WO2021208234A9 - 无溶剂型增粘扩链剂及其制备方法与应用 - Google Patents

无溶剂型增粘扩链剂及其制备方法与应用 Download PDF

Info

Publication number
WO2021208234A9
WO2021208234A9 PCT/CN2020/097303 CN2020097303W WO2021208234A9 WO 2021208234 A9 WO2021208234 A9 WO 2021208234A9 CN 2020097303 W CN2020097303 W CN 2020097303W WO 2021208234 A9 WO2021208234 A9 WO 2021208234A9
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
chain extender
free
chain
viscosity
Prior art date
Application number
PCT/CN2020/097303
Other languages
English (en)
French (fr)
Other versions
WO2021208234A1 (zh
Inventor
段浩
朱从山
司胜仁
Original Assignee
佳易容聚合物(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佳易容聚合物(上海)有限公司 filed Critical 佳易容聚合物(上海)有限公司
Priority to KR1020227010422A priority Critical patent/KR20220056214A/ko
Publication of WO2021208234A1 publication Critical patent/WO2021208234A1/zh
Priority to US17/678,432 priority patent/US20220177620A1/en
Publication of WO2021208234A9 publication Critical patent/WO2021208234A9/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/914Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/916Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/42Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J125/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Adhesives based on derivatives of such polymers
    • C09J125/02Homopolymers or copolymers of hydrocarbons
    • C09J125/04Homopolymers or copolymers of styrene
    • C09J125/08Copolymers of styrene
    • C09J125/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids

Definitions

  • the invention relates to a preparation method of a viscosity-increasing chain extender that can be used for recycling, regenerating and degrading polyester and the preparation method thereof, belonging to the field of polymer materials.
  • the present invention is achieved through the following technical solutions.
  • a solvent-free type tackifier chain extender the preparation method of which includes the following steps: after mixing an aromatic vinyl monomer, an acrylate-based monomer, an initiator, and a molecular weight regulator with water, heating and polymerizing to prepare a solvent-free type tackifier chain extender.
  • the product undergoes twin-screw secondary reaction granulation to prepare a solvent-free viscosity-increasing chain extender; the length-diameter ratio of the twin-screw extruder is not greater than 40, and has a special screw combination design , and the equipment has a multi-stage vacuum.
  • the preparation method of the polymer based on the solvent-free tackifying chain extender includes the following steps: after mixing the aromatic vinyl monomer, acrylate monomer, initiator, molecular weight regulator and water, heating and polymerizing , and then through the twin-screw secondary reaction, extrusion and granulation to prepare a solvent-free viscosity-increasing chain extender.
  • the solvent-free viscosifying chain extender of the invention overcomes the defects of the prior art, is green, environmentally friendly, simple in process, suitable in molecular weight, narrow in molecular weight distribution, high in softening temperature and easy to use.
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PLA polyester Lactic acid
  • PBAT copolymer of butylene adipate and butylene terephthalate
  • PPC polypropylene carbonate
  • the preparation of the solvent-free viscosifying chain extender is carried out in the absence of an organic solvent, which effectively solves the problem of recycling and processing the organic solvent in the prior art.
  • the reaction efficiency was further improved.
  • the prior art adopts an organic solvent with 1.5-2 times the amount of monomers, and the reaction temperature is 110-120° C.
  • the molecular weight of the obtained chain extender is similar to that of the Joncryl ADR series of BASF, and the Mw is lower than 10,000.
  • the mass sum of aromatic vinyl monomers and acrylate monomers is 100%, that is, the mass percentage of monomers is 100%, wherein the mass percentage of aromatic vinyl monomers is 76-99%, preferably 80 to 95%.
  • the ratio of raw materials has an important influence on the structure and performance of the chain extender, especially the glass transition temperature, molecular weight and distribution of the chain extender, thus affecting the application of the chain extender.
  • the glass transition temperature of styrene acrylic copolymer chain extender is generally low, about 70 °C, while the processing temperature of recycled polymer is above 230 °C, and the processing temperature of degradable base polymer is more than 200 °C, so when the ring
  • the oxygen-functionalized styrene acrylic chain extender is added to the feed zone, the chain extender will react locally to form a gel, and there are also problems of blocking the feed port, causing uneven formulation and unstable production;
  • the chain extender prepared by the invention has narrow molecular weight distribution and high glass transition temperature, and at the same time, due to the high molecular weight, the reaction is mild, local gel is avoided, and stable production of the polymer is ensured.
  • the dosage of the molecular weight regulator is 0.1-3% of the mass of the monomer; the dosage of the initiator is 0.1-2% of the mass of the monomer, preferably 0.1-1%.
  • the mass of the monomer is the sum of the mass of the aromatic vinyl monomer and the acrylate-based monomer.
  • the present invention provides the application of the above solvent-free viscosifying chain extender as a chain extender in the preparation of polymers, such as the application of the solvent-free viscosifying chain extender in polymer recovery and regeneration or the above-mentioned solvent-free viscosifying and extending agent
  • the application of the chain agent in the preparation of degradable polymers, that is, the solvent-free tackifying chain extender of the present invention can be used as a regenerated polymer chain extender for regenerated polymers and a degradable polymer polymerization chain extender, which can especially improve the quality of recycled materials.
  • Various properties make it close to or even exceed the level of new materials.
  • the solvent-free type tackifying and chain-extending agent of the present invention is a random copolymer formed by copolymerizing an aromatic vinyl monomer and an acrylate-based monomer; as a preferred solution, the weight-average molecular weight of the tackifying and chain-extending agent is 30,000 ⁇ 150,000, preferably 50,000-100,000; as a preferred solution, the density of reactive functional groups in the viscosity-increasing chain extender is 0.5-0.8, which is easy to form a multi-branched structure.
  • the aromatic vinyl monomers include styrene-based monomers, such as styrene monomers, ⁇ -methylstyrene monomers, ⁇ -chlorostyrene monomers or p-methylstyrene monomers; acrylic acid Ester monomers include glycidyl methacrylate and/or glycidyl methacrylate; molecular weight regulators include dodecyl mercaptan, and initiators include azobisisobutyronitrile (AIBN) or dibenzoyl peroxide Acyl (BPO).
  • styrene-based monomers such as styrene monomers, ⁇ -methylstyrene monomers, ⁇ -chlorostyrene monomers or p-methylstyrene monomers
  • acrylic acid Ester monomers include glycidyl methacrylate and/or glycidyl methacrylate
  • molecular weight regulators include dodecyl mercap
  • the molecular chain contains a plurality of epoxy functional groups, and when polymerized with polymers such as polyester and other materials, the polyester molecular chains can be connected, and the whole is in a multi-branched state , will not produce problems such as gel.
  • the temperature of the heating polymerization is 65-110°C, and the time is 2-10 hours.
  • the heating polymerization is 65-80°C for 2-6 hours, and then the temperature is raised to 90-110°C and the polymerization is continued for 0.5-2 hours.
  • the twin-screw continues the secondary reaction, and the product can be obtained by granulation.
  • the present invention not only avoids the problem of using an organic solvent for the reaction in the prior art, but also further improves the degree of reaction compared with the existing suspension polymerization reaction. , The content of residual monomers is greatly reduced, and the equipment is easy to obtain.
  • the obtained product has few residual monomers, narrow molecular weight distribution, high Tg and softening point, and excellent thermal stability of the chain extender, which is more conducive to post-processing and downstream use. .
  • the present invention has the following beneficial effects.
  • the chain extender of the present invention has high molecular weight, multiple reactive functional groups on a single molecular chain, suitable functional group density, non-interference with each other, high reactivity, can significantly reduce the end group concentration, improve the viscosity of the material, and is not easy to occur. gel.
  • the reaction process is controllable. Due to the high reaction activity and good thermal stability, it is easy to obtain materials with high intrinsic viscosity and high melt strength.
  • the process route selected in the present invention does not require the use of solvents, the investment is low, the equipment and raw materials are easily obtained, the process route discharge is small, the proportioning is simple, and the composition is stable.
  • the chain extender of the present invention is a polymer, has high thermal stability, high softening point, is easy to feed, can be applied to various processing techniques and conditions, and avoids the problem of softening and agglomeration in the production process or the problem of equipment selectivity.
  • the monomers selected in the present invention have the characteristics of non-toxicity or low toxicity, the raw material monomers are easy to obtain, and the process route is conducive to further improving the degree of polymerization and reducing the residual list, which can be applied to high-end applications related to medical equipment and food and drug packaging.
  • the chain extender of the present invention has a wide range of uses: polyester structures such as recycled polycarbonate (PC), polyethylene terephthalate (PET), and polybutylene terephthalate (PBT) materials, as well as bio-based polyester structures such as polylactic acid (PLA), copolymers of butylene adipate and terephthalate (PBAT), polypropylene carbonate (PPC), etc. It is effective in repairing, growing and cross-linking of biodegradable plastic molecular chains.
  • polyester structures such as recycled polycarbonate (PC), polyethylene terephthalate (PET), and polybutylene terephthalate (PBT) materials
  • PBT polybutylene terephthalate
  • bio-based polyester structures such as polylactic acid (PLA), copolymers of butylene adipate and terephthalate (PBAT), polypropylene carbonate (PPC), etc. It is effective in repairing, growing and cross-linking of biodegradable plastic molecular chains
  • the chain extender of the present invention is easy to use, can be widely used in medical equipment, packaging, household appliances, automobiles, aviation and other fields, and has very broad application prospects and industrialization value.
  • FIG. 1 is a TGA analysis comparison between Example 1 and Example 2.
  • Figure 2 is a comparison of capillary rheological data between Example 1 and Comparative Example 6 at 250°C and 270°C.
  • the preparation method of the solvent-free viscosifying chain extender of the present invention is as follows.
  • the aromatic vinyl monomer, acrylate-based monomer, initiator, molecular weight regulator and water are put into the reaction kettle, and the reaction is carried out at 65-80 DEG C under stirring for 2 -8 hours, and then continue to react at 90-110 ° C for 0.5-2 hours, after discharging, filter and dry to obtain a solvent-free viscosity-increasing chain extender;
  • the solvent-free viscosity-enhancing chain extender can be obtained by secondary reaction granulation; no organic solvent, no pressure, and no special atmosphere protection are required in the preparation process.
  • a preparation method of a chain-extended polyester polymer is the following steps: after mixing an aromatic vinyl monomer, an acrylate-based monomer, an initiator, a molecular weight regulator with water, and heating and polymerizing, a solvent-free type polymer is prepared.
  • Viscose chain extender the polyester polymer raw material and the solvent-free viscosity chain extender are mixed and extruded to obtain a chain-extended polyester polymer.
  • the amount of the solvent-free viscosifying chain extender is 0.5-2% of the mass of the polyester polymer raw material.
  • the polymer raw material can be pure particles or recycled plastic; it can be applied to recycled polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT) ) and other polyester recycled materials, and can be used in polylactic acid (PLA), butylene adipate and butylene terephthalate copolymer (PBAT), polypropylene carbonate (PPC) and other raw materials Repair and growth of bio-based and biodegradable plastic molecular chains used.
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PBT polybutylene terephthalate
  • PPA polylactic acid
  • PBAT butylene adipate and butylene terephthalate copolymer
  • PPC polypropylene carbonate
  • test conditions are as follows.
  • Weight-average molecular weight (Mw) using PS as the standard sample, using GPC test; RTVM: testing according to ASTM D790 standard, using GC-MS.
  • Terminal carboxyl group concentration tested according to GB/T-14190-2008 standard, acid-base titration.
  • Intrinsic viscosity tested according to GB/T-14190-2008 standard.
  • Crystallinity Tested according to ASTM E793 standard, using DSC test.
  • Glass transition temperature/Tg Tested according to ASTM E1356-98 standard, using DSC test.
  • Thermogravimetric loss Tested according to ASTM D6370-99 standard, using TGA.
  • Functional group density Combined with molecular weight and molecular weight distribution, the number of epoxy functional groups on the molecular chain per 1000 molecular weight length is calculated.
  • the preparation process is as follows.
  • styrene and GMA are copolymerized into St-GMA, wherein the GMA group can preferentially react with the end group of the polyester material, especially the small molecular group generated by the degradation reaction, so as to play the role of repairing the molecular chain, whereby, it has a good viscosity-increasing and chain-extending effect on recycled polyesters or degradable polymers, and at the same time improves the mechanical properties of the material, and can also control the degradation rate of degradable polymers.
  • Mw molecular weight
  • RTVM residual monomer content
  • the reactive epoxy functional group is located in the side chain, which can effectively improve the intrinsic viscosity of the polyester material, reduce the end group concentration, and reduce the melt index. At the same time, due to the molecular structure of the chain extender itself, the Tg and crystallinity of the polyester material are affected also helps.
  • Examples 1-5, Comparative Examples 1-5, commercially available BASF ADR4370 (Comparative Example 6) and Comparative Example 7 were used as chain extenders and recycled PET to granulate through high vacuum twin-screw at 240°C.
  • the chain extender and recycled PET are added to the twin-screw extruder (the amount of the chain extender is 1% of the mass of the recycled PET), and the twin-screw granulation is carried out at 240 ° C to obtain polymer particles;
  • the end group concentration, melt index (MI), crystallinity, and glass transition temperature were tested. The test results are shown in Table 3.
  • the extrusion results show that the control examples have the phenomenon of feeding port aggregates, melt pressure changes, accompanied by broken bars, etc., while the embodiment melt pressure is stable, the feeding port has few aggregates, and the example chain extender is granulated. No gel phenomenon and no broken strips are found.
  • the chain extender of the present invention has multiple reactive functional groups on a single molecular chain, and has high reactivity, which can significantly reduce the end group concentration of recycled materials or degradable materials and improve the thermal stability of the material. Sex and Viscosity.
  • Table 3 The fluidity and appearance of the chain extension effect in the recycled PET between the example and the control example
  • the chain extension effect is related to molecular weight, GMA concentration, residual unit amount of GMA, reaction conditions, etc.
  • GMA content is the same, due to the molecular weight
  • Different controls lead to large differences in functional group density, thereby affecting the reactivity.
  • the chain extension effect of Example 1-2 is more obvious and the concentration of terminal carboxyl groups is lower. It can be seen that the appropriate molecular weight is beneficial to the chain extension reaction.
  • the GMA content is different, such as Examples 1, 3, 4, 5, and Comparative Examples 2 and 3, the GMA density is too low, its reactivity is low, and the chain extension effect is poor.
  • suitable GMA density is more important (such as Example 1 and Example 4)
  • the chain extension effect of Example 4 is also better than Example 1, when the GMA content is too high (such as Comparative Examples 3, 4), its The effect is negative.
  • Example 1 Combined with the data in Figure 2, Table 1-Table 3, compared with Comparative Example 6, the terminal carboxyl group concentration and MI of Example 1 are relatively close, but the increase in intrinsic viscosity of Example 1 is more obvious, combined with crystallinity and vitrification.
  • the transition temperature is also more advantageous, which has a certain relationship with the molecular weight of Example 1; in particular, the glass transition temperature of the recycled PET chain-extended by Comparative Example 6 is obviously low. It can be seen that the molecular structure of the chain extender Design also has an impact on recycled polyester and degradable polyester.
  • the capillary rheometer is used to compare Example 1 and Comparative Example 6 at different processing temperatures.
  • the change of viscosity with shear rate was observed and analyzed.
  • the shear viscosity of Example 1 was close to that of Comparative Example 6, but when the processing temperature increased to At 270°C, the shear viscosity of Comparative Example 6 decreased significantly.
  • the chain extender of the present invention has multiple reactive functional groups on a single molecular chain, the functional group density is suitable, the reactivity is high, and the end group concentration can be significantly reduced, Improve polyester intrinsic viscosity;
  • the reaction process is controllable, because the density of reactive functional groups on the molecular chain is suitable, and the thermal stability is good, it is easy to obtain materials with high intrinsic viscosity and high melt strength, and it is not easy to generate gel; 3 2.
  • the process route selected by the present invention does not need to use solvent, the investment is low, the equipment is easy to obtain, the process route discharge is small, the process control is simple, the reaction temperature is low, the heat transfer is easy, the product yield is high, and the composition is stable; 4.
  • the chain extender of the present invention It belongs to macromolecule, has high thermal stability, high softening point, is easy to feed, can be applied to various processing techniques and conditions, and avoids the problem of softening and caking or the problem of equipment selectivity in the production process; 5.
  • the monomer selected in the present invention has no Poisonous or low toxicity characteristics, wide source of raw material monomers, and the process route is conducive to further reducing the residual list, which can be applied to high-end applications such as medical equipment and food and drug packaging.
  • the smooth implementation of the invention leads the technological progress and green production in this field, improves the technical support capability and innovation capability of the circular economy, and has a positive driving effect on guiding the development of the chemical industry towards refinement and high added value.
  • the technical route of the present invention is a synthetic route capable of realizing industrialized production, environmental protection and high yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

一种无溶剂型增粘扩链剂及其制备方法与应用,其制备方法包括以下步骤,将芳香族乙烯基单体、丙烯酸酯系单体、引发剂与水混合后,加热聚合,经双螺杆二次反应造粒,制备无溶剂型增粘扩链剂;得到的环氧官能化扩链剂可应用于回收的聚酯结构材料,以及可应用于具有聚酯结构的生物基和生物可降解塑料分子链的修补、增长。制备方法的工艺路线无需使用溶剂,投资少,设备容易获得,工艺路线排放少,工艺控制简单,组成稳定,且产品使用简单,可广泛用于医疗、包装、家电、汽车、航空等领域。

Description

无溶剂型增粘扩链剂及其制备方法与应用 技术领域
本发明涉及一种可用于回收再生和可降解聚酯的增粘扩链剂的制备方法及其制备方法,属于高分子材料领域。
背景技术
随着现代社会工农业科学技术的发展,塑料的使用逐渐深入到工农业生产的各个领域。曾给工农业生产带来福音的“白色革命”在极大地促进工农业生产发展的同时,也给生态环境造成了极大的“白色污染”,“废塑料的回收利用”和“废旧纺织品”已经作为重点发展领域,可见未来聚酯回收的市场将进一步扩大。
此外,得益于相关法律法规支持,目前全球生物降解塑料需求量也呈较快增长趋势。预计到2020年将达到322万吨,年均增长率达到16.7%。其中欧洲需求量最大,占比达31%,北美和中国占比分别为28%和20%;可见,低碳、循环、环保、可持续发展是世界发展的大主题、大趋势,塑料的回收再利用以及可降解将越来越引起重视,并发展成为一个特定的行业。而塑料回收技术中,很重要的一点是恢复材料性能、改善其功能性,以使能够被多次加工利用。扩链剂就是回收过程变废为宝与点石成金的关键技术点。早期,使用异氰酸酯扩链在聚乳酸类生物降解高分子材料的合成中有着广泛的应用。许多含N、O的二杂环化合物也可以用于扩链反应中,其中以二噁唑啉最为常见,主要用于末端为羧基的聚合物扩链。迄今,扩链剂的研究还包括环氧官能团化聚合物和马来酸酐官能化聚合物,其中环氧官能团化聚合物扩链剂的开发和应用最为引人瞩目。
现有扩链剂研究和开发的焦点基本集中在环氧官能化聚合物方面,其中以BASF ADR系列,推出早,效果好,市场占有率较高,但ADR的市场售价昂贵,这也成为了限制行业发展的一个重要因素。
技术问题
本发明是通过以下技术方案实现的。
无溶剂型增粘扩链剂,其制备方法包括以下步骤,将芳香族乙烯基单体、丙烯酸酯系单体、引发剂、分子量调节剂与水混合后,加热聚合,制备无溶剂型增粘扩链剂。
优选的,加热聚合结束后,产物经过双螺杆二次反应造粒,制备无溶剂型增粘扩链剂;所述的双螺杆挤出机的长径比不大于40,具有特殊的螺杆组合设计,且设备具有多级真空。具体的,基于无溶剂型增粘扩链剂的聚合物,其制备方法包括以下步骤,将芳香族乙烯基单体、丙烯酸酯系单体、引发剂、分子量调节剂与水混合后,加热聚合,然后再经双螺杆二次反应,挤出造粒,制备无溶剂型增粘扩链剂。 本发明无溶剂型增粘扩链剂克服现有技术存在的缺陷,是一种绿色、环保、工艺简单,分子量合适,分子量分布较窄、软化温度高、使用方便的环氧官能化扩链剂产品,可应用于回收的聚碳酸酯(PC)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)等聚酯再生材料,以及可应用于聚乳酸(PLA)、己二酸丁二醇酯和对苯二甲酸丁二醇酯的共聚物(PBAT)、聚丙撑碳酸酯(PPC) 等未经使用的生物基和生物可降解塑料分子链的修补、增长。
本发明中,无溶剂型增粘扩链剂的制备在没有有机溶剂存在下进行,有效解决了现有技术有机溶剂回收处理的难题,同时通过双螺杆二次反应,有效降低了残单含量,进一步提高了反应效率。比如现有技术采用单体量1.5-2倍的有机溶剂,反应温度110-120℃,得到的扩链剂分子量与BASF的Joncryl ADR系列类似,Mw低于10000。
本发明中,以芳香族乙烯基单体、丙烯酸酯系单体的质量和为100%,即单体质量百分数为100%,其中芳香族乙烯基单体的质量百分数为76~99%,优选80~95%。原料比例对扩链剂的结构与性能产生重要影响,尤其对扩链剂的玻璃化转变温度以及分子量及其分布有影响,从而影响扩链剂的应用。众所周知,由于扩链剂的官能度增加,所制的产品的支化度和凝胶风险也增加,对聚合物的加工性能以及机械性能有很大的负面作用,且现有环氧官能化的苯乙烯丙烯酸系共聚物扩链剂的玻璃化温度一般较低,为70℃左右,而回收聚合物加工温度都在230℃以上,可降解基聚合物的加工温度都超过200℃,从而当环氧官能化的苯乙烯丙烯酸系扩链剂加入进料区时,扩链剂会在局部产生过反应,形成了凝胶,还存在堵塞进料口、造成配方不均匀、生产不稳定的问题;本发明制备的扩链剂分子量分布窄、玻璃化转变温度高,同时由于分子量高,反应温和,避免了局部凝胶,保证聚合物生产稳定。
本发明中,分子量调节剂的用量为单体质量的0.1~3%;引发剂的用量为单体质量的0.1~2%,优选0.1~1%。单体质量为芳香族乙烯基单体、丙烯酸酯系单体的质量和。
技术解决方案
本发明提供了上述无溶剂型增粘扩链剂作为扩链剂在制备聚合物中的应用,比如无溶剂型增粘扩链剂在聚合物回收再生中的应用或者上述无溶剂型增粘扩链剂在制备可降解聚合物中的应用,即本发明无溶剂型增粘扩链剂可以作为再生聚合物的再生聚合扩链剂以及可降解聚合物聚合扩链剂,尤其能够改善回收料的各项性能,使之接近甚至超过新料的水准。
本发明的无溶剂型增粘扩链剂为芳香族乙烯基单体和丙烯酸酯系单体共聚而成的无规共聚物;作为优选方案,所述增粘扩链剂的重均分子量为30000~150000,优选50000~100000;作为优选方案,所述增粘扩链剂中具有反应性的官能团的密度为0.5~0.8,易于形成多支化结构。
本发明中,芳香族乙烯基单体包括苯乙烯系单体,比如苯乙烯单体、α-甲基苯乙烯单体、α-氯苯乙烯单体或p-甲基苯乙烯单体;丙烯酸酯系单体包括甲基丙烯酸缩水甘油酯和/或甲基丙烯酸缩水甘油醚;分子量调节剂包括十二烷基硫醇,引发剂包括偶氮二异丁腈(AIBN) 或过氧化二苯甲酰(BPO) 。
本发明无溶剂型增粘扩链剂中,分子链上含有多个环氧官能团,在与聚合物比如聚酯等材料聚合时,能够将聚酯类分子链连接起来,整体呈多枝化状态,不会产生凝胶等问题。
本发明中,加热聚合的温度为65~110℃,时间为2~10小时,优选的,加热聚合为65~80℃聚合2~6小时,然后升温至90~110℃继续聚合0.5~2小时,出料后再经双螺杆继续二次反应,造粒即可得到产品,本发明既避免了现有技术采用有机溶剂进行反应的问题,与现有悬浮聚合反应相比,进一步提高了反应程度,大幅减少了残留单体的含量,且设备易获得,得到的产物残单少、分子量分布窄,且Tg、软化点高,扩链剂的热稳定性优异,更有利于后期加工以及下游使用。
有益效果
与现有技术相比,本发明具有如下的有益效果。
1、本发明的扩链剂,分子量高,单个分子链上具有多个反应性官能团,官能团密度合适,相互不干扰,反应活性高,可显著降低端基浓度,提高材料的粘度,且不易发生凝胶。
2、反应过程可控,由于反应活性高,且热稳定性好,容易获得高的特性粘度、高熔体强度的材料。
3、本发明选用工艺路线无需使用溶剂,投资少,设备及原料容易获得,工艺路线排放少,配比简单,组成稳定。
4、本发明的扩链剂属于高分子,热稳定性高,软化点高,易于投料,可适用多种加工工艺和条件,避免了生产过程中的软化结块问题或设备选择性问题。
5、本发明选用单体具有无毒或低毒性特点,原料单体容易获得,工艺路线有利于进一步提高聚合程度、降低残单,可适用于医疗器械及食品药品包装相关的高端应用。
6、本发明的扩链剂用途广泛:对回收的聚碳酸酯(PC)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)等聚酯结构材料,以及可应用于聚乳酸(PLA)、己二酸丁二醇酯和对苯二甲酸丁二醇酯的共聚物(PBAT)、聚丙撑碳酸酯(PPC) 等具有聚酯结构的生物基和生物可降解塑料分子链的修补、增长和交联均有效果。
7、本发明的扩链剂使用简单,可广泛用于医疗器械、包装、家电、汽车、航空等领域,具有十分广阔的应用前景和工业化价值。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显。
图1为实施例1与实施例2的TGA分析对比。
图2为实施例1与对照例6在250℃与270℃条件下的毛细管流变数据对比。
本发明的实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本发明无溶剂型增粘扩链剂的制备方法如下,将芳香族乙烯基单体、丙烯酸酯系单体、引发剂、分子量调节剂、水投入反应釜,于搅拌下65-80℃反应2-8小时,然后于90-110℃继续反应0.5-2小时,出料后过滤、干燥,得到无溶剂型增粘扩链剂;优选的,上述出料后过滤、干燥后再经双螺杆二次反应造粒,即可得到无溶剂型增粘扩链剂;制备过程无需有机溶剂、无需加压、无需特殊气氛保护。
一种扩链的聚酯聚合物的制备方法,为以下步骤,将芳香族乙烯基单体、丙烯酸酯系单体、引发剂、分子量调节剂与水混合后,加热聚合,制备无溶剂型增粘扩链剂;将聚酯类聚合物原料、所述无溶剂型增粘扩链剂混合后挤出,得到扩链的聚酯聚合物。优选的,所述无溶剂型增粘扩链剂用量为聚酯类聚合物原料质量的0.5~2%。聚合物原料可以为纯粒子,也可以为回收塑料;可应用于回收的聚碳酸酯(PC)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)等聚酯再生材料,以及可应用于聚乳酸(PLA)、己二酸丁二醇酯和对苯二甲酸丁二醇酯的共聚物(PBAT)、聚丙撑碳酸酯(PPC) 等未经使用的生物基和生物可降解塑料分子链的修补、增长。
测试条件如下。
重均分子量(Mw):以PS为标样,采用GPC测试; RTVM:按照ASTM D790 标准进行测试,采用GC-MS。
端羧基浓度:按GB/T-14190-2008标准测试,酸碱滴定。
熔融指数:按照ASTM D1238 标准进行测试,测试条件为270℃*2.16Kg。
特性粘度:按照GB/T-14190-2008 标准进行测试。
结晶度:按照ASTM E793标准进行测试,采用DSC测试。
玻璃化转变温度/Tg:按照ASTM E1356-98 标准进行测试,采用DSC测试。
热失重:按照ASTM D6370-99 标准进行测试,采用TGA。
反应活性:按照ASTM D1652标准进行测试。
官能团密度:结合分子量,分子量分布,计算得到每1000分子量长度分子链上的环氧官能团数量。
表1 实施例与对照例的配方表,质量份
Figure 63580dest_path_image001
制备工艺如下。
①将苯乙烯、甲基丙烯酸缩水甘油酯GMA、引发剂偶氮二异丁腈、分子量调节剂十二烷基硫醇和200质量份的去离子水在反应釜中混合,于常规搅拌下70℃反应5小时,后升温至110℃继续反应2小时,然后出料于出料槽中,常规过滤后,将所得粒子在95℃下干燥至恒重后加入双螺杆挤出机中,190℃挤出造粒,得到无溶剂型增粘扩链剂;双螺杆挤出机的长径比为35,具有多级真空。
②将苯乙烯、GMA、引发剂偶氮二异丁腈、分子量调节剂十二烷基硫醇和200质量份的去离子水在反应釜中混合,于常规搅拌下70℃反应5小时,后升温至110℃继续反应2小时,然后出料于出料槽中,常规过滤后,将所得粒子在95℃下干燥至恒重,得到无溶剂型增粘扩链剂。
③将苯乙烯、GMA、引发剂偶氮二异丁腈、分子量调节剂十二烷基硫醇和200质量份的去离子水在反应釜中混合,于常规搅拌下85℃反应7小时,然后出料于出料槽中,常规过滤后,将所得粒子在95℃下干燥至恒重,得到无溶剂型增粘扩链剂。
④将苯乙烯、GMA、引发剂偶氮二异丁腈、分子量调节剂十二烷基硫醇和200质量份的无水甲苯在三口烧瓶中混合,于常规搅拌下110℃反应5小时,然后回收溶剂,放料,将所得粒子在95℃下干燥至恒重,得到溶剂型增粘扩链剂。
⑤将苯乙烯、GMA、引发剂偶氮二异丁腈、分子量调节剂十二烷基硫醇加入三颈瓶中,抽真空后通入氮气保护,冷凝下于80℃反应2h,然后在50℃反应12h,得到扩链剂。
本发明将苯乙烯和GMA共聚合成St-GMA,其中的GMA基团能够优先聚酯材料的端基,尤其是发生了降解反应产生的小分子基团发生反应,从而起到修补分子链作用,从而对回料聚酯类或可降解聚合物有良好的增粘、扩链作用,同时提升材料的机械性能,此外对于可降解聚合物还可以起到控制降解速度的作用。根据上述常规测试条件测试上述实施例与对照例扩链剂的分子量(Mw)、残留单体含量(RTVM),测试结果见表2,本发明增粘扩链剂具有高反应活性,高Tg,其中具有反应性的环氧官能团位于侧链,可有效提高聚酯材料的特性粘度,减少端基浓度,降低熔指,同时由于扩链剂本身的分子结构,对聚酯材料的Tg和结晶度也有帮助。
表2 实施例与对照例的分子量与残留单体
Figure 97526dest_path_image002
将实施例1-5与对照例1-5、市售的BASF ADR4370(对照例6)以及对照例7分别作为扩链剂与回收PET在240℃条件下,经高真空双螺杆进行造粒。具体为将扩链剂、回收PET加入双螺杆挤出机中(扩链剂用量为回收PET质量的1%),在240℃条件下,经双螺杆进行造粒,得到聚合物粒子;所得粒子测试端基浓度、熔融指数(MI)、结晶度、玻璃化转变温度,测试结果见表3。挤出结果表明,对照例分别存在加料口集料、熔体压力变化、伴随有断条等现象,而实施例熔体压力稳定,加料口少有集料,且实施例扩链剂造粒时未发现凝胶现象,无断条,本发明的扩链剂单个分子链上具有多个反应性官能团,反应活性高,可显著降低回料或可降解材料的端基浓度,提高材料的热稳定性与粘度。
表3 实施例与对照例在回收PET中的扩链效果对比的流动性与外观
Figure 388830dest_path_image003
由表2所示,通过实施例1与对照例5、对照例7相比可以看出,其扩链剂的分子量与官能团密度接近,但是反应活性测数据差异较大,结合RTVM测试结果,工艺
Figure 390284dest_path_image005
获得的扩链剂明显反应程度更完全,其优势除了反应活性大幅提升外,结合图1可见,其热稳定性有所提升,更有利于后期加工以及下游使用。而从扩链结果显示,对照例5和对照例7样品其扩链效果也明显不如实施例1,这是由于小分子的残留GMA会优先与聚酯的端基反应,虽然回料聚酯的端基浓度下降,但是该反应并没有增加粘度的效果。
结合表1-表3,扩链效果与分子量、GMA浓度、GMA的残单量、反应条件等都有关系,如实施例1-2与对照例1相比,虽然GMA含量相同,但由于分子量控制不同,导致官能团密度差异交大,从而影响反应活性,实施例1-2的扩链效果更明显及端羧基浓度更低,可见适当的分子量有利于扩链反应。
GMA含量不同,如实施例1、3、4、5,与对照例2、3,GMA密度过低,其反应活性低,扩链效果差,随着GMA含量增加,扩链效果改善,但是并非呈线性增长,合适的GMA密度更重要(如实施例1与实施例4),实施例4的扩链效果还优于实施例1,当GMA含量过高(如对照例3、4),其作用是负面的。
结合图2,表1-表3的数据,实施例1与对照例6相比,其端羧基浓度、MI都较为接近,但是实施例1的特性粘度增加更为明显,结合结晶度与玻璃化转变温度也更有优势,这与实施例1的本身分子量有一定关系;特别是采用对照例6扩链的回料PET的玻璃化转变温度明显偏低,可见,对于扩链剂的分子结构的设计也会对回收聚酯及可降解聚酯产生影响。
增粘剂还会影响到后期使用的工艺匹配性,图2中采用毛细管流变仪对比例实施例1与对照例6在不同加工温度下,对同一种可降解的聚酯材料,通过直接共混的方式,在毛细管流变仪中观察粘度随剪切速率的变化,并进行了分析,在250℃条件下,实施例1与对照例6的剪切粘度接近,但是当加工温度升高到270℃时,对照例6的剪切粘度明显降低。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。
与现有技术相比,本发明具有如下的有益效果:1、本发明的扩链剂,单个分子链上具有多个反应性官能团,官能团密度合适,反应活性高,可显著降低端基浓度,提高聚酯特性粘度;2、反应过程可控,由于但分子链上的反应官能团密度合适,且热稳定性好,容易获得高特性粘度、高熔体强度的材料,且不易产生凝胶;3、本发明选用工艺路线无需使用溶剂,投资少,设备容易获得,工艺路线排放少,工艺控制简单,反应温度低,传热容易,产品收率高,组成稳定;4、本发明的扩链剂属于高分子,热稳定性高,软化点高,易于投料,可适用多种加工工艺和条件,避免了生产过程中的软化结块问题或设备选择性问题;5、本发明选用单体具有无毒或低毒性特点,原料单体来源广,工艺路线有利于进一步降低残单,可适用于医疗器械及食品药品包装等高端应用。
本发明的顺利实施引领这一领域的技术进步和绿色生产,提高循环经济技术支撑能力和创新能力,引导化工行业向精细化、高附加值方向发展具有积极的推动作用。同时,本发明的技术路线是一种可实现工业化生产,环保,高产率的合成线路。

Claims (10)

  1. 无溶剂型增粘扩链剂,其特征在于,所述无溶剂型增粘扩链剂的制备方法包括以下步骤,将芳香族乙烯基单体、丙烯酸酯系单体、引发剂、分子量调节剂与水混合后,加热聚合,制备无溶剂型增粘扩链剂;以芳香族乙烯基单体、丙烯酸酯系单体的质量和为100%,其中芳香族乙烯基单体的质量百分数为76~99%。
  2. 如权利要求1所述无溶剂型增粘扩链剂,其特征在于,以芳香族乙烯基单体、丙烯酸酯系单体的质量和为100%,其中芳香族乙烯基单体的质量百分数为80~95%;所述引发剂的用量为单体质量的0.1~2%;所述无溶剂型增粘扩链剂的重均分子量为30000~150000。
  3. 如权利要求2所述无溶剂型增粘扩链剂,其特征在于,所述引发剂的用量为单体质量的0.1~1%;所述无溶剂型增粘扩链剂的重均分子量为50000~100000。
  4. 如权利要求1所述无溶剂型增粘扩链剂,其特征在于,所述增粘扩链剂中具有多支化结构,其中具有反应性的官能团位于侧链。
  5. 如权利要求1所述无溶剂型增粘扩链剂,其特征在于,加热聚合的温度为65~110℃,时间为2~10小时。
  6. 如权利要求5所述无溶剂型增粘扩链剂,其特征在于,加热聚合为65~80℃聚合2~6小时,然后升温至90~110℃继续聚合0.5~2小时。
  7. 如权利要求1所述无溶剂型增粘扩链剂,其特征在于,加热聚合结束后,产物经过双螺杆二次反应造粒,制备无溶剂型增粘扩链剂。
  8. 权利要求1所述无溶剂型增粘扩链剂作为扩链剂在制备聚合物中的应用。
  9. 一种扩链的聚酯聚合物,其特征在于,所述扩链的聚酯聚合物的制备方法包括以下步骤,将芳香族乙烯基单体、丙烯酸酯系单体、引发剂、分子量调节剂与水混合后,加热聚合,制备无溶剂型增粘扩链剂;将聚酯类聚合物原料、所述无溶剂型增粘扩链剂混合后挤出,得到扩链的聚酯聚合物;以芳香族乙烯基单体、丙烯酸酯系单体的质量和为100%,其中芳香族乙烯基单体的质量百分数为76~99%。
  10. 如权利要求9所述扩链的聚酯聚合物,其特征在于,所述无溶剂型增粘扩链剂用量为聚酯类聚合物原料质量的0.5~2%。
PCT/CN2020/097303 2020-04-17 2020-06-20 无溶剂型增粘扩链剂及其制备方法与应用 WO2021208234A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227010422A KR20220056214A (ko) 2020-04-17 2020-06-20 무용제형 접착 촉진 사슬연장제 및 이의 제조 방법과 응용
US17/678,432 US20220177620A1 (en) 2020-04-17 2022-02-23 Solvent-free adhesion-promoting chain extender, preparation method therefor, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010307332.X 2020-04-17
CN202010307332.XA CN111499789B (zh) 2020-04-17 2020-04-17 无溶剂型增粘扩链剂及其制备方法与应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/678,432 Continuation US20220177620A1 (en) 2020-04-17 2022-02-23 Solvent-free adhesion-promoting chain extender, preparation method therefor, and application thereof

Publications (2)

Publication Number Publication Date
WO2021208234A1 WO2021208234A1 (zh) 2021-10-21
WO2021208234A9 true WO2021208234A9 (zh) 2022-03-24

Family

ID=71865916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097303 WO2021208234A1 (zh) 2020-04-17 2020-06-20 无溶剂型增粘扩链剂及其制备方法与应用

Country Status (4)

Country Link
US (1) US20220177620A1 (zh)
KR (1) KR20220056214A (zh)
CN (2) CN112552444B (zh)
WO (1) WO2021208234A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113024822B (zh) * 2021-04-15 2022-05-31 佳易容聚合物(上海)有限公司 一种高活性、低残留、可降解扩链剂及其制备方法
CN113461930B (zh) * 2021-05-25 2023-10-27 广东省科学院生物工程研究所 一种酸酐及环氧类高分子扩链增粘剂及其制备方法和应用
CN113943387A (zh) * 2021-09-22 2022-01-18 佳易容聚合物(上海)有限公司 无单体残留、高活性增粘扩链剂的制备方法及其应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0307229B1 (pt) * 2002-02-01 2012-12-11 composição polimérica com cadeia diluìda, artigo plástico, método para aumentar o peso molecular de um polìmero de condensação.
US8357759B2 (en) * 2005-08-26 2013-01-22 CID Centro de Investigación y Desarrollo Tecnológico S.A. de C.V. Reactive block copolymers
CN101157739A (zh) * 2006-10-08 2008-04-09 周小雯 一种新型大分子材料扩链剂的制备方法
WO2011011498A2 (en) * 2009-07-21 2011-01-27 Basf Corporation Process for the production of condensation polymers via in-reactor chain extension and products thereof
WO2012103208A2 (en) * 2011-01-28 2012-08-02 Anderson Development Company Compositions of glycidyl methacrylate copolymer suitable as chain extender for poly(lactic acid)
CN102936307B (zh) * 2012-11-27 2015-10-21 山西省化工研究所 一种环氧官能化扩链剂、环氧官能化扩链剂的制备方法及其应用
CN103755853B (zh) * 2013-12-31 2016-05-04 广州鹿山新材料股份有限公司 一种环氧类齐聚物扩链剂及其制备方法
CN103881001A (zh) * 2014-03-27 2014-06-25 杭州曦茂新材料科技有限公司 一种聚合物材料用的梳状环氧增容扩链剂的制备方法及其应用
CN107286697A (zh) * 2017-07-25 2017-10-24 成都新柯力化工科技有限公司 一种均化扩链回收利用再生塑料的方法

Also Published As

Publication number Publication date
US20220177620A1 (en) 2022-06-09
WO2021208234A1 (zh) 2021-10-21
CN112552444B (zh) 2022-12-09
CN111499789B (zh) 2021-01-12
KR20220056214A (ko) 2022-05-04
CN112552444A (zh) 2021-03-26
CN111499789A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
WO2021208234A9 (zh) 无溶剂型增粘扩链剂及其制备方法与应用
CN1232549C (zh) 制备热塑性树脂的方法
WO2018121138A1 (zh) 一种含环氧基团的接枝共聚物及其应用
CN108948690B (zh) 一种聚乳酸-木质素-淀粉复合材料及其制备方法
CN102492101B (zh) 一种abs熔融接枝甲基丙烯酸缩水甘油酯及其制备方法
CN104276877A (zh) 碳纳米管改性水基聚合物复合材料包膜控释肥料及其制备方法
CN102936307A (zh) 一种环氧官能化扩链剂、环氧官能化扩链剂的制备方法及其应用
CN113024822B (zh) 一种高活性、低残留、可降解扩链剂及其制备方法
CN111349253B (zh) 一种改性木质素/pbs生物塑料薄膜及其制备方法
CN103146105A (zh) 一种功能化丙烯酸酯类树脂的反应挤出聚合方法
CN101974136B (zh) 一种采用熔融接枝共混法制备高韧性可降解材料的方法
CN112778454A (zh) 一种多环氧扩链剂及其制备方法和应用
WO2023045268A1 (zh) 无单体残留、高活性增粘扩链剂的制备方法及其应用
WO2018121139A1 (zh) 含酸酐基团的接枝共聚物及其应用
CN113185637A (zh) 甲基苯乙烯-甲基丙烯酸酯-丙烯酸缩水甘油酯三元共聚物扩链剂及其制备方法
CN108359061B (zh) 一种含酸酐基团的接枝共聚物及其制备方法和应用
CN113817148A (zh) 聚乳酸共聚物及其制备方法和应用、共混薄膜的制备方法
CN111944291A (zh) 一种聚乳酸树脂组合物及其制备方法
CN108440725B (zh) 一种含环氧基团的接枝共聚物及其制备方法和应用
WO2018121137A1 (zh) 一种含反应性基团的接枝共聚物及其应用
CN108239241B (zh) 一种含异氰酸酯基团的接枝共聚物及其应用
TW202222857A (zh) 聚乙烯醇樹脂薄膜、聚乙烯醇樹脂薄膜之判別方法、及聚乙烯醇樹脂薄膜之製造方法
BR112017008379B1 (pt) Composição concentrada para extensão de cadeia polimérica polimérica e seu método de preparação
CN108409912B (zh) 一种含环氧基团的接枝共聚物及其制备方法和应用
CN114957937B (zh) 一种一次注塑成型的高分子材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227010422

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931163

Country of ref document: EP

Kind code of ref document: A1