of energy structure that can accommodate a large number of distributed power sources, loads and energy storage devices, and can operate in two modes: grid-connected and isolated.
- the microgrid When the microgrid is in the grid-connected operation mode, it can provide or absorb electric energy to the main network. Once the main network fails, it can be disconnected from the common coupling point and enter island mode operation.
- the microgrid runs in island mode, the system independently controls the voltage and frequency, and meets the load demand within the microgrid. In the islanding mode, some key loads within the system have higher requirements for power quality. Therefore, the use of battery energy storage systems to power the internal loads of the island microgrid can not only meet the load requirements in the system, but also increase the power of the system. quality.
- the traditional control method of the energy storage system adopts centralized control, which requires a central control unit to control all the energy storage devices in the microgrid.
- This control method is not only less reliable and robust, but also unable to adapt to the scalability of the system. Require.
- distributed control methods are widely used in the control of energy storage systems.
- the distributed control method uses local communication to achieve the overall control goal, and does not require a communication link between the centralized control control unit and each BESS, which reduces the communication burden and computational burden, and improves the control efficiency.
- the purpose of the present invention is to overcome the shortcomings of the prior art and provide a distributed limited time control method for an isolated island microgrid heterogeneous battery energy storage system.
- Step (1) The droop control strategy is adopted at the primary control layer of the local control unit to meet the internal load demand of the island microgrid and stabilize the frequency and voltage of the island microgrid;
- Step (2) In the secondary control layer of the local control unit, respectively design the secondary frequency control structure and the secondary voltage control structure, and control the battery energy, design the battery energy control structure, use the distributed communication method, and design the distributed Limited-time secondary coordinated control rules, within a limited time, the output voltage amplitude and frequency of the battery energy storage system BESS are restored to the rated value, and the island microgrid system distributes the active power proportionally to balance the battery energy;
- Step (3) Estimate the convergence time, and the upper bound of the estimated convergence time is independent of the initial state of the island microgrid system.
- Step (1) the droop control strategy is adopted at the primary control layer of the local control unit to meet the internal load demand of the island microgrid and realize the proportional distribution of the load.
- the droop control rule is:
- the battery energy storage system BESS with Respectively represent the output frequency droop coefficient and voltage amplitude droop coefficient of the i-th BESS; with BESS respectively the i-th output frequency and voltage amplitude reference value; P i and Q i are calculated represent the i-th output active power and reactive power BESS, P i and Q i are:
- v odi , v oqi , i odi and i oqi are the dq axis components of the output voltage v oi and output current i oi of the i-th battery energy storage system BESS, respectively;
- s represents a complex variable, ⁇ c Is the cutoff frequency of the low-pass filter.
- Step (2) the secondary control layer of the local control unit, the secondary frequency control structure is:
- the secondary frequency control rule makes the BESS output frequency converge to the rated value within the setting time T( ⁇ ), and distribute the BESS output active power proportionally within the setting time T( ⁇ ).
- T( ⁇ ) is specifically expressed as follows:
- ⁇ 3 min ⁇ 1 (L 1 +B 1 ), ⁇ 2 (L 3 ), ⁇ 1 (L 2 +B 2 ), ⁇ 2 (L 4 ) ⁇
- L 1 is Is the Laplacian matrix corresponding to the adjacency matrix of the element
- B 1 is Is the diagonal matrix of diagonal elements
- L 3 is Is the Laplacian matrix corresponding to the adjacency matrix of the element
- L 2 is Is the Laplacian matrix corresponding to the adjacency matrix of the element
- B 2 is Is the diagonal matrix of diagonal elements
- L 4 is Is the Laplacian matrix corresponding to the adjacency matrix of the element
- ⁇ 1 (L 1 +B 1 ) represents the smallest eigenvalue of the matrix L 1 +B 1
- ⁇ 2 (L 3 ) represents the second small feature of the matrix L 3 Value
- ⁇ 1 (L 2 +B 2 ) represents the smallest eigenvalue of the matrix L 2 +B 2
- ⁇ 2 (L 4 )
- Step (2) the secondary control layer of the local control unit, the secondary voltage control structure is:
- the secondary voltage control rule makes the BESS output voltage amplitude converge to the rated value within the setting time T(v), and T(v) is expressed as:
- ⁇ 4 min ⁇ 1 (L ⁇ +B 3 ), ⁇ 1 (L ⁇ +B 4 ) ⁇
- L ⁇ is Is the Laplacian matrix corresponding to the adjacency matrix of the element
- B 3 is Is a diagonal matrix of diagonal elements
- L ⁇ is Is the Laplacian matrix corresponding to the adjacency matrix of the element
- B 4 is Is the diagonal matrix of diagonal elements
- ⁇ 1 (L ⁇ +B 3 ) represents the smallest eigenvalue of the matrix L ⁇ +B 3
- ⁇ 1 (L ⁇ +B 4 ) represents the smallest eigenvalue of the matrix L ⁇ +B 4
- Min means the minimum value
- the upper bound of the estimated value of T(v) has nothing to do with the initial state of the island microgrid system
- Step (2) design the control of battery energy in the secondary control layer of the local control unit.
- the battery energy control structure is:
- E i is the battery energy of the i-th BESS; Denotes the i th coefficient BESS heterogeneous characteristics; P i of the i th output active power BESS; Represents the active power control input, and its control rules have been given in equation (5); Represents the battery energy control input of the i-th BESS, and the designed control rules are as follows:
- T(E) T(E)
- ⁇ 5 min ⁇ 2 (L B ), ⁇ 2 (L C ) ⁇
- L B represents Is the Laplacian matrix corresponding to the adjacency matrix of the element
- L C means Is the Laplacian matrix corresponding to the adjacency matrix of the element
- ⁇ 2 (L B ) represents the second smallest eigenvalue of the matrix L B
- ⁇ 2 (L C ) represents the second smallest eigenvalue of the matrix L C
- min represents Take the minimum value
- the upper bound of the estimated value of T(E) has nothing to do with the initial state of the island microgrid system.
- the present invention has significant advantages and beneficial effects, which are specifically embodied in the following aspects:
- the distributed limited time control of battery energy is added to the secondary control layer, so All battery energy storage systems BESS can respond to demand fluctuations in the island microgrid with the maximum power capacity; the convergence time of the finite time control in the secondary control layer is estimated, and the upper bound of the estimated value of the convergence time is independent of the island microgrid Initial state
- the designed secondary frequency control rules and secondary voltage control rules of the heterogeneous battery energy storage system can restore the output frequency and voltage amplitude of the battery energy storage system to the rated state, while ensuring the proportional distribution of active power; battery energy
- the control rules to achieve the balance and consistency of battery energy, so that the battery energy storage system can respond to the load demand in the island microgrid with the maximum power capacity.
- the control objectives can be completed within a limited time, and the convergence time estimation method is provided. ;
- the distributed limited time control method of the battery energy storage system of the isolated island microgrid of the present invention has a better ability to resist load disturbance.
- Figure 1 is a schematic diagram of the control flow of the present invention
- FIG. 2 is a schematic diagram of the structure of an island microgrid system in an embodiment of the present invention.
- FIG. 3 is a schematic diagram of a communication topology structure between BESSs in an embodiment of the present invention.
- Fig. 4 is a graph of frequency change of an island microgrid in an embodiment of the present invention.
- FIG. 5 is a graph showing the variation curve of the output voltage amplitude of the BESS in the embodiment of the present invention.
- Fig. 6 is a graph showing the change of the output active power of the BESS in the embodiment of the present invention.
- Fig. 7 is a graph showing the change of the battery energy of the BESS in the embodiment of the present invention.
- the distributed limited time control method of the heterogeneous battery energy storage system of the island microgrid of the present invention has a hierarchical control structure, and the droop control method is used at the primary control layer to meet the load demand inside the island microgrid. Aiming at the frequency and voltage deviation caused by droop control, at the secondary control layer, based on the theory of distributed cooperative control, a distributed finite-time secondary controller is designed to restore the output voltage amplitude and frequency of the battery energy storage system to the rated value. State, while ensuring that the active power is distributed proportionally.
- the secondary control layer adds the control of the battery energy, and the distributed limited time control strategy of the battery energy is designed to achieve the balance of the battery energy Unanimous.
- the BESS unit in the present invention is composed of a battery, a voltage source inverter, an LC filter, an output connector, and a local control unit. Each local control unit exchanges status information with its neighboring BESS units through a two-way communication link.
- the control process of the present invention is shown in Figure 1.
- the primary control layer of the local control unit adopts the droop control mode to meet the load demand of the island microgrid.
- the droop control includes frequency droop control and voltage droop control.
- the droop control is:
- v odi , v oqi , i odi and i oqi are the dq axis components of the output voltage v oi and output current i oi of the i-th battery energy storage system BESS, respectively;
- s represents a complex variable, ⁇ c Is the cutoff frequency of the low-pass filter.
- the secondary frequency control rule makes the BESS output frequency converge to the rated value within the setting time T( ⁇ ), and distribute the BESS output active power proportionally within the setting time T( ⁇ ).
- T( ⁇ ) is expressed as follows:
- ⁇ 3 min ⁇ 1 (L 1 +B 1 ), ⁇ 2 (L 3 ), ⁇ 1 (L 2 +B 2 ), ⁇ 2 (L 4 ) ⁇
- L 1 is Is the Laplacian matrix corresponding to the adjacency matrix of the element
- B 1 is Is the diagonal matrix of diagonal elements
- L 3 is Is the Laplacian matrix corresponding to the adjacency matrix of the element
- L 2 is Is the Laplacian matrix corresponding to the adjacency matrix of the element
- B 2 is Is the diagonal matrix of diagonal elements
- L 4 is Is the Laplacian matrix corresponding to the adjacency matrix of the element
- ⁇ 1 (L 1 +B 1 ) represents the smallest eigenvalue of the matrix L 1 +B 1
- ⁇ 2 (L 3 ) represents the second smallest eigenvalue of the matrix L3
- ⁇ 1 (L 2 +B 2 ) represents the smallest eigenvalue of matrix L 2 +B 2
- the secondary voltage control rule makes the BESS output voltage amplitude converge to the rated value within the setting time T(v), and T(v) is expressed as:
- ⁇ 4 min ⁇ 1 (L ⁇ +B 3 ), ⁇ 1 (L ⁇ +B 4 ) ⁇
- L ⁇ is Is the Laplacian matrix corresponding to the adjacency matrix of the element
- B 3 is Is a diagonal matrix of diagonal elements
- L ⁇ is Is the Laplacian matrix corresponding to the adjacency matrix of the element
- B 4 is Is the diagonal matrix of diagonal elements
- ⁇ 1 (L ⁇ +B 3 ) represents the smallest eigenvalue of the matrix L ⁇ +B 3
- ⁇ 1 (L ⁇ +B 4 ) represents the smallest eigenvalue of the matrix L ⁇ +B 4
- Min means the minimum value
- the upper bound of the estimated value of T(v) has nothing to do with the initial state of the island microgrid system
- the specific battery energy control structure is:
- E i is the battery energy of the i-th BESS; Denotes the i th coefficient BESS heterogeneous characteristics; P i of the i th output active power BESS; Represents the active power control input, and its control rules have been given in equation (5); Represents the battery energy control input of the i-th BESS, and the designed control rules are as follows:
- the battery energy control rule enables the battery energy of all BESSs in the island microgrid system to converge within the set time T(E), and T(E) is expressed as:
- ⁇ 5 min ⁇ 2 (L B ), ⁇ 2 (L C ) ⁇
- L B represents Is the Laplacian matrix corresponding to the adjacency matrix of the element
- L C means Is the Laplacian matrix corresponding to the adjacency matrix of the element
- ⁇ 2 (L B ) represents the second smallest eigenvalue of the matrix L B
- ⁇ 2 (L C ) represents the second smallest eigenvalue of the matrix L C
- min represents Take the minimum value
- the upper bound of the estimated value of T(E) has nothing to do with the initial state of the island microgrid system.
- the present invention builds a simulated island microgrid system as shown in Fig. 2 in a Matlab/Simulink simulation environment.
- the system is powered by 5 distributed BESS units, including 5 local load units and 5 power transmission lines.
- Each BESS unit only exchanges status information with neighboring BESS units, and the communication topology between BESSs is shown in Figure 3.
- Set the rated frequency of the island microgrid to 50Hz
- the rated phase voltage amplitude is 311V
- the initial battery energy of the system is between 270kWh and 210kWh.
- BESS1 is the only battery energy storage unit that can receive the system's rated frequency and rated voltage amplitude.
- the simulation starts, only the primary control layer of the local control unit adopts droop control, and the control function of the secondary control layer is closed.
- the convergence time of the control action is estimated.
- the upper bound of the time T( ⁇ ) for frequency recovery and active power proportional distribution is 10.02s
- the upper bound of the voltage recovery time T(v) is 5.45s, and the battery energy balance is uniformly converged.
- the upper bound of the time T(E) is 10.02s.
- Figure 4 is the frequency change curve of the island microgrid
- Figure 5 is the output voltage amplitude change curve of BESS. It can be seen from the figure that the output frequency and voltage amplitude deviate from the rated value due to the droop control only in 0-10s After 10s, using the distributed limited time secondary control method of the present invention, the frequency and voltage amplitude quickly return to the rated state, and the convergence time does not exceed the upper bound of the estimated convergence time.
- Figure 6 shows the change curve of the output active power of BESS. It can be seen from the figure that under the action of the distributed limited time secondary control, the re-proportional distribution of active power can be realized in a relatively short time, and the convergence time The upper bound of the estimated convergence time of 10.02s is not exceeded.
- Figure 7 shows the battery energy change curve of BESS. It can be seen that the convergence time T(E) for the uniform battery energy balance does not exceed its estimated upper bound of 10.02s. The above control effect can also be guaranteed in the case of load disturbance.
- the distributed limited-time secondary control method of the present invention uses a distributed control method.
- Each BESS unit only exchanges information with neighboring BESS units to change the system frequency and voltage amplitude within a limited time. Restore to the rated state, while ensuring the proportional distribution of the output active power of the system, and achieving the balance and consistency of battery energy, improving the power quality of the island microgrid system, so that the battery energy storage system can cope with the internal system with the maximum power capacity Load demand and improve power supply reliability.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
The present invention relates to a distributed finite time control method for an isolated island microgrid heterogeneous battery energy storage system (BESS), comprising: using a droop control strategy in a primary control layer of a local control unit to meet internal load demands of an isolated island microgrid and stabilize the frequency and voltage of the isolated island microgrid; in a secondary control layer of the local control unit, designing a secondary frequency control structure and a secondary voltage control structure, respectively, and controlling the battery energies, designing a battery energy control structure, using a distributed communication mode, designing distributed finite time secondary coordinate control rules, within finite time, restoring the output voltage amplitude and frequency of a BESS to rated values, and at the same time, distributing active powers proportionally by the isolated island microgrid system to cause the battery energies be balanced and consistent; and estimating the convergence time, the upper limit of the estimated value of the convergence time being independent of the initial state of the isolated island microgrid system. The distributed control enables each battery energy storage unit to communicate with its neighboring battery energy storage unit, thereby improving system robustness.
Description
本发明涉及一种孤岛微电网异构电池储能系统分布式有限时间控制方法,属于微电网控制技术领域。The invention relates to a distributed limited time control method for a heterogeneous battery energy storage system in an island microgrid, and belongs to the technical field of microgrid control.
微电网是一种新型的能源结构,能够容纳大量的分布式电源、负荷和储能装置,并能够在并网和孤岛两种模式下运行。当微电网处于并网运行模式时,可以向主网提供或吸收电能,一旦主网发生故障,即能从公共耦合点处断开,进入孤岛模式运行。当微电网运行在孤岛模式时,系统独立地控制电压和频率,并满足微电网内部的负荷需求。由于在孤岛模式时,系统内部的一些关键负荷对电能质量的要求较高,为此,利用电池储能系统为孤岛微电网内部负荷供电,既能满足系统内负荷需求,同时能够提升系统的电能质量。Microgrid is a new type of energy structure that can accommodate a large number of distributed power sources, loads and energy storage devices, and can operate in two modes: grid-connected and isolated. When the microgrid is in the grid-connected operation mode, it can provide or absorb electric energy to the main network. Once the main network fails, it can be disconnected from the common coupling point and enter island mode operation. When the microgrid runs in island mode, the system independently controls the voltage and frequency, and meets the load demand within the microgrid. In the islanding mode, some key loads within the system have higher requirements for power quality. Therefore, the use of battery energy storage systems to power the internal loads of the island microgrid can not only meet the load requirements in the system, but also increase the power of the system. quality.
储能系统传统的控制方法采用集中式控制,需要一个中央控制单元来控制微电网中所有的储能装置,这种控制方式不仅可靠性和鲁棒性较差,也不能适应系统可扩展性的要求。针对这一弊端,分布式控制方法被广泛应用在储能系统的控制中。分布式控制方式利用局部的通信而达到整体的控制目标,不需要集中式控制控制单元和每一个BESS之间存在通信链接,减少了通信负担和计算负担,提升了控制效率。The traditional control method of the energy storage system adopts centralized control, which requires a central control unit to control all the energy storage devices in the microgrid. This control method is not only less reliable and robust, but also unable to adapt to the scalability of the system. Require. In response to this drawback, distributed control methods are widely used in the control of energy storage systems. The distributed control method uses local communication to achieve the overall control goal, and does not require a communication link between the centralized control control unit and each BESS, which reduces the communication burden and computational burden, and improves the control efficiency.
发明内容Summary of the invention
本发明的目的是克服现有技术存在的不足,提供一种孤岛微电网异构电池储能系统分布式有限时间控制方法。The purpose of the present invention is to overcome the shortcomings of the prior art and provide a distributed limited time control method for an isolated island microgrid heterogeneous battery energy storage system.
本发明的目的通过以下技术方案来实现:The purpose of the present invention is achieved through the following technical solutions:
孤岛微电网异构电池储能系统分布式有限时间控制方法,特点是:包含以下步骤:The distributed finite time control method of the heterogeneous battery energy storage system in the island microgrid is characterized by the following steps:
步骤(1):在局部控制单元的初级控制层采用下垂控制策略,满足孤岛微电网内部的负荷需求,稳定孤岛微电网的频率和电压;Step (1): The droop control strategy is adopted at the primary control layer of the local control unit to meet the internal load demand of the island microgrid and stabilize the frequency and voltage of the island microgrid;
步骤(2):在局部控制单元的次级控制层,分别设计次级频率控制结构、次级电压控制结构,并对电池能量控制,设计电池能量控制结构,采用分布式通信方式,设计分布式有限时间次级协同控制规则,在有限时间内,电池储能系统BESS的输出电压幅值和频率恢复到额定值,同时孤岛微电网系统按比例分配有功功率,使电池能量均衡一致;Step (2): In the secondary control layer of the local control unit, respectively design the secondary frequency control structure and the secondary voltage control structure, and control the battery energy, design the battery energy control structure, use the distributed communication method, and design the distributed Limited-time secondary coordinated control rules, within a limited time, the output voltage amplitude and frequency of the battery energy storage system BESS are restored to the rated value, and the island microgrid system distributes the active power proportionally to balance the battery energy;
步骤(3):对收敛时间进行估计,收敛时间估计值的上界独立于孤岛微电网系统的初始状态。Step (3): Estimate the convergence time, and the upper bound of the estimated convergence time is independent of the initial state of the island microgrid system.
进一步地,上述的孤岛微电网异构电池储能系统分布式有限时间控制方法,其中,Further, the above-mentioned distributed limited time control method for a heterogeneous battery energy storage system in an isolated island microgrid, wherein:
步骤(1),在局部控制单元的初级控制层采用下垂控制策略,满足孤岛微电网内部的负荷需求,实现负荷按比例分配,下垂控制规则为:Step (1), the droop control strategy is adopted at the primary control layer of the local control unit to meet the internal load demand of the island microgrid and realize the proportional distribution of the load. The droop control rule is:
式(1)中,电池储能系统BESS,
和
分别表示第i个BESS的输出频率下垂系数和电压幅值下垂系数;
和
分别为第i个BESS的输出频率和电压幅值的参考值;P
i和Q
i分别表示第i个BESS的输出有功功率和无功功率,P
i和Q
i的计算方法为:
In formula (1), the battery energy storage system BESS, with Respectively represent the output frequency droop coefficient and voltage amplitude droop coefficient of the i-th BESS; with BESS respectively the i-th output frequency and voltage amplitude reference value; P i and Q i are calculated represent the i-th output active power and reactive power BESS, P i and Q i are:
式(2)中,v
odi、v
oqi、i
odi和i
oqi分别是第i个电池储能系统BESS的输出电压v
oi和输出电流i
oi的dq轴分量;s表示一个复变量,ω
c是低通滤波器的截止频率。
In formula (2), v odi , v oqi , i odi and i oqi are the dq axis components of the output voltage v oi and output current i oi of the i-th battery energy storage system BESS, respectively; s represents a complex variable, ω c Is the cutoff frequency of the low-pass filter.
进一步地,上述的孤岛微电网异构电池储能系统分布式有限时间控制方法,其中,Further, the above-mentioned distributed limited time control method for a heterogeneous battery energy storage system in an isolated island microgrid, wherein:
步骤(2),局部控制单元的次级控制层,次级频率控制结构为:Step (2), the secondary control layer of the local control unit, the secondary frequency control structure is:
式(3)中,
和
分别为第i个BESS的次级频率控制输入和有功功率控制输入,
和
所设计的控制规则分别表示如下:
In formula (3), with Are the secondary frequency control input and active power control input of the i-th BESS, with The designed control rules are expressed as follows:
其中:c
ω和c
p为正的控制增益参数;控制参数m<n,且均为正奇整数;ω
j和ω
i分别为第j个和第i个BESS的输出频率,ω
ref为孤岛微电网系统的额定频率;
和
分别表示第j个和第i个BESS的频率下垂系数;P
j和P
i分别为第j个和第i个BESS的输出有功功率;a
ij表示第i个与第j个BESS之间通信权值,若第i个BESS与第j个BESS之间存在通信链路,则a
ij=a
ji>0,否则a
ij=a
ji=0;b
i表示牵制增益,若第i个BESS可接收到孤岛微电网系统提供的额定值,则b
i>0,否则b
i=0;N表示孤岛微电网中BESS的总数;
Among them: c ω and c p are positive control gain parameters; control parameters m<n, and both are positive odd integers; ω j and ω i are the output frequencies of the j and i BESS respectively, and ω ref is the island Rated frequency of the microgrid system; with Respectively represent the frequency droop coefficients of the jth and ith BESS; P j and P i are the output active power of the jth and ith BESS respectively; a ij represents the communication right between the ith and jth BESS Value, if there is a communication link between the i-th BESS and the j-th BESS, then a ij =a ji >0, otherwise a ij =a ji =0; b i represents the containment gain, if the i-th BESS can be received To the rated value provided by the island micro-grid system, then b i > 0, otherwise b i =0; N represents the total number of BESS in the island micro-grid;
次级频率控制规则使BESS的输出频率在整定时间T(ω)内收敛到额定值,且在整定时间T(ω)内按比例分配BESS的输出有功功率,T(ω)具体表示如下:The secondary frequency control rule makes the BESS output frequency converge to the rated value within the setting time T(ω), and distribute the BESS output active power proportionally within the setting time T(ω). T(ω) is specifically expressed as follows:
式(6)中:
λ
3
=min{λ
1(L
1+B
1),λ
2(L
3),λ
1(L
2+B
2),λ
2(L
4)},L
1是以
为元素的邻接矩阵所对应的拉普拉斯矩阵,B
1是以
为对角元素的对角矩阵,L
3是以
为元素的邻接矩阵所对应的拉普拉斯矩阵,L
2是以
为元素的邻接矩阵所对应的拉普拉斯矩阵,B
2是以
为对角元素的对角矩阵,L
4是以
为元素的邻接矩阵所对应的拉普拉斯矩阵;λ
1(L
1+B
1)表示矩阵L
1+B
1的最小特征值,λ
2(L
3)表示矩阵L
3的第2小特征值,λ
1(L
2+B
2)表示矩阵L
2+B
2的最小特征值,λ
2(L
4)表示矩阵L
4的第2小特征值,min表示取最小值;T(ω)估计值的上界与孤岛微电网系统的初始状态无关。
In formula (6): λ 3 =min{λ 1 (L 1 +B 1 ),λ 2 (L 3 ),λ 1 (L 2 +B 2 ),λ 2 (L 4 )}, L 1 is Is the Laplacian matrix corresponding to the adjacency matrix of the element, B 1 is Is the diagonal matrix of diagonal elements, L 3 is Is the Laplacian matrix corresponding to the adjacency matrix of the element, L 2 is Is the Laplacian matrix corresponding to the adjacency matrix of the element, B 2 is Is the diagonal matrix of diagonal elements, L 4 is Is the Laplacian matrix corresponding to the adjacency matrix of the element; λ 1 (L 1 +B 1 ) represents the smallest eigenvalue of the matrix L 1 +B 1 , and λ 2 (L 3 ) represents the second small feature of the matrix L 3 Value, λ 1 (L 2 +B 2 ) represents the smallest eigenvalue of the matrix L 2 +B 2 , λ 2 (L 4 ) represents the second smallest eigenvalue of the matrix L 4 , min represents the minimum value; T(ω) The upper bound of the estimated value has nothing to do with the initial state of the island microgrid system.
进一步地,上述的孤岛微电网异构电池储能系统分布式有限时间控制方法,其中,Further, the above-mentioned distributed limited time control method for a heterogeneous battery energy storage system in an isolated island microgrid, wherein:
步骤(2),局部控制单元的次级控制层,次级电压控制结构为:Step (2), the secondary control layer of the local control unit, the secondary voltage control structure is:
式(7)中:
为第i个BESS的次级电压控制输入,
所设计的控制规则表示如下:
In formula (7): Is the secondary voltage control input of the i-th BESS, The designed control rules are expressed as follows:
式(8)中,c
v是正的控制增益参数;控制参数m<n,且均为正奇整数;v
j和v
i分别为第j个和第i个BESS的输出电压幅值,v
ref为孤岛微电网系统的额定电压幅值;a
ij表示第i个与第j个BESS之间通信权 值,若第i个BESS与第j个BESS之间存在通信链路,则a
ij=a
ji>0,否则a
ij=a
ji=0;b
i表示牵制增益,若第i个BESS可接收到孤岛微电网系统提供的额定值,则b
i>0,否则b
i=0;N表示孤岛微电网中BESS的总数;
In the formula (8), c v is a positive control gain parameters; control parameter m <n, and are positive odd integer; V i and V j are the j-th and i-th output voltage amplitude BESS, v ref Is the rated voltage amplitude of the island microgrid system; a ij represents the communication weight between the i-th and j-th BESS, if there is a communication link between the i-th BESS and the j-th BESS, then a ij = a ji > 0, otherwise a ij = a ji =0; b i represents the containment gain, if the i-th BESS can receive the rated value provided by the island microgrid system, then b i > 0, otherwise b i =0; N represents The total number of BESS in the island microgrid;
次级电压控制规则使BESS的输出电压幅值在整定时间T(v)内收敛到额定值,T(v)表示为:The secondary voltage control rule makes the BESS output voltage amplitude converge to the rated value within the setting time T(v), and T(v) is expressed as:
式(9)中,
λ
4
=min{λ
1(L
α+B
3),λ
1(L
β+B
4)},L
α是以
为元素的邻接矩阵所对应的拉普拉斯矩阵,B
3是以
为对角元素的对角矩阵,L
β是以
为元素的邻接矩阵所对应的拉普拉斯矩阵,B
4是以
为对角元素的对角矩阵;λ
1(L
α+B
3)表示矩阵L
α+B
3的最小特征值,λ
1(L
β+B
4)表示矩阵L
β+B
4的最小特征值;min表示取最小值;T(v)估计值的上界与孤岛微电网系统的初始状态无关;
In formula (9), λ 4 =min{λ 1 (L α +B 3 ),λ 1 (L β +B 4 )}, L α is Is the Laplacian matrix corresponding to the adjacency matrix of the element, B 3 is Is a diagonal matrix of diagonal elements, L β is Is the Laplacian matrix corresponding to the adjacency matrix of the element, B 4 is Is the diagonal matrix of diagonal elements; λ 1 (L α +B 3 ) represents the smallest eigenvalue of the matrix L α +B 3 , and λ 1 (L β +B 4 ) represents the smallest eigenvalue of the matrix L β +B 4 ; Min means the minimum value; the upper bound of the estimated value of T(v) has nothing to do with the initial state of the island microgrid system;
进一步地,上述的孤岛微电网异构电池储能系统分布式有限时间控制方法,其中,Further, the above-mentioned distributed limited time control method for a heterogeneous battery energy storage system in an isolated island microgrid, wherein:
步骤(2),在局部控制单元的次级控制层设计对电池能量的控制,电池能量控制结构为:Step (2), design the control of battery energy in the secondary control layer of the local control unit. The battery energy control structure is:
式(10)中:E
i为第i个BESS的电池能量;
表示第i个BESS异构性特征的系数;P
i为第i个BESS的输出有功功率;
表示有功功率控制输入,其控制规则已在式(5)中给出;
表示第i个BESS的电池能量控制输入,所设计的控制规则如下:
In formula (10): E i is the battery energy of the i-th BESS; Denotes the i th coefficient BESS heterogeneous characteristics; P i of the i th output active power BESS; Represents the active power control input, and its control rules have been given in equation (5); Represents the battery energy control input of the i-th BESS, and the designed control rules are as follows:
式(11)中:c
E表示正的控制增益参数;控制参数m<n,且均为正奇整数;E
j和E
i分别为第j个和第i个BESS的电池能量;a
ij表示第i个与第j个BESS之间通信权值,若第i个BESS与第j个BESS之间存在通信链路,则a
ij=a
ji>0,否则a
ij=a
ji=0;N表示系统中BESS的总数;
In formula (11): c E represents a positive control gain parameter; control parameters m<n, and both are positive odd integers; E j and E i are the battery energy of the jth and ith BESS respectively; a ij represents The communication weight between the i-th and j-th BESS. If there is a communication link between the i-th BESS and the j-th BESS, then a ij = a ji > 0, otherwise a ij = a ji =0; N Represents the total number of BESS in the system;
电池能量控制规则使得孤岛微电网系统中所有BESS的电池能量可在整定时间T(E)内收敛一致,T(E)表示为:The battery energy control rules enable the battery energy of all BESSs in the island microgrid system to converge within the setting time T(E). T(E) is expressed as:
T(E)≤max{T(ω),T(μ)} (12)T(E)≤max{T(ω),T(μ)} (12)
式(12)中:max表示取最大值;T(ω)表示频率恢复时间,其计算方法已在式(6)中给出;T(μ)的计算方法如下所示:In formula (12): max represents the maximum value; T(ω) represents the frequency recovery time, the calculation method has been given in the formula (6); the calculation method of T(μ) is as follows:
式(13)中:
λ
5
=min{λ
2(L
B),λ
2(L
C)},L
B表示以
为元素的邻接矩阵所对应的拉普拉斯矩阵,L
C表示以
为元素的邻接矩阵所对应的拉普拉斯矩阵,λ
2(L
B)表示矩阵L
B的第2小特征值,λ
2(L
C)表示矩阵L
C的第2小特征值;min表示取最小值;T(E)估计值的上界与孤岛微电网系统的初始状态无关。
In formula (13): λ 5 =min{λ 2 (L B ),λ 2 (L C )}, L B represents Is the Laplacian matrix corresponding to the adjacency matrix of the element, L C means Is the Laplacian matrix corresponding to the adjacency matrix of the element, λ 2 (L B ) represents the second smallest eigenvalue of the matrix L B , λ 2 (L C ) represents the second smallest eigenvalue of the matrix L C; min represents Take the minimum value; the upper bound of the estimated value of T(E) has nothing to do with the initial state of the island microgrid system.
本发明与现有技术相比具有显著的优点和有益效果,具体体现在以下方面:Compared with the prior art, the present invention has significant advantages and beneficial effects, which are specifically embodied in the following aspects:
①设计分级的控制结构,在初级控制层采用下垂控制策略,满足孤岛微电网系统内部的负荷需求,在次级控制层设计分布式有限时间协同控制,通过分布式通信的方式,在有限时间内,实现电池储能系统BESS的输出电压幅值和频率恢复到额定状态,并保证孤岛微电网系统的有功功率 按比例分配,同时在次级控制层增加对电池能量的分布式有限时间控制,使得所有的电池储能系统BESS能够以最大的功率容量来应对孤岛微电网内部的需求波动;对次级控制层中有限时间控制的收敛时间进行估计,收敛时间估计值的上界独立于孤岛微电网的初始状态;①Design a hierarchical control structure, adopt a droop control strategy at the primary control layer to meet the internal load demand of the island microgrid system, and design a distributed limited-time collaborative control at the secondary control layer. Through distributed communication, within a limited time , Realize that the output voltage amplitude and frequency of the battery energy storage system BESS are restored to the rated state, and ensure that the active power of the island microgrid system is proportionally distributed. At the same time, the distributed limited time control of battery energy is added to the secondary control layer, so All battery energy storage systems BESS can respond to demand fluctuations in the island microgrid with the maximum power capacity; the convergence time of the finite time control in the secondary control layer is estimated, and the upper bound of the estimated value of the convergence time is independent of the island microgrid Initial state
②针对孤岛微电网的电池储能系统,利用分布式控制方式,仅需每个电池储能单元与其邻近的电池储能单元进行通信,交换状态信息,无需中央控制单元,减轻了系统通信负担,提升了系统可靠性和鲁棒性;②For the battery energy storage system of island microgrid, using distributed control mode, only each battery energy storage unit needs to communicate with its neighboring battery energy storage unit to exchange status information, without the need for a central control unit, which reduces the burden of system communication. Improved system reliability and robustness;
③所设计的异构电池储能系统的次级频率控制规则和次级电压控制规则能够恢复电池储能系统的输出频率和电压幅值到额定状态,同时保证有功功率的按比例分配;电池能量的控制规则,实现电池能量的均衡一致,使得电池储能系统能够以最大的功率容量来应对孤岛微电网内部的负荷需求,控制目标均能在有限时间内完成,并提供了收敛时间的估计方法;③The designed secondary frequency control rules and secondary voltage control rules of the heterogeneous battery energy storage system can restore the output frequency and voltage amplitude of the battery energy storage system to the rated state, while ensuring the proportional distribution of active power; battery energy The control rules to achieve the balance and consistency of battery energy, so that the battery energy storage system can respond to the load demand in the island microgrid with the maximum power capacity. The control objectives can be completed within a limited time, and the convergence time estimation method is provided. ;
④本发明孤岛微电网电池储能系统的分布式有限时间控制方法具有较好的抗负荷扰动的能力。④ The distributed limited time control method of the battery energy storage system of the isolated island microgrid of the present invention has a better ability to resist load disturbance.
本发明的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明具体实施方式了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书中所特别指出的结构来实现和获得。Other features and advantages of the present invention will be described in the following description, and partly become obvious from the description, or understood by implementing specific embodiments of the present invention. The purpose and other advantages of the present invention can be realized and obtained through the structures specifically pointed out in the written description and claims.
图1为本发明的控制流程示意图;Figure 1 is a schematic diagram of the control flow of the present invention;
图2为本发明实施例中孤岛微电网系统结构示意图;2 is a schematic diagram of the structure of an island microgrid system in an embodiment of the present invention;
图3为本发明实施例中BESS间的通信拓扑结构示意图;FIG. 3 is a schematic diagram of a communication topology structure between BESSs in an embodiment of the present invention;
图4为本发明实施例中孤岛微电网的频率变化曲线图;Fig. 4 is a graph of frequency change of an island microgrid in an embodiment of the present invention;
图5为本发明实施例中BESS的输出电压幅值的变化曲线图;FIG. 5 is a graph showing the variation curve of the output voltage amplitude of the BESS in the embodiment of the present invention;
图6为本发明实施例中BESS的输出有功功率的变化曲线图;Fig. 6 is a graph showing the change of the output active power of the BESS in the embodiment of the present invention;
图7为本发明实施例中BESS的电池能量的变化曲线图。Fig. 7 is a graph showing the change of the battery energy of the BESS in the embodiment of the present invention.
为了对本发明的技术特征、目的和效果有更加清楚的理解,现详细说明具体实施方案。In order to have a clearer understanding of the technical features, objectives and effects of the present invention, specific implementations are now described in detail.
本发明孤岛微电网异构电池储能系统的分布式有限时间控制方法,具有分级的控制结构,在初级控制层利用下垂控制方法,满足孤岛微电网内部的负荷需求。针对下垂控制导致的频率和电压偏移问题,在次级控制层,基于分布式协同控制理论,设计分布式有限时间次级控制器,将电池储能系统的输出电压幅值和频率恢复到额定状态,同时保证有功功率按比例分配。为使电池储能系统能以最大的功率容量来应对孤岛微电网内部的负荷需求,在次级控制层增加对电池能量的控制,设计电池能量的分布式有限时间控制策略,实现电池能量的均衡一致。The distributed limited time control method of the heterogeneous battery energy storage system of the island microgrid of the present invention has a hierarchical control structure, and the droop control method is used at the primary control layer to meet the load demand inside the island microgrid. Aiming at the frequency and voltage deviation caused by droop control, at the secondary control layer, based on the theory of distributed cooperative control, a distributed finite-time secondary controller is designed to restore the output voltage amplitude and frequency of the battery energy storage system to the rated value. State, while ensuring that the active power is distributed proportionally. In order to enable the battery energy storage system to respond to the load demand of the island microgrid with the maximum power capacity, the secondary control layer adds the control of the battery energy, and the distributed limited time control strategy of the battery energy is designed to achieve the balance of the battery energy Unanimous.
本发明中的BESS单元由电池、电压源逆变器、LC滤波器、输出连接器和局部控制单元等构成,每个局部控制单元通过双向的通信链路与其邻近的BESS单元交换状态信息。本发明的控制流程如图1所示,局部控制单元的初级控制层采用下垂控制方式,满足孤岛微电网的负荷需求,下垂控制包含频率下垂控制和电压下垂控制,下垂控制为:The BESS unit in the present invention is composed of a battery, a voltage source inverter, an LC filter, an output connector, and a local control unit. Each local control unit exchanges status information with its neighboring BESS units through a two-way communication link. The control process of the present invention is shown in Figure 1. The primary control layer of the local control unit adopts the droop control mode to meet the load demand of the island microgrid. The droop control includes frequency droop control and voltage droop control. The droop control is:
式(1)中,
和
分别表示第i个BESS的输出频率下垂系数和电压幅值下垂系数;
和
分别为第i个BESS的输出频率和电压幅值的参考值;P
i和Q
i分别表示第i个BESS的输出有功功率和无功功率,P
i和Q
i的计算方法为:
In formula (1), with Respectively represent the output frequency droop coefficient and voltage amplitude droop coefficient of the i-th BESS; with BESS respectively the i-th output frequency and voltage amplitude reference value; P i and Q i are calculated represent the i-th output active power and reactive power BESS, P i and Q i are:
式(2)中,v
odi、v
oqi、i
odi和i
oqi分别是第i个电池储能系统BESS的输出电压v
oi和输出电流i
oi的dq轴分量;s表示一个复变量,ω
c是低通滤波器的截止频率。
In formula (2), v odi , v oqi , i odi and i oqi are the dq axis components of the output voltage v oi and output current i oi of the i-th battery energy storage system BESS, respectively; s represents a complex variable, ω c Is the cutoff frequency of the low-pass filter.
在局部控制单元的次级控制层,具有如下所示的次级频率控制结构:In the secondary control layer of the local control unit, there is a secondary frequency control structure as shown below:
式(3)中,
和
分别为第i个BESS的次级频率控制输入和有功功率控制输入,
和
所设计的控制规则分别表示如下:
In formula (3), with Are the secondary frequency control input and active power control input of the i-th BESS, with The designed control rules are expressed as follows:
其中:c
ω和c
p为正的控制增益参数;控制参数m<n,且均为正奇整数;ω
j和ω
i分别为第j个和第i个BESS的输出频率,ω
ref为孤岛微电网系统的额定频率;
和
分别表示第j个和第i个BESS的频率下垂系数;P
j和P
i分别为第j个和第i个BESS的输出有功功率;a
ij表示第i个与第j个BESS之间通信权值,若第i个BESS与第j个BESS之间存在通信链路,则a
ij=a
ji>0,否则a
ij=a
ji=0;b
i表示牵制增益,若第i个BESS可接收到孤岛微电网系统提供的额定值,则b
i>0,否则b
i=0;N表示孤岛微电网中BESS的总数;
Among them: c ω and c p are positive control gain parameters; control parameters m<n, and both are positive odd integers; ω j and ω i are the output frequencies of the j and i BESS respectively, and ω ref is the island Rated frequency of the microgrid system; with Respectively represent the frequency droop coefficients of the jth and ith BESS; P j and P i are the output active power of the jth and ith BESS respectively; a ij represents the communication right between the ith and jth BESS Value, if there is a communication link between the i-th BESS and the j-th BESS, then a ij =a ji >0, otherwise a ij =a ji =0; b i represents the containment gain, if the i-th BESS can be received To the rated value provided by the island micro-grid system, then b i > 0, otherwise b i =0; N represents the total number of BESS in the island micro-grid;
次级频率控制规则使BESS的输出频率在整定时间T(ω)内收敛到额定值,且在整定时间T(ω)内按比例分配BESS的输出有功功率,T(ω)具 体表示如下:The secondary frequency control rule makes the BESS output frequency converge to the rated value within the setting time T(ω), and distribute the BESS output active power proportionally within the setting time T(ω). T(ω) is expressed as follows:
式(6)中:
λ
3
=min{λ
1(L
1+B
1),λ
2(L
3),λ
1(L
2+B
2),λ
2(L
4)},L
1是以
为元素的邻接矩阵所对应的拉普拉斯矩阵,B
1是以
为对角元素的对角矩阵,L
3是以
为元素的邻接矩阵所对应的拉普拉斯矩阵,L
2是以
为元素的邻接矩阵所对应的拉普拉斯矩阵,B
2是以
为对角元素的对角矩阵,L
4是以
为元素的邻接矩阵所对应的拉普拉斯矩阵;λ
1(L
1+B
1)表示矩阵L
1+B
1的最小特征值,λ
2(L
3)表示矩阵
L3的第2小特征值,λ
1(L
2+B
2)表示矩阵L
2+B
2的最小特征值,λ
2(L
4)表示矩阵L
4的第2小特征值,min表示取最小值;T(ω)估计值的上界与孤岛微电网系统的初始状态无关。
In formula (6): λ 3 =min{λ 1 (L 1 +B 1 ),λ 2 (L 3 ),λ 1 (L 2 +B 2 ),λ 2 (L 4 )}, L 1 is Is the Laplacian matrix corresponding to the adjacency matrix of the element, B 1 is Is the diagonal matrix of diagonal elements, L 3 is Is the Laplacian matrix corresponding to the adjacency matrix of the element, L 2 is Is the Laplacian matrix corresponding to the adjacency matrix of the element, B 2 is Is the diagonal matrix of diagonal elements, L 4 is Is the Laplacian matrix corresponding to the adjacency matrix of the element; λ 1 (L 1 +B 1 ) represents the smallest eigenvalue of the matrix L 1 +B 1 , and λ 2 (L 3 ) represents the second smallest eigenvalue of the matrix L3 , Λ 1 (L 2 +B 2 ) represents the smallest eigenvalue of matrix L 2 +B 2 , λ 2 (L 4 ) represents the second smallest eigenvalue of matrix L 4 , min represents the minimum value; T(ω) estimation The upper bound of the value has nothing to do with the initial state of the island microgrid system.
在局部控制单元的次级控制层,具有如下的次级电压控制规则:In the secondary control layer of the local control unit, there are the following secondary voltage control rules:
式(7)中:
为第i个BESS的次级电压控制输入,
所设计的控制规则表示如下:
In formula (7): Is the secondary voltage control input of the i-th BESS, The designed control rules are expressed as follows:
式(8)中,c
v是正的控制增益参数;控制参数m<n,且均为正奇整数;v
j和v
i分别为第j个和第i个BESS的输出电压幅值,v
ref为孤岛微电网系统的额定电压幅值;a
ij表示第i个与第j个BESS之间通信权值,若第i个BESS与第j个BESS之间存在通信链路,则a
ij=a
ji>0,否则a
ij=a
ji=0;b
i表示牵制增益,若第i个BESS可接收到孤岛微电网系统提供的额定值,则b
i>0,否则b
i=0;N表示孤岛微电网中BESS的总数;
In the formula (8), c v is a positive control gain parameters; control parameter m <n, and are positive odd integer; V i and V j are the j-th and i-th output voltage amplitude BESS, v ref Is the rated voltage amplitude of the island microgrid system; a ij represents the communication weight between the i-th and j-th BESS, if there is a communication link between the i-th BESS and the j-th BESS, then a ij = a ji > 0, otherwise a ij = a ji =0; b i represents the containment gain, if the i-th BESS can receive the rated value provided by the island microgrid system, then b i > 0, otherwise b i =0; N represents The total number of BESS in the island microgrid;
次级电压控制规则使BESS的输出电压幅值在整定时间T(v)内收敛 到额定值,T(v)表示为:The secondary voltage control rule makes the BESS output voltage amplitude converge to the rated value within the setting time T(v), and T(v) is expressed as:
式(9)中,
λ
4
=min{λ
1(L
α+B
3),λ
1(L
β+B
4)},L
α是以
为元素的邻接矩阵所对应的拉普拉斯矩阵,B
3是以
为对角元素的对角矩阵,L
β是以
为元素的邻接矩阵所对应的拉普拉斯矩阵,B
4是以
为对角元素的对角矩阵;λ
1(L
α+B
3)表示矩阵L
α+B
3的最小特征值,λ
1(L
β+B
4)表示矩阵L
β+B
4的最小特征值;min表示取最小值;T(v)估计值的上界与孤岛微电网系统的初始状态无关;
In formula (9), λ 4 =min{λ 1 (L α +B 3 ),λ 1 (L β +B 4 )}, L α is Is the Laplacian matrix corresponding to the adjacency matrix of the element, B 3 is Is a diagonal matrix of diagonal elements, L β is Is the Laplacian matrix corresponding to the adjacency matrix of the element, B 4 is Is the diagonal matrix of diagonal elements; λ 1 (L α +B 3 ) represents the smallest eigenvalue of the matrix L α +B 3 , and λ 1 (L β +B 4 ) represents the smallest eigenvalue of the matrix L β +B 4 ; Min means the minimum value; the upper bound of the estimated value of T(v) has nothing to do with the initial state of the island microgrid system;
在局部控制单元的次级控制层增加对电池能量的控制,具体的电池能量控制结构为:Increase the control of battery energy in the secondary control layer of the local control unit. The specific battery energy control structure is:
式(10)中:E
i为第i个BESS的电池能量;
表示第i个BESS异构性特征的系数;P
i为第i个BESS的输出有功功率;
表示有功功率控制输入,其控制规则已在式(5)中给出;
表示第i个BESS的电池能量控制输入,所设计的控制规则如下:
In formula (10): E i is the battery energy of the i-th BESS; Denotes the i th coefficient BESS heterogeneous characteristics; P i of the i th output active power BESS; Represents the active power control input, and its control rules have been given in equation (5); Represents the battery energy control input of the i-th BESS, and the designed control rules are as follows:
式(11)中:c
E表示正的控制增益参数;控制参数m<n,且均为正奇整数;E
j和E
i分别为第j个和第i个BESS的电池能量;a
ij表示第i个与第j个BESS之间通信权值,若第i个BESS与第j个BESS之间存在通信链路,则a
ij=a
ji>0,否则a
ij=a
ji=0;N表示系统中BESS的总数;
In formula (11): c E represents a positive control gain parameter; control parameters m<n, and both are positive odd integers; E j and E i are the battery energy of the jth and ith BESS respectively; a ij represents The communication weight between the i-th and j-th BESS. If there is a communication link between the i-th BESS and the j-th BESS, then a ij = a ji > 0, otherwise a ij = a ji =0; N Represents the total number of BESS in the system;
电池能量控制规则使得孤岛微电网系统中所有BESS的电池能量可 在整定时间T(E)内收敛一致,T(E)表示为:The battery energy control rule enables the battery energy of all BESSs in the island microgrid system to converge within the set time T(E), and T(E) is expressed as:
T(E)≤max{T(ω),T(μ)} (12)T(E)≤max{T(ω),T(μ)} (12)
式(12)中:max表示取最大值;T(ω)表示频率恢复时间,其计算方法已在式(6)中给出;T(μ)的计算方法如下所示:In formula (12): max represents the maximum value; T(ω) represents the frequency recovery time, the calculation method has been given in the formula (6); the calculation method of T(μ) is as follows:
式(13)中:
λ
5
=min{λ
2(L
B),λ
2(L
C)},L
B表示以
为元素的邻接矩阵所对应的拉普拉斯矩阵,L
C表示以
为元素的邻接矩阵所对应的拉普拉斯矩阵,λ
2(L
B)表示矩阵L
B的第2小特征值,λ
2(L
C)表示矩阵L
C的第2小特征值;min表示取最小值;T(E)估计值的上界与孤岛微电网系统的初始状态无关。
In formula (13): λ 5 =min{λ 2 (L B ),λ 2 (L C )}, L B represents Is the Laplacian matrix corresponding to the adjacency matrix of the element, L C means Is the Laplacian matrix corresponding to the adjacency matrix of the element, λ 2 (L B ) represents the second smallest eigenvalue of the matrix L B , λ 2 (L C ) represents the second smallest eigenvalue of the matrix L C; min represents Take the minimum value; the upper bound of the estimated value of T(E) has nothing to do with the initial state of the island microgrid system.
本发明在Matlab/Simulink仿真环境中搭建如图2所示的仿真孤岛微电网系统,系统由5个分布式的BESS单元进行供电,包含5个局部负荷单元和5条电力传输线。每个BESS单元仅与邻近的BESS单元交换状态信息,BESS间的通信拓扑结构如图3所示。设置孤岛微电网的额定频率为50Hz,额定相电压幅值为311V,系统初始的电池能量在270kWh~210kWh之间。在该系统中,BESS1为唯一能够接收系统额定频率和额定电压幅值的电池储能单元。The present invention builds a simulated island microgrid system as shown in Fig. 2 in a Matlab/Simulink simulation environment. The system is powered by 5 distributed BESS units, including 5 local load units and 5 power transmission lines. Each BESS unit only exchanges status information with neighboring BESS units, and the communication topology between BESSs is shown in Figure 3. Set the rated frequency of the island microgrid to 50Hz, the rated phase voltage amplitude is 311V, and the initial battery energy of the system is between 270kWh and 210kWh. In this system, BESS1 is the only battery energy storage unit that can receive the system's rated frequency and rated voltage amplitude.
仿真开始时,仅在局部控制单元的初级控制层采用下垂控制,次级控制层的控制作用处于关闭状态。t=10s时,在次级控制层采用本发明分布式有限时间控制次级控制方法,设置负荷扰动在t=50s时发生。对控制作用的收敛时间进行预估,频率恢复和有功功率按比例分配的时间T(ω)的上界为10.02s,电压恢复时间T(v)的上界为5.45s,电池能量均衡一致收敛时间T(E)的上界值为10.02s。When the simulation starts, only the primary control layer of the local control unit adopts droop control, and the control function of the secondary control layer is closed. When t=10s, the distributed limited time control secondary control method of the present invention is adopted in the secondary control layer, and the load disturbance is set to occur at t=50s. The convergence time of the control action is estimated. The upper bound of the time T(ω) for frequency recovery and active power proportional distribution is 10.02s, and the upper bound of the voltage recovery time T(v) is 5.45s, and the battery energy balance is uniformly converged. The upper bound of the time T(E) is 10.02s.
图4为孤岛微电网的频率变化曲线,图5为BESS的输出电压幅值变化曲线,从图中可以看出,由于在0~10s内仅采用下垂控制,输出频率和 电压幅值偏离了额定值,10s后,采用本发明分布式有限时间次级控制方法,频率和电压幅值迅速恢复到额定状态,并且收敛时间未超过预估的收敛时间上界值。图6为BESS的输出有功功率的变化曲线,从图中可以看出,在分布式有限时间次级控制的作用下,有功功率的重新按比例分配能够在较短的时间内实现,并且收敛时间未超过预估的收敛时间上界值10.02s。图7为BESS的电池能量变化曲线,可以看出,电池能量均衡一致的收敛时间T(E)未超过其预估的上界值10.02s。以上控制作用在负荷扰动发生的情况下,同样能够得到保证。Figure 4 is the frequency change curve of the island microgrid, and Figure 5 is the output voltage amplitude change curve of BESS. It can be seen from the figure that the output frequency and voltage amplitude deviate from the rated value due to the droop control only in 0-10s After 10s, using the distributed limited time secondary control method of the present invention, the frequency and voltage amplitude quickly return to the rated state, and the convergence time does not exceed the upper bound of the estimated convergence time. Figure 6 shows the change curve of the output active power of BESS. It can be seen from the figure that under the action of the distributed limited time secondary control, the re-proportional distribution of active power can be realized in a relatively short time, and the convergence time The upper bound of the estimated convergence time of 10.02s is not exceeded. Figure 7 shows the battery energy change curve of BESS. It can be seen that the convergence time T(E) for the uniform battery energy balance does not exceed its estimated upper bound of 10.02s. The above control effect can also be guaranteed in the case of load disturbance.
从仿真可以看出,本发明分布式有限时间次级控制方法,以分布式控制的方式,每个BESS单元仅通过与邻近的BESS单元进行信息交互,在有限时间内将系统频率和电压幅值恢复到额定状态,同时保证系统的输出有功功率的按比例分配,以及实现电池能量的均衡一致,提升孤岛微电网系统的电能质量,使得电池储能系统能够以最大的功率容量来应对系统内部的负荷需求,提升供电可靠性。It can be seen from the simulation that the distributed limited-time secondary control method of the present invention uses a distributed control method. Each BESS unit only exchanges information with neighboring BESS units to change the system frequency and voltage amplitude within a limited time. Restore to the rated state, while ensuring the proportional distribution of the output active power of the system, and achieving the balance and consistency of battery energy, improving the power quality of the island microgrid system, so that the battery energy storage system can cope with the internal system with the maximum power capacity Load demand and improve power supply reliability.
需要说明的是:以上所述仅为本发明的优选实施方式,并非用以限定本发明的权利范围;同时以上的描述,对于相关技术领域的专门人士应可明了及实施,因此其它未脱离本发明所揭示的精神下所完成的等效改变或修饰,均应包含在申请专利范围中。It should be noted that the above descriptions are only the preferred embodiments of the present invention and are not intended to limit the scope of rights of the present invention; at the same time, the above descriptions should be understood and implemented by those skilled in the relevant technical fields, so the others do not depart from the present invention. All equivalent changes or modifications completed under the spirit of the invention should be included in the scope of the patent application.
Claims (5)
- 孤岛微电网异构电池储能系统分布式有限时间控制方法,其特征在于:包含以下步骤:The distributed limited time control method of the heterogeneous battery energy storage system of isolated island microgrid is characterized in that it includes the following steps:步骤(1):在局部控制单元的初级控制层采用下垂控制策略,满足孤岛微电网内部的负荷需求,稳定孤岛微电网的频率和电压;Step (1): The droop control strategy is adopted at the primary control layer of the local control unit to meet the internal load demand of the island microgrid and stabilize the frequency and voltage of the island microgrid;步骤(2):在局部控制单元的次级控制层,分别设计次级频率控制结构、次级电压控制结构,并对电池能量控制,设计电池能量控制结构,采用分布式通信方式,设计分布式有限时间次级协同控制规则,在有限时间内,电池储能系统BESS的输出电压幅值和频率恢复到额定值,同时孤岛微电网系统按比例分配有功功率,使电池能量均衡一致;Step (2): In the secondary control layer of the local control unit, respectively design the secondary frequency control structure and the secondary voltage control structure, and control the battery energy, design the battery energy control structure, use the distributed communication method, and design the distributed Limited-time secondary coordinated control rules, within a limited time, the output voltage amplitude and frequency of the battery energy storage system BESS are restored to the rated value, and the island microgrid system distributes the active power proportionally to balance the battery energy;步骤(3):对收敛时间进行估计,收敛时间估计值的上界独立于孤岛微电网系统的初始状态。Step (3): Estimate the convergence time, and the upper bound of the estimated convergence time is independent of the initial state of the island microgrid system.
- 根据权利要求1所述的孤岛微电网异构电池储能系统分布式有限时间控制方法,其特征在于:The distributed limited time control method of the heterogeneous battery energy storage system in the island microgrid according to claim 1, characterized in that:步骤(1),在局部控制单元的初级控制层采用下垂控制策略,满足孤岛微电网内部的负荷需求,实现负荷按比例分配,下垂控制规则为:Step (1), the droop control strategy is adopted at the primary control layer of the local control unit to meet the internal load demand of the island microgrid and realize the proportional distribution of the load. The droop control rule is:式(1)中,电池储能系统BESS, 和 分别表示第i个BESS的输出频率下垂系数和电压幅值下垂系数; 和 分别为第i个BESS的输出频率和电压幅值的参考值;P i和Q i分别表示第i个BESS的输出有功功率和无功功率,P i和Q i的计算方法为: In formula (1), the battery energy storage system BESS, with Respectively represent the output frequency droop coefficient and voltage amplitude droop coefficient of the i-th BESS; with BESS respectively the i-th output frequency and voltage amplitude reference value; P i and Q i are calculated represent the i-th output active power and reactive power BESS, P i and Q i are:式(2)中,v odi、v oqi、i odi和i oqi分别是第i个电池储能系统BESS的输出电压v oi和输出电流i oi的dq轴分量;s表示一个复变量,ω c是低通滤波器的截止频率。 In formula (2), v odi , v oqi , i odi and i oqi are the dq axis components of the output voltage v oi and output current i oi of the i-th battery energy storage system BESS, respectively; s represents a complex variable, ω c Is the cutoff frequency of the low-pass filter.
- 根据权利要求1所述的孤岛微电网异构电池储能系统分布式有限时间控制方法,其特征在于:The distributed limited time control method of the heterogeneous battery energy storage system in the island microgrid according to claim 1, characterized in that:步骤(2),局部控制单元的次级控制层,次级频率控制结构为:Step (2), the secondary control layer of the local control unit, the secondary frequency control structure is:式(3)中, 和 分别为第i个BESS的次级频率控制输入和有功功率控制输入, 和 所设计的控制规则分别表示如下: In formula (3), with Are the secondary frequency control input and active power control input of the i-th BESS, with The designed control rules are expressed as follows:其中:c ω和c p为正的控制增益参数;控制参数m<n,且均为正奇整数;ω j和ω i分别为第j个和第i个BESS的输出频率,ω ref为孤岛微电网系统的额定频率; 和 分别表示第j个和第i个BESS的频率下垂系数;P j和P i分别为第j个和第i个BESS的输出有功功率;a ij表示第i个与第j个BESS之间通信权值,若第i个BESS与第j个BESS之间存在通信链路,则a ij=a ji>0,否则a ij=a ji=0;b i表示牵制增益,若第i个BESS可接收到孤岛微电网系统提供的额定值,则b i>0,否则b i=0;N表示孤岛微电网中BESS的总数; Among them: c ω and c p are positive control gain parameters; control parameters m<n, and both are positive odd integers; ω j and ω i are the output frequencies of the j and i BESS respectively, and ω ref is the island Rated frequency of the microgrid system; with Respectively represent the frequency droop coefficients of the jth and ith BESS; P j and P i are the output active power of the jth and ith BESS respectively; a ij represents the communication right between the ith and jth BESS Value, if there is a communication link between the i-th BESS and the j-th BESS, then a ij =a ji >0, otherwise a ij =a ji =0; b i represents the containment gain, if the i-th BESS can be received To the rated value provided by the island micro-grid system, then b i > 0, otherwise b i =0; N represents the total number of BESS in the island micro-grid;次级频率控制规则使BESS的输出频率在整定时间T(ω)内收敛到额定值,且在整定时间T(ω)内按比例分配BESS的输出有功功率,T(ω)具体表示如下:The secondary frequency control rule makes the BESS output frequency converge to the rated value within the setting time T(ω), and distribute the BESS output active power proportionally within the setting time T(ω). T(ω) is specifically expressed as follows:式(6)中: λ 3 =min{λ 1(L 1+B 1),λ 2(L 3),λ 1(L 2+B 2),λ 2(L 4)},L 1是以 为元素的邻接矩阵所对应的拉普拉斯矩阵,B 1是以 为对角元素的对角矩阵,L 3是以 为元素的邻接矩阵所对应的拉普拉斯矩阵,L 2是以 为元素的邻接矩阵所对应的拉普拉斯矩阵,B 2是以 为对角元素的对角矩阵,L 4是以 为元素的邻接矩阵所对应的拉普拉斯矩阵;λ 1(L 1+B 1)表示矩阵L 1+B 1的最小特征值,λ 2(L 3)表示矩阵L 3的第2小特征值,λ 1(L 2+B 2)表示矩阵L 2+B 2的最小特征值,λ 2(L 4)表示矩阵L 4的第2小特征值,min表示取最小值;T(ω)估计值的上界与孤岛微电网系统的初始状态无关。 In formula (6): λ 3 =min{λ 1 (L 1 +B 1 ),λ 2 (L 3 ),λ 1 (L 2 +B 2 ),λ 2 (L 4 )}, L 1 is Is the Laplacian matrix corresponding to the adjacency matrix of the element, B 1 is Is the diagonal matrix of diagonal elements, L 3 is Is the Laplacian matrix corresponding to the adjacency matrix of the element, L 2 is Is the Laplacian matrix corresponding to the adjacency matrix of the element, B 2 is Is the diagonal matrix of diagonal elements, L 4 is Is the Laplacian matrix corresponding to the adjacency matrix of the element; λ 1 (L 1 +B 1 ) represents the smallest eigenvalue of the matrix L 1 +B 1 , and λ 2 (L 3 ) represents the second small feature of the matrix L 3 Value, λ 1 (L 2 +B 2 ) represents the smallest eigenvalue of the matrix L 2 +B 2 , λ 2 (L 4 ) represents the second smallest eigenvalue of the matrix L 4 , min represents the minimum value; T(ω) The upper bound of the estimated value has nothing to do with the initial state of the island microgrid system.
- 根据权利要求1所述的孤岛微电网异构电池储能系统分布式有限时间控制方法,其特征在于:The distributed limited time control method of the heterogeneous battery energy storage system in the island microgrid according to claim 1, characterized in that:步骤(2),局部控制单元的次级控制层,次级电压控制结构为:Step (2), the secondary control layer of the local control unit, the secondary voltage control structure is:式(7)中: 为第i个BESS的次级电压控制输入, 所设计的控制规则表示如下: In formula (7): Is the secondary voltage control input of the i-th BESS, The designed control rules are expressed as follows:式(8)中,c v是正的控制增益参数;控制参数m<n,且均为正奇整数;v j和v i分别为第j个和第i个BESS的输出电压幅值,v ref为孤岛微电网系统的额定电压幅值;a ij表示第i个与第j个BESS之间通信权 值,若第i个BESS与第j个BESS之间存在通信链路,则a ij=a ji>0,否则a ij=a ji=0;b i表示牵制增益,若第i个BESS可接收到孤岛微电网系统提供的额定值,则b i>0,否则b i=0;N表示孤岛微电网中BESS的总数; In the formula (8), c v is a positive control gain parameters; control parameter m <n, and are positive odd integer; V i and V j are the j-th and i-th output voltage amplitude BESS, v ref Is the rated voltage amplitude of the island microgrid system; a ij represents the communication weight between the i-th and j-th BESS, if there is a communication link between the i-th BESS and the j-th BESS, then a ij = a ji > 0, otherwise a ij = a ji =0; b i represents the containment gain, if the i-th BESS can receive the rated value provided by the island microgrid system, then b i > 0, otherwise b i =0; N represents The total number of BESS in the island microgrid;次级电压控制规则使BESS的输出电压幅值在整定时间T(v)内收敛到额定值,T(v)表示为:The secondary voltage control rule makes the BESS output voltage amplitude converge to the rated value within the setting time T(v), and T(v) is expressed as:式(9)中, λ 4 =min{λ 1(L α+B 3),λ 1(L β+B 4)},L α是以 为元素的邻接矩阵所对应的拉普拉斯矩阵,B 3是以 为对角元素的对角矩阵,L β是以 为元素的邻接矩阵所对应的拉普拉斯矩阵,B 4是以 为对角元素的对角矩阵;λ 1(L α+B 3)表示矩阵L α+B 3的最小特征值,λ 1(L β+B 4)表示矩阵L β+B 4的最小特征值;min表示取最小值;T(v)估计值的上界与孤岛微电网系统的初始状态无关; In formula (9), λ 4 =min{λ 1 (L α +B 3 ),λ 1 (L β +B 4 )}, L α is Is the Laplacian matrix corresponding to the adjacency matrix of the element, B 3 is Is a diagonal matrix of diagonal elements, L β is Is the Laplacian matrix corresponding to the adjacency matrix of the element, B 4 is Is the diagonal matrix of diagonal elements; λ 1 (L α +B 3 ) represents the smallest eigenvalue of the matrix L α +B 3 , and λ 1 (L β +B 4 ) represents the smallest eigenvalue of the matrix L β +B 4 ; Min means the minimum value; the upper bound of the estimated value of T(v) has nothing to do with the initial state of the island microgrid system;
- 根据权利要求1所述的孤岛微电网异构电池储能系统分布式有限时间控制方法,其特征在于:The distributed limited time control method of the heterogeneous battery energy storage system in the island microgrid according to claim 1, characterized in that:步骤(2),在局部控制单元的次级控制层设计对电池能量的控制,电池能量控制结构为:Step (2), design the control of battery energy in the secondary control layer of the local control unit. The battery energy control structure is:式(10)中:E i为第i个BESS的电池能量; 表示第i个BESS异构性特征的系数;P i为第i个BESS的输出有功功率; 表示有功功率控制输入,其控制规则已在式(5)中给出; 表示第i个BESS的电池能量控制输入,所设计的控制规则如下: In formula (10): E i is the battery energy of the i-th BESS; Denotes the i th coefficient BESS heterogeneous characteristics; P i of the i th output active power BESS; Represents the active power control input, and its control rules have been given in equation (5); Represents the battery energy control input of the i-th BESS, and the designed control rules are as follows:式(11)中:c E表示正的控制增益参数;控制参数m<n,且均为正奇整数;E j和E i分别为第j个和第i个BESS的电池能量;a ij表示第i个与第j个BESS之间通信权值,若第i个BESS与第j个BESS之间存在通信链路,则a ij=a ji>0,否则a ij=a ji=0;N表示系统中BESS的总数; In formula (11): c E represents a positive control gain parameter; control parameters m<n, and both are positive odd integers; E j and E i are the battery energy of the jth and ith BESS respectively; a ij represents The communication weight between the i-th and j-th BESS. If there is a communication link between the i-th BESS and the j-th BESS, then a ij = a ji > 0, otherwise a ij = a ji =0; N Represents the total number of BESS in the system;电池能量控制规则使得孤岛微电网系统中所有BESS的电池能量可在整定时间T(E)内收敛一致,T(E)表示为:The battery energy control rules enable the battery energy of all BESSs in the island microgrid system to converge within the setting time T(E). T(E) is expressed as:T(E)≤max{T(ω),T(μ)} (12)T(E)≤max{T(ω),T(μ)} (12)式(12)中:max表示取最大值;T(ω)表示频率恢复时间,其计算方法已在式(6)中给出;T(μ)的计算方法如下所示:In formula (12): max represents the maximum value; T(ω) represents the frequency recovery time, the calculation method has been given in the formula (6); the calculation method of T(μ) is as follows:式(13)中: λ 5 =min{λ 2(L B),λ 2(L C)},L B表示以 为元素的邻接矩阵所对应的拉普拉斯矩阵,L C表示以 为元素的邻接矩阵所对应的拉普拉斯矩阵,λ 2(L B)表示矩阵L B的第2小特征值,λ 2(L C)表示矩阵L C的第2小特征值;min表示取最小值;T(E)估计值的上界与孤岛微电网系统的初始状态无关。 In formula (13): λ 5 =min{λ 2 (L B ),λ 2 (L C )}, L B represents Is the Laplacian matrix corresponding to the adjacency matrix of the element, L C means Is the Laplacian matrix corresponding to the adjacency matrix of the element, λ 2 (L B ) represents the second smallest eigenvalue of the matrix L B , λ 2 (L C ) represents the second smallest eigenvalue of the matrix L C; min represents Take the minimum value; the upper bound of the estimated value of T(E) has nothing to do with the initial state of the island microgrid system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21754880.9A EP3926780A4 (en) | 2020-04-15 | 2021-03-01 | Distributed finite time control method for isolated island microgrid heterogeneous battery energy storage system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010293665.1 | 2020-04-15 | ||
CN202010293665.1A CN111371112A (en) | 2020-04-15 | 2020-04-15 | Distributed finite time control method for island microgrid heterogeneous battery energy storage system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021208613A1 true WO2021208613A1 (en) | 2021-10-21 |
Family
ID=71212382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/078414 WO2021208613A1 (en) | 2020-04-15 | 2021-03-01 | Distributed finite time control method for isolated island microgrid heterogeneous battery energy storage system |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3926780A4 (en) |
CN (1) | CN111371112A (en) |
WO (1) | WO2021208613A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114447934A (en) * | 2022-01-21 | 2022-05-06 | 湖南工业大学 | Island alternating current-direct current hybrid micro-grid control method and system considering power constraint |
CN114512983A (en) * | 2022-03-02 | 2022-05-17 | 国网浙江省电力有限公司信息通信分公司 | Distributed power supply elastic control method for network attack |
CN116826780A (en) * | 2023-05-19 | 2023-09-29 | 重庆大学 | Master-slave-based energy storage secondary frequency modulation control method with limited time consistency |
CN117805541A (en) * | 2024-02-29 | 2024-04-02 | 西安千帆翼数字能源技术有限公司 | Island detection method, protection method and related device of energy storage converter |
CN117890723A (en) * | 2023-12-19 | 2024-04-16 | 安徽拓界电源科技有限公司 | Island detection method and system |
CN117913902A (en) * | 2024-03-19 | 2024-04-19 | 山东大学 | Island micro-network state estimation method and system based on preset time observer |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111371112A (en) * | 2020-04-15 | 2020-07-03 | 苏州科技大学 | Distributed finite time control method for island microgrid heterogeneous battery energy storage system |
CN112147900B (en) * | 2020-09-30 | 2022-04-26 | 苏州科技大学 | Finite time self-adaptive fuzzy tracking control method of full-state constraint power system |
CN112436533B (en) * | 2020-11-13 | 2022-08-02 | 武汉科技大学 | Multi-energy-storage-unit distributed control method based on proportional power distribution |
CN112531756A (en) * | 2020-11-30 | 2021-03-19 | 香港中文大学(深圳) | Distributed control method, system and equipment for electric quantity balance of energy storage system |
CN114221355B (en) * | 2021-11-29 | 2024-01-26 | 苏州科技大学 | Micro-grid limited time secondary frequency modulation control method based on event triggering mechanism |
CN114421509A (en) * | 2022-01-28 | 2022-04-29 | 山东大学 | Distributed self-adaptive control method of micro-grid energy storage system under unknown disturbance |
CN114744641B (en) * | 2022-04-26 | 2024-03-05 | 合肥工业大学 | Reactive power average micro-grid distributed slip mode voltage secondary control method |
CN115333143B (en) * | 2022-07-08 | 2024-05-07 | 国网黑龙江省电力有限公司大庆供电公司 | Deep learning multi-agent micro-grid cooperative control method based on double neural networks |
CN116094002B (en) * | 2022-12-09 | 2024-08-23 | 国网上海市电力公司 | Rapid hierarchical coordination control method based on distributed battery energy storage system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105634020A (en) * | 2016-03-16 | 2016-06-01 | 东南大学 | Finite time consistency-based distributed coordination control method for island micro-grid |
CN109687526A (en) * | 2019-03-06 | 2019-04-26 | 华北电力大学 | A kind of isolated island micro-capacitance sensor layered distribution type control strategy based on congruity theory |
CN110854927A (en) * | 2019-10-28 | 2020-02-28 | 国网福建省电力有限公司 | Island type micro-grid distributed cooperative control method |
CN111371112A (en) * | 2020-04-15 | 2020-07-03 | 苏州科技大学 | Distributed finite time control method for island microgrid heterogeneous battery energy storage system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11005269B2 (en) * | 2017-08-01 | 2021-05-11 | Siemens Aktiengesellschaft | Systems, apparatus, and methods for load sharing between isochronous generators and battery energy storage systems in islanded microgrids |
CN107465211B (en) * | 2017-09-06 | 2020-09-01 | 重庆大学 | Distributed fixed time coordination control method for island micro-grid |
-
2020
- 2020-04-15 CN CN202010293665.1A patent/CN111371112A/en active Pending
-
2021
- 2021-03-01 EP EP21754880.9A patent/EP3926780A4/en not_active Withdrawn
- 2021-03-01 WO PCT/CN2021/078414 patent/WO2021208613A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105634020A (en) * | 2016-03-16 | 2016-06-01 | 东南大学 | Finite time consistency-based distributed coordination control method for island micro-grid |
CN109687526A (en) * | 2019-03-06 | 2019-04-26 | 华北电力大学 | A kind of isolated island micro-capacitance sensor layered distribution type control strategy based on congruity theory |
CN110854927A (en) * | 2019-10-28 | 2020-02-28 | 国网福建省电力有限公司 | Island type micro-grid distributed cooperative control method |
CN111371112A (en) * | 2020-04-15 | 2020-07-03 | 苏州科技大学 | Distributed finite time control method for island microgrid heterogeneous battery energy storage system |
Non-Patent Citations (4)
Title |
---|
CHEN GANG, LI ZHIYONG WEI MENGLI: "Distributed fixed-time secondary coordination control of islanded microgrids", CONTROL AND DECISION, DONGBEI DAXUE, SHENYANG, CN, vol. 34, no. 1, 31 January 2019 (2019-01-31), CN , pages 205 - 212, XP055857466, ISSN: 1001-0920, DOI: 10.13195/j.kzyjc.2017.0935 * |
HU JUNYAN; LANZON ALEXANDER: "Distributed Finite-Time Consensus Control for Heterogeneous Battery Energy Storage Systems in Droop-Controlled Microgrids", IEEE TRANSACTIONS ON SMART GRID, IEEE, USA, vol. 10, no. 5, 1 September 2019 (2019-09-01), USA, pages 4751 - 4761, XP011741216, ISSN: 1949-3053, DOI: 10.1109/TSG.2018.2868112 * |
See also references of EP3926780A4 * |
XU DEMING, LI ZE CUI GUOZENG HAO WANJUN: "Distributed finite-time secondary control for heterogeneous battery energy storage systems in an islanded microgrid", CONTROL AND DECISION, DONGBEI DAXUE, SHENYANG, CN, vol. 36, no. 8, 3 July 2020 (2020-07-03), CN , pages 2034 - 2041, XP055857469, ISSN: 1001-0920, DOI: 10.13195/j.kzyjc.2020.0012 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114447934A (en) * | 2022-01-21 | 2022-05-06 | 湖南工业大学 | Island alternating current-direct current hybrid micro-grid control method and system considering power constraint |
CN114447934B (en) * | 2022-01-21 | 2024-04-26 | 湖南工业大学 | Island AC/DC hybrid micro-grid control method and system considering power constraint |
CN114512983A (en) * | 2022-03-02 | 2022-05-17 | 国网浙江省电力有限公司信息通信分公司 | Distributed power supply elastic control method for network attack |
CN114512983B (en) * | 2022-03-02 | 2024-05-07 | 国网浙江省电力有限公司信息通信分公司 | Distributed power supply elasticity control method for network attack |
CN116826780A (en) * | 2023-05-19 | 2023-09-29 | 重庆大学 | Master-slave-based energy storage secondary frequency modulation control method with limited time consistency |
CN117890723A (en) * | 2023-12-19 | 2024-04-16 | 安徽拓界电源科技有限公司 | Island detection method and system |
CN117805541A (en) * | 2024-02-29 | 2024-04-02 | 西安千帆翼数字能源技术有限公司 | Island detection method, protection method and related device of energy storage converter |
CN117805541B (en) * | 2024-02-29 | 2024-05-03 | 西安千帆翼数字能源技术有限公司 | Island detection method, protection method and related device of energy storage converter |
CN117913902A (en) * | 2024-03-19 | 2024-04-19 | 山东大学 | Island micro-network state estimation method and system based on preset time observer |
Also Published As
Publication number | Publication date |
---|---|
EP3926780A4 (en) | 2022-05-11 |
CN111371112A (en) | 2020-07-03 |
EP3926780A1 (en) | 2021-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021208613A1 (en) | Distributed finite time control method for isolated island microgrid heterogeneous battery energy storage system | |
Zhou et al. | Distributed power management for networked AC–DC microgrids with unbalanced microgrids | |
Moradi et al. | Power flow analysis in islanded Micro-Grids via modeling different operational modes of DGs: A review and a new approach | |
Zhao et al. | Coordinated restoration of transmission and distribution system using decentralized scheme | |
WO2019178919A1 (en) | Micro-grid distributed controller parameter determination method based on linear quadratic optimization | |
CN109494746A (en) | Based on the isolated island alternating current-direct current mixed connection micro-capacitance sensor tidal current computing method for improving adaptive sagging control | |
CN108879690B (en) | AC/DC hybrid microgrid data drive control method | |
CN110460099B (en) | PCC voltage transient state compensation feed-forward control method and system for common load common connection point | |
CN107579543A (en) | A kind of isolated island micro-capacitance sensor distributed and coordinated control method based on muti-layer control tactics | |
CN108808682A (en) | Single three based on compound robust control mix more microgrid voltage control methods | |
CN105391071A (en) | Multifunctional grid-connected parallel inverter group intelligent control method used in microgrid | |
Haider et al. | A dual control strategy for power sharing improvement in islanded mode of AC microgrid | |
Engels et al. | A distributed gossip-based voltage control algorithm for peer-to-peer microgrids | |
WO2023143284A1 (en) | Distributed adaptive control method for microgrid energy storage system under unknown disturbance | |
Zhang et al. | A novel event-triggered secondary control strategy for distributed generalized droop control in microgrid considering time delay | |
CN109560547A (en) | A kind of active distribution network N-1 safety evaluation method considering transmission & distribution collaboration | |
Rezaei et al. | Optimal IPFC signal selection and damping controller design using a novel current injection model in a multi-machine power system | |
Zhang et al. | Distributed control strategy of DC microgrid based on consistency theory | |
Dai et al. | Consensus-based distributed fixed-time optimization for a class of resource allocation problems | |
Mohamed et al. | An adaptive control of remote hybrid microgrid based on the CMPN algorithm | |
Kolluri et al. | Controlling DC microgrids in communities, buildings and data centers | |
Smith et al. | A secondary strategy for unbalance consensus in an islanded voltage source converter-based microgrid using cooperative gain control | |
Huang et al. | A voltage-shifting-based state-of-charge balancing control for distributed energy storage systems in islanded DC microgrids | |
CN108599974B (en) | Micro-grid distributed communication topology design method based on graph theory connectivity | |
Dong et al. | A distributed power transfer limit calculation method for multi-area interconnection power networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021754880 Country of ref document: EP Effective date: 20210914 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |