WO2018121138A1 - 一种含环氧基团的接枝共聚物及其应用 - Google Patents

一种含环氧基团的接枝共聚物及其应用 Download PDF

Info

Publication number
WO2018121138A1
WO2018121138A1 PCT/CN2017/112489 CN2017112489W WO2018121138A1 WO 2018121138 A1 WO2018121138 A1 WO 2018121138A1 CN 2017112489 W CN2017112489 W CN 2017112489W WO 2018121138 A1 WO2018121138 A1 WO 2018121138A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy group
graft copolymer
carbon
polymer
group
Prior art date
Application number
PCT/CN2017/112489
Other languages
English (en)
French (fr)
Inventor
李坤泉
柴生勇
刘振峰
李积德
孔蕾
陈林
刘勤
李岩
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2018121138A1 publication Critical patent/WO2018121138A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1802C2-(meth)acrylate, e.g. ethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate

Definitions

  • the invention relates to the field of synthesis and application of graft copolymers, in particular to an epoxy group-containing acrylate graft copolymer and application thereof.
  • Compatibilizer refers to the use of physical or chemical means to promote the incorporation of incompatible blends to obtain a stable blend of additives.
  • phase separation results in differences in chemical structure, polarity, molecular weight (viscosity) and crystallinity between the components, resulting in poor performance of the polymer blend. Therefore, compatibilizers are the cornerstone of high level blended modified products.
  • the production formula and process of the enterprise are mostly open and transparent, and the addition of compatibilizer has become the key to the differentiation of material modification manufacturers and competitors.
  • Reactive compatibilizers are often used for polymer blends containing reactive groups in the system.
  • Common reaction type compatibilizers are mostly graft type polymers, such as PP grafted maleic anhydride (Chinese patent CN 102924661 B, CN 101519477 B), styrene grafted maleic anhydride (Chinese patent CN 102993350 B), ABS Grafting maleic anhydride and the like.
  • a compatibilizer mostly adopts a melt reaction extrusion method, and a functional group is grafted on a polymer molecular chain to obtain a graft reaction type compatibilizer, and the production process is relatively simple.
  • DuPont used the copolymerization method to prepare ethylene-butyl acrylate-glycidyl methacrylate (PTW) terpolymer as described in the 1973 invention patent US Pat. No. 3,723,570. Compatibilizer.
  • the Chinese patent CN 101851321 B uses a suspension polymerization process to prepare a ternary copolymer compatibilizer styrene-acrylonitrile-glycidyl methacrylate (SAG) compatibilizer, by which the ring can be controlled.
  • SAG ternary copolymer compatibilizer styrene-acrylonitrile-glycidyl methacrylate
  • the content of the oxygen group can be obtained as a compatibilizer product having a high graft ratio, and the graft ratio of the epoxy group can be as high as 10%. Since the system contains styrene and acrylonitrile units, the compatibilizer is particularly suitable for use in ABS alloy systems. Compared with other compatibilizers, the compatibilizer can effectively improve the compatibility of ABS with polyethylene terephthalate (PET) alloy (CN 102181122 A) and the thermal stability of polycarbonate and ABS alloy. (CN 104877326 A).
  • This patent obtains a high graft ratio comb polymer by introducing a polyacrylate homopolymer segment on the polymer side chain by radical copolymerization.
  • the compatibilizer can effectively improve the modulus, elongation at break, yield strength and tensile strength of the PET/ABS alloy, and has a linear compatibilizer with the same graft ratio.
  • Higher and better capacity-enhancing efficiency WY Dong, HT Wang, MF He, et al. Synthesis of Reactive Comb Polymers and Their Applications as a Highly Efficient Compatibilizer in Immiscible Polymer Blends [J]. Industrial & Engineering Chemistry Research, 2015, 54:2081-2089).
  • the comb-type graft copolymer obtained by the invention patent also has an effect of chain extension. Nevertheless, the polymer segment of the side chain of the compatibilizer in this patent is mainly a homopolymer of methacrylate or acrylate monomer, and in practice, the side chain and the other phase are often not very good. Compatible. At the same time, a single homopolymer on the side chain of the compatibilizer has specific polarity and solubility parameters, which also limits its application to some extent.
  • the object of the present invention is to provide a novel and highly efficient epoxy group-containing graft copolymer for the deficiencies of the existing blend polymer compatibilization technology.
  • An epoxy group-containing graft copolymer which is a type of polymer containing an epoxy group and a side chain of a polymer copolymer, which is obtained by reacting the following materials:
  • the epoxy group-containing graft copolymer has a number average molecular weight of 10,000 to 100,000 and a weight average molecular weight of 34,000 to 200,000.
  • a high molecular weight polymer C containing a carbon-carbon double bond is reacted with a monomer A having a carbon-carbon double bond and an unsaturated monomer B containing an epoxy group to obtain an epoxy group-containing graft copolymer.
  • the content of the epoxy group having a high graft ratio can improve the compatibility with one of the phases, and the polymer C having a carbon-carbon double bond in the present invention is used as the side of the graft copolymer.
  • the chain introduces a copolymer.
  • the flexibility of the molecular chain of the side chain can be controlled, and the solubility parameter of the side chain polymer segment can be adjusted to better enhance the compatibilization.
  • Phase of another phase Capacitive enhance the bonding between the two phases.
  • the epoxy group-containing graft copolymer prepared by the invention has better compatibility under the similar molecular weight and graft ratio than the high graft ratio linear and comb-type compatibilizer obtained in the prior art.
  • the compatibilizing effect can be used as a compatibilizer and a polymer chain extender.
  • the epoxy group-containing graft copolymer is prepared by reacting the following materials:
  • the polymer C having a carbon-carbon double bond is obtained by reacting a polymer D with a monomer E having a carbon-carbon double bond, and the chemical formula D of the polymer D is:
  • R 1 is methyl, ethyl or butyl
  • R 2 is a hydrogen atom or a methyl group
  • R 3 is a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group or an octyl group, and when R 2 is a methyl group
  • R 1 and R 3 are different
  • m is an integer of 20 to 100
  • k is an integer of 1 to 99
  • n is an integer of 1 to 100
  • q is an integer of 2 to 12
  • S is a sulfur atom
  • G is a
  • the group in which the monomer E of the carbon-carbon double bond is reacted is one of a carboxyl group, an amino group or a hydroxyl group.
  • the polymer having a carbon-carbon double bond has a number average molecular weight of from 4,000 to 12,000.
  • the high molecular weight polymer C having a carbon-carbon double bond has a glass transition temperature of 10 ° C to 100 ° C.
  • the carbon-carbon double bond-containing monomer E has an epoxy group, an amino group, an isocyanate group or an acid chloride group.
  • the carbon-carbon double bond-containing monomer E is acrylamide or methacrylamide, glycidyl methacrylate or allyl glycidyl ether, acryloyl chloride or methacryloyl chloride, methacryloyloxy One of ethyl isocyanate and its derivatives.
  • the molar ratio of the polymer D to the monomer E having a carbon-carbon double bond is 1:0.8 to 1.3.
  • the carbon-carbon double bond-containing monomer A is methyl methacrylate, ethyl methacrylate, butyl methacrylate, isooctyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, acrylic acid.
  • the epoxy group-containing unsaturated monomer B is one or more of glycidyl methacrylate, allyl glycidyl ether, and derivatives thereof.
  • the polymer D is obtained by one or more of an acrylate or methacrylate monomer and a chain transfer agent initiated by radical polymerization; the chain transfer agent contains a carboxyl group, a hydroxyl group or an amino group.
  • the initiator is one of an azo initiator, a peroxide initiator or a redox initiator.
  • the epoxy group-containing graft copolymer is subjected to radical polymerization by a carbon-carbon double bond-containing monomer A, an epoxy group-containing unsaturated monomer B, and a carbon-carbon double bond-containing polymer C.
  • the method is copolymerized.
  • the radical polymerization method is one of bulk polymerization, solution polymerization, suspension polymerization, or emulsion polymerization.
  • the epoxy group-containing graft copolymer has a viscosity flow temperature of 110 ° C to 200 ° C.
  • the epoxy group-containing graft copolymer has a viscosity flow temperature of from 140 ° C to 180 ° C.
  • the epoxy group-containing graft copolymer may be a pellet produced by a pelletizer or a granulator, or may be a powder produced by a pulverizer.
  • the epoxy group-containing graft copolymer can be used as a compatibilizer for the polymer blend and as a chain extender for the polymer.
  • the present invention has the following beneficial effects:
  • the epoxy group-containing graft copolymer prepared by the invention is used as a compatibilizer, and the high graft ratio of the epoxy group content can improve the compatibility with one of the phases, and the copolymerization of the polyacrylate introduced by the side chain.
  • the selection and ratio of different acrylate monomers can control the molecular chain flexibility of the side chain, and can also adjust the solubility parameter of the side chain polymer segment to better improve the graft copolymer and the other phase.
  • the compatibility of the states enhances the bonding between the two phases. Compared with the high graft ratio linear and comb-type compatibilizers obtained in the prior art, it has a better compatibilizing effect in the case of similar molecular weight and epoxy group content.
  • the epoxy group-containing graft copolymer prepared by the invention can also react with a polymer to increase the molecular weight of the polymer and act as a chain extender; compared with the ordinary linear polymer chain extender, the invention
  • the obtained epoxy group-containing graft copolymer has a higher molecular weight and the chain extension effect is more remarkable.
  • Example 1 is an infrared spectrum of an epoxy group-containing graft copolymer prepared in Example 1.
  • Example 2 is a GPC chart of the epoxy group-containing graft copolymer prepared in Example 1.
  • the obtained epoxy group-containing graft copolymer was ground with dried potassium bromide, tableted, and placed on a Fourier transform infrared spectrometer for testing.
  • the scanning range is 4000 ⁇ 400cm -1
  • the resolution is 4cm -1
  • the number of scans is 16 times.
  • the retention time of the polymer was measured by gel permeation chromatography.
  • the detection instrument was a refractive index meter, the mobile phase was tetrahydrofuran, and monodisperse polystyrene was used. The relative molecular weight of the polymer and its distribution were calculated as standards.
  • the obtained epoxy group-containing graft copolymer is heated and melted to form a sheet having a thickness of about 2 mm, and the temperature-deformation curve of the copolymer is tested by a thermomechanical analyzer (TMA) according to the temperature-deformation curve. The viscous flow temperature of the copolymer was obtained.
  • TMA thermomechanical analyzer
  • the flask and the thermometer were heated to 75 ° C, and after reacting for 6 hours, the product was subjected to steam drying to obtain a graft copolymer.
  • the obtained graft copolymer contains an epoxy group
  • the number average molecular weight of the obtained epoxy group-containing graft copolymer is about 18,132.
  • the weight average molecular weight was 50,710; the resulting epoxy group-containing graft copolymer had a viscosity flow temperature of about 158 °C.
  • the mixture was heated to 75 ° C in a four-necked flask of a thermometer, and after reacting for 6 hours, the product was subjected to steam drying to obtain a graft copolymer. It can be seen from the infrared spectrum that the obtained graft copolymer contains an epoxy group; after the GPC test, the obtained epoxy group-containing graft copolymer has a number average molecular weight of about 26,410 and a weight average molecular weight of 77,800; The graft copolymer of the pellet has a viscous flow temperature of about 169 °C.
  • the mixture was heated to 80 ° C, and after reacting for 8 hours, the product was subjected to steam drying to obtain a graft copolymer. It can be seen from the infrared spectrum that the obtained graft copolymer contains an epoxy group; after the GPC test, the obtained epoxy group-containing graft copolymer has a number average molecular weight of about 52,900 and a weight average molecular weight of 121,100; The graft copolymer of the pellet has a viscous flow temperature of about 175 °C.
  • Triethylamine and 4.0 g of monomer containing carbon-carbon double bond E-methyl methacrylate The oil ester (molar ratio of polymer D to monomer E was 1:1.3), the temperature was raised to 130 ° C, and the reaction was stirred for 12 hours, and then the product was subjected to steam drying to obtain a polymer C having a carbon-carbon double bond. It was found by GPC test that the obtained polymer C had a number average molecular weight of about 10,700.
  • the obtained graft copolymer contains an epoxy group; after the GPC test, the obtained epoxy group-containing graft copolymer has a number average molecular weight of about 29,700 and a weight average molecular weight of 76,600; The graft copolymer of the pellet has a viscous flow temperature of about 178 °C.
  • the mixture was heated to 85 ° C in a four-necked flask of a thermometer, and after reacting for 8 hours, the product was subjected to steam drying to obtain a graft copolymer. It can be seen from the infrared spectrum that the obtained graft copolymer contains an epoxy group; after the GPC test, the obtained epoxy group-containing graft copolymer has a number average molecular weight of about 42,100 and a weight average molecular weight of 97,500; The graft copolymer of the pellet has a viscous flow temperature of about 147 °C.
  • the product After heating to 75 ° C and reacting for 6 hours, the product was subjected to rotary drying to obtain a graft copolymer. It can be seen from the infrared spectrum that the obtained graft copolymer contains an epoxy group; after the GPC test, the obtained epoxy group-containing graft copolymer has a number average molecular weight of about 31,520 and a weight average molecular weight of 76,800; The graft copolymer of the pellet has a viscous flow temperature of about 156 °C.
  • the four bottles of the condenser and the thermometer were heated to 85 ° C, and after reacting for 10 hours, the product was subjected to steam drying to obtain a graft copolymer. It can be seen from the infrared spectrum that the obtained graft copolymer contains an epoxy group; after the GPC test, the obtained epoxy group-containing graft copolymer has a number average molecular weight of about 69100 and a weight average molecular weight of 141100; The graft copolymer of the pellet has a viscous flow temperature of about 118 °C.
  • the monomer E is isocyanoethyl methacrylate (the molar ratio of polymer D to monomer E is 1:1), and the mixture is stirred at room temperature for 8 hours, and then the product is subjected to steam drying to obtain a polymer having carbon-carbon double bonds.
  • Polymer C By GPC It was found that the obtained polymer C had a number average molecular weight of about 4,500.
  • the mixture was heated to 75 ° C, and after reacting for 6 hours, the product was subjected to steam drying to obtain a graft copolymer. It can be seen from the infrared spectrum that the obtained graft copolymer contains an epoxy group; after the GPC test, the obtained epoxy group-containing graft copolymer has a number average molecular weight of about 10,200 and a weight average molecular weight of 34,400; The graft copolymer of the pellet has a viscous flow temperature of about 170 °C.
  • the glyceride (molar ratio of the polymer D to the monomer E was 1:0.9), and after stirring for 6 hours, the product was subjected to steam drying to obtain a polymer C having a carbon-carbon double bond. It was found by GPC test that the obtained polymer C had a number average molecular weight of about 7,400.
  • the obtained graft copolymer contains an epoxy group; after the GPC test, the obtained epoxy group-containing graft copolymer has a number average molecular weight of about 33,400 and a weight average molecular weight of 86,500; The graft copolymer of the pellet has a viscous flow temperature of about 178 °C.
  • styrene 80 g of styrene, 18 g of butyl acrylate, 10 g of glycidyl methacrylate, 12 g of the carbon-carbon double bond-containing polymer C prepared above, 2.4 g of an anionic emulsifier sodium lauryl sulfate, 1.2 g of nonionic
  • the emulsifier polyoxyethylene octylphenol ether, 0.75 g of initiator potassium persulfate and 175 g of distilled water were mixed and stirred at high speed for 15 min using a high speed mixer to obtain a pre-emulsion (monomer A, monomer B and a polymer containing carbon-carbon double bonds).
  • the amount of polymer C was 81.67 wt%, 8.33 wt%, and 10.00 wt%, respectively; the obtained pre-emulsion was transferred to a four-necked flask equipped with a stirring paddle, a condenser, and a thermometer, and protected by a nitrogen atmosphere, and heated to 75 ° C. After reacting for 8 hours, it was cooled to room temperature, 10 ml of a 5% aqueous solution of CaCl 2 was added , and after demulsification, the product was washed several times with distilled water, then dried and then crushed to obtain a graft copolymer.
  • the obtained graft copolymer contains an epoxy group; after the GPC test, the obtained epoxy group-containing graft copolymer has a number average molecular weight of about 89100 and a weight average molecular weight of 197,100; The graft copolymer of the pellet has a viscous flow temperature of about 173 °C.
  • the monomer E is isocyanoethyl methacrylate (the molar ratio of polymer D to monomer E is 1:1), and the mixture is stirred at room temperature for 8 hours, and then the product is subjected to steam drying to obtain a polymer having carbon-carbon double bonds.
  • Polymer C It was found by GPC test that the obtained polymer C had a number average molecular weight of about 4,500.
  • the obtained graft copolymer contains an epoxy group; after the GPC test, the obtained epoxy group-containing graft copolymer has a number average molecular weight of about 92,900 and a weight average molecular weight of 174,100; The graft copolymer of the pellet has a viscous flow temperature of about 193 °C.
  • the obtained linear copolymer contains an epoxy group; after the GPC test, the obtained epoxy group-containing line
  • the copolymer had a number average molecular weight of about 17,920 and a weight average molecular weight of 5,1800.
  • the obtained comb-type graft copolymer contains an epoxy group; after the GPC test, the obtained epoxy-type comb-type graft copolymer has a number average molecular weight of about 18,220 and a weight average molecular weight of 50,670.
  • the epoxy group-containing graft copolymer obtained in Comparative Example 1, Comparative Example 2 and Examples 1-11 was used as a compatibilizer for preparing ABS and polybutylene terephthalate (PBT) alloy. And compared with commercially available epoxy-based compatibilizers. Among them, ABS/PBT alloy formula has 63 parts of ABS, 35 parts of PBT and 2 parts of compatibilizer; blank sample is 65 parts of ABS and 35 parts of PBT.
  • ABS and PBT were dried in an oven at 80 ° C and 120 ° C for 4 h, respectively, and used.
  • the materials are uniformly mixed into the feeding port of the twin-screw extruder for extrusion granulation.
  • the extruded strips are water-cooled, blown dry, sent to a pelletizer for pelletizing to obtain ABS/PBT alloy, and the obtained alloy plastic granules are obtained.
  • the test results are shown in Table 1.
  • the ABS/PBT alloy material without adding a compatibilizer has poor compatibility, low notched impact strength, improved compatibility of the added compatibilizer alloy product, and increased notched impact strength.
  • the epoxy group-containing graft copolymer prepared by the present invention has a better compatibilizing effect than the epoxy-based compatibilizer which is currently available on the market; in Example 1, compared with the comparative examples 1, 2, the molecular weight is similar. Under the condition of epoxy group content, the epoxy group-containing graft copolymer compatibilizer prepared by the invention has better compatibilizing effect than the linear and comb-type compatibilizer obtained in the prior art.
  • the melt index of the ABS/PBT alloy containing the epoxy group-containing graft copolymer prepared by the invention has a large decrease, and the epoxy group-containing graft copolymer reacts with the carboxyl group in the PBT to crosslink and improve.
  • the molecular weight of PBT, the epoxy group-containing graft copolymer prepared by the present invention also functions as a chain extender.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Graft Or Block Polymers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Epoxy Resins (AREA)

Abstract

本发明公开一种含环氧基团的接枝共聚物及其应用。所述接枝共聚物为含环氧基团和高分子共聚物侧链的一类聚合物,主要由40wt%~90wt%含碳碳双键的单体A、5wt%~30wt%含环氧基团的不饱和单体B、5wt%~30wt%含碳碳双键的高分子聚合物C通过自由基聚合共聚而成。制备过程为:首先利用自由基共聚得到高分子聚合物D,然后利用基团之间的反应制备含碳碳双键的高分子聚合物C;最后将获得的高分子聚合物C与单体A、单体B进行自由基共聚,干燥脱挥后获得含环氧基团的接枝共聚物。本发明含环氧基团的接枝共聚物可以作为共混聚合物的增容剂以及聚合物的扩链剂。

Description

一种含环氧基团的接枝共聚物及其应用 技术领域
本发明涉及接枝共聚物的合成与应用领域,具体涉及一种含环氧基团的丙烯酸酯接枝共聚物及其应用。
背景技术
增容剂是指利用物理或化学的手段,促使不相容的共混体系结合在一起,进而得到稳定共混体系的助剂。对于共混聚合物来说,由于各组分之间在化学结构、极性、分子量(粘度)和结晶度上的差异造成相分离,导致共混聚合物的性能很差。因此,增容剂是高水平共混改性产品的基石。特别是在目前原材料和改性料市场中,企业的生产配方和工艺流程大多公开化、透明化,增容剂的添加则成为材料改性生产商和竞争对手差异化的关键所在。
对于体系中含有反应性基团的共混聚合物,常常使用反应型增容剂。常见的反应型增容剂多为接枝型聚合物,如PP接枝马来酸酐(中国专利CN 102924661 B、CN 101519477 B)、苯乙烯接枝马来酸酐(中国专利CN 102993350 B)、ABS接枝马来酸酐等。这类增容剂多采用熔融反应挤出的方法,在聚合物分子链上接枝功能性基团,获得接枝反应型增容剂,生产工艺较简单。尽管这一类增容剂能一定程度上解决共混聚合物相容性的问题,但由于工艺限制,品种单一,接枝率低,多为酸酐型增容剂。与酸酐类增容剂相比,环氧类增容剂与羧基和羟基具有更高的反应活性,在聚酯合金中具有更好的增容效果。为了获得环氧基团接枝的增容剂,中国专利CN 102492101 A公开了一种将甲基丙烯酸缩水甘油酯(GMA)接枝到ABS树脂上的方法,采用熔融接枝的工艺,可以获得带环氧基团的接枝物,虽然方法简单,但副反应多,反应难控制,环氧接枝率最高只有0.67%。在实际使用中添加量较大,增容效率低,因此,熔融接枝方法获得的增容剂往往不能满足实际需求。
为了实现对增容剂结构和接枝率的有效控制,杜邦公司早在1973的发明专利US3723570中就采用共聚的方法制备乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯(PTW)三元共聚物增容剂。在此基础上,中国专利CN 101851321 B采用悬浮聚合的工艺,制备了三元共聚物增容剂苯乙烯-丙烯腈-甲基丙烯酸缩水甘油酯(SAG)增容剂,通过该方法可以控制环氧基团的含量,获得高接枝率的增容剂产品,环氧基团的接枝率可以高达10%。由于体系中含有苯乙烯与丙烯腈单元,因此该增容剂特别适用于ABS类合金体系。与其他增容剂相比,该增容剂能有效提高ABS与聚对苯二甲酸乙二醇酯(PET)合金的相容性(CN 102181122 A)和聚碳酸酯与ABS合金的热稳定性(CN 104877326 A)。
以上增容剂的结构多为线型增容剂,在实际应用中,高接枝率的反应性基团含量可以提高与其中一相的相容性,但是与另一相态往往只能依靠分子链间的缠绕,作用力较弱。而通过调节增容剂结构,在保证反应性基团接枝率的同时,在其主链上引入与另一相态热力学相容的高分子链段,可以有效的提高分子链间的缠绕和两相间的相容性。中国专利CN 103421154 A公开了一种含反应性基团的梳型接枝共聚物及其制备方法和应用。该专利通过在聚合物侧链上引入聚丙烯酸酯均聚物链段,采用自由基共聚的方法,获得了高接枝率的梳型聚合物。与商品化的增容剂相比,该增容剂能有效提高PET/ABS合金的模量、断裂伸长率、屈服强度和拉伸强度等,比相同接枝率的线型增容剂具有更高更好的增容效率(WY Dong,HT Wang,MF He,et al.Synthesis of Reactive Comb Polymers and Their Applications as a Highly Efficient Compatibilizer in Immiscible Polymer Blends[J].Industrial & Engineering Chemistry Research,2015,54:2081-2089)。该发明专利获得的梳型接枝共聚物还具有扩链作用。尽管如此,该专利中增容剂侧链的聚合物链段主要为甲基丙烯酸酯类或丙烯酸酯类单体的均聚物,在实际应用中侧链与另一相态往往不能很好的相容。同时增容剂侧链上单一的均聚物具有特定的极性和溶解度参数,一定程度上也限制了其应用。
发明内容
本发明的目的在于针对现有共混聚合物增容技术的不足,提供一种新型高效的含环氧基团的接枝共聚物。
本发明的目的还在于提供所述含环氧基团的接枝共聚物作为共混聚合物增容剂以及聚合物扩链剂的应用。
本发明目的通过如下技术方案实现:
一种含环氧基团的接枝共聚物,所述接枝共聚物为含环氧基团和高分子共聚物侧链的一类聚合物,由以下物质反应制得:
40wt%~90wt%含碳碳双键的单体A;
5wt%~30wt%含环氧基团的不饱和单体B;
5wt%~30wt%含碳碳双键的高分子聚合物C;
所述含环氧基团的接枝共聚物数均分子量为10000~100000,重均分子量为34000~200000。
本发明利用含碳碳双键的高分子聚合物C与含碳碳双键的单体A、含环氧基团的不饱和单体B反应得到含环氧基团的接枝共聚物。作为增容剂使用时,高接枝率的环氧基团含量可以提高与其中一相的相容性,而本发明中含碳碳双键的高分子聚合物C作为接枝共聚物的侧链,引入了共聚物,通过调节不同单体的选择和配比,可实现对侧链分子链柔顺性的控制,而且还可以调节侧链聚合物链段的溶解度参数,更好的提高增容剂与另一相态的相 容性,增强两相间结合力。本发明制备的含环氧基团的接枝共聚物与现有技术获得的高接枝率线型和梳型结构的增容剂相比,在相近分子量和接枝率的情况下具有更好的增容效果,可作为增容剂和聚合物扩链剂使用。
所述含环氧基团的接枝共聚物,由以下物质反应制得:
60wt%~85wt%含碳碳双键的单体A;
5wt%~20wt%含环氧基团的不饱和单体B;
10wt%~20wt%含碳碳双键的高分子聚合物C。
所述含碳碳双键的高分子聚合物C由聚合物D与含碳碳双键的单体E反应得到,所述聚合物D化学通式为:
Figure PCTCN2017112489-appb-000001
其中R1为甲基、乙基或丁基,R2为氢原子或甲基,R3为甲基、乙基、丙基、丁基、叔丁基或辛基,当R2为甲基时,R1、R3不同;m为20~100的整数,k为1~99的整数,n为1~100的整数,q为2~12的整数;S为硫原子,G是与含碳碳双键的单体E进行反应的基团,为羧基、氨基或羟基中的一种。
优选地,所述含碳碳双键的高分子聚合物C数均分子量为4000~12000。
所述含碳碳双键的高分子聚合物C玻璃化转变温度为10℃~100℃。
所述含碳碳双键的单体E带有环氧基、氨基、异氰酸酯基或酰氯基。
优选地,所述含碳碳双键的单体E为丙烯酰胺或甲基丙烯酰胺、甲基丙烯酸缩水甘油酯或烯丙基缩水甘油醚、丙烯酰氯或甲基丙烯酰氯、甲基丙烯酰氧乙基异氰酸酯及其衍生物中的一种。
所述聚合物D与含碳碳双键的单体E的摩尔比为1:0.8~1.3。
所述含碳碳双键的单体A为甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、甲基丙烯酸异辛酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸异辛酯、苯乙烯、α-甲基苯乙烯、α-乙基苯乙烯、丙烯腈、甲基丙烯腈及其衍生物中的一种或多种。
所述含环氧基团的不饱和单体B为甲基丙烯酸缩水甘油酯、烯丙基缩水甘油醚及其衍生物中的一种或多种。
所述聚合物D由丙烯酸酯类或甲基丙烯酸酯类单体中的一种或多种与链转移剂通过引发剂引发自由基聚合制得;所述链转移剂为含有羧基、羟基或氨基的脂肪族硫醇中的一种;所述引发剂为偶氮类引发剂、过氧化物引发剂或氧化还原引发剂中的一种。
所述含环氧基团的接枝共聚物由含碳碳双键的单体A、含环氧基团的不饱和单体B与含碳碳双键的高分子聚合物C通过自由基聚合方法共聚而成。
所述自由基聚合方法为本体聚合、溶液聚合、悬浮聚合或乳液聚合中的一种。
所述含环氧基团的接枝共聚物粘流态温度为110℃~200℃。
优选地,所述含环氧基团的接枝共聚物粘流态温度为140℃~180℃。
所述含环氧基团的接枝共聚物可以是由切粒机、造粒机制作的颗粒;也可以是粉碎机制作的粉状物。
所述含环氧基团的接枝共聚物可作为共混聚合物的增容剂以及聚合物的扩链剂。
与现有技术相比,本发明具有如下有益效果:
本发明制备的含环氧基团的接枝共聚物作为增容剂使用,高接枝率的环氧基团含量可以提高与其中一相的相容性,侧链引入的聚丙烯酸酯的共聚物,通过不同丙烯酸酯单体的选择和配比可实现对侧链分子链柔顺性的控制,还能调节侧链聚合物链段的溶解度参数,更好的提高接枝共聚物与另一相态的相容性,增强两相间结合力。与现有技术获得的高接枝率线型和梳型结构的增容剂相比,在相近的分子量和环氧基团含量的情况下具有更好的增容效果。本发明制备的含环氧基团的接枝共聚物还可以与聚合物发生交联反应,提高聚合物分子量,起扩链剂作用;与普通的线型聚合物扩链剂相比,本发明获得的含环氧基团接枝共聚物具有更高的分子量,扩链效果更为明显。
附图说明
图1为实施例1中制备的含环氧基团的接枝共聚物的红外谱图。
图2为实施例1中制备的含环氧基团的接枝共聚物的GPC谱图。
具体实施方式
下面结合具体实施例对本发明进行进一步解释说明,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制,但凡采用等同替换或等效变换的形式所获得的技术方案,均应包括在本发明权利要求的保护范围之内。
以下实施例中,所用的原料均为市售商品。
测试与表征方法
(一)红外光谱测试
将获得的含环氧基团的接枝共聚物与干燥后的溴化钾碾磨后压片,放置在傅立叶变换红外谱仪进行测试。扫描范围4000~400cm-1,分辨率为4cm-1,扫描次数16次。
(二)凝胶渗透色谱(GPC)测试
将获得的含环氧基团的接枝共聚物用四氢呋喃溶解后,采用凝胶渗透色谱仪测定聚合物的保留时间,检测仪器为折光指数测定仪,流动相为四氢呋喃,采用单分散聚苯乙烯作为标样来计算聚合物的相对分子量及其分布。
(三)粘流态温度测试
将获得的含环氧基团的接枝共聚物经过加热熔融后,制成厚度约为2mm的薄片,并采用热机械分析仪(TMA)测试共聚物的温度-形变曲线,根据温度-形变曲线得到共聚物的粘流态温度。
实施例1
氮气保护下,将80g甲基丙烯酸甲酯、20g丙烯酸乙酯、1.5g链转移剂巯基丙醇、4.5g引发剂偶氮二异丁腈和200g溶剂甲苯混合搅拌均匀后,移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至65℃,反应6h后,得到含聚合物D的甲苯溶液;将反应体系降至室温,加入0.01g阻聚剂对苯二酚、0.04g催化剂N,N-二甲基苄胺和2.1g含碳碳双键的单体E甲基丙烯酰氯(聚合物D与单体E摩尔比为1:1.2),室温搅拌反应8h后,将产物旋蒸干燥后,得到含碳碳双键的高分子聚合物C,通过GPC测试可知得到的高分子聚合物C的数均分子量约为4200。
氮气保护下,将80g甲基丙烯酸甲酯、40g丙烯酸丁酯、20g甲基丙烯酸缩水甘油酯、10g上述制备的含碳碳双键的高分子聚合物C、4.5g偶氮二异丁腈和150g甲苯混合搅拌均匀后(单体A、单体B和含碳碳双键的高分子聚合物C用量分别为80.00wt%、13.33wt%和6.67wt%),移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至75℃,反应6h后,将产物旋蒸干燥后,得到接枝共聚物。由红外光谱可知,如图1所示,得到的接枝共聚物含有环氧基团;经过GPC测试,从图2可知,所得含环氧基团的接枝共聚物数均分子量约为18132,重均分子量为50710;所得含环氧基团的接枝共聚物粘流态温度约为158℃。
实施例2
氮气保护下,将60g甲基丙烯酸甲酯、50g丙烯酸丁酯、1.5g链转移剂巯基丙醇、3.5g引发剂偶氮二异丁腈和250g溶剂二甲苯混合搅拌均匀后,移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至65℃,反应6h后,得到含聚合物D的二甲苯溶液;将反应体系降至室温,加入0.01g阻聚剂对苯二酚、0.02g催化剂三乙胺和2.1g含碳碳双键的单体E甲基丙烯酰氯 (聚合物D与单体E摩尔比为1:1.2),室温搅拌反应5h后,将产物旋蒸干燥后,得到含碳碳双键的高分子聚合物C。通过GPC测试可知得到的高分子聚合物C的数均分子量约为5100。
氮气保护下,将110g苯乙烯、20g丙烯酸乙酯、16g甲基丙烯酸缩水甘油酯、54g上述制备的含碳碳双键的高分子聚合物C、2.1g偶氮二异丁腈和300g乙酸丁酯混合搅拌均匀后(单体A、单体B与含碳碳双键的高分子聚合物C用量分别为65.00wt%、8.00wt%和27.00wt%),移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至75℃,反应6h后,将产物旋蒸干燥后,得到接枝共聚物。由红外光谱可知,得到的接枝共聚物含有环氧基团;经过GPC测试,所得含环氧基团的接枝共聚物数均分子量约为26410,重均分子量为77800;所得含环氧基团的接枝共聚物粘流态温度约为169℃。
实施例3
氮气保护下,将80g甲基丙烯酸乙酯、40g丙烯酸丁酯、2g链转移剂巯基乙醇、1.2g引发剂偶氮二异庚腈和150g溶剂乙酸乙酯混合搅拌均匀后,移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至70℃,反应5h后,得到含聚合物D的乙酸乙酯溶液;将反应体系降至室温,加入0.01g阻聚剂对苯二酚、0.02g催化剂三乙胺和5.0g含碳碳双键的单体E甲基丙烯酸异氰基乙酯(聚合物D与单体E摩尔比为1:1.25),室温搅拌反应10h后,将产物旋蒸干燥后,得到含碳碳双键的高分子聚合物C。通过GPC测试可知得到的高分子聚合物C的数均分子量约为11900。
氮气保护下,将120g甲基丙烯酸甲酯、15g甲基丙烯酸缩水甘油酯、15g上述制备的含碳碳双键的高分子聚合物C、1.6g过氧化苯甲酰和150g丁酮混合搅拌均匀后(单体A、单体B与含碳碳双键的高分子聚合物C用量分别为80.00wt%、10.00wt%和10.00wt%),移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至80℃,反应8h后,将产物旋蒸干燥后,得到接枝共聚物。由红外光谱可知,得到的接枝共聚物含有环氧基团;经过GPC测试,所得含环氧基团的接枝共聚物数均分子量约为52900,重均分子量为121100;所得含环氧基团的接枝共聚物粘流态温度约为175℃。
实施例4
氮气保护下,将50g甲基丙烯酸丁酯、50g丙烯酸甲酯、2g链转移剂巯基乙酸、1.6g引发剂偶氮二异庚腈和150g溶剂乙酸丁酯混合搅拌均匀后,移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至70℃,反应5h后,得到含聚合物D的乙酸丁酯溶液;降至室温,加入0.01g阻聚剂对苯二酚、0.02g催化剂三乙胺和4.0g含碳碳双键的单体E甲基丙烯酸缩水甘 油酯(聚合物D与单体E摩尔比为1:1.3),升温至130℃搅拌反应12h后,将产物旋蒸干燥后,得到含碳碳双键的高分子聚合物C。通过GPC测试可知得到的高分子聚合物C的数均分子量约为10700。
氮气保护下,将10g丙烯腈、30gα-甲基苯乙烯、50g甲基丙烯酸甲酯、5g烯丙基缩水甘油醚、5g上述制备的含碳碳双键的高分子聚合物C、1.6g偶氮二异丁腈和100g甲苯混合搅拌均匀后(单体A、单体B与含碳碳双键的高分子聚合物C用量分别为90.00wt%、5.00wt%和5.00wt%),移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至75℃,反应8h后,将产物旋蒸干燥后,得到接枝共聚物。由红外光谱可知,得到的接枝共聚物含有环氧基团;经过GPC测试,所得含环氧基团的接枝共聚物数均分子量约为29700,重均分子量为76600;所得含环氧基团的接枝共聚物粘流态温度约为178℃。
实施例5
氮气保护下,将60g甲基丙烯酸甲酯、40g丙烯酸甲酯、2g链转移剂巯基乙酸、1.8g引发剂偶氮二异庚腈和120g溶剂二甲苯混合搅拌均匀后,移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至70℃,反应5h后,得到含聚合物D的二甲苯溶液;降至室温,加入0.01g阻聚剂对苯二酚、0.02g催化剂三乙胺和2.4g含碳碳双键的单体E甲基丙烯酸缩水甘油酯(聚合物D与单体E摩尔比为1:0.8),升温至130℃搅拌反应12h后,将产物旋蒸干燥后,得到含碳碳双键的高分子聚合物C。通过GPC测试可知得到的高分子聚合物C的数均分子量约为11800。
氮气保护下,将70g甲基丙烯酸甲酯、30g丙烯酸丁酯、60g甲基丙烯酸缩水甘油酯、40g上述制备的含碳碳双键的高分子聚合物C、1.5g过氧化苯甲酰和300g甲苯混合搅拌均匀后(单体A、单体B与含碳碳双键的高分子聚合物C用量分别为50.00wt%、30.00wt%和20.00wt%),移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至85℃,反应8h后,将产物旋蒸干燥后,得到接枝共聚物。由红外光谱可知,得到的接枝共聚物含有环氧基团;经过GPC测试,所得含环氧基团的接枝共聚物数均分子量约为42100,重均分子量为97500;所得含环氧基团的接枝共聚物粘流态温度约为147℃。
实施例6
氮气保护下,将115g甲基丙烯酸乙酯、5g丙烯酸丁酯、4g链转移剂巯基乙酸、2.8g引发剂偶氮二异丁酸二甲酯和120g溶剂乙酸丁酯混合搅拌均匀后,移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至70℃,反应5h后,得到含聚合物D的乙酸丁酯溶液;升温至130℃,加入0.02g阻聚剂对苯二酚、0.04g催化剂四甲基己二胺和4.8g含碳碳双键的单体E 甲基丙烯酸缩水甘油酯(聚合物D与单体E摩尔比为1:0.8),搅拌反应12h后,将产物旋蒸干燥后,得到含碳碳双键的高分子聚合物C。通过GPC测试可知得到的高分子聚合物C的数均分子量约为9300。
氮气保护下,将130g苯乙烯、45g烯丙基缩水甘油醚、25g上述制备的含碳碳双键的高分子聚合物C、1.8g偶氮二异丁腈和200g二甲苯混合搅拌均匀后(单体A、单体B与含碳碳双键的高分子聚合物C用量分别为65.00wt%、22.50wt%和12.50wt%),移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至75℃,反应6h后,将产物旋蒸干燥后,得到接枝共聚物。由红外光谱可知,得到的接枝共聚物含有环氧基团;经过GPC测试,所得含环氧基团的接枝共聚物数均分子量约为31520,重均分子量为76800;所得含环氧基团的接枝共聚物粘流态温度约为156℃。
实施例7
氮气保护下,将80g甲基丙烯酸甲酯、30g丙烯酸异辛酯、2.4g巯基十二酸、1.8g偶氮二异丁腈和150g乙酸丁酯混合搅拌均匀后,移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至70℃,反应5h后,得到含聚合物D的乙酸丁酯溶液;加入0.02g阻聚剂对苯二酚和1.6g含碳碳双键的单体E二甲氨基丙基甲基丙烯酰胺(聚合物D与单体E摩尔比为1:1),搅拌反应8h后,将产物旋蒸干燥后,得到含碳碳双键的高分子聚合物C。通过GPC测试可知得到的高分子聚合物C的数均分子量约为10500。
氮气保护下,将100g甲基丙烯酸甲酯、50丙烯酸异辛酯、30g甲基丙烯酸缩水甘油酯、20g上述制备的含碳碳双键的高分子聚合物C、1.5g过氧化苯甲酰和150g乙酸丁酯混合搅拌均匀后(单体A、单体B与含碳碳双键的高分子聚合物C用量分别为75.00wt%、15.00wt%和10.00wt%),移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至85℃,反应10h后,将产物旋蒸干燥后,得到接枝共聚物。由红外光谱可知,得到的接枝共聚物含有环氧基团;经过GPC测试,所得含环氧基团的接枝共聚物数均分子量约为69100,重均分子量为141100;所得含环氧基团的接枝共聚物粘流态温度约为118℃。
实施例8
氮气保护下,将40g甲基丙烯酸甲酯、60g丙烯酸甲酯、2.4g巯基乙胺、4.2g偶氮二异戊腈和250g乙酸乙酯混合搅拌均匀后,移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至65℃,反应7h后,得到含聚合物D的乙酸乙酯溶液;降至室温,加入0.02g阻聚剂对苯二酚和4.8g含碳碳双键的单体E甲基丙烯酸异氰基乙酯(聚合物D与单体E摩尔比为1:1),室温搅拌反应8h后,将产物旋蒸干燥后,得到含碳碳双键的高分子聚合物C。通过GPC测 试可知得到的高分子聚合物C的数均分子量约为4500。
氮气保护下,将80g甲基丙烯酸甲酯、10g甲基丙烯酸缩水甘油酯、10g上述制备的含碳碳双键的高分子聚合物C、4.5g偶氮二异丁腈和200g甲苯混合搅拌均匀后(单体A、单体B与含碳碳双键的高分子聚合物C用量分别为80.00wt%、10.00wt%和10.00wt%),移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至75℃,反应6h后,将产物旋蒸干燥后,得到接枝共聚物。由红外光谱可知,得到的接枝共聚物含有环氧基团;经过GPC测试,所得含环氧基团的接枝共聚物数均分子量约为10200,重均分子量为34400;所得含环氧基团的接枝共聚物粘流态温度约为170℃。
实施例9
氮气保护下,将40g甲基丙烯酸甲酯、60g丙烯酸丁酯、1.2g巯基乙胺、2.1g偶氮二异丁腈和150g甲苯混合搅拌均匀后,移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至75℃,反应6h后,得到含聚合物D的甲苯溶液;加入0.02g阻聚剂对苯二酚和2.0g含碳碳双键的单体E甲基丙烯酸缩水甘油酯(聚合物D与单体E摩尔比为1:0.9),搅拌反应6h后,将产物旋蒸干燥后,得到含碳碳双键的高分子聚合物C。通过GPC测试可知得到的高分子聚合物C的数均分子量约为7400。
氮气保护下,将65g苯乙烯、25g丙烯腈、5g烯丙基缩水甘油醚、5g上述制备的含碳碳双键的高分子聚合物C、1.5g偶氮二异丁腈和80g乙酸丁酯混合搅拌均匀后(单体A、单体B与含碳碳双键的高分子聚合物C用量分别为90.00wt%、5.00wt%和5.00wt%),移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至75℃,反应6h后,将产物旋蒸干燥后,得到接枝共聚物。由红外光谱可知,得到的接枝共聚物含有环氧基团;经过GPC测试,所得含环氧基团的接枝共聚物数均分子量约为33400,重均分子量为86500;所得含环氧基团的接枝共聚物粘流态温度约为178℃。
实施例10
氮气保护下,将60g甲基丙烯酸甲酯、50g丙烯酸乙酯、1.5g链转移剂巯基丙醇、3.5g引发剂偶氮二异丁腈和250g溶剂甲苯混合搅拌均匀后,移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至65℃,反应6h后,得到含聚合物D的甲苯溶液;将反应体系降至室温,加入0.01g阻聚剂对苯二酚、0.02g催化剂N,N-二甲基苄胺和2.1g含碳碳双键的单体E甲基丙烯酰氯(聚合物D与单体E摩尔比为1:1.2),室温搅拌反应5h后,将产物旋蒸干燥后,得到含碳碳双键的高分子聚合物C,通过GPC测试可知得到的高分子聚合物C的数均分子量约为5100。
将80g苯乙烯、18g丙烯酸丁酯、10g甲基丙烯酸缩水甘油酯、12g上述制备的含碳碳双键的高分子聚合物C、2.4g阴离子乳化剂十二烷基硫酸钠、1.2g非离子乳化剂聚氧乙烯辛基苯酚醚、0.75g引发剂过硫酸钾和175g蒸馏水混合后采用高速搅拌机高速搅拌15min,得到预乳化液(单体A、单体B与含碳碳双键的高分子聚合物C用量分别为81.67wt%、8.33wt%和10.00wt%);将获得的预乳化液移至装有搅拌桨、冷凝器和温度计的四口瓶中,氮气气氛保护,加热至75℃,反应8h后,冷却至室温,加入10ml浓度为5%的CaCl2水溶液,破乳沉淀后用蒸馏水将产物洗涤多次,然后干燥后破碎,得到接枝共聚物。由红外光谱可知,得到的接枝共聚物含有环氧基团;经过GPC测试,所得含环氧基团的接枝共聚物数均分子量约为89100,重均分子量为197100;所得含环氧基团的接枝共聚物粘流态温度约为173℃。
实施例11
氮气保护下,将40g甲基丙烯酸甲酯、60g丙烯酸甲酯、2.4g巯基乙胺、4.2g偶氮二异戊腈和250g乙酸乙酯混合搅拌均匀后,移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至65℃,反应7h后,降至室温,得到含聚合物D的乙酸乙酯溶液;加入0.02g阻聚剂对苯二酚和4.8g含碳碳双键的单体E甲基丙烯酸异氰基乙酯(聚合物D与单体E摩尔比为1:1),室温搅拌反应8h后,将产物旋蒸干燥后,得到含碳碳双键的高分子聚合物C。通过GPC测试可知得到的高分子聚合物C的数均分子量约为4500。
将2g磷酸钙和2g硫酸钠溶解在150g蒸馏水中,移至装有搅拌桨、冷凝器和温度计的四口瓶中;将80g甲基丙烯酸甲酯、10g烯丙基缩水甘油醚、1.5g引发剂(NH4)2S2O8-FeSO4、30g上述制备的含碳碳双键的高分子聚合物C混合均匀后(单体A、单体B与含碳碳双键的高分子聚合物C用量分别为66.67wt%、8.33wt%和25.00wt%),加入上述四口瓶中,氮气气氛保护,加热至65℃,反应7h后,将产物洗涤抽滤,干燥后得到接枝共聚物。由红外光谱可知,得到的接枝共聚物含有环氧基团;经过GPC测试,所得含环氧基团的接枝共聚物数均分子量约为92900,重均分子量为174100;所得含环氧基团的接枝共聚物粘流态温度约为193℃。
对比例1
氮气保护下,将100g甲基丙烯酸甲酯、30g丙烯酸丁酯、20g甲基丙烯酸缩水甘油酯、2.1g引发剂偶氮二异丁腈和200g溶剂甲苯混合搅拌均匀后,移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至75℃,反应6h后,降至室温,将产物旋蒸干燥后,得到线型共聚物。由红外光谱可知,得到的线型共聚物含有环氧基团;经过GPC测试,所得含环氧基团的线 型共聚物数均分子量约为17920,重均分子量为51800。
对比例2
氮气保护下,将100g甲基丙烯酸甲酯、3.2g链转移剂巯基乙酸、3g引发剂偶氮二异丁腈和200g溶剂甲苯混合搅拌均匀后,移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至65℃,反应6h后,降至室温,加入0.01g阻聚剂对苯二酚、0.04g催化剂三乙胺和5g甲基丙烯酸缩水甘油酯,100℃搅拌反应10h后,将产物旋蒸干燥后,得到含碳碳双键的高分子聚合物C,通过GPC测试可知得到的高分子聚合物C的数均分子量约为4100。
氮气保护下,将120g甲基丙烯酸甲酯、20g甲基丙烯酸缩水甘油酯、10g上述制备的含碳碳双键的高分子聚合物C、1.5g偶氮二异丁腈和250g甲苯混合搅拌均匀后,移至装有搅拌桨、冷凝器和温度计的四口瓶中,加热至75℃,反应6h后,将产物旋蒸干燥后,得到梳型接枝共聚物。由红外光谱可知,得到的梳型接枝共聚物含有环氧基团;经过GPC测试,所得含环氧基团的梳型接枝共聚物数均分子量约为18220,重均分子量为50670。
应用性能测试
将对比例1、对比例2和实施例1-11中获得的含环氧基团的接枝共聚物作为增容剂应用于制备ABS与聚对苯二甲酸丁二醇酯(PBT)合金,并与市售环氧类增容剂对比。其中ABS/PBT合金配方中ABS 63份,PBT 35份,增容剂2份;空白样为ABS 65份,PBT 35份。
原料ABS和PBT分别在80℃和120℃烘箱中干燥4h,备用。将各物料混合均匀加入双螺杆挤出机喂料口挤出造粒,挤出料条通过水槽经水冷、吹干后送入切粒机切粒得到ABS/PBT合金,将获得的合金塑料颗粒80℃干燥4小时,加入注塑机料斗,设定对应注塑工艺,注塑压膜成型得到测试用的标准样条。测试结果如表1所示。
表1ABS/PBT合金性能
Figure PCTCN2017112489-appb-000002
由表1可知,不添加增容剂的ABS/PBT合金材料相容性差,缺口冲击强度较低,加入增容剂合金产品的相容性得到提高,缺口冲击强度升高。可以看出,本发明制备的含环氧基团接枝共聚物增容效果优于目前市面上常见的环氧类增容剂;实施例1与对比例1、2相比,在相近的分子量和环氧基团含量条件下,本发明制备的含环氧基团的接枝共聚物增容剂比现有技术获得的线型和梳型结构的增容剂具有更好的增容效果。
同时,添加了本发明制备的含环氧基团接枝共聚物的ABS/PBT合金熔融指数有较大幅度的下降,含环氧基团接枝共聚物与PBT中的羧基反应交联,提高了PBT的分子量,本发明制备的含环氧基团接枝共聚物也具有扩链剂的作用。

Claims (15)

  1. 一种含环氧基团的接枝共聚物,其特征在于,所述接枝共聚物为含环氧基团和高分子共聚物侧链的一类聚合物,由以下物质反应制得:
    40wt%~90wt%含碳碳双键的单体A;
    5wt%~30wt%含环氧基团的不饱和单体B;
    5wt%~30wt%含碳碳双键的高分子聚合物C;
    所述含环氧基团的接枝共聚物数均分子量为10000~100000,重均分子量为34000~200000。
  2. 根据权利要求1所述含环氧基团的接枝共聚物,其特征在于,由以下物质反应制得:
    60wt%~85wt%含碳碳双键的单体A;
    5wt%~20wt%含环氧基团的不饱和单体B;
    10wt%~20wt%含碳碳双键的高分子聚合物C。
  3. 根据权利要求1所述含环氧基团的接枝共聚物,其特征在于,含碳碳双键的高分子聚合物C由聚合物D与含碳碳双键的单体E反应得到,所述聚合物D化学通式为:
    Figure PCTCN2017112489-appb-100001
    其中R1为甲基、乙基或丁基,R2为氢原子或甲基,R3为甲基、乙基、丙基、丁基、叔丁基或辛基,当R2为甲基时,R1、R3不同;m为20~100的整数,k为1~99的整数,n为1~100的整数,q为2~12的整数;S为硫原子,G是与含碳碳双键的单体E进行反应的基团,为羧基、氨基或羟基中的一种。
  4. 根据权利要求3所述含环氧基团的接枝共聚物,其特征在于,所述含碳碳双键的高分子聚合物C数均分子量为4000~12000。
  5. 根据权利要求3所述含环氧基团的接枝共聚物,其特征在于,所述含碳碳双键的单体E带有环氧基、氨基、异氰酸酯基或酰氯基。
  6. 根据权利要求5所述含环氧基团的接枝共聚物,其特征在于,所述含碳碳双键的单体E为丙烯酰胺或甲基丙烯酰胺、甲基丙烯酸缩水甘油酯或烯丙基缩水甘油醚、丙烯酰氯或甲基丙烯酰氯、甲基丙烯酰氧乙基异氰酸酯及其衍生物中的一种。
  7. 根据权利要求3所述含环氧基团的接枝共聚物,其特征在于,所述聚合物D与含碳碳双键的单体E的摩尔比为1:0.8~1.3。
  8. 根据权利要求1所述含环氧基团的接枝共聚物,其特征在于,所述含碳碳双键的单体A为甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、甲基丙烯酸异辛酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸异辛酯、苯乙烯、α-甲基苯乙烯、α-乙基苯乙烯、丙烯腈、甲基丙烯腈及其衍生物中的一种或多种。
  9. 根据权利要求1所述含环氧基团的接枝共聚物,其特征在于,所述含环氧基团的不饱和单体B为甲基丙烯酸缩水甘油酯、烯丙基缩水甘油醚及其衍生物中的一种或多种。
  10. 根据权利要求3所述含环氧基团的接枝共聚物,其特征在于,所述聚合物D由丙烯酸酯类或甲基丙烯酸酯类单体中的一种或多种与链转移剂通过引发剂引发自由基聚合制得;所述链转移剂为含有羧基、羟基或氨基的脂肪族硫醇中的一种;所述引发剂为偶氮类引发剂、过氧化物引发剂或氧化还原引发剂中的一种。
  11. 根据权利要求1所述含环氧基团的接枝共聚物,其特征在于,所述含环氧基团的接枝共聚物由含碳碳双键的单体A、含环氧基团的不饱和单体B与含碳碳双键的高分子聚合物C通过自由基聚合方法共聚而成。
  12. 根据权利要求11所述含环氧基团的接枝共聚物,其特征在于,所述自由基聚合方法为本体聚合、溶液聚合、悬浮聚合或乳液聚合中的一种。
  13. 根据权利要求1所述含环氧基团的接枝共聚物,其特征在于,所述含环氧基团的接枝共聚物粘流态温度为110℃~200℃。
  14. 根据权利要求1所述含环氧基团的接枝共聚物,其特征在于,所述含环氧基团的接枝共聚物粘流态温度为140℃~180℃。
  15. 权利要求1~14任一项所述含环氧基团的接枝共聚物作为共混聚合物的增容剂以及聚合物的扩链剂的应用。
PCT/CN2017/112489 2016-12-27 2017-11-23 一种含环氧基团的接枝共聚物及其应用 WO2018121138A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611226765.2 2016-12-27
CN201611226765.2A CN108239234B (zh) 2016-12-27 2016-12-27 一种含环氧基团的接枝共聚物及其应用

Publications (1)

Publication Number Publication Date
WO2018121138A1 true WO2018121138A1 (zh) 2018-07-05

Family

ID=62701745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112489 WO2018121138A1 (zh) 2016-12-27 2017-11-23 一种含环氧基团的接枝共聚物及其应用

Country Status (2)

Country Link
CN (1) CN108239234B (zh)
WO (1) WO2018121138A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113174014A (zh) * 2021-05-20 2021-07-27 传美讯电子科技(珠海)有限公司 一种丙烯酸酯梳状物分散剂及其制备方法和应用以及有机颜料喷墨色浆
CN113845616A (zh) * 2021-11-04 2021-12-28 佳易容聚合物(上海)有限公司 一种pmma共聚功能树脂及其制备方法
CN115466350A (zh) * 2021-11-29 2022-12-13 上海涵点科技有限公司 一种高活性基团的反应型扩链剂及其应用
CN115612025A (zh) * 2022-10-18 2023-01-17 浙江工业大学 一种反应型梳状结构增容剂及其制备方法与应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110615873A (zh) * 2019-09-03 2019-12-27 铨盛聚碳科技股份有限公司 一种梳形含环氧基团的相容剂及其制备方法
CN113861636B (zh) * 2021-10-27 2023-01-03 佳易容聚合物(上海)有限公司 一种高挺度高强韧可全降解pbat/pla树脂组合物及其制备方法
CN114369213B (zh) * 2022-01-14 2023-07-14 河北明润复合材料科技有限公司 Pet增粘剂、pet发泡材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421154A (zh) * 2013-07-25 2013-12-04 杭州师范大学 一种含反应基团的梳形接枝共聚物及其制备方法和应用
CN104610515A (zh) * 2014-12-24 2015-05-13 杭州师范大学 一种含反应基团的梳形接枝共聚物及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105778459B (zh) * 2016-03-15 2018-01-05 常州塑金高分子科技有限公司 一种壳体材料用pc/abs功能化再生合金及其制备工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103421154A (zh) * 2013-07-25 2013-12-04 杭州师范大学 一种含反应基团的梳形接枝共聚物及其制备方法和应用
CN104610515A (zh) * 2014-12-24 2015-05-13 杭州师范大学 一种含反应基团的梳形接枝共聚物及其制备方法与应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113174014A (zh) * 2021-05-20 2021-07-27 传美讯电子科技(珠海)有限公司 一种丙烯酸酯梳状物分散剂及其制备方法和应用以及有机颜料喷墨色浆
CN113845616A (zh) * 2021-11-04 2021-12-28 佳易容聚合物(上海)有限公司 一种pmma共聚功能树脂及其制备方法
CN115466350A (zh) * 2021-11-29 2022-12-13 上海涵点科技有限公司 一种高活性基团的反应型扩链剂及其应用
CN115612025A (zh) * 2022-10-18 2023-01-17 浙江工业大学 一种反应型梳状结构增容剂及其制备方法与应用
CN115612025B (zh) * 2022-10-18 2023-09-05 浙江工业大学 一种反应型梳状结构增容剂及其制备方法与应用

Also Published As

Publication number Publication date
CN108239234B (zh) 2019-11-19
CN108239234A (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
WO2018121138A1 (zh) 一种含环氧基团的接枝共聚物及其应用
WO2018121139A1 (zh) 含酸酐基团的接枝共聚物及其应用
Vainio et al. Functionalization of polypropylene with oxazoline and reactive blending of PP with PBT in a corotating twin‐screw extruder
TW201016731A (en) Coupled polyester acrylate graft polymers
US20220177620A1 (en) Solvent-free adhesion-promoting chain extender, preparation method therefor, and application thereof
CN113234308B (zh) 低分子量的功能性共聚物提高生物可降解共混物相容性的方法及制得的共混物
CN108359061B (zh) 一种含酸酐基团的接枝共聚物及其制备方法和应用
WO2018121140A1 (zh) 一种含异氰酸酯基团的接枝共聚物及其应用
CN113185637A (zh) 甲基苯乙烯-甲基丙烯酸酯-丙烯酸缩水甘油酯三元共聚物扩链剂及其制备方法
WO2018121137A1 (zh) 一种含反应性基团的接枝共聚物及其应用
CN108440725B (zh) 一种含环氧基团的接枝共聚物及其制备方法和应用
JPH0370763A (ja) 酸官能性のアクリルシラノール重合体をベースにした水性組成物
CN111944291A (zh) 一种聚乳酸树脂组合物及其制备方法
CN108314761A (zh) 一种含反应性基团的接枝共聚物及其制备方法和应用
CN108409912B (zh) 一种含环氧基团的接枝共聚物及其制备方法和应用
CN108359060B (zh) 一种含反应性基团的接枝共聚物及其制备方法和应用
CN108409922B (zh) 一种含反应性基团的接枝共聚物及其制备方法和应用
US6784246B2 (en) Non-gelling high molecular weight polymer compositions and thermosplastic blends thereof
WO2015100517A1 (zh) 含多个环氧官能团的物质、其制备方法、其与二氧化碳和环氧丙烷的三元共聚物及共聚方法
JPS63308055A (ja) ポリフッ化ビニリデン樹脂組成物
JPH02117922A (ja) 改質ポリスチレン系樹脂及び改質ポリスチレン系樹脂組成物の各製造方法
JPS61200107A (ja) ゴム変性熱可塑性樹脂組成物
KR100650912B1 (ko) 가공성이 우수한 스티렌계 열가소성 수지 및 그 제조 방법
CN116199827A (zh) 一种支化结构增韧剂及其制备方法与应用
CN116218172A (zh) 一种共混聚乳酸类生物降解增韧复合材料制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889441

Country of ref document: EP

Kind code of ref document: A1