WO2021208274A1 - 适用于单三相电网的功率因素调整架构及其控制方法 - Google Patents

适用于单三相电网的功率因素调整架构及其控制方法 Download PDF

Info

Publication number
WO2021208274A1
WO2021208274A1 PCT/CN2020/101129 CN2020101129W WO2021208274A1 WO 2021208274 A1 WO2021208274 A1 WO 2021208274A1 CN 2020101129 W CN2020101129 W CN 2020101129W WO 2021208274 A1 WO2021208274 A1 WO 2021208274A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
pfc
switch
power grid
power
Prior art date
Application number
PCT/CN2020/101129
Other languages
English (en)
French (fr)
Inventor
刘钧
冯颖盈
姚顺
徐金柱
张远昭
Original Assignee
深圳威迈斯新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳威迈斯新能源股份有限公司 filed Critical 深圳威迈斯新能源股份有限公司
Publication of WO2021208274A1 publication Critical patent/WO2021208274A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention belongs to the technical field of power supplies, and specifically relates to a power factor adjustment structure suitable for a single three-phase power grid in a vehicle-mounted charger and a control method thereof.
  • the energy of the new energy vehicle battery is taken from the AC power grid; the AC power grid is stored in the battery through the charging pile of the power conversion device or the on-board charger.
  • the AC power grid is divided into single-phase power and three-phase power.
  • On-board OBC is also divided into single-phase input OBC and three-phase input OBC. Among them, three-phase OBC compatibility requires compatible single-phase OBC.
  • FIG. 1 is one of the three-phase input PFC topology. Since the phase difference of the three-phase AC power is 120°C, the three phases cancel each other's AC zero-crossing voltage. After the three-phase input voltage is rectified, the voltage is pulsed without current rectification. It is also relatively small, as shown in the three-phase rectified voltage in Figure 2B; the peak-to-peak voltage of the three-phase input voltage is 72V after rectification.
  • the voltage after single-phase rectification is zero-crossing, as shown in the single-phase rectified voltage in Figure 2C, the peak-to-peak voltage of the voltage ripple after rectification is 311V, in order to control the PFC output voltage ripple and ensure that the output power is not zero.
  • the capacity of Cout needs to be relatively large, causing Cout to occupy a relatively large volume.
  • the present invention proposes a power factor adjustment architecture and its control method suitable for single three-phase power grids.
  • the technical scheme adopted by the present invention is to design a power factor adjustment structure suitable for single-phase three-phase power grids, including three-phase inductors and three-phase four-wire PFC modules connected in series, and PFC output capacitors, with three-phase working mode and single-phase working Mode; one end of the PFC output capacitor is connected to the PFC output negative electrode, and the other end is connected to the switch K; in the three-phase operation mode, the three input ends of the three-phase inductor are respectively connected to the three live wires of the power grid, and the switch switches the PFC output capacitor to another One end is connected to the positive pole of the PFC output; in the single-phase operation mode, the first and second input terminals L1 and L2 of the three-phase inductor are connected to a live wire of the power grid, and the switch connects the other end of the PFC output capacitor to the first end of the three-phase inductor.
  • the third input terminal L3 is connected to the third bridge arm in the three-phase four-wire PFC module through the third inductor Lc, and the third bridge arm includes an upper bridge arm switch Q3 and a lower bridge arm switch Q6; in the single-phase working mode
  • the middle controller respectively controls the on and off of the upper bridge arm switch and the lower bridge arm switch, so that the upper bridge arm switch, the lower bridge arm switch, the switch K, the PFC output capacitor, and the third inductor form a buck mode or a boost mode.
  • the upper switch Q3 is used as a switch tube to receive PWM control from the controller, and the lower switch Q6 is used as a diode; in the boost mode, the upper switch Q3 is used as a diode, and the lower switch Q6 is used as a diode.
  • the bridge arm switch Q6 is used as a switch tube to receive the PWM control of the controller.
  • the frequency and phase of the input alternating current are detected, and the A section and the B section are set accordingly.
  • the buck mode is used in the A section, and the boost mode is used in the B section.
  • the A interval is n is an integer ⁇ 0,
  • the B interval is n is an integer ⁇ 0.
  • the first input terminal L1 of the three-phase inductor is connected to the first bridge arm in the three-phase four-wire PFC module through the first inductor La to form the first PFC branch;
  • the second input terminal L2 is through the second inductor Lb is connected to the second bridge arm in the three-phase four-wire PFC module to form a second PFC branch;
  • the phase difference of the drive signals for the switches in the first and second PFC branches is controlled to be 180° C. to form an interleaving control.
  • the switch connected to the three-phase live wire adopts a fast recovery switch with a short reverse recovery time
  • the switch connected to the neutral line adopts a slow recovery switch with a long reverse recovery time
  • the switch connected to the three-phase live wire adopts one of MOSFET, IGBT, GaN, and SIC mosfet
  • the switch connected to the neutral wire adopts one of MOSFET, IGBT, GaN, and SIC mosfet.
  • the switch connected to the neutral line adopts an active device, or a passive device, or an IGBT parallel diode.
  • the switch K can be a single-pole double-throw switch, a relay, and a two-way switch.
  • the switch K may also adopt a selector switch, the static contact of which is connected to the other end of the PFC output capacitor, the first moving contact of which is connected to the positive pole of the PFC output, and the second moving contact of which is connected to the three-phase inductor The third input terminal L3.
  • the present invention also designs a control method for a power factor adjustment framework suitable for single three-phase power grids.
  • the power factor adjustment framework adopts the above-mentioned power factor adjustment framework suitable for single three-phase power grids.
  • the control method includes: detection Whether the connected power grid is a three-phase power grid or a single-phase power grid, and enter the three-phase working mode or the single-phase working mode accordingly; in the three-phase working mode, the three input terminals of the three-phase inductor are respectively connected to the three live wires of the power grid, One end of the PFC output capacitor is connected to the negative pole of the PFC output, and the other end is connected to the positive pole of the PFC output through the switch K; in the single-phase operation mode, the first and second input terminals L1 and L2 of the three-phase inductor are connected to a live wire of the power grid, and the PFC output One end of the capacitor is connected to the negative electrode of the PFC output, and the other end is connected to the third input terminal L3
  • Step 1 Collect the input voltage
  • Step 2 Determine whether the connected power grid is a three-phase power grid or a single-phase power grid. If it is a three-phase power grid, go to step 8, and if it is a single-phase power grid, execute it in sequence;
  • Step 3 Connect the other end of the PFC output capacitor to the third input terminal L3 of the three-phase inductor;
  • Step 4 Connect the first input terminal L1 and the second input terminal L2 of the three-phase inductor to a live wire of the power grid;
  • Step 5 Detect the frequency and phase of the input AC power
  • Step 6 Control the phase difference of the drive signals of the switches in the first and second PFC branches by 180° C. to form an interleaving control
  • Step 7 Set the A zone and the B zone according to the frequency and phase of the input AC power, adopt the buck mode in the A zone, and adopt the boost mode in the B zone;
  • Step 8 Connect the other end of the PFC output capacitor to the positive pole of the PFC output;
  • Step 9 Connect the three input terminals of the three-phase inductor to the three live wires of the power grid respectively, and proceed to step 10;
  • Step 10 Check whether there is a shutdown control signal, if there is no stop control signal, go to step 2, and if there is a stop control signal, execute it in sequence;
  • the invention can also load and perform buck/boost control when connected to a single-phase power grid, greatly reducing the capacity of the PFC capacitor, reducing the volume of the capacitor, reducing the cost, and providing for the subsequent introduction of electroless design Possibly, it can eliminate the limitation on the life of electrolytic capacitors for on-board charging, and it can also reduce the relays on the input live wire; it can be applied to single three-phase power grids.
  • Figure 1 is a block diagram of the principle of an on-board charger
  • Figure 2A is a circuit diagram of an existing on-board charger connected to a three-phase power grid
  • Figure 2B is a comparison diagram of the rectified waveform and the grid waveform when the existing on-board charger is connected to the three-phase grid;
  • Figure 2C is a comparison diagram of the rectified waveform and the grid waveform when the existing on-board charger is connected to a single-phase grid;
  • Figure 3 is a circuit diagram of the first embodiment of the present invention.
  • Fig. 3A is a schematic diagram of the connection of the switch of the first embodiment when the input power grid is three-phase power;
  • Fig. 3B is a schematic diagram of a connection without neutral and the energy flow of each phase when the input power grid is three-phase power;
  • Fig. 3C is a schematic diagram of a neutral connection and the energy flow direction of each phase when the input power grid is three-phase power;
  • FIG. 4 is a circuit diagram of the second embodiment of the present invention (Q7 and Q8 adopt diodes);
  • FIG. 5 is a circuit diagram of the third embodiment of the present invention (IGBT parallel diode);
  • 5A is a schematic diagram of the unidirectional energy flow of the present invention (Q7 and Q8 adopt diodes);
  • Fig. 6A is a schematic diagram of two-phase energy flow when the input power grid is single-phase electricity
  • Figure 6B is a schematic diagram of single-phase energy flow when the input power grid is single-phase electricity
  • Figure 7A is a comparison diagram of input voltage and current waveforms between A and B;
  • Fig. 7B is a comparison diagram of PFC module voltage, Q6 tube and Q3 tube drive signal waveforms between A and B sections;
  • Figure 7C is a control flow chart of the present invention.
  • Figure 8 shows the output voltage ripple simulation waveform of the PFC and the PFC output power comparison diagram under the constant output power mode of the traditional PFC of the three-phase power grid
  • Figure 10 is a comparison diagram of the output voltage ripple simulation waveform of the PFC and the output power of the PFC under the constant output power mode of the traditional PFC of the single-phase power grid;
  • FIG. 11 is a comparison diagram of PFC output voltage, capacitor Cout voltage, and PFC output power in the constant output power mode of the single-phase power grid according to the present invention.
  • Figure 12 is an implementation circuit diagram of a double-pole double-throw switch adopted by the switch, and one pole is connected to L3;
  • Figure 13 is an implementation circuit diagram of a double-pole double-throw switch with a pole connected to L1;
  • Figure 14 is a circuit diagram of an implementation in which a double-pole double-throw switch is used for the switch, and one pole is connected to L2.
  • the invention discloses a power factor adjustment architecture suitable for single three-phase power grids, which includes a three-phase inductor and a three-phase four-wire PFC module connected in series, and a PFC output capacitor Cout.
  • the power factor adjustment architecture has a three-phase working mode and a single Phase working mode; one end of the PFC output capacitor is connected to the PFC output negative pole, and the other end is connected to the switch K; in the three-phase working mode, the three input ends of the three-phase inductor are respectively connected to the three live wires of the power grid, and the switch will output the PFC
  • the other end of the capacitor is connected to the PFC output positive Vpfcout (refer to the connection diagram of the switch when the input grid is three-phase power shown in Figure 3A); in the single-phase operating mode, the first and second input terminals L1, L2 is connected to a live wire of the power grid, and the switch connects the other end of the PFC output capacitor to the third input terminal L3 of the three-phase in
  • the present invention can be applied to single-phase and three-phase power grids, and can be adjusted for power factors.
  • the three-phase inductor includes La, Lb, Lc, L1, L2, and L3 are the three input terminals of the three-phase inductor.
  • the right side of the three-phase inductor is connected to three bridge arms, and the three bridge arms include a total of 6 switching devices Q1-Q6 ,
  • the neutral line is directly connected to the fourth bridge arm (also called the N-phase bridge arm) in the PFC module without inductance.
  • the bridge arm is composed of two switching devices Q7 and Q8.
  • the present invention can greatly reduce the capacity of the PFC capacitor, reduce the volume of the capacitor, reduce the cost, and provide the possibility for the subsequent introduction of electroless design and eliminate On-board charging is limited by the life of the electrolytic capacitor, and it can also reduce the relay on the input live wire.
  • connection relationship is described in the claims and specification very specifically, such as the third input terminal L3, the third inductor Lc, the upper arm switch Q3 and Lower arm switch Q6.
  • This is a relative concept, because in a three-phase circuit, the three-phase line is symmetrical, and the changeover switch connecting the PFC output capacitor Cout to any one of the three-phase lines can achieve the technical effect to be achieved by the present invention. Ways to limit the scope of protection of the present invention.
  • the third input terminal L3 is connected to the third bridge arm in the three-phase four-wire PFC module through the third inductor Lc, and the third bridge arm includes an upper bridge arm switch Q3 and a lower bridge arm switch Q6;
  • the controller controls the on and off of the upper arm switch and the lower arm switch respectively, so that the upper arm switch, the lower arm switch, the switch K, the PFC output capacitor Cout, and the third inductance form a buck Mode or boost mode.
  • the upper switch Q3 is used as a switch tube to receive PWM control from the controller, and the lower switch Q6 is used as a diode; in the boost mode, the upper switch Q3 is used as a diode, and the lower switch Q6 is used as a diode.
  • the bridge arm switch Q6 is used as a switch tube to receive the PWM control of the controller.
  • the so-called "use as a diode” means that the controller controls the synchronous rectification of the switching tube, and the switching tube presents the nature of a single-phase diode conduction.
  • the switch K When the PFC is working in three-phase input, the switch K connects the PFC output capacitor Cout to the PFC output positive Vpfcout, and the PFC output capacitor Cout is connected to the output end of the PFC; when the PFC is working in single-phase input, the switch K will output the capacitor Cout is connected to the L3 position; L3 is floating when single-phase input. As shown in the table below.
  • FIG. 3A When the input power is three-phase power, the connection of the switch K is shown in Figure 3A.
  • the three-phase four-wire PFC module works in three-phase six-switch mode.
  • Q1-Q6 are PFC switch tubes, among which Q1 and Q4 Form a-phase bridge arm, Q1 is the upper tube of the a-phase bridge arm, Q4 is the lower tube of the a-phase bridge arm; Q2 and Q5 form the b-phase bridge arm, Q2 is the upper tube of the b-phase bridge arm, and Q5 is the b-phase bridge The lower tube of the arm; Q3 and Q6 form the c-phase bridge arm, Q3 is the upper tube of the c-phase bridge arm, and Q6 is the lower tube of the c-phase bridge arm;
  • Figure 3B is one of the three-phase power input without neutral Connection and the energy flow diagram of each phase.
  • Figure 3C shows another connection with a neutral line (N line).
  • N line neutral line
  • Q7 and Q8 are active devices, the energy can realize the bidirectional flow as shown in Fig. 3B and Fig. 3C, that is, the inverter function can be realized.
  • Q7 and Q8 are diodes, energy can only flow in one direction, as shown in Figure 5A.
  • Q1, Q2, Q3, and Q4 form a PFC fast tube
  • Q7, Q8 form a PFC slow tube
  • Q3, Q6, Lc, and Cout form a single-phase PFC power frequency compensation loop, as shown in Figure 4.
  • the circuit of Fig. 4 has two working modes, namely capacitive energy storage mode (namely buck mode) and capacitive discharge mode (namely boost mode).
  • Q3, Q6, Lc and Cout form a boost boost circuit
  • Q6 is a switch tube
  • Q3 is used as a diode
  • Lc is the boost inductor
  • Cout is the input voltage source of the Boost circuit
  • PFC The output end is the load of the boost Boost circuit, and the energy flow is shown in Figure 6A.
  • the circuit is a Boost circuit with a boost function.
  • the Boost circuit can increase the voltage at the valley of the PFC ripple voltage to achieve the purpose of reducing the PFC ripple voltage; even when the capacitor Cout voltage is relatively low , Can ensure the stability of the PFC voltage, but also greatly reduce the capacity of the PFC capacitor Cout.
  • slow tubes Q7 and Q8 are active devices, and the energy can flow in both directions, that is, it can realize the inverter function; in Figure 6B, Q7 and Q8 are single-phase controlled, and energy can only flow from AC to DC, not from the DC side. Flow direction exchange.
  • the frequency and phase of the input alternating current are detected, and the A interval and the B interval are set accordingly, the buck mode is adopted in the A interval, and the boost mode is adopted in the B interval.
  • the A interval is n is an integer ⁇
  • the B interval is n is an integer ⁇ 0.
  • Vin ⁇ Iin Vin(t) ⁇ Iin(t)——Formula 4;
  • n is an integer ⁇ 0;
  • n is an integer ⁇ 0.
  • Fig. 7A is a comparison diagram of input voltage and current waveforms in A and B intervals
  • Fig. 7B is a comparison diagram of PFC module voltage, Q6 tube and Q3 tube driving signal waveforms in A and B intervals, in which the black area indicates that there is a driving signal.
  • the first input terminal L1 of the three-phase inductor is connected to the first bridge arm (also called a-phase bridge arm) in the three-phase four-wire PFC module through the first inductor La, forming The first PFC branch;
  • the second input terminal L2 is connected to the second bridge arm (also known as the b-phase bridge arm) in the three-phase four-wire PFC module through the second inductor Lb to form the second PFC branch;
  • control pairs of the first and The drive signals of the switches in the second PFC branch have a phase difference of 180° C., forming an interleaved control, and each of the PFC inductors La and Lb respectively bears half of the input current. In this way, the loss of the switching tube can be reduced, the temperature of the switching tube can be lowered, and the service life can be prolonged.
  • the PFC output capacitor Cout is selected according to the following formula:
  • Po is the output power of the PFC module
  • ⁇ u is the output ripple voltage of the PFC module
  • Vpfc is the output voltage of the PFC module
  • is the angular frequency
  • is the efficiency.
  • the switch connected to the three-phase live wire adopts a fast recovery switch with a short reverse recovery time
  • the switch connected to the neutral line adopts a slow recovery switch with a long reverse recovery time.
  • switch Taking Figure 6A as an example, Q1 to Q6 are fast recovery switches (commonly known as fast tubes), and Q7 and Q8 are slow recovery switches (commonly known as slow tubes).
  • the switch connected to the three-phase live wire adopts one of MOSFET, IGBT, GaN, and SIC mosfet
  • the switch connected to the neutral wire adopts one of MOSFET, IGBT, GaN, and SIC mosfet.
  • the switch connected to the neutral line adopts an active device, or a passive device, or an IGBT parallel diode.
  • Fig. 4 is an embodiment of Q7 and Q8 using diodes
  • Fig. 5 is an embodiment of IGBT parallel diodes.
  • the switch K can be a single-pole double-throw switch, a relay, and a two-way switch.
  • the switch K can also be a selector switch, see FIG. 6A, its static contact is connected to the other end of the PFC output capacitor Cout, its first moving contact is connected to the PFC output positive Vpfcout, and its second moving contact is Connect the third input terminal L3 of the three-phase inductor.
  • DCDC needs to be designed according to the output power of 2 times, causing the output to be over-designed; at the same time, problems such as output power crossing zero and complicated control occur.
  • Po is the entire OBC output power
  • Vin(t) is the input AC real-time voltage
  • Iin(t) is the input AC real-time current
  • is the overall efficiency (including PFC and DCDC).
  • Figure 12 is an implementation circuit diagram of a double-pole double-throw switch adopted by the switch, and one pole is connected to L3;
  • Figure 13 is an implementation circuit diagram of a double-pole double-throw switch with a pole connected to L1;
  • Figure 14 is a circuit diagram of an implementation in which a double-pole double-throw switch is used for the switch, and one pole is connected to L2.
  • the output ripple simulation waveform of the traditional PFC without PFC power frequency compensation loop is shown in Figure 8;
  • the PFC output ripple simulation waveform of the PFC output capacitor functional unit of the present invention is shown in Figure 9, and the PFC in Figure 9 output voltage is the PFC output voltage, Vcout2 is the capacitor Cout voltage;
  • PFC output power is the PFC output power.
  • the output high-voltage battery side is pulsed at 2 times the power frequency, and the output power at the peak of the PFC ripple voltage is high, and the output power at the valley of the PFC ripple voltage is low.
  • the PFC output power and PFC output voltage are shown in Figure 10 and Figure 11 below, respectively.
  • Figure 10 shows the comparison between the PFC output voltage waveform and the PFC output power waveform of the traditional single-phase PFC simulation with a PFC capacitor of 100uF.
  • Figure 11 is a PFC capacitor of 100uF, using the control method of the present invention, PFC output power and PFC output voltage waveforms, PFC output voltage is the PFC output voltage, Vcout is the capacitor Cout voltage; PFC output power is the PFC output power.
  • the present invention also discloses a control method of a power factor adjustment framework suitable for a single three-phase power grid.
  • the power factor adjustment framework adopts the above-mentioned power factor adjustment framework suitable for a single three-phase power grid.
  • the control method includes: detection Whether the connected power grid is a three-phase power grid or a single-phase power grid, and enter the three-phase working mode or the single-phase working mode accordingly; in the three-phase working mode, the three input terminals of the three-phase inductor are respectively connected to the three live wires of the power grid, One end of the PFC output capacitor Cout is connected to the negative pole of the PFC output, and the other end is connected to the positive pole of the PFC output Vpfcout through the switch K; in the single-phase operation mode, the first and second input terminals L1 and L2 of the three-phase inductor are connected to a live wire of the power grid. One end of the PFC output capacitor Cout is connected to the negative pole of the PFC output, and the other
  • Step 1 Collect the input voltage
  • Step 2 Determine whether the connected power grid is a three-phase power grid or a single-phase power grid. If it is a three-phase power grid, go to step 8, and if it is a single-phase power grid, execute it in sequence;
  • Step 3 Connect the other end of the PFC output capacitor Cout to the third input terminal L3 of the three-phase inductor;
  • Step 4 Connect the first input terminal L1 and the second input terminal L2 of the three-phase inductor to a live wire of the power grid;
  • Step 5 Detect the frequency and phase of the input AC power
  • Step 6 Control the phase difference of the drive signals of the switches in the first and second PFC branches by 180° C. to form an interleaving control
  • Step 7 Set the A section and the B section according to the frequency and phase of the input AC power, use the buck mode in the A section, and use the boost mode in the B section; go to step 10;
  • Step 8 Connect the other end of the PFC output capacitor Cout to the positive PFC output Vpfcout;
  • Step 9 Connect the three input terminals of the three-phase inductor to the three live wires of the power grid respectively, and proceed to step 10;
  • Step 10 Check whether there is a shutdown control signal, if there is no stop control signal, go to step 2, and if there is a stop control signal, execute it in sequence;

Abstract

本发明公开了一种适用于单三相电网的功率因素调整架构及其控制方法,其中调整架构包括三相电感、三相四线PFC模块和PFC输出电容(Cout),所述PFC输出电容一端连接PFC输出负极、另一端连接切换开关(K);在三相工作模式中三相电感的三个输入端分别连接电网的三条火线,所述切换开关将PFC输出电容另一端连接至PFC输出正极(Vpfcout);在单相工作模式中三相电感的第一和第二输入端(L1、L2)连接电网的一条火线,所述切换开关将PFC输出电容另一端连接至三相电感的第三输入端(L3);本发明复用原有的器件,大幅度降低PFC电容的容量,减小了电容的体积、降低成本,为后续引入无电解设计提供可能,消除车载充电受到电解电容寿命的限制。

Description

适用于单三相电网的功率因素调整架构及其控制方法 技术领域
本发明属于电源技术领域,具体涉及车载充电机中适用于单三相电网的功率因素调整架构及其控制方法。
背景技术
随着社会的发展,环境污染和能源紧缺问题得到越来越多的关注,大力发展新能源汽车是解决上述两大问题的一个有效途径。新能源汽车电池的能量取自AC电网;由AC电网经过电力转换装置充电桩或者车载充电机存储在电池中。交流电网有单相电和三相电之分,车载OBC也分为单相输入OBC和三相输入OBC,其中三相OBC兼容有要求兼容单相OBC。为保证输入AC电压和AC电流跟随,车载OBC业界通常的设计都是在交流输入侧增加PFC电路,后级为恒功率DCDC电路,两级串联结构,如图1所示,其中DCDC部分为恒功率输出。图2A为三相输入PFC拓扑之一,由于三相交流电相位相差120℃,三相之间互相抵消交流过零的电压,三相输入电压整流后电压在没有电流整流的条件下脉冲电压幅值也比较小,如图2B中三相整流电压所示;三相输入电压整流后电压峰峰值为72V,图2A中拓扑工作在三相工作模式时Cout容量较小;工作在单相时,由于单相整流后电压为过零,如图2C中单相整流电压所示,整流后电压脉动电压峰峰值为311V,为控制PFC输出电压纹波,保证输出功率不过零,在单相输入电压时,Cout的容量需要比较大,造成Cout占用体积比较大。由于Cout容量大,在输入火线L1、L2、L3上需要增加继电器以及缓启动电阻降低冲击电流,而大容量电容需要用到电解电容,电解电容随着使用时间容量会衰减,电解电容寿命成为制约充电机的使用寿命最大瓶颈。
因此,如何设计一种可以减小PFC输出电容Cout的容量,可以用薄膜电容等无寿命限制的电容取代电解电容,使得充电机的使用年限不会受到电解电容寿命的限制,同时也可以减少输入火线上的继电器的充电机架构及其控制方法是业界亟待解决的技术问题。
发明内容
为了解决现有技术中存在的上述缺陷,本发明提出一种适用于单三相电网的功率因素调整架构及其控制方法。
本发明采用的技术方案是设计一种适用于单三相电网的功率因素调整架构,包括串联的三相电感和三相四线PFC模块,以及PFC输出电容,具有三相工作模式和单相工作模式;所述PFC输出电容一端连接PFC输出负极、另一端连接切换开关K;在三相工作模式中三相电感的三个输入端分别连接电网的三条火线,所述切换开关将PFC输出电容另一端连接至PFC输出正极;在单相工作模式中三相电感的第一和第二输入端L1、L2连接电网的一条火线,所述切换开关将PFC输出电容另一端连接至三相电感的第三输入端L3。
所述第三输入端L3通过第三电感Lc连接三相四线PFC模块中的第三桥臂,所述第三桥臂包括上桥臂开关Q3和下桥臂开关Q6;在单相工作模式中控制器分别控制上桥臂开关、下桥臂开关的通断,使上桥臂开关、下桥臂开关、切换开关K、PFC输出电容、第三电感构成buck模式或boost模式。
所述buck模式中,所述上桥臂开关Q3作为开关管接受所述控制器PWM控制,下桥臂开关Q6作为二极管使用;所述boost模式中所述上桥臂开关Q3作为二极管使用,下桥臂开关Q6作为开关管接受所述控制器PWM控制。
检测输入交流电的频率和相位,并据此设置A区间和B区间,在A区间内采用buck模式,在B区间采用boost模式。
所述A区间为
Figure PCTCN2020101129-appb-000001
n为≥0的整数,
所述B区间为
Figure PCTCN2020101129-appb-000002
n为≥0的整数。
在单相工作模式中三相电感的第一输入端L1通过第一电感La连接三相四线PFC模块中的第一桥臂,形成第一PFC支路;第二输入端L2通过第二电感Lb连接三相四线PFC模块中的第二桥臂,形成第二PFC支路;控制对第一和第二PFC支路中开关的驱动信号相位相差180℃,形成交错控制。
所述三相四线PFC模块中,与三相火线连接的开关采用反向恢复时间短的快恢复开关、与零线连接的开关采用反向恢复时间长的慢恢复开关。
所述三相四线PFC模块中,与三相火线连接的开关采用MOSFET,IGBT,GaN,SIC mosfet中的一种,与零线连接的开关采用MOSFET,IGBT,GaN,SIC mosfet中的一种。
所述三相四线PFC模块中,与零线连接的开关采用有源器件、或无源器件、或IGBT并联二极管。
所述切换开关K可以采用单刀双掷开关、继电器、双向开关中的一种。
所述切换开关K还可以采用选择开关,其静触头连接所述PFC输出电容的另一端、其第一动触头连接所述PFC输出正极、其第二动触头连接所述三相电感的第三输入端L3。
本发明还设计了一种适用于单三相电网的功率因素调整架构的控制方法,所述功率因素调整架构采用上述的适用于单三相电网的功率因素调整架构,所述控制方法包括:检测所接入的电网是三相电网还是单相电网,并据此进入三相工作模式或单相工作模式;在三相工作模式中,三相电感的三个输入端分别连接电网的三条火线,PFC输出电容一端连接PFC输出负极、另一端通过切换开关K连接至PFC输出正极;在单相工作模式中,三相电感的第一和第二输入端L1、L2连接电网的一条火线,PFC输出电容一端连接PFC输出负极、另一端通过切换开关K连接至所述三相电感的第三输入端L3。
所述控制方法的具体步骤为:
步骤1、采集输入电压;
步骤2、判断所接入的电网是三相电网还是单相电网,如是三相电网则转入步骤8,如是单相电网则顺序执行;
步骤3、将PFC输出电容另一端连接至所述三相电感的第三输入端L3;
步骤4、将三相电感的第一输入端L1和第二输入端L2连接至电网的一条火线;
步骤5、检测输入交流电的频率和相位;
步骤6、控制第一和第二PFC支路中开关的驱动信号相位相差180℃,形成交错控制;
步骤7、根据输入交流电的频率和相位设置A区间和B区间,在A区间内采用buck模式,在B区间采用boost模式;
转入步骤10;
步骤8、将PFC输出电容另一端连接至PFC输出正极;
步骤9、将三相电感的三个输入端分别连接电网的三条火线,转入步骤10;
步骤10、检测是否有停机控制信号,如无则转步骤2,如有则顺序执行;
步骤11、停机。
本发明提供的技术方案的有益效果是:
本发明通过复用原有的器件,在连接单相电网时还能负载进行buck/boost控制,大幅度降低PFC电容的容量,减小了电容的体积、降低成本,为后续引入无电解设计提供可能,消除车载充电受到电解电容寿命的限制,同时也可以减少输入火线上的继电器;可以适用于单三相电网。
附图说明
下面结合实施例和附图对本发明进行详细说明,其中:
图1是车载充电机原理框图;
图2A是现有车载充电机连接三相电网的电路图;
图2B是现有车载充电机连接三相电网时整流波形与电网波形对照图;
图2C是现有车载充电机连接单相电网时整流波形与电网波形对照图;
图3是本发明第一实施例电路图;
图3A输入电网为三相电时第一实施例切换开关的连接示意图;
图3B输入电网为三相电时一种无中线的接法以及每一相的能量流向示意图;
图3C输入电网为三相电时一种有中线的接法以及每一相的能量流向示意图;
图4是本发明(Q7和Q8采用二极管的)第二实施例电路图;
图5是本发明(IGBT并联二极管的)第三实施例电路图;
图5A是本发明(Q7和Q8采用二极管的)能量单向流动示意图;
图6A输入电网为单相电时能量双相流动示意图;
图6B输入电网为单相电时能量单相流动示意图;
图7A为A、B区间输入电压电流波形对照图;
图7B为A、B区间PFC模块电压、Q6管和Q3管驱动信号波形对照图;
图7C为本发明控制流程图;
图8为三相电网传统PFC在恒输出功率模式下,PFC的输出电压纹波仿真波形和PFC输出功率对照图;
图9为三相电网本发明在恒输出功率模式下,PFC输出电压、电容Cout电压、PFC输出功率对照图;
图10为单相电网传统PFC在恒输出功率模式下,PFC的输出电压纹波仿真波形和PFC输出功率对照图;
图11为单相电网本发明在恒输出功率模式下,PFC输出电压、电容Cout电压、PFC输出功率对照图;
图12为切换开关采用双刀双掷开关,其中一刀连接L3的实施电路图;
图13为切换开关采用双刀双掷开关,其中一刀连接L1的实施电路图;
图14为切换开关采用双刀双掷开关,其中一刀连接L2的实施电路图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
本发明公开了一种适用于单三相电网的功率因素调整架构,包括串联的三相电感和三相四线PFC模块,以及PFC输出电容Cout,该功率因素调整架构具有三相工作模式和单相工作模式;所述PFC输出电容一端连接PFC输出负极、另一端连接切换开关K;在三相工作模式中三相电感的三个输入端分别连接电网的三条火线,所述切换开关将PFC输出电容另一端连接至PFC输出正极Vpfcout(参看图3A示出的当输入电网为三相电时切换开关的连接示意图);在单相工作模式中三相电感的第一和第二输入端L1、L2连接电网的一条火线,所述切换开关将PFC输出电容另一端连接至三相电感的第三输入端L3。结合图3进行说明,本发明可以适用单相和三相电网,可以进行功率 因素调整。三相电感包括La、Lb、Lc,L1、L2、L3为三相电感的三个输入端,三相电感右侧连接三个桥臂,三个桥臂中包括Q1-Q6共6个开关器件,零线不通过电感直接接到PFC模块中的第4个桥臂(也称N相桥臂),该桥臂由Q7和Q8两个开关器件构成。本发明通过复用原有的器件(图3中的Lc、Q3、Q6),实现大幅度降低PFC电容的容量,减小了电容的体积、降低成本,为后续引入无电解设计提供可能,消除车载充电受到电解电容寿命的限制,同时也可以减少输入火线上的继电器。
需要指出,为描述方便,便于技术人员对照附图理解本发明,在权利要求书和说明书中将连接关系描述的非常具体,如第三输入端L3、第三电感Lc、上桥臂开关Q3和下桥臂开关Q6。这都是相对概念,因为在三相电路中,三相线路是对称的,转换开关将PFC输出电容Cout连接至三相线路中任何一路都能达到本发明所要实现的技术效果,不应当因描述方式而限定本发明保护范围。
在较佳实施例中,所述第三输入端L3通过第三电感Lc连接三相四线PFC模块中的第三桥臂,所述第三桥臂包括上桥臂开关Q3和下桥臂开关Q6;在单相工作模式中控制器分别控制上桥臂开关、下桥臂开关的通断,使上桥臂开关、下桥臂开关、切换开关K、PFC输出电容Cout、第三电感构成buck模式或boost模式。
所述buck模式中,所述上桥臂开关Q3作为开关管接受所述控制器PWM控制,下桥臂开关Q6作为二极管使用;所述boost模式中所述上桥臂开关Q3作为二极管使用,下桥臂开关Q6作为开关管接受所述控制器PWM控制。所谓“作为二极管使用”是控制器控制开关管同步整流,开关管此时呈现出二极管单相导通的性质。
下面结合附图详述本发明工作原理。当PFC工作在三相输入时,切换开关K将PFC输出电容Cout连接到PFC输出正极Vpfcout,PFC输出电容Cout连接在PFC的输出端;当PFC工作在单相输入时,切换开关K将输出电容Cout接到L3位置;L3在单相输入时悬空。如下表所示。
Figure PCTCN2020101129-appb-000003
三相工作原理:
当输入电源为三相电时,切换开关K的接法如图3A所示,三相四线PFC模块工作在三相六开关的模式,图中Q1-Q6为PFC开关管,其中Q1和Q4组成a相桥臂,Q1为a相桥臂的上管,Q4为a相桥臂的下管;Q2和Q5组成b相桥臂,Q2为b相桥臂的上管,Q5为b相桥臂的下管;Q3和Q6组成c相桥臂,Q3为c相桥臂的上管,Q6为c相桥臂的下管;图3B是输入电压为三相电的其中一种无中线的接法以及每一相的能量流向图,图3C为带中线(N线)的另外一种接法。当Q7、Q8为有源器件时,能量可以实现如图3B和图3C所示的双向流动,即可以实现逆变功能。当Q7、Q8为二极管时,能量只能实现单向流动,如图5A所示。
单相时工作原理:
当三相四线PFC模块工作在单相输入,Q1、Q2、Q3、Q4组成PFC快管,Q7、Q8组成PFC慢管。Q3、Q6、Lc、Cout组成单相PFC工频补偿回路,如图4所示。图4电路有两种工作模式,即电容储能模式(即buck模式)和电容放电模式(即boost模式)。在PFC纹波电压波峰处,工作在电容储能模式:Q3、Q6、Lc、Cout组成降压buck电路,输入电压为Vpfcout,Q3为buck开关管,Q6作二极管使用,Lc为buck输出电感,Cout为buck电路的负载,将PFC上的能量存储到Cout中,能量流向如图6A所示。在PFC纹波电压波谷处,工作在放电模式,Q3、Q6、Lc、Cout组成升压boost电路,Q6为开关管,Q3作二极管使用,Lc为boost电感,Cout为Boost电路输入电压源,PFC输出端为升压Boost电路的负载,能量流向如图6A所示。由于在放电模式,该电路为具有升压功能的Boost电路,Boost电路可以将PFC纹波电压波谷处的电压提升,以达到减小PFC纹波电压的目的;即使在电容Cout电压比较低的时候,可以保证PFC电压稳定的同时也可以大幅度减小PFC电容Cout的容量。
在图6A中慢管Q7和Q8为有源器件,能量可以实现双向流动,即可以实现逆变功能;图6B中,Q7和Q8单相控制,能量只能从交流流向直流,不能从直流侧流向交流。
在较佳实施例中,检测输入交流电的频率和相位,并据此设置A区间和B区间,在A区间内采用buck模式,在B区间采用boost模式。
在较佳实施实施例中,所述A区间为
Figure PCTCN2020101129-appb-000004
n为≥0的整数,所述B区间为
Figure PCTCN2020101129-appb-000005
n为≥0的整数。应当了解到,上述区间范围只是较佳实施例,非起限制作用。任何未脱离本发明精神与范畴,而对区间范围所做的修改,均应包含于本发明的保护范围之中。
buck模式(储能模式)和boost(放电模式)模式切换点计算过程如下:输入电压和输入电流实时值如下公式1和公式2所示,其中Vin为输入电压有效值,Iin为输入电流有效值;
Figure PCTCN2020101129-appb-000006
Figure PCTCN2020101129-appb-000007
在一个输入电压电流都为正弦的交流量,而输出为恒定功率,一个周期内在正弦波波峰处瞬时功率大,在波谷处瞬时功率小。在忽略效率的情况下,恒定输出功率如下公式3所示:
Pout=Vin·Iin——公式3;
结合公式1、2、3求出瞬时功率的分界点;在输入瞬时功率大于输出功率部分,工作在储能模式,将能量存储在输出电容Cout上,在输入瞬时功率小于输出功率部分,工作在放电模式,将输出电容Cout上的能量提供给输出;利用如下公式4可以求出各自的工作区间;
Vin·Iin=Vin(t)·Iin(t)——公式4;
Figure PCTCN2020101129-appb-000008
从上述计算可以得出两个区间,
A区间:
Figure PCTCN2020101129-appb-000009
n为≥0的整数;
B区间:
Figure PCTCN2020101129-appb-000010
n为≥0的整数。
A区间的瞬时功率比输出功率大,单相PFC工频补偿回路工作在储能模式,B区间的瞬时功率比输出功率小,单相PFC工频补偿回路工作在放电模式。图7A为A、B区间输入电压电流波形对照图,图7B为A、B区间PFC模块电压、Q6管和Q3管驱动信号波形对照图,其中黑色区域是表示有驱动信号。
在较佳实施例中,在单相工作模式中三相电感的第一输入端L1通过第一电感La连接三相四线PFC模块中的第一桥臂(也称a相桥臂),形成第一PFC支路;第二输入端L2通过第二电感Lb连接三相四线PFC模块中的第二桥臂(也称b相桥臂),形成第二PFC支路;控制对第一和第二PFC支路中开关的驱动信号相位相差180℃,形成交错控制,每一路PFC电感La和Lb分别承担一半输入电流。藉此可以减少开关管损耗,降低开关管温度,延长使用寿命。
在较佳实施例中,所述PFC输出电容Cout根据下面公式进行取值,
Figure PCTCN2020101129-appb-000011
公式中Po为PFC模块输出功率,△u为PFC模块输出纹波电压,Vpfc为PFC模块输出电压, ω为角频率,η为效率。
在较佳实施例中,所述三相四线PFC模块中,与三相火线连接的开关采用反向恢复时间短的快恢复开关、与零线连接的开关采用反向恢复时间长的慢恢复开关。以图6A为例,Q1至Q6为快恢复开关(俗称快管),Q7和Q8为慢恢复开关(俗称慢管)。
所述三相四线PFC模块中,与三相火线连接的开关采用MOSFET,IGBT,GaN,SIC mosfet中的一种,与零线连接的开关采用MOSFET,IGBT,GaN,SIC mosfet中的一种。
所述三相四线PFC模块中,与零线连接的开关采用有源器件、或无源器件、或IGBT并联二极管。图4为Q7和Q8采用二极管的实施例,图5为IGBT并联二极管的实施例。
所述切换开关K可以采用单刀双掷开关、继电器、双向开关中的一种。
所述切换开关K还可以采用选择开关,参看图6A,其静触头连接所述PFC输出电容Cout的另一端、其第一动触头连接所述PFC输出正极Vpfcout、其第二动触头连接所述三相电感的第三输入端L3。
在传统的单相PFC中如果减小PFC输出滤波电容,即Cout容量变小,在利用车载充电机脉动充电实现输入电压和电流跟随,输出充电功率如下公式6;按照公式6的输出功率,峰值功率Po=2*Vin*Iin;输出峰值功率为公式3的输出恒功率的2倍,DCDC需要按照2倍输出功率设计,造成输出过设计;同时还出现输出功率过零,控制复杂等问题。
Po=Vin(t)*Iin(t)*η——公式6
公式中:Po为整个OBC输出功率,Vin(t)为输入交流实时电压,Iin(t)为输入交流实时电流,η为整机效率(包含PFC和DCDC)。
图12为切换开关采用双刀双掷开关,其中一刀连接L3的实施电路图;
图13为切换开关采用双刀双掷开关,其中一刀连接L1的实施电路图;
图14为切换开关采用双刀双掷开关,其中一刀连接L2的实施电路图。
下面具体举例,对本发明加以说明:
OBC工作在单相输入,输出功率Po=6600W;工作在三相输入,输出功率Po=9900W。按照Cout=100uF,后级输出功率恒定6600W设计,按照DCDC效率0.98计算,单相输入时PFC输出功率为6735W,按照公式5计算可得出PFC输出电压为500V以下,输出功率纹波电压△u=435.735V;无PFC工频补偿回路下传统PFC的输出纹波仿真波形如图8所示;本发明有PFC输出电容功能单元的PFC输出纹波仿真波形如图9所示,图9中PFC output voltage为PFC输出电压,Vcout2为电容Cout电压;PFC output power为PFC输出功率。
表1:Cout=100uF恒功率输出PFC输出纹波电压仿真对比
Figure PCTCN2020101129-appb-000012
根据上述仿真对比,相同的输出电容,采用本控制方法,PFC纹波电压可以下降157.82V;如果将PFC纹波电压控制在295V,根据公式5理论计算的Cout容值为Cout=150uF,达到相同的纹波电压,采用本发明可以比现有技术降低50%的电容容量。
输出高压电池侧以2倍工频进行脉冲式充电,在PFC纹波电压波峰的输出功率高,PFC纹波电压波谷的输出功率低。在连接单相电网情况下,PFC输出功率以及PFC输出电压分别如下图10和图11所示。其中图10为PFC电容为100uF,传统单相PFC仿真的PFC输出电压波形和PFC输出功率波形对照。图11为PFC电容100uF,采用本发明控制方法PFC输出功率和PFC输出电压波形,PFC output voltage为PFC输出电压,Vcout为电容Cout电压;PFC output power为PFC输出功率。从图中可以看出每个周期电容Cout上的电压都会放到接近0,通过升压电压boost在电压电压比较低的时候仍然可以保持PFC较高的电压,达到减小PFC纹波的效果。仿真数据如下表2所示。通过表2仿真对比可以得出,本次控制方法可以降低后级DCDC的峰值功率3.78%,同时可以将最小功率提高28.1%。利用本次发明的控制方法,可以使得PFC工作单相时峰值功率和三相输入时最大功率9.9KW更接近,也不会造成过设计。
表2:Cout=100uF脉冲功率输出PFC输出纹波电压和峰值功率仿真对比
Figure PCTCN2020101129-appb-000013
本发明还公开了一种适用于单三相电网的功率因素调整架构的控制方法,所述功率因素调整架构采用上述的适用于单三相电网的功率因素调整架构,所述控制方法包括:检测所接入的电网是三相电网还是单相电网,并据此进入三相工作模式或单相工作模式;在三相工作模式中,三相电感的三个输入端分别连接电网的三条火线,PFC输出电容Cout一端连接PFC输出负极、另一端通过切换开关K连接至PFC输出正极Vpfcout;在单相工作模式中,三相电感的第一和第二输入端L1、L2连接电网的一条火线,PFC输出电容Cout一端连接PFC输出负极、另一端通过切换开关K连接至所述三相电感的第三输入端L3。
参看图7C,所述控制方法的具体步骤为:
步骤1、采集输入电压;
步骤2、判断所接入的电网是三相电网还是单相电网,如是三相电网则转入步骤8,如是单相电网则顺序执行;
步骤3、将PFC输出电容Cout另一端连接至所述三相电感的第三输入端L3;
步骤4、将三相电感的第一输入端L1和第二输入端L2连接至电网的一条火线;
步骤5、检测输入交流电的频率和相位;
步骤6、控制第一和第二PFC支路中开关的驱动信号相位相差180℃,形成交错控制;
步骤7、根据输入交流电的频率和相位设置A区间和B区间,在A区间内采用buck模式,在B区间采用boost模式;转入步骤10;
步骤8、将PFC输出电容Cout另一端连接至PFC输出正极Vpfcout;
步骤9、将三相电感的三个输入端分别连接电网的三条火线,转入步骤10;
步骤10、检测是否有停机控制信号,如无则转步骤2,如有则顺序执行;
步骤11、停机。
以上实施例仅为举例说明,非起限制作用。任何未脱离本申请精神与范畴,而对其进行的等效修改或变更,均应包含于本申请的权利要求范围之中。

Claims (13)

  1. 一种适用于单三相电网的功率因素调整架构,包括串联的三相电感和三相四线PFC模块,以及PFC输出电容(Cout),其特征在于,具有三相工作模式和单相工作模式;所述PFC输出电容一端连接PFC输出负极、另一端连接切换开关(K);
    在三相工作模式中三相电感的三个输入端分别连接电网的三条火线,所述切换开关将PFC输出电容另一端连接至PFC输出正极(Vpfcout);
    在单相工作模式中三相电感的第一和第二输入端(L1、L2)连接电网的一条火线,所述切换开关将PFC输出电容另一端连接至三相电感的第三输入端(L3)。
  2. 如权利要求1中所述的适用于单三相电网的功率因素调整架构,其特征在于,所述第三输入端(L3)通过第三电感(Lc)连接三相四线PFC模块中的第三桥臂,所述第三桥臂包括上桥臂开关(Q3)和下桥臂开关(Q6);在单相工作模式中控制器分别控制上桥臂开关、下桥臂开关的通断,使上桥臂开关、下桥臂开关、切换开关(K)、PFC输出电容(Cout)、第三电感构成buck模式或boost模式。
  3. 如权利要求2中所述的适用于单三相电网的功率因素调整架构,其特征在于,所述buck模式中,所述上桥臂开关(Q3)作为开关管接受所述控制器PWM控制,下桥臂开关(Q6)作为二极管使用;所述boost模式中所述上桥臂开关(Q3)作为二极管使用,下桥臂开关(Q6)作为开关管接受所述控制器PWM控制。
  4. 如权利要求2中所述的适用于单三相电网的功率因素调整架构,其特征在于,检测输入交流电的频率和相位,并据此设置A区间和B区间,在A区间内采用buck模式,在B区间采用boost模式。
  5. 如权利要求4中所述的适用于单三相电网的功率因素调整架构,其特征在于,
    所述A区间为
    Figure PCTCN2020101129-appb-100001
    n为≥0的整数,
    所述B区间为
    Figure PCTCN2020101129-appb-100002
    n为≥0的整数。
  6. 如权利要求1中所述的适用于单三相电网的功率因素调整架构,其特征在于,在单相工作模式中三相电感的第一输入端(L1)通过第一电感(La)连接三相四线PFC模块中的第一桥臂,形成第一PFC支路;第二输入端(L2)通过第二电感(Lb)连接三相四线PFC模块中的第二桥臂,形成第二PFC支路;控制对第一和第二PFC支路中开关的驱动信号相位相差180℃,形成交错控制。
  7. 如权利要求1中所述的适用于单三相电网的功率因素调整架构,其特征在于,所述三相四线PFC模块中,与三相火线连接的开关采用反向恢复时间短的快恢复开关、与零线连接的开关采用反向恢复时间长的慢恢复开关。
  8. 如权利要求1中所述的适用于单三相电网的功率因素调整架构,其特征在于,所述三相四线PFC模块中,与三相火线连接的开关采用MOSFET,IGBT,GaN,SIC mosfet中的一种,与零线连接的开关采用MOSFET,IGBT,GaN,SIC mosfet中的一种。
  9. 如权利要求1中所述的适用于单三相电网的功率因素调整架构,其特征在于,所述三相四线PFC模块中,与零线连接的开关采用有源器件、或无源器件、或IGBT并联二极管。
  10. 如权利要求1至9中任一项所述的适用于单三相电网的功率因素调整架构,其特征在于,所述切换开关(K)采用单刀双掷开关、继电器、双向开关中的一种。
  11. 如权利要求1至9中任一项所述的适用于单三相电网的功率因素调整架构,其特征在于,所述切换开关(K)采用选择开关,其静触头连接所述PFC输出电容(Cout)的另一端、其第一动触头连接所述PFC输出正极(Vpfcout)、其第二动触头连接所述三相电感的第三输入端(L3)。
  12. 一种适用于单三相电网的功率因素调整架构的控制方法,其特征在于,所述功率因素调整架构采用权利要求1至11任一项所述的适用于单三相电网的功率因素调整架构,所述控制方法包括:检测所接入的电网是三相电网还是单相电网,并据此进入三相工作模式或单相工作模式;
    在三相工作模式中,三相电感的三个输入端分别连接电网的三条火线,PFC输出电容(Cout)一端连接PFC输出负极、另一端通过切换开关(K)连 接至PFC输出正极(Vpfcout);
    在单相工作模式中,三相电感的第一和第二输入端(L1、L2)连接电网的一条火线,PFC输出电容(Cout)一端连接PFC输出负极、另一端通过切换开关(K)连接至所述三相电感的第三输入端(L3)。
  13. 如权利要求12中所述的适用于单三相电网的功率因素调整架构的控制方法,其特征在于,所述控制方法的具体步骤为:
    步骤1、采集输入电压;
    步骤2、判断所接入的电网是三相电网还是单相电网,如是三相电网则转入步骤8,如是单相电网则顺序执行;
    步骤3、将PFC输出电容(Cout)另一端连接至所述三相电感的第三输入端(L3);
    步骤4、将三相电感的第一输入端(L1)和第二输入端(L2)连接至电网的一条火线;
    步骤5、检测输入交流电的频率和相位;
    步骤6、控制第一和第二PFC支路中开关的驱动信号相位相差180℃,形成交错控制;
    步骤7、根据输入交流电的频率和相位设置A区间和B区间,在A区间内采用buck模式,在B区间采用boost模式;转入步骤10;
    步骤8、将PFC输出电容(Cout)另一端连接至PFC输出正极(Vpfcout);
    步骤9、将三相电感的三个输入端分别连接电网的三条火线,转入步骤10;
    步骤10、检测是否有停机控制信号,如无则转步骤2,如有则顺序执行;
    步骤11、停机。
PCT/CN2020/101129 2020-04-16 2020-07-09 适用于单三相电网的功率因素调整架构及其控制方法 WO2021208274A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010302231.3 2020-04-16
CN202010302231.3A CN111478573B (zh) 2020-04-16 2020-04-16 适用于单三相电网的功率因素调整架构及其控制方法

Publications (1)

Publication Number Publication Date
WO2021208274A1 true WO2021208274A1 (zh) 2021-10-21

Family

ID=71755912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101129 WO2021208274A1 (zh) 2020-04-16 2020-07-09 适用于单三相电网的功率因素调整架构及其控制方法

Country Status (2)

Country Link
CN (1) CN111478573B (zh)
WO (1) WO2021208274A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114301273A (zh) * 2021-12-23 2022-04-08 深圳威迈斯新能源股份有限公司 兼容单相两相三相电的缓启动电路及控制方法
CN114670685A (zh) * 2022-04-20 2022-06-28 福州大学 单相车载集成三电平npc充电电源模块
EP4216416A1 (en) * 2022-01-19 2023-07-26 Borgwarner Luxembourg Automotive Systems SA Systems and methods for universal input power supply bi-directional battery charger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300435A (zh) * 2021-06-11 2021-08-24 万帮数字能源股份有限公司 一种低电压自保护的方法及其装置
CN115871490A (zh) * 2021-09-29 2023-03-31 比亚迪股份有限公司 车载充电机和电动汽车

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6026006A (en) * 1998-09-21 2000-02-15 Lucent Technologies Inc. Integrated three-phase power converter and method of operation thereof
CN109842287A (zh) * 2019-01-07 2019-06-04 深圳陆巡科技有限公司 一种兼容单相和三相交流输入的pfc电路及其控制方法
CN110061511A (zh) * 2019-04-09 2019-07-26 北京交通大学 一种实现有源功率解耦的改进三相四桥臂拓扑
CN209666872U (zh) * 2018-12-29 2019-11-22 比亚迪股份有限公司 车载充电机及车辆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5119222B2 (ja) * 2009-08-31 2013-01-16 株式会社日立産機システム コンバータ装置、モータ駆動用モジュール及び冷凍装置
CN107248814B (zh) * 2016-03-29 2019-09-13 比亚迪股份有限公司 单相交错式pfc电路和具有其的车载充电器及电动汽车
CN210075077U (zh) * 2019-06-14 2020-02-14 苏州汇川联合动力系统有限公司 一种功率因数校正电路及车载充电机
CN110277904A (zh) * 2019-06-14 2019-09-24 苏州汇川联合动力系统有限公司 一种功率因数校正电路及车载充电机
CN110758143A (zh) * 2019-11-08 2020-02-07 深圳威迈斯新能源股份有限公司 减少电解电容的单三相兼容充电机控制电路和控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6026006A (en) * 1998-09-21 2000-02-15 Lucent Technologies Inc. Integrated three-phase power converter and method of operation thereof
CN209666872U (zh) * 2018-12-29 2019-11-22 比亚迪股份有限公司 车载充电机及车辆
CN109842287A (zh) * 2019-01-07 2019-06-04 深圳陆巡科技有限公司 一种兼容单相和三相交流输入的pfc电路及其控制方法
CN110061511A (zh) * 2019-04-09 2019-07-26 北京交通大学 一种实现有源功率解耦的改进三相四桥臂拓扑

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114301273A (zh) * 2021-12-23 2022-04-08 深圳威迈斯新能源股份有限公司 兼容单相两相三相电的缓启动电路及控制方法
EP4216416A1 (en) * 2022-01-19 2023-07-26 Borgwarner Luxembourg Automotive Systems SA Systems and methods for universal input power supply bi-directional battery charger
CN114670685A (zh) * 2022-04-20 2022-06-28 福州大学 单相车载集成三电平npc充电电源模块

Also Published As

Publication number Publication date
CN111478573A (zh) 2020-07-31
CN111478573B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2021208274A1 (zh) 适用于单三相电网的功率因素调整架构及其控制方法
CN1808832B (zh) 一种适用于中大功率不间断电源的电路装置
CN103283135A (zh) 电力转换装置
CN102694460A (zh) 三相升降压功率因数校正变换器
CN109639160B (zh) 基于软开关技术的新型单向三相三电平整流器
CN102624277B (zh) 带高频整流桥的无死区三相ac/dc变流器
CN110920422B (zh) 一种基于电流源的大功率电动汽车充电装置及控制方法
CN102158072B (zh) 并联电桥型阻抗网络功率变换器
CN104578881A (zh) 一种新型z源并网变流器
CN105119516A (zh) 一种高升压增益准z源逆变器
CN208971375U (zh) 一种用于消除列车直流母线二次谐振的直流侧有源滤波器
CN105099249A (zh) 高可靠性双输入逆变器
CN103326606A (zh) 一种单相五电平逆变器
CN103916040A (zh) 一种逆变器拓扑电路、逆变方法及一种逆变器
CN111431394A (zh) 一种新型降压式单相三电平无桥pfc变换器系统
CN203675000U (zh) 一种光伏并网微逆变器
CN203032409U (zh) 一种电动汽车驱动器
CN102185491B (zh) 混联电桥型阻抗网络功率变换器
CN105450076A (zh) Z源三电平逆变器及空调系统
CN110535364B (zh) 一种基于辅助电源的双Buck逆变器改进调制方法
CN112152489A (zh) 一种高低压直流双输出集成型三相pwm整流变换器及控制方法
CN204481711U (zh) 一种z源三电平pwm整流器
CN108683345B (zh) 一种基于SiC二极管的三相改进型双Buck/Boost变流器
CN114665727A (zh) 一种三单相兼容misn变换器
CN109639169B (zh) 一种适用于电压型准z源逆变器的软开关电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931611

Country of ref document: EP

Kind code of ref document: A1