WO2021208412A1 - 菲涅尔透镜模具及其制备方法和菲涅尔透镜的制备方法 - Google Patents
菲涅尔透镜模具及其制备方法和菲涅尔透镜的制备方法 Download PDFInfo
- Publication number
- WO2021208412A1 WO2021208412A1 PCT/CN2020/128039 CN2020128039W WO2021208412A1 WO 2021208412 A1 WO2021208412 A1 WO 2021208412A1 CN 2020128039 W CN2020128039 W CN 2020128039W WO 2021208412 A1 WO2021208412 A1 WO 2021208412A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fresnel lens
- lens
- ring
- mold
- strip
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 22
- 230000003287 optical effect Effects 0.000 claims abstract description 93
- 238000000034 method Methods 0.000 claims abstract description 51
- 238000012545 processing Methods 0.000 claims abstract description 23
- 238000013461 design Methods 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 20
- 238000002360 preparation method Methods 0.000 claims description 17
- 238000000227 grinding Methods 0.000 claims description 12
- 238000003801 milling Methods 0.000 claims description 11
- 238000001723 curing Methods 0.000 claims description 8
- 239000003292 glue Substances 0.000 claims description 8
- 238000005498 polishing Methods 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 238000007731 hot pressing Methods 0.000 claims description 5
- 238000007514 turning Methods 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 3
- 238000003847 radiation curing Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000003754 machining Methods 0.000 claims description 2
- 238000001179 sorption measurement Methods 0.000 claims description 2
- 238000001029 thermal curing Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 42
- 239000010408 film Substances 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 238000010030 laminating Methods 0.000 description 11
- 238000003825 pressing Methods 0.000 description 10
- 238000003475 lamination Methods 0.000 description 8
- 239000012788 optical film Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000306 component Substances 0.000 description 3
- 238000005094 computer simulation Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 2
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011224 oxide ceramic Substances 0.000 description 2
- 229910052574 oxide ceramic Inorganic materials 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
- B29D11/0048—Moulds for lenses
- B29D11/00519—Reusable moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/30—Mounting, exchanging or centering
- B29C33/301—Modular mould systems [MMS], i.e. moulds built up by stacking mould elements, e.g. plates, blocks, rods
- B29C33/302—Assembling a large number of mould elements to constitute one cavity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
- B29C33/3835—Designing moulds, e.g. using CAD-CAM
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
- B29C33/3842—Manufacturing moulds, e.g. shaping the mould surface by machining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/42—Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
- B29D11/00269—Fresnel lenses
Definitions
- the invention relates to the field of optics technology, in particular to a Fresnel lens mold and a preparation method thereof and a preparation method of the Fresnel lens.
- the Fresnel lens is composed of a number of optical structures arranged.
- the Fresnel lens can be an optical structure with a regular shape.
- the Fresnel lens as shown in Figure 1 is formed by an array of concentric circular optical structures, or it can be It is composed of irregularly shaped optical structures as shown in Figures 2 and 3.
- the most commonly used Fresnel lens manufacturing method is only for the smaller diameter Fresnel lens, specifically: a ring is turned on a flat blank by a precision lathe to make a flat mold, and then hot pressing, pouring, molding, and injection molding , UV curing and other methods to copy the ring on the flat mold to the substrate.
- the diameter of the Fresnel lens ring of the flat mold that can be produced in China is only 2 meters, and the foreign Japanese Toshiba company can produce the Fresnel lens ring with a diameter of 3.4 meters. Due to the limitation of the size of the processing lathe, it is impossible to obtain a mold with a larger Fresnel lens ring size; in addition, the larger the lathe, the more difficult it is to ensure the processing accuracy, and the accuracy of the optical structure is difficult to ensure when manufacturing a larger Fresnel lens.
- the developed laser TV technology requires the core optical element of the rectangular laser TV screen to be the rectangular Fresnel lens cut from the circular Fresnel, which requires the corresponding circular lens. If the diameter of the Neel lens is more than 4 meters, a Fresnel lens mold of the corresponding size is required, and the production of the Fresnel lens mold cannot be realized by the existing machine tool processing.
- Chinese patent CN103895219B discloses a tapered roller for making Fresnel lens, which solves the limitation of lathe size on the size of flat mold manufacturing.
- the tapered roller mold can be processed by a smaller lathe to produce a larger size.
- the tapered roller itself can be regarded as a superposition of concentric rings with different diameters, and a Fresnel lens composed of a number of regular optical structures can be produced.
- the entire technology cannot produce a Fresnel lens formed by a non-concentric optical structure, and the size of the Fresnel lens mold that can be processed is also limited.
- Chinese patent application CN108890944A discloses a mold for manufacturing Fresnel lens and a production method thereof.
- the mold includes a pressing plate and a base plate located at the lower end of the pressing plate.
- a number of annular grooves with different diameters are arranged on the base plate and adjacent grooves. The depth and the angle of inclination are different.
- the lower end of the pressing plate is provided with a protrusion that fits the groove on the substrate; the surface of the small metal strip is processed by a CNC machine tool to form a Fresnel lens ring belt, and then the small metal strips are spliced and combined
- the substrate blank is further used to remove the remaining amount reserved on the surface of the blank part by using a lathe and a cutter, and the grinder is polished and deburred to obtain a Fresnel lens forming template.
- this method cannot achieve the production of large-size Fresnel lens molds. Large-size Fresnel lenses need to be formed by splicing. It seriously affects the performance of the Fresnel lens and cannot be used in electronic displays and other occasions that require high appearance quality of the Fresnel lens.
- the purpose of the present invention is to provide a Fresnel lens mold, which solves the problem that the Fresnel lens with super large size and irregular shape cannot be manufactured in the prior art.
- a Fresnel lens mold comprising laminated strips, the strips are bendable, one edge of the strips is provided with an optical structure, and the optical structure corresponds to the designed Fresnel lens
- the lens structure on the ring belt is the same.
- the Fresnel lens mold further includes a reference unit, and the strip is supported by the reference unit and laminated on a contour surface of the reference unit.
- the contour shape of the reference unit is the same as the ring shape of the corresponding area of the Fresnel lens, and the strip is in accordance with the position and the position of each ring in the Fresnel lens.
- the orientation of the lens structure on the ring belt is laminated on a contour surface of the reference unit.
- the reference unit is provided with an optical structure that is the same as the lens structure in the corresponding area of the Fresnel lens, and the strip is in accordance with each strip in the Fresnel lens.
- the position of and the orientation of the lens structure on the annulus are laminated on a contour surface of the reference unit.
- the outer contour shape of the reference unit is a circle, an ellipse, a parabola, a polygon, or a part of the above shapes.
- the reference unit is a reference band
- the shape of the reference band is the same as the shape of the outermost ring of the Fresnel lens
- the band material conforms to the Fresnel lens.
- the position of the annular zone of the lens and the orientation of the lens structure on the annular zone are laminated on the inner side of the reference zone.
- the reference unit is a reference band
- the shape of the reference band is the same as the shape of the innermost ring of the Fresnel lens
- the band material conforms to the Fresnel lens.
- the position of the annular zone of the lens and the orientation of the lens structure on the annular zone are laminated on the outside of the reference zone.
- the Fresnel lens mold further includes a fixing unit, and the reference unit is arranged on the fixing unit.
- the invention also provides a method for manufacturing a Fresnel lens mold, which solves the problem that only a circular Fresnel lens mold can be manufactured in the prior art.
- a method for manufacturing a Fresnel lens mold includes the following steps:
- Design the Fresnel lens According to the requirements of optical characteristics, design the shape of the Fresnel lens ring zone and the lens structure parameters, disassemble the Fresnel lens into a ring zone, and obtain the corresponding ring zone parameters.
- the ring zone parameters include The structural parameters of each lens on the ring belt;
- Processing components selecting a flexible strip, and processing an optical structure on one edge of the strip with the same lens structure as the lens structure on the corresponding ring belt of the Fresnel lens;
- Laminated strip According to the position of the ring zone of the Fresnel lens and the orientation of the lens structure on the ring zone, the strip with the optical structure is laminated to make a Fresnel lens mold.
- the strips are laminated by bonding, mechanical fixing or magnetic adsorption.
- the preparation method of the Fresnel lens mold specifically includes the following steps:
- Design the Fresnel lens According to the requirements of optical characteristics, design the shape of the Fresnel lens ring zone and the lens structure parameters, split the Fresnel lens into the reference unit and the ring zone, and obtain the corresponding reference unit parameters and Circumference parameters;
- Machining components According to the parameters of the reference unit, the corresponding reference unit is processed by turning, milling or grinding; the flexible strip is selected, and the method of milling, grinding or polishing is used according to the parameters of the endless belt. Processing one edge of the strip material with the same optical structure as the lens structure on the corresponding ring belt of the Fresnel lens;
- Laminated strip fix the position of the reference unit according to the designed Fresnel lens; laminate the strip with the optical structure according to the position of the fresnel lens ring zone and the orientation of the lens structure on the ring zone
- the material is made into a Fresnel lens mold on a contour surface of the reference unit.
- the contour shape of the reference unit is the same as the shape of the ring zone of the Fresnel lens corresponding area, and the strip material is in accordance with the position and ring zone of the Fresnel lens.
- the orientation of the lens structure is laminated on a contour surface of the reference unit.
- the reference unit is processed with the same optical structure as the lens structure on the corresponding ring zone of the Fresnel lens, according to the position of the ring zone and the ring zone in the Fresnel lens.
- the orientation of the upper lens structure is continuously stacked or laminated in sections on a contour surface of the reference unit.
- the reference unit is a reference band
- the shape of the reference band is the same as the shape of the outermost ring of the Fresnel lens.
- the position and orientation of the lens structure on the endless belt are continuously laminated or laminated in sections on the inner side of the reference belt.
- the reference unit is a reference zone, and the shape of the reference zone is the same as the shape of the innermost ring zone of the Fresnel lens.
- the position and orientation of the lens structure on the annular belt are continuously laminated or laminated in sections on the outer side of the reference belt.
- the preparation method of the Fresnel lens mold specifically includes the following steps:
- Design the Fresnel lens According to the requirements of optical characteristics, design the shape of the Fresnel lens ring zone and the lens structure parameters, and disassemble the designed Fresnel lens into the ring zone to obtain the corresponding ring zone parameters.
- the ring zone parameters include The structural parameters of each lens on the ring belt;
- Processing components selecting a bendable strip, and processing an edge of the strip with the same optical structure as the lens structure on the corresponding ring of the Fresnel lens according to the parameters of the ring;
- Laminated strips determine a reference unit, relying on the reference unit, according to the position of the ring zone of the Fresnel lens and the orientation of the lens structure on the ring zone, the strip with the optical structure is laminated and processed After that, the reference unit was peeled off to obtain a Fresnel lens mold.
- the present invention also provides a method for preparing a Fresnel lens, which solves the problem that large-sized and irregular Fresnel lenses cannot be directly produced in the prior art, and the large-sized Fresnel lenses obtained by splicing have splicing seams.
- the Fresnel lens mold used includes a laminated strip, the strip is bendable, and one edge of the strip is provided with an optical structure, and the optical structure It is the same as the lens structure on the corresponding ring belt of the designed Fresnel lens.
- the Fresnel lens is prepared by liquid glue coating and curing or hot pressing.
- the liquid glue coating and curing methods include radiation curing and thermal curing. Or at least one of reactive curing.
- the present invention has the following beneficial effects:
- the Fresnel lens mold of the present invention includes a laminated strip, the strip is flexible, an optical structure is provided on one edge of the strip, and the optical structure corresponds to the designed Fresnel lens
- the lens structure on the ring belt is the same; the Fresnel lens mold is not limited by the size of the processing lathe, and the strip is processed according to the designed Fresnel lens, thereby ensuring the processing accuracy of the Fresnel lens mold; according to the present invention
- the preparation method through the steps of designing the Fresnel lens by optical performance, processing parts, and laminating strips, the Fresnel lens mold produced is completely corresponding to the designed Fresnel lens, and is not limited to a specific shape and size.
- Fresnel lens molds and partial Fresnel lens molds of any size and non-concentric ring belt shape.
- the process of making Fresnel lens through the above-mentioned Fresnel lens mold is simple, and the obtained Fresnel lens has high precision; in addition, the preparation method can be used to produce a large-size Fresnel lens, and a large-size Fresnel lens can be obtained.
- the lens has no splicing seams, which guarantees the performance of the Fresnel lens and can be used in electronic displays and other occasions that require high appearance quality of the Fresnel lens.
- Figure 1 is a Fresnel lens composed of an optical structure with a regular shape
- Figure 2 is a Fresnel lens composed of an irregularly shaped optical structure
- Figure 3 is the second Fresnel lens composed of an irregularly shaped optical structure
- Figure 4 is a schematic diagram of a Fresnel lens mold preparation process
- Fig. 5 is a schematic diagram of the tooth-shaped structure of the Fresnel lens structure on the annulus
- Figure 6 is a schematic diagram of an elliptical Fresnel lens mold
- Figure 7 is a schematic diagram of a parabolic Fresnel lens mold
- Figure 8 is a schematic diagram of a wave-shaped Fresnel lens mold
- Figure 9 is a schematic cross-sectional view of a circular Fresnel lens mold A-A;
- Figure 10 is a disassembly diagram of the designed Fresnel lens
- Figure 11 is a schematic diagram of a full circle mold core
- Figure 12 is a schematic diagram of strips being continuously laminated on a full-circle mold core to make a Fresnel lens mold
- Figure 13 is a schematic diagram of strips layered in sections on a full circle mold core to make a Fresnel lens mold
- Figure 14 is a second schematic diagram of a full circle mold core
- Figure 15 is the second schematic diagram of continuous stacking of strips on a full circle core to make a Fresnel lens mold
- Figure 16 is a second schematic diagram showing that the strips are laminated on a full-circle mold core to make a Fresnel lens mold
- Figure 17 is a schematic diagram of a semicircular mold core
- Fig. 18 is a schematic diagram of a Fresnel lens mold made by laminating strips on a semicircular mold core
- Figure 19 is a second schematic diagram of a semicircular mold core
- Figure 20 is a second schematic diagram of a Fresnel lens mold made by laminating strips on a semicircular mold core
- Figure 21 is a schematic diagram of a partial circular mold core
- Figure 22 is a schematic diagram of a Fresnel lens mold made by laminating strips on a partial circular mold core
- Figure 23 is a second schematic diagram of a partial circular mold core
- Figure 24 is the second schematic diagram of the Fresnel lens mold made by laminating strips on a partial circular mold core
- Figure 25 is a schematic diagram of an elliptical mold core
- Fig. 26 is a schematic diagram of the continuous stacking of strips on an elliptical mold core to make a Fresnel lens mold
- Figure 27 is a schematic diagram of strips layered in sections on an elliptical mold core to make a Fresnel lens mold
- Figure 28 is a second schematic diagram of an elliptical mold core
- Figure 29 is a schematic diagram of strips being continuously laminated on an elliptical mold core to make a Fresnel lens mold
- Figure 30 is a schematic diagram of strips layered in sections on an elliptical mold core to make a Fresnel lens mold
- Figure 31 is a schematic diagram of a semi-elliptical mold core
- Fig. 32 is a schematic diagram of a Fresnel lens mold made by laminating strips on a semi-elliptical mold core;
- Figure 33 is a second schematic diagram of a semi-elliptical mold core
- Figure 34 is the second schematic diagram of the production of a Fresnel lens mold by laminating strips on a semi-elliptical mold core;
- Figure 35 is a schematic diagram of a parabolic mold core
- Figure 36 is a schematic diagram of a Fresnel lens mold made by laminating strips on a parabolic mold core
- Figure 37 is a second schematic diagram of a parabolic mold core
- Figure 38 is a schematic diagram of the second drawing of a Fresnel lens mold made by laminating strips on a parabolic mold core;
- Figure 39 is the first schematic diagram of making a Fresnel lens mold by shaft rotation
- Figure 40 is the second schematic diagram of making a Fresnel lens mold by shaft rotation
- Fig. 41 is a schematic diagram of the continuous stacking of strips on the core to produce a Fresnel lens mold containing a flat plate;
- Fig. 42 is a schematic diagram of a Fresnel lens mold containing a flat plate by laminating strips in sections on a mold core;
- Figure 43 is the first schematic diagram of making a Fresnel lens mold containing a flat plate by shaft rotation
- Figure 44 is a second schematic diagram of making a Fresnel lens mold containing a flat plate by shaft rotation
- FIG. 45 is a schematic diagram of the strip material being continuously laminated on the inner side of the reference strip to make a Fresnel lens mold
- Fig. 46 is a schematic diagram of the required Fresnel lens optical film cut out on the base film
- 100-reference unit 101-mold core; 102-reference belt; 200-ring belt; 201-right-angled triangle tooth-like structure; 202-non-right-angled triangle tooth-like structure; 203-sector tooth-like structure 204-prismatic tooth-shaped structure; 300-strip material; 400-plate; 500-rotating shaft; 600-mold mandrel; 700-rubber roller; 800-fresnel lens optical film; arrow direction represents the direction of rotation.
- a Fresnel lens mold is formed by stacking flexible strips, one edge of the strips is provided with an optical structure, and the optical structure is the lens structure on the corresponding ring belt of the designed Fresnel lens same.
- the flow chart of Fresnel lens mold formation is shown in Figure 4, and the specific description is as follows:
- the fresnel lens ring zone shape and lens structure parameters disassemble the Fresnel lens into a number of ring zones 200, start from the innermost ring zone of the Fresnel lens, and then Is the first endless belt, the second endless belt, the third endless belt, the fourth endless belt... the n-1th endless belt, the nth endless belt, obtain the corresponding endless belt parameters, the said endless belt parameters include the said ring The structure parameters of each lens on the belt;
- the lens structure on each ring zone of the Fresnel lens can be a right-angled triangle tooth-shaped structure 201, a non-right-angled triangle tooth-shaped structure 202, or a sector-shaped tooth-shaped structure 203, or It is a prism-shaped tooth structure 204; according to the lens structure on each ring of the Fresnel lens, the optical structure of the corresponding lens structure is processed on one edge of the strip.
- the bendable strip can be laminated into a Fresnel lens mold of corresponding shape according to the designed Fresnel lens, such as the elliptical Fresnel lens mold shown in Figure 6, and the parabolic Fresnel lens shown in Figure 7
- the mold is a wave-shaped Fresnel lens mold mold as shown in Fig. 8; in addition, it is also possible to produce a Fresnel lens mold of any size by controlling the number of laminated flexible strips. Therefore, the preparation method of the Fresnel lens mold of the embodiment of the present invention is not limited by the processing size of the ultra-precision machine tool, and Fresnel lens molds of various shapes and sizes can be manufactured according to requirements.
- the strip is a flexible, curlable and high-hardness material, which is made through processes such as grinding and polishing.
- the strip in the embodiments of the present application is preferably a metal strip.
- the lens structure parameters on the annular belt the same optical structure as the lens structure on the corresponding annular belt of the Fresnel lens is processed on one edge of the strip by milling, grinding or polishing.
- the tape can be laminated and fixed by gluing, buckle, rivet, or expansion locking.
- an edge of the strip is processed to produce an optical structure with a corresponding cross-sectional shape.
- the cross-sectional shape of the optical structure can be any triangle, or It can be fan-shaped, circular, arc-shaped, parabolic, elliptical, trapezoidal, or prism-shaped composed of multi-line segments.
- the parameters of the designed Fresnel lens include the overall shape and size of the Fresnel lens, the cross-sectional shape of each ring-shaped lens structure of the Fresnel lens, and the calculated cross-sectional shape parameters.
- its AA cross-sectional parameters include the distance between the teeth of adjacent ring-shaped lens structures, that is, the tooth-shaped pitch P, and the length of each ring-shaped lens structure of the Fresnel lens.
- Tooth height h the angle between the working surface B and the side perpendicular to the side away from the Fresnel lens tooth surface, that is, the draft angle ⁇ , the angle between the working surface B and the side away from the Fresnel lens tooth surface, is the work Angle ⁇ and interference surface C.
- the thickness of the bendable strip is selected to be the same as the tooth profile pitch P, that is, when the tooth profile pitch P and the tooth profile height h of the designed Fresnel lens structure are both 0.15mm, a bendable strip with a thickness of 0.15mm is selected Strip; According to the theoretically designed Fresnel lens tooth profile height h, select the width of the bendable strip ⁇ the Fresnel lens tooth profile height h. Considering the stability of the bendable strip when laminated, it is necessary to have an appropriate contact surface, and it is preferable that the width of the bendable strip>the height h of the tooth profile of the Fresnel lens.
- the designed Fresnel lens has different tooth pitch P between adjacent ring-shaped lens structures, but the tooth height h of each ring-shaped lens structure is the same, you need to select the corresponding bendable according to the tooth pitch P
- the thickness of the strip is the same as the width of the bendable strip.
- the thickness of the bendable strip is the same, and the strip can be selected.
- the width of the ring belt lens structure is the largest tooth pitch P, and the width of the ring belt can also be selected according to the corresponding tooth height.
- the width of the strip can be selected ⁇ the tooth profile pitch P of the largest ring belt lens structure, and the width of the endless belt can also be selected according to the corresponding tooth profile height.
- a Fresnel lens mold includes a reference unit and a laminated strip.
- the strip is bendable.
- One edge of the strip is provided with an optical structure.
- the optical structure is compatible with the designed Fresnel lens.
- the lens structure on the corresponding ring zone is the same, the contour shape of the reference unit is the same as the ring zone shape of the corresponding area of the Fresnel lens, and the strip material is in accordance with the position and ring zone of each ring zone in the Fresnel lens.
- the orientation of the lens structure is laminated on a contour surface of the reference unit.
- the specific preparation method of the Fresnel lens mold is as follows:
- the parameters of the reference unit make the raw materials of the reference unit into the corresponding reference unit by turning, milling or grinding; select a bendable strip, and use milling, grinding or polishing according to the ring belt parameters Processing the same optical structure on one edge of the strip as the lens structure on the corresponding ring belt of the Fresnel lens;
- the raw material of the reference unit is preferably a material with a higher hardness to prolong the service life of the Fresnel lens mold.
- Metals, ceramics and polymer materials are generally used.
- the metal materials include, but are not limited to, stainless steel, aluminum alloy, aluminum-magnesium alloy, and copper alloy; the ceramics include, but are not limited to, aluminum oxide ceramics; and the polymer materials include, but are not limited to, carbon fiber reinforced boards and polytetrafluoroethylene.
- the contour shape of the processed core 101 is the same as the ring shape of the designed Fresnel lens corresponding area.
- the strip 300 is a whole, which is continuously laminated on the contour surface of the mold core 101 according to the position of each ring zone in the Fresnel lens and the orientation of the lens structure on the ring zone to form a Fresnel lens.
- Lens mold as shown in FIG. 13, the strip 300 is composed of several sections, which are sequentially laminated on the contour surface of the core 101 according to the position of each ring in the Fresnel lens and the orientation of the lens structure on the ring Form the Fresnel lens mold.
- a cylinder with a certain size in the center is taken as the reference unit, namely the mold core 101.
- the contour of the processed mold core 101 is The shape is the same as the ring shape of the designed Fresnel lens corresponding area, and is provided with the same optical structure as the lens structure in the corresponding area of the Fresnel lens.
- the corresponding area parameters of the designed Fresnel lens as shown in FIG.
- the strip 300 is a whole, which is continuously stacked according to the position of each ring zone in the Fresnel lens and the orientation of the lens structure on the ring zone
- a Fresnel lens mold is formed on the contour surface of the mold core 101; as shown in FIG. 16, the strip 300 is composed of several sections, according to the position of each ring in the Fresnel lens and the orientation of the lens structure on the ring. The steps are sequentially stacked on the contour surface of the core 101 to form a Fresnel lens mold.
- the processed mold As an optional method of this embodiment, according to the theoretical design of the Fresnel lens, a half of a cylinder with a certain size at the center is cut from the axial direction as the reference unit, namely the mold core 101, as shown in FIG. 17, the processed mold
- the contour shape of the core 101 is the same as the annular zone shape of the designed Fresnel lens corresponding area.
- the strip 300 is composed of several sections, which are sequentially stacked on the contour surface of the mold core 101 according to the position of each ring in the Fresnel lens and the orientation of the lens structure on the ring to form a Fresnel. Lens mold.
- the processed mold The contour shape of the core 101 is the same as the ring shape of the designed Fresnel lens corresponding area, and is provided with the same optical structure as the lens structure in the corresponding area of the Fresnel lens.
- the strip 300 is composed of several sections, which are sequentially stacked on the contour surface of the core 101 according to the position of each ring in the Fresnel lens and the orientation of the lens structure on the ring to form a Fresnel. Lens mold.
- the part of a cylinder with a certain size at the center of a certain size in the axial direction is taken as the reference unit, that is, the mold core 101, as shown in FIG. 21.
- the contour shape of the obtained mold core 101 is the same as the ring shape of the designed Fresnel lens corresponding area.
- the strip 300 is composed of several sections, which are sequentially stacked on the contour surface of the core 101 according to the position of each ring in the Fresnel lens and the orientation of the lens structure on the ring to form a Fresnel. Lens mold.
- the part of a cylinder with a certain size at the center of the axial interception less than 1/2 size is used as the reference unit, that is, the mold core 101, as shown in FIG. 23.
- the contour shape of the obtained mold core 101 is the same as the ring shape of the designed Fresnel lens corresponding area, and is provided with the same optical structure as the lens structure in the corresponding area of the Fresnel lens.
- the strip 300 is composed of several sections, which are sequentially stacked on the contour surface of the core 101 according to the position of each ring in the Fresnel lens and the orientation of the lens structure on the ring to form a Fresnel. Lens mold.
- an elliptical cylinder with a certain size in the center is taken as the reference unit, namely the mold core 101.
- the contour of the processed mold core 101 is The shape is the same as the shape of the ring zone of the designed Fresnel lens.
- the strip 300 is a whole, which is continuously laminated on the contour surface of the mold core 101 according to the position of each ring zone in the Fresnel lens and the orientation of the lens structure on the ring zone to form a Fresnel lens.
- the strip 300 is a number of sections, which are sequentially stacked on the contour surface of the core 101 according to the position of each ring in the Fresnel lens and the orientation of the lens structure on the ring Form the Fresnel lens mold.
- an elliptical cylinder with a certain size in the center is taken as the reference unit, namely the mold core 101.
- the contour of the processed mold core 101 is The shape is the same as the ring shape of the designed Fresnel lens corresponding area, and is provided with the same optical structure as the lens structure in the corresponding area of the Fresnel lens.
- the strip 300 is a whole, and is continuously laminated on the contour surface of the mold core 101 according to the position of each ring zone in the Fresnel lens and the orientation of the lens structure on the ring zone to form a Fresnel lens.
- the strip 300 is decomposed into several sections, which are sequentially layered on the contour surface of the core 101 according to the position of each ring in the Fresnel lens and the orientation of the lens structure on the ring Form the Fresnel lens mold.
- the Fresnel lens theoretical design 1/2 of an elliptical cylinder with a certain size in the center is intercepted along the axial direction as the reference unit, that is, the core 101, as shown in FIG. 31.
- the contour shape of the obtained mold core 101 is the same as the ring shape of the designed Fresnel lens corresponding area.
- the strip 300 is decomposed into several sections, which are sequentially stacked on the contour surface of the mold core 101 according to the position of each ring in the Fresnel lens and the orientation of the lens structure on the ring. Niel lens mold.
- the processed core 101 is The contour shape of is the same as the ring shape of the designed Fresnel lens corresponding area, and is provided with the same optical structure as the lens structure in the corresponding area of the Fresnel lens.
- the strip 300 is decomposed into several sections, which are sequentially stacked on the contour surface of the mold core 101 according to the position of each ring zone in the Fresnel lens and the orientation of the lens structure on the ring zone. Niel lens mold.
- a parabolic cylinder with a certain size in the center is taken as the reference unit, that is, the mold core 101.
- the contour of the processed mold core 101 is The shape is the same as the shape of the ring zone of the designed Fresnel lens.
- the strip 300 is decomposed into several sections, which are sequentially stacked on the contour surface of the mold core 101 according to the position of each ring in the Fresnel lens and the orientation of the lens structure on the ring. Niel lens mold.
- a parabola with a certain size in the center is taken as the reference unit, namely the mold core 101.
- the contour shape of the processed mold core 101 is similar to that of the mold core 101.
- the designed rings of the Fresnel lens corresponding to the area have the same shape, and are provided with the same optical structure as the lens structure in the corresponding area of the Fresnel lens.
- the strip 300 is decomposed into several sections, which are sequentially stacked on the contour surface of the mold core 101 according to the position of each ring in the Fresnel lens and the orientation of the lens structure on the ring. Niel lens mold.
- the Fresnel lens mold is prepared
- the size is not limited; the corresponding reference unit (ie mold core 101) is processed according to the designed reference unit (ie mold core 101) parameters, and the shape of the reference unit can be designed and processed according to any Fresnel lens parameters designed ; According to the design parameters of the endless belt, set the corresponding optical structure on the strip, and then form the corresponding Fresnel lens mold and the partial Fresnel lens mold by stacking.
- Fresnel lens molds and partial Fresnel lens molds of size and concentric ring belt the Fresnel lens mold produced by the manufacturing method has high structural accuracy and long service life.
- the principle of shaft rotation is introduced in the process of strip lamination, so that the entire Fresnel lens mold manufacturing process is more intelligent and automated.
- the core 101 is clamped on the core shaft 600, and the strip 300 is crimped and clamped in a rotating roll.
- the shaft 500 one end of the bendable strip 300 is drawn and fixed on the core shaft 600, where a rubber pressing roller 700 is used to press the end of the strip 300, and the rubber pressing roller 700 is used to assist the lamination of the strip 300 And press the strip 300 tightly.
- the bendable strip 300 is tightly laminated on the outer contour of the mold core 101, and the lamination direction of the bendable strip 300 should ensure that the orientation of the optical structure on the strip 300 is consistent with the orientation of the lens structure on the core 101 , Produce a Fresnel lens mold that meets the design requirements.
- the direction of the arrow represents the direction of rotation of the rotating shaft 500 and the mold core shaft 600.
- the mold core shaft 600 and the rotating shaft 500 are both controllable rotation, which can be manually rotated by manpower, or can be rotated by other power, such as a motor; the direction of the mold core shaft 600 and the rotating shaft 500 can be horizontal , It can also be vertical, it only needs to keep the core 101 and the roll of bendable strip 300 in the same plane.
- the core 101 is clamped on the core shaft 600 to produce a segmented strip with an optical structure.
- 300 According to the positions on the Fresnel lens designed theoretically, they are arranged in order.
- the rubber pressure roller 700 is used to press the strip 300.
- the rubber pressing roller 700 is used to assist the lamination of the strip 300 and compress the strip 300; rotate the core shaft 600 to laminate the strip 300 on the outer contour of the core 101, and after fixing the end of the strip, Laminate and fix them in order to produce a Fresnel lens mold that meets the design requirements.
- the direction of the arrow represents the direction of rotation of the mold core shaft 600; the mold core shaft 600 is controlled to rotate, and can be manually rotated by manpower, or can be rotated by other power, such as a motor.
- a Fresnel lens mold on the basis of the second embodiment, further includes a fixing unit, and the mold core is set on the fixing unit.
- the specific manufacturing process is as follows:
- the annular zone parameters include the structural parameters of each lens on the annular zone;
- the mold core parameters process the corresponding mold cores by turning, milling or grinding; select a bendable strip, and use milling, grinding or polishing on one of the strips according to the strip parameters.
- the edge is processed with the same optical structure as the lens structure on the corresponding ring zone of the Fresnel lens;
- a flat plate is selected as the fixing unit.
- the flat plate may be a metal flat plate or a non-metal flat plate, preferably a flat plate with higher hardness.
- Plates are generally made of metals, ceramics and polymer materials.
- the metal materials include, but are not limited to, stainless steel, aluminum alloy, aluminum-magnesium alloy, and copper alloy; the ceramics include, but are not limited to, aluminum oxide ceramics; and the polymer materials include, but are not limited to, carbon fiber reinforced boards and polytetrafluoroethylene.
- the use of a flat plate facilitates the fixation of the mold core and makes the production of the Fresnel lens mold easier to operate.
- the mold core 101 is fixed on the plate 400, and the ring belt 300 as a whole, according to the positions of the ring belts in the Fresnel lens and the lens on the ring belt
- the orientation of the structure is continuously laminated on the contour surface of the core 101 to form a Fresnel lens mold.
- the mold core 101 is fixed on the flat plate 400, and the ring belt 300 is decomposed into several sections.
- the direction of the upper lens structure is successively laminated on the contour surface of the mold core 101 section by section to form a Fresnel lens mold.
- the principle of shaft rotation is introduced in the process of strip lamination, so that the entire Fresnel lens mold manufacturing process is more intelligent and automated.
- the mold core 101 is fixed on the flat plate 400, and then the flat plate 400 with the mold core 101 fixed is clamped in the mold.
- the strip 300 is crimped and clamped on the rotating shaft 500, and one end of the bendable strip 300 is drawn and fixed on the mold mandrel 600, where the rubber pressing roller 700 is used to press the strip 300
- the rubber pressing roller 700 is used to assist the lamination of the strip 300 and to press the strip 300 tightly.
- the bendable strip 300 is tightly laminated on the outer contour surface of the mold core 101, and the lamination direction of the bendable strip 300 should ensure that the optical structure on the strip 300 faces the lens structure on the mold core 101 Consistent, produced a Fresnel lens mold that meets the design requirements.
- the direction of the arrow represents the direction of rotation of the rotating shaft 500 and the mold core shaft 600.
- the mold core shaft 600 and the rotating shaft 500 are both controllable rotation, which can be manually rotated by manpower, or can be rotated by other power, such as a motor; the direction of the mold core shaft 600 and the rotating shaft 500 can be horizontal , It can also be vertical, it only needs to keep the core 101 and the roll of bendable strip 300 in the same plane.
- the mold core 101 is specified on the flat plate 400, and then the flat plate 400 with the mold core 101 fixed is clamped on On the core shaft 600, the segmented strips 300 with optical structures are arranged in order according to the regional parameters of the Fresnel lens designed theoretically.
- the front end of the strip 300 closest to the core 101 is fixed on the core. 101.
- a rubber pressing roller 700 is used to press the end of the strip 300.
- the rubber pressing roller 700 is used to assist the lamination of the strip 300 and press the strip 300; rotate the mold mandrel 600 to laminate the strip 300 on The surface of the mold core 101, after fixing the end of the strip, is laminated and fixed in sequence to produce a Fresnel lens mold that meets the design requirements.
- the direction of the arrow represents the direction of rotation of the mold core shaft 600; the mold core shaft 600 is controlled to rotate, and can be manually rotated by manpower, or can be rotated by other power, such as a motor.
- a Fresnel lens mold includes a reference unit and a laminated strip.
- the strip is bendable.
- One edge of the strip is provided with an optical structure.
- the optical structure is compatible with the designed Fresnel lens.
- the lens structure on the corresponding ring belt is the same, and the belt material is laminated on the inner side of the reference unit according to the designed Fresnel lens parameters.
- the manufacturing process of the Fresnel lens mold is as follows:
- the strip with the optical structure is laminated and processed to obtain a Fresnel lens mold inside the reference zone.
- the strip 300 is decomposed into several sections, which are sequentially stacked on the reference belt according to the position of the ring zone in the designed Fresnel lens and the orientation of the lens structure on the ring zone. Inside 102, make a corresponding Fresnel lens mold.
- the strip is a whole. According to the position of the ring zone in the Fresnel lens and the orientation of the lens structure on the ring zone, they are sequentially stacked on the inner side of the reference zone to make the corresponding Fresnel lens. Lens mold.
- the Fresnel lens mold of the embodiment of the present invention includes laminated strips, the strips are bendable, and an optical structure is arranged on one edge of the strips, and the optical structure is the same as the designed Fresnel lens.
- the lens structure on the corresponding ring belt is the same; the Fresnel lens mold is not limited by the size of the processing lathe, and the strip is processed according to the designed Fresnel lens, thereby ensuring the processing accuracy of the Fresnel lens mold.
- the method for preparing the Fresnel lens mold uses the steps of designing the Fresnel lens, processing parts, and laminating strips through optical performance, and the Fresnel lens mold produced is completely corresponding to the designed Fresnel lens , It is not limited to a specific shape and size, and it can produce Fresnel lens molds and partial Fresnel lens molds of any size and non-concentric annular band.
- a method for preparing a Fresnel lens The Fresnel lens mold prepared in Example 1 to Example 6 is used to prepare the Fresnel lens by coating transfer or hot pressing or pressure injection molding.
- Coating transfer is to evenly coat the optical glue on the base film or the Fresnel lens mold, so that the base film and the Fresnel lens mold are closely attached, and then use radiation curing or heating curing or reaction curing to make the optical
- the glue is cured to form a lens structure complementary to the optical structure on the Fresnel lens mold, and then the base film is separated from the Fresnel lens mold. Since the adhesive performance of the optical glue and the base film is stronger than that of the Fresnel lens mold, the Fresnel lens mold
- the optical structure on the lens mold is transferred to the base film to form an optical film with a designed Fresnel lens structure, and the designed Fresnel lens is obtained by cutting.
- a layer of release agent can be applied to the Fresnel lens mold in advance to facilitate the separation of the optical glue and the Fresnel lens mold.
- Hot pressing is to heat the mold or heat and melt the base film, and then apply pressure between the base film and the Fresnel lens mold, or directly apply pressure on the Fresnel lens mold, or use a vacuum.
- a negative pressure is formed on one side of the base film to achieve the pressure effect; after a certain period of time, it is cooled and molded to separate the base film and the Fresnel lens mold.
- the optical structure on the Fresnel lens mold is copied to the base film.
- An optical film with a designed Fresnel lens structure is formed, and the designed Fresnel lens can be obtained by cutting.
- the formed optical film with the designed Fresnel lens structure is shown in Figure 46.
- the required Fresnel lens is cut out from the base film on which the entire Fresnel lens is made.
- the lens optical film 800 as an important optical element of a projection screen or other display device, is made into a corresponding finished product to modulate the imaging display effect of the projection screen or other display device; it can also be used as a solar concentrator or pump laser weapon And other core components, tailored to produce corresponding products as needed.
- the process of preparing the Fresnel lens through the embodiment of the present invention is simple, and the obtained Fresnel lens has high precision.
- the preparation method can be used to make large-size Fresnel lenses, and the obtained large-size Fresnel lenses have no splicing seams, ensuring the performance of the Fresnel lens, and can be used for electronic displays and other pairs of Fresnel lens tables. It will further promote the development of downstream industries in situations with high quality requirements.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
一种菲涅尔透镜模具,包括层叠的可弯曲的带材(300),带材(300)的一条棱边上设置有光学结构,所述光学结构与设计的菲涅尔透镜的对应环带(200)上的透镜结构相同;还提供了该菲涅尔透镜模具的制备方法,根据光学特性要求,设计菲涅尔透镜,选用可弯曲的带材(300),在带材(300)的一条棱边上加工与菲涅尔透镜对应环带(200)上的透镜结构相同的光学结构,再依照菲涅尔透镜环带位置和环带上透镜结构的朝向,层叠加工有光学结构的带材(300),即可制得菲涅尔透镜模具;还提供了利用上述菲涅尔透镜模具制备菲涅尔透镜的方法。通过层叠带材的方式还可以制作任意尺寸和非同心圆环带状的菲涅尔透镜模具和局部菲涅尔透镜模具,使用该模具制造设计的菲涅尔透镜精度高。
Description
本申请要求于2020年04月13日提交中国专利局、申请号为202010283010.6、发明名称为“菲涅尔透镜模具及其制备方法和菲涅尔透镜的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及光学技术领域,具体涉及一种菲涅尔透镜模具及其制备方法和菲涅尔透镜的制备方法。
菲涅尔透镜由若干光学结构排列组成,菲涅尔透镜可以是形状规则的光学结构构成,如图1所示的菲涅尔透镜由一条条同心圆环形的光学结构排列形成,也可以是由形状不规则的光学结构构成如图2和图3所示。最常用的菲涅尔透镜的制造方法只针对较小口径的菲涅尔透镜,具体为:通过精密车床在平板坯材上车削出圆环制作成平板模具,通过热压、浇注、模压、注塑、UV固化等方法将平板模具上的圆环复制到基材上。目前国内能够制作的平板模具的菲涅尔透镜圆环直径只有2米,国外日本东芝公司最大能够制作直径3.4米的菲涅尔透镜圆环。由于加工车床大小的限制,无法获得更大的菲涅尔透镜圆环尺寸的模具;此外车床越大加工精度越难保证,在制造更大尺寸菲涅尔透镜时光学结构的精度难以保证。
随着社会发展,对大型菲涅尔透镜的需求日趋强烈,如太阳能聚光、新型显示行业等。以新型显示为例,发展起来的激光电视技术,所需要的长方形的激光电视屏幕的核心光学元件为就是从圆形菲涅尔截取出的长方形的菲涅尔透镜部分,要求对应的圆形菲涅尔透镜直径达到4米以上,则需要相应尺寸的菲涅尔透镜模具,运用现有的机床加工无法实现该菲涅尔透镜模具的制作。
中国专利CN103895219B公开了一种用于制作菲涅尔透镜的锥形辊筒,解决了车床尺寸对平板模具制造尺寸的限制,可以通过较小的车床加工锥形辊筒模具,制造出较大尺寸的菲涅尔透镜,锥形辊筒本身可看作是直径不同的同心圆环叠加而成,可制作由若干规则的光学结构组成的菲涅 尔透镜。但是整个技术无法制作出非同心圆光学结构形成的菲涅尔透镜,其能够加工的菲涅尔透镜模具的尺寸也是有限的。
中国专利申请CN108890944A公开了一种用于制造菲涅尔透镜的模具及其生产方法,模具包括压板和位于压板下端的基板,基板上环布若干直径不同的环式沟槽,且相邻沟槽深度和倾斜角度都不同,压板下端设有与基板上沟槽相契合的突出部;通过在小块的金属条表面用数控机床加工出菲涅尔透镜环带,再将小块金属条拼接组合成基板毛坯,进一步使用车床、刀具去除毛坯件表面预留的残余量,打磨机打磨去刺得到菲涅尔透镜成型模板。经实际设计制作验证得出,由于现有机床加工尺寸的限制,该方法无法实现大尺寸菲涅尔透镜模具的制作,需通过拼接方式形成大尺寸菲涅尔透镜,拼接过程中拼接缝的存在严重影响了菲涅尔透镜的性能,无法用于电子显示等对菲涅尔透镜表观质量要求高的场合。
发明内容
有鉴于此,本发明的目的在于提供了一种菲涅尔透镜模具,解决现有技术中无法制造超大尺寸及形状不规则的菲涅尔透镜的问题。
为实现上述目的,本发明实施例采用以下技术方案:
一种菲涅尔透镜模具,包括层叠的带材,所述带材是可弯曲的,所述带材的一条棱边上设置有光学结构,所述光学结构与设计的菲涅尔透镜的对应环带上的透镜结构相同。
作为本发明的一种可选方式,所述菲涅尔透镜模具还包括基准单元,所述带材以所述基准单元为依托,层叠在所述基准单元的一个轮廓面上。
作为本发明的一种可选方式,所述基准单元的轮廓形状与所述菲涅尔透镜对应区域的环带形状相同,所述带材依照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向层叠在所述基准单元的一个轮廓面上。
作为本发明的一种可选方式,所述基准单元上设置有与所述菲涅尔透镜的对应区域内透镜结构相同的光学结构,所述带材依照所述菲涅尔透镜中各带材的位置和环带上透镜结构的朝向层叠在所述基准单元的一个轮廓面上。
作为本发明的一种可选方式,所述基准单元的外轮廓形状为圆形、椭 圆形、抛物线形、多边形或以上形状的一部分。
作为本发明的一种可选方式,所述基准单元为基准带,所述基准带的形状与所述菲涅尔透镜的最外圈环带形状相同,所述带材依照所述菲涅尔透镜的环带的位置和环带上透镜结构的朝向层叠在所述基准带的内侧。
作为本发明的一种可选方式,所述基准单元为基准带,所述基准带的形状与所述菲涅尔透镜的最内圈环带形状相同,所述带材依照所述菲涅尔透镜的环带的位置和环带上透镜结构的朝向层叠在所述基准带的外侧。
作为本发明的一种可选方式,所述菲涅尔透镜模具还包括固定单元,所述基准单元设置在所述固定单元上。
本发明还提供一种菲涅尔透镜模具的制作方法,解决现有技术中只能制作圆环形菲涅尔透镜模具的问题。
一种菲涅尔透镜模具的制作方法,包括以下步骤:
S1、设计菲涅尔透镜:根据光学特性要求,设计菲涅尔透镜环带形状和透镜结构参数,将所述菲涅尔透镜拆解成环带,得到相应的环带参数,所述环带参数包括所述环带上的各透镜结构参数;
S2、加工部件:选用可弯曲的带材,在所述带材的一条棱边上加工与所述菲涅尔透镜的对应环带上的透镜结构相同的光学结构;
S3、层叠带材:依照所述菲涅尔透镜的环带的位置和环带上透镜结构的朝向,层叠加工有光学结构的所述带材,制作成菲涅尔透镜模具。
作为本发明的一种可选方式,所述带材通过粘接、机械固定或磁性吸附的方式层叠。
作为本发明的一种可选方式,菲涅尔透镜模具的制备方法具体包括以下步骤:
S1、设计菲涅尔透镜:根据光学特性要求,设计出菲涅尔透镜环带形状和透镜结构参数,将所述菲涅尔透镜拆分成基准单元和环带,得到相应的基准单元参数和环带参数;
S2、加工部件:根据所述基准单元参数,通过车削、铣削或磨削方式加工出相应的基准单元;选用可弯曲的带材,根据所述环带参数,使用铣、磨或抛的方式在所述带材的一条棱边上加工与所述菲涅尔透镜的对应环带上的透镜结构相同的光学结构;
S3、层叠带材:根据设计的菲涅尔透镜,固定所述基准单元位置;按照所述菲涅尔透镜的环带的位置和环带上透镜结构的朝向层叠加工有光学结构的所述带材在所述基准单元的一个轮廓面上,制作成菲涅尔透镜模具。
作为本发明的一种可选方式,所述基准单元的轮廓形状与所述菲涅尔透镜对应区域的环带的形状相同,所述带材依照所述菲涅尔透镜中环带的位置和环带上透镜结构的朝向层叠在所述基准单元的一个轮廓面上。
作为本发明的一种可选方式,所述基准单元上加工有与所述菲涅尔透镜的对应环带上透镜结构相同的光学结构,按所述菲涅尔透镜中环带的位置和环带上透镜结构的朝向连续层叠或分段层叠所述带材在所述基准单元的一个轮廓面上。
作为本发明的一种可选方式,所述基准单元为基准带,所述基准带的形状与所述菲涅尔透镜的最外圈环带形状相同,按所述菲涅尔透镜中环带的位置和环带上透镜结构的朝向连续层叠或分段层叠所述带材在所述基准带的内侧。
作为本发明的一种可选方式,所述基准单元为基准带,所述基准带的形状与所述菲涅尔透镜的最内圈环带形状相同,按所述菲涅尔透镜中环带的位置和环带上透镜结构的朝向连续层叠或分段层叠所述带材在所述基准带的外侧。
作为本发明的一种可选方式,菲涅尔透镜模具的制备方法具体包括以下步骤:
S1、设计菲涅尔透镜:根据光学特性要求,设计菲涅尔透镜环带形状和透镜结构参数,将设计的菲涅尔透镜拆解成环带,得到相应的环带参数,所述环带参数包括所述环带上的各透镜结构参数;
S2、加工部件:选用可弯曲的带材,根据所述环带参数,在所述带材的一条棱边上加工与所述菲涅尔透镜的对应环带上的透镜结构相同的光学结构;
S3、层叠带材:确定一基准单元,以所述基准单元为依托,依照所述菲涅尔透镜的环带的位置和环带上透镜结构的朝向,层叠加工有光学结构的所述带材后,剥离所述基准单元,得到菲涅尔透镜模具。
本发明还提供一种菲涅尔透镜的制备方法,解决现有技术中无法直接 制作大尺寸、不规则的菲涅尔透镜,拼接得到的大尺寸菲涅尔透镜存在拼接缝的问题。
一种菲涅尔透镜的制备方法,使用的菲涅尔透镜模具包括层叠的带材,所述带材是可弯曲的,所述带材的一条棱边上设置有光学结构,所述光学结构与设计的菲涅尔透镜的对应环带上的透镜结构相同,通过液态胶涂布固化或热压成型的方式制得菲涅尔透镜,所述液态胶涂布固化方式包括射线固化、热固化或反应固化中至少一种。
与现有技术相比,本发明取得的有益效果为:
本发明的菲涅尔透镜模具包括层叠的带材,所述带材是可弯曲的,所述带材的一条棱边上设置有光学结构,所述光学结构与设计的菲涅尔透镜的对应环带上的透镜结构相同;所述菲涅尔透镜模具不受加工车床尺寸的限制,根据设计的菲涅尔透镜加工带材,进而确保了菲涅尔透镜模具的加工精度;根据本发明的制备方法,通过光学性能设计菲涅尔透镜,加工部件,层叠带材的步骤,制作出的菲涅尔透镜模具与设计的菲涅尔透镜完全对应,不局限于某一特定的形状和尺寸,可以制作任意尺寸和非同心圆环带状的菲涅尔透镜模具、局部菲涅尔透镜模具。通过上述菲涅尔透镜模具制作菲涅尔透镜的过程简单,制备得到的菲涅尔透镜精度高;此外,该制备方法可用于制作大尺寸的菲涅尔透镜,得到的大尺寸的菲涅尔透镜无拼接缝,保证了菲涅尔透镜的性能,可用于电子显示等对菲涅尔透镜表观质量要求高的场合。
为了更清楚地说明本发明的技术方案,下面将对实施例中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是形状规则的光学结构构成的菲涅尔透镜;
图2是形状不规则的光学结构构成的菲涅尔透镜一;
图3是形状不规则的光学结构构成的菲涅尔透镜二;
图4是菲涅尔透镜模具制备流程示意图;
图5是环带上菲涅尔透镜结构齿形结构的示意图;
图6是椭圆形菲涅尔透镜模具示意图;
图7是抛物线菲涅尔透镜模具示意图;
图8是波浪形菲涅尔透镜模具示意图;
图9是圆形菲涅尔透镜模具A-A横截面示意图;
图10是设计的菲涅尔透镜拆解图;
图11是整圆模芯示意图;
图12是带材连续层叠在整圆模芯上制作菲涅尔透镜模具的示意图;
图13是带材分段层叠在整圆模芯上制作菲涅尔透镜模具的示意图;
图14是整圆模芯示意图二;
图15是带材连续层叠在整圆模芯上制作菲涅尔透镜模具的示意图二;
图16是带材分段层叠在整圆模芯上制作菲涅尔透镜模具的示意图二;
图17是半圆模芯示意图;
图18是带材层叠在半圆模芯上制作菲涅尔透镜模具的示意图;
图19是半圆模芯示意图二;
图20是带材层叠在半圆模芯上制作菲涅尔透镜模具的示意图二;
图21是局部圆形模芯示意图;
图22是带材层叠在局部圆形模芯上制作菲涅尔透镜模具的示意图;
图23是局部圆形模芯示意图二;
图24是带材层叠在局部圆形模芯上制作菲涅尔透镜模具的示意图二;
图25是椭圆形模芯示意图;
图26是带材连续层叠在椭圆形模芯上制作菲涅尔透镜模具的示意图;
图27是带材分段层叠在椭圆形模芯上制作菲涅尔透镜模具的示意图;
图28是椭圆形模芯示意图二;
图29是带材连续层叠在椭圆形模芯上制作菲涅尔透镜模具的示意图;
图30是带材分段层叠在椭圆形模芯上制作菲涅尔透镜模具的示意图;
图31是半椭圆形模芯示意图;
图32是带材层叠在半椭圆形模芯上制作菲涅尔透镜模具的示意图;
图33是半椭圆形模芯示意图二;
图34是带材层叠在半椭圆形模芯上制作菲涅尔透镜模具的示意图二;
图35是抛物线形模芯示意图;
图36是带材层叠在抛物线形模芯上制作菲涅尔透镜模具的示意图;
图37是抛物线形模芯示意图二;
图38是带材层叠在抛物线形模芯上制作菲涅尔透镜模具的示意图二;
图39是利用轴转动制作菲涅尔透镜模具的示意图一;
图40是利用轴转动制作菲涅尔透镜模具的示意图二;
图41是带材连续层叠在模芯上制作含平板的菲涅尔透镜模具的示意图;
图42是带材分段层叠在模芯上制作含平板的菲涅尔透镜模具的示意图;
图43是利用轴转动制作含平板的菲涅尔透镜模具的示意图一;
图44是利用轴转动制作含平板的菲涅尔透镜模具的示意图二;
图45是带材连续层叠在基准带内侧制作菲涅尔透镜模具的示意图;
图46是基膜上裁剪出所需要的菲涅尔透镜光学膜的示意图;
图中附图标记说明:100-基准单元;101-模芯;102-基准带;200-环带;201-直角三角形齿状结构;202-非直角三角形齿状结构;203-扇形齿状结构;204-棱台形齿状结构;300-带材;400-平板;500-转动轴;600-模芯轴;700-橡胶压辊;800-菲涅尔透镜光学膜;箭头方向代表转动方向。
通过上述附图,已示出本发明明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本发明构思的范围,而是通过参考特定实施例为本领域技术人员说明本发明公开的概念。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,“设置”、“固定”应作广义理解,例如,可以直接固定连接,也可以是通过中 间媒介间接连接,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明的描述中,“若干”的含义是两个或两个以上,除非是另有精确具体地规定。
此外,术语“包括”以及它的任何变形,意图在于覆盖不排它的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备,不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例一
一种菲涅尔透镜模具,由可弯曲的带材层叠形成,所述带材的一条棱边上设置有光学结构,所述光学结构与设计的菲涅尔透镜的对应环带上的透镜结构相同。菲涅尔透镜模具形成流程图如图4所示,具体描述如下:
S1、根据光学特性要求,设计菲涅尔透镜环带形状和透镜结构参数,将所述菲涅尔透镜拆解成若干环带200,从菲涅尔透镜的最内圈环带开始计算,依次为第1环带、第2环带、第3环带、第4环带……第n-1环带、第n环带,得到对应的环带参数,所述环带参数包括所述环带上的各透镜结构参数;
S2、选用可弯曲的带材300,根据环带上各透镜结构参数,在所述带材的一条棱边上加工与所述菲涅尔透镜的对应环带上的透镜结构相同的光学结构,得到与上述环带一一对应的第1带材、第2带材、第3带材、第4带材……第n-1带材、第n带材;此处可对加工得到的第1带材、第2带材、第3带材、第4带材……第n-1带材、第n带材可进行相应的编号,以简化后续若干带材相互层叠的过程;
S3、依照所述菲涅尔透镜的各环带位置和环带上各透镜结构的朝向,按照编号顺序依次层叠上述加工有光学结构的带材,制作成菲涅尔透镜模具。
利用可弯曲的带材,在带材的一条棱边上加工与菲涅尔透镜环带上各透镜结构参数相同的光学结构的,再一层一层的层叠制作成菲涅尔透镜模具。如图5所示,所述菲涅尔透镜的各环带上的透镜结构可以是直角三角 形齿状结构201,也可以是非直角三角形齿状结构202,也可以是扇形齿状结构203,还可以是棱台形齿状结构204;根据所述菲涅尔透镜各环带上透镜结构,在带材的一条棱边上加工相应透镜结构的光学结构。可弯曲的带材可以根据设计的菲涅尔透镜层叠成相应形状的菲涅尔透镜模具,如图6所示的椭圆形菲涅尔透镜模具,如图7所示的抛物线形菲涅尔透镜模具,如图8所示的波浪形菲涅尔透镜模模具;此外,还可以通过控制层叠的可弯曲的带材的数量,制作出任意尺寸的菲涅尔透镜模具。因此,本发明实施例的菲涅尔透镜模具的制备方法不受超精密机床加工尺寸的限制,可以根据需求制作各种形状各种尺寸的菲涅尔透镜模具。
带材是柔性可卷曲和硬度较高的材料,通过磨削、抛光等过程制成,本申请实施例中的带材优选金属带材。根据环带上的各透镜结构参数,使用铣、磨或抛的方式在带材的一条棱边上加工与所述菲涅尔透镜的对应环带上的透镜结构相同的光学结构。带材层叠固定可以选用胶粘方式,也可以选用卡扣方式,也可以选用铆钉铆接方式,还可以选用膨胀锁紧方式。根据设计的菲涅尔透镜的环带参数以及环带上的各透镜结构参数,加工带材的一条棱边,制作相应横截面形状的光学结构,光学结构的横截面形状可以是任意三角形,还可以是扇形,还可以是圆形,还可以是弓形,还可以是抛物线形,还可以是椭圆形,还可以是梯形,还可以是多线段组成的棱台形。
根据光学特性要求,设计的菲涅尔透镜的参数包括菲涅尔透镜的整体形状、尺寸和菲涅尔透镜的每条环带透镜结构的横截面形状和计算出横截面形状参数,以圆形菲涅尔透镜为例,如图9所示,其A-A横截面参数包括相邻环带透镜结构齿形之间的距离即齿形节距P、菲涅尔透镜的每条环带透镜结构的齿形高度h、工作面B与垂直于远离菲涅尔透镜齿形面一侧的夹角即拔模角α、工作面B与远离菲涅尔透镜齿形面的一侧的夹角为工作角β和干扰面C。
当设计的菲涅尔透镜相邻环带透镜结构的齿形节距P和每条环带透镜结构的齿形高度h都相同时,根据设计的菲涅尔透镜结构的齿形节距P,选择可弯曲的带材的厚度与齿形节距P相同,即设计的菲涅尔透镜结构的齿形节距P和齿形高度h都为0.15mm时,选用厚度为0.15mm的可弯曲的 带材;根据理论设计的菲涅尔透镜的齿形高度h,选择可弯曲的带材的宽度≥菲涅尔透镜的齿形高度h。考虑可弯曲的带材层叠时的稳定性,需要有适当的接触面,优选可弯曲的带材的宽度>菲涅尔透镜的齿形高度h。
当设计的菲涅尔透镜相邻环带透镜结构的齿形节距P不同,但每条环带透镜结构的齿形高度h都相同时,则需要根据齿形节距P选择对应的可弯曲的带材的厚度,可弯曲的带材的宽度相同。
当设计的菲涅尔透镜相邻环带透镜结构的齿形节距P相同,但是每条环带透镜结构的齿形高度h不同时,选择可弯曲的带材的厚度相同,可选择带材的宽度≥环带透镜结构最大的齿形节距P,还可以根据对应的齿形高度选择环带的宽度。
当设计的菲涅尔透镜相邻环带透镜结构的齿形节距P不同,每条环带透镜结构的齿形高度h也不同时,则需要选择可弯曲的带材的厚度与齿形节距P相对应,可选择带材的宽度≥环带透镜结构最大的齿形节距P,还可以根据对应的齿形高度选择环带的宽度。
实施例二
一种菲涅尔透镜模具,包括基准单元和层叠的带材,带材是可弯曲的,所述带材的一条棱边上设置有光学结构,所述光学结构与设计的菲涅尔透镜的对应环带上的透镜结构相同,所述基准单元的轮廓形状与所述菲涅尔透镜对应区域的环带形状相同,所述带材依照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向层叠在所述基准单元的一个轮廓面上。菲涅尔透镜模具的具体制备方法如下:
S1、根据光学特性要求,设计出菲涅尔透镜环带形状和透镜结构参数,并通过计算机模拟仿真技术将所述菲涅尔透镜拆解成基准单元100和环带200,得到相应的基准单元参数和环带参数,所述环带参数包括所述环带上的各透镜结构参数,具体拆解过程如图10所示;
S2、根据基准单元参数,通过车削、铣削或磨削的方式将基准单元的原材料制作成相应的基准单元;选用可弯曲的带材,根据所述环带参数,使用铣、磨或抛的方式在所述带材的一条棱边上加工与所述菲涅尔透镜的对应环带上的透镜结构相同的光学结构;
S3、根据设计的菲涅尔透镜,固定所述基准单元的位置;按照所述菲 涅尔透镜的环带位置和环带上透镜结构的朝向层叠加工有光学结构的带材在所述基准单元的一个轮廓面上,制作成菲涅尔透镜模具。
基准单元的原材料优选硬度较高的材料,以延长菲涅尔透镜模具的使用寿命。一般选用金属、陶瓷和高分子材料。所述金属材料包括但不限于不锈钢、铝合金、铝镁合金和铜合金;所述陶瓷包括但不限于三氧化二铝陶瓷;高分子材料包括但不限于碳纤维增强板、聚四氟乙烯。通过车削、铣削或磨削的方式对基准单元原材料加工出设计的菲涅尔透镜拆解的基准单元参数,形成基准单元。
作为本实施例的一种可选方式,根据菲涅尔透镜的理论设计,取中心一定尺寸的圆柱体作为基准单元,以此基准单元为参照,以下称此类一定形状柱面的基准单元为模芯101,如图11所示,加工得到的模芯101的轮廓形状与设计的菲涅尔透镜对应区域的环带形状相同。其中,如图12所示,带材300为一个整体,按照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向连续层叠在模芯101的轮廓面上形成菲涅尔透镜模具;如图13所示,带材300为若干段,按照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向一段段地依次层叠在模芯101的轮廓面上形成菲涅尔透镜模具。
作为本实施例的一种可选方式,根据菲涅尔透镜的理论设计,取中心一定尺寸的圆柱体作为基准单元,即模芯101,如图14所示,加工得到的模芯101的轮廓形状与设计的菲涅尔透镜对应区域的环带形状相同,并设置有与所述菲涅尔透镜的对应区域内透镜结构相同的光学结构。其中,按设计的菲涅尔透镜的对应区域参数,如图15所示,带材300为一个整体,按照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向连续层叠在模芯101的轮廓面上形成菲涅尔透镜模具;如图16所示,带材300为若干段,按照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向一段段地依次层叠在模芯101的轮廓面上形成菲涅尔透镜模具。
作为本实施例的一种可选方式,根据菲涅尔透镜的理论设计,从轴向截取中心一定尺寸的圆柱的一半作为基准单元,即模芯101,如图17所示,加工得到的模芯101的轮廓形状与设计的菲涅尔透镜对应区域的环带形状相同。如图18所示,带材300为若干段,按照所述菲涅尔透镜中各环带的 位置和环带上透镜结构的朝向一段段地依次层叠在模芯101的轮廓面上形成菲涅尔透镜模具。
作为本实施例的一种可选方式,根据菲涅尔透镜的理论设计,从轴向截取中心一定尺寸的圆柱的一半作为基准单元,即模芯101,如图19所示,加工得到的模芯101的轮廓形状与设计的菲涅尔透镜对应区域的环带形状相同,并设置有与所述菲涅尔透镜的对应区域内透镜结构相同的光学结构。如图20所示,带材300为若干段,按照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向一段段地依次层叠在模芯101的轮廓面上形成菲涅尔透镜模具。
作为本实施例的一种可选方式,根据菲涅尔透镜理论设计,轴向截取中心一定尺寸的圆柱的小于1/2尺寸部分作为基准单元,即模芯101,如图21所示,加工得到的模芯101的轮廓形状与设计的菲涅尔透镜对应区域的环带形状相同。如图22所示,带材300为若干段,按照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向一段段地依次层叠在模芯101的轮廓面上形成菲涅尔透镜模具。
作为本实施例的一种可选方式,根据菲涅尔透镜理论设计,轴向截取中心一定尺寸的圆柱的小于1/2尺寸部分作为基准单元,即模芯101,如图23所示,加工得到的模芯101的轮廓形状与设计的菲涅尔透镜对应区域的环带形状相同,并设置有与所述菲涅尔透镜的对应区域内透镜结构相同的光学结构。如图24所示,带材300为若干段,按照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向一段段地依次层叠在模芯101的轮廓面上形成菲涅尔透镜模具。
作为本实施例的一种可选方式,根据菲涅尔透镜理论设计,取中心一定尺寸的椭圆柱体作为基准单元,即模芯101,如图25所示,加工得到的模芯101的轮廓形状与设计的菲涅尔透镜对应区域的环带形状相同。其中,如图26所示,带材300为一个整体,按照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向连续层叠在模芯101的轮廓面上形成菲涅尔透镜模具;如图27所示,带材300为若干段,按照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向一段段地依次层叠在模芯101的轮廓面上形成菲涅尔透镜模具。
作为本实施例的一种可选方式,根据菲涅尔透镜理论设计,取中心一定尺寸的椭圆柱体作为基准单元,即模芯101,如图28所示,加工得到的模芯101的轮廓形状与设计的菲涅尔透镜对应区域的环带形状相同,并设置有与所述菲涅尔透镜的对应区域内透镜结构相同的光学结构。其中,如图29所示,带材300为一个整体,按照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向连续层叠在模芯101的轮廓面上形成菲涅尔透镜模具;如图30所示,带材300分解为若干段,按照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向一段段地依次层叠在模芯101的轮廓面上形成菲涅尔透镜模具。
作为本实施例的一种可选方式,根据菲涅尔透镜理论设计,沿轴向截取中心一定尺寸的椭圆柱体的1/2作为基准单元,即模芯101,如图31所示,加工得到的模芯101的轮廓形状与设计的菲涅尔透镜对应区域的环带形状相同。如图32所示,带材300分解为若干段,按照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向一段段地依次层叠在模芯101的轮廓面上形成菲涅尔透镜模具。
作为本实施例的一种可选方式,根据菲涅尔透镜理论设计,取中心一定尺寸的椭圆的1/2作为基准单元,即模芯101,如图33所示,加工得到的模芯101的轮廓形状与设计的菲涅尔透镜对应区域的环带形状相同,并设置有与所述菲涅尔透镜的对应区域内透镜结构相同的光学结构。如图34所示,带材300分解为若干段,按照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向一段段地依次层叠在模芯101的轮廓面上形成菲涅尔透镜模具。
作为本实施例的一种可选方式,根据菲涅尔透镜理论设计,取中心一定尺寸的抛物线柱体作为基准单元,即模芯101,如图35所示,加工得到的模芯101的轮廓形状与设计的菲涅尔透镜对应区域的环带形状相同。如图36所示,带材300分解为若干段,按照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向一段段地依次层叠在模芯101的轮廓面上形成菲涅尔透镜模具。作为本实施例的一种可选方式,根据菲涅尔透镜理论设计,取中心一定尺寸的抛物线作为基准单元,即模芯101,如图37所示,加工得到的模芯101的轮廓形状与设计的菲涅尔透镜对应区域的环带形状相 同,并设置有与所述菲涅尔透镜的对应区域内透镜结构相同的光学结构。如图38所示,带材300分解为若干段,按照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向一段段地依次层叠在模芯101的轮廓面上形成菲涅尔透镜模具。
整个制作的菲涅尔透镜模具过程中,除基准单元(即模芯101)外,带材层叠在模芯101表面,不断叠加增大菲涅尔透镜模具的尺寸,因此制备菲涅尔透镜模具的尺寸不受限制;根据设计的基准单元(即模芯101)参数加工制作出相应的基准单元(即模芯101),基准单元的形状可以根据设计的任意菲涅尔透镜参数进行设计和加工;根据环带的设计参数,在带材上设置对应的光学结构,再通过层叠的方式形成对应的菲涅尔透镜模具和局部菲涅尔透镜模具,不受形状、尺寸的限制,可以制作任意尺寸和同心圆环带状的菲涅尔透镜模具和局部菲涅尔透镜模具;通过该制作方法制作的菲涅尔透镜模具结构精度高,使用寿命长。
实施例三
在实施例二的基础上,在带材层叠的过程引入轴转动的原理,使得整个菲涅尔透镜模具的制作过程更加智能化,自动化。
作为本实施例的一种可选方式,当带材300为一个整体时,如图39所示,将模芯101装夹在模芯轴600上,将带材300成卷卷曲装夹在转动轴500上,将可弯曲的带材300的一端牵引固定在模芯轴600上,此处使用橡胶压辊700压住带材300的端头,橡胶压辊700用于辅助带材300的层叠并压紧带材300。转动模芯轴600,可弯曲的带材300即紧密层叠在模芯101的外轮廓上,可弯曲的带材300层叠方向应保证带材300上光学结构朝向与模芯101上透镜结构朝向一致,制作出满足设计要求的菲涅尔透镜模具。箭头方向代表转动轴500、模芯轴600的转动方向。其中,模芯轴600和转动轴500都是可控转动的,可以是人力手动转动,也可以通过其它动力提供转动的力,如电机;模芯轴600和转动轴500的朝向可以是水平的,也可以是竖直的,仅需要保持模芯101和成卷的可弯曲的带材300位于同一平面内即可。
作为本实施例的一种可选方式,当带材300分解为若干段时,如图40所示,将模芯101装夹在模芯轴600上,将制作有光学结构的分段带材300 按照理论设计的菲涅尔透镜上的位置做标识依次排放,首先将最靠近模芯101的一段带材300前端固定在模芯101上,此处使用橡胶压辊700压住带材300的端头,橡胶压辊700用于辅助带材300的层叠并压紧带材300;转动模芯轴600,将带材300层叠在模芯101的外轮廓上,固定该段带材末端后,按照顺序依次层叠固定,制作出满足设计要求的菲涅尔透镜模具。其中:箭头方向代表模芯轴600的转动方向;模芯轴600是可控转动的,可以通过人力手动转动,也可以通过其它动力提供转动的力,如电机等。
实施例四
一种菲涅尔透镜模具,在实施例二的基础上,还包括固定单元,模芯设置在固定单元上,具体制作过程如下:
S1、根据光学特性要求,设计菲涅尔透镜环带形状和透镜结构参数,并通过计算机模拟仿真技术将菲涅尔透镜分解成模芯和环带,得到相应的模芯参数和环带参数,所述环带参数包括所述环带上的各透镜结构参数;
S2、根据模芯参数,通过车削、铣削或磨削的方式加工出对应的模芯;选用可弯曲的带材,根据带材参数,使用铣、磨或抛的方式在所述带材的一条棱边上加工与所述菲涅尔透镜的对应环带上的透镜结构相同的光学结构;
S3、将模芯按照设计的菲涅尔透镜参数固定在固定单元上;按照所述菲涅尔透镜的环带的位置和环带上透镜结构的朝向层叠加工有光学结构的所述带材在所述模芯的一个轮廓面上,制作出满足设计要求的菲涅尔透镜模具。
作为本实施例的一种可选方式,固定单元选用平板。平板可以是金属平板,还可以是非金属平板,优选硬度较高的平板。平板一般选用金属、陶瓷和高分子材料制得。所述金属材料包括但不限于不锈钢、铝合金、铝镁合金和铜合金;所述陶瓷包括但不限于三氧化二铝陶瓷;高分子材料包括但不限于碳纤维增强板、聚四氟乙烯。平板的使用,便于模芯的固定,使得菲涅尔透镜模具的制作更加易于操作。
作为本实施例的一种可选方式,如41所示,模芯101固定在平板400上,环带300作为一个整体,按照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向连续层叠在模芯101的轮廓面上形成菲涅尔透镜模具。
作为本实施例的一种可选方式,如图42所示,模芯101固定在平板400上,环带300分解为若干段,按照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向一段段地依次层叠在模芯101的轮廓面上形成菲涅尔透镜模具。
实施例五
在实施例四的基础上,在带材层叠的过程引入轴转动的原理,使得整个菲涅尔透镜模具的制作过程更加智能化,自动化。
作为本实施例的一种可选方式,当带材300是一个整体时,如图43所示,将模芯101固定在平板400上,再将固定有模芯101的平板400装夹在模芯轴600上,将带材300成卷卷曲装夹在转动轴500上,将可弯曲的带材300的一端牵引固定在模芯轴600上,此处使用橡胶压辊700压住带材300的端头,橡胶压辊700用于辅助带材300的层叠并压紧带材300。转动模芯轴600,可弯曲的带材300即紧密层叠在模芯101的外轮廓面上,可弯曲的带材300层叠方向应保证带材300上光学结构朝向与模芯101上透镜结构朝向一致,制作出满足设计要求的菲涅尔透镜模具。箭头方向代表转动轴500、模芯轴600的转动方向。其中,模芯轴600和转动轴500都是可控转动的,可以是人力手动转动,也可以通过其它动力提供转动的力,如电机;模芯轴600和转动轴500的朝向可以是水平的,也可以是竖直的,仅需要保持模芯101和成卷的可弯曲的带材300位于同一平面内即可。
作为本实施例的一种可选方式,当带材300分解为若干段时,如图44所示,将模芯101规定在平板400上,再将固定有模芯101的平板400装夹在模芯轴600上,将制作有光学结构的分段带材300按照理论设计的菲涅尔透镜的区域参数做标识依次排放,首先将最靠近模芯101的一段带材300前端固定在模芯101上,此处使用橡胶压辊700压住带材300的端头,橡胶压辊700用于辅助带材300的层叠并压紧带材300;转动模芯轴600,将带材300层叠在模芯101的表面,固定该段带材末端后,按照顺序依次层叠固定,制作出满足设计要求的菲涅尔透镜模具。其中:箭头方向代表模芯轴600的转动方向;模芯轴600是可控转动的,可以通过人力手动转动,也可以通过其它动力提供转动的力,如电机等。
实施例六
一种菲涅尔透镜模具,包括基准单元和层叠的带材,带材是可弯曲的,所述带材的一条棱边上设置有光学结构,所述光学结构与设计的菲涅尔透镜的对应环带上的透镜结构相同,所述带材按设计的菲涅尔透镜参数层叠在基准单元的内侧。菲涅尔透镜模具的制作过程具体如下:
S1、根据光学特性要求,设计出对应的菲涅尔透镜形状和透镜结构参数,并通过计算机模拟仿真技术将菲涅尔透镜分解成一层层的环带,取最外圈环带作为基准单元,即基准带,得到相应的基准带参数和环带参数;
S2、根据基准带的设计参数,制作相应的基准带;选用可弯曲的带材,根据所述环带参数,使用铣、磨或抛的方式在所述带材的一条棱边上加工与所述菲涅尔透镜的对应环带上的透镜结构相同的光学结构;
S4、依照所述菲涅尔透镜的环的位置和环带上透镜结构的朝向,层叠加工有光学结构的所述带材在所述基准带的内侧得到菲涅尔透镜模具。
作为本实施例的一种可选方式,如图45所示,带材300分解成若干段,按照设计的菲涅尔透镜中环带的位置和环带上透镜结构的朝向,依次层叠在基准带102的内侧,制作出相应的菲涅尔透镜模具。
作为本实施例的一种可选方式,带材为一个整体,按照设计的菲涅尔透镜中环带的位置和环带上透镜结构的朝向,依次层叠在基准带的内侧,制作相应的菲涅尔透镜模具。
本发明实施例的菲涅尔透镜模具包括层叠的带材,带材是可弯曲的,且所述带材的一条棱边上设置有光学结构,所述光学结构与设计的菲涅尔透镜的对应环带上的透镜结构相同;所述菲涅尔透镜模具不受加工车床尺寸的限制,根据设计的菲涅尔透镜加工带材,进而确保了菲涅尔透镜模具的加工精度。本发明实施例提供的菲涅尔透镜模具的制备方法,通过光学性能设计菲涅尔透镜、加工部件、层叠带材的步骤,制作出的菲涅尔透镜模具与设计的菲涅尔透镜完全对应,不局限于某一特定的形状和尺寸,可以制作出任意尺寸和非同心圆环带状的菲涅尔透镜模具和局部菲涅尔透镜模具。
实施例七
一种菲涅尔透镜的制备方法,实施例一~实施例六制备的菲涅尔透镜 模具,通过涂布转印或热压或加压注塑的方式制得菲涅尔透镜。
涂布转印是将光学胶水均匀涂布在基膜或者菲涅尔透镜模具上,使得基膜和菲涅尔透镜模具紧密贴合后,再使用射线固化或加热固化或反应固化的方式使得光学胶水固化形成与菲涅尔透镜模具上光学结构互补的透镜结构,再将基膜与菲涅尔透镜模具分离,由于光学胶水和基膜的粘合性能强于菲涅尔透镜模具,则菲涅尔透镜模具上的光学结构就转印到基膜上,形成带有设计的菲涅尔透镜结构的光学膜,通过剪裁即得到设计的菲涅尔透镜。在基膜与菲涅尔透镜模具分离的过程中,可以预先在菲涅尔透镜模具上涂抹一层脱模剂,便于光学胶水与菲涅尔透镜模具的分离。
热压是将模具加热或者将基膜加热熔融后,通过在基膜和菲涅尔透镜模具之间施加压力,或者可以直接在菲涅尔透镜模具上施加压力,或者采用抽真空的形式,在基膜的一侧形成负压实现加压效果;在一定时间后冷却成型,将基膜和菲涅尔透镜模具分离,此时菲涅尔透镜模具上的光学结构就被复制到基膜上,形成带有设计的菲涅尔透镜结构的光学膜,通过剪裁即可得到设计的菲涅尔透镜。
此外,形成的带有设计的菲涅尔透镜结构的光学膜,如图46所示,根据显示用光学膜尺寸,从制作有整个菲涅尔透镜的基膜上,裁剪出所需要的菲涅尔透镜光学膜800,作为投影屏幕或其他显示装置的中重要的光学元件,制作成相应的成品,用于调制投影屏幕或其他显示装置的成像显示效果;还可以作为太阳能聚光、泵浦激光武器等的核心元件,根据需要进行剪裁制作相应的产品。
通过本发明实施例制备菲涅尔透镜的过程简单,制作得到的菲涅尔透镜精度高。此外,该制备方法可用于制作大尺寸的菲涅尔透镜,得到的大尺寸的菲涅尔透镜无拼接缝,保证了菲涅尔透镜的性能,可用于电子显示等对菲涅尔透镜表观质量要求高的场合,进一步促进下游产业的发展。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (17)
- 一种菲涅尔透镜模具,其特征在于,包括层叠的带材,所述带材是可弯曲的,所述带材的一条棱边上设置有光学结构,所述光学结构与设计的菲涅尔透镜的对应环带上的透镜结构相同。
- 根据权利要求1所述的菲涅尔透镜模具,其特征在于,还包括基准单元,所述带材以所述基准单元为依托,层叠在所述基准单元的一个轮廓面上。
- 根据权利要求2所述的菲涅尔透镜模具,其特征在于,所述基准单元的轮廓形状与所述菲涅尔透镜对应区域的环带形状相同,所述带材依照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向层叠在所述基准单元一个轮廓面上。
- 根据权利要求3所述的菲涅尔透镜模具,其特征在于,所述基准单元上设置有与所述菲涅尔透镜的对应区域内透镜结构相同的光学结构,所述带材依照所述菲涅尔透镜中各环带的位置和环带上透镜结构的朝向层叠在所述基准单元的一个轮廓面上。
- 根据权利要求3所述的菲涅尔透镜模具,其特征在于,所述基准单元的外轮廓形状为圆形、椭圆形、抛物线形、多边形或以上形状的一部分。
- 根据权利要求2所述的菲涅尔透镜模具,其特征在于,所述基准单元为基准带,所述基准带的形状与所述菲涅尔透镜的最外圈环带形状相同,所述带材依照所述菲涅尔透镜的环带的位置和环带上透镜结构的朝向层叠在所述基准带的内侧。
- 根据权利要求2所述的菲涅尔透镜模具,其特征在于,所述基准单元为基准带,所述基准带的形状与所述菲涅尔透镜的最内圈环带形状相同,所述带材依照所述菲涅尔透镜的环带的位置和环带上透镜结构的朝向层叠在所述基准带的外侧。
- 根据权利要求2所述的菲涅尔透镜模具,其特征在于,还包括固定单元,所述基准单元设置在所述固定单元上。
- 一种菲涅尔透镜模具的制备方法,其特征在于,包括以下步骤:S1、设计菲涅尔透镜:根据光学特性要求,设计菲涅尔透镜环带形状和透镜结构参数,将所述菲涅尔透镜拆解成环带,得到相应的环带参数, 所述环带参数包括所述环带上的各透镜结构参数;S2、加工部件:选用可弯曲的带材,在所述带材的一条棱边上加工与所述菲涅尔透镜的对应环带上的透镜结构相同的光学结构;S3、层叠带材:依照所述菲涅尔透镜的环带的位置和环带上透镜结构的朝向,层叠加工有光学结构的所述带材,制作成菲涅尔透镜模具。
- 根据权利要求9所述的制备方法,其特征在于,所述带材通过粘接、机械固定或磁性吸附的方式层叠。
- 一种菲涅尔透镜模具的制备方法,其特征在于,包括以下步骤:S1、设计菲涅尔透镜:根据光学特性要求,设计出菲涅尔透镜环带形状和透镜结构参数,将所述菲涅尔透镜拆分成基准单元和环带,得到相应的基准单元参数和环带参数;S2、加工部件:根据所述基准单元参数,通过车削、铣削或磨削方式加工出相应的基准单元;选用可弯曲的带材,根据所述环带参数,使用铣、磨或抛的方式在所述带材的一条棱边上加工与所述菲涅尔透镜的对应环带上的透镜结构相同的光学结构;S3、层叠带材:根据设计的菲涅尔透镜,固定所述基准单元位置;按照所述菲涅尔透镜的环带的位置和环带上透镜结构的朝向层叠加工有光学结构的所述带材在所述基准单元的一个轮廓面上,制作成菲涅尔透镜模具。
- 根据权利要求11所述的制备方法,其特征在于,所述基准单元的轮廓形状与所述菲涅尔透镜对应区域的环带的形状相同,所述带材依照所述菲涅尔透镜中环带的位置和环带上透镜结构的朝向层叠在所述基准单元的一个轮廓面上。
- 根据权利要求12所述的制备方法,其特征在于,所述基准单元上加工有与所述菲涅尔透镜的对应环带上透镜结构相同的光学结构,按所述菲涅尔透镜中环带的位置和环带上透镜结构的朝向连续层叠或分段层叠所述带材在所述基准单元的一个轮廓面上。
- 根据权利要求11所述的制备方法,其特征在于,所述基准单元为基准带,所述基准带的形状与所述菲涅尔透镜的最外圈环带形状相同,按所述菲涅尔透镜中环带的位置和环带上透镜结构的朝向连续层叠或分段层叠所述带材在所述基准带的内侧。
- 根据权利要求11所述的制备方法,其特征在于,所述基准单元为基准带,所述基准带的形状与所述菲涅尔透镜的最内圈环带形状相同,按所述菲涅尔透镜中环带的位置和环带上透镜结构的朝向连续层叠或分段层叠所述带材在所述基准带的外侧。
- 一种菲涅尔透镜模具的制备方法,其特征在于,包括以下步骤:S1、设计菲涅尔透镜:根据光学特性要求,设计菲涅尔透镜环带形状和透镜结构参数,将设计的菲涅尔透镜拆解成环带,得到相应的环带参数,所述环带参数包括所述环带上的各透镜结构参数;S2、加工部件:选用可弯曲的带材,根据所述环带参数,在所述带材的一条棱边上加工与所述菲涅尔透镜的对应环带上的透镜结构相同的光学结构;S3、层叠带材:确定一基准单元,以所述基准单元为依托,依照所述菲涅尔透镜的环带的位置和环带上透镜结构的朝向,层叠加工有光学结构的所述带材后,剥离所述基准单元,得到菲涅尔透镜模具。
- 一种菲涅尔透镜的制备方法,其特征在于:使用如权利要求1所述的菲涅尔透镜模具,通过液态胶涂布固化或热压成型的方式制得菲涅尔透镜,所述液态胶涂布固化方式包括射线固化、热固化或反应固化中至少一种。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20930924.4A EP4137301A4 (en) | 2020-04-13 | 2020-11-11 | FRESNEL LENS MOLD AND MANUFACTURING METHOD THEREFOR AND FRESNEL LENS MANUFACTURING METHOD |
US17/792,740 US20230046945A1 (en) | 2020-04-13 | 2020-11-11 | Fresnel lens mold and manufacturing method therefor, and manufacturing method for fresnel lens |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010283010.6A CN111169058B (zh) | 2020-04-13 | 2020-04-13 | 菲涅尔透镜模具及其制备方法和菲涅尔透镜的制备方法 |
CN202010283010.6 | 2020-04-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021208412A1 true WO2021208412A1 (zh) | 2021-10-21 |
Family
ID=70645908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/128039 WO2021208412A1 (zh) | 2020-04-13 | 2020-11-11 | 菲涅尔透镜模具及其制备方法和菲涅尔透镜的制备方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230046945A1 (zh) |
EP (1) | EP4137301A4 (zh) |
CN (1) | CN111169058B (zh) |
WO (1) | WO2021208412A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111169058B (zh) * | 2020-04-13 | 2020-07-03 | 成都菲斯特科技有限公司 | 菲涅尔透镜模具及其制备方法和菲涅尔透镜的制备方法 |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1540367A (zh) * | 2003-01-07 | 2004-10-27 | 大日本印刷株式会社 | 菲涅耳透镜片、其制造方法及成形模具和其透射型屏幕 |
CN1711163A (zh) * | 2002-11-25 | 2005-12-21 | Qspex有限公司 | 透镜模具及使用该模具的方法 |
CN101219568A (zh) * | 2000-08-04 | 2008-07-16 | 奥斯兰姆奥普托半导体有限责任公司 | 透镜模的生产方法 |
CN101750701A (zh) * | 2008-12-18 | 2010-06-23 | 鸿富锦精密工业(深圳)有限公司 | 镜头模组 |
TW201043428A (en) * | 2009-06-05 | 2010-12-16 | Hon Hai Prec Ind Co Ltd | Mold and method for manufacturing Fresnel lens used the same |
CN102085723A (zh) * | 2009-12-04 | 2011-06-08 | 鸿富锦精密工业(深圳)有限公司 | 成型透镜的模具 |
CN102103241A (zh) * | 2009-12-18 | 2011-06-22 | 鸿富锦精密工业(深圳)有限公司 | 镜头模组及其组装方法 |
EP2647480A1 (en) * | 2012-04-05 | 2013-10-09 | Canon Kabushiki Kaisha | Molded-article manufacturing method, mold, and optical element including fresnel lens |
CN103895219A (zh) | 2014-04-25 | 2014-07-02 | 成都菲斯特科技有限公司 | 用于制作菲涅尔透镜的锥形辊筒 |
JP2015128895A (ja) * | 2013-12-04 | 2015-07-16 | 大同特殊鋼株式会社 | フレネルレンズおよびフレネルレンズの製造方法 |
CN108890944A (zh) | 2018-08-02 | 2018-11-27 | 山东宇影光学仪器有限公司 | 一种用于制造菲涅尔透镜的模具及其生产方法 |
WO2019013211A1 (ja) * | 2017-07-11 | 2019-01-17 | 株式会社ダイセル | フレネルレンズ、及びその製造方法 |
JP2019025787A (ja) * | 2017-07-31 | 2019-02-21 | 株式会社クラレ | 光学部材シートの製造方法および成形型 |
CN109425917A (zh) * | 2017-08-28 | 2019-03-05 | 大立光电股份有限公司 | 塑胶透镜、塑胶环形光学元件、镜头模块及电子装置 |
CN209198832U (zh) * | 2018-11-09 | 2019-08-02 | 宁波舜宇光电信息有限公司 | 透镜模块以及摄像模组 |
CN110226110A (zh) * | 2016-09-13 | 2019-09-10 | 脸谱科技有限责任公司 | 具有用于减少光学伪影的动态拔模的菲涅耳透镜 |
US10473827B1 (en) * | 2017-11-17 | 2019-11-12 | Facebook Technologies, Llc | Fresnel lens with textured draft surfaces |
CN209851398U (zh) * | 2019-04-10 | 2019-12-27 | 成都贝瑞光电科技股份有限公司 | 一种便于拆装的透镜模具 |
CN111169058A (zh) * | 2020-04-13 | 2020-05-19 | 成都菲斯特科技有限公司 | 菲涅尔透镜模具及其制备方法和菲涅尔透镜的制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006289871A (ja) * | 2005-04-13 | 2006-10-26 | Fuji Photo Film Co Ltd | 輪帯光学素子の製造方法および輪帯光学素子用金型の製造方法 |
KR20100014681A (ko) * | 2007-03-30 | 2010-02-10 | 후지필름 가부시키가이샤 | 고르지 않은 두께의 수지 시트의 제조 방법 및 장치 |
JP2010066518A (ja) * | 2008-09-11 | 2010-03-25 | Glory Science Co Ltd | フレネルレンズ、フレネルレンズ製造装置及び方法 |
CN103149609B (zh) * | 2013-03-13 | 2015-03-18 | 毛建华 | 超大口径菲涅尔透镜加工方法 |
WO2014139017A1 (en) * | 2013-03-14 | 2014-09-18 | Dbm Reflex Enterprises Inc. | Injection molding apparatus for structured optical parts |
CN110238996A (zh) * | 2019-05-29 | 2019-09-17 | 广东省医疗器械研究所 | 一种微针阵列模具的制备方法 |
-
2020
- 2020-04-13 CN CN202010283010.6A patent/CN111169058B/zh active Active
- 2020-11-11 WO PCT/CN2020/128039 patent/WO2021208412A1/zh unknown
- 2020-11-11 US US17/792,740 patent/US20230046945A1/en active Pending
- 2020-11-11 EP EP20930924.4A patent/EP4137301A4/en active Pending
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101219568A (zh) * | 2000-08-04 | 2008-07-16 | 奥斯兰姆奥普托半导体有限责任公司 | 透镜模的生产方法 |
CN1711163A (zh) * | 2002-11-25 | 2005-12-21 | Qspex有限公司 | 透镜模具及使用该模具的方法 |
CN1540367A (zh) * | 2003-01-07 | 2004-10-27 | 大日本印刷株式会社 | 菲涅耳透镜片、其制造方法及成形模具和其透射型屏幕 |
CN101750701A (zh) * | 2008-12-18 | 2010-06-23 | 鸿富锦精密工业(深圳)有限公司 | 镜头模组 |
TW201043428A (en) * | 2009-06-05 | 2010-12-16 | Hon Hai Prec Ind Co Ltd | Mold and method for manufacturing Fresnel lens used the same |
CN102085723A (zh) * | 2009-12-04 | 2011-06-08 | 鸿富锦精密工业(深圳)有限公司 | 成型透镜的模具 |
CN102103241A (zh) * | 2009-12-18 | 2011-06-22 | 鸿富锦精密工业(深圳)有限公司 | 镜头模组及其组装方法 |
EP2647480A1 (en) * | 2012-04-05 | 2013-10-09 | Canon Kabushiki Kaisha | Molded-article manufacturing method, mold, and optical element including fresnel lens |
JP2015128895A (ja) * | 2013-12-04 | 2015-07-16 | 大同特殊鋼株式会社 | フレネルレンズおよびフレネルレンズの製造方法 |
CN103895219A (zh) | 2014-04-25 | 2014-07-02 | 成都菲斯特科技有限公司 | 用于制作菲涅尔透镜的锥形辊筒 |
CN110226110A (zh) * | 2016-09-13 | 2019-09-10 | 脸谱科技有限责任公司 | 具有用于减少光学伪影的动态拔模的菲涅耳透镜 |
WO2019013211A1 (ja) * | 2017-07-11 | 2019-01-17 | 株式会社ダイセル | フレネルレンズ、及びその製造方法 |
JP2019025787A (ja) * | 2017-07-31 | 2019-02-21 | 株式会社クラレ | 光学部材シートの製造方法および成形型 |
CN109425917A (zh) * | 2017-08-28 | 2019-03-05 | 大立光电股份有限公司 | 塑胶透镜、塑胶环形光学元件、镜头模块及电子装置 |
US10473827B1 (en) * | 2017-11-17 | 2019-11-12 | Facebook Technologies, Llc | Fresnel lens with textured draft surfaces |
CN108890944A (zh) | 2018-08-02 | 2018-11-27 | 山东宇影光学仪器有限公司 | 一种用于制造菲涅尔透镜的模具及其生产方法 |
CN209198832U (zh) * | 2018-11-09 | 2019-08-02 | 宁波舜宇光电信息有限公司 | 透镜模块以及摄像模组 |
CN209851398U (zh) * | 2019-04-10 | 2019-12-27 | 成都贝瑞光电科技股份有限公司 | 一种便于拆装的透镜模具 |
CN111169058A (zh) * | 2020-04-13 | 2020-05-19 | 成都菲斯特科技有限公司 | 菲涅尔透镜模具及其制备方法和菲涅尔透镜的制备方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4137301A4 |
Also Published As
Publication number | Publication date |
---|---|
US20230046945A1 (en) | 2023-02-16 |
CN111169058B (zh) | 2020-07-03 |
EP4137301A4 (en) | 2024-10-02 |
EP4137301A1 (en) | 2023-02-22 |
CN111169058A (zh) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1064589C (zh) | 光学元件集合体的连续形成方法及其装置 | |
JPH0222013A (ja) | 押形工具製作用マスターの製造方法 | |
WO2021208412A1 (zh) | 菲涅尔透镜模具及其制备方法和菲涅尔透镜的制备方法 | |
JP2006512220A (ja) | パターン付きシートのためのシステム、方法と装置 | |
WO2014010516A1 (ja) | インプリント方法、及びインプリント装置 | |
EP2846977A1 (en) | Process and apparatus for embossing precise microstructures in rigid thermoplastic panels | |
CN103009016A (zh) | 具有微棱镜阵列的无缝镍薄板的生产方法 | |
TW201731662A (zh) | 表面構造薄膜之製造方法及製造裝置 | |
CN1481303A (zh) | 压花薄片的制造方法和压花薄片 | |
JP5518800B2 (ja) | 電鋳ロール及びその製造方法 | |
CN207044675U (zh) | 一种用于制作线性菲涅尔透镜的模具 | |
US20050269742A1 (en) | Method for making tools for micro replication | |
JP5119228B2 (ja) | 樹脂シートの製造装置及び製造方法 | |
TW201438878A (zh) | 成型滾輪及成型滾輪的製造方法 | |
JP4509299B2 (ja) | ロール成形型 | |
CN112123825B (zh) | 一种透镜加工设备及其加工方法 | |
WO2019169866A1 (zh) | 透镜加工设备和方法 | |
JP2007078884A (ja) | ディスプレイ用光学シートの製造方法 | |
CN113589636B (zh) | 一种光学投影屏幕生产线 | |
JP2014151636A (ja) | エンドレスベルト状金属金型およびその製造方法 | |
CN213919699U (zh) | 环形加工装置 | |
KR0108650Y1 (ko) | 투사형 텔리비젼용 스크린 제조용 금형 | |
JP2007078882A (ja) | ディスプレイ用光学シート | |
JP2001172780A (ja) | 平面状母型 | |
JPH0618990A (ja) | 透過型スクリーンの遮光部形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20930924 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020930924 Country of ref document: EP Effective date: 20221114 |