WO2021208309A1 - 用于储能电站电化学电池在线评估的方法和系统 - Google Patents

用于储能电站电化学电池在线评估的方法和系统 Download PDF

Info

Publication number
WO2021208309A1
WO2021208309A1 PCT/CN2020/109644 CN2020109644W WO2021208309A1 WO 2021208309 A1 WO2021208309 A1 WO 2021208309A1 CN 2020109644 W CN2020109644 W CN 2020109644W WO 2021208309 A1 WO2021208309 A1 WO 2021208309A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
data
energy storage
analysis
model
Prior art date
Application number
PCT/CN2020/109644
Other languages
English (en)
French (fr)
Inventor
孙锐
郭宝甫
毛建容
张鹏
王霞
贺黄勇
Original Assignee
许继集团有限公司
国家电网有限公司
许昌许继软件技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 许继集团有限公司, 国家电网有限公司, 许昌许继软件技术有限公司 filed Critical 许继集团有限公司
Publication of WO2021208309A1 publication Critical patent/WO2021208309A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of charging and discharging electrochemical batteries, and in particular to a method and system for online evaluation of electrochemical batteries in energy storage power stations.
  • Energy storage technology adds a "storage” link to the "electricity production, transmission, distribution and consumption” of the power system, making the originally almost “rigid” system “flexible”.
  • Large-capacity battery energy storage has the characteristics of quickly absorbing energy and releasing it in a timely manner, which can realize the time migration of energy and solve the problem of insufficient system power supply caused by the fluctuation and uncertainty of new energy power generation.
  • Electrochemical energy storage has become the first choice for energy storage power station batteries due to its high energy density, fast charge and discharge rate, and long service life.
  • the safety and reliability of electrochemical energy storage batteries have always been the focus of their applications. problem:
  • the energy is large, the voltage is high, and the electrolyte is mostly organic flammable. Improper application may cause the battery to rise in temperature, catch fire or even explode;
  • the internal resistance of the battery is often inconsistent. As the charge and discharge cycle progresses, the performance of the single cells in the battery pack is unbalanced, which shortens the life and performance of the battery pack.
  • the purpose of this application is to provide a method and system for on-line evaluation of electrochemical batteries in energy storage power stations, which integrates big data analysis, visual maintenance, and refined management of energy storage power stations, and can achieve the Data access, processing and analysis of the whole life cycle of the body, complete the life cycle monitoring, status analysis, online evaluation and other functions of the entire energy storage power station, battery stacks, battery modules, and battery cells.
  • the first aspect of the embodiments of the present application provides a method for online evaluation of electrochemical cells in energy storage power stations, including:
  • the model processes the battery data in a standardized manner, and stores the battery data in a business manner;
  • the battery status is evaluated according to the characteristic fingerprints of batteries with different characteristics.
  • the standardized processing of the battery data by the model includes:
  • the conversion of four-remote battery data collected in real time into service data related to a battery business model includes: building a device template with a collection point table of a battery collection device. Define the data service information type in the template according to the information model and code of the battery service data.
  • the data of battery equipment, battery stacks, battery modules, and battery cells are established according to the equipment, attributes and equipment attribute values according to the battery model.
  • the setting different time thresholds and analyzing the battery data for different time thresholds includes: setting different time thresholds, and depicting characteristic fingerprints of the battery operating state through multi-angle thresholds, thereby Using characteristic fingerprints to analyze the battery data includes: analyzing the battery data using statistical calculations, range analysis, correlation analysis, gray analysis, and probability analysis.
  • the battery data includes: battery voltage, battery internal resistance, and battery capacity.
  • the setting different time thresholds and analyzing the battery data for the different time thresholds includes:
  • Set the first threshold time and analyze the consistency of the battery including: calculating the voltage difference and internal resistance difference of the parallel battery stack, judging the state of charge of the power station related to the battery stack, and obtaining the battery consistency evaluation result.
  • the nominal life data establishes a battery capacity decay model, by extracting the characteristics of the charge and discharge curve, according to the inconsistency of the characteristic variables, evaluate whether the battery life is terminated, evaluate the overall life of the battery pack and the battery stack, and modify the available battery capacity.
  • Another aspect of the embodiments of the present application provides a system for online evaluation of electrochemical batteries in energy storage power stations, including:
  • the collection unit is configured to collect battery data in real time and store the collected battery data
  • a processing unit configured to process the battery data in a standardized model
  • the analysis unit is configured to set different time thresholds, and analyze the battery data according to the different time thresholds
  • the evaluation unit is configured to evaluate the battery status according to different analysis results.
  • the processing unit includes:
  • the model specification unit is configured to establish business models of various energy storage power stations, classify and classify batteries into battery cells, battery modules, and battery stacks, and standardize the correspondence between the battery business models and different battery categories;
  • the data conversion unit is configured to convert the battery data collected in real time into business data related to the battery business model.
  • the data conversion unit includes:
  • the template building module is configured to build a device template according to the collection point table of the battery collection device
  • the code definition module is configured to define the data service information type in the template according to the information model of the battery service data and the code;
  • the instantiation module is configured to instantiate the device according to the device template
  • the data corresponding module is configured to establish a data table according to the equipment, attributes and equipment attribute values of the battery equipment battery stack, battery module, and battery cell data according to the battery model.
  • the analysis unit includes:
  • the first analysis unit is configured to set a first threshold time and analyze the consistency of the battery.
  • the second analysis unit is configured to set a second threshold time, evaluate battery life, and correct available battery capacity.
  • the first analysis module configured to analyze battery life cycle process data of battery stacks, battery modules, and battery cells; the second analysis module, configured to establish a battery capacity decline model based on the nominal data of battery cycle life; third The analysis module is configured to feature extraction of charge and discharge curve data, evaluate whether the battery life is terminated, evaluate the overall life of the battery pack and battery stack, and modify the available battery capacity.
  • the embodiments of the present application provide a method and system for online evaluation of electrochemical batteries in energy storage power stations.
  • the method includes: first, a big data processing subsystem processes and stores battery data collected in real time; Data analysis is based on the real-time and historical data of the battery; finally, the battery operating status is evaluated from a short time scale and a long time scale. Analyze massive real-time data such as current, voltage, and temperature of battery stacks, battery modules, and battery cells in a short time scale, and evaluate battery consistency by analyzing characteristic fingerprint data of batteries with different characteristics, temperature, internal resistance, and faults, etc.
  • the charge capacity of the entire energy storage power station provides data for the energy storage power station to participate in grid optimization control and operation management; on a long-term scale, the battery capacity decline and battery life are evaluated in the historical data of the battery life cycle under different working conditions based on big data analysis
  • the situation provides a reference for the daily operation and maintenance management of the battery and the utilization of the battery echelon.
  • Fig. 1 is a schematic diagram of the structure of an energy storage power station disclosed in an embodiment of the present application
  • FIG. 2 is a functional schematic diagram of the battery online evaluation system disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the process of establishing a battery business model disclosed in an embodiment of the present application
  • FIG. 4 is a flowchart of a method for online evaluation of electrochemical cells in an energy storage power station disclosed in an embodiment of the present application
  • Fig. 5 is a block diagram of a system for online evaluation of electrochemical cells of an energy storage power station disclosed in an embodiment of the present application.
  • a megawatt (MW)-level large-capacity energy storage power station is composed of thousands of single batteries. Multiple battery cells are connected in series to form a battery module, and then multiple battery modules are connected in parallel/series to form a battery stack. Single or multiple battery stacks are connected in parallel through an energy storage converter (Power Conversion System, PCS) for energy interaction and then connected to the grid.
  • PCS Power Conversion System
  • the online evaluation system of electrochemical batteries for energy storage power stations collects operating information and status data of energy storage power stations, battery stacks, battery modules, and battery cells from the Battery Management System (BMS) system, energy storage PCS and measurement and control devices, etc. , Due to the largest number of battery cells, a large amount of collection and storage, for MW-level large-capacity energy storage power stations, the total data scale is hundreds of thousands to one million.
  • BMS Battery Management System
  • the online evaluation function of the battery is completed under the support of the system, as shown in Figure 2.
  • the on-line evaluation subsystem of the electrochemical battery of the energy storage power station includes a short time scale (5-15 minutes) and a long time scale (1 day) to evaluate the battery status of the energy storage power station.
  • the battery status assessment of different time scales provides data support for the optimization control, operation management, and battery utilization of energy storage power stations.
  • the battery life cycle history data under different working conditions evaluates the battery capacity decline and battery life, and provides a reference for the daily operation and maintenance management of the battery and the battery echelon utilization.
  • an online evaluation system for electrochemical batteries in energy storage power stations includes the following contents: first, the big data processing subsystem processes and stores the battery data collected in real time; then performs data analysis based on the real-time and historical data of the battery; and finally Evaluate the battery operating state from short time scale and long time scale.
  • Implementation method First, use the collection point table of the battery collection device to build the device template, define the data service information type in the template according to the information model and code of the battery business data, and after instantiating the device according to the device template, all four remote data include Attributes such as point number, device number, business information type, etc.; in order to further facilitate the use of data by upper-level applications, the big data processing subsystem models the four remote data services, and compares the data of battery equipment battery stacks, battery modules, and battery cells The equipment, attributes and equipment attribute values establish a data table according to the battery model, as shown in Figure 3. Take the battery stack as an example, refer to the following table 1:
  • the big data analysis subsystem provides basic algorithm support for advanced applications to call based on the data processing methods used in battery online evaluation. Mainly include the following methods:
  • Range value analysis used to analyze the difference between two attribute values, because for battery safety analysis, voltage difference and temperature difference exceeding the limit are more harmful;
  • the online battery status assessment is divided into short-time scale assessment and long-time scale assessment. First, according to the evaluation indicators in each state, then calculate the evaluation parameters, and finally draw the evaluation conclusion.
  • the short-time scale evaluation indicators are mainly for the evaluation of the state of charge SOC state and battery consistency of the energy storage power station.
  • a large energy storage power station it is composed of multiple battery stacks, and the SOC value of the entire energy storage power station is reasonably evaluated when the respective SOC values sent from each battery stack are inconsistent.
  • a fast estimation model of battery consistency is established to calculate the comprehensive performance index of battery consistency .
  • the specific implementation method is as follows: Calculate the voltage difference and internal resistance difference of the parallel battery stack, and judge the battery consistency according to the fast estimation model of battery consistency.
  • the battery consistency is based on the average value of the battery stack within the BMS balance range, and is based on the outside of the BMS balance range.
  • the charging and discharging state of the PCS, the charging process is based on the SOC of the battery stack with high voltage, and the SOC of the battery stack with low voltage is used as the benchmark during the discharging process.
  • the SOC value of the battery under the PCS is added according to the capacity ratio to obtain the SOC of the entire energy storage power station.
  • the long-term evaluation indicators are mainly for the evaluation of battery life and battery capacity degradation.
  • Specific implementation method Use the gray method and incremental analysis method to analyze the battery life cycle process data of the battery stack, battery module, and battery cell according to the principle of whole to part, and establish the battery capacity based on the nominal data of battery cycle life
  • the decay model by extracting the characteristics of the charge and discharge curve, identifies the single cells in the battery pack that have reached the end of life state based on the inconsistency of the characteristic variables in the online situation, and realizes the assessment of the overall battery life of the energy storage power station and the correction of the available battery capacity.
  • a method for online evaluation of electrochemical cells in energy storage power stations includes:
  • S401 Collect battery status monitoring data in real time to obtain battery data.
  • S402 Standardize the model to process the battery data. Including: establishing business models of various energy storage power stations, classifying batteries into battery cells, battery modules, and battery stacks, and standardizing the correspondence between the battery business models and different battery categories. Transform the battery data collected in real time into business data related to the battery business model, and store the business data.
  • Transform the battery data collected in real time into business data related to the battery business model including: Use the collection point table of the battery collection device to build a device template. Define the data service information type in the template according to the information model and code of the battery service data.
  • the data of battery equipment, battery stacks, battery modules, and battery cells are established according to the equipment, attributes and equipment attribute values according to the battery model.
  • S403 Set different time thresholds, and analyze the battery data for the different time thresholds.
  • the analysis method analyzes the battery data.
  • Battery data includes: battery voltage, battery internal resistance, and battery capacity.
  • Setting different time thresholds and analyzing the battery data for different time thresholds includes:
  • Set the first threshold time and analyze the consistency of the battery including: calculating the voltage difference and internal resistance difference of the parallel battery stack, judging the state of charge of the power station related to the battery stack, and obtaining the battery consistency evaluation result.
  • Set the second threshold time, evaluate the battery life, and modify the available battery capacity including: using the gray scale method and incremental analysis method to analyze the battery life of the battery stack, battery module, and battery cell in accordance with the principle of whole to part Cycle process data, based on the nominal data of battery cycle life, establish a battery capacity decline model, extract the characteristics of the charge and discharge curve, evaluate whether the battery life is terminated according to the inconsistency of the characteristic variables, evaluate the overall life of the battery pack and the battery stack, and correct the availability battery capacity.
  • the big data processing subsystem processes the battery condition monitoring data collected in real time; then performs data analysis and storage based on the real-time and historical data of the battery; Time scale and long time scale evaluate the battery operating state.
  • the charge capacity of the entire energy storage power station provides data for the energy storage power station to participate in grid optimization control and operation management; on a long-term scale, the battery capacity decline and battery life are evaluated in the historical data of the battery life cycle under different working conditions based on big data analysis
  • the situation provides a reference for the daily operation and maintenance management of the battery and the utilization of the battery echelon.
  • FIG. 5 Another aspect of the present application provides a system 500 for online evaluation of electrochemical cells in energy storage power stations, as shown in FIG. 5, including:
  • the collection unit 501 is configured to collect battery status monitoring data in real time.
  • the processing unit 503 is configured to process the battery data in a standardized model and store the business data.
  • the analysis unit 505 is configured to set different time thresholds, and establish a characteristic fingerprint of the battery state to analyze the battery data for different time thresholds.
  • the evaluation unit 507 is configured to evaluate the battery status according to characteristic fingerprints of batteries with different characteristics.
  • the processing unit includes: a model specification unit configured to establish various energy storage power station business models, classify and classify batteries into battery cells, battery modules, and battery stacks, and standardize the battery business Correspondence between the model and different battery categories.
  • a model specification unit configured to establish various energy storage power station business models, classify and classify batteries into battery cells, battery modules, and battery stacks, and standardize the battery business Correspondence between the model and different battery categories.
  • the data conversion unit is configured to convert the battery data collected in real time into business data related to the battery business model.
  • the data conversion unit includes: a template construction module configured to build a device template according to a collection point table of the battery collection device.
  • the code definition module is configured to define the data service information type in the template according to the information model of the battery service data and the code.
  • the instantiation module is configured to instantiate the device according to the device template.
  • the data corresponding module is configured to create a data table according to the equipment, attributes and equipment attribute values of the battery equipment battery stack, battery module, and battery cell data according to the battery model.
  • the analysis unit includes:
  • the first analysis unit is configured to set a first threshold time and analyze the consistency of the battery.
  • the second analysis unit is configured to set a second threshold time, evaluate battery life, and correct available battery capacity.
  • the first analysis module configured to analyze battery life cycle process data of battery stacks, battery modules, and battery cells; the second analysis module, configured to establish a battery capacity decline model based on the nominal data of battery cycle life; third The analysis module is configured to feature extraction of charge and discharge curve data, evaluate whether the battery life is terminated, evaluate the overall life of the battery pack and battery stack, and modify the available battery capacity.
  • the big data processing subsystem processes and stores the battery data collected in real time; then performs data analysis based on the real-time and historical data of the battery; and finally, from a short time scale And the long-term scale to evaluate the battery operating state.
  • the charge capacity of the entire energy storage power station provides data for the energy storage power station to participate in grid optimization control and operation management; on a long-term scale, the battery capacity decline and battery life are evaluated in the historical data of the battery life cycle under different working conditions based on big data analysis
  • the situation provides a reference for the daily operation and maintenance management of the battery and the utilization of the battery echelon.

Abstract

本申请用于储能电站电化学电池在线评估的方法和系统,首先大数据处理子系统对实时采集的电池状态监测的数据进行处理和存储;然后基于电池的实时数据和历史数据进行数据分析;最后从短时间尺度和长时间尺度对电池运行状态进行评估。短时间尺度下分析电池堆、电池模组、电池单体的电流、电压、温度等海量实时数据,通过对不同特性电池的温度、内阻、故障等的特征指纹数据分析,评估电池一致性,整个储能电站的荷电容量,为储能电站参与电网优化控制和运行管理提供数据;长时间尺度下基于大数据分析的不同工况下电池全寿命周期历史数据中评估电池容量衰退、电池寿命情况,为电池的日常运维管理和电池梯次利用提供参考。

Description

用于储能电站电化学电池在线评估的方法和系统
相关申请的交叉引用
本申请基于申请号为202010304432.7、申请日为2020年04月17日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电化学电池充放电领域,具体涉及一种用于储能电站电化学电池在线评估的方法和系统。
背景技术
储能技术在电力系统“电能生产、传输、分配和消费”中增加一个“存储”环节,使原本几乎“刚性”的系统变得“柔性”起来。大容量的电池储能具有快速吸收能量并适时释放的特点,可实现能量的时间迁移,解决新能源发电的出力波动性和不确定性引起的系统供电充裕性不足问题。随着电池材料、制造工艺、系统集成及运行维护等方面实现技术突破,储能的制造和运行成本大大降低,储能系统发展潜力巨大。电化学储能以其能量密度高、充放电速率快、使用寿命长的特点成为储能电站电池的首选,但是电化学储能电池的安全性和可靠性一直都是其应用中必须十分关注的问题:
一方面,能量大、电压高且电解液大多为有机易燃物,应用不当有可能导致电池温度升高、着火甚至爆炸;
另一方面,电化学储能电池过充电、过放电会导致电池内部材料特性发生变化,造成不可逆的损失,从而导致性能下降;
再有,由于工艺的差异性,电池内阻往往不一致,随着充放电的循环进行,电池组内单体电池的性能失衡,使电池组的寿命缩短、性能下降。
综上所述,必须为储能电池配套智能、高效的状态监测、在线评估体系,建立支撑储能健康管理和安全管理的电池储能在线评估系统,融合动态工况的实时运行状态感知、健康状态评估,对电池进行有效的安全性和可靠性管理。
发明内容
本申请的目的是提供一种用于储能电站电化学电池在线评估的方法和系统,集储能电站大数据分析、可视化维护、精细化管理于一体,能够实现对储能电站每个电池单体全命周期的数据接入、处理与分析,完成对储能电站整体、电池堆、电池模组、电池单体的全生命周期监视、状态分析、在线评估等功能。
为解决上述问题,本申请实施例的第一方面提供了一种用于储能电站电化学电池在线评估的方法,包括:
实时采集电池状态监测数据,得到电池数据;
模型规范化处理所述电池数据,业务化存储所述电池数据;
设定不同的时间阈值,针对不同的时间阈值分析所述电池数据。
基于分析结果根据不同特性电池的特征指纹评估电池状态。
根据本申请的一个实施例,所述模型规范化处理所述电池数据,包括:
建立各种储能电站业务模型,分类划分电池为电池单体、电池模组、电池堆,规范所述电池业务模型与不同电池类别之间的对应关系。
将实时采集的电池四遥数据转化为与电池业务模型相关的业务数据,并按照业务模型进行数据存储。
根据本申请的一个实施例,所述将实时采集的电池四遥数据转化为与电池业务模型相关的业务数据,包括:用电池采集装置的采集点表建成装 置模板。根据电池业务数据的信息模型及编码定义模板中的数据业务信息类型。
根据装置模板实例化装置。将电池设备电池堆、电池模组、电池单体的数据按设备、属性及设备属性值按电池模型建立数据表。
根据本申请的一个实施例,所述设定不同的时间阈值,针对不同的时间阈值分析所述电池数据,包括:设定不同的时间阈值,通过多角度阈值描绘电池运行状态的特征指纹,从而利用特征指纹来分析所述电池数据,包括:采用统计计算、极差值分析、关联性分析、灰色度分析、概率分析的方法分析电池数据。
根据本申请的一个实施例,所述电池数据包括:电池电压、电池内阻、电池容量。
根据本申请的一个实施例,所述设定不同的时间阈值,针对不同的时间阈值分析所述电池数据,包括:
设定第一阈值时间,分析电池的一致性,包括:计算并联电池堆的压差与内阻差,判断与电池堆相关的电站荷电状态,得到电池一致性评估结果。
设定第二阈值时间,评估电池寿命、修正可用电池容量,包括:利用灰色度法和增量分析法,分析电池堆、电池模组、电池单体的电池全生命周期过程数据,基于电池循环寿命标称数据建立电池容量衰退模型,通过对充放电曲线进行特征提取,根据特征变量不一致性,评估电池寿命是否终止,评估电池组、电池堆的整体寿命以及修正可用电池容量。
本申请实施例的另一方面提供了一种用于储能电站电化学电池在线评估的系统,包括:
采集单元,配置为实时采集电池数据,存储采集的电池数据;
处理单元,配置为模型规范化处理所述电池数据;
分析单元,配置为设定不同的时间阈值,针对不同的时间阈值分析所述电池数据;
评估单元,配置为根据不同的分析结果评估电池状态。
根据本申请的一个实施例,所述处理单元,包括:
模型规范单元,配置为建立各种储能电站业务模型,分类划分电池为电池单体、电池模组、电池堆,规范所述电池业务模型与不同电池类别之间的对应关系;
数据转换单元,配置为将实时采集的电池数据转化为与电池业务模型相关的业务数据。
根据本申请的一个实施例,所述数据转换单元,包括:
模板构建模块,配置为根据电池采集装置的采集点表建成装置模板;
编码定义模块,配置为根据电池业务数据的信息模型及编码定义模板中的数据业务信息类型;
实例化模块,配置为根据装置模板实例化装置;
数据对应模块,配置为将电池设备电池堆、电池模组、电池单体的数据按设备、属性及设备属性值按电池模型建立数据表。
根据本申请的一个实施例,所述分析单元,包括:
第一分析单元,配置为设定第一阈值时间,分析电池的一致性。
第二分析单元,配置为设定第二阈值时间,评估电池寿命、修正可用电池容量。包括:第一分析模块,配置为分析电池堆、电池模组、电池单体的电池全生命周期过程数据;第二分析模块,配置为根据电池循环寿命标称数据建立电池容量衰退模型;第三分析模块,配置为特征提取充放电曲线数据,评估电池寿命是否终止,评估电池组、电池堆的整体寿命以及修正可用电池容量。
综上所述,本申请实施例提供了一种用于储能电站电化学电池在线评 估的方法和系统,该方法包括:首先大数据处理子系统对实时采集的电池数据进行处理和存储;然后基于电池的实时数据和历史数据进行数据分析;最后从短时间尺度和长时间尺度对电池运行状态进行评估。短时间尺度下分析电池堆、电池模组、电池单体的电流、电压、温度等海量实时数据,通过对不同特性电池、温度、内阻、故障等的特征指纹数据分析,评估电池一致性,整个储能电站的荷电容量,为储能电站参与电网优化控制和运行管理提供数据;长时间尺度下基于大数据分析的不同工况下电池全寿命周期历史数据中评估电池容量衰退、电池寿命情况,为电池的日常运维管理和电池梯次利用提供参考。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是本申请实施例公开的储能电站结构示意图;
图2是本申请实施例公开的电池在线评估系统功能示意图;
图3是本申请实施例公开的电池业务模型建立流程示意图;
图4是本申请实施例公开的用于储能电站电化学电池在线评估的方法流程图;
图5是本申请实施例公开的用于储能电站电化学电池在线评估的系统方框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本申请进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本申请的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本申请的概念。
兆瓦(MW)级大容量储能电站由成千上万支单体电池组成,由多个电池单体经串联后形成电池模组,再将多个电池模组并联/串联成电池堆。单个或多个电池堆并联经储能变流器(Power Conversion System,PCS)进行能量交互后接入电网,储能电站结构图如图1所示。
储能电站电化学电池在线评估系统从电池管理系统(Battery Management System,BMS)系统、储能PCS及测控装置等采集储能电站、电池堆、电池模组、电池单体的运行信息及状态数据,由于电池单体数目最大,采集量多且需要存储,对于MW级大容量储能电站来说总数据规模为几十万到百万量级,需在大数据处理子系统、大数据分析子系统的支撑下完成电池的在线评估功能,如图2所示。
储能电站电化学电池在线评估子系统包括短时间尺度(5~15分钟)和长时间尺度(1天)评估储能电站电池状态。不同时间尺度的电池状态评估为储能电站优化控制、运行管理、电池梯次利用等需求提供了数据支撑。
短时间尺度下分析电池堆、电池模组、电池单体的电流、电压、温度等海量实时数据,通过横向数据对比,关联数据分析等方法,评估采集的电池单体、电池模组、电池堆数据的可信度与准确度,采集数据预处理后,通过对不同特性电池、温度、内阻、故障等的特征指纹数据分析,评估电池一致性,整个储能电站的SOC,为储能电站参与电网优化控制和运行管理提供数据。长时间尺度下基于大数据分析的不同工况下电池全寿命周期历史数据中评估电池容量衰退、电池寿命情况,为电池的日常运维管理和电池梯次利用提供参考。
本申请中,一种储能电站电化学电池在线评估系统包括以下内容:首先大数据处理子系统对实时采集的电池数据进行处理和存储;然后基于电池的实时数据和历史数据进行数据分析;最后从短时间尺度和长时间尺度对电池运行状态进行评估。
大数据处理子系统的数据处理流程:
首先通过配置工具建立各种储能电站业务模型,将电池信息划分为电池单体、电池模组、电池堆,建立上述业务设备之间的关联关系;
将遥信、遥测数据转化为具有电池业务含义的业务信息数据。实现方式:首先,用电池采集装置的采集点表建成装置模板,根据电池业务数据的信息模型及编码定义模板中的数据业务信息类型,根据装置模板实例化装置后,所有的四遥数据就包含点号、装置号、业务信息类型等属性;为了进一步方便上层应用调用数据,大数据处理子系统将四遥数据业务模型化处理,将电池设备电池堆、电池模组、电池单体的数据按设备、属性及设备属性值按电池模型建立数据表,如图3。以电池堆为例,参照以下表1:
电池堆设备号 堆属性1 堆属性1 …… 堆属性n
序号 属性值 属性值 属性值 属性值
表1
大数据分析子系统根据电池在线评估所用的数据处理方法,提供基本的算法支撑供高级应用调用。主要包括以下方法:
1)统计计算,包括最大值、最小值、平均值、排序等;
2)极差值分析,用于做两个属性值差值的分析,因为对于电池安全性分析来说,电压差,温度差越限更具有危害性;
3)关联性分析,两个属性值之间具有业务关联性关系或其变化趋势具备关联关系;
4)灰色度分析,用已知属性的数据变化时段值,来判断与具有关联关系的未知属性的值的相似关系。
5)概率分析,根据历史数据分析事件发生的概率。
电池状态在线评估分成短时间尺度评估和长时间尺度评估。首先根据每种状态下的评估指标,然后计算评估参数,最后得出评估结论。
短时间尺度的评估指标主要是针对储能电站荷电状态SOC状态和电池一致性的评估。对于大型储能电站来说,由多个电池堆构成,在各电池堆上送的各自的SOC值不一致的情况下合理评估整个储能电站的SOC值。为了避免在充放电变化时SOC值跳变,同时减少电池短板效应的影响,基于电池电压、内阻的分布特性和相关性,建立电池一致性快速估计模型,计算电池一致性的综合性能指标。具体实施方法如下:计算并联电池堆的压差与内阻差,根据电池一致性快速估计模型判断电池一致性,电池一致性在BMS均衡范围内以电池堆均值为基准,在BMS均衡范围外根据PCS的充放电状态,充电过程以电压高的电池堆SOC为基准,放电过程中以电压低的电池堆SOC为基准,基准确定后根据容量扩展到该PCS下所有电池的SOC值,然后将所有PCS下的电池SOC值按容量比加和得到整个储能电站的SOC。
长时间尺度的评估指标主要是针对电池寿命和电池容量衰减的评估。具体实施方法:利用灰色度法和增量分析法按照从整体到部分的原则,分析电池堆、电池模组、电池单体的电池全生命周期过程数据,基于电池循环寿命标称数据建立电池容量衰退模型,通过对充放电曲线进行特征提取,根据特征变量不一致性在线情况下识别电池组内达到寿命终止状态的单体电池,实现对储能电站整体电池寿命的评估和可用电池容量的修正。
如图4所示,一种用于储能电站电化学电池在线评估的方法,包括:
S401:实时采集电池状态监测数据,得到电池数据。
S402:模型规范化处理所述电池数据。包括:建立各种储能电站业务模型,分类划分电池为电池单体、电池模组、电池堆,规范所述电池业务模型与不同电池类别之间的对应关系。将实时采集的电池数据转化为与电池业务模型相关的业务数据,并进行业务化数据的存储。
将实时采集的电池数据转化为与电池业务模型相关的业务数据,包括: 用电池采集装置的采集点表建成装置模板。根据电池业务数据的信息模型及编码定义模板中的数据业务信息类型。
根据装置模板实例化装置。将电池设备电池堆、电池模组、电池单体的数据按设备、属性及设备属性值按电池模型建立数据表。
S403:设定不同的时间阈值,针对不同的时间阈值分析所述电池数据。所述设定不同的时间阈值,建立针不同特性电池的特征指纹,然后通过不同的时间阈值分析所述电池数据,包括:采用统计计算、极差值分析、关联性分析、灰色度分析、概率分析的方法分析电池数据。
电池数据包括:电池电压、电池内阻、电池容量。
设定不同的时间阈值,针对不同的时间阈值分析所述电池数据,包括:
设定第一阈值时间,分析电池的一致性,包括:计算并联电池堆的压差与内阻差,判断与电池堆相关的电站荷电状态,得到电池一致性评估结果。
设定第二阈值时间,评估电池寿命、修正可用电池容量,包括:利用灰色度法和增量分析法按照从整体到部分的原则,分析电池堆、电池模组、电池单体的电池全生命周期过程数据,基于电池循环寿命标称数据建立电池容量衰退模型,通过对充放电曲线进行特征提取,根据特征变量不一致性,评估电池寿命是否终止,评估电池组、电池堆的整体寿命以及修正可用电池容量。
S404:基于分析结果根据不同特性电池的特征指纹评估电池状态。
本申请用于储能电站电化学电池在线评估的方法,首先大数据处理子系统对实时采集的电池状态监测数据进行处理;然后基于电池的实时数据和历史数据进行数据分析和存储;最后从短时间尺度和长时间尺度对电池运行状态进行评估。短时间尺度下分析电池堆、电池模组、电池单体的电流、电压、温度等海量实时数据,基于对不同特性电池、温度、内阻、故 障等的特征指纹数据分析,评估电池一致性,整个储能电站的荷电容量,为储能电站参与电网优化控制和运行管理提供数据;长时间尺度下基于大数据分析的不同工况下电池全寿命周期历史数据中评估电池容量衰退、电池寿命情况,为电池的日常运维管理和电池梯次利用提供参考。
本申请的另一方面提供了一种用于储能电站电化学电池在线评估的系统500,如图5所示,包括:
采集单元501,配置为实时采集电池状态监测数据。
处理单元503,配置为模型规范化处理所述电池数据,并进行业务化数据存储。
分析单元505,配置为设定不同的时间阈值,建立电池状态的特征指纹针对不同的时间阈值分析所述电池数据。
评估单元507,配置为根据不同特性电池的特征指纹评估电池状态。
根据本申请的一个实施例,所述处理单元,包括:模型规范单元,配置为建立各种储能电站业务模型,分类划分电池为电池单体、电池模组、电池堆,规范所述电池业务模型与不同电池类别之间的对应关系。
数据转换单元,配置为将实时采集的电池数据转化为与电池业务模型相关的业务数据。
根据本申请的一个实施例,所述数据转换单元,包括:模板构建模块,配置为根据电池采集装置的采集点表建成装置模板。
编码定义模块,配置为根据电池业务数据的信息模型及编码定义模板中的数据业务信息类型。
实例化模块,配置为根据装置模板实例化装置。
数据对应模块,配置为将电池设备电池堆、电池模组、电池单体的数据按设备、属性及设备属性值按电池模型建立数据表。
根据本申请的一个实施例,所述分析单元,包括:
第一分析单元,配置为设定第一阈值时间,分析电池的一致性。
第二分析单元,配置为设定第二阈值时间,评估电池寿命、修正可用电池容量。包括:第一分析模块,配置为分析电池堆、电池模组、电池单体的电池全生命周期过程数据;第二分析模块,配置为根据电池循环寿命标称数据建立电池容量衰退模型;第三分析模块,配置为特征提取充放电曲线数据,评估电池寿命是否终止,评估电池组、电池堆的整体寿命以及修正可用电池容量。
本申请用于储能电站电化学电池在线评估的系统,首先大数据处理子系统对实时采集的电池数据进行处理和存储;然后基于电池的实时数据和历史数据进行数据分析;最后从短时间尺度和长时间尺度对电池运行状态进行评估。短时间尺度下分析电池堆、电池模组、电池单体的电流、电压、温度等海量实时数据,基于对不同特性电池、温度、内阻、故障等的特征指纹数据分析,评估电池一致性,整个储能电站的荷电容量,为储能电站参与电网优化控制和运行管理提供数据;长时间尺度下基于大数据分析的不同工况下电池全寿命周期历史数据中评估电池容量衰退、电池寿命情况,为电池的日常运维管理和电池梯次利用提供参考。
应当理解的是,本申请的上述具体实施方式仅仅用于示例性说明或解释本申请的原理,而不构成对本申请的限制。因此,在不偏离本申请的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。此外,本申请所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (10)

  1. 一种用于储能电站电化学电池在线评估的方法,所述方法包括:
    实时采集电池状态监测数据,得到电池数据;
    模型规范化处理所述电池数据,业务化存储所述电池数据;
    设定不同的时间阈值,针对不同的时间阈值分析所述电池数据;
    基于分析结果根据不同特性电池的特征指纹评估电池状态。
  2. 根据权利要求1所述的方法,其中,所述模型规范化处理所述电池数据,包括:
    建立各种储能电站业务模型,分类划分电池为电池单体、电池模组、电池堆,规范所述电池业务模型与不同电池类别之间的对应关系;
    将实时采集的电池四遥数据转化为与电池业务模型相关的业务数据,并按照业务模型进行数据存储。
  3. 根据权利要求2所述的方法,其中,所述将实时采集的电池四遥数据转化为与电池业务模型相关的业务数据,包括:
    用电池采集装置的采集点表建成装置模板;
    根据电池业务数据的信息模型及编码定义模板中的数据业务信息类型;
    根据装置模板实例化装置;
    将电池设备电池堆、电池模组、电池单体的数据按设备、属性及设备属性值按电池模型建立数据表。
  4. 根据权利要求1所述的方法,其中,所述设定不同的时间阈值,针对不同的时间阈值分析所述电池数据,包括:
    设定不同的时间阈值,通过多角度阈值描绘电池运行状态的特征指纹;
    利用特征指纹来分析电池数据,包括:采用统计计算、极差值分析、 关联性分析、灰色度分析和概率分析的方法分析电池数据。
  5. 根据权利要求1所述的方法,其中,所述电池数据包括:
    电池电压、电池内阻、电池容量。
  6. 根据权利要求1所述的方法,其中,所述设定不同的时间阈值,针对不同的时间阈值分析所述电池数据,包括:
    设定第一阈值时间,分析电池的一致性,包括:计算并联电池堆的压差与内阻差,判断与电池堆相关的电站荷电状态,得到电池一致性评估结果;
    设定第二阈值时间,评估电池寿命、修正可用电池容量,包括:
    分析电池堆、电池模组、电池单体的电池全生命周期过程数据;
    基于电池循环寿命标称数据建立电池容量衰退模型;
    特征提取充放电曲线数据,评估电池寿命是否终止,评估电池组、电池堆的整体寿命以及修正可用电池容量。
  7. 一种用于储能电站电化学电池在线评估的系统,所述系统包括:
    采集单元,配置为实时采集电池数据,存储采集的电池数据;
    处理单元,配置为模型规范化处理所述电池数据;
    分析单元,配置为设定不同的时间阈值,针对不同的时间阈值分析所述电池数据;
    评估单元,配置为根据不同的分析结果评估电池状态。
  8. 根据权利要求7所述的系统,其中,所述处理单元,包括:
    模型规范单元,配置为建立各种储能电站业务模型,分类划分电池为电池单体、电池模组、电池堆,规范所述电池业务模型与不同电池类别之间的对应关系;
    数据转换单元,配置为将实时采集的电池数据转化为与电池业务模型相关的业务数据。
  9. 根据权利要求8所述的系统,其中,所述数据转换单元,包括:
    模板构建模块,配置为根据电池采集装置的采集点表建成装置模板;
    编码定义模块,配置为根据电池业务数据的信息模型及编码定义模板中的数据业务信息类型;
    实例化模块,配置为根据装置模板实例化装置;
    数据对应模块,配置为将电池设备电池堆、电池模组、电池单体的数据按设备、属性及设备属性值按电池模型建立数据表。
  10. 根据权利要求7所述的系统,其中,所述分析单元,包括:
    第一分析单元,配置为设定第一阈值时间,分析电池的一致性。
    第二分析单元,配置为设定第二阈值时间,评估电池寿命、修正可用电池容量,包括:第一分析模块,配置为分析电池堆、电池模组、电池单体的电池全生命周期过程数据;第二分析模块,配置为根据电池循环寿命标称数据建立电池容量衰退模型;第三分析模块,配置为特征提取充放电曲线数据,评估电池寿命是否终止,评估电池组、电池堆的整体寿命以及修正可用电池容量。
PCT/CN2020/109644 2020-04-17 2020-08-17 用于储能电站电化学电池在线评估的方法和系统 WO2021208309A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010304432.7 2020-04-17
CN202010304432.7A CN111584952B (zh) 2020-04-17 2020-04-17 用于储能电站电化学电池在线评估的方法和系统

Publications (1)

Publication Number Publication Date
WO2021208309A1 true WO2021208309A1 (zh) 2021-10-21

Family

ID=72111732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109644 WO2021208309A1 (zh) 2020-04-17 2020-08-17 用于储能电站电化学电池在线评估的方法和系统

Country Status (2)

Country Link
CN (1) CN111584952B (zh)
WO (1) WO2021208309A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114210591A (zh) * 2021-12-02 2022-03-22 格林美股份有限公司 一种基于ic曲线的锂电池梯次利用分选方法及装置
CN114492019A (zh) * 2022-01-22 2022-05-13 苏州纬方电子有限公司 一种电池模组的自适应温度调控的评估方法及系统
CN114547025A (zh) * 2022-02-09 2022-05-27 中国长江三峡集团有限公司 一种储能电站数据处理方法、装置及计算机设备
CN114579659A (zh) * 2022-03-07 2022-06-03 山东云储新能源科技有限公司 一种梯次利用动力电池利用潜力评估及分选系统和方法
CN114814629A (zh) * 2022-04-11 2022-07-29 国网福建省电力有限公司 一种考虑电池相关性的电池储能模块可靠性评估方法
CN115036595A (zh) * 2022-08-11 2022-09-09 广东采日能源科技有限公司 储能电池安全预防维护方法、装置及系统
CN115149123A (zh) * 2022-07-28 2022-10-04 上海玫克生储能科技有限公司 一种锂电池模组一致性分析方法、系统及存储介质
CN115840157A (zh) * 2022-12-08 2023-03-24 斯润天朗(合肥)科技有限公司 基于eof分析的锂电池电性能指标协调性分析系统
CN115860577A (zh) * 2023-02-20 2023-03-28 广东电网有限责任公司东莞供电局 一种储能电站安全评估方法
CN116401585A (zh) * 2023-04-19 2023-07-07 江苏果下科技有限公司 一种基于大数据的储能电池失效风险评估方法
CN116404186A (zh) * 2023-06-08 2023-07-07 西安黄河电子技术有限公司 一种功率型锂锰电池生产系统
CN116632974A (zh) * 2023-05-29 2023-08-22 无锡亚天光电科技有限公司 一种用于锂电池新能源仓库在线温度监测系统
WO2023206660A1 (zh) * 2022-04-27 2023-11-02 石家庄科林电气股份有限公司 基于锂电池的储能电站的防火防爆方法
CN117054892A (zh) * 2023-10-11 2023-11-14 特变电工西安电气科技有限公司 一种储能电站电池健康状态的评估方法、装置及管理方法
CN117394409A (zh) * 2023-10-16 2024-01-12 南方电网调峰调频(广东)储能科技有限公司 储能电站设备状态的智能评估方法及系统
CN117855688A (zh) * 2024-03-08 2024-04-09 超耐斯(深圳)新能源集团有限公司 基于数据分析的锂电池运行过温监管预警系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112394293A (zh) * 2020-11-18 2021-02-23 中国电力科学研究院有限公司 一种储能系统性能和状态的在线评估装置及方法和系统
CN112649744A (zh) * 2020-12-15 2021-04-13 西安奇点能源技术有限公司 一种pcs、bms同步协调soc计算方法及系统
CN112613661B (zh) * 2020-12-23 2022-06-28 浙江浙能电力股份有限公司萧山发电厂 一种多类型电池应用于储能的判断选择系统
CN112904201A (zh) * 2021-01-05 2021-06-04 浙江工业大学 一种储能电池充放电过程的实时在线评估系统及方法
CN113156326B (zh) * 2021-04-07 2022-08-19 力高(山东)新能源技术有限公司 一种基于大数据的锂电池健康度预警方法
CN113391214A (zh) * 2021-07-30 2021-09-14 湖北工业大学 一种基于电池充电电压排名变化的电池微故障诊断方法
CN113917257B (zh) * 2021-09-26 2023-02-24 大连理工大学 一种储能电站内阻动态跟踪监测方法及系统
CN113990054A (zh) * 2021-11-16 2022-01-28 许继集团有限公司 一种储能电站数据分析与预警系统
CN115902646B (zh) * 2023-01-06 2023-06-13 中国电力科学研究院有限公司 一种储能电池故障识别方法及系统
CN116754967A (zh) * 2023-04-24 2023-09-15 中广核新能源安徽有限公司固镇分公司 用于储能电站电化学电池在线评估的方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762928A (zh) * 2014-12-15 2016-07-13 国家电网公司 一种储能电站监控系统
JP2016152208A (ja) * 2015-02-19 2016-08-22 株式会社東芝 シミュレーション装置
JP2018026307A (ja) * 2016-08-12 2018-02-15 トヨタ自動車株式会社 電池システム
CN110416638A (zh) * 2019-07-12 2019-11-05 北京中宸泓昌科技有限公司 一种电池单体的全生命周期管理系统
CN110416636A (zh) * 2019-06-26 2019-11-05 北京航空航天大学 一种基于云端数据管理的动力电池管理系统及方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1872457A4 (en) * 2005-03-04 2010-10-13 Philadelphia Scient DEVICE AND METHOD FOR MONITORING THE LIFE CYCLE AND CONTROLLING THE MAINTENANCE OF INDUSTRIAL BATTERIES
CN104466274A (zh) * 2014-10-20 2015-03-25 常州格力博有限公司 一种基于gprs的远程电池管理系统
CN106033113B (zh) * 2015-03-19 2019-03-08 国家电网公司 一种储能电池组健康状态评估方法
US9882401B2 (en) * 2015-11-04 2018-01-30 Powin Energy Corporation Battery energy storage system
CN105680105A (zh) * 2015-12-29 2016-06-15 惠州市亿能电子有限公司 一种高准确度的电池状态参数及控制参数获取方法
CN105789716B (zh) * 2016-03-03 2018-04-24 北京交通大学 一种广义电池管理系统
CN106443461B (zh) * 2016-09-06 2019-06-14 华北电力科学研究院有限责任公司 电池储能系统状态评估方法
CN106338695A (zh) * 2016-10-09 2017-01-18 深圳市沃特玛电池有限公司 一种基于粒子群算法的电池模型参数辨识方法
CN106610478B (zh) * 2017-01-10 2022-04-29 中国电力科学研究院 一种基于海量数据的储能电池特性评估方法及系统
CN108445411A (zh) * 2018-04-03 2018-08-24 长沙丹芬瑞电气技术有限公司 一种新型的车载智能蓄电池健康监测系统
CN110707373A (zh) * 2018-07-10 2020-01-17 周锡卫 一种基于蓄电池疲劳监测及动态维护的储能系统
CN109143084A (zh) * 2018-11-07 2019-01-04 沈阳工程学院 一种基于wlan技术的变电站蓄电池组状态采集装置
CN110609233A (zh) * 2019-10-25 2019-12-24 沃特威(广州)电子科技有限公司 一种基于大数据进行储能电池soh预测的方法
CN110927609B (zh) * 2019-12-06 2022-06-17 华北电力科学研究院有限责任公司 梯次利用电池储能系统的衰退评估方法及装置
CN111007401A (zh) * 2019-12-16 2020-04-14 国网江苏省电力有限公司电力科学研究院 一种基于人工智能的电动汽车电池故障诊断方法及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762928A (zh) * 2014-12-15 2016-07-13 国家电网公司 一种储能电站监控系统
JP2016152208A (ja) * 2015-02-19 2016-08-22 株式会社東芝 シミュレーション装置
JP2018026307A (ja) * 2016-08-12 2018-02-15 トヨタ自動車株式会社 電池システム
CN110416636A (zh) * 2019-06-26 2019-11-05 北京航空航天大学 一种基于云端数据管理的动力电池管理系统及方法
CN110416638A (zh) * 2019-07-12 2019-11-05 北京中宸泓昌科技有限公司 一种电池单体的全生命周期管理系统

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114210591B (zh) * 2021-12-02 2023-12-22 格林美股份有限公司 一种基于ic曲线的锂电池梯次利用分选方法及装置
CN114210591A (zh) * 2021-12-02 2022-03-22 格林美股份有限公司 一种基于ic曲线的锂电池梯次利用分选方法及装置
CN114492019A (zh) * 2022-01-22 2022-05-13 苏州纬方电子有限公司 一种电池模组的自适应温度调控的评估方法及系统
CN114492019B (zh) * 2022-01-22 2024-02-02 苏州纬方电子有限公司 一种电池模组的自适应温度调控的评估方法及系统
CN114547025B (zh) * 2022-02-09 2023-07-14 中国长江三峡集团有限公司 一种储能电站数据处理方法、装置及计算机设备
CN114547025A (zh) * 2022-02-09 2022-05-27 中国长江三峡集团有限公司 一种储能电站数据处理方法、装置及计算机设备
CN114579659A (zh) * 2022-03-07 2022-06-03 山东云储新能源科技有限公司 一种梯次利用动力电池利用潜力评估及分选系统和方法
CN114814629A (zh) * 2022-04-11 2022-07-29 国网福建省电力有限公司 一种考虑电池相关性的电池储能模块可靠性评估方法
WO2023206660A1 (zh) * 2022-04-27 2023-11-02 石家庄科林电气股份有限公司 基于锂电池的储能电站的防火防爆方法
CN115149123A (zh) * 2022-07-28 2022-10-04 上海玫克生储能科技有限公司 一种锂电池模组一致性分析方法、系统及存储介质
CN115036595A (zh) * 2022-08-11 2022-09-09 广东采日能源科技有限公司 储能电池安全预防维护方法、装置及系统
CN115840157B (zh) * 2022-12-08 2023-08-22 斯润天朗(合肥)科技有限公司 基于eof分析的锂电池电性能指标协调性分析系统
CN115840157A (zh) * 2022-12-08 2023-03-24 斯润天朗(合肥)科技有限公司 基于eof分析的锂电池电性能指标协调性分析系统
CN115860577A (zh) * 2023-02-20 2023-03-28 广东电网有限责任公司东莞供电局 一种储能电站安全评估方法
CN116401585A (zh) * 2023-04-19 2023-07-07 江苏果下科技有限公司 一种基于大数据的储能电池失效风险评估方法
CN116401585B (zh) * 2023-04-19 2023-11-10 江苏果下科技有限公司 一种基于大数据的储能电池失效风险评估方法
CN116632974B (zh) * 2023-05-29 2023-10-20 无锡亚天光电科技有限公司 一种用于锂电池新能源仓库在线温度监测系统
CN116632974A (zh) * 2023-05-29 2023-08-22 无锡亚天光电科技有限公司 一种用于锂电池新能源仓库在线温度监测系统
CN116404186A (zh) * 2023-06-08 2023-07-07 西安黄河电子技术有限公司 一种功率型锂锰电池生产系统
CN116404186B (zh) * 2023-06-08 2023-09-19 西安黄河电子技术有限公司 一种功率型锂锰电池生产系统
CN117054892A (zh) * 2023-10-11 2023-11-14 特变电工西安电气科技有限公司 一种储能电站电池健康状态的评估方法、装置及管理方法
CN117054892B (zh) * 2023-10-11 2024-02-27 特变电工西安电气科技有限公司 一种储能电站电池健康状态的评估方法、装置及管理方法
CN117394409A (zh) * 2023-10-16 2024-01-12 南方电网调峰调频(广东)储能科技有限公司 储能电站设备状态的智能评估方法及系统
CN117394409B (zh) * 2023-10-16 2024-03-19 南方电网调峰调频(广东)储能科技有限公司 储能电站设备状态的智能评估方法及系统
CN117855688A (zh) * 2024-03-08 2024-04-09 超耐斯(深圳)新能源集团有限公司 基于数据分析的锂电池运行过温监管预警系统

Also Published As

Publication number Publication date
CN111584952B (zh) 2022-04-08
CN111584952A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2021208309A1 (zh) 用于储能电站电化学电池在线评估的方法和系统
CN113671382A (zh) 一种基于云-端数字孪生的电池储能系统状态估计方法
CN109375116B (zh) 一种基于自编码器的电池系统异常电池识别方法
CN108089133A (zh) 储能系统电池组一致性检测方法及检测装置
CN109604186A (zh) 动力电池性能柔性评估分选方法
CN103176138B (zh) 一种电池组维护检测方法
WO2020155233A1 (zh) 基于双级模型预测的锂离子电池组外部短路故障诊断方法
CN111460656B (zh) 一种电力机房通信电源运行寿命评估方法和系统
CN114977414B (zh) 一种基于多簇并联储能的电池存储智能管理系统
CN113990054A (zh) 一种储能电站数据分析与预警系统
CN109615273A (zh) 一种电动汽车充电设施状态评价方法与系统
CN116401585B (zh) 一种基于大数据的储能电池失效风险评估方法
CN115511270A (zh) 一种面向分布式储能装置运行状态的综合评价系统及方法
CN114865668A (zh) 一种储能调度支撑评估方法
Liu et al. Cloud platform-oriented electrical vehicle abnormal battery cell detection and pack consistency evaluation with big data: devising an early-warning system for latent risks
CN115825756B (zh) 分散式储能电站故障多级诊断方法及系统
CN115656837A (zh) 一种串联型电池故障预测方法
Haiying et al. Research on the consistency of the power battery based on multi-points impedance spectrum
Xiao et al. Lithium-ion batteries fault diagnosis based on multi-dimensional indicator
CN115128468A (zh) 一种化学储能电池phm欠压故障预测方法
Meng et al. Research on fault diagnosis of electric vehicle power battery based on attribute recognition
CN115963401A (zh) 基于微控制器设备和嵌入式稠密神经网络的电池循环性预测方法
CN113759254A (zh) 电池重组方法、装置、设备及存储介质
Huang et al. Evaluation index of battery pack of energy storage station based on RB recession mechanism
CN111861141A (zh) 一种基于模糊故障率预测的配电网可靠性评估方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931171

Country of ref document: EP

Kind code of ref document: A1